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MSRI-UP’s primary goal is to increase the number of graduate degrees in the mathematical

sciences, especially doctorates, earned by U.S. citizens and permanent residents by cultivat-

ing heretofore untapped mathematical talent. The summer research experience along with

subsequent professional development opportunities and mentoring are designed to cultivate

the mathematical talent of the MSRI-UP undergraduates.

Much support for the program was provided by many individuals at MSRI; in particular

we thank David Eisenbud, Hélène Barcelo, Alissa Crans, Chris Marshall, Jacari Scott, Mark

Howard and Alaina Moore. In addition, MSRI-UP co-directors Duane Cooper, Morehouse

College; Ricardo Cortez, Tulane University; Ivelisse Rubio, University of Puerto Rico at

Ŕıo Piedras; and Suzanne Weeks, Worcester Polytechnic Institute contributed significantly

towards the organization and design of the program.

Best of luck to the 2014 MSRI-UP students!

Herbert A. Medina

Director, 2014 MSRI-UP

Berkeley, CA, August 2014
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Abstract

In the field of number theory, the p-adic valuation is a useful device in

studying the divisibility of an integer by powers of a given prime p. This paper

centers on 2-adic valuations of quadratic polynomials in Z[x]. In particular, the

existence and properties of roots of such polynomials modulo 2l, are determined

and assessed. Polynomials of particular interest are those that yield non 2-

regular sequences in Q2. Such sequences are represented in a novel infinite tree

form, and patterns in such trees are analyzed to classify the sequences by their

structure and non 2-regular properties. Such classification is further refined

through an algebraic analysis of the polynomials at hand.
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1 Introduction

The divisibility of integers by prime powers is a fundamental and long-studied topic

in number theory. In this paper, the same study is applied to polynomials in Z[x].

Specifically, the polynomials in question are of the form f(n) = an2 + c. A few

concepts central to the study are defined below.

1.1 Qp: The field of p-adic numbers

As this paper examines polynomials with roots existing in the field of 2-adic num-

bers, Q2, the following definitions serve to introduce key properties of Qp, which will

support the later analysis.

Definition 1.1. For a given prime number p, the p-adic valuation of a non-zero

integer x, νp(x), is the greatest integer l ∈ N such that pl | |x|.

By convention, νp(0) = ∞. The p-adic valuation can also be extended to the

rational numbers by defining νp : Q→ Z, νp
(
a
b

)
= νp(a)− νp(b).
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Further properties of νp that are utilized in this paper are:

• νp(m · n) = νp(m) + νp(n)

• νp(m+ n) ≥ inf {νp(m), νp(n)}

for m,n ∈ Z∗, i.e. the ring of non-negative integers.

The p-adic valuation can now be used to define the p-adic norm.

Definition 1.2. The p-adic norm of x ∈ Q is defined as ‖x‖p = p−νp(x) with ‖0‖p = 0.

A few useful properties of the p-adic norm are the following:

• (Non-negativity) ‖a‖p ≥ 0

• (Sub-additivity) ‖a+ b‖p ≤ ‖a‖p + ‖b‖p

• (Symmetry) ‖−a‖p = ‖a‖p

1.2 k-regular sequences

In past number theoretical research conducted by Bell [3], Allouche and Shallit [1],

[2], sequences of the p-adic valuations of polynomials have been examined according

to their recurrence and periodic properties. The present study instead focuses on

sequences with unpredictable and non-regular patterns. In particular, polynomials

whose p-adic valuations give rise to non k-regular sequences will be studied. The

notion of k-regularity is given below.

Definition 1.3 (Allouche and Shallit [1], 1992). Let k ≥ 2 be an integer. An integer

sequence {S(n)n∈N}n∈N is said to be k-regular if the Z-module generated by the set of

subsequences {S(kin+ j)|i, j ∈ N, 0 ≤ j ≤ ki − 1} is finitely generated. In particular,

every term S(kin + j), and by extension every term S(ki(kn + j) + c), is a linear

combination of the generators of the Z-module.

For k-regular sequences, terms from the set of subsequences {S(ki(kn+ j) + c)|i, j ∈

N, 0 ≤ j ≤ ki − 1, c ∈ N} appear in a finite set of recurrences that define the terms
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of {S(n)}. More precisely, {S(n)} is p-regular if it can be expressed as a linear

combination of terms from the subsequence {S(pin + j)}i,j∈N. An example of a p-

regular sequence is provided in Section 2.

1.3 p-adic analysis of integer polynomial sequences

The polynomials f(n) ∈ Z[x] relevant to the present study must generate non p-

regular sequences {νp(f(n))}n∈N. Before proceeding, it is necessary to state funda-

mental properties of polynomials f(n) which yield p-regular sequences {νp(f(n))}n∈N,

so that such polynomials may be isolated from the study.

Lemma 1.1 (Bell [3], 2007). {νp(f(n))}n∈N is p-regular if and only if f(x) factors

into a product of polynomials, one of which has no roots in Zp ⊂ Qp (i.e. the p-adic

ring of integers), the other which factors into linear polynomials in Q[x].

This implies that polynomials with no roots in Qp give rise to non p-regular

sequences {νp(f(n))}n∈N. For this reason, the studied polynomials are chosen to be

irreducible in Z[x], i.e. to have no roots in Z[x].

Lemma 1.2 (Bell [3], 2007). Let h(x) ∈ Zp[x] be a polynomial with no roots in Qp

(i.e. no roots modulo pl for some l > 1), then the following hold:

• The sequence {h(n)}n∈N is periodic.

• There exists some l ≥ 2 such that |h(n)|p > p−l for all n ∈ N.

In light of the previous lemma, the polynomials f(n) for the current study must

yield aperiodic sequences {ν2(f(n))}n∈N. Furthermore, for all n ∈ N, they must

satisfy the property |f(n)|p ≤ p−l = C, for all l ≥ 2. In other words, f(n) must have

a finite size in Qp for all n ∈ N.

1.4 Behavior of {ν2(f(n))}n∈N according to parity of a and c.

One must consider the different possible parities of the coefficients of f(n) = an2 + c

when studying the corresponding 2-adic valuations of the polynomial. The congru-
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ences of f(n) modulo 2 are summarized in the table below:

a c Number of Possible Roots n mod 2

even even 2 0, 1

odd odd 1 1

even odd 0 N/A

odd even 1 0

To study polynomials f(n) for which a and c are even, it suffices to factor

f(n) = an2 + c as f(n) = 2i · g(n), where i ≥ 1 is the largest exponent such that 2i

divides a and c, and to study {ν2(g(n))}n∈N. This is because for d = gcd(a, c) 6= 1,

one may write ν2(f(n)) as ν2(f(n)) = ν2(d) + ν2(g(n)), and simply observe ν2(g(n)).

Here, g(n) corresponds to a polynomial for which at least one of a and c is odd.

When a is even and c is odd, ν2(an
2 + c) = 0. Hence, polynomials with such

coefficients have no roots modulo 2l, l ≥ 1. This leaves two classes of polynomials

f(n) = an2 + c to consider, f(n) for which a and c are odd, and f(n) for which a is

odd and c is even.

This paper describes various methods for determining the existence and properties

of 2-adic roots of f(n) = an2+c. In Section 2, the behavior and patterns of {ν2(f(n))}

are represented pictorially in a 2-adic tree. The 2-adic tree will allow one to predict

the existence of 2-adic roots for f(n). Section 3 describes the 2-adic roots of f(n)

from a purely algebraic perspective. Hensel’s Lemma for p-adic roots is used to derive

a general formula for 2-adic roots of f(n). In section 4, the roots of f(n) are studied

analytically based on of their power series’ convergence properties in Q2. The analysis

is first devoted to polynomials f(n) = an2 + c for which both a and c are odd and

later extended to f(n) such that a is odd and c is even.

The central result of this study lies in the following theorem:

Theorem 1.1. Let f(n) = an2 + c, such that gcd(a, c) = 1. Write c as c = 4i · b

(i ≥ 0) where 4 - b. Then for all l ∈ N, the roots αi = ±
√
−c/a, (i = 1, 2), of f(n)
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modulo 2l exist in Q2.

In particular, the roots αi are finite in Q2 if and only if a+ b ≡ 0 mod 8.

2 Tree Representation of νp(f (n))n∈N

The p-adic valuations of the polynomial f(n) are represented in a p-adic tree. A

p-adic tree consists of branches, which represent the argument of f(n), and nodes,

which indicate the value of νp(f(n)) obtained from the value of the parent branch.

The p-adic tree construction algorithm is briefly outlined below:

The tree begins with an initial node n. One must then draw p branches from node

n, corresponding to the residues of n modulo p, namely 0, 1, . . . , p − 1, respectively.

If, for instance, νp(f(n)) yields the same value i ≥ 0 for all n ≡ 0 mod p, the branch

must be terminated by a node i. No further branches are to be drawn from node

i. In the case where νp(f(n)) yields non-identical values for n ≡ 0 mod p, the given

branch is terminated by a node labelled with an asterisk. The same reasoning applies

for n ≡ 1 mod p, . . . , n ≡ (p− 1) mod p. Then p new branches are drawn from node

∗, each corresponding as previously to input values congruent to 0, 1, . . . , or p − 1

modulo p for the subsequence νp(f(p · n)), (νp(f(p · n+ 1)), . . . , νp(f(p · n+ p− 1))).

The tree is now at level l = 1. The same criterion as previously is used to evaluate

each branch, and the process continues until all nodes in the tree terminate. If the

nodes never terminate, the result is an infinite tree.

More generally, a branch at level l of the tree will continue to level l+1 if νp(f(pl ·

n + jl−1 · pl−1 + · · ·+ j0 · p0)), where j0, . . . , jl−1 may take on integer values between

0 and p − 1 and does not yield identical values for all n congruent to 0, 1, . . . , p − 1

modulo p. Otherwise, the branch will terminate at level l.

Example 2.1 (p-adic tree of f(n) = n2, p = 2). In the tree representation of

ν2(n
2) (see diagram here below), the leftmost branch, corresponding to values of the

form 2l−1 · (2n), l ≥ 1, continues at each level l, and thus is infinite, as f(2l−1 ·

(2n)) = [2l−1 · (2n)]2 ≡ 0 mod 2l, for all l ≥ 1. Meanwhile, the rightmost branch,
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corresponding to values of the form 2l−1 · (2n+ 1) at each level l terminates. Indeed,

f(2l−1 · (2n+ 1)) = 2l−1 · (2n+ 1) 6≡ 0 mod 2l, for all l ≥ 1.

The tree patterns of ν2(n
2) are directly dependent on the input n to the sequence

term ν2(n
2) at level l. The following recurrence relation ensues:

ν2((2n+ 1)2) = 0

ν2((2n)2) = ν2(n
2) + 2.

For this reason, ν2(n) is deemed a 2-regular sequence.

n

∗

∗

∗

∗

...

3

2

1

0

2n + 12n

4n + 24n

8n + 48n

16n 16n + 8

Example 2.2 (p-adic tree of f(n) = n2 + 1, p = 2). For even n, f(n) is odd.

Therefore, ν2(f(n)) = 0 for all n even, and thus the corresponding branch terminates

with a node of value 0. For odd n, f(n) is divisible by 2, but not by 4. Consequently,

ν2(f(n)) = 1 for all odd n, and the right branch terminates with value 1.

n

0 1

2n 2n+ 1

Example 2.3 (p-adic tree of f(n) = n2 + 7, p = 2). For even n, f(n) is odd.

Therefore, f(n) 6≡ 0 mod 2l for even n. Consequently, the leftmost branch, which
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corresponds to even values of n, terminates at level l = 1. However, for odd n, the

behavior of {ν2(n2 + 7)}n∈N cannot be immediately predicted. At a given level l,

one cannot ensure whether the nature of the new input value n to f(2l · n + 1) will

induce its associated branch to terminate at level l or to proceed to the next level.

This erratic behavior, observed in the following tree, is indicative of the non 2-regular

behavior of {ν2(n2 + 7)}n∈N.

n

0 ∗

∗

3 ∗

∗

...

4

∗

∗

4 ∗

...

3

2n 2n+ 1

4n+ 1 4n+ 3

8n+ 1 8n+ 5

16n+ 5 16n+ 13

8n+ 3 8n+ 7

16n+ 3 16n+ 11

Instead of examining sequences {ν2(f(n))}n∈N via this algorithmic, pictorial method,

one may analyze the sequences through a purely algebraic approach. The next section

describes this method.

3 Algebraic Analysis of ν2(f (n))

By using Hensel’s lemma for roots of polynomials in Zp, it is possible to determine

which solutions to f(n) ≡ 0 mod pl, l ≥ 1, also give rise to solutions to f(n) ≡

0 mod pl+h, 1 ≤ h ≤ l. Furthermore, a general formula can be derived for such

solutions. Birjamer, Gil, and Weiner [2] give a formula for roots of a polynomial of

degree m, stated in the following lemma:
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Lemma 3.1. Let p > 0 be a prime and let f(x) = a0 + a1x + · · · + amx
m be a

polynomial in Zp[x]. Let µ, κ ∈ Z be such that 0 ≤ 2κ < µ. If r0 ∈ Z is such that

f(r0) ≡ 0 mod pµ and νp(f
′(r0)) = κ,

then r0 lifts to a p-adic root r of f given by

r = r0 + pκ
∞∑
n=0

n∑
k=0

(1)nk+1

ck1(n+ 1)
!

(
2n+ 1

nk

)
Bn+k,k(1!c1, 2!c2, . . .)

(
c0
c1

)n+1

.

The coefficients cj = p(j2)κ · f
(j)(r0)
j!

for j = 0, 1, . . . ,m. The Bell polynomial Bn+k,k

is of the following form:

Bn+k,k(x1, x2, · · · ) =
∑ (n+ k)!

j1!j2! . . . jn+1!

(x1
1!

)j1 (x2
2!

)j2
. . .

(
xn+1

(n+ 1)!

)jn+1

,

where the sum is taken over all sequences j1, j2, . . . , jn+1 of non-negative integers

satisfying

j1 + j2 + · · ·+ jn+1 = k and j1 + 2j2 + · · ·+ (n+ 1)jn+1 = n+ k.

Remark 1. The power series which appear in the expression of r are not to be

interpreted in R, but in Zp, as r is a p-adic root of f(x).

The general formula for the root r of any quadratic polynomial in Z[x] satisfying

the conditions stated in Lemma 3.1, deriving from a root r0 of the given polynomial

modulo p > 0, can therefore be reduced to the following expression:

r = r0 − 2κ
∞∑
n=0

C(n)

(
c0
c1

)n+1
1

cn1
,

where C(n) is the nth Catalan number, C(n) = 1
n+1

(
2n
n

)
.

Example 3.1. The root r0 = 1 of f(n) = n2 + 7 modulo 2 gives rise to the root

r = 1− 2
∞∑
n=0

(2n)!2n+1

(n+ 1)!n!
.
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4 Power series interpretation in Q2

The remainder of the paper is devoted to the proof of Theorem 1.1, restated below:

Let f(n) = an2 + c, such that c = 4i · b (i ≥ 0), 4 | b, and gcd(a, c) = 1. Then for all

l ∈ N, the roots αi = ±
√
−c/a, (i = 1, 2), of f(n) modulo 2l exist in Q2.

In particular, the roots αi are finite in Q2 if and only if a+ b ≡ 0 mod 8.

Theorem 1.1 specifies the conditions that the coefficients a and c in f(n) = an2+c

must satisfy in order for f(n) to have a solution modulo 2l, for all l ∈ N.

The forward direction is proven in this section via analysis of the power series

expansion of
√
−c
a

. The backward direction, reserved for the following section of the

paper, involves a modular arithmetic argument.

Remark 2. Though both directions can be proven through the power series method

alone, the arithmetic approach is included for variety purposes.

The statement of Theorem 1.1 is equivalent to the claim that f(n) has a root

modulo 2l for all l ∈ N. Indeed, the congruence equation f(n) ≡ 0 mod 2l has a

solution for all l ∈ N if and only if
√
−c
a
∈ Q2. In turn,

√
−c
a
∈ Q2 if and only if∥∥∥√−c

a

∥∥∥
2

is finite.

The 2-adic norm of
√
−c
a

is∥∥∥∥∥
√
−c
a

∥∥∥∥∥
2

= 2
−ν2

(√
−c/a

)
.

Yet

ν2

(√
−c
a

)
= ν2(

√
−4i · b/a)

= ν2

(
2i
√
−b
a

)

= i+ ν2

(√
−b
a

)
.
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Hence, ∥∥∥∥∥
√
−c
a

∥∥∥∥∥
2

= 2−i · 2−ν2
(√

−b
a

)
.

Therefore, to prove that
∥∥∥√−c

a

∥∥∥
2

is finite, one must show that ν2

(√
−b
a

)
is large,

and thus that the power series expansion of
√
−b
a

converges in Q2.

Remark 3. When c is odd, i = 0 and b is odd. When c is even, one of the following

cases applies: either i ≥ 1 and b may be even or odd, or i = 0 and b is divisible by at

most 2. (If b were divisible by a greater power of 2, it would be possible to factor 4

from b, thus increasing the exponent i). However, i does not come into consideration

for the power series method, which solely depends on b.

Proof. The power series expression of

√
−b
a

is written as follows:

√
−b
a

=
∞∑
k=0

(
1
2

)
k
· ( b

a
+ 1)k

k!
=
∞∑
k=0

(−1)k(1)(3) . . . (2k − 1)(a+b
a

)k

2kk!
.

By sub-additivity of the 2-adic norm,∥∥∥∥∥
∞∑
k=0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

∥∥∥∥∥
2

≤

∥∥∥∥∥
k0−1∑
k=0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

∥∥∥∥∥
2

+

∥∥∥∥∥
∞∑

k=k0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

∥∥∥∥∥
2

for any k0 ∈ N. Therefore, to prove convergence of the series in Q2, it is enough

to show that the right-hand side of the inequality is bounded above by a constant.

Indeed, terms with a finite 2-adic norm converge in Q2.

For k = 0, the summand is odd. For all k ≥ 1, the summand is even, due to the

factor (a+b)
2

which is even for all such terms. Indeed, ν2(a+ b) ≥ 3, from the theorem

statement. Hence, the finite sum

k0−1∑
k=0

24k

(2k)!
·
(
−4 · (k · 2m+1 + 1) + (2k + 1)

2k + 1

)
(1)(1 + 2m) . . . ((2k − 1) · 2m + 1)

is odd, and thus
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ν2

(
k0−1∑
k=0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!
)

)
= 0,

which implies that

∥∥∥∥∥
∞∑
k=0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

∥∥∥∥∥
2

=
1

20
= 1.

It remains to show that

∥∥∥∥∥
∞∑

k=k0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

∥∥∥∥∥
2

is bounded, which is equivalent to proving that

ν2

(
∞∑

k=k0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

)
≥ N

for all N ∈ N.

Note that

ν2

(
∞∑

k=k0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

)
≥ inf

{
ν2

(
(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

)}
k≥k0

.

The expression ν2

(
(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

)
can be reduced to

kν2(a + b) + s2(k) − 2k, where s2(k) is the sum of the binary coefficients of k. This

new expression follows from the properties ν2(h!) = h− s2(h) (h ∈ N) and

s2(2
l · k) = s2(k), for all l ∈ N.

Thus, for all k ∈ N, s2(k) ≥ 0,

inf {kν2(a+ b) + s2(k)− 2k}k≥k0 ≥ inf {kν2(a+ b)− 2k}k≥k0 = k0 · ν2(a+ b)− 2k0.

Since a+ b ≡ 0 mod 8, ν2(a+ b) ≥ 3. Hence, k0ν2(a+ b)− 2k0 ≥ 3k0 − 2k0 = k0.

For every N ∈ N, there exists k0 ∈ N such that 0 ≤ N ≤ k0. Hence, for every N ∈ N,

there exists k0 such that ν2

(
(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

)
≥ N .
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Therefore, for every such pair {k0, N},∥∥∥∥∥
∞∑

k=k0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

∥∥∥∥∥
2

=
1

2m
≤ 1

2N

where m = ν2

(∑∞
k=k0

(−1)k(1)(3)...(2k−1)(a+b)k
2kakk!

)
.

This yields the global inequality

∥∥∥∥∥
∞∑
k=0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

∥∥∥∥∥
2

≤ 1 +
1

2N
.

Furthermore, ∥∥∥∥∥
∞∑
k=0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

∥∥∥∥∥
2

≥ 0.

Then, as N →∞,

0 ≤

∥∥∥∥∥
∞∑
k=0

(−1)k(1)(3) . . . (2k − 1)(a+ b)k

2kakk!

∥∥∥∥∥
2

≤ 1.

Remark 4. This proof for the “if” direction holds the same for the roots of any

polynomial f(n) = anr + c modulo 2l, l ≥ 1, where a = 1, r = 2m,m ≥ 1, and

c ≡ −1 mod 2m+2. However, analysis of polynomials of higher degree is beyond the

scope of this paper.

