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Probing failure susceptibilities of earthquake
faults using small-quake tidal correlations
Braden A.W. Brinkman1,w, Michael LeBlanc1, Yehuda Ben-Zion2, Jonathan T. Uhl3 & Karin A. Dahmen1

Mitigating the devastating economic and humanitarian impact of large earthquakes requires

signals for forecasting seismic events. Daily tide stresses were previously thought to be

insufficient for use as such a signal. Recently, however, they have been found to correlate

significantly with small earthquakes, just before large earthquakes occur. Here we present a

simple earthquake model to investigate whether correlations between daily tidal stresses and

small earthquakes provide information about the likelihood of impending large earthquakes.

The model predicts that intervals of significant correlations between small earthquakes and

ongoing low-amplitude periodic stresses indicate increased fault susceptibility to large

earthquake generation. The results agree with the recent observations of large earthquakes

preceded by time periods of significant correlations between smaller events and daily

tide stresses. We anticipate that incorporating experimentally determined parameters

and fault-specific details into the model may provide new tools for extracting improved

probabilities of impending large earthquakes.
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T
he viability of using tidal correlations as a predictive
measure for earthquakes has been controversial, as only 1%
of the earthquakes seem to correlate significantly with

tides1,2. It is estimated that tens or hundreds of thousands of
earthquakes must be analysed to detect significant correlations
with tides2,3. Focusing on correlations between large earthquakes
and tidal stresses is thus not likely to be practical. On the other
hand, small earthquakes are much more numerous than large
ones. Therefore, detecting significant correlations between small
earthquakes and periodic stresses may be feasible on timescales
relevant to hazard prevention.

Small quakes are expected to increase in number as the stress
on a fault increases4,5. However, observed small earthquake rates
fluctuate strongly in time because of episodic occurrence of
aftershocks of moderate and small local events, triggered
seismicity from large remote earthquakes and other transients.
This has precluded forecasting the onset of large earthquakes
using predictive measures based on number of events alone6–9.
On the other hand, predictive measures that are less sensitive to
transient effects and track the evolving response of a fault to
repeating forcing terms could prove useful. For instance, ongoing
oscillatory loadings like tidal stresses may be viewed as ‘repeating’
probes that can be used to test the evolving susceptibility of a
given fault system. Transient effects uncorrelated with the stress
oscillations will cancel out in analyses based on correlations.

Several recent studies have detected significant correlations
between the occurrence of small seismic or volcanic events and
periodic stresses, such as daily tide stresses10–14 and seasonal
loadings15,16. Tanaka12,13 analysed observational earthquake data
before large earthquakes observed in Indonesia and Japan, and
found that correlations between small seismic events and daily
tide stresses increased just before these large events. These
precursory correlations could be indicative of the fault being
pushed past a critical state into a regime of higher
susceptibility17,18. However, there is limited experimental
evidence that increases in correlations of tidal or seasonal
triggering with small earthquakes tend to occur before large
earthquakes. This is, in part, because laboratory experiments on
sheared rocks have mostly focused on correlations of oscillatory
stresses with large stick-slip events (analogous to large
earthquakes2,3,19.

To build physical intuition about the basic mechanisms of
earthquake triggering, we construct a simple probabilistic model
from a framework that accounts for various features of
earthquakes and plasticity6,20–24. We use the model to compute
probabilities of large earthquakes from correlations between
the timings of small earthquakes and periodic fault stresses,
such as tidal or seasonally varying loadings1,10,11,15,16. The
goals of this study are to use the model to determine
the essential features of earthquake faults and small earth-
quake statistics that lead to correlation patterns like those
observed by Tanaka; to estimate the probability of impending
large earthquakes from the measured correlations; and finally,
to motivate future analyses of correlations between periodic
stresses and small earthquakes on natural faults and in
laboratory experiments. Despite the simplicity of the model, we
find good agreement with the observed trends of correlations
of natural earthquakes with tidal stresses, and make predictions
on additional refined features that may be tested with future
data.

Results
The model. Our model qualitatively reproduces the correlation
behaviours observed by Tanaka, suggesting that correlations
between small earthquakes and daily tide stresses can in principle

be used to gauge whether the fault is in a critical state (that is, can
generate a large event) and estimate the probability of impending
large earthquakes. We briefly describe the model here.

