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Syndrome identification based on 2D analysis
software
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Clinical evaluation of children with developmental delay continues to present a challenge to the clinicians.
In many cases, the face provides important information to diagnose a condition. However, database
support with respect to facial traits is limited at present. Computer-based analyses of 2D and 3D
representations of faces have been developed, but it is unclear how well a larger number of conditions can
be handled by such systems. We have therefore analysed 2D pictures of patients each being affected with
one of 10 syndromes (fragile X syndrome; Cornelia de Lange syndrome; Williams–Beuren syndrome;
Prader–Willi syndrome; Mucopolysaccharidosis type III; Cri-du-chat syndrome; Smith–Lemli–Opitz
syndrome; Sotos syndrome; Microdeletion 22q11.2; Noonan syndrome). We can show that a classification
accuracy of 475% can be achieved for a computer-based diagnosis among the 10 syndromes, which is
about the same accuracy achieved for five syndromes in a previous study. Pairwise discrimination of
syndromes ranges from 80 to 99%. Furthermore, we can demonstrate that the criteria used by the
computer decisions match clinical observations in many cases. These findings indicate that computer-
based picture analysis might be a helpful addition to existing database systems, which are meant to assist
in syndrome diagnosis, especially as data acquisition is straightforward and involves off-the-shelf digital
camera equipment.
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Introduction
Making a diagnosis in a dysmorphic child requires a high

degree of experience and expertise. Although some steps in

finding the diagnosis are highly formalized, for example,

database searches, others are recalcitrant to standardiza-

tion. Among these are the physical examination and the

evaluation of the overall impression of a patient by the

examiner. Imprecise and nonstandardized nomenclature,

especially of facial features, places a major difficulty for the

communication between clinical geneticists. Other more

subtle problems involve the very process of perception,

which is subject to influence from many psychological

factors, like crossinfluences of perceptions.1 In the wake of

these problems, various attempts have been undertaken

to characterize facial features on the basis of objective

measurements; among them are photogrammetry and

anthropometry, which are summarized elsewhere.2,3 One

recent study applies photogrammetry to 3D scans.4 The

study shows that landmarks can be positioned reliably, an

assumption underlying 2D- and 3D-based systems for

syndrome classification. Here we would like to focus on

computer-based techniques, which promise to help the

clinician in the diagnostic process of syndrome identifica-

tion by providing an automated analysis of the face.
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Physicians, not particularly trained in dysmorphology,

could potentially benefit by being able to follow a

formalized procedure to establish diagnostic hypotheses,

which certainly remain to be evaluated and verified by the

specialist. Two approaches have emerged that try to

automate the procedures of face analysis. These explore

either 2D images2 or 3D representation of faces.3,5 We have

contributed to the 2D approach and shall show extended

results later. We now briefly describe the technical simila-

rities and differences between the systems and refer to the

original publications for details. Both systems start by

capturing a raw data set, which is acquired by either a

standard 2D digital camera or by a 3D surface scanner. Next,

both systems identify landmarks of the face (nose tip, lip

edges, etc) with coordinates of points in the data sets

(termed the correspondence). In the 2D approach, the

coordinates of landmarks are enriched by a representation

of the texture in a neighbourhood of the landmark, which is

given by a Gabor wavelet transformation. In its current

version, the texture of the face is ignored in the 3D

approach. Rather, the 3D coordinates describing the surface

of a face are used for discrimination purposes. Both

approaches use landmarks to define corresponding regions

in the face, which allows for a numeric representation of the

face with numbers corresponding to well-defined features.

Both methods seem to benefit from manual intervention in

landmark placement.2,6 Therefore, both systems result in an

objective description of the face, although quite different

information is being used. An important question regarding

automated procedures and their practical relevance is how

well a sizeable number of syndromes can be dealt with

simultaneously. Potentially, several 100 syndromic condi-

tions with facial dysmorphisms could be relevant in clinical

practice. Here we show an analysis of the classification of 10

syndromes to compare it with earlier results to approach

this question. Another important question deals with the

decision process during classification. It is reassuring to see a

computer using criteria, which are similar to those of

humans and even additional criteria that might be implicit

to the human decision. We deal with this question by

visualization of the decision process.