The following section proves the reverse direction.

5 Arithmetic analysis of ν2(f (n))

The argument is first applied to polynomials f(n) = an2 + c for which a and c are

odd, and is later extended to polynomials for which a is odd and c is even.

5.1 2-adic valuation of f(n) = an2 + c, a odd, c odd

When c is odd, c is of the form c = 40 · b = 1 · b, where b is an odd integer. Therefore,

the congruence a + c ≡ 0 mod 8, which appears in the proof, is equivalent to the

13



congruence a+ b ≡ 0 mod 8 in the statement of Theorem 1.1. Here begins the proof

of Theorem 1.1 for the second direction of the statement.

Proof. Consider the 2-adic expansion of a solution n for an2 + c ≡ 0 mod 2l,

n = x02
0 + x12

1 + · · · + xl−12
l−1, xj ∈ {0, 1}. As n cannot be even (cf. section 1.4),

x0 = 1.

To find x1, solve the congruence a(x0 + 2x1)
2 + c ≡ 0 mod 2l at l = 2. Since x0 = 1,

this yields

a(1 + 2x1)
2 + c ≡ 0 mod 22

a+ c ≡ 0 mod 22.

Note that when simplifying the term (1+2x1)
2, the factors 4x1 and 4x21 vanish modulo

22.

This results in the following conditions on a and c and the possible values for x1.

a mod 4 c mod 4 Number of Solutions x1

1 1 0 none

3 1 2 0, 1

1 3 2 0, 1

3 3 0 none

The subsequent step consists in studying the congruence equation for l = 3:

a(x0 + 2x1 + 4x2)
2 + c ≡ 0 mod 23. For this, it is necessary to consider the cases

x1 = 0 and x1 = 1 separately. Setting x1 = 0 yields following congruence equation:

a(1 + 2(0) + 4x2)
2 + c ≡ 0 mod 23

a+ c ≡ 0 mod 23.

The terms 8x2 and 16x22 obtained from the simplification of (1 + 4x2)
2 are divisible

by 8, and thus vanish modulo 23.

Setting x1 = 1 yields the following congruence equation:

a(1 + 2(1) + 4x2)
2 + c ≡ 0 mod 23

a+ c ≡ 0 mod 23.

14



Once again, the terms 24x2 and 16x22 obtained from the simplification of (3 + 4x2)
2

are divisible by 8, and thus vanish modulo 23.

Therefore, for f(n) = an2 + c, where a and c are odd, ν2(f(n)) ≥ 3 only holds if

a+ c ≡ 0 mod 8.

This concludes the proof for f(n) where a and c are odd. A similar proof is used

for f(n) = an2 + c where a is odd and c is even.

5.2 2-adic valuation of f(n) = an2 + c, a odd, c even

For even c, the factor b in the expression c = 4i · b, i ≥ 0, may be either even or odd.

When b is odd, c ≡ 0 mod 8 for i ≥ 2 and c ≡ 4 mod 8 for i < 2. When b is even, b

must be divisible by at most 2 (otherwise, it is possible to factor additional powers of

4 from b). In this case, c ≡ 0 mod 8 for i ≥ 1 and c ≡ 4 mod 8 for i = 0. Therefore,

when c is even, it must satisfy the congruences c ≡ 0 mod 8 or c ≡ 4 mod 8. This

property is consistent with the restrictions posed on c in the proof below.

Proof. Starting at l = 2, one would like to find x1 such that a(x0 + 2x1)
2 + c ≡

0 mod 22. From section 1.4, x0 = 0, which yields the congruence equation:

a(2x1)
2 + c ≡ 0 mod 22

c ≡ 0 mod 22.

The conditions on a and c can be refined as follows.

a mod 4 c mod 4 Number of Solutions x1

1 0 2 0, 1

3 0 2 0, 1

1 2 0 none

3 2 0 none
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The next step, where l = 3, is finding x2 such that the congruence a(x0 + 2x1)
2 + c ≡

0 mod 22 holds. For this, it is necessary to consider the cases x1 = 0 and x1 = 1

separately. Setting x1 = 0 yields the following congruence:

a(4x2)
2 + c ≡ 0 mod 23

c ≡ 0 mod 23.

Now, setting x1 = 1 yields

a(2 + 4x2)
2 + c ≡ 0 mod 23

4a+ c ≡ 0 mod 23.

Yet, from the analysis for l = 2, a ≡ 1 mod 2 and c ≡ 0 mod 4. The resulting

cases c ≡ 0 mod 8 and c ≡ 4 mod 8 are considered seperately.

Case 1: c ≡ 0 mod 8

The congruence 4a + c ≡ 0 mod 23 becomes 4a ≡ 0 mod 23, which implies that

a ≡ 0 mod 2. Yet, from the initial statement, a ≡ 1 mod 2, so this is a contradiction.

Case 2: c ≡ 4 mod 8

The congruence 4a+ c ≡ 0 mod 23 becomes 4a+ 4 ≡ 0 mod 23, which implies that

a ≡ 1 mod 2. This is consistent with the initial statement, hence the condition

c ≡ 4 mod 8 is valid.

This yields two classes of polynomials f(n) = an2 + c which have roots in Q2:

• {f(n) | c ≡ 0 mod 8, a ≡ 1 mod 2}

• {f(n) | 4a+ c ≡ 0 mod 8, a ≡ 1 mod 2, c ≡ 4 mod 8}

A few applications of the theorem are provided below.

Example 5.1. Let f(n) = n2 + 7. In this case, c = 7 can be written as c = 40 · 7. 1

and 7 satisfy 1 + 7 ≡ 0 mod 8, and gcd(1, 7) = 1 Therefore, n = ±
√
−7/1 = ±

√
−7

exist in Q2.
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Example 5.2. Let f(n) = 3n2 + 40. The coefficient c = 40 can be expressed as

c = 41 · 10. Since 3 + 10 = 13 6≡ 0 mod 8, f(n) has no roots in Q2.

A few noteworthy results regarding the coefficients a and c arose during the study,

and have been verified for approximately fifty examples. These results derived from

the main theorem for this study, and are summarized in the following corollary:

Corollary 5.1. Let f(n) = an2 + c, where c = m2, m ∈ Z. Then f(n) has a root in

Q2 if a ≡ −1 mod 8 and c ≡ 0, 1, 4 mod 8.

6 Additional Results and Future Goals

A few additional results were discovered alongside the central research, and are stated

below. New possible

6.1 Analysis of {ν2(f(n))}, f(n) = an2 + c, for c = m2, m ∈ Z

As an alternative method for determining which polynomials f(n) = an2 + c have

2-adic roots, one may seek to recover coefficients a and c which satisfy the equality

n =
√

2lkl−c
a

. This method is elaborated further in the proposition and proof below.

Proposition 6.1. Let l ∈ N. If there exists an n ∈ N such that

f(n) = an2 + c ≡ 0 mod 2l, then there exists a kl ∈ N such that
√

2lkl−c
a
∈ N, or

equivalently 2lkl−c
a

= m2,m ∈ Z.

Proof. Suppose f(n) = an2 + c has a root in Q2. Then the congruence

an2 + c ≡ 0 mod 2l must hold for all l. Equivalently, an2 + c = 2lkl, kl ∈ N. Rear-

ranging this identity yields the following:

an2 + c = 2lkl

n =

√
2lkl − c

a
.

Since n ∈ N, it follows that
√

2lkl−c
a

must be in N.
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6.1.1 Modular properties of perfect squares

Determining a and c which satisfy n =
√

2lkl−c
a

such that n ∈ N, is equivalent to

determining a and c which satisfy n2 = 2lkl−c
a

such that n2 ∈ N. In other words, it

is equivalent to determining a and c for which 2lkl−c
a

is a perfect square. Therefore,

it is useful to consider congruence properties of perfect squares, which may then be

applied to 2lkl−c
a

. An essential congruence property of perfect squares is cited in the

following proposition:

Proposition 6.2. Let n = m2 be a perfect square. For n even, n ≡ 0 mod 4. For n

odd, n ≡ 1 mod 4.

As f(n) is studied modulo 2l, for l arbitrarily large, one may extend the congru-

ences of perfect squares to higher moduli, namely to 2l such that l > 2.

For instance, n = m2 satisfies the congruences n ≡ 0 mod 8 or n ≡ 4 mod 8 when

n is even. When n is odd, n ≡ 1 mod 8.

6.1.2 2-adic tree analysis for f(n) = an2 + c, revisited

The existence of a 2-adic root of f(n) = an2 + c may be visited by studying both the

identity an2 + c = 2lkl, l ≥ 1 and kl ∈ N, and the 2-adic tree of f(n). In order for the

tree of an2+c to continue beyond l, there must exist a kl ∈ N such that an2+c = 2lkl.

Example 6.1. (2-adic tree of f(n) = n2 + 1)

In this case, a = c = 1. At level l = 1 of the 2-adic tree of n2 + 1, ν2(n
2
1 + 1) ≥ 1

where the continuing branch is denoted by n1 ≡ 1 mod 2. To analyze the tree at level

l = 2, one may attempt to recover n2 such that n2
2 = 2lkl−c

a
as follows:

n2
2 =

2lkl − c
a

= 22k2 − 1

≡ −1 mod 4

≡ 3 mod 4.

18



Since no perfect square has a residue of 3 modulo 4, f(n) yields no roots modulo

2l for l > 1. Consequently, the branch of the tree terminates at level l = 1, which

indicates that ν2(n
2
1 + 1) = 1, n1 ≡ 1 mod 2.

Example 6.2. 2-adic tree of f(n) = n2 + 7

In this case, a = 1 and c = 7. At level l = 1 of the tree, ν2(n
2
1 + 1) ≥ 1, where the

continuing branch is denoted by n1 ≡ 1 mod 2. To analyze the tree at level l = 2,

one may attempt to recover n2 such that n2
2 = 2lkl−c

a
as follows,

n2
2 =

2lkl − c
a

= 22x− 7

≡ −7 mod 4

≡ 1 mod 4.

Since a perfect square n = m2 may satisfy the congruence n ≡ 1 mod 4, there

exists a root for n2
2 ≡ 1 mod 4.

From Proposition 6.2, it is possible to determine which polynomials f(n) = an2+c

yield finite 2-adic trees. It is also possible to determine which polynomials of this type

yield infinite 2-adic trees which exhibit aperiodic and irregular branching patterns.

Corollaries 6.1 and 6.2 summarize these results.

Corollary 6.1. A tree will be finite and of height r if there exists an r ∈ N such that

for l > r, no solutions exist for n2
l = 2lkl−c

a
. In other words, for l > r,

√
2lkl−c
a
6∈ N.

Corollary 6.2. Assume there exists nl ∈ Z, such that an2
l + c ≡ 0 mod 2l. If the

next level of the tree continues, there exists at least one solution

nl+1 ≡ nl + d(2l) mod 2l+1, d ∈ {0, 1} such that n2
l+1 = 2l+1kl+1−c

a
for some kl+1 ∈ N.

Furthermore, if the tree continues infinitely, kl+1 is even for all l ∈ N.
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6.2 2-adic roots of general quadratic polynomials f(n) = an2+

bn+ c

A future topic of interest which derives from the current study is the behavior of

quadratic polynomials in Z[x], f(n) = an2 + bn+ c where a, b, c ∈ Z, such that

f(n) ≡ 0 mod 2l has solutions for all l ∈ N. To explore this question, one may charac-

terize and classify the coefficients a, b, c of f(n). The coefficients a, b, and c are to be

chosen such that the general roots of f(n), −b±
√
b2−4ac
2a

, are in Q2. In other words, a, b,

and c are chosen such that the corresponding series expansion
∞∑
k=0

(1
2
)k × (α2 + 1)k

k!
,

where α = −b±
√
b2−4ac
2a

the standard quadratic polynomial root, converges in Q2.

Remark 5. The power series expansion of the general root can be rewritten as

∞∑
k=0

[
(−1)k(2k)!

(k!)224ka3k
× ((−b±

√
b2 − 4ac)2 + 4a2)k

]
.

One cannot easily determine which values of a, b, and c cause the series to converge

in Q2. For instance, when considering values of a ∈ 2Z + 1 and arbitary values of b

and c, each term of the summand yields a 2-adic valuation ≥ S2(k)− 3k, but further

restricting b and c may yield a convergent series.
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Abstract

Catalan numbers, defined by the explicit formula C(n) = 1
1+n

(
2n
n

)
, have been studied since

the eighteenth century due to their frequent appearance in various fields from set theory

to combinatorics. For example, C(n) counts the number of permutations of {1, 2, . . . , n}

that avoid an three-term increasing subsequence. However, there are few results about the

properties of Catalan numbers modulo prime powers. In particular, we examine the number

of residues obtained by viewing Catalan numbers modulo powers of 2.

Introduction

We begin with an example. Modulo 4, the following residues are produced: C(0) = 1 ≡

1 mod 4, C(2) = 2 ≡ 2 mod 4, and C(6) = 132 ≡ 0 mod 4. One may continue to compute

such values, but it seems that no amount of computation will find an n such that C(n) ≡

3 mod 4. We use the following definitions to distinguish such residues.

Definition 0.1. A residue b mod 2α is present if there exists an n such that C(n) ≡ b mod

2α. A residue that is not present is called absent.
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That 3 mod 4 is absent will be proven in Section 1 in addition to other results of a slightly

different kind, for example,

C(n) 6≡ 1 mod 8 for n ≥ 1.

Definition 0.2. An eventually absent residue is a residue b mod 2α for which there exist

only finitely many n such that C(n) ≡ b mod 2α.

Note that a residue can be both present and eventually absent.

Section 1 contains a number of results for small powers of 2. Section 2 uses these results

to exhibit an upper bound on the limit

lim
α→∞

# of present residues mod 2α

2α
.

Section 3, breaks down the search for present residues according to their parity. Section 4

introduces a new approach, which characterizes the residues using 2-adic valuations. Section

5.4 uses this approach to characterize completely the number of residues mod 2α that are

congruent to 2 mod 8. Section 7 summarize our results and remaining conjectures, and

Section 8 discusses avenues for future progress.

The following notation is used:

1. C(n) denotes the nth Catalan number.

2. sp(n) denotes the sum of the base-p digits of n.

3. νp(n) denotes the p-adic valuation of n, that is, the exponent of p in the prime factor-

ization of n.
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1 Results for small α

The following recurrences by Xin-Xu (2011) will be used frequently throughout this paper

[3].

Recurrence 1.1. C(2m+ 1) = C(m) +
∑
i≥1

(
2m

2i

)
22iC(m− i)

Recurrence 1.2. C(2m) =
∑
i≥1

(
2m− 1

2i− 1

)
22i−1C(m− i)

They are proved simply by induction.

Another useful result, which uses these recurrences, is the following:

Theorem 1.3. The nth Catalan number C(n) is odd if and only if n = 2α − 1 for some

α ∈ N.

The proof of Theorem 1.3 is based on the following result by Legendre.

Theorem 1.4. νp(n!) = n−sp(n)

n−1

Proof. It is not difficult to see that

νp(n!) = bn/pc+ bn/p2c+ bn/p3c+ · · ·

Next, write n in base p:

n

p
=
a0

p
+ a1 + a2p+ · · ·

n

p2
=
a0 + a1p

p2
+ a2 + a3p+ · · ·

n

pk
=
a0 + a1p+ · · ·+ ak−1p

k−1

pk
+ ak + ak+1p+ · · ·

Observe that by taking the floor of both sides, the first term fraction on the right-hand side
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vanishes. Then

νp(n!) = a1+a2p+ a3p
2 + · · ·+ arp

r−1

+ a2 + a3p+ · · ·+ arp
r−2

+ a3 + · · ·+ arp
r−3

...

Or,

νp(n!) = a1 + a2(p+ 1) + a3(p2 + p+ 1) + · · ·+ ar(
r−1∑
j=0

pj)

=
1

p− 1
[a1(p− 1) + a2(p2 − 1) + a3(p3 − 1) + · · ·+ ar(p

r − 1)]

=
1

p− 1
[a1p+ a2p

2 + a3p
3 + · · ·+ arp

r −
r∑
j=1

aj]

=
1

p− 1
[(n− a0)−

r∑
j=1

aj]

=
n− sp(n)

p− 1
.

Proof of Theorem 1.3. Suppose n = 2α − 1. Then, by definition we have that

ν2

(
C(2α − 1

)
= ν2

(
1

2α

(
2α+1 − 2

2α − 1

))
= ν2

(
(2α+1 − 2)!

)
− 2ν2

(
(2α − 1)!

)
− ν2 (2α)

= 2α+1 − 2− s2(2α+1 − 2)− 2 (2α − 1− s2(2α − 1))− α

= 2α+1 − 2− s2

(
2α+1 − 2

)
− 2α+1 + 2 + 2s2 (2α − 1)− α

= s2(2α − 1)− α

= 0.

Thus, C(n) is odd. Now suppose C(n) is odd.
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Then take recurrences 1.1 and 1.2 modulo 2 to obtain:

C(2m+ 1) ≡ C(m) mod 2 (1)

C(2m) ≡ 0 mod 2. (2)

If n were even, then equivalence (2) shows that C(n) must be even, a contradiction. There-

fore, let n = 2m + 1. In this notation, the first equivalence shows that C(m) must also be

odd, so by the inductive hypothesis, m = 2β − 1. Then n = 2m + 1 = 2(2β − 1) + 1 =

2β+1 − 1 = 2α − 1.

We now establish the eventually absent residues mod 4, 8, and 16.

Proposition 1.5. The nth Catalan number C(n) 6≡ 3 mod 4 for any n.

Proof by induction. Recurrences 1.1 and 1.2 modulo 4 give the following equivalences:

C(n) = C(2m+ 1) ≡ C(m) mod 4 (3)

C(n) = C(2m) ≡
(

2m− 1

1

)
· 2 · C(m− 1) mod 4 (4)

For these recurrences, two base cases are necessary: C(0) = 1 ≡ 1 mod 3 and C(1) = 1 ≡

1 mod 3.

In equivalence (3), C(m) 6≡ 3 mod 4 implies C(n) 6≡ 3 mod 4 by induction. In equivalence

(4), C(n) is even. Therefore C(n) 6≡ 3 mod 4.

Proposition 1.6. The nth Catalan number C(n) 6≡ 1 mod 8 for n ≥ 2.

Proof by induction. The following base cases are sufficient for both the even and odd recur-

rences: C(2) = 2 ≡ 8 mod 8, C(3) = 5 ≡ 8 mod 8, and C(4) = 14 ≡ 6 mod 8. By Theorem

1, n must be odd in order for C(n) to be odd. Let n = 2m+1 and use recurrence 1.1 modulo
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8 to obtain

C(2m+ 1) ≡ C(m) +

(
2m

2

)
· 22 · C(m− 1) mod 8

= C(m) + (4m(2m+ 1))C(m− 1) mod 8.

If m were even, then C(2m + 1) ≡ C(m) mod 8. By the inductive hypothesis, C(m) 6≡

1 mod 8, and so neither is C(n). If m is odd, then Theorem 1.3 shows that C(m−1) is even,

and again C(2m+ 1) ≡ C(m) mod 8, so C(n) 6≡ 1 mod 8.

Lemma 1.7. C(2k − 1) ≡ 13 mod 16 for k ≥ 3.

Proof by induction. If k = 3, then C(23 − 1) = C(7) = 449 ≡ 13 mod 16.

Taking recurrence 1.2 modulo 16 gives

C(2m+ 1) ≡ C(m) + 4m(2m− 1)C(m− 1) mod 16.

Then, substituting 2m+ 1 = 2k − 1,

C(2k − 1) ≡ C(2k−1 − 1) + 4m(2m− 1)C(2k−1 − 2) mod 16.

The inductive hypothesis gives

C(2k − 1) ≡ 13 + 4m(2m− 1)C(2k−1 − 2) mod 16.

It suffices to prove C(2k−1 − 2) ≡ 0 mod 4, as then the right term would vanish and then

C(2k − 1) ≡ 13 mod 16, as desired.
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Recurrence 1.1 shows this:

C(2n) ≡
∑
i≥1

(
2m− 1

2i− 1

)
22i−1C(m− i) mod 16

≡ 2(2n− 1)C(n− 1) +
4

3
(2n− 1)(2n− 2)(2n− 3)C(n− 2) mod 16

and C(2k−1 − 2) ≡ C(2(2k−2 − 1))

≡ 2(2k−1 − 3)C(2k−2 − 2) +
4

3
(2k−1 − 3)(2k−1 − 4)(2k−1 − 5)C(2k−2 − 3) mod 16.

