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Stretchable silicon nanoribbon electronics
for skin prosthesis
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Sensory receptors in human skin transmit a wealth of tactile and thermal signals from

external environments to the brain. Despite advances in our understanding of mechano- and

thermosensation, replication of these unique sensory characteristics in artificial skin and

prosthetics remains challenging. Recent efforts to develop smart prosthetics, which exploit

rigid and/or semi-flexible pressure, strain and temperature sensors, provide promising routes

for sensor-laden bionic systems, but with limited stretchability, detection range and spatio-

temporal resolution. Here we demonstrate smart prosthetic skin instrumented with ultrathin,

single crystalline silicon nanoribbon strain, pressure and temperature sensor arrays as well as

associated humidity sensors, electroresistive heaters and stretchable multi-electrode arrays

for nerve stimulation. This collection of stretchable sensors and actuators facilitate highly

localized mechanical and thermal skin-like perception in response to external stimuli, thus

providing unique opportunities for emerging classes of prostheses and peripheral nervous

system interface technologies.
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S
kin-based mechanoreceptors and thermoreceptors gather
rich streams of information from the external environ-
ment1. The central and autonomic nervous systems analyze

and transform these sensory inputs into regulated physiological
responses and motor outputs1. Although there have been
significant progresses in understanding the neural circuits
underlying mechanical and thermal sensation2, replicating these
capabilities in artificial skin and prosthetics remains challenging.
As a result, many amputee patients wear prosthetic limbs for
cosmetic utility3 or as supplementary movement aids4 rather than
as a functional replacement for natural limbs. Recent advances in
the design of prosthetic limbs integrated with rigid and/or
semi-flexible tactile sensors provide sensory reception to enable
feedback in response to variable environments5. However, there
still exists a mechanical mismatch between conventional
electronics in wearable prosthetics and soft biological tissues,
which impede the utility and performance of prosthetics in
amputee populations.

Several efforts are underway to bridge the technological gap
between artificial and real skin. Flexible and/or stretchable
tactile sensors based on various micro/nano materials and
structures have been the focus of intense study6–11. In
particular, pressure-sensitive rubbers (PSRs) are used as
resistive elements that respond to tensile strains12–14, which can
be integrated with flexible organic electronics15–18 and
nanomaterial-based (nanowires19 and nanotubes20) transistors.
However, conventional PSRs have modest response times and
undergo significant hysteresis. Single crystalline silicon strain
gauges on soft elastomer exhibit a linear relationship between
strain and relative resistance changes with fast response times21.
These sensors have been previously utilized to detect motion
across various anatomical locations, such as the wrist22 and
fingers23. In addition, stretchable metal and single crystalline
silicon temperature sensors12,24 fabricated on ultrathin substrates
have been applied for temperature monitoring on human skin.
However, the heterogeneity in geometry and strain profiles of
skin across different anatomies necessitate custom designs for
specific body locations. Heterogeneous integration of pressure,
temperature and humidity sensing coupled with electroresistive
thermal actuation in site-specific geometrical layouts would thus
provide unique opportunities to dramatically advance the state of
the art in smart prosthetics and artificial skin.

Here we report a stretchable prosthetic skin equipped with
ultrathin single crystalline silicon nanoribbon (SiNR) strain,
pressure and temperature sensor arrays. The SiNR sensor arrays
have geometries that are tuned to stretch according to the
dynamic mechanical properties of the target skin segment. This
design strategy provides the highest levels of spatio-temporal
sensitivity and mechanical reliability, thereby dramatically
enhancing the perception capabilities of artificial skin in response
to highly variable external environments. Integration of stretch-
able humidity sensors and heaters further enables the sensation of
skin moisture and body temperature regulation, respectively.
Corresponding electrical stimuli can then be transmitted from the
prosthetic skin to the body to stimulate specific nerves via
conformally contacted ultrathin stretchable nanowire-based
electrodes, which are decorated with ceria nanoparticles for
inflammation control.

Results
Artificial skin with multi-modal sensing capability. Figure 1a
shows an image of artificial skin with integrated electronics
laminated on the surface of a prosthetic hand. The artificial skin
surface of the prosthesis is highly compliant (inset), and
mechanically couples to the curvilinear surface of the prosthesis.