The basic model assumptions are:

(1) The earthquake fault slips in two classes of seismic events: (a)
‘small to moderate earthquakes’, which have sizes distributed
according to Gutenberg–Richter statistics, up to some
maximum (‘cutoff’) size and (b) large ‘characteristic earth-
quakes’, which have sizes narrowly distributed about some
large magnitude that exceeds the cutoff size of the small
earthquakes. The exact values of the cutoff magnitude of the
small-moderate earthquakes and the magnitude of the large
earthquakes depend on fault details, such as geometrical
parameters and degree of heterogeneity4,18; for example, on
the San Andreas Fault, large characteristic earthquakes have
magnitudes of B7.5 or more25,26.

(2) Small earthquakes occur randomly at an average rate l(F),
which depends on the (average) fault shear stress, F¼ F(t),
where t is the time since the previous large earthquake. We
assume that l(F) is small for fault stresses F much less than a
critical stress level, Fc, and rises rapidly to a larger rate as
F-Fc. This behaviour is shown in Fig. 1. Figure 2
demonstrates how the stress F(t) and the rate l(F(t)) of
small earthquakes vary together with time.

(3) A small earthquake can trigger a large earthquake according
to a stress-dependent probability, P(F). The function P(F) is
small for stresses less than the critical stress Fc, and rises
sharply to 1 as the total fault stress approaches Fc (see
Supplementary Methods for details).
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Figure 1 | Small earthquake rate as a function of stress and time. For

stresses much less than the critical stress of the fault, Fc, the rate l(F) of
small earthquake occurrences is low, rising quickly as the stress approaches

Fc before leveling off at higher stresses. The stress-dependent probability

that a small event triggers a large event has a qualitatively similar shape.

Inset: if the fault is subjected to periodically varying stresses in addition to

regular slow tectonic shear, the small event rate will exhibit oscillations in

time. An oscillation frequency much smaller than real daily tide stress

frequencies has been used so that oscillations may be clearly seen in the

plot.
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(4) Stress drops due to large earthquakes cause the average fault
stress, F(t), to relax to a baseline value, f, immediately after a
large quake, as seen in Fig. 2 (ref. 18). In contrast, stress drops
caused by small earthquakes can be neglected in analyses
focusing on large scales. This is because they affect only small
areas of the fault, and therefore, to first approximation, do
not significantly change the fault-averaged stress F(t). (Note:
in this paper, we measure stresses in units of a ‘typical stress
drop’, Fc� f, rather than the critical stress Fc, since Fc is
difficult to measure in real faults. As parameters for the
simulations, we use estimates of the relative strengths of Fc
and f from laboratory experiments designed to mimic
earthquake faults).

Origins of the model assumptions. Our assumptions are prob-
abilistic formulations of the physical assumptions of a simple
microscopic model of earthquake dynamics and plasticity6,20–24.
In this microscopic model, weak spots along a fault slip under
slow shear, which redistributes stress to nearby weak spots, and
may cause them to slip as well, resulting in a slip-avalanche, or
earthquake.

In addition, the model incorporates a dynamic weakening
effect where the threshold stress for a spot to slip is reduced after
its initial slip in a given failure episode, and returns to normal
once the earthquake is arrested. The microscopic model produces
a wide range of event sizes, which in the probabilistic model are
grouped into ‘small-moderate’ and ‘large’ event sizes. The large
earthquakes on a relatively homogenous fault occur almost
periodically in time, are of a characteristic magnitude and span
the entire fault. The small-moderate events occur in between the
large events, are irregularly spaced in time and have power law
distributed magnitudes4,6,18.

The assumption that the rate of small event activity increases
with increasing stress emerges naturally from this simple model
and has been observed in earthquake faults5, deformation
experiments27,28 and other models4,20–24. (As mentioned above,

however, transient effects from the surrounding region or other
fault sections obscure the observed increase of event rates,
rendering observed rates alone insufficient to predict the onset of
impeding large earthquakes7,8). The other three assumptions also
result from the microscopic model6,20–24.

The underlying microscopic model predicts the universal (that
is, detail-independent) statistical features of many sheared stick-
slip systems, including earthquake size distributions4,20–22,29 and
size distributions of slip-avalanches in sheared nanosized
crystals27, amorphous materials28 and granular matter23,24. The
microscopic model and its probabilistic formulation capture the
basic features, rather than the fine details of each earthquake fault
and hence may only yield qualitative predictions of some
statistical observations. However, our model is expected to fully
predict the universal aspects of the statistics and to provide an
understanding of the fundamental physics behind tidal or
seasonal earthquake triggering. More detailed models building
on the simple model (for example, see the model of ref. 15) can be
used to also address fault-specific questions, but at the price of
adding more parameters that are not well constrained.