Materials and methods
Probands

An extensive set of pictures of individuals representing 10

syndromes was collected. Written informed consent was

given by parents of the probands or by the probands

themselves. Details about the cohorts can be found in

Table 1. On average about 12 individuals are present in

each group. The age of individuals varied from 1 to 40

years. Results of cytogenetic, molecular or biochemical

analyses were obtained for all syndromes, except for

Cornelia-de-Lange syndrome, for which no molecular test

was available at the time of recruitment.

Picture acquisition conditions

Conditions for picture acquisition were standardized as

much as possible. Three lighting sources providing soft

light were used to illuminate probands. Ambient light was

reduced to the extent possible, but could never be

eliminated entirely as pictures were primarily taken at

meetings of parent support groups in varying settings. A

uniform background was used throughout. Standard

digital cameras were used to take 2D still pictures (Nikon

Coolpix 950, Nikon Coolpix 4500). Additionally, videos

using a Panasonic NV-MX350EG were recorded from

probands and still pictures were later extracted from the

videos. Extracted pictures usually allow for selection of a

pose that is exactly rotated into a frontal position, if a

rotation of the face was recorded on the video.

Picture standardization and selection

From the collection of pictures for each proband, one

picture was selected for the final analyses. The criteria used

were sharpness of the image, pose of the face and facial

expression. Sharp pictures with a face rotated into a frontal

position were selected. By subjective judgement, pictures

were further chosen to show as little emotional expression

as possible. Pictures were then converted to grayscale and

cropped to a size of 256 by 256 pixels. For the probands

included in the previous study, we have used the same

pictures, which are depicted elsewhere.2 We give five

examples of each group in Figure 1.

Picture analysis

Pictures have been analysed using custom software. Picture

analysis is a two-step process. In the first step, a face is

searched in the picture and nodes (points) are positioned

on the face corresponding to a predefined pattern.

Additionally, we have created a data set, for which

correspondence of nodes to picture positions was estab-

lished manually (manual node correspondence). A Gabor

wavelet transformation was applied at each node.7 This

transformation results in 40 coefficients per node, which

can be used to locally approximate the picture texture in

Table 1 Characterization of the data set

Condition Age range n

Microdeletion 22q11.2 1–12 23
Cri-du-chat syndrome 1–17 16
Cornelia de Lange syndrome 5–33 12
Fragile X Syndrome 4–14 12
Mukopolysaccharidosis III 5–25 10
Noonan syndrome 1–40 18
Prader–Willi syndrome 4–21 12
Smith–Lemli–Opitz syndrome 1–18 13
Sotos syndrome 1–20 18
Williams–Beuren syndrome 1–29 13
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the neighbourhood of each node. Details of this process are

given elsewhere.2,7

Data set pruning

We have conducted the analysis based on data sets derived

from both automatically and manually placed nodes.

Additionally, we have constructed data sets for which the

nodes on the rim of the face have been left out. The

rationale behind this step is to reduce noise by removing

potentially uninformative nodes, as hair is expected not to

be a stable trait for many individuals and rim nodes also

include information from the background. Using all

permutations, we conducted all analyses with four data

sets. Unless noted otherwise, results are reported for

manually labelled data with all nodes included.

Statistical analysis

The data set was analysed using several classification

techniques (software package R, version 2.1.0; http://

r-project.org). Specifically, these were linear discriminant

analysis (LDA), support vector machines (SVM) and kth

nearest neighbours (kNN). These techniques were com-

pared to jet voting (JV), a technique used in a previous

paper,2 which performs a nearest-neighbour classification

at each node and classifies the syndrome taking a majority

vote over all nodes. To evaluate classification accuracy, we

have performed cross-validation procedures. We used 10-

fold cross-validation, the accuracy estimates of which were

averaged over 20 runs. We have performed both simulta-

neous classification and pairwise classification of syn-

dromes. The simultaneous classification serves to evaluate

the problem of assigning a syndrome to an unknown face,

that is, the problem of diagnosis. Pairwise comparisons of

syndromes can be used to evaluate similarity of syndromes

and to compare the performance achieved with the current

data set with respect to other data sets published thus far.