A schematic illustration of the stacked layers (Fig. 1b) highlights
the location of the embedded electronics, sensors and actuators,
with magnified views shown in Fig. 1c–f.

The bottom layer contains electroresistive heaters in filamen-
tary patterns bonded to the polydimethylsiloxane (PDMS, Dow
Corning, USA) substrate. These thermal actuators are in fractal-
inspired formats25 (Fig. 1f) to facilitate uniform heating during
stretching and contraction of the skin layer. To monitor tactile
and thermal feedback during actuation, we employ strain
(Fig. 1c), pressure (Fig. 1d left) and temperature sensor (Fig. 1d
right) arrays in the middle layer of the stack. These network of
sensors have spatially varying geometrical designs, ranging from
linear to serpentine shapes (denoted as S1–S6 in ascending order
of curvatures, Supplementary Fig. 1), depending on the
mechanics of the underlying prosthetics. An array of humidity
sensors, consisting of coplanar capacitors (Fig. 1e) in the top
encapsulating layer detects capacitance changes at different
humidity levels (Fig. 1e bottom right, inset shows the magnified
view) to capture information about ambient conditions. Each
sensor/actuator layer has distinct interconnections to the external
data acquisition instrument (Fig. 1b). Integration of each stacked
layer using via-hole structures can further simplify the wiring
requirements. Due to this stacked structure configuration, sensor
arrays may mechanically interfere with each other. For instance,
strain/pressure sensors positioned beneath humidity sensors
could exhibit reduced mechanical responses to external
deformations because of the additional stiffness. To address this
issue, stacked structures with staggered arrangement of sensors
provide a possible solution to minimize interferences.

All of the aforementioned devices have ultrathin regions, that is,
SiNRs or gold (Au) NRs that are passivated by polyimide (PI;
Fig. 1c–f upper right inset). The one exception is the design of the
tactile pressure sensors, which contain a cavity to enhance
sensitivity in response to mechanical pressure changes. The key
material utilized in the fabrication of these tactile sensors is p-type
doped single crystalline SiNRs (Supplementary Fig. 2), which
have both high piezoresistivity (gauge factor: B200; ref. 21) and
low fracture toughness (B1.0MPam1/2; ref. 26). To prevent
mechanical failures, we employ mechanical strategies, whereby
ultrathin (B110 nm) SiNRs are kept in the neutral mechanical
plane of the stack27. Figure 1g shows a scanning electron
microscope image of a crack-free SiNR transferred on the silicon
oxide substrate. Wrinkles are deliberately induced to highlight the
ultrathin nature and mechanical flexibility of the SiNR under
mechanical deformation (Fig. 1h). Figure 1i shows a cross-
sectional transmission electron microscope image of the SiNR
located in the neutral mechanical plane (PI/SiNR/PI structure).
These designs help to minimize bending induced strains27.

Detection of regional strain of skins in various motions. Skin
normally experiences multi-axial forces and undergoes a range of
angular and linear motions at different body locations. This
heterogeneity in movements and strains of skin suggests the need
for location-specific optimization of sensors and actuators in
artificial skin and prosthetics. For example, a network of tactile
sensors and strain gauges can provide feedback about tensile
strains to characterize fatigue or ensuing failure modes in a highly
localized manner.

To characterize the mechanical behaviour of movements and
skin mechanics on the arm and hands, we capture movement and
strains from several target points (Supplementary Fig. 3) on skin
using a motion-capture camera system (Fig. 2a, Supplementary
Note 1). In total, 12 motion-capture cameras (OptiTrack Prime
41, NaturalPoint, USA) are synchronously used to acquire three-
dimensional coordinates of reflective markers affixed to the hand
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and wrist. Four representative hand movements, including fist
clenching as well as vertical (bending) and lateral (tilting) wrist
movements are analyzed (Fig. 2b). Strain distribution is calculated
by measuring displacements relative to neighbouring reflective
markers. During fist clenching, the skin stretches B5% (Fig. 2b
upper left), whereas, significantly greater strains (B16%) are
induced in response to bending (Fig. 2b upper right). Tilting
movements induce compression on the wrinkled side of the wrist,
while skin experiences stretching on the opposing side of the wrist
(Fig. 2b bottom).