In the presence of tidal or seasonal stresses acting on the fault,
the stress F(t) has two main contributions: an ongoing loading
stress that increases at a slow constant rate G caused by the slow
motion of tectonic plates and an additional perturbative periodic
stress resulting from the tidal or seasonal stresses (Fig. 2). Our
first goal is to detect correlations between the small earthquakes
and the periodic component of F(t), and verify that the model can
produce increased correlations before large earthquakes, as seen
in real fault data by Tanaka12,13.

Correlation analysis. As the stress on the fault evolves in time,
the model generates a time series of small earthquakes interrupted
by recurring large earthquakes. We analyze this time series for
correlations using similar methods as Tanaka12,13. We use daily
tidal stresses of a single amplitude in our analyses; we thus refer
to the daily tidal stresses as diurnal rather than semidiurnal,
though we expect similar results for both. Annual tidal
amplitudes are an order of magnitude smaller, so we do not
consider them here. See the Methods section, Supplementary
Methods and Supplementary Table 1 for details.

We identify correlations between small earthquakes and
diurnal tide stresses by recording the phase of the periodic stress
at which each earthquake occurs. If most earthquakes occur near
a preferred phase, the correlations are strong. Following Tanaka,
we use a P value test statistic as a quantitative measure of
correlation. Suppose we measure a non-uniform histogram of
phases at which the small earthquakes occur. The P value is then
the probability that we observe at least as non-uniform a
histogram of phases, given that the small earthquakes are
triggered completely randomly. When the P value o5–10%,
there is a low probability that completely random triggering
would generate the observed phase histogram; hence, the
correlations are strong. When the P value 410%, the correlations
are weak or non-existent. The P value varies with time and
depends on the number of earthquakes recorded per unit time.
As the fault stress nears the critical stress, the rate l(F) of
small earthquake occurrences begins to track the stress F(t)
(Figs 1 and 2), and the P value tends to drop, indicating the fault’s
increased susceptibility to external stress changes, resulting in
stronger correlations.

To evaluate the effectiveness of the P value as a predictor of
large earthquakes, we perform two analyses. First, we determine
the range of periodic stress amplitudes for which strong
correlations (small P values) are observed in the model. We do
so by comparing the distribution of P values when a large

0.9

1

380
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time since last large earthquake (years)

Large event

T
ot

al
 fa

ul
t s

tr
es

s 
(u

ni
ts

 o
f F

c)

S
m

al
l e

ar
th

qu
ak

e 
ra

te
 (

un
its

 o
f �

m
ax

)

385 390 395 400 405 410

Figure 2 | Stress versus time on a simulated fault, along with the small

event rate. The total average stress F(t) on the fault (red curve) increases

linearly in time and is perturbed by an oscillatory stress. The small vertical

dashes on the curve represent times at which small earthquakes occurred.

Note the accumulation of events near peaks in the stress. The black curve

represents the variation of the small event rate l(F(t)) as the stress varies

on this fault. When the total stress approaches a critical value Fc, a large

earthquake occurs, releasing the built-up stress to the surroundings. The

fault stress quickly relaxes to a baseline stress level f (equal to 0.595Fc in

this figure), before accumulating stress again. The small event rate is

similarly reduced to the minimum rate. An oscillation frequency much lower

than real daily tide stress frequencies has been used so that oscillations

may be clearly seen in the plot.
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earthquake occurs, for stress amplitudes up to 10% of the
estimated typical stress drop, Fc� f. We find amplitudes around
1.2–2.5% of the stress drop are the smallest that result in
significant correlations (P values o10%) between the periodic
driving and earthquake triggering, so we focus on these
amplitudes in our next analysis: we smooth the P value curve
and compute the probability that a large earthquake occurs within
a specified amount of time after the smoothed P value dips below
a desired threshold value.

A set of four runs of the simulated P value versus time between
two large earthquakes for which significant correlations are
observed is presented in the first column of Fig. 3. The second
column of Fig. 3 displays the phase distribution of the last 100
small events in each run before the large earthquake occurs. The
third and fourth columns of Fig. 3 present the P value and phase
histogram data, respectively, adapted from Tanaka12,13.
Qualitatively, the behaviour of the simulations agrees well with
the observed P values.