Before performing LDA, SVM and kNN, we performed a

principal component analysis (PCA). PCA transforms a data

set into a new coordinate system such that the variances of

the new coordinates decrease with increasing rank. The

PCA was used to reduce the amount of covariates resulting

from picture analysis. In the following analyses, we have

used a contiguous block of principal components (PCs)

starting with the first PC and including a variable number

of subsequent PCs. The number of PCs included was

chosen as to optimize classification results. For SVM, we

used polynomial kernel functions and optimized classifica-

tion results varying the degree of polynomials. For kNN,

the number of neighbours k was varied. We will refer to

these procedures as model selection.

To assess the validity of the classifiers resulting from the

statistical procedures, we investigated the linear discrimi-

nant (LD) functions resulting from LDA. We have used the

LD functions to produce diagrams that display the

importance of individual wavelet coefficients in the

classification decision. Details are given in Appendix A.

These visualizations can be used to exclude artificial

classification results, which might, for example, stem from

slightly differing acquisition conditions. Additionally,

criteria of classifiers can be compared with clinical

characteristics of syndromes.

Figure 1 Examples of the facial photographs of the 10 syndromes
investigated. Each row comprises one syndrome: microdeletion
22q11.2, Cri-du-chat, Cornelia de Lange, fragile X, Mucopolysacchar-
idosis III, Noonan, Prader–Willi, Smith–Lemli –Opitz, Sotos, Williams–
Beuren.
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We provide a supplementary document to describe

statistical methods in an informal way.

Results
Simultaneous classification

Results for simultaneous classification decisions are

reported in Table 2, which demonstrates accuracies

after performing model selection. Overall accuracies are

shown as well as a breakup of accuracies for individual

syndromes. The best overall accuracy of 76% was achieved

by LDA. Both SVM and kNN performed worse at 70

and 68%, respectively. The model selection revealed

that the simplest choice of classifiers for SVM and

kNN with a polynomial degree of 1 for SVM and the

number of neighbours also 1 for kNN yielded this

result. This reflects the high complexity of the data set,

which seems to dictate robust, that is, simple classifiers.

JV performed considerably worse at 55%. This result is

not surprising as JV does not make use of joint information

at different nodes, whereas kNN does. It therefore seems

that JV does not have the potential to handle a large

number of syndromes. Figures 2 and 3 shows an example of

the model selection procedure for LDA showing results

for individual syndromes. In general, for 20 included

PCs classification rates are better than 70% and change

slowly from that point on. However, the joint accuracy is

optimal for 36 PCs, indicating that subtle information is

contained in PCs in the range from 20 to 40. This diagram

also suggests that classifiers could be optimized for

syndromes individually and later be combined.8 One

apparent exception from the good results for most

syndromes is Cri-du-chat syndrome, for which perfor-

mance dropped to 28%.

Using a completely automatically analysed data set, the

overall accuracy for LDA drops to 52% (Table 2, column 2).

This is largely owing to failures in localizing the face in

some of the pictures from the automatic process resulting

in strong noise signals in the data set.

Data sets with excluded rim nodes performed very

similar to the corresponding, full data sets. We therefore

do not give any detailed results, but report the overall

accuracies. For the manual data set, performance was as

follows: LDA 75.8% (40 PCs), SVM 68.7% (degree¼1, 18

PCs), kNN 62.2% (k¼1, 19 PCs) and JV 55%. For the

automatically labelled data set, we obtained: LDA 52.8%

(12 PCs), SVM 52.4% (degree¼1, 11 PCs), kNN 48.6%

(k¼1, 10 PCs) and JV 50%.

Table 2 Classification accuracies of four classification methods with different data sets

Condition LDA LDA SVM kNN JV

Data set Manual Auto Manual Manual Manual
No. of PCs 36 15 20 21 F
Overall 75.7% 52.1% 70.4% 68.1% 55.8%
22q� 77.4% 96.0% 84.8% 88.6% 90.5%
5p� 27.5% o0.1% 26.3% 24.2% o0.1%
Cornelia de Lange 83.7% 60.4% 85.8% 60.0% 64.6%
Fragile X 99.9% 99.6% 91.7% 75.0% 79.2%
Mucopolysaccharidosis III 94.2% 95.8% 41.7% 81.7% 50.0%
Noonan 78.4% 1.2% 70.9% 79.4% 78.1%
Prader–Willi 77.9% 85.4% 89.6% 91.2% 60.4%
Smith–Lemli–Opitz 59.0% o0.1% 54.5% 64.5% 7.5%
Sotos 72.3% 0.3% 52.7% 34.7% 30.0%
Williams–Beuren 88.1% 89.6% 81.9% 76.9% 59.6%