By gathering these movement data, we map strain profiles near
the wrist and hand (Fig. 2c). For regions where skin hardly
stretches, linear SiNR (S1 design) is used to maximize sensitivity.
On the other hand, serpentine SiNRs (for example, S3 or S6
designs) are applied on more stretchy areas, to accommodate
the larger range of strain changes. Furthermore, the curvature of
SiNRs are optimally designed depending on the stretchability
of the underlying anatomy (for example, low deformation
region B5%: S1 design, medium deformation region B10%:
S3 design, high deformation region B16%: S6 design, right
frames of Fig. 2c). These site-specific SiNR sensor arrays are
shown in Fig. 2d. The exploded frames to the right are magnified

images of each design. These ultrathin filamentary designs
enable conformal integration on human skin with high sensitivity
and mechanical durability. Detailed step-by-step fabrication
procedures are included in Supplementary Fig. 4 and Methods
section.

SiNR mechanical sensors with site-specific sensitivity. To
characterize the effects of strains on different SiNR sensor
designs, we examine six unique serpentine designs (Fig. 3a left)
with curvatures of k¼ 0 (S1), 1.94 (S2), 4.74 (S3), 7.4 (S4), 9.75
(S5) and 10mm� 1 (S6). An experimental stretch test setup using
a custom-made bending stage is shown in Supplementary Fig. 5a.
Figure 3a (top frames) shows an array of SiNR strain gauges
exposed to a range of applied strains (0, 15 and 30%). The bottom
frames show finite element analysis (FEA) results (Supplementary
Note 2). As applied strains increase, SiNR strain gauges with
small curvature experience considerably greater strains compared
with those with larger curvatures. The serpentine designs of large
curvature help to relieve induced strains more than smaller ones.
This effect is captured by measuring relative resistance (DR/R) as
a function of applied strain (Fig. 3b left).
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Figure 1 | Prosthetic skin based on site-specifically designed SiNR electronics. (a) Photograph of a representative smart artificial skin with integrated

stretchable sensors and actuators covering the entire surface area of a prosthetic hand. Scale bar, 1 cm. The inset shows the artificial skin stretchedB20%.

Scale bar, 1 cm. (b) An exploded view of the artificial skin comprised of six stacked layers. Interconnected wires of each layer relay signals to external

instruments. (c) Representative microscopic images of SiNR strain gauge: S1 which has a curvature of 0mm� 1 (left); S6 which has a curvature of 10mm� 1

(right). S1 and S6 are optimized for the location of minimal stretch (B5%) and large stretch (B30%), respectively. Scale bar, 10mm. (d) Representative

microscopic images of SiNR pressure sensor S6 and temperature sensor S6. (e) Microscopic image of humidity sensor. Scale bar, 2mm. Bottom right inset

shows the magnified view of the central area, showing separate electrodes with identical inter-spiral gap. Scale bar, 0.5mm. (f) Microscopic image of

electroresistive heater. Scale bar, 4mm. (c–f) The upper right insets of each figure show the cross-sectional structure of each device. (g) Scanning electron

microscope image of the SiNR transferred on the silicon oxide substrate. The wrinkles are deliberately formed to show the SiNR’s high flexibility. Scale bar,

20mm. (h) The magnified view of wrinkled SiNR. Scale bar, 2 mm. (i) A cross-sectional transmission electron microscope image of the strain gauge, showing

that the SiNR encapsulated with PI layers is located at the neutral mechanical plane. Scale bar, 200nm. Press., pressure; temp., temperature.
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SiNR sensors of larger curvature can withstand greater applied
strains, and thereby have large dynamic range, but exhibit
reduced sensitivity (Fig. 3b). The SiNR S6 sustains strains up to
B30%, whereas S1 fractures at B10% applied strain levels. But
cyclic stretching tests reveal that sensitivity increases with smaller
curvatures (Fig. 3b right). According to this tradeoff effect, SiNR
S1 is most appropriate for sites with small range of stretching,
whereas SiNR S6 is more suitable for regions experiencing large
stretching. The results also indicate that SiNR strain gauges have
a linear and fast response time, and no hysteresis irrespective of
designs. The SiNR strain gauges are mainly sensitive to the
longitudinal stretching (Supplementary Fig. 6a,b). Noise in the
strain sensors is often caused by shift in external temperature,
which affects individual strain sensor resistance measurements.
To reduce effects of noise caused by thermal shifts, a Wheatstone
bridge configuration can be applied (Supplementary Fig. 6c,d). In
the future, it is necessary to incorporate strain gauges in rosette
configurations28 to measure strain distribution in the arbitrary xy
coordinate plane to characterize plane strain of prosthetic skin
(Supplementary Fig. 7).