There are some quantitative differences between our simula-
tions and real data. For example, the timescale over which the P
value drops, and hence the relevant timescales for hazard
preparedness, is about 20 years in our simulations, compared
with 5–10 years in Tanaka’s observations. In our model, this
timescale is primarily set by the ratio G/(Fc� f), the slow loading

rate G over the average stress drop (Fc� f) resulting from a large
earthquake, and the range of stresses over which the small event
rate increases. In natural faults, features not captured by our
model, such as fault geometry and some aseismic slip, may also
influence this timescale.

Our model also produces slightly more significant correlations
(lower P values) than those presently observed in real data. This
could be due to a number of factors, including the higher
complexity of natural faults and differences in the details of the
small event rate on natural faults. Nonetheless, the qualitative
agreement between our simulations and the observational data
demonstrates that our model captures the essential statistical
physics of the earthquake faults.

For modelled diurnal tide variations with amplitudes o1% of
Fc� f, the P values obtained just before large earthquakes occur
are statistically similar to the P values obtained in the absence of
any periodic stressing, indicating weak correlations (Fig. 4; see
also Supplementary Figs 1 and 2). For faults subject to such small
oscillatory stresses, additional analyses (using, for example,
Bayesian inference) may boost the signal to make the P value a
more reliable earthquake probability predictor. However, for
faults subject to slightly larger oscillatory stresses (41.2–2% of
the stress drop), the correlations are readily apparent, and the
P value could be a useful predictor of large quakes. The faults in
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Tanaka’s observations of tidal triggering experienced oscillatory
stresses of B103–104 Pa (ref. 12); for typical stress drops on the
order of MPa, these amplitudes are about 0.1–1% of the typical
stress drop on a fault. This is slightly smaller than our model
predicts. However, we considered only oscillations in shear
stress. In nature, oscillatory loadings produce changes in both
shear and normal stresses. At locations where the shear stress
increases and the normal stress decreases, the effect will be
amplified. In addition, stress drops fluctuate by several orders of
magnitude (see, for example, ref. 30), so even B2.5% of the
mean stress drop may overestimate the amplitude needed to
trigger a large earthquake in some faults. Local fault conditions
not captured by our model, such as depth of the earthquake
source and details of the small earthquake rate, may also influence
the actual stress amplitudes needed to trigger large earthquakes.
While the same effects may, in some cases, increase the necessary
tidal amplitude for triggering large earthquakes, our results
demonstrate that it is possible for oscillatory stresses of modest
amplitudes to trigger large earthquakes in some circumstances.
Furthermore, we found that the correlations between small
earthquakes and tidal stresses provide a potential proxy for the

susceptibility of the fault to failure. Most experimental work to
date has focused on finding correlations between large
earthquakes and tides. Our results provide motivation for
looking more closely at correlations between tidal stresses and
small earthquake occurrences in laboratory experiments and
natural settings. We have focused on results for diurnal tide
stresses here, but we expect similar results for seasonal-stress
variations; see the Supplementary Discussion, Supplementary
Table 1 and Supplementary Fig. 3 for preliminary results.

Discussion
We find that when our model fault is subjected to a diurnal tide
stress with sufficiently large but still modest amplitudes (greater
than 1% of the stress drop in the model), the behaviour of the
(smoothed) P value can be used to predict how likely future
earthquakes are. Figure 5 displays the simulated probability that a
large earthquake occurs within a time T after the P value dips
below a threshold value Pth. For example, if we observe that the
P value dips below Pth¼ 10� 3 (green squares), a large earthquake
has a 34% chance of occurring within 10 years, assuming the P
value does not increase above 10� 3 before then. See
Supplementary Fig. 4 for results of an analysis of the probability
of a large earthquake occurring within T years after observing the
P value dip below the threshold Pth at least once.

This analysis method should be applicable to observed
earthquake catalogues and allow, by tracking correlations with
tides and observing the statistical behaviour of the P value,
estimates of the risk of an impending large earthquake. The
P value analysis could be complemented with other signals to
develop stronger predictive techniques. For example, while
previous studies using b value fluctuations and increases in the
number of events before large earthquakes as predictors on their
own have not yielded satisfactory results4,6–8,31, Bayesian
inference analyses which combine those results with phase-
distribution information studied in this work may enable boosted
estimates of large earthquake risk probabilities.