The first row indicates whether nodes were placed automatically or manually. The second row lists which number of PCs was chosen from the model
selection procedure (see Statistical analysis). The degree of polynomials for SVM was chosen as 1. The number of neighbours for kNN was chosen as 1.
Bold figures represent overall results.

Figure 2 Example result of the automatic procedure matching a
graph in a given picture.
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Pairwise classification

Table 3 shows results for pairwise comparisons of syndro-

mic conditions. These results were achieved using the first

seven PCs after selecting the pair of syndromes. Most pair

wise comparisons allow for accuracy well above 90%.

Problems to discriminate Cri-du-chat syndrome in the

joint analysis are reflected by the fact that comparisons

with Noonan (79%), Smith–Lemli–Opitz (82%) and Sotos

syndromes (81%) are at the lower end of the accuracies

achieved for pairwise comparisons. One notable exception

is the comparison of Sotos and Noonan syndromes, for

which accuracy is 31%, indicating that the correct facial

features discriminating these syndromes could not be

learned by the classifier. This example is further scrutinized

by graphical means below.

Visualization

In general, it is important to verify classification results

by scrutinizing decision rules as these rules might pick

up certain characteristics in the data set that are not

associated with the classification goal, for example,

background information in the case of face classification.

We have therefore opted to visualize classification

rules resulting from a pairwise LDA classification as

described above. Figure 4 shows examples from these

comparisons, which summarize the important features

that can be learned from these visualizations. Figure 4a

demonstrates that the decision rule to distinguish

fragile X from Cornelia de Lange syndrome mainly

relies on the eye, eyebrow and lower nose region.

Additionally, features detected at the lower edges of

the ears seem to be important. In general, the pairwise

comparisons often highlight the eye region for

fragile X and the eyebrow region for Cornelia de Lange

syndrome, which consequently overlap when this

pair is visualized. These two signals allow for a perfect

discrimination of these two syndromes. Figure 4b

demonstrates the comparison of Cornelia de Lange

with Mucopolysaccharidosis type III. Still signals are

located in the eyebrow region. The eyes, however, do not

play a role for the decision between Cornelia de Lange and

Mucopolysaccharidosis III. In general, the decision rule

seems to integrate information from the entire face,

sparing the hair and chin region. Discrimination between

Smith–Lemli–Opitz and Noonan, depicted in Figure 4c,

shows that information from nodes on each side of the

nose as well as the mouth region is most important. The

examples shown so far correspond well with clinical

expectation. The worst pairwise classification rate of

Smith–Lemli–Opitz and Noonan, however, which is

shown in Figure 4d, visualizes a classifier that does not

seem to have learned relevant clinical traits. Especially, the

fact that the weights seem to be far from symmetric about

the vertical axis seems to be a hint that the data set did not

comprise enough information to achieve a reasonable

discrimination between Smith–Lemli–Opitz and Noonan

syndrome.

Figure 3 Discrimination accuracy graphs for individual syndromes
using LDA illustrating the model selection procedure. On the x-axis,
the number of PCs used is given and the y-axis shows classification
accuracies. Syndromes are abbreviated as follows: Microdeletion
22q11.2 (2), Cri-du-chat (5), Cornelia de Lange (C), fragile X (F),
Mucopolysaccharidosis III (M), Noonan (N), Prader–Willi (P), Smith–
Lemli –Opitz (S), Sotos (So) and Williams–Beuren (W).