Site-specific designs for strain gauge arrays that conform to the
complex geometry of the human hand (Fig. 2d, Supplementary
Fig. 5b) are used to measure its strain distributions. Figure 3c
shows strain distribution maps (red dotted box regions) in
response to four representative hand motions. Signals are
collected with a multiplexing measurement unit (Supplementary
Fig. 5a,c, Supplementary Note 3). For locations where skin
deformations are small (for example, back of hand; Fig. 2b upper
left), the S1 designs are used (clenching fist; Fig. 3c upper left).
Despite small induced strains on the back of hand, the SiNR
strain gauge arrays with S1 design successfully map the regional

strain distribution. Conversely, SiNR strain gauge arrays with S6
design are used in locations where large skin deformations occur
(wrist region; Fig. 2b upper right and bottom), with significant
bending (Fig. 3c upper right) and tilting (Fig. 3c bottom). The
SiNR strain gauge arrays measure large induced strains with high
fidelity. Even larger induced strains exist near knee joints and can
be measured (Supplementary Fig. 8a,b). SiNR strain gauges
having large curvatures (for example, S3) endure mechanical
deformations in response to cyclic bending of knee joints more
than small curvatures (for example, S1; Supplementary Fig. 8c).

Figure 3d shows the working principle of a SiNR pressure
sensor. By designing a cavity in the PI passivation layer of SiNRs
(Fig. 3d top versus bottom), the pressure detection sensitivity is
enhanced, as confirmed by FEA (Fig. 3d upper right versus
bottom right, Supplementary Note 4). The cavity-based SiNR
pressure sensor shows B10 times higher sensitivity to applied
pressures (see experimental setup in Supplementary Fig. 9a) than
the SiNR pressure sensor without the cavity for both S1 and S6
designs (Fig. 3e). Detailed measurements of sensitivity for S1 and
S6 are 0.41% kPa� 1 (with cavity) versus 0.0315% kPa� 1 (without
cavity) and 0.075% kPa� 1 (with cavity) versus 0.0073% kPa� 1

(without cavity), respectively. Serpentine-shaped SiNR pressure
sensors (for example, S6) have reduced sensitivity to vertical
pressures compared with linear versions (S1). However, the
pressure sensitivity of S6 design sensors is comparable to human
mechanoreceptors responses, which normally respond to stresses
as low as B87 kPa (ref. 1). Supplementary Fig. 9b and Fig. 3f
show pressure response maps from sensor arrays with S1
and S6 designs, respectively. S1 design sensors are appropriate
for the relatively less stretchy region where high tactile sensitivity
is required such as fingertips. On the other hand, S6 design
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Figure 2 | Detection of strain distributions of skins in various motions. (a) Schematic image of motion-capture system. (b) Regional strain maps of the
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sensors are suitable for the relatively more elastic regions where
modest tactile sensitivity is required, such as near the wrist. The
S6 design pressure sensor shows stable pressure sensing
sensitivity under external strains (Supplementary Fig. 9c).

SiNR temperature sensors and Au-based sensor/actuator. To
measure temperature, SiNRs are doped twice to form p-n