Our model can be adapted to include more detailed loading
conditions that could affect correlation measurements, including
the effects of seismic waves from nearby faults, or spatial
variations of stresses along the fault, which could in turn cause
spatial variations in correlations. Tanaka’s13 study of the 2011
Tohoku earthquake indicates that correlations are only significant
near the epicentre of an earthquake. Incorporating spatial
information into the P value analyses may enable predictions of
the most likely locations of impending large earthquake
epicentres.

For realistic fault conditions and laboratory experiment set-
ups2–4,19,32,33, our model can serve as a simple testing-ground for
developing new analyses or tools to be applied to data. Controlled
laboratory experiments can also allow for detailed quantitative
comparisons between our model predictions and observations. To
achieve quantitative agreement, the experiments must be able to
detect small earthquake-like slip events. The necessary quantities
to measure are the observed rate (l(F)) of events as the external
stress or force on the system increases and histograms of the
stresses at which the large slip events occur, to estimate P(F) (as
the normalized histogram multiplied with the stress-bin size).
After a quantitative characterization of these functions and other
model parameters is obtained, a tailored version of our model
could be simulated for the same parameters, enabling quantitative
comparison between model predictions and experimental results.

Combining laboratory experiments and observational data
with understanding gleaned from simple models such as the one
presented here may improve our ability to make quantitative
estimates of the risk of large earthquakes on natural faults.
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Methods
Simulation of earthquake time series. We simulated a time series of small
earthquakes, generated by a non-homogeneous Poisson process (this is the
mathematical formulation of model assumption (2)). The rate of small earthquake
occurrences depends on the total stress on the fault, which varies in time due to
both a slow tectonic linear shear and the external oscillatory stress of frequency o.
The exact form we chose is F(t0)¼ fþG(t0 �Tlast)þ F0(sin(ot0 þj0)�
sin(oTlastþj0)), where t0 is the absolute time from the start of the simulation,
related to the time t since the last earthquake by t0 ¼ tþTlast, and Tlast is the time of
the previous large earthquake. F(Tlast)¼ f is the constant arrest stress after a large
quake, G is the slow tectonic shear rate of the fault and F0 and j0 are the amplitude
and initial phase of the periodic component of the stress, respectively. As the
oscillatory component has a single amplitude, it approximates a diurnal tide stress,
though semidiurnal tide stresses could be straightforwardly implemented. When a
small earthquake occurs, it may trigger a large earthquake with probability P(F).
After a small earthquake successfully triggers a large earthquake, we reset the
average fault stress F(t0) to the constant arrest stress level f and repeat the process.
For each small earthquake, we recorded the effective phase at which the earthquake
occurs, (ot0quakeþj0) mod 2p, where t0quake is the time at which the earthquake
occurred and j0 is again the relative phase of the oscillatory stress at t0 ¼ 0.

Analysis of earthquake time series. To test the susceptibility of the fault to
failure, we analysed correlations between the occurrence of small earthquakes and
the oscillatory component of the external stress on the fault. We focused on
oscillatory stress correlations for several reasons. As stated in the main text, oscil-
latory stresses may be viewed as repeating probes of the state of the fault, allowing us
to test the susceptibility of the fault to failure. Predictive measures based only on the
observed number of events have not proved reliable, due to transient effects such as
remote seismic waves from other faults that would obscure the true rate of small
earthquakes occurring on a single fault. Such remote events would not correlate
with the tides, however, and would cancel out of the correlation analysis we perform
here. Furthermore, any analysis of the significance of fluctuations in event rate must
assume, a priori, a model for the expected number of events14. In contrast, the
phase-correlation method that we employed only requires the natural assumption
that events uncorrelated with oscillatory stressing will yield a uniform distribution
of phases at which the events occur, independent of the model or process that
generated those events. Thus, another reason to prefer the phase-correlation method
is to keep the data analysis and model as independent as possible.

To evaluate the significance of correlations between the oscillatory stresses and
small earthquake occurrences, we recorded the phases of small earthquakes
between two consecutive large earthquakes, and computed a corresponding P value
statistic. The P value statistic we use quantifies the probability that a sequence of
small earthquakes would occur with a histogram of phases at least as non-uniform
as that of the observed sequence. This corresponds to the null hypothesis that small

earthquakes are triggered independently of the oscillatory stress and hence the
expected histogram for large numbers of phases would be uniform.