Then since C(2k−2 − 2) is even then 2(2k−1 − 3)C(2k−2 − 2) is divisible by 4 and

4
3
(2k−1 − 3)(2k−1 − 4)(2k−1 − 5)C(2k−2 − 3) is divisible by 4. Thus C(2k−1 − 2) is divisible

by 4. It follows that C(2k − 1) ≡ 13 mod 16 for k ≥ 3.

Proposition 1.8. The nth Catalan number C(n) 6≡ 5 mod 16 for n ≥ 4.

Proof. In order for C(n) ≡ 5 mod 16 then n = 2k− 1. However, by Lemma 1.7 if k ≥ 3 then

C(2k − 1) ≡ 13 mod 16. Thus C(n) 6≡ 5 mod 16.

Lemma 1.9. Suppose C(m) ≡ C(m+ 1) ≡ 2 mod 4. Then, m = 2k for some k ∈ N.

Proof. Theorem 1.3 shows that the result is equivalent to

ν2

(
C(m+ 1)

)
= ν2

(
C(m)

)
= 1 =⇒ ν2

(
C(m− 1)

)
= 0.

A first-order recurrence for Catalan numbers is

C(m+ 1) =
2(2m+ 1)

m+ 2
C(m). (5)

Taking the 2-adic valuation gives

1 = ν2(C(m+ 1)) = ν2

(
2(2m+ 1)

m+ 2
C(m)

)
= ν2(2) + ν2(2m+ 1) + ν2(C(m))− ν2(m+ 2).

It follows that ν2(m + 2) = 1. Thus, m + 2 = 2α for some odd integer α. Hence,

m = 2(α− 1) so m is even.
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Next, notice that from recurrence (5),

C(m+ 1) =
2(2m+ 1)(2m− 1)

(m+ 2)(m+ 1)
C(m− 1).

So,

ν2

(
C(m+ 1)

)
= ν2

(
2(2m+ 1) · 2(2m− 1)

(m+ 2)(m+ 1)
C(m− 1)

)
.

This implies

ν2

(
C(m− 1)

)
= ν2(C(m+ 1))− (2− ν2(m+ 2)) = 0

Therefore, C(m− 1) is odd, so m must be of the form m = 2k for some k ∈ N.

Lemma 1.10. Let m ≥ 2. Then, C(2m) ≡ 6 mod 8.

Proof. For simplicity, substitute n = m− 1. We will prove the following,

C(2n+1) ≡ 6 mod 8 for n ≥ 1.

By Recursion 1.2,

C
(

2(2n)
)

= 2
(

2(2n)− 1
)
C(2n − 1).

So,

C
(

2(2n)
)
≡ 2
(

2(2n)− 1
)
C(2n − 1) mod 8

≡ 2
(

2n+1 − 1
)
C(2n − 1) mod 8

≡ 10(2n+1 − 1) mod 8 (as C(2n − 1) is odd and not equivalent to 3, 7 mod 8.)

≡ 2(2n+1 − 1) mod 8.

Now, it is clear that 2n+1 − 1 ≡ 3 mod 4. This implies 2n+1 − 1 ≡ 3 mod 8 or 7 mod 8.

Moreover, 3 · 2 ≡ 6 mod 8 and 7 · 2 ≡ 6 mod 8. Thus,

C
(

2(2n)
)
≡ 6 mod 8.
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Lemma 1.11. Let k ≥ 2. Then, C(2k + 1) ≡ 6 mod 8.

Proof. Let k ∈ N. Recursion 1.1 gives

C(2k + 1) ≡ C(2k−1) + 4(2k−1)(2(2k−1)− 1)C(2k−1 − 1) mod 8

≡ C(2k−1) mod 8.

Then Lemma 1.10 imlies C(2k−1) ≡ 6 mod 8. Thus, C(2k + 1) ≡ 6 mod 8.

Proposition 1.12. The nth Catalan number C(n) 6≡ 10 mod 16 for n ≥ 6.

Proof. First observe that the result holds for n = 0, 1, . . . , 6. With these base cases, the

following may be proven by induction for n ≥ 7.

Suppose n is even (n = 2m). Recurrence 1.2 modulo 16:

C(2m) ≡ (2m− 1)2C(m− 1) +
4

3
(2m− 1)(2m− 2)(2m− 3)C(m− 2) mod 16.

Suppose C(n) ≡ 10 mod 16 for some even n ∈ N. Then

(2m− 1)2C(m− 1) +
4

3
(2m− 1)(2m− 2)(2m− 3)C(m− 2) ≡ 10 mod 16,

6(2m− 1)C(m− 1) + 4(2m− 1)(2m− 2)(2m− 3)C(m− 2) ≡ 14 mod 16.

Suppose m is odd. Then C(m− 1) is even, so 4 | 6(2m− 1)C(m− 1) and

4 | 4(2m − 1)(2m − 2)(2m − 3)C(m − 2). But 14 ≡ 2 mod 4. Then 0 ≡ 2 mod 4, a

contradiction.

Now suppose m is even. Then C(m− 2) is even, and so

16 | 4(2m− 1)(2m− 2)(2m− 3)C(m− 2).

Now,

6(2m− 1)C(m− 1) ≡ 14 mod 16.
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By testing out the possible residues for (2m− 1)C(m− 1) it is clear that this implies

(2m− 1)C(m− 1) ≡ 5 mod 8.

Since n ≥ 7, m ≥ 4,

(−1)C(m− 1) ≡ 5 mod 8,

that is,

C(m− 1) ≡ −5 mod 8 ≡ 3 mod 8.

But no Catalan number is equivalent to 3 mod 4, so this is a contradiction.

Now suppose n is odd (n = 2m+ 1). Consider recurrence 1.1 modulo 16:

C(2m+ 1) ≡ C(m) + 4m(2m− 1)C(m− 1) mod 16

≡ 10 mod 16.

Sincem−1 is even, C(m−1) is even. If 4 | C(m−1), then the second term would disappear

and C(2m+ 1) ≡ C(m) ≡ 10 mod 16, which is not true by the inductive hypothesis.

Therefore, C(m− 1) ≡ 2 mod 4. Then

C(m) + 8m(2m− 1) ≡ 10 mod 16.

It is impossible for C(m) ≡ 10 mod 4, so C(m)+8 ≡ 10 mod 16, or C(m) ≡ 2 mod 16. Thus,

C(m− 1) ≡ C(m) ≡ 2 mod 4 and by applying Lemma 1.9, it can be concluded m− 1 = 2k

or m = 2k + 1, some k. But by Lemma 1.11, C(2k + 1) ≡ 6 mod 8 for k ≥ 2, and so this is

a contradiction. This completes the proof.

2 Obtaining an upper bound

We ultimately seek to find the proportion of present residues modulo 2α as α goes to infinity,

that is

lim
α→∞

# of present residues mod 2α

2α
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Using the propositions from the previous section, the following upper bound is achieved:

Theorem 2.1. lim
α→∞

# of present residues mod 2α

2α
≤ 1

2

Proof. First observe the following:

• Modulo 2α, there are precisely 2α−2 residues congruent to 3 mod 4.

• Modulo 2α, there are 2α−3 residues congruent to 1 mod 8.

• Modulo 2α, there are 2 · 2α−4 residues congruent to 5 or 10 mod 16.

Note that we count only the residues that have not been determined to be eventually absent

under a smaller modulus. For example, 5 mod 16 6≡ 3 mod 4.

Definition 2.2. A new residue is an eventually absent residue b mod 2α such that for a < α,

b mod 2a is not eventually absent.

Therefore,

# of absent residues mod 2α

2α
≥ 2α−2 + (2α−3 − 2) + 2 · (2α−4 − 1)

2α

Letting α→∞,
2α−2 + 2α−3 + 2 · 2α−4

2α
=

1

2

This bound is strengthened using Rowland’s finite automata for Catalan numbers mod

2α, α = 1, 2, . . . , 8 [2]. The mod 4 automaton has been reproduced below:

1

0

0

1

0

1 0 ,11 1 2 0

Figure 1: Finite automaton characterizing the residues of Catalan numbers modulo 4.

Example 2.3. One can use this to compute C(n) mod 4 by first writing n in binary form,

then reading the digit sequence from right to left. Starting from the top node, one would
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follow the path corresponding to 0 for every 0 traversed, and the path corresponding to 1

for every 1 traversed. When all the digits are read, the final node will be the residue mod 4.

Observe that 3 does not appear on this diagram; therefore, 3 mod 4 is an absent residue.

Eventually absent residues can also be quickly identified. The mod 8 automaton has been

reproduced below.

0

1

0

1
0

1

0

10

1

1

0

0

1

0
1

1

0

0,1

1

0

1
1

1

1

2

5

6

4

5

0

5

Figure 2: Finite automaton characterizing the residues of Catalan numbers modulo 8.

Note that in this diagram there are only 2 paths to a 1: if n = 0 or if n = 1. Therefore,

1 mod 8 is an eventually absent residue.

Earlier this year, Rowland and Yassawi produced similar automata for Catalan numbers

mod 2α, α = 4, 5, . . . , 8 [2]. Using this, we calculated the proportion of eventually absent

residues and obtained the upper bound 35
128

≈ .27.

Later, we conjecture that all residues congruent to 0 mod 8 are present; that is, at least

1
8

of residues are present. We therefore place the limit somewhere between .125 and .27.
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3 Examining residues mod powers of 2

We now shift from examining absent residues to characterizing the ones that are present.

The following table gives the number of present residues modulo 2α.

α 0 1 2 3 4 5 6 7 8

Residues 1 2 3 6 11 19 34 59 104

There do not appear to be any immediate patterns, so we divide the residues by parity; that

is, we examine separately the residues congruent to 1 mod 2 and those congruent to 0 mod 2.

Odd Residues

For odd residues, the pattern is clear.

α 0 1 2 3 4 5 6 7 8

Residues 0 1 1 2 3 4 5 6 7

By Theorem 1.3, the only Catalan numbers congruent to an odd residue will have the form

C(2a − 1). In 2011, Lin proved the following results [1]:

Theorem 3.1 (Lin). Let α ≥ 2, the odd congruences C(2b − 1) (mod 2α), remain constant

for b ≥ α− 1 and are distinct for b = 1, 2, . . . , α− 1.

Corollary 3.2 (Lin). The sequence of Catalan numbers {C(n)}n∈N when viewed modulo 2α

has exactly α− 1 odd residues.

This characterizes exactly the number of odd present residues modulo 2α.

Even Residues

The following table contains the number of even residues for small α.

α 0 1 2 3 4 5 6 7 8

Residues 1 1 2 4 8 15 29 53 97
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There were not any distinguishable patterns here so we proceeded by looking at the tree that

divides the number of even residues m according to the residue m mod 2α.

0 mod 2

0 mod 4

0 mod 8 4 mod 8

2 mod 4

2 mod 8 6 mod 8

The only node on the mod 8 level for which we have a complete characterization is 2 mod

8.

α 0 1 2 3 4 5 6 7 8

Residues 0 0 1 1 2 3 5 6 7

We found that the sequence continues to be linear; in particular, there are α− 1 residues of

this form modulo 2α.

The 4 mod 8 and 6 mod 8 nodes had the least discernible patterns. Computation by

Mathematica was able to extend this tree to the mod 29 level, but was only able to provide

4 nonzero terms in the sequence. Therefore, it is difficult to make predictions at this point.

The 0 mod 8 is of interest because it appears to be the fastest growing out of the nodes

on its level.

α 0 1 2 3 4 5 6 7 8 . . . α

Residues 1 1 1 1 2 4 8 16 32 . . . 2α−3

Here, it appears that every residue of this form is present, and so the following conjecture

may be produced:

Conjecture 3.3. Modulo 2α (for any α), all residues congruent to 0 mod 8 are present.

This conjecture has been tested up to α = 13. This result would be quite powerful,

because then the proportion of residues that are present must be bounded below by 2α−3

2α
= 1

8
.

This conjecture may be divided into smaller conjectures, for example,

Proposition 3.4. There exists an n such that C(n) ≡ 0 mod 2α for any α.
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Before proving this, we first introduce some new notation.

4 A new approach

In this section, we use 2-adic valuations to further classify the even residues.

Definition 4.1. For all i ∈ N, define D(i) = {n ∈ N | ν2 (C(n)) = i}.

Applying Theorem 1.4 to the explicit formula for the nth Catalan number 1
1+n

(
2n
n

)
, it

follows that

D(i) = {n ∈ N | s2(n)− ν2(n+ 1) = 1}.

Proposition 4.2. For all i ∈ N, D(i) 6= ∅.

Proof. Let i ∈ N. Consider the integer m with the following base-2 representation:

m = 1 1 . . . 1 1︸ ︷︷ ︸
exactly i # of 1’s

0 12.

Clearly, s2(m) = i+ 1. But also, notice that m+ 1 must be of the form 11 . . . 11102 and so,

ν2(m+ 1) = 1. Hence, it follows that s2(m)− ν2(m+ 1) = i. Thus, m ∈ D(i).

Note. This result implies that the collection of D(i)’s forms a partition of N.

Corollary 4.3. For all i ∈ N, D(i) is an infinite set.

Proof. Notice that in the proof of Proposition 4.2, the argument holds if one replaces 0 with

a finite number of zeros. That is to say,

1 1 . . . 1 1︸ ︷︷ ︸
exactly i # of 1’s

0 0 0 . . . 0 0︸ ︷︷ ︸
finitely many

12 ∈ D(i).

Proof of Proposition 3.4. Let α ∈ N. It is clear from the definition that every element of

D(α) possesses this property. Furthermore, if β > α, then so do the elements of D(β).
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Next, it is natural to take a closer look at the residues of C(n) mod 2α, in particular

when n is restricted to D(i)’s.

Fix i ∈ N. Consider the set of residues given by the Catalan numbers corresponding to

the elements of D(i) modulo 2α, denoted by Aj(i) where j = α−i. We then get the following

table:

Residues of C(n), for n ∈ D(i):

2i: Residues of Catalan numbers:

2k, k ≤ i {0}

2i+1 A1(i)

2i+2 A2(i)

2i+3 A3(i)
...

...

Now, from our results above, Aj(i) is nonempty for all i, j ∈ N and moreover, these sets do

not contain 0. Furthermore, the elements (that is to say, the residues) of Aj(i) must all be

multiples of 2i. This raises the following two conjectures:

Conjecture 4.4. For i ≥ 3, A1(i) ( A2(i) ( A3(i) ( . . .

Conjecture 4.5. For i ≥ 3, |Aj(i)| = 2j

Observe that the latter conjecture is equivalent to Conjecture 3.3. In order to prove

this, it suffices to show that every residue congruent to 8j mod 2α is present. First, notice

that according to Proposition 4.2 each D(i) is nonempty. Since 0 is the only residue given

by D(α) modulo 2α, the residues 0 mod 2α are present for any α. It also follows from the

infinitude of D(α− 1) that the residue 2α−1 mod 2α is present.

A next step would be to examine the residues of the form 2α−2 mod 2α and 2α−2 +

2α−1 mod 2α. The set D(α− 2) guarantees the existence of one of these residues, however it

is still necessary to prove the existence of both. It would therefore be helpful to characterize

the elements of D(i) in a way that can identify the residues modulo 2α. We begin with the

following characterization.
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Theorem 4.6. For all i ∈ N, the elements of D(i) are precisely of the following form,

n = (1χ1 1χ2 . . . 1χi 0χ
′)2

where each χj represents a finite, arbitrary collection of 0’s (possibly none), and χ′ represents

a finite, arbitrary collection of 1’s (possibly none).

Proof. Let i ∈ N. To show that these integers are indeed elements of D(i) is straightforward.

So, it suffices to show that every integer in D(i) must necessarily be of this form.

Let n ∈ D(i). Suppose first that n is even. Then, it follows that ν2(n+ 1) = 0 and so it

must be the case that s2(n) = i. That is to say, the base-2 representation of n must contain

exactly i 1’s. Since n is even, n may be expressed as above where χ′ is taken to be an empty

list. Thus,

n = (1χ1 1χ2 . . . 1χi 0χ
′)2.

Next, suppose n is an odd number. Then, this implies that the base-2 representation of n

terminates with finitely many 1′s, say k. However, notice also that the base-2 representation

of n cannot contain only 1’s. Indeed, for if this were the case, then n would be one less

than a power of 2; which in turn would contradict our assumption that i 6= 0. Now, more

explicitly, n can be expressed as the following

n =

(
1 . . . 0 1 1 . . . 1 1︸ ︷︷ ︸

k

)
2

.

So, s2(n) = k + ` for some positive integer `. But also, by adding 1 to n, it is easy to see

that the base-2 representation of n + 1 will terminate in precisely k number of 0’s. Hence,

ν2(n+ 1) = k. Furthermore, as n ∈ D(i), it must be the case that

s2(n)− k = i.

Thus,

k + `− k = i and so ` = i.
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Hence, n must contain i number of 1’s, followed by at least one 0, followed by a finite sequence

containing finitely many 0’s and precisely i number of 1’s. This proves the theorem.

5 2 mod 8

In September 2011, Guoce Xin and Jing-Feng Xu generalized Theorem 3.1 by Hsueh-Yung

Lin to include all C(n) where n is odd [3].

Theorem 5.1. Let r ≥ 1 and α ∈ N with s2(α) < r. Then if b ≥ r − 1 − s2(α), we have

C(2b(2α + 1) − 1 ≡ C(2r−1−s2(α)(2α + 1) − 1) (mod 2r). Moreover, the congruence classes

C(2b(2α + 1)− 1) (mod 2r), b = 1, 2, . . . , r − 1− s2(α) are all distinct.

This theorem is used to characterize the number of residues mod 2α congruent to 2 mod

8. (see Theorem 5.4.)

α 0 1 2 3 4 5 6 7 8

Residues 0 0 1 1 2 3 5 6 7

Lemma 5.2. For n ∈ N, C(n) mod 2α has at least α− 4 residues congruent to 18 mod 32.

Proof. By Theorem 5.1, the congruence classes C(2b · 3 − 1) (mod 2r), b = 1, 2, · · · , r − 2

are distinct. However, note that for b = 1 or 2, C(21 · 3 − 1) = C(4) = 14 6≡ 18 mod 32

and C(22 · 3 − 1) = C(11) = 58, 786 ≡ 2 6≡ 18 mod 32. Therefore, first consider the case

when b = 3. Then C(23 · 3 − 1) = C(23) = 343, 059, 613, 650 ≡ 18 mod 32. Now assume

C(2b−1 · 3− 1) ≡ 18 mod 32. Then consider C(2b · 3− 1). Taking recursion 1.1 mod 32,

C(2b · 3− 1) ≡C(2b−1 · 3− 1) +

(
2(2b · 3− 1)

2

)
4C(2b−1 · 3− 2)

+

(
2(2b · 3− 1)

4

)
16C(2b−1 · 3− 3) mod 32.

It follows from Theorem 1.3 that C(2b · 3 − 3) is even. Therefore the last term disappears.

To evaluate the second term, consider

ν2

(
4C(2b−1 · 3− 2)

)
= 2 + ν2

(
C(2b−1 · 3− 2)

)
.
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By Theorem 1.4, it follows that

ν2

(
4C(2b−1 · 3− 2)

)
= 2 + s2(2b−1 · 3− 2)− ν2(2b−1 · 3− 1)

= 2 + s2(2b−1 · 3− 2).

Note that 2b−1 · 3 has binary representation 11 0 · · · 0︸ ︷︷ ︸
b−1

, and so 2b−1 · 3 − 1 has binary

representation 10 1 · · · 1︸ ︷︷ ︸
b−1

. Therefore s2(2b−1·3−2) = b−1, and so ν2(4C(2b−1·3−2)) = b+1 ≥ 5

since b ≥ 4.

The second term also disappears, so

C(2b · 3− 1) ≡ C(2b−1 · 3− 1) mod 32.

Assuming the inductive hypothesis,

Lemma 5.3. For n ∈ N and α ≥ 5, C(n) mod 2α has exactly α− 4 residues congruent to 18 mod

32.

Proof. Suppose C(n) ≡ 18 mod 32. Then ν2(C(n)) = 1 since ν2(18 + 25j) = 1 for any j.

Thus, n ∈ D(1) and therefore has binary expansion 1χ10χ′, where χ1 is an arbitrary number

of zeroes and χ′ is an arbitrary number of ones.

If n were even, then χ′ must consist of no ones so n is a power of 2. But it follows from

Lemma 1.11, C(2n) ≡ 6 mod 8 for n ≥ 2. Observe the following:

• C(20) = 1 6≡ 18 mod 32

• C(21) = 2 6≡ 18 mod 32.

n cannot be a power of 2 and thus n cannot be even.