junctions (Fig. 1d right). Temperature sensors integrated onboard
prosthetic skin should not be affected by mechanical deforma-
tions. Supplementary Fig. 10 shows I–V curves of distinctively
designed temperature sensors (from S1 to S6 designs) at room
temperature in response to applied strains. The divergence
between each I–V curve under different strains is remarkably
reduced as the curvature of sensors is increased (for example, S6).
The large curvature of the sensors allows for stable temperature
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measurements under a wide range of stretching conditions. I–V
curves of S1 and S6 temperature sensors are obtained at different
temperatures under 0 and 10% applied strain (Supplementary
Fig. 11). Figure 4a shows calibration curves obtained by extracting
voltages at specific current (B10 nA) from I–V curves. The
calibration curves for S1 design show the dramatic shifts in
response to applied strain, whereas the S6 design exhibits mini-
mal change. Temperature sensors with S6 design are used to
minimize the effect of mechanical deformations on the tem-
perature sensing. The temperature sensor design with large cur-
vature enables reliable temperature monitoring under various
applied pressures (Supplementary Fig. 12). A temperature dis-
tribution map is realized with these sensor arrays with and
without local heating (Fig. 4b left and right, Supplementary Note
5). The temperature sensor array data streams are comparable to
those collected with a commercial infrared (IR) camera as a
control. To construct large area temperature sensor arrays, a
multiplexing strategy is necessary to minimize the wiring number.
SiNR diode temperature sensors have a significant advantage in
their construction, owing to their nonlinear characteristics29. The
spatial resolution of the multiplexed temperature sensor array of
SiNR diodes is sufficiently high to accurately recognize the
thermal profile of a heated object (Supplementary Fig. 13).
Further increases in sensitivity can be achieved by incorporating
novel nanomaterials/microstructures6,30.

Although there is no specific biological receptor that senses
skin exposure to humidity, human skin has the ability to
sense changes in humidity with mechanoreceptors and
thermoreceptors31. To mimic this capability, we fabricate
stretchable capacitance-based humidity sensor arrays. Humidity
sensing is performed in a test chamber with humidity control
(Supplementary Fig. 14a left). The humidity sensor arrays detect
capacitance changes induced by the permittivity change of PI,
which absorbs water molecules (Supplementary Fig. 14a right
inset). A calibration curve (Fig. 4c left) demonstrates this
behaviour. The right frame of Fig. 4c shows that relative
humidity changes measured with a commercial humidity sensor
(blue) are well-matched to the capacitance changes measured
with a fabricated humidity sensor (red). Spatial differences in
humidity are discriminated (Fig. 4d, Supplementary Note 6).
External disturbances, such as fingertip touch (Supplementary
Fig. 14b), external strains (Supplementary Fig. 14c left) and
temperature changes (Supplementary Fig. 14c right) have
negligible effects on the humidity sensing.

For prosthetic devices and artificial skin to feel natural, their
temperature profile must be controlled to match that of the
human body. We thus fabricate stretchable thermal actuator
arrays, whose thermal signature is readily controllable. The
heater array can maintain body temperature (Fig. 4e left) or can
be adjusted to higher temperatures (Fig. 4e right). Thermal
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actuation performance remains intact under various stretching
conditions (B5 and B20%; Fig. 4f).

Electronic skin responses in various daily life situations. The
prosthetic hand and laminated electronic skin could encounter
many complex operations such as hand shaking, keyboard tap-
ping, ball grasping, holding a cup of hot/cold drink, touching dry/
wet surfaces and human to human contact (Fig. 5). In the case of
hand shaking, spatio-temporal strain can be mapped with SiNR
strain gauge arrays. The strain map has high fidelity and captures
minor shifts in strain near the index finger and respective joints

(Fig. 5a). To investigate the performance of SiNR pressure sen-
sors, we monitor temporal resistance changes in response to
keyboard tapping (Fig. 5b top) and catching of a ball (Fig. 5b
bottom). Pressure sensors show rapid and reliable responses to
external stimuli in both situations. Temperature sensing is
another important function of skin prosthesis. Temporal tem-
perature monitoring is successfully done (red) once a hand tou-
ches a cup containing hot (Fig. 5c top) and cold (Fig. 5c bottom)
liquid. Control temperature measurements are performed with an
IR sensor (blue).

Another application for smart prosthetics is sensing of
dampness caused by fluid contact. Humidity sensors in the
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prosthetic skin provide feedback on the level of humidity and
wetness (Fig. 5d top and bottom) in the representative example of
a diaper. The measured capacitance differences between dry and
wet cases are clearly distinguishable (Fig. 5d right). In addition,
thermal actuators can provide the controlled heating to make the
sense of touch from a prosthesis close to natural (Fig. 5e left). The
artificial skin with the stretchable heater is warmed to B36.5 �C
(Fig. 5e middle) to mimic body temperature. The heat transfer to
the baby doll is then captured with an IR camera (Fig. 5e right).