Following Tanaka12,13 and others3,19,34, we used a Schuster test to compute the
P value, p(t)¼ exp(�D(t)2/n(t)), where n(t) is the number of events recorded at a
time t since the previous large earthquake, and
DðtÞ2 ¼ ð

PnðtÞ
k¼1 cosjkÞ

2 þð
PnðtÞ

k¼1 sinjkÞ
2. Here the jk are the phases of the

oscillatory stress at which the small earthquakes occurred. This equation for
the P value is valid only for large numbers of earthquakes, so we fixed p(t)¼ 1 until
200 small earthquakes had been accumulated. We reset the P value to 1 following a
large earthquake. See Supplementary Fig. 5 for plots of n(t) and the small event rate
sampled at times at which the events occur, for the cases shown in Fig. 3.

We computed the P value between 5,000 simulated large earthquakes. To test
the effectiveness of both diurnal tidal correlations and seasonal-stress correlations
of different amplitudes, we first recorded the values of p(t) at the time that the large
earthquakes occur. We computed the cumulative distribution (Fig. 4) of these
values for several different oscillatory amplitudes ranging from 0 to 10% of the
typical stress drop (or 0–4% of the critical stress Fc). We chose this amplitude range
based on estimates of typical local average stress drops on faults, compared with
typical tidal or seasonal amplitudes35,36. We performed this analysis for two
specific frequencies: one corresponding to a diurnal tidal stress frequency of 2p/
(25 h) (Fig. 4), and one corresponding to the frequency of annually varying load
stresses, 2p/(1 year) (see Supplementary Discussion and Supplementary Fig. 3 for
preliminary results on the effect of yearly stress frequencies). Because actual tidal
periods are longer than 24 h, we rounded up to a 25-h period. This slight difference
does not affect our results in any qualitative way. Semidiurnal tidal stresses have
two high and low tides, whereas diurnal tidal stresses have (approximately) a single
amplitude. We used diurnal tidal stresses for simplicity, but we expect similar
results for semidiurnal tidal stresses.

From the above analysis, we found that amplitudes on the order of 1% or
greater of the typical large stress drop on the fault correlated significantly with daily
tides. We then chose one of the smallest amplitudes in this range, F0/
(Fc� f)¼ 2.5%, to investigate the time-dependent behaviour of the P value curve
between two large earthquakes, rather than just the P value at the time when the
large earthquake occurred.

The raw P value curve, p(t), exhibits many fast, small jumps; so to compute the
data in Fig. 5, we first smoothed the curve using a window of 500 days to obtain the
trend line. The routine we used to smooth our non-uniformly spaced data was
written by Andreas Eckner (www.eckner.com). The routine uses a constant-value
interpolation between data points and integrates over the curve to perform the
smoothing.

We then analysed how often a large earthquake occurred when the smoothed
P value, �pðtÞ, dipped below some specified threshold Pth. We recorded the length of
the continuous duration, Dt, for which �pðtÞ was less than Pth before the large
earthquake occurred, or before �pðtÞ rose above Pth again. We used this data to
compute the probability Prob large event; DtoT �pj ðtÞoPthð Þ, shown in Fig. 5. We
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Figure 5 | Simulated probabilities that a large earthquake will occur. Here we plot the probability that a large earthquake occurs within a time DtoTafter

the smoothed P value curve, �pðtÞ, descends below a threshold level Pth. The (diurnal) tidal amplitude used is 2.5% of the stress drop. Each curve

corresponds to a different Pth threshold. For example, if �pðtÞ is observed to descend below Pth¼ 10� 3 (green squares), there is a 34% chance that a large

earthquake will occur within 10 years, assuming �pðtÞ does not rise above the threshold level before the large quake occurs. The curves become more

sparsely sampled at lower thresholds, as �pðtÞ dips below the smaller thresholds less often, so we show only the best estimated probabilities. We also

compute the distribution of waiting times from the first observation that the P value descends below the threshold Pth to the time the large earthquake

occurs; see the Supplementary Discussion for details.
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also computed the probability of observing a large event within some time T after
observing the smoothed P value �pðtÞ dip below the threshold Pth at least once (see
Supplementary Methods).

A detailed discussion of the simulation, including functional forms of l(F) and
P(F), as well as the specific parameter values used for the various stress and
timescales, is included in the Supplementary Methods.
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