Thus n is odd and can be expressed as n = 2b ·m − 1, where m is odd. The goal is to

prove C(2b · m − 1) ≡ 18 mod 32 =⇒ m = 3. This would show that in Theorem 5.1, the

r− 4 residues produced for α = 1 are all that can be produced; that is, no other α produces

additional residues congruent to 18 mod 32.
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Recall that 2b ·m− 1 has binary expansion 1χ10χ′. Note that the binary representation

of 2b ·m is precisely the binary representation of m followed by b zeroes. Then the binary

representation of 2b · m − 1 is precisely the binary representation of m − 1 followed by b

ones. Thus, in order for 2b ·m − 1 to satisfy the form of elements of D(1), it must be that

s2(m− 1) = 1. Thus m is one more than a power of two: m = 2a + 1.

Writing C(n) as C(2b(2a + 1)− 1, it suffices to prove

C(2b(2a + 1)− 1) ≡ C(2b+a + 2b − 1) ≡ 18 mod 32 =⇒ a = 1.

Now proceed by induction on b.

First consider the case when b = 3 and a = 2. Then C(22+3 + 23 − 1) = C(32 + 8 − 1) =

C(39) = 6 mod 32. Thus, a 6= 2. Now consider the cases for a ≥ 3, and assume

C(2a+3 + 23 − 1) = C(2a+3 + 7) ≡ 18 mod 32.

Then by recurrence 1.1,

C(2a+3 + 7) ≡ C(2a+2 + 3) +
∑
i≥1

(
2(2a+2 + 3)

2i

)
22iC(2a+2 + 3− i) mod 32.

Note that only the terms in the sum corresponding to i = 1, 2, 3 need to be considered

because any term corresponding to a higher i will vanish. Therefore, first consider the term

where i = 2. Note the following:

ν2(24C(2a+2 + 1)) = 4 + s2(2a+2 + 1)− ν2(2a+2 + 2) = 4 + 2− 1 = 5.

Thus, the term corresponding to i = 2 is congruent to 0 mod 32. Next consider when i = 3.

Then,

ν2(26C(2a+2)) = 6 + s2(2a+2)− ν2(2a+2 + 1) = 6 + 1 = 7.

Therefore, the term corresponding to i = 3 is also congruent to 0 mod 32, so only the first
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term of the sum does not vanish.

C(2a+3 + 7) ≡ C(2a+2 + 3) +
∑
i≥1

(
2(2a+2 + 3)

2i

)
22iC(2a+2 + 3− i)

≡ C(2a+2 + 3) + 4(2(2a+2 + 3)− 1)C(2a+2 + 2) mod 32.

Now consider C(2a+2 + 3) using recurrence 1.1:

C(2a+2 + 3) ≡ C(2a+1 + 1) +
∑
i≥1

(
2(2a+1 + 1)

2i

)
22iC(2a+1 + 1− i) mod 32.

Once again it is only necessary to consider the terms corresponding to i = 1, 2, 3. First

consider when i = 2 and notice:

ν2

((
2(2a+1 + 1)

4

)
24C(2a+1 − 1)

)
= ν2

(
4

3
(2a+1 + 1)(2(2a+1 + 1)− 1)(2(2a+1 + 1)− 2

)
(
2(2a+1 + 1)− 3)C(2a+1 − 1)

)
= ν2

(
4

3
(2a+1 + 1)(2a+2 + 1)(2a+2)(2a+2 − 1)C(2a+1 − 1)

)
= 2 + a+ 2 = 4 + a ≥ 5.

Therefore, this term vanishes. Now consider when i = 3 and note:

ν2(26C(2a+2 − 1)) = 6 + s2(2a+2 − 1)− ν2(2a+2) = 6 + a+ 2− a− 2 = 6.

Thus, only the first term of the sum is left:

C(2a+2 + 3) ≡ C(2a+1 + 1) + 2(2(2a+1 + 1)− 1)C(2a+1) mod 32.

By Lemma 1.10 and Lemma 1.11, C(2a+1) ≡ 6 mod 8 and C(2a+1 + 1) ≡ 6 mod 8 for a > 1.

Thus,

C(2a+2 + 3) ≡ 6 + 4(2a+1 + 1)(2(2a+1 + 1)− 1)6 ≡ 6 + 0 ≡ 6 mod 8.
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Now,

C(2a+3 + 7) ≡ 6 + 4(2(2a+2 + 3)− 1)C(2a+2 + 2) mod 8.

Since

ν2(C(2a+2 + 2)) = s2(2a+2 + 2) + ν2(2a+2 + 3) = 2,

it follows that C(2a+2 + 2) ≡ 0 mod 4 so C(2a+2 + 2) ≡ 0 mod 8 or 6 mod 8. Consider both

cases:

Let C(2a+2 + 2) ≡ 0 mod 8 then

C(2a+3 + 7) ≡ 6 + 4(2(2a+2 + 3)− 1)C(2a+2 + 2) ≡ 6 + 0 mod 8

which can not be congruent to 18 mod 32.

Then let C(2a+2 + 2) ≡ 6 mod 8 then

C(2a+3 + 7) ≡ 6 + 4(2(2a+2 + 3)− 1)C(2a+2 + 2) ≡ 6 + 6 ≡ 12 ≡ 4 mod 8.

which can not be congruent to 18 mod 32. Thus when a ≥ 2, C(2a+3 + 7) 6≡ 18 mod 32.

Thus a must be 1 in order for C(2a+3 + 7) ≡ 18 mod 32.

Now assume that if C(2b+a−1 + 2b−1 − 1) ≡ 18 mod 32 then a = 1. Now consider

C(2b+a + 2b − 1) using recurrence 1.1:

C(2b+a+2b−1) ≡ C(2b+a−1+2b−1−1)+
∑
i≥1

(
2b+a + 2b − 2

2i

)
22iC(2b+a−1+2b−1−1−i) mod 32.

Once again it is only necessary to consider the terms of the sum corresponding to i = 1, 2, 3.

First consider i = 1, then note:

ν2(22C(2b+a−1 + 2b−1−2)) = 2 + s2(2b+a−1 + 2b−1−2)− ν2(2b+a−1 + 2b−1−1) = 2 + b−1 = b.

By assumption, b > 3, so this term vanishes. Now consider when i = 2.

ν2(24C(2b+a−1+2b−1−3)) = 4+s2(2b+a−1+2b−1−3)−ν2(2b+a−1+2b−1−2) = 4+b−1−1 = b+2.
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Therefore, this term also vanishes. Finally consider when i = 3.

ν2(26C(2b+a−1 +2b−1−4)) = 2+s2(2b+a−1 +2b−1−4)−ν2(2b+a−1 +2b−1−3) = 6+b−2 = b+4.

Thus every term of the sum vanishes. Therefore,

C(2b+a + 2b − 1) ≡ C(2b+a−1 + 2b−1 − 1) ≡ 18 mod 32

which means a = 1. Therefore, if C(2b+a + 2b − 1) ≡ 18 mod 32 then a = 1 for b ≥ 3.

Theorem 5.4. The number of residues modulo 2α congruent to 2 mod 8 is given by the

formula

f(α) =

 max (0, α− 1) 0 ≤ α ≤ 2, α ≥ 6

α− 2 2 ≤ α ≤ 5.

Proof. Let f(b,m, α) be the number of residues modulo 2α that are congruent to b mod m.

It follows from Lemma 5.3 that

f(18, 32, α) = max(0, α− 4)

since for α < 5, there cannot be any residues congruent to 18 mod 25.

Rowland and Yassawi’s finite automaton for Catalan numbers mod 32 [2] shows that the

only n such that C(n) ≡ 2 mod 32 are:

• 2, when C(2) = 2 ≡ 2 mod 32 ≡ 2 mod 64, and

• 11, when C(11) = 58, 786 ≡ 34 mod 64.

Thus for 2 ≥ α ≥ 5, 2 is the only residue congruent to 2 mod 32. And for α ≥ 6, the only

such residues are caused by these two Catalan numbers, and we know they must be distinct,

since they have different values mod 64. Therefore,

f(2, 32, α) =


0 0 ≤ α ≤ 2

1 2 ≤ α ≤ 5

2 α ≥ 6.
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Adding these functions, we obtain

f(2, 16, α) =



0 0 ≤ α ≤ 1

1 2 ≤ α ≤ 3

α− 1 4 ≤ α ≤ 5

α− 2 α ≥ 6.

However, it follows from Proposition 1.12, and that C(n) ≡ 10 mod 16 only for n = 5,

that

f(α) =

 0 0 ≤ α ≤ 3

1 α ≥ 4
.

Adding these functions, we obtain

f(α) = f(2, 8, α) =

 max (0, α− 1) 0 ≤ α ≤ 2, α ≥ 6

α− 2 2 ≤ α ≤ 5

as desired.

6 0 mod 8

At this point, we revisit Conjecture 3.3:

Conjecture. Modulo 2α (for any α), all residues congruent to 0 mod 8 are present.

We seek to characterize the binary representations of n ∈ D(α− i) in terms of the residue

obtained when viewing C(n) mod 2α. For n ∈ D(α − 1), C(n) ≡ 2α−1 mod 2α so there is

nothing to characterize. We therefore begin with n ∈ D(α − 2), where either C(n) ≡ 2α−2

or C(n) ≡ 3 · 2α−2 mod 2α. We then use this characterization to prove some results about

D(α− 2).
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D(α− 2)

The elements of D(α− 2) are either congruent to 2α−2 or 3 · 2α−2 modulo 2α. They are able

to be characterized simply by the following conjecture:

Conjecture 6.1. Where n = 1χ11χ2 · · · 1χα−20χ′ (Theorem 4.6), n ∈ D(α − 2) satisfies

C(n) ≡ 2α−2 mod 2α if and only if
∑
δ(χk) is even, where

δ(x) =

 0 if x = 0

1 if x 6= 0

This characterization (and those that follow) are based purely on Mathematica obser-

vations. While these characterizations are not proven, they will help to generate useful

conjectures. For example, if n satisfies
∑
δ(χk) = 0 and χ′ = 1, then by the conjecture,

C(n) ≡ 2α−2 mod 2α. This χ representation corresponds to n = 2α − 3. So we have the

following proposition:

Proposition 6.2. For α ≥ 2, C(2α − 3) ≡ 2α−2 mod 2α.

If instead χ1 = 1,
∑

k≥2 δ(χk) = 0 and χ′ = 1, then C(n) ≡ 3 · 2α−2 mod 2α. This is

equivalent to the following:

Proposition 6.3. For α ≥ 2, C(3 · 2α − 3) ≡ 3 · 2α−2 mod 2α.

We will prove Proposition 6.2; the proof for 6.3 is similar.

Lemma 6.4. For i ≥ 3, 3 + s2(i) + s2(i+ 1) + ν2(i) ≤ 2i.

Proof. The worst case for s2(i) is when i = 2a − 1, for some a, in which case s2(i) = a =

log2(1 + i). The worst case for ν2(i) is when i = 2b, for some b, in which case ν2(i) = b =

log2(i). Therefore,

3 + s2(i) + s2(i+ 1) + ν2(i) ≤ 3 + log2(i) + log2(i+ 1) + log2(i+ 2).

Note that if i = 3, the inequality 3 + log2(i) + log2(i+ 1) + log2(i+ 2) ≤ 2i holds because 2i

grows faster than the left-hand side. This completes the proof.
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Lemma 6.5. For α ≥ 2, C(2α − 3) ≡ C(2α−1 − 2) mod 2α.

Proof. Consider C(2α − 3) mod 2α. Note, C(2α − 3) = C(2(2α−1 − 2) + 1). Then by using

recurrence 1.1:

C(2(2α−1 − 2) + 1) = C(2α−1 − 2) +
∑
i≥1

(
2(2α−1 − 2)

2i

)
22iC(2α−1 − 2− i) mod 2α.

Consider:

ν2(22iC(2α−1 − 2− i)) = 2i+ ν2(C(2α−1 − 2− i))

= 2i+ s2(2α−1 − 2− i) + ν2(2α−1 − 1− i).

Note that the terms where i > dα
2
e vanish because then 22i ≡ 0 mod 2. Since i ≤ dα

2
e, it

follows that:

1. ν2(2α−1 − 1− i) = ν2(1 + i)

2. s2(2α−1 − 2− i) = s2(2α−1 − 1− (1 + i)) = α− 1− s2(1 + i)

The first result is straightforward; the last equality is based on the observation that the

binary representation of 2α−1 − 1 consists of exactly α − 1 1’s, so that by subtracting a

number j (in this case j = 1 + i) in base 2 of smaller length, the result is achieved by

replacing every 1 that appears in j with a 0. For example,

111111111

− 10110

111101001

Observe that the effect this has on the digit sum is to just subtract the number of ones in j.

The second fact follows from this point.

This becomes

ν2

(
22iC(2α−1 − 2− i)

)
= 2i+ α− 1− s2(i+ 1)− ν2(i+ 1).
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By Lemma 6.4,

2i ≥ 3 + s2(i) + s2(i+ 1) + ν2(i+ 1)

≥ 3 + s2(i+ 1) + ν2(i+ 1)

≥ 1 + s2(i+ 1) + ν2(i+ 1).

Now, finally,

ν2

(
22iC(2α−1 − 2− i)

)
= 2i+ α− 1− s2(i+ 1)− ν2(i+ 1)

≤ α.

Since i ≥ 3, all but the first two terms of the summation vanish. Now examine the first two

terms separately.

The first term of the sum is 2(2α − 4)C(2α−1 − 2− 1). Note:

ν2(2(2α − 4)C(2α−1 − 2− 1)) = 1 + 2 + s2(2α−1 − 3) + ν2(2α−1 − 3) = 3 + α− 3 = α.

Thus the first term is congruent to 0 mod 2α.

The second term is: (
2(2α−1 − 2)

2

)
24C(2α−1 − 4).

It is sufficient to prove ν2

(
24C(2α−1 − 4)

)
≥ α.

ν2

(
24C(2α−1 − 4)

)
= 4 + s2(2α−1 − 4) + ν2(2α−1 − 3)

= 4 + α− 1− s2(3)

= 1 + α.

Thus all of the terms in the summation are congruent to 0 mod 2α and the following can be
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concluded:

C(2α − 3) ≡ C(2α−1 − 2) +
∑
i≥1

(
2α − 4

2i

)
22iC(2α−1 − 2− i) mod 2α ≡ C(2α−1 − 2) mod 2α.

Proof of Proposition 6.2. Clearly, C(14) ≡ 8 mod 32.

Assume that for all values k < α, C(2k−3) ≡ 2k−2 mod 2k. Now consider C(2α−3). Note

ν2(C(2α−3)) = s2(2α−3)−ν2(2α−2) = α−1−1 = α−2. Thus C(2α−3) ≡ b ·2α−2 mod 2α

where b is a constant and 2 - b.

Either b = 1 or 3 because if b = 5 then 5(2α−2) = 4(2α) + 2α = 2α mod 2α. Thus when

b = 5 it is the same as when b = 1. It can be similarly shown that any other higher powers

of b are congruent to either b = 1 or b = 3.

Now for the sake of contradiction assume b = 3 so C(2α − 3) ≡ 3(2α−2) mod 2α. Note

that C(2α − 3) ≡ C(2α−1 − 2) ≡ C(2(2α−2 − 1)). Then use recursion 1.2:

C(2(2α−2 − 1)) ≡
∑
i≥1

(
2(2α−2 − 1)− 1

2i− 1

)
22i−1C((2α−2 − 1)− i) mod 2α

≡
∑
i≥1

(
2α−1 − 3

2i− 1

)
22i−1C(2α−2 − 1− i).

Now note that ν2(22i−1C(2α−2 − 1 − i)) = 2i − 1 + s2(2α−2 − 1 − i) − ν2(2α−2 − i) =

2i− 1 + α− 2− s2(i)− ν2(i).

Then by Lemma 6.4 it follows that 2i ≥ 3 + s2(i) − ν2(i) for i ≥ 3 so 2i − 1 + α − 2 −

s2(i)− ν2(i) ≥ α for i ≥ 3. Thus all of the terms except the first two in the summation are

congruent to 0 mod 2α. Therefore,

C(2(2α−2 − 1)) ≡
∑
i≥1

(
2α−1 − 3

2i− 1

)
22i−1C(2α−2 − 1− i) mod 2α

≡ 2(2α−1 − 3)C(2α−2 − 2)

+
4

3
(2α−1 − 3)(2α−1 − 4)(2α−1 − 5)C(2α−2 − 3) mod 2α.
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Now note

ν2

(
4

3
(2α−1 − 3)(2α−1 − 4)(2α−1 − 5)C(2α−1 − 3)

)
= 2 + 2 + ν2(C(2α−1 − 3))

= 4 + s2(2α−2 − 3)− ν2(2α−1 − 3)

= 4 + α− 4

= α.

Thus the second term also is congruent to 0 mod 2α. Therefore, we have

C(2(2α−2 − 1)) ≡ 2(2α−1 − 3)C(2α−2 − 2).

Now by induction, C(2α−2 − 2) ≡ 2α−3 mod 2α−1 so C(2α−2 − 2) ≡ 2α−3 mod 2α or

C(2α−2 − 2) ≡ 5(2α−3) mod 2α. Thus let us consider both cases.

First consider the case where C(2α−2 − 2) ≡ 2α−3 mod 2α. Then since it is also assumed

above that C(2α − 3) ≡ 3(2α−2) mod 2α then

C(2(2α−2 − 1)) ≡ 2(2α−1 − 3)C(2α−2 − 2) mod 2α

3(2α−2) ≡ 2(2α−1 − 3)2α−3 mod 2α

≡ 2α−2(2α−1 − 3) mod 2α

≡ 2α−2(2α−1)− 3(2α−2) mod 2α

≡ −3(2α−2) mod 2α.

Since 3(2α−2) 6= −3(2α−2) mod 2α, this is a contradiction. Thus, C(2α−2−2) 6≡ 2α−3 mod 2α.
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Then let us consider the other case when C(2α−2 − 2) ≡ 5(2α−3) mod 2α. Then

C(2(2α−2 − 1)) ≡ 2(2α−1 − 3)C(2α−2 − 2) mod 2α

3(2α−2) ≡ 2(2α−1 − 3)5(2α−3) mod 2α

≡ 5(2α−2)(2α−1 − 3) mod 2α

≡ 5(2α−2)(2α−1)− 15(2α−2) mod 2α

≡ −15(2α−2) mod 2α

≡ 2α−2 mod 2α.

Since 3(2α−2) 6≡ 2α−2 mod 2α, this is a contradiction. Thus, C(2α−2 − 2) 6≡ 5(2α−3) mod 2α.

However, this means neither case is true which is a contradiction. Thus, C(2α − 3) 6≡

3(2α−2) mod 2α. Therefore, C(2α − 3) ≡ 2α−2 mod 2α.

The proof that 3 · 2α−2 mod 2α is present for every α is similar.

D(α− 3)

The characterization for D(α− 3) is more complicated, mainly because it is affected by the

position of the nonzero values among the χk. For example, if the nonzero values consist of

a 1 and a 2, which χk takes on each of these values affects the resulting residue, whereas

D(α− 2) it did not matter.

Let n ∈ D(α − 3). Arbitrary let χ′ = 0 so that n = 1χ11χ2 . . . 1χα−30. Consider the

values {χ1, χ2, . . . , χα−3}. We examine separately the cases
∑
χk = j.

First let j = 0. Then, each χk must be 0, and so n = 11 . . . 102, in which case C(n) ≡

2α−3 mod 2α.

Now suppose
∑
χn = 1. Then there is exactly one χi = 1. Now, if χ1 = 1 then

C(n) ≡ 7 · 2α−3 mod 2α. If χ1 = 0 and any other χi = 1 then C(n) ≡ 3 · 2α−3 mod 2α. This

can be represented by the following automaton.
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10

73

Note: in this automaton (and those that follow), the χ values are read from left to right.

Next, suppose
∑
χn = 2. This means that either there are distinct indices i, j with

χi = 1 and χj = 1, or there exists an i with χi = 2. If there is a χi = 1 and χj = 1, then

there are two options. If χ1 = 1 and any other χ2 = 1 then C(n) ≡ 2α−3 mod 2α. If χ1 = 0,

χ2 = 0, and any other χj = 1 then C(n) ≡ 5 · 2α−3 mod 2α. There are also other similar

conditions that can then be represented by the following automaton.

10

0 1

0

1

0 1

5 1

1 5

The structure of this same automaton seems to reappear, so let it be denoted as A2(1, 5)

where the 2 indicates there is one integer that appears twice in {χ1, χ2, . . . , χα−3}.

Now if
∑
χn = 2 and there exists a χi = 2, then the following automaton represents the

residues attained.
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10

37

Lastly, consider the case when
∑
χi = 3. Then, it is clear that there are the following

three possibilities:

1. there exist distinct i, j, k with χi, χj, χk = 1,

2. there exist distinct i, j with χi = 1 and χj = 2,

3. there exists i with χi = 3.

The first case is characterized by the following automaton, A3(7, 3).