Relaying sensory signals to peripheral nerves. The ultimate goal
of skin prosthesis is to enable amputees to feel various types of
external stimuli. To achieve this goal, the signals captured across

various sensor arrays must be processed and transmitted to
stimulate the corresponding peripheral nervous system
(Fig. 6a). For effective charge injection to peripheral nerves, low
impedance in multi-electrode array (MEA)32 is critical. In
addition, there are various mechanical motions of adjacent
muscles, which require deformations of the interfacing electrodes
to preserve mechanically conformal contacts and prevent scar
formation arisen from mechanical mismatch between biological
tissues and MEA33. Furthermore, inflammations at interfaces
between electrodes and nerves induced by reactive oxygen species
(ROS)34 must be suppressed, since massive inflammatory
responses can cause death of nervous cells35 and damage the
peripheral nervous system.
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To achieve low impedance, the MEAs are decorated with
platinum nanowires (PtNWs; Fig. 6a inset and Fig. 6b left).
PtNWs are grown using an electrochemical method with anodic
aluminium oxide (AAO) nanostructures as templates. Ceria
nanoparticles are adsorbed on PtNWs (Fig. 6b right) to suppress
the ROS enrichment which is neurotoxic at high concentration34.
The low material impedance of Pt and large surface area of NWs
decreases impedance significantly lower than planar Au or Pt
electrodes (Fig. 6c left). Ceria nanoparticles decorated on PtNWs
successfully scavenge ROS (Fig. 6c right, red bar) compared with
the control (Fig. 6c right, blue bar), which prevents ROS-induced
inflammations36.

Figure 6d shows the fabricated stretchable MEA (left)
conformally contacted on nerves (blue arrows) in muscle tissues
(right). In a Sprague Dawley rat, the sciatic nerve is exposed for
the current experiment after the gluteus muscles are dissected
(Supplementary Note 7). The stretchable MEA is wrapped around
the nerve fibre (Fig. 6e left) and maintains conformal contacts
under deformations (Fig. 6e inset). The FEA (Fig. 6e right,
Supplementary Note 8) shows that much lower shear stress is
applied to the nerve fibre with the stretchable, serpentine-mesh
type MEA (top) than the flexible, planar-sheet type MEA
(bottom). The FEA mesh highlighting metal interconnections is
shown in Supplementary Fig. 15. Mechanical-stress-induced
inflammations37 can be prevented by virtue of the ceria
nanoparticles adsorbed on the stretchable MEA.

In vivo electrophysiological recordings from the ventral
posterolateral nucleus (VPL) are performed38,39 with recording
electrodes positioned in the VPL of the thalamus
(Anteroposterior: � 2.3mm, Medio-Lateral: 3.0mm, Dorso-
Ventral: � 6.0 to � 7.0mm) in the right hemisphere (Fig. 6f,
Supplementary Note 9). Signals from a pressure sensor (black) are
obtained and processed as input voltage signals (red), which in
turn, trigger the injection of current (blue) through a stretchable
MEA (Fig. 6g top and middle, Supplementary Note 10). Evoked
potentials from the rat’s VPL are simultaneously measured
(Fig. 6g bottom). Synchronized sharp spikes are observed in the
recorded electrophysiological signals in response to input signals
from the pressure sensor, indicating successful electrical signal
injection into the peripheral nerves and transfer to central
nervous system. Necessary system components and signal flows
for nerve stimulation40 are described in Supplementary Fig. 16.
Despite advances in the nanomaterials-decorated stretchable
neural interfaces, several safety issues are brought up, such as
fractured PtNWs that may enter into the bloodstream, which
should be clarified further. Inflammatory suppression effects of
ceria nanoparticles on nerves also should be elucidated in the
future by in vivo experiments.

Discussion
Site-specifically designed SiNR mechanical and temperature
sensor arrays integrated with stretchable humidity sensors and
thermal actuators enable high sensitivity, wide detection ranges
and mechanical durability for prosthetic systems. Motion-capture
videography provides a map of deformations of human skin in
response to complex motions, thus forming the basis of site-
specific geometries and designs for SiNR-based systems. Ultrathin
layouts in neutral mechanical plane configurations further
enhance durability and reduce risks of mechanical fractures.
Interfacing stretchable electrodes decorated with PtNWs and
ceria nanoparticles highlight the unique capability to merge these
abiotic systems with the human body. As a result, sensing and
actuation capabilities are enabled over a wide range of sensory
inputs, in the presence of skin deformations, thus providing

enhanced function and high performance in the emerging field of
smart prosthetics.