Table 3 Pairwise classification accuracy of syndrome discrimination using LDA (seven PCs)

22q� 5p�
Cornelia
de Lange

Fragile
X Mucopolysaccharidosis III Noonan

Prader–
Willi

Smith–
Lemli–Opitz Sotos

5p� 0.92 F F F F F F F F
Cornelia de Lange 0.99 0.83 F F F F F F F
Fragile X 1.00 0.87 0.95 F F F F F F
Mucopolysaccharidosis III 1.00 0.89 0.65 0.95 F F F F F
Noonan 0.89 0.79 0.94 0.99 0.88 F F F F
Prader–Willi 0.99 0.91 0.87 0.88 0.84 0.99 F F F
Smith–Lemli–Opitz 0.96 0.82 0.80 0.95 0.77 0.76 0.96 F F
Sotos 0.89 0.81 0.88 0.94 0.88 0.31 0.90 0.77 F
Williams-Beuren 0.98 0.92 0.89 0.97 0.88 0.91 0.78 0.80 0.89
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Discussion
Classification results presented in this study are promising

with respect to the problem that was posed initially: Can a

computer be helpful in analysing faces if more than a few

syndromes are involved? However, there are several caveats

in drawing further conclusions, which we shall discuss. It

is surprising how few examples per class are sufficient to

maintain a stable distinction between syndromes even

when the number of syndromes is sizeable. Also, the

classifiers seem to learn features similar to those described

by clinicians in most cases. As two experienced clinicians

reviewed the pictures (GG-K, DW), arguably the data set

might be biased towards ‘typical’ appearances. Unless the

computer is instructed as to which examples are typical

and which are not, the computer is going to treat all

examples equally in the learning process, which might

hamper accuracy for unseen examples. Conclusively, larger

numbers of examples per class seem desirable but not

essential to achieve accurate classification decisions even

for a large number of syndromes. For real-world application

additional challenges like ethnicity, age and mimics have

to be accounted for. Whereas ethnicity and age can be

Figure 4 Visualization of pairwise discrimination rules derived from LDA. The boxes at the graph nodes show the collection of coefficients extracted
there, and dark colors represent a strong influence of a node/coefficient on the classification decision. For details see text. (a) Fragile X vs Cornelia de
Lange, (b) Mucopolysaccharidosis III vs Cornelia de Lange, (c) Noonan vs Microdeletion 22q11.2 and (d) Sotos vs Noonan.
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handled by enriching the study with appropriate probands,

the influence of mimics seems to be best accounted for by

an explicit model, on account of the tremendous flexibility

of mimics. It has to be noted that the description of

mimics is an open research problem, which is tackled

independently.9

One specific result to be discussed is that for Cri-du-chat

syndrome. An explanation could be the evolution of the

facial phenotype in Chri-du-chat syndrome, which shows

marked differences of facial features comparing individuals

of different ages. Also this is in accord with an

often difficult diagnosis of Cri-du-chat syndrome on

clinical evaluations alone.10 For the other syndromes, it is

interesting to see that classification results are generally

robust against age variation. Keeping in mind the

results for Cri-du-chat syndrome, it is certainly desirable

to explicitly account for age, say by regression analysis,

but such an analysis has to be postponed until larger

data sets are available. We have therefore opted to

include probands irrespective of age, as age ranges were

roughly similar. Another point concerning the learning

algorithms is that the methods had to be changed as

compared with the earlier study, which was extended

here.2 This however is expected in light of the fact that a

larger data set contains more information that might

be best explored by different methods. As syndrome

numbers grow, we expect the statistical methodology to

be changed again to sustain reasonable classification

accuracy. At the moment LDA, a very simple and robust

method, performs best, which is reassuring with respect

to the validity of the results. Validity was verified by

graphical means and again reassured our findings. If

classifiers become more complex (eg nonlinear), visualiza-

tion might become more difficult, however, one possibility

is to use subsets of data sets in the future and establish

graphical validation as described here. The large

discrepancy of classification results between manually

and automatically obtained node correspondences

seems to indicate that manual steps cannot be excluded

entirely from any facial analysis software that intends to

extract as much information as possible. However, finding

landmarks in the face was not the primary goal of this

study. There are several ways to improve automatic

processing of data including optimizing our current

methods11 or using additional heuristic methods to find

the localization of the face in a given picture (Kalina, in

preparation).