10

0

1

A2H7,3L

A2H3,7L

Note that A2(7, 3) and A2(3, 7) have similar structure to A2(1, 5) described above.

The following automaton characterize case 2.
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210

0 10 2

0

1 2

0 2 0 1

1 51 5

5 1 5 1

This automaton will be notated as A1,1(5, 1) where the 1,1 indicates there are two distinct

integers appearing {χ1, χ2, . . . , χα−3} with each appearing only once.

Finally, consider the automaton for case 3.

10

37

This process can then be continued for higher and higher sums; however, a pattern begins

to appear. In order to state this pattern let Ax(a, b) refer to the following automaton where

x indicates that one distinct integer appears x times in {χ1, χ2, . . . , χα−3}.

AxHa,bL

AxH b,aL
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Then let Ax1,x2(a, b) refer to the following auotmaton where x1, x2 indicates there are two

distince integers in {χ1, χ2, . . . , χα−3} with one integer appearing x1 times and the other

appearing x2 times.

Ax1-1, x2
Ha,bLAx1, x2-1Ha,bL

Ax1-1, x2
H b,aL Ax1, x2-1H b,aL

Therefore, it can be concluded that Ax1,...,xn(a, b) can represent the general automaton in

D(α− 3):

Ax1-1, x2,... , xn Ha,bL Ax1, x2-1,... , xn Ha,bL Ax1, x2,... , xn-1Ha,bL

Ax1-1, x2,... , xn Hb,a L Ax1, x2-1,... , xn Hb,a L Ax1, x2,... , xn-1Hb,a L

By analyzing the above automata and using the δ function used to characterize D(α − 2),
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D(α− 3) can be characterized as follows:

D(α− 3) =

 2α−3, 5 · 2α−3
∑
δ(χk) even,

3 · 2α−3, 7 · 2α−3
∑
δ(χk) odd.

This means that each automaton that corresponds to an even
∑
δ(χk) produces the residues

2α−3, 5 · 2α−3. Similarly, each automaton that corresponds to an odd
∑
δ(χk) produces the

residues 3 · 2α−3, 7 · 2α−3.

It is then logical to generalize this characterization to D(α− i).

D(α− i) =

 (1 + 4j) · 2α−i
∑
δ(χk) even,

(3 + 4j) · 2α−i
∑
δ(χk) odd

which leads to the following conjecture:

Conjecture 6.6. For D(α − i) and n = 1χ11 . . . 1χα−30, if
∑
δ(χk) is even then there

exists a C(n) ≡ (1 + 4j)2α−i mod 2α for j = 0, 1, . . . , i − 2. If
∑
δ(χk) is odd then C(n) ≡

(3 + 4j)2α−i mod 2α for j = 0, 1, . . . , i− 2.

This conjecture has been tested for α = 11, 12, 13 using n = 1, 2, . . . , 500, 000. Conjecture

3.3 would follow from this result.

7 Summary

In this paper, we provide some insight into the nature of even residues of Catalan numbers

mod 2α. In particular, we first prove initial results that explicitly characterize some of the

absent or eventually absent residues. Together, each of these results regarding the eventually

absent residues demonstrates that the number of present residues is bounded above by 35
128

.

We then took a different approach to this problem and were able to characterize the Catalan

numbers based on their 2-adic valuations. We were able to completely characterize present

residues of the form 2 + 8j. In addition, these characterizations based on 2-adic valuations

provided some insight for a possible approach that describes present residues of the form

8j. This led to a conjecture that has not yet been proven, but it does indicate the number
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of present residues is bounded below by 1
8
. Therefore, it seems the proportion of present

residues falls between .125 and .27.

8 Future work

Conjecture 3.3, which would produce a lower bound of 1
8
, remains to be proven. The most

promising path to attempt this proof may be to continue the work in Section 6. This would

consist of characterizing the binary representations of elements of D(α− i) and proving that

at least one n such that C(n) .

Additionally, the 4 mod 8 and 6 mod 8 nodes have yet to be characterized. This can

likely be done by using the same methods we have shown; that is, extending the tree until

we can classify each leaf as either constant (in the case of an eventually absent residue),

linear (e.g. 18 mod 32), or exponential (e.g. 0 mod 8).
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Abstract

The work discussed here develops methods to evaluate certain infinite products in

closed-form. These are finite products of values of the gamma function. Presented here

are infinite products of rational functions R(n) raised to the power of some sequence

Mn. The sequences satisfy certain regularity conditions as either a `-periodic or k-

automatic. Of particular interest is the regular paperfolding sequence considered by J.

P. Allouche. Also included are some results on the p-adic valuation of partial products

of these types, which also contain some patterns of interest.

1 Introduction

The evaluation of infinite sums and products is a topic of great interest in mathematics.

Mathematical constants arising in these evaluations are sometimes unexpected and interest-

ing. For example, the earliest evaluation of an infinite product was produced by J. Wallis in

1655

∞∏
n=1

(2n)(2n)

(2n− 1)(2n+ 1)
=
π

2
. (1.1)
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The history of this discovery appears in [9]. A variety of infinite product evaluations

including
∞∏
n=1

(
1 +

1

F2n+1

)
=

3

ϕ
and

∞∏
n=0

(
1 +

1

L2n+1

)
= 3− ϕ (1.2)

were given by J. Sondow [10]. Here, Fn and Ln are the Fibonacci and Lucas numbers,

respectively, defined by the recurrence xn+1 = xn + xn−1 with the initial conditions x0 =

1, x1 = 1 and x0 = 2, x1 = 1, respectively. The golden ratio ϕ = 1
2
(
√

5 + 1) is the limit of

Fn+1/Fn as n→∞.

The value of infinite products usually involves classical concepts of analysis. For instance

P. Borwein [3] evaluates the function

D(x) = lim
n→∞

2n+1∏
k=1

(
1 +

x

k

)(−1)k+1k

(1.3)

as a generalization of the values

∞∏
n=1

(
1 +

2

n

)(−1)n+1n

=
π

2e
, and

∞∏
n=1

(
1 +

2

n

)(−1)nn

=
6

πe
(1.4)

established by Z.A. Melzak [6]. Some exact evaluations are given in terms of the constant

A1 = exp

{
1

4
−
∫ ∞
0

e−s

s3

[
1− s

2
+
s2

12
− s

es − 1

]
ds

}
(1.5)

and

G =
∞∑
n=0

(−1)n

(2n+ 1)2
. (1.6)

For instance

D(1) =
A6

1

21/6
√
π

and D

(
1

4

)
=

21/6
√
πA3

1

Γ(1
4
)

eG/π. (1.7)

The question considered here deals with the evaluation of products of the form

∞∏
n=0

R(n)s(n). (1.8)

Here R is a rational function and s is a sequence with regularity properties (as stated by

J.P. Allouche in [1]). Examples of such sequences include periodic and automatic sequences

taking values in the alphabet {+1,−1}: a sequence {sn : n ≥ 0} is k-automatic if the set of

subsequences {skjn+l : n ≥ 0} with j ≥ 0, l ∈ [0, kj − 1] is finite. More information about

automatic sequences appears in [2].

61



The arithmetic properties of these products are analyzed in their p-adic valuations. The

p-adic number field has been leveraged heavily to further our understanding of the rational

numbers. The p-adic valuation of a number is denoted by νp(n) for a fixed prime p and is

equal to the exponent of the highest power of p that divides n.

2 Convergence criterion for infinite products

An infinite sum is said to be convergent if the limit of its partial sums exists and is finite; it is

said to be divergent if its partial sums are unbounded. In the case of infinite products there

are two different types of divergence. If the limit of the partial products exists and is finite,

the product is said to converge; if it grows unbounded, the product is said to be divergent;

also, if the product is identically zero it is said to diverge to zero rather that converge to

zero. This reasoning become clear in lemma 2.1. A strong result about the convergence (or

divergence) of infinite products of rational functions is provided in this section. This result

implies that if an infinite product converges then it can be evaluated in terms of the gamma

function.

First, a well known result, that provides a criterion for divergence of infinite products, is

introduced:

Lemma 2.1. Let u : R −→ R. If
∞∏
n=1

u(n) converges then lim
n−→∞

u(n) = 1.

Proof. Assume that the product
∞∏
n=1

u(n) converges to some real number L, then the quan-

tity logL = log
∞∏
n=1

u(n) =
∞∑
n=1

log u(n) is finite and well defined; that is to say, the sum

∞∑
n=1

log u(n) converges. Since
∞∑
n=1

log u(n) converges we know that limn→∞ log u(n) = 0 but

since log is an injective function we conclude that lim
n→∞

u(n) = 1.

If an infinite product goes to zero, taking its logarithm makes it a divergent infinite sum

and thus the terminology “diverging to zero”.

Next, the proof of a classical result due to Weierstrass is provided. This result will be

constantly used to evaluate infinite products, for the classical formulation refer to [11]:
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Lemma 2.2. Let u : R −→ R be a rational function. If

u(n) =
(n+ a1)(n+ a2) · · · (n+ ad)

(n+ b1)(n+ b2) . . . (n+ bd)
where aj, bi /∈ {0,−1,−2,−3 . . .}

and
d∑
j=1

aj =
d∑
j=1

bj

then
∞∏
n=0

u(n) =
d∏
j=1

Γ(bj)

Γ(aj)
.

Proof. To prove this equality first recall Euler’s definition of the gamma function

Γ(z) = lim
k→∞

(k + 1)zk!

z(z + 1) · · · (z + k)
(2.1)

then we have

Γ(b1) · · ·Γ(bd)

Γ(a1) · · ·Γ(ad)
= lim

k→∞

d∏
j=1

kbj−aj
k∏

n=0

n+ aj
n+ bj

= lim
r→∞

r∏
n=0

(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ bd)
(2.2)

where the last equality comes from the fact that since a1 + · · ·+ ad− b1− · · · − bd = 0, then

the products of kbj−aj for 1 ≤ j ≤ d equals k0 = 1.

This condition on the sum of the roots and poles seems very restrictive, however if an

infinite product of rational functions cannot be evaluated in this way then it diverges:

Theorem 2.1. Let u : R −→ R be a rational function with no roots or poles in the nonneg-

ative integers and such that limn→∞ u(n) = 1. Then
∞∏
n=1

u(n) converges if, and only if,

u(n) =
(n+ a1)(n+ a2) · · · (n+ ad)

(n+ b1)(n+ b2) · · · (n+ bd)
where

d∑
j=1

aj =
d∑
j=1

bj. (2.3)

Proof. First note that if u(n) =
(n+ a1)(n+ a2) · · · (n+ ad)

(n+ b1)(n+ b2) · · · (n+ bd)
, where

d∑
j=1

aj =
d∑
j=1

bj, lemma

2.2 not only asserts that
∞∏
n=1

u(n) converges, but it also provides a method of evaluating it

in terms of the gamma function.

Hence, the converse (convergence of
∞∏
n=1

u(n) implies (2.3)) is proven as follows:

Assume that the product does not diverge. If this product converges to some finite value,
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then by lemma 2.1, u(n) → 1 as n → ∞. Hence, if u(n) is some rational function, it is

necessarily of the form u(n) =
P (n)

Q(n)
where deg(P ) = deg(Q), and the leading coefficients of

P and Q are equal. As these polynomials have finite degree, they may be written as products

of linear factors over C, i.e.

u(n) =
P (n)

Q(n)
=

(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ bd)

for some a1, · · · , ad, b1, · · · , bd ∈ C. This yields

u(n) =
(

1 +
a1
n

)
· · ·
(

1 +
ad
n

)(
1 +

b1
n

)−1
· · ·
(

1 +
bd
n

)−1

= 1 +
a1 + · · ·+ ad − b1 − · · · − bd

n
+O

(
1

n2

)
=⇒

∞∏
n=1

u(n) =
∞∏
n=1

(
1 +

a1 + · · ·+ ad − b1 − · · · − bd
n

+O

(
1

n2

))

and since the harmonic series
∞∑
n=1

1

n
, appearing when the product is expanded diverges, the

linear term must equal zero for the product to converge, hence a1 + · · ·+ ad− b1− · · ·− bd =

0.

With this criterion one can evaluate infinite products of rational functions. Moreover,

given a periodic sequence Mn with elements in {1,−1}, one can characterize rational func-

tions R(n) for which
∞∏
n=1

R(n)Mn converges. Note that for a sequence Mn ∈ {+1, −1} and

any constant c 6= 1, lim
n→∞

cMn 6= 1. Therefore
∞∏
n

cMn is not defined. Hence throughout this

paper it is assumed, unless otherwise indicated, that every rational function has leading

coefficient 1; that is, R(n) =
(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)
.

3 Sequences of period 2

To motivate the general results, begin by letting R be a rational function, Mn = (−1)n

and considering
∞∏
n=1

R(n)Mn . What conditions on R are sufficient and necessary for the

convergence of this product? The characterization of all such functions is given in the

following
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Theorem 3.1. Let R be a rational function with no roots or poles on the positive integers,

then
∞∏
n=0

R(n)(−1)
n

converges if, and only if lim
n→∞

R(n) = 1.

Proof. First note the restriction that none of the roots and poles of R are positive integers

integers rules out the possibility of products being identically zero or blowing up for some

finite index. As for the claim, this can be proven by considering the partial products of

R(n)Mn :

N∏
n=0

R(n)(−1)
n

=

bN
2
c∏

n=0

R(2n)

bN
2
c∏

n=0

1

R(2n+ 1)
=

bN
2
c∏

n=0

R(2n)

R(2n+ 1)
.

Taking limits of both sides as N → ∞ gives us equality of the products
∞∏
n=0

R(n)(−1)
n

and
∏∞

n=0
R(2n)
R(2n+1)

. By theorem 2.1, the infinite product on the right-hand side converges if,

and only if,

R(2n)

R(2n+ 1)
=

(n+ α1)(n+ α2) · · · (n+ αm)

(n+ β1)(n+ β2) · · · (n+ βm)
satisfies

m∑
j=1

αj =
m∑
j=1

βj.

Now R has the form R(n) =
(n+ a1)(n+ a2) · · · (n+ ad)

(n+ b1)(n+ b2) · · · (n+ br)
, so that

R(2n)

R(2n+ 1)
=

(2n+ a1)(2n+ a2) · · · (2n+ ad)

(2n+ b1)(2n+ b2) · · · (2n+ br)

(2n+ 1 + b1)(2n+ 1 + b2) · · · (2n+ 1 + br)

(2n+ 1 + a1)(2n+ 1 + a2) · · · (2n+ 1 + ad)
.

So,
∞∏
n=0

R(2n)
R(2n+1)

converges if, and only if,

1

2

d∑
i=1

ai +
1

2

r∑
j=1

(1 + bj) =
1

2

r∑
j=1

bj +
1

2

d∑
i=1

(1 + ai) ⇐⇒
r∑
j=1

1 =
d∑
i=1

1.

This is true if, and only if, d = r, but since

R(n) =
(n+ a1)(n+ a2) · · · (n+ ad)

(n+ b1)(n+ b2) · · · (n+ br)

it can be concluded that d = r if, and only if, R(n)→ 1 as n→∞.

In what follows, a closed-form formula for the evaluation of these products, is derived.

First recall that
∞∏
n=0

R(n)(−1)
n

=
∞∏
n=0

R(2n)

R(2n+ 1)
.
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Therefore the evaluation of this product is given by

∞∏
n=0

R(n)(−1)n =
d∏
i=1

Γ
(
bi
2

)
Γ
(

1+ai
2

)
Γ
(

1+bi
2

)
Γ
(
ai
2

) , (3.1)

where d is the degree of both the numerator and denominator of R. To simplify this expres-

sion, use the duplication formula for the gamma function to obtain

Γ

(
ai + 1

2

)
=

√
πΓ(ai)

2ai−1Γ
(
ai
2

) (3.2)

that yields

Γ
(
ai
2

)
Γ
(
ai+1

2

) =
2ai−1Γ2

(ai
2

)
√
πΓ(ai)

. (3.3)

Hence,

Γ
(
bi
2

)
Γ
(

1+ai
2

)
Γ
(

1+bi
2

)
Γ
(
ai
2

) = 2(bi−ai) Γ
2
(
bi
2

)
Γ(ai)

Γ2
(
ai
2

)
Γ(bi)

. (3.4)

Therefore,
d∏
i=1

Γ
(
bi
2

)
Γ
(

1+ai
2

)
Γ
(

1+bi
2

)
Γ
(
ai
2

) = 2S(a,b)
d∏
i=1

Γ2(bi/2)Γ(ai)

Γ2(ai/2)Γ(bi)
, (3.5)

where S(a, b) =
d∑
i=1

(bi − ai).

Note that there is a total of 22 = 4 different 2-periodic sequences in the symbols −1 and

1. Two of them are trivial, one was discussed above, and the last one is −(−1)n = (−1)n+1.

Hence the previous results generalizes to this sequence by just considering reciprocals.

Example 3.1. The product
∞∏
n=1

(
n

n+ 1

)(−1)n

can be evaluated noting that R(n) =
n

n+ 1
→

1 as n→∞.

Apply the result to get

∞∏
n=1

(
n

n+ 1

)(−1)n

=
∞∏
n=0

(
n+ 1

n+ 2

)(−1)n+1

=

[
∞∏
n=0

(
n+ 1

n+ 2

)(−1)n
]−1

=

[
2

Γ2(1)Γ(1)

Γ2(1/2)Γ(2)

](−1)
=
π

2

where the second to last equality follows from lemma 2.2, and the last one follows from

properties of the gamma function.
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4 Sequences of period 3

Attention is now turned to a sequence of period 3. Define the sequence ln as

ln =

1 if n ≡ 0 mod 3;

−1 otherwise.

Next consider products of the form
∞∏
n=1

R(n)ln .

Theorem 4.1. Let ln denote the above described sequence, and

R(n) =
(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)

be a rational function with no roots or poles in the positive integers. Then
∞∏
n=1

R(n)ln con-

verges if, and only if,

(i) limn→∞R(n) = 1

(ii)
∑d

i=1 ai =
∑r

j=1 bj.

Note that condition (i) implies that r = d. These conditions combined imply that no

quotient of monomials (excluding trivial case p(n)/p(n)) yields convergence of the product

in question.

Proof. Taking the same approach as before:

N∏
n=1

R(n)ln =

bN
3
c∏

n=1

R(3n)

bN
3
c∏

n=0

1

R(3n+ 1)

bN
3
c∏

n=0

1

R(3n+ 2)
=

1

R(1)R(2)

bN
3
c∏

n=1

R(3n)

R(3n+ 1)R(3n+ 2)
.

By taking limit of both sides as N → ∞ we get the equality of the products
∞∏
n=1

R(n)ln

and
1

R(1)R(2)

∞∏
n=1

R(2n)

R(3n+ 1)R(3n+ 2)
, so that the convergence of one is equivalent to the

convergence of the other.
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Once again, since R is a rational function with leading coefficient 1, one can factor both

the numerator and denominator to write it in the form

R(n) =
(n+ a1)(n+ a2) · · · (n+ ad)

(n+ b1)(n+ b2) · · · (n+ br)
,

so that
R(3n)

R(3n+ 1)R(3n+ 2)

=
(3n+ a1) · · · (3n+ ad)

(3n+ b1) · · · (3n+ br)

(3n+ 1 + b1) · · · (3n+ 1 + br)

(3n+ 1 + a1) · · · (3n+ 1 + ad)

(3n+ 2 + b1) · · · (3n+ 2 + br)

(3n+ 2 + a1) · · · (3n+ 2 + ad)
.

By lemma 2.1 it is needed lim
n→∞

R(3n)

R(3n+ 1)R(3n+ 2)
= 1, therefore it must be that 2d+ r =

2r + d ⇐⇒ d = r; this gives us condition (i). Now, by theorem 2.1 it is also needed that

1

3

d∑
i=1

ai +
1

3

r∑
j=1

(1 + bj) +
1

3

r∑
j=1

(2 + bj) =
1

3

d∑
i=1

(1 + ai) +
1

3

d∑
i=1

(2 + ai) +
1

3

r∑
j=1

bj

⇐⇒
r∑
j=1

bj + 3r =
d∑
i=1

ai + 3d,

but since d = r this equality holds if, and only if,
r∑
j=1

bj =
d∑
i=1

ai which explicitly gives us

condition (ii). It is clear from this argument that if conditions (i) and (ii) are satisfied then
∞∏
n=1

R(n)ln converges. This completes the proof.