Methods
Fabrication of SiNR-based devices. The fabrication begins with doping of
silicon-on-insulator wafer with spin-on-dopant. The doped regions are transfer
printed onto PI film coated on a silicon oxide (SiO2) wafer. Using reactive
ion etching with photolithography, SiNRs are additionally patterned. Thermal
evaporation for metallization (Au/Cr, 70 nm/7 nm), photolithography and
wet-etching steps define the serpentine metal lines. Top PI layer is spin coated and
the entire trilayer (PI/device/PI) is patterned by reactive ion etching. The whole
device is transferred to the PDMS spin coated on the polyvinyl alcohol and
encapsulated by another PDMS via spin coating. To attach devices to target
substrates (for example, prosthetic hand), the encapsulated device is attached on
the target position and then the polyvinyl alcohol film is removed through
immersion in DI water.

Fabrication of Au-based devices. A precursor solution of PI is spin coated on a
SiO2 wafer. The PI layer is fully cured at 250 �C for 1 h. To form separated elec-
trodes for humidity sensors and resistive conduction paths for heaters, Au/Cr
(70 nm/7 nm) layers are deposited by using thermal evaporation process. The
deposited metal film is patterned through the photolithography. For the encap-
sulation, another PI layer is spin coated and cured using the same procedures and
conditions. The whole structure (PI/metal/PI) is patterned as a stretchable form,
released from the SiO2 wafer and then transferred to the polymeric substrate by
using the same process with SiNR-based devices.

Characterization of SiNR strain gauges. The per cent resistance changes of SiNR
strain gauges for different serpentine designs (S1–S6) are measured under various
applied strains (Fig. 3b left). The resistance changes depending on the direction of
the stretching are also analyzed (Supplementary Fig. 6a,b). The resistances of strain
gauges are measured by using the source measurement units. Continuous resis-
tance change monitoring of an individual SiNR strain gauge (Fig. 3b right) and
output voltage monitoring from the Wheatstone bridge (Supplementary Fig. 6d)
are performed by using the probe station (MSTECH, Korea) and parameter ana-
lyzer (B1500A, Agilent, USA).

Characterization of SiNR pressure sensors. Resistance change measurements
for SiNR pressure sensors are recorded for representative serpentine designs (S1,
S6) under various applied pressures (Fig. 3e). A screw having diameter of 0.5 cm is
set on the load cell to press the specific region of the pressure sensor array
(Supplementary Fig. 9a upper left inset). The load cell measures the applied load,
and corresponding pressure can be calculated by dividing the load with the area.
The resistance change induced by the applied pressure is calculated using the
applied constant current (4mA) and the corresponding voltage measured by the
source measurement unit.

Characterization of SiNR temperature sensors. To obtain I–V curves of
p–n-diode-based SiNR temperature sensors, electrodes connected to the p-type
and n-type region are probed by using the probe station. The increasing voltage
is applied to the p-type region while the n-type region is grounded, and the
corresponding current is measured by the parameter analyzer. The calibration
curves (Fig. 4a) are obtained by deducing the corresponding voltages at the
specific current (10 nA) from the I–V curves shown in the Supplementary
Fig. 11b,c and plotting them with respect to the temperatures measured by IR
temperature sensor.

Characterization of humidity sensors. Relative humidity is controlled by intro-
ducing mixed streams of dry nitrogen and deionized water vapour in proper ratio
into the test chamber (Supplementary Fig. 14a left). Relative humidity is measured
with a commercial humidity temperature meter (CENTER 310) placed inside the
test chamber. The capacitance changes of the fabricated humidity sensor are
measured using a digital multimeter (NI PXI-4072, National Instruments, USA;
Supplementary Fig. 5a) controlled with a custom-made LabVIEW programme.

Characterization of heaters. The stretchable heater (Au/Cr, 70 nm/7 nm, 550O)
on a PDMS substrate is connected to the power supply. The thermograms (Fig. 4e,
f) is captured by a commercial IR camera (320� 240 pixel; P25, FILR, Sweden). A
manual bending stage is used to stretch the stretchable heater to apply designated
amount of strain (Fig. 4f).