Compared with the previous study, accuracy dropped

slightly from 80 to 75%. Taking into account the number

of syndromes chosen, the relative accuracy (dividing

accuracy by a priori accuracy) increased from 4 to 7.5, a

fact that is promising with respect to the further extension

of this study. Further improvements seem to be possible

by integrating spatial information from coordinates of

landmarks and side views. Preliminary results indicate

that classification can indeed be improved using this

information.

Running the statistical analysis employed here on the

previously used data set2 results in a classification accuracy

of 490%.

The most recent paper describing 3D methodology

demonstrates an accuracy of 89% for a joint discrimination

of five syndromes.5 Pairwise comparisons seem to be

similar for both approaches. It should be noted that the

analyses are not directly comparable as statistical analyses

differ somewhat as well as sample sizes. On account of

sample size within syndromes, results for the 3D approach

should be more accurate. As for 3D analysis, texture

information is captured simultaneously with spatial in-

formation, it would be very interesting to see how the

combination of 3D and texture information would per-

form. Whereas capturing of 3D information results in a

richer data set and allows for excellent visualization as

demonstrated recently,5 2D analysis has several advantages

in practical use: equipment is cheap and it is easy to

handle. It has to be noted that neither 2D nor 3D methods

have direct applicability in clinical practice yet, as the

number of syndromes is still very small. However, recent

results demonstrate that automated technologies have the

potential in amending and enriching the process of finding

the diagnosis. Finally, integration of clinical information

seems to be critical to establish usable databases. In clinical

practice, the relative importance of face and other clinical

information varies from syndrome to syndrome and from

patient to patient. It is our goal to contribute to this

integration.

Acknowledgements
We thank all families who took part in this study. This work is
supported by grants of the Deutsche Forschungsgemeinschaft (DFG):
BO 1955/2-1 and WU 314/2-1. We thank Beate Albrecht, Christian
Grünenberg, Yorck Hellenbroich and Peter Meinecke for helping with
taking pictures. We thank Bärbel Maus for help with manually
labelling pictures and helpful discussions. Additionally, we thank
Roxana Moslehi for critically reading the manuscript.

References
1 Webster MA, Kaping D, Mizokami Y, Duhamel P: Adaptation to

natural facial categories. Nature 2004; 428: 557–561.
2 Loos HS, Wieczorek D, Wurtz RP, von der Malsburg C,

Horsthemke B: Computer-based recognition of dysmorphic faces.
Eur J Hum Genet 2003; 11: 555–560.

3 Hammond P, Hutton TJ, Allanson JE et al: 3D analysis of facial
morphology. Am J Med Genet A 2004; 126: 339–348.

4 Aldridge K, Boyadjiev SA, Capone GT, DeLeon VB, Richtsmeier JT:
Precision and error of three-dimensional phenotypic measures
acquired from 3dMD photogrammetric images. Am J Med Genet A
2005; 138: 247–253.

5 Hammond P, Hutton TJ, Allanson JE et al: Discriminating power
of localized three-dimensional facial morphology. Am J Hum
Genet 2005; 77: 999–1010.

Computer-based syndrome diagnosis
S Boehringer et al

1088

European Journal of Human Genetics



6 Hutton TJ, Buxton BF, Hammond P, Potts HWW: Estimating
average growth trajectories in shape-space using kernel smooth-
ing. IEEE Trans Med Imag 2003; 22: 747–753.
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Appendix A

Visualization

LDA results in a set of decision rules of the form:

dk(x1,y, xn)¼ aþ b1x1þ?þ bnxn, where dk is the discrimi-

nant function for class k. The values of discrimant

functions for observation x¼ (x1,y, xn) can be used to

make a classification decision. For pairwise comparisons a

single discrimant function is sufficient to determine the

decision by deciding for the first class if, say d(x)40 and

against it otherwise.12 The coefficients bi weigh individual

components of x to form the final decision. PCA results in a

matrix M that contains the loadings of PCs in the space of

wavelet coefficients.8,13 If we denote the loading matrix for

the first i PCs with Mi (with loadings given column wise),

the weights on the wavelet coefficients is given by w¼Mib,

with b¼ (b1,y, bn). We take the absolute values of

components of w and standardize w to have the largest

component to be 1. In the visualization of pairwise

decision rules, each square represents one component of

w, with white signifying a standardized weight of 0 and

black representing a standardized weight of 1.
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