The product
∞∏
n=0

R(n)ln reduces to evaluating

∞∏
n=0

R(3n)

R(3n+ 1)R(3n+ 2)
=
∞∏
n=0

d∏
i=0

(
n+ ai

3

) (
n+ bi+1

3

) (
n+ bi+2

3

)(
n+ bi

3

) (
n+ bi+1

3

) (
n+ bi+2

3

) .
The value of this product is given in terms of the gamma function as

d∏
i=1

Γ
(
bi
3

)
Γ
(
ai+1

3

)
Γ
(
ai+2

3

)
Γ
(
ai
3

)
Γ
(
bi+1

3

)
Γ
(
bi+2

3

) (4.1)

where d is the degree of the numerator (and denominator) of R. This expression can be

simplified using the triplication formula for the gamma function to obtain:

Γ

(
ai + 1

3

)
Γ

(
ai + 2

3

)
=

2πΓ(ai)

3ai−
1
2Γ
(
ai
3

) , (4.2)
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which yields

Γ
(
ai+1

3

)
Γ
(
ai+2

3

)
Γ
(
ai
3

) =
2πΓ(ai)

3ai−
1
2Γ2
(
ai
3

) . (4.3)

Therefore
Γ
(
bi
3

)
Γ
(
ai+1

3

)
Γ
(
ai+2

3

)
Γ
(
ai
3

)
Γ
(
bi+1

3

)
Γ
(
bi+2

3

) = 3bi−ai
Γ2
(
bi
3

)
Γ(ai)

Γ2
(
ai
3

)
Γ(bi)

, (4.4)

so that
d∏
i=1

Γ
(
bi
3

)
Γ
(
ai+1

3

)
Γ
(
ai+2

3

)
Γ
(
ai
3

)
Γ
(
bi+1

3

)
Γ
(
bi+2

3

) = 3S(a,b)
d∏
i=1

Γ2
(
bi
3

)
Γ(ai)

Γ2
(
ai
3

)
Γ(bi)

. (4.5)

Here S(a, b) =
d∑
i=1

(bi − ai) but condition (ii) on theorem 4.1 forces S(a, b) = 0. Hence

the closed-form formula
∞∏
n=0

R(n)ln =

d∏
i=1

Γ2
(
bi
3

)
Γ(ai)

Γ2
(
ai
3

)
Γ(bi)

(4.6)

is obtained. Once again, note that there are 23 = 8 distinct periodic sequences of period

3 in the symbols −1 and 1, however 2 of them are trivial and of the remaining six, three

are the negatives of the other three; for example {−1, 1, 1} = −ln. Thus, in other to make

a general statement on 3-periodic sequences it is only necessary to consider the sequences

ln, sn = {−1, 1,−1}, tn = {−1,−1, 1}. The problem of characterizing rational functions R

for which
∞∏
n=0

R(n)ln was completely solved, so attention is turned to the same question for

the sequences sn and tn. Characterization of rational functions yielding converging infinite

products when raised to these sequences is the same as the characterization of rational

functions for the sequence ln. This can be seen using the same argument as before, after

noting that
∞∏
n=0

R(n)sn =
∞∏
n=0

R(3n+ 1)

R(3n)R(3n+ 2)

and
∞∏
n=0

R(n)tn =
∞∏
n=0

R(3n+ 2)

R(3n)R(3n+ 1)
.

Applying the same method yields the respective closed-form formulas

∞∏
n=0

R(n)sn =
d∏
t=1

Γ(at)Γ
2(1+bt

3 )

Γ(bt)Γ2(1+at
3 )

(4.7)
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and
∞∏
n=0

R(n)tn =
d∏
t=1

Γ(at)Γ
2(2+bt

3 )

Γ(bt)Γ2(2+at
3 )

. (4.8)

Thus, theorem 4.1 actually gives a characterization of all rational functions for which
∞∏
n=0

R(n)Mn converges, where Mn is any 3-periodic sequence in {1,−1}.

Example 4.1. Let ln be as above and put R(n) =
3 + 4n+ n2

4 + 4n+ n2
=

(n+ 1)(n+ 3)

(n+ 2)2
. None of

the roots or poles of R are positive integers, and the conditions of theorem 4.1 are satisfied,

hence:
∞∏
n=0

(
(n+ 1)(n+ 3)

(n+ 2)2

)ln
=

Γ4(2/3)Γ(3)Γ(1)

Γ2(1/3)Γ2(1)Γ2(2)
=

32π4

9Γ6(1/3)
.

This section closes with the following remark. Note that in the proofs of theorems 3.1

and 4.1, issues of convergence were addressed by considering partial products and then

taking limits. In general, this argument applies to all proofs of this type. Therefore, in

the rest of this paper, the splitting of infinite products is done without addressing issues of

convergence; however, the reader should keep in mind the argument on the partial products

used previously.

5 Sequences of period 4, a hint to the general case

Sufficient and necessary conditions for convergence of infinite products have been established

for sequences of period 2 and 3. These conditions seem to impose some restriction on the

rational functions for which the infinite product can be evaluated. However, this pattern

does not entirely persist.

Consider the 4-periodic sequence {1,−1,−1, 1} given by

Mn =

1 if n ≡ 0 or 3 mod 4;

−1 if n ≡ 1 or 2 mod 4.
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Once again, let R(n) =
(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)
with ai, bj /∈ −N and consider the product∏∞

n=0R(n)Mn .
∞∏
n=0

R(n)Mn =
∞∏
n=0

R(4n)R(4n+ 3)

R(4n+ 2)R(4n+ 3)

=
∞∏
n=0

∏
1≤i≤d
1≤j≤r

(4n+ ai)(4n+ 3 + ai)(4n+ 1 + bj)(4n+ 2 + bj)

(4n+ bj)(4n+ 3 + bj)(4n+ 1 + ai)(4n+ 2 + ai)
.

Hence it is known that
∞∏
n=0

R(n)Mn converges if, and only if lim
n→∞

R(4n)R(4n+ 3)

R(4n+ 1)R(4n+ 2)
= 1

and

d∑
i=1

ai+
d∑
i=1

(ai+3)+
r∑
j=1

(bj +1)+
r∑
j=1

(bj +2) =
r∑
j=1

bj +
r∑
j=1

(bj +3)+
d∑
i=1

(ai+1)+
d∑
i=1

(ai+2).

The first condition is clearly satisfied and the second condition simplifies yielding

2
d∑
i=1

ai + 2
r∑
j=1

bj + 3d+ 3r = 2
r∑
j=1

bj + 2
d∑
i=1

ai + 3r + 3d.

The latter is always true; that is to say
∞∏
n=0

R(n)Mn converges for every such rational function.

However, considering the sequence

Mn =

1 if n ≡ 0 or 1 mod 4;

−1 if n ≡ 2 or 3 mod 4,

it is obtained that

∞∏
n=0

R(n)Mn =
∞∏
n=0

R(4n)R(4n+ 1)

R(4n+ 2)R(4n+ 3)

=
∞∏
n=0

∏
1≤i≤d
1≤j≤r

(4n+ ai)(4n+ 1 + ai)(4n+ 2 + bj)(4n+ 3 + bj)

(4n+ bj)(4n+ 1 + bj)(4n+ 2 + ai)(4n+ 3 + ai)
.

This converges if, and only if lim
n→∞

R(4n)R(4n+ 1)

R(4n+ 2)R(4n+ 3)
= 1 and

d∑
i=1

ai+
d∑
i=1

(ai+1)+
r∑
j=1

(bj +2)+
r∑
j=1

(bj +3) =
r∑
j=1

bj +
r∑
j=1

(bj +1)+
d∑
i=1

(ai+2)+
d∑
i=1

(ai+3).
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Once again the first condition is clearly satisfied and the second one simplifies:

2
d∑
i=1

ai + 2
r∑
j=1

bj + d+ 5r = 2
r∑
j=1

bj + 2
d∑
i=1

ai + r + 5d ⇐⇒ r = d.

So that
∞∏
n=0

R(n)Mn converges if, and only if lim
n→∞

R(n) = 1.

In the following section these results are generalized and proven for any periodic sequence.

6 Periodic sequences, the general case

In this section, a characterization of rational functions R for which
∞∏
n=0

R(n)Mn converges,

where Mn is a periodic sequence of period ` for some ` ∈ N, is established.

Theorem 6.1. Let R(n) =
(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)
be a rational function with as, bt /∈ −N for

1 ≤ s ≤ d, 1 ≤ t ≤ r, and let Mn be a periodic sequence of period ` in {1,−1}. Define

M+ = { i : Mi = 1 and 0 ≤ i ≤ `− 1} and M− = { j : Mj = −1 and 0 ≤ j ≤ `− 1}.

Case 1: If |M+| 6= |M−|, then
∞∏
n=0

R(n)Mn converges if, and only if

(i) lim
n→∞

R(n) = 1

(ii)
d∑

m=1

am =
r∑

m=1

bm.

Case 2: If |M+| = |M−| but
∑
i∈M+

i 6=
∑
j∈M−

j, then
∞∏
n=0

R(n)Mn converges if, and only if

lim
n→∞

R(n) = 1.

Case 3: |M+| = |M−|, and
∑
i∈M+

i =
∑
j∈M−

j, then
∞∏
n=0

R(n)Mn converges for every such ra-

tional function R.

Note that if ` is odd then Case 1 always applies and Case 3 is only attainable when ` = 4r

for some r ∈ N.
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Proof.

Assume |M+| 6= |M−|, and let R1(n) =
R(`n+ j1) · · ·R(`n+ j|M+|)

R(`n+ i1) · · ·R(`n+ i|M−|)
such that

∞∏
n=0

R(n)Mn =
∞∏
n=0

R1(n),

where js, it ∈ {0, 1, · · · `− 1}. Without lost of generality assume |M−| < |M+|, then

R1(n) =
R(`n+ j1) · · ·R(`n+ j|M−|) · · ·R(`n+ jM+)

R(`n+ i1) · · ·R(`n+ i|M−|)
.

By Lemma 2.1, it is necessary to have lim
n→∞

R1(n) = 1 but since

lim
n→∞

R(`n+ j1) · · ·R(`n+ j|M−|)

R(`n+ i1) · · ·R(`n+ i|M−|)
= 1 for any rational function R,

it is needed that

lim
n→∞

R(`n+ j|M−|+1) · · ·R(`n+ j|M+|) = 1,

but this true if, and only if, lim
n→∞

R(n) = 1 which gives condition (i) on Case 1. Note that

this also implies that d = r. Now, the evaluation of this product reduces to

∞∏
n=0

R(n)Mn =
∞∏
n=0

d∏
t=1

(`n+ j1 + at) · · · (`n+ j|M+| + at)(`n+ i1 + bt) · · · (`n+ i|M−| + bt)

(`n+ j1 + bt) · · · (`n+ j|M+| + bt)(`n+ i1 + at) · · · (`n+ i|M−| + at)
,

which, by Theorem 2.1, we know converges if, and only if

l∑
s=1

d∑
t=1

(at + js) +
m∑
s=1

d∑
t=1

(bt + is) =
l∑

s=1

d∑
t=1

(bt + js) +
m∑
s=1

d∑
t=1

(at + is)

which simplifies to

|M+|
d∑
t=1

at+ |M−|
d∑
t=1

bt+d

|M+|∑
s=1

js+d

|M−|∑
s=1

is = |M+|
d∑
t=1

bt+ |M−|
d∑
t=1

at+d

|M−|∑
s=1

is+d

|M+|∑
s=1

js

⇐⇒ (|M+| − |M−|)
d∑
t=1

at = (|M+| − |M−|)
d∑
t=1

bt ⇐⇒
d∑
t=1

at =
d∑
t=1

bt,

which is precisely condition (ii) on Case 1. This completes the proof of the first case.

Next, if it is assumed that |M+| = |M−| = m, then R1(n) =
R(`n+ j1) · · ·R(`n+ jm)

R(`n+ i1) · · ·R(`n+ im)
so that limn→∞R1(n) = 1 for any rational function R.

Now, the evaluation of this product also reduces to
∞∏
n=0

R(n)Mn =
∞∏
n=0

∏
1≤t≤d
1≤s≤r

(`n+ j1 + at) · · · (`n+ jm + at)(`n+ i1 + bs) · · · (`n+ im + bs)

(`n+ j1 + bs) · · · (`n+ jm + bs)(kn+ i1 + at) · · · (kn+ im + at)
,
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which converges if, and only if

m∑
k=1

d∑
t=1

(at + jk) +
m∑
k=1

r∑
s=1

(bs + ik) =
m∑
k=1

r∑
s=1

(bs + jk) +
m∑
k=1

d∑
t=1

(at + ik),

which simplifies to

m

d∑
t=1

at +m

r∑
s=1

bs + d

m∑
k=1

jk + r

m∑
k=1

ik = m

r∑
s=1

bs +m

d∑
t=1

at + r

m∑
k=1

jk + d

m∑
k=1

ik

⇐⇒ (d− r)
l∑

k=1

jk = (d− r)
l∑

k=1

ik. (6.1)

Note that
l∑

k=1

jk =
∑
j∈M+

j and
l∑

k=1

ik =
∑
i∈M−

i, so that if
∑
j∈M+

j 6=
∑
i∈M−

i then (6.1) is true if,

and only if d = r which is true if, and only if, lim
n→∞

R(n) = 1. This proves case 2.

On the other hand, if
∑
j∈M+

j =
∑
i∈M−

i, then (6.1) is always true. This proves case 3 and

completes the proof.

In the interest of completeness, a closed-form evaluation for these products is provided

in the following

Theorem 6.2. Let R(n) =
(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)
be such that as, bt /∈ −N, Mn a `-periodic

sequence, M+ = {j|Mj = 1, 0 ≤ j ≤ `−1}, S(a, b) =
l∑

t=1

bt−
d∑
s=1

as, and assume
∞∏
n=0

R(n)Mn

converges; then

∞∏
n=0

R(n)Mn = `S(a,b)(2π)(d−r2 )(`−1)
∏

1≤s≤d
1≤t≤r

Γ(as)

Γ(bt)

∏
j∈M+

Γ2
(
bt+j
`

)
Γ2
(
as+j
`

) . (6.2)

Proof. Splitting the product by its residues modulo k we can rewrite the product first as

∞∏
n=0

R(n)Mn =
∞∏
n=0

∏
i∈M+

j∈M−

R(`n+ j)

R(`n+ l)

by noting that the terms with residues in M− are being raised to the power of negative one,

and become inverted. Using lemma 2.2, we can re-express this infinite product as a product
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of values of the gamma function.

∞∏
n=0

∏
i∈M+

j∈M−

R(`n+ i)

R(`n+ j)

=
∞∏
n=0

∏
i∈M+

j∈M−

(
n+ a1+i

`

)
· · ·
(
n+ ad+i

`

) (
n+ b1+j

`

)
· · ·
(
n+ bl+j

`

)
(
n+ b1+i

`

)
· · ·
(
n+ bl+i

`

) (
n+ a1+j

`

)
· · ·
(
n+ ad+j

`

) (6.3)

=
∏
i∈M+

j∈M−

Γ
(
b1+i
`

)
· · ·Γ

(
bl+i
`

)
Γ
(
a1+j
`

)
· · ·Γ

(
ad+j
`

)
Γ
(
a1+i
`

)
· · ·Γ

(
ad+i
`

)
Γ
(
b1+j
`

)
· · ·Γ

(
bl+j
`

) . (6.4)

Now, using the Gauss Multiplication formula

(2π)
`−1
2 `(1/2−`z)Γ(`z) = Γ(z)Γ

(
z +

1

`

)
Γ

(
z +

2

`

)
· · ·Γ

(
z +

`− 1

`

)
(6.5)

with z =
as
k

or z =
bt
k

the above simplifies to

(2π)
`−1
2 `(1/2−`as)Γ(as) = Γ

(as
`

)
Γ

(
as + 1

`

)
Γ

(
as + 2

`

)
· · ·Γ

(
as + (`− 1)

`

)
= Γ

(
as + i1
`

)
Γ

(
as + i2
`

)
· · ·Γ

(
as + i|M+|

`

)
Γ

(
as + j1
`

)
· · ·Γ

(
as + j|M−|

`

)
where the last equality follows because |M+| + |M−| = `, and every residue mod ` appears

on the right hand side exactly once. Dividing both sides by the terms containing i ∈ M+

yields ∏
j∈M−

Γ

(
as + j

`

)
=

(2π)
`−1
2 `(1/2−as)Γ(as)∏

i∈M+

Γ
(
as+i
`

) for all s = 1, ..., d (6.6)

and similarly ∏
j∈M−

Γ

(
bt + j

`

)
=

(2π)
`−1
2 `(1/2−bt)Γ(bt)∏

i∈M+

Γ
(
bt+i
`

) for all t = 1, ..., r. (6.7)
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Substituting (6.6) and (6.7) into (6.4) for every s and t yields

(2π)( `−1
2 )d`(1/2−a1−a2···−ad)

(2π)( `−1
2 )r`(1/2−b1−b2−···−br)

∏
1≤s≤d
1≤t≤r

Γ(as)

Γ(bt)

∏
j∈M+

Γ2
(
bt+j
`

)
Γ2
(
as+j
`

)
= (2π)(d−r2 )(`−1)`S(a,b)

∏
1≤s≤d
1≤t≤r

Γ(as)

Γ(bt)

∏
j∈M+

Γ2
(
bt+j
`

)
Γ2
(
as+j
`

) .
7 Infinite products and the paper folding sequence

Recall that the regular paper folding sequence can be defined by the recurrence t2n =

(−1)n, t2n+1 = tn and t0 = 1. In [1], J.P. Allouche gives a closed-form evaluation of the

product
∞∏
n=1

(
2n

2n+ 1

)tn
in terms of the gamma function. Moreover, he generalizes his re-

sult to a wider class of rational functions. Here, the results from previous sections are used

(specifically the closed-form formula obtained in section 3) to take a different approach to

the product
∞∏
n=1

R(n)tn where R(n) =
an+ b

cn+ d
to reproduce the result of [1]. It is known that

a = c 6= 0 is a necessary condition for the convergence of the product in question, hence let

R be as above with a = c and tn be the regular paper folding sequence, then

∏
n≥0

(
an+ b

cn+ d

)tn
=
∏
n≥0

(
2an+ b

2cn+ d

)(−1)n∏
n≥0

(
2n+ (a+ b)

2n+ (c+ d)

)tn

= 2
d
2c−

b
2a

Γ2( d4c)Γ( b
2a)

Γ2( b
4a)Γ( d2c)

∏
n≥0

(
2n+ (a+ b)

2n+ (c+ d)

)tn
= 2

1
2 (dc−

b
a ) Γ

2( d4c)Γ( b
2a)

Γ2( b
4a)Γ( d2c)

∏
n≥0

(
4an+ (a+ b)

4n+ (c+ d)

)(−1)n∏
n≥0

(
4an+ 3a+ b

4cn+ 3c+ d

)tn
= 2

1
2 (dc−

b
a ) Γ

2( d4c)Γ( b
2a)

Γ2( b
4a)Γ( d2c)

2
1
4 (dc−

b
a ) Γ

2(c+d8c )Γ(a+b
4a )

Γ2(a+b
8a )Γ(c+d4c )

∏
n≥0

(
4an+ 3a+ b

4cn+ 3c+ d

)tn
= · · ·

Iterating this process N times yields

2
(dc−

b
a)
∑
k≥1

1
2k

N∏
k=2

Γ2(1
4 −

d−c
c2k

)Γ(1
2 + b−a

a2k−1 )

Γ2(1
4 + b−a

2k
)Γ(1

2 + d−c
c2k−1 )

∞∏
n=0

(
2Nan+ a(2N − 1) + b

2Ncn+ c(2N − 1) + d

)tn
. (7.1)
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Without lost of generality one may assume that c > 0. It is claimed that

lim
N→∞

∞∏
n=0

(
2Nan+ a(2N − 1) + b

2Ncn+ c(2N − 1) + d

)tn
= 1. (7.2)

To show this, it suffices to prove that
2Nan+ a(2N − 1) + b

2Ncn+ c(2N − 1) + d
→ 1 uniformly as N → ∞, to

be able to obtain

1 =
∞∏
n=0

(
lim
N→∞

2Nan+ a(2N − 1) + b

2Ncn+ c(2N − 1) + d

)tn
= lim

N→∞

∞∏
n=0

(
2Nan+ a(2N − 1) + b

2Ncn+ c(2N − 1) + d

)tn
.

But this result is almost immediate. Let ε > 0 be given. Then ∃ K ∈ N such that for all

r ≥ K we have∣∣∣∣2ran+ a(2r − 1) + b

2rcn+ c(2r − 1) + d
− 1

∣∣∣∣ =

∣∣∣∣ b− d
2rcn+ c(2r − 1) + d

∣∣∣∣ ≤ b− d
2r + d− 1

≤ ε

for all n.

Hence, as we let N →∞ we have the equality

∞∏
n=0

(
an+ b

cn+ d

)tn
= 2

d
c−

b
a

∞∏
k=2

Γ2(1
4 −

d−c
c2k

)Γ(1
2 + b−a

a2k−1 )

Γ2(1
4 + b−a

2k
)Γ(1

2 + d−c
c2k−1 )

. (7.3)

Here, a closed-form expression for the value of this product is not known, however, in some

particular cases this product can be computed in closed-form. In particular, if 2ad = c(b+a)

a telescoping product is obtained, and the product can be evaluated in closed-form. Now,

since a = c without lost of generality one may assume a priori with that R has the form
n+ b

n+ d
; in which case 2ad = c(b+ a) ⇐⇒ d =

b+ 1

2
. This is precisely the class of functions

for which Allouche gave a closed-form expression for the evaluation of their infinite products.