Synthesis of PtNWs on Au electrodes. H2PtCl6 (Z99.9% trace metals basis,
Sigma-Aldrich) solution of 1% (w/w) containing 1.5M HClO4 (70%, ACS reagent,
Sigma-Aldrich) are prepared for the electrodeposition. A porous AAO template
(Anodisc, Whatman) is laminated onto Au electrode array and dipped into the
H2PtCl6 solution. A custom-made holder firmly fixes the AAO template on Au
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electrodes. Electrodepostion is performed by using the electrochemical workstation
with the three-electrode system: a platinum, Ag/AgCl and Au electrode as a
counter, reference and working electrode. Using potentiostatic mode with the
potential of � 0.35V, electrodeposition is carried out for B30min at the room
temperature. After the deposition is completed, the sample is washed with the
triple-distilled water. Finally it is immersed into 1M NaOH solution at room
temperature for B30min to dissolve the AAO template.

Impedance characterization of conventional metal electrodes and PtNWs
electrode. Thermally evaporated Au electrode, electrochemically deposited Pt film
on Au electrode and electrochemically grown PtNWs on Au electrode are pre-
pared. Impedance of each electrode is measured using electrochemical workstation
with the three-electrode system: a platinum, Ag/AgCl and target electrode as a
counter, reference and working electrode, respectively. All electrodes are immersed
in the conductive PBS solution, therefore they are electrically connected to each
other. Using AC impedance mode with the frequency range of 1 to 106Hz,
impedance characterization is carried out for B5min at the room temperature.

Synthesis of ceria nanoparticles. We add 1mmol (0.4 g) of cerium (III) acetate
(98%, Sigma-Aldrich) and 12mmol (3.2 g) of oleylamine (BC18-content of 80–
90%, AcrosOrganics) to 15ml xylene (98.5%, Sigma-Aldrich). The mixed solution
is treated by the sonicator for B15min at room temperature and then heated to
90 �C. Deionized water (1ml) is injected into the solution under vigorous stirring at
90 �C, and then the solution colour changes to an off-white colour, representing
that the reaction had occurred. The resulting mixture is aged at 90 �C for 3 h to give
a light yellow colloidal solution, which is then cooled to room temperature.
Acetone (100ml) is added to the precipitated ceria nanoparticles. The precipitate is
washed with acetone using centrifugation and the resulting ceria nanoparticles are
easily dispersible in chloroform.

Synthesis of phospholipid-PEG-capped ceria nanoparticles. To make bio-
compatible ceria nanoparticles, ceria nanoparticles dispersed in chloroform are
encapsulated by polyethlene glycol (PEG)-phospholipid shells. First, 5ml ceria
nanoparticles in CHCl3 (10mgml� 1) is mixed with 35ml CHCl3 solution con-
taining 30mg of mPEG-2000 PE. Then, solvents are evaporated by the rotary
evaporator and incubated at 70 �C in vacuum for 1 h for entire chloroform
removal. The addition of 5ml water resulted in a clear and light-yellowish sus-
pension. After filtration, excess mPEG-2000 PE is removed using ultracentrifuga-
tion. Purified phospholipid-PEG-capped ceria nanoparticles are dispersed in
distilled water.

Anti-oxidant properties of ceria nanoparticles. To verify anti-oxidant properties
of ceria nanoparticles, catalase mimetic assay is used. Quenching hydrogen
peroxide is quantified using Amplex Red Hydrogen Peroxide/Peroxidase assay
kit (Molecular Probes Inc.). Amplex Red reagent (10-acetyl-3,7-dihydrox-
yphenoxazine) reacts with H2O2 and it produces the red fluorescent resorufin with
horseradish peroxide. The florescence of resorufin (excitation at 571 nm and
emission at 585 nm) indicates the H2O2 level in the samples. First, the H2O2

standard curve is prepared for determining H2O2 concentration in each sample.
After drop casting 30 ml of 5mM ceria nanoparticle solutions on the PtNWs-
decorated electrodes, each sample is placed in each micro well and 50 ml of H2O2

solutions are added. Amplex Red reagent/horseradish peroxide (50ml) working
solution is subsequently added. The initial concentration of H2O2 is 5 mM. The
fluorescence is measured after incubating for 30min at room temperature.

Ethical approval for animal experimentation. Animal experiments are con-
ducted according to the protocols and guidelines approved by the animal care
committee at Seoul National University Hospital.
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