Indeed, setting a = c = 1 and d =
1 + b

2
in (7.3), expanding partial product and taking the

limit, Allouche’s closed-form expresion

∞∏
n=0

(
n+ b

n+ b+1
2

)tn

= 2
1−b
2

Γ2(1/4)Γ(b/2)√
πΓ2(b/4)

(7.4)

is obtained.

In the particular case of the product
∞∏
n=0

(
2n+ 1

2n+ 2

)tn
,

∞∏
n=0

(
2n+ 1

2n+ 2

)tn
=
√

2
∞∏
k=2

Γ2(1
4)Γ(1

2 −
1
2k

)

Γ2(1
4 −

1
2k+1 )Γ(1

2)
. (7.5)
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Now, noting that
∞∏
k=2

Γ(1
2 −

1
2k

)

Γ(1/2)
=
∞∏
k=1

Γ(1
2 −

1
2k+1 )

Γ(1
2)

(7.6)

and using Knar’s formula [4]

Γ(1 + z) = 22z
∞∏
k=1

π−1Γ

(
1

2
+
z

2k

)
, (7.7)

with z = −1/2, yields
∞∏
k=2

Γ(1
2 −

1
2k

)

Γ(1
2)

= 2
√
π. (7.8)

Therefore
√

2
∞∏
k=2

Γ2(1
4)Γ(1

2 −
1
2k

)

Γ2(1
4 −

1
2k+1 )Γ(1

2)
= 2
√

2π
∞∏
k=2

Γ2(1
4)

Γ2(1
4 −

1
2k+1 )

. (7.9)

What follows was an attempted approach to evaluate the previous product.

In addition to this simplification, it is known that by definition of the infinite product, the

right-hand side of (7.5) is equivalent to

√
2 lim
N→∞

N∏
k=2

Γ2(1
4)Γ(1

2 −
1
2k

)

Γ2(1
4 −

1
2k+1 )Γ(1

2)
. (7.10)

Note that in equation (7.10) the sum of arguments of the gammas on the numerator equals

the sum of the arguments of the gammas in the denominator. This hints to where this finite

products of gammas might be coming from. Making use of lemma 2.2 we get

√
2 lim
N→∞

N∏
k=2

Γ2(1
4)Γ(1

2 −
1
2k

)

Γ2(1
4 −

1
2k+1 )Γ(1

2)
=
√

2 lim
N→∞

∞∏
n=0

N∏
k=2

(n+ 1
2)(n+ 1

4 −
1

2k+1 )
2

(n+ 1
4)2(n+ 1

2 −
1
2k

)
.

(7.11)

Now, the product
∞∏
k=2

(n+ 1
2
)(n+ 1

4
− 1

2k+1 )2

(n+ 1
4
)2(n+ 1

2
− 1

2k
)

converges, if and only if

∞∑
k=2

log

(
(n+ 1

2)(n+ 1
4 −

1
2k+1 )

2

(n+ 1
4)2(n+ 1

2 −
1
2k

)

)
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converges. It is not hard to see, by comparison test, that this series converges. Moreover∣∣∣∣∣
N+1∏
k=2

(n+ 1
2)(n+ 1

4 −
1

2k+1 )
2

(n+ 1
4)2(n+ 1

2 −
1
2k

)
−

N∏
k=2

(n+ 1
2)(n+ 1

4 −
1

2k+1 )
2

(n+ 1
4)2(n+ 1

2 −
1
2k

)

∣∣∣∣∣ (7.12)

=
N∏
k=2

(n+ 1
2)(n+ 1

4 −
1

2k+1 )
2

(n+ 1
4)2(n+ 1

2 −
1
2k

)

∣∣∣∣((n+ 1
2)(n+ 1

4 −
1

2N+2 )
2

(n+ 1
4)2(n+ 1

2 −
1

2N+1 )
− 1

)∣∣∣∣, (7.13)

as N →∞ the factor on the right goes to zero independently of n whereas the product over

k converges. Hence, by Cauchy criterion, this product converges uniformly, obtaining the

equality

∞∏
n=0

(
2n+ 1

2n+ 2

)tn
=
√

2
∞∏
k=2

Γ2(1
4)Γ(1

2 −
1
2k

)

Γ2(1
4 −

1
2k+1 )Γ(1

2)
=
√

2
∞∏
n=0

∞∏
k=2

(n+ 1
2)(n+ 1

4 −
1

2k+1 )
2

(n+ 1
4)2(n+ 1

2 −
1
2k

)
.

(7.14)

Note that the function

ΦR(x) :=
∞∏
k=2

(x+ 1
2)(x+ 1

4 −
1

2k+1 )
2

(x+ 1
4)2(x+ 1

2 −
1
2k

)
, (7.15)

associated to the rational function R(n) = 2n+1
2n+2

, has infinitely many zeros accumulating

to x = −1/4 which is a pole of ΦR. On the other hand, it also has infinitely many poles

accumulating to −1/2 which is a zero of ΦR. However, for x ≥ 0 this function is well-behaved,

in fact lim
x→∞

ΦR(x) = 1. Nevertheless, this complicated function might explain some of the

underlying difficulties on the evaluation of
∞∏
n=0

(
2n+ 1

2n+ 2

)tn
.

8 A special class of automatic sequences

A generalization of the result in [1] is provided in this section. A closed-form formula for

evaluation of infinite products of certain rational functions raised to the power of certain

class of automatic sequence is also given at the end of this section.
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Theorem 8.1. Let R(n) =
n+ b

n+ d
where b, d ∈ R+ and let Mn be a k-automatic sequence

satisfying the following recurrence

Mkn = q0(n)

Mkn+1 = q1(n)

...

Mkn+k−2 = qk−2(n)

Mkn+k−1 = Mn,

(8.1)

where each qi(n) is a (2L)αi-periodic sequence, for some L ∈ Z+ and some power αi ∈ N

corresponding to qi(n). Additionally, assume that |q+i | = |q−i | for all 0 ≤ i ≤ k − 2. Then∏∞
n=0R(n)Mn converges. Moreover, if d =

b+ k − 1

k
the product can be evaluated in closed-

form given by

∞∏
n=0

R(n)Mn =

k−2∏
i=0

(2L)
αi(1−b)

k
Γ(b+ik )

Γ( i+1
k )

∏
j∈q+i

Γ2
(

i+1
(2L)αik + j

(2L)αi

)
Γ2
(

b+i
(2L)αik + j

(2L)αi

)
. (8.2)

Note that the paperfolding sequence is one such sequence, with k = 2, q0(n) = (−1)n,

L = 1 and α0 = 1. In this case, R(n) =
n+ b

n+ b+1
2

and (8.2) simplifies to the result of Allouche,

(7.4).

Proof. The argument proceeds by splitting R(n) into the first k− 2 terms and raising these

to their respective periodic powers qi(n). Then,

∞∏
n=0

R(n)Mn =
∞∏
n=0

k−2∏
i=0

R(kn+ i)qi(n)
∞∏
n=0

R(kn+ k − 1)Mn

=
∞∏
n=0

k−2∏
i=0

(
kn+ i+ b

kn+ i+ d

)qi(n) ∞∏
n=0

k−2∏
i=0

R(k2n+ k(i+ 1)− 1)qi(n)
∞∏
n=0

R(k2n+ k2 − 1)Mn

=
∞∏
n=0

k−2∏
i=0

(
kn+ i+ b

kn+ i+ d

)qi(n) ∞∏
n=0

k−2∏
i=0

(
k2n+ k(i+ 1)− 1 + b

k2n+ k(i+ 1)− 1 + d

)qi(n) ∞∏
n=0

R(k2n+ k2 − 1)Mn ,
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and after N iterations this becomes

= ... =
N∏
β=1

∞∏
n=0

k−2∏
i=0

(
kβn+ kβ−1(i+ 1)− 1 + b

kβn+ kn−1(i+ 1)− 1 + d

)qi(n) ∞∏
n=0

(
kNn+ kN − 1 + b

kNn+ kN − 1 + d

)Mn

︸ ︷︷ ︸
F(N,n)

.

It can be easily check (as done in (7.2)) that F (N, n) goes to 1 as N → ∞. So that the

preceding triple product contributes entirely to this equality. Letting N →∞, this simplifies

to
∞∏
n=0

R(n)Mn =
∞∏
β=1

∞∏
n=0

k−2∏
i=0

(
kβn+ kβ−1(i+ 1)− 1 + b

kβn+ kn−1(i+ 1)− 1 + d

)qi(n)
. (8.3)

Isolating the infinite product

∞∏
n=0

k−2∏
i=0

(
kβn+ kβ−1(i+ 1)− 1 + b

kβnkβ−1(i+ 1)− 1 + d

)qi(n)
, (8.4)

and noting that finite and infinite products can be interchanged, yields

k−2∏
i=0

∞∏
n=0

(
kβn+ kβ−1(i+ 1)− 1 + b

kβnkβ−1(i+ 1)− 1 + d

)qi(n)
. (8.5)

For each fixed i in (8.5), theorem 6.2 can be applied to

∞∏
n=0

(
kβn+ kβ−1(i+ 1)− 1 + b

kβn+ kβ−1(i+ 1)− 1 + d

)qi(n)
. (8.6)

Here the function in consideration is
kβn+ kβ−1(i+ 1)− 1 + b

kβn+ kβ−1(i+ 1)− 1 + d
, which has a single root

at
b+ kβ−1(i+ 1)− 1

kβ
and a single pole at

d+ kβ−1(i+ 1)− 1

kβ
. The sequence in play is

qi(n) which is (2L)αi-periodic. Note also that in this case the degrees in the numerator and

denominator are both 1, and S(b, d) =
d− b
kβ

. Therefore, using (6.2), (8.6) reduces to

(2L)αi
d−b
kβ

Γ(b+k
β−1(i+1)−1
kβ

)

Γ(d+kβ−1(i+1)−1
kβ

)

∏
j∈q+i

Γ2(d+kβ−1(i+1)−1+jkβ

(2L)αikβ
)

Γ2(b+k
β−1(i+1)−1+jkβ

(2L)αikβ
)
, (8.7)

so that (8.4) reduces to

k−2∏
i=0

(2L)αi
d−b
kβ

Γ(b+k
β−1(i+1)−1
kβ

)

Γ(d+kβ−1(i+1)−1
kβ

)

∏
j∈q+i

Γ2(d+kβ−1(i+1)−1+jkβ

(2L)αikβ
)

Γ2(b+k
β−1(i+1)−1+jkβ

(2L)αikβ
)

. (8.8)
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Hence, the product in question becomes

∞∏
n=0

R(n)Mn =
∞∏
β=1

k−2∏
i=0

(2L)αi
d−b
kβ

Γ(b+k
β−1(i+1)−1
kβ

)

Γ(d+kβ−1(i+1)−1
kβ

)

∏
j∈q+i

Γ2(d+kβ−1(i+1)−1+jkβ

(2L)αikβ
)

Γ2(b+k
β−1(i+1)−1+jkβ

(2L)αikβ
)

.
(8.9)

Once again, interchanging finite and infinite products yields

∞∏
n=0

R(n)Mn =
k−2∏
i=0

∞∏
β=1

(2L)αi
d−b
kβ

Γ(b+k
β−1(i+1)−1
kβ

)

Γ(d+kβ−1(i+1)−1
kβ

)

∏
j∈q+i

Γ2(d+kβ−1(i+1)−1+jkβ

(2L)αikβ
)

Γ2(b+k
β−1(i+1)−1+jkβ

(2L)αikβ
)

.
(8.10)

Now,
∞∏
β=1

(2L)αi
d−b
kβ = (2L)αi

d−b
k−1 so that (8.10) becomes

k−2∏
i=0

(2L)αi
d−b
k−1

∞∏
β=1

Γ(b+k
β−1(i+1)−1
kβ

)

Γ(d+kβ−1(i+1)−1
kβ

)

∏
j∈q+i

Γ2(d+kβ−1(i+1)−1+jkβ

(2L)αikβ
)

Γ2(b+k
β−1(i+1)−1+jkβ

(2L)αikβ
)

. (8.11)

The goal is now to find sufficient conditions for the closed-form evaluation of the infinite

product on (8.11). A simple way in which this product can be evaluated in closed-form is

if it is a telescoping product. Note that if
d+ kβ−1(i+ 1)− 1

kβ
=
b+ kβ(i+ 1)− 1

kβ + 1
it would

also be true that
d+ kβ−1(i+ 1)− 1 + jkβ

(2L)αikβ
=

b+ kβ(i+ 1)− 1 + jkβ+1

(2L)αikβ+1
, and the product

would indeed be a telescoping product. Now,

d+ kβ−1(i+ 1)− 1

kβ
=
b+ kβ(i+ 1)− 1

kβ + 1

⇐⇒ d =
b+ kβ(i+ 1)− 1

k
− kβ−1(i+ 1)− 1

⇐⇒ d =
b+ k − 1

k
.

Making this substitution, the product in question becomes

k−2∏
i=0

(2L)
αi(1−b)

k

∞∏
β=1

Γ(b+k
β−1(i+1)−1
kβ

)

Γ(b+k
β(i+1)−1
kβ+1 )

∏
j∈q+i

Γ2(b+k
β(i+1)−1+jkβ+1

(2L)αikβ+1 )

Γ2(b+k
β−1(i+1)−1+jkβ

(2L)αikβ
)

. (8.12)

It is now easily seen that the infinite product telescopes. In fact

∞∏
β=1

Γ(b+k
β−1(i+1)−1
kβ

)

Γ(b+k
β(i+1)−1
kβ+1 )

∏
j∈q+i

Γ2(b+k
β(i+1)−1+jkβ+1

(2L)αikβ+1 )

Γ2(b+k
β−1(i+1)−1+jkβ

(2L)αikβ
)


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= lim
N→∞

Γ(b+ik )

Γ(d+kN−1(i+1)−1
kN )

∏
j∈q+i

Γ(d+kN−1(i+1)−1+jkN

(2L)αikN )

Γ( b+i+jk(2L)αik)

=
Γ(b+ik )

Γ( i+1
k )

∏
j∈q+i

Γ2( i+1
(2L)αik + j

2αi )

Γ2( b+i
(2L)αik + j

2αi )
. (8.13)

Substituting this last expression into (8.12) yields (8.2) and completes the proof.

Remarks on theorem 8.2.

• The condition that each qi(n) has even period, at first sight, seems unnecessary. How-

ever, If some qi(n) had odd period then it would fall in case (i) of theorem 6.1, so

that
∞∏
n=0

(
kβn+ kβ−1(i+ 1)− 1 + b

kβn+ kβ−1(i+ 1)− 1 + d

)qi(n)
converges if, and only if, b = d. Hence the

conclusion would be false.

• This result can be generalized to any rational function of the formR(n) =
(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ bd)
where ai, bj /∈ −N. In this case, the condition would be that to each ai corresponds a

unique bj such that bj =
ai + k − 1

k
. Without lost of generality, the denominator of R

can be rearranged in such a way that R(n) =
(n+ a1) · · · (n+ ad)

(n+ a1+k−1
k

) · · · (n+ ad+k−1
k

)
. Then, the

closed-forms formula is obtained by means of
∞∏
n=0

R(n)Mn =
d∏

m=1

∞∏
n=0

(
n+ ai

n+ ai+k−1
k

)Mn

.

9 Preliminaries on p-adic valuations

The introduction briefly described what a p-adic valuation is, here, this topic is explored

further.

Definition 9.1. The p-adic valuation of a number is denoted by νp(n) for a fixed prime p

and is equal to the exponent of the highest power of prime p that n is divisible by.

Example 9.1. The 3-adic valuation of 45 is equal to the highest power of 3 that 45 is

divisble by. The number 45 expressed as a list of it’s prime factors produces {3, 3, 5}. Since

there are two 3’s the 3-adic valuation of 45 is 2,

ν3 (45) = 2 (9.1)
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In relation to the purpose of this report, the p-adic valuations of the partial products of

the previously discussed infinite products, may reveal some unknowns. For example, when

evaluating the 2-adic valuation of

N∏
n=1

(
n

n+ 1

)(−1)n

(9.2)

it was reasonable to infer that the partial products are never integers when N ≥ 2. When

looking at the 2-adic valuations as N got larger the outputs were either negative or 0 thus

implying rational numbers.

Proposition 9.1. The partial products of Equation (9.2) are never integers when N ≥ 2.

Proof. Suppose N ≥ 2 and consider the finite product

N∏
n=1

(
n

n+ 1

)(−1)n

. (9.3)

Case 1: When n ∈ 2k, an = 2k
2k+1

.

Case 2: When n ∈ 2k + 1, an = 2k+2
2k+1

.

In both cases the denominators of an is odd whereas the numerator is even thus Equation

9.3 is equal to p
q

where p ∈ 2Z and q /∈ 2Z. Hence p
q
/∈ Z.

Discoveries of these sort aid the thorough comprehension of partial products of rational

functions raised to certain sequences. The nature of the alternating sequence is an elementary

case therefore this report will analyze the characteristics related to the paperfolding sequence.

10 p-adic valuations of paper folding partial products

The difficulties with
∞∏
n=1

(
2n+ 1

2n+ 2

)tn
, where tn is the paperfolding sequence, were discussed

in Section 7 in comparison to the simpler evaluation of
∞∏
n=1

(
2n

2n+ 1

)tn
as seen in [1]. In

addition to studying the behavior of the ΦR function (Section 7), it is worthwhile to investi-

gate the p-adic properties of the two aformentioned products’ partials,
N∏
n=1

(
2n

2n+ 1

)tn
and
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N∏
n=1

(
2n+ 1

2n+ 2

)tn
, as the p-adic metric is an extension of rational number qualities. These

properties were studied using Mathematica 9.0.1 Software.

Preliminarily the two products’ p-adic valuations were evaluated along with statistical

measures on the data points. Prod and Prod1 represent the partial products, respectively.

The resulting grid appeared as such for the first two p-adic valuations:

:

2 Prime Prod Prod1

Mean 999.105 -38.3401

Median 997. -38.

Variance 333109. 160.167

Skewness -0.00180552 0.014431

StandardDev 577.156 577.156

,

3 Prime Prod Prod1

Mean -2.0225 7.29607

Median -2. 7.

Variance 41.4279 37.6562

Skewness -0.157954 -0.084667

StandardDev 6.43645 6.43645

>

An initial observation shows how the means and medians for each product are extremely

close in value. Even though the variances are different between the products, the standard

deviations are equal. Next we see tables for different primes, together with their respective

plots,

2 Prime Prod Prod1

Mean 999.105 -38.3401

Median 997. -38.

Variance 333109. 160.167

Skewness -0.00180552 0.014431

StandardDev 577.156 577.156
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3 Prime Prod Prod1

Mean -2.0225 7.29607

Median -2. 7.

Variance 41.4279 37.6562

Skewness -0.157954 -0.084667

StandardDev 6.43645 6.43645
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5 Prime Prod Prod1

Mean -1.69225 -15.1318

Median -2. -15.

Variance 25.2789 23.9669

Skewness 0.0337012 0.170986

StandardDev 5.02781 5.02781

1000 2000 3000 4000

-15

-10

-5

5

10

15

1000 2000 3000 4000

-30

-25

-20

-15

-10
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The initial obervations from the primes 2 and 3 hold for the primes 5, 7, 11, and 13 as

well. A pattern is more apparent now with the given plots. The left plots represent

νp

(
4000∏
n=1

(
2n

2n+ 1

)tn)
for all prime p. (10.1)
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The data clusters stagger about the x-axis continuously, excluding prime 2. Prime 2 exhibits

different qualities because the numerator will always be an even value therefore the 2-adic

valuation will always be positive. In contrast the right plots, representing

νp

(
4000∏
n=1

(
2n+ 1

2n+ 2

)tn)
for all prime p, (10.2)

display inconsistent trends among the shown primes. In particular, primes 2, 5, and 13 have

most of their data points below the x-axis. There seems to be a pattern among certain primes

that evaluate mostly negative p-adic valuations. When the plots are extended to the first 20

prime numbers the prime values 29, 37, 53, and 61 exhibit the same p-adic trait as 2, 5, and

13. Querying the sequence {2, 5, 13, 29, 37, 53, 61} in The On-line Encyclopedia of Integer

Sequences revealed that this is a sequence of prime numbers congruent to {2, 5} mod 8 [8].

It was then necessary to evaluate certain primes in the sequence on Equation 10.2.

Example 10.1. 877 ≡ 5 mod 8 since 877− 5 = 872 and 872 is a multiple of 8. The plot of

ν877

(
4000∏
n=1

(
2n+ 1

2n+ 2

)tn)
(10.3)

is shown below:

1000 2000 3000 4000

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

As expected the 877-adic values are less than 0.

Now that there is a list of primes exhibiting a notable effect onto Equation 10.2 the

concept of “mostly negative” has to be quantified. Meaning the p-adic valuations of these

special primes on the function produced values that were “mostly” less than 0. This paper

will define “mostly” as a percentage cutoff. Next, a table of several primes congruent to

5 modulo 8, together with the respective percentage of values of N for which the p-adic

valuation of the products is negative.

This was evaluated for

νp

(
50000∏
n=1

(
2n+ 1

2n+ 2

)tn)
(10.4)
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for the first 79 primes, p, where p ≡ {2, 5} mod 8.

p % p % p % p %

2 100 373 99 853 42 1453 96

5 100 389 98 877 93 1493 89

13 100 397 99 941 98 1549 93

29 100 421 97 997 91 1597 98

37 100 461 91 1013 95 1613 84

53 96 509 100 1021 99 1621 89

61 100 541 95 1061 99 1637 99

101 100 557 99 1069 98 1669 90

109 100 613 99 1093 87 1693 99

149 100 653 95 1109 44 1709 95

157 100 661 95 1117 99 1733 80

173 99 677 98 1181 99 1741 83

181 96 701 100 1213 99 1789 99

197 87 709 78 1229 80 1861 80

229 94 733 100 1237 51 1877 89

269 98 757 99 1277 99 1901 95

277 84 773 89 1301 71 1933 91

293 100 797 97 1373 99 1949 99

317 98 821 80 1381 89 1973 79

349 100 829 97 1429 95

There are only three prime values yielding a percentage less than 70%, which are 853,

1109, and 1237, with percentages of 42, 44, and 51, respectively. Beyond those exceptions,

the other 76 primes resulted in percentages greater than 70%. Conclusively, the p-adic

valuations of
N∏
n=1

(
2n+ 1

2n+ 2

)tn
are characterized when p is congruent to {2, 5} mod 8.
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11 Closing remarks

The main result, theorem 8.2 has allowed the closed form evaluation of many new types

of k-automatic products. However these results hold only when the periods of the periodic

components of these sequences are powers of a fixed even number. It is conjectured that

this method of proof cannot be generalized to periods which are powers of an odd number.

The conclusion of theorem 6.1 imposes the condition that the sum of the roots and the sum

of the poles are equal. With this restrictive condition it is reasonable to believe that thess

infinite products cannot telescope in any case other than the trivial.

In the attempt to develop closed form expressions for k-automatic products, the algorithm

developed in theorem 8.2 is suited for k-automatic sequences which decompose into periodic

components. Other automatic sequences, such as the Rudin-Shapiro sequence, [7], have no

periodic subsequence and will require new approaches.

In section 7 there is an equivalent representation of the product
∞∏
n=0

(
2n+ 1

2n+ 2

)tn
where

tn is the regular paper folding sequence. The representation

∞∏
n=0

(
2n+ 1

2n+ 2

)tn
= 2
√

2π
∞∏
k=2

Γ2(1/4)

Γ2(1
4
− 1

2k+1 )
(11.1)

is closely related to the product

∞∏
k=2

Γ(1
2
− 1

2k
)

Γ(1/2)
= 2
√
π (11.2)

which was evaluated using Knar’s formula [4]. It remains an open question to evaluate this

product in closed form. It is suspected that if there is a solution to this question, it will rely

on the generalized Knar’s formula given by J. Logsdon in [5].

In section 10 the p-adic valuations of the partial products
N∏
n=0

(
2n+ 1

2n+ 2

)tn
were studied.

It was seen that for primes of the form p ≡ 5 mod 8, the valuations of these partial products

were mostly negative. It is conjecture that for p ≡ 5 mod 8 there exist an integer M such

that, for all N ≥M , νp

(
N∏
n=0

(
2n+ 1

2n+ 2

)tn)
≤ 0.
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Abstract

We study the p-adic valuations of generalized Fibonacci sequences, focusing on the

particular sequence given by Sn = Fn + 2Ln, where Fn and Ln are the Fibonacci

and Lucas sequences, respectively. Analyzing this sequence, we create a closed form

formula for certain p, as well as formulate conjectures regarding sequences appearing

from studying νp(Sn).

1 Introduction

The Fibonacci and Lucas numbers are well-known sequences given by a second order recur-

rence that share many identities. Only the initial conditions differ. The Fibonacci numbers,

Fn, start with (0, 1) and the Lucas numbers, Ln, with (2, 1). These two initial conditions

form a basis for Z2.

Definition 1.1. Linear combinations of these two sequences, that is, the sequences of the

form fn = aFn + bLn, are called here generalized Fibonacci sequences, denoted by fn. These

satisfy fn = fn−1 + fn−2 with the initial conditions (f0, f1) = a(0, 1) + b(2, 1).

In order to properly study the powers of primes that divide these generalized Fibonacci

numbers and the properties that arise from them, we make extensive use of the p-adic

valuation.

91



Definition 1.2. The p-adic valuation of an integer n, denoted by νp(n), is the highest power

of p that divides n.

The p-adic metric, denoted | · |p, of a number x is defined such that | x |p= p−νp(x). In

particular, define | 0 |p= 0 for all primes p.

Proposition 1.3 (Properties of νp(n)). For a prime p and integers a, b

νp(ab) = νp(a) + νp(b).

If νp(a) 6= νp(b),

νp(a+ b) = min(νp(a), νp(b)).

Wall [7] shows that the Fibonacci sequence is periodic modulo m for all m ∈ N. Further-

more, he shows that any natural number is a factor of some Fibonacci number.

Theorem 1.4 (Wall). For every m ∈ N, Fn mod m forms a periodic sequence.

Theorem 1.5 (Wall). For every m ∈ N, there exists an index n such that Fn ≡ 0 mod m.

The p-adic valuations of the Fibonacci and Lucas numbers are well understood. The next

result appears in Lengyel [6].

Theorem 1.6 (Lengyel). Let

α(p) = the smallest n such that Fn ≡ 0 mod p,

π(p) = the period length of Fn modulo p, and

η(p) = νp(Fα(p)).

Then, for p 6= 2 or 5,

νp(Fn) =

 νp(n) + η(p) n ≡ 0 mod α(p)

0 otherwise,

and

νp(Ln) =

 νp(n) + η(p) π(p) 6= 4α(p) and n ≡ α(p)
2

mod α(p)

0 otherwise.

For p = 2,

ν2(Fn) =


0 n ≡ 1, 2 mod 3

1 n ≡ 3 mod 6

ν2(n) + 2 n ≡ 0 mod 6,

and ν2(Ln) =


0 n ≡ 1, 2 mod 3

2 n ≡ 3 mod 6

1 n ≡ 0 mod 6.
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Finally, for p = 5,

ν5(Fn) = ν5(n) and ν5(Ln) = 0.

Bloom [1] provides a characterization of the period length of generalized Fibonacci se-

quences modulo m.

Theorem 1.7 (Bloom). If a generalized Fibonacci sequence fn has a term fN such that

m | fN , then the period of fn mod m is equal to the period of Fn mod m.

However, little is known about the p-adic valuations of the generalized Fibonacci numbers.

Given that any generalized Fibonacci sequence can be expressed as fn = aFn+bLn, we expect

there to be similar results regarding their p-adic valuation. In the next section, we apply

identities for Fn and Ln and Proposition 1.3 in order to explicitly calculate νp(aFn + bLn).

2 Formulas for generalized Fibonacci sequences

Using the identity Ln = Fn−1 + Fn+1, the following is true:

Theorem 2.1.

aFn + bLn =


2aFn+1 if a = b

(2a+ k)Fn+1 + kFn−1 if a < b

(2b)Fn+1 + lFn if a > b.

where k = b− a and l = a− b.

Proof. Case 1: If a = b, then

aFn + bLn = aFn + aLn

= aFn + aFn−1 + aFn+1

= aFn+1 + aFn+1

= 2aFn+1,

as needed.
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Case 2: If a < b, then b = a+ k for some k ∈ Z and

aFn + bLn = aFn + (a+ k)Ln

= aFn + (a+ k)Fn−1 + (a+ k)Fn+1

= aFn + (a)Fn−1 + (a)Fn+1 + kFn−1 + kFn+1

= aFn+1 + (a)Fn+1 + kFn−1 + kFn+1

= 2aFn+1 + kFn−1 + kFn+1

= (2a+ k)Fn+1 + kFn−1,

as needed.

Case 3: If a > b, then a = b+ l for some l ∈ Z and

aFn + bLn = (b+ l)Fn + bLn

= bFn + bFn−1 + bFn+1 + lFn

= bFn+1 + bFn+1 + lFn

= 2bFn+1 + lFn,

as needed.

Example 2.2. If a = b = 1, then

Fn + Ln = Fn + Ln

= Fn + Fn−1 + Fn+1

= Fn+1 + Fn+1

= 2Fn+1.

Example 2.3. If a = 2 and b = 1, it follows that

2Fn + Ln = Fn + Fn−1 + Fn+1 + Fn

= Fn+1 + Fn+1 + Fn = 2Fn+1 + Fn.

(Note that for this particular example, it follows that 2Fn+1 + Fn = Fn+2 + Fn+1 = Fn+3).

Making this observation, it is possible to represent the p-adic valuations of generalized

Fibonacci sequences using the well-known p-adic valuation of the Fibonacci sequences.

Corollary 2.4.

νp(aFn+bLn) =


νp(2aFn+1) if a = b

min(νp((2a+ k)Fn+1), νp(kFn−1)) if a < b and νp((2a+ k)Fn+1) 6= νp(kFn−1)

min(νp((2b)Fn+1), νp(lFn)) if a > b and νp((2b)Fn+1) 6= νp(lFn).
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where k = b− a and l = a− b.

Note that this representation only provides clear insight in very few cases, i.e. a = b.

Example 2.5. If a = b, then

ν2(aFn + bLn) = ν2(2aFn+1) = ν2(aFn+1) + 1.

3 Reduction Modulo Powers of Primes

Proving formulas for p-adic valuations for generalized Fibonacci sequences required a tech-

nique called Reduction Modulo Powers of Primes. Taking a sequence modulo powers of p for

some prime p, is enough to determine the p-adic valuation of the sequence. This technique

relied on 3 principles:

Proposition 3.1. The Fibonacci second order recurrence holds under modular arithmetic.

Proposition 3.2. All generalized Fibonacci sequences are periodic modulo m, for all natural

numbers m.

Proposition 3.3. For an integer x and a prime p, x ≡ 0 mod pn and x 6≡ 0 mod pn+1 imply

νp(x) = n.

Consider {fn} modulo p. If there are indices n where fn 6≡ 0 mod p, then νp(fn) = 0.

Similarly, {fn} is reduced modulo p2 and indices where p2 does not divide fn but p divides

fn are found, and consequently, νp(fn) = 1. This process is repeated until fn 6≡ 0 mod pk for

all n ∈ N. From Proposition 3.1 and Proposition 3.2, it can be concluded that this process

will hold for all indices n. An illustration of this technique is provided in the proof of the

following theorem.

Theorem 3.4. Let Sn = Fn + 2Ln,

ν2 (Sn) =


0 n ≡ 1, 2 mod 3

1 n ≡ 3 mod 6

2 n ≡ 0 mod 6.
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Proof. By Proposition 3.1, the recursion formula Sn = Sn−1 + Sn−2 holds modulo m, for all

m ∈ N. Now consider Sn mod 2α.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Sn 4 3 7 10 17 27 44 71 115 186 301 487 788 1275

Sn mod 2 0 1 1 0 1 1 0 1 1 0 1 1 0 1

Sn mod 22 0 3 3 2 1 3 0 3 3 2 1 3 0 3

Sn mod 23 4 3 7 2 1 3 4 7 3 2 5 7 4 3

When α = 1 notice that if n ≡ 1 or 2 mod 3, then Sn 6≡ 0 mod 2, and by Proposition 3.3,

ν2(Sn) = 0. For α = 2, notice that if n ≡ 3 mod 6, ν2(Sn) = 1 by Proposition 3.3. Finally,

when α = 3, it is clear that ν2(Sn) = 2 for n ≡ 0 mod 6 since 23 does not divide any term of

Sn.

Now, because the recursion formula is maintained, it is clear that there is periodicity,

and so the sequence will repeat modulo m if any two terms repeat consecutively. For Sn

modulo 2 the period is 3, modulo 22 the period is 6, and modulo 23 the period is 12.

4 2-adic Valuations

Based off of Theorem 1.6, the 2-adic valuations of Fibonacci and Lucas numbers are special

cases in which an explicit formula for ν2(Fn) and ν2(Ln) can be determined. This is shown in

the fact that ν2(Ln) is 0,1, or 2 depending on n. In order to determine ν2(aFn + bLn), a and

b must be known to apply Theorem 1.6 to get a formula for ν2(aFn + bLn). In the following

theorem’s we present specific cases of a and b where an explicit formula for ν2(aFn + bLn)

could be determined. Note that in all of these theorems, we relate ν2(aFn + bLn) to ν2(Ln).

For other values of a and b, ν2(aFn + bLn) is unknown.

In choosing arbitrary values for a, b, ν2(aFn+ bLn) was calculated and the following pairs
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of (a, b) gave explicit formulas similar to ν2(Ln):

(1, 2) (3, 2) (4, 1) (5, 1)

(1, 3) (3, 5) (4, 3) (5, 2)

(1, 6) (3, 6) (4, 5) (5, 3)

(1, 7) (3, 7) (4, 7) (5, 6)

(1, 9) (3, 9) (4, 9) (5, 10)

(1, 10) (3, 10) (4, 11) (5, 13).

For the column where a = 4 and b odd, the following theorem was developed.

Theorem 4.1. For odd, positive integer b and k ≥ 2

ν2(2
kFn + bLn) = ν2(Ln) =


0 n ≡ 1, 2 mod 3

2 n ≡ 3 mod 6

1 n ≡ 0 mod 6.

Proof. Consider {2kFn + bLn} modulo powers of 2.

n 0 1 2 3 4 5 6 7 8 9 10 11

2kFn mod 2 0 0 0 0 0 0 0 0 0 0 0 0

bLn mod 2 0 1 1 0 1 1 0 1 1 0 1 1

2kFn + bLn mod 2 0 1 1 0 1 1 0 1 1 0 1 1

Since 2kFn is a multiple of 2, 2kFn ≡ 0 mod 2. Also, b ≡ 1 mod 2 so bLn mod 2 has the same

periodic structure as Ln mod 2. Therefore, for n ≡ 1, 2 mod 2, ν2(2
kFn + bLn) = 0. For this

section choose b ≡ 3 mod 4. When b ≡ 1 mod 4, the coming results follow similarly.

n 0 1 2 3 4 5 6 7 8 9 10 11

2kFn mod 4 0 0 0 0 0 0 0 0 0 0 0 0

Ln mod 4 2 1 3 0 3 3 2 1 3 0 3 3

bLn mod 4 2 3 1 0 1 1 2 3 1 0 1 1

2kFn + bLn mod 4 2 3 1 0 1 1 2 3 1 0 1 1

Since 2kFn is a multiple of 4, 2kFn ≡ 0 mod 4. From the table for n ≡ 0 mod 6,

ν2(2
kFn + bLn) = 1. Now all that is left to check is 2kFn + bLn mod 8 for n ≡ 3 mod 6.
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For this section choose b ≡ 3 mod 8. When b ≡ 1, 5, 7 mod 8, the following results follow

similarly. Also, if k ≥ 3, then 2kFn ≡ 0 mod 8 and the result would follow trivially, so

assume k = 2.

n 0 1 2 3 4 5 6 7 8 9 10 11

Fn mod 8 0 1 1 2 3 5 0 5 5 2 7 1

2kFn mod 8 0 4 4 0 4 4 0 4 4 0 4 4

Ln mod 8 2 1 3 4 7 3 2 5 7 4 3 7

bLn mod 8 6 3 1 4 5 1 6 7 5 4 1 5

2kFn + bLn mod 8 6 7 5 4 1 5 6 3 1 4 5 1

Again, the concern is only for n ≡ 3 mod 6. Here it is observable that 2kFn + bLn is not

equivalent to 0 mod 8. So ν2(2
kFn + bLn) ≤ 2 for all n. Thus the formula for ν2(2

kFn + bLn)

holds.

Theorem 4.2. For a ∈ Z,

ν2(aFn + 2Ln) =



ν2(Ln) + 1 a ≡ 0 mod 8

ν2(Ln+3) a ≡ 1 mod 2

ν2(Ln+1) + 2 a ≡ 10 mod 32

ν2(bLn+2) + 2 a ≡ 14 mod 32

ν2(Ln+4) + 2 a ≡ 18 mod 32

ν2(Ln+5) + 2 a ≡ 22 mod 32.

Note that for a ≡ 2, 4, 6, 12, 20, 24, 26, 28, or 30 mod 32, ν2(aFn + 2Ln) is indeterminate, and

must be evaluated on a case-by-case basis.

Example 4.3. Taking a = 3, it follows that ν2(3Fn + 2Ln) = ν2(Ln+3).

Example 4.4. Taking a = 10, it follows that ν2(10Fn + 2Ln) = ν2(4Ln+1).

Example 4.5. Taking a = 2, it follows from Corollary 2.4 that

ν2(aFn + 2Ln) = ν2(2Fn + 2Ln) = ν2(4Fn+1) = ν2(Fn+1) + 2.
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Theorem 4.6. For b ∈ Z,

ν2(Fn + bLn) =



ν2(Ln+3) b ≡ 2 mod 4

ν2(Ln−1) + 1 b ≡ 3 mod 16

ν2(Ln−2) + 1 b ≡ 9 mod 16

ν2(Ln+2) + 1 b ≡ 7 mod 16

ν2(Ln+1) + 1 b ≡ 13 mod 16.

This theorem partially characterizes the 2-adic valuations of generalized Fibonacci se-

quences of the form Fn + bLn. These particular values for b were chosen because they reveal

an explicit formula. All of these formulas are related to ν2(Ln). We suspect that the other

values of b mod 16 will have explicit formulas related to ν2(Fn) but it could not be determined

in general.

5 3-adic Valuations

Some results from the specific case Sn = Fn + 2Ln have been simple to extend to all gener-

alized Fibonacci sequences fn, and are presented as such.

Theorem 5.1. There does not exist a generalized Fibonacci sequence fn such that ν3(fn) = 0

for all n.

Proof. We begin by reducing fn = aFn + bLn modulo 3.

Note L2 = 3, so if a ≡ 0 mod 3, the proof is complete.

If b ≡ 0 mod 3, then the proof is complete, as it is well-known that every natural number

is a factor of some Fibonacci number.

We are now left with 4 cases, in particular (a, b) = (1, 1), (1, 2), (2, 1), and (2, 2).

(1, 1) and (2, 1) : F3 + L3 = 2 + 4 = 6.

(1, 2) and (2, 1) : F1 + 2L1 = 1 + 2 = 3.
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Given Lengyel’s formulas for νp(Fn) and νp(Ln), similar behavior is expected from the

sequence νp(Sn), and so we look at it in relation to νp(n). Curiously, there are too many

zero terms between the non-zero terms, and so remove remove them as follows.

Definition 5.2. For simplicity, we define {ν∗p(Sl)} = {νp(Sn) | νp(Sn) 6= 0}. Similarly,

{ν∗p(l)} = {νp(n) | νp(n) 6= 0}.

Example 5.3. The case for p = 3: ν3(Sn) 6= 0 for n ≡ 1 mod 4, which can be see by

examining the period modulo 4 and noticing that the only zero terms in ν3(Sn) mod 4 are

when n ≡ 1 mod 4, and so the sequence {ν∗3(Sl)} consists of every term in {ν3(Sn)} where

the index is congruent to 1 modulo 4.

Comparing the graphs of ν∗3(Sl) and ν∗3(l) it becomes evident that the latter is a shifted

version of the former, up to some degree of accuracy.
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Figure 1: On the left, the first 50 terms of the sequence {ν∗3(Sl)}. On the right, the first 50

terms of the sequence {ν∗3(l + 23)}.

Notice that both of the preceding graphs are precisely equal, except for the 47th term,

which is off by 1. More factors can be found that yield increasingly higher accuracy, the

first few of which, ignoring multiplicity, are 23, 1805, 174578, 351725. Interestingly, 351725

is accurate up to at least the first 2 million terms in the sequence.

Conjecture 5.4. Fix a prime p 6= 2 such that νp(Sn) 6= 0. Then, for all m ∈ N, there exists

some Km such that ν∗p(Sl) = ν∗p(l +Km) for all l ≤ m.
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The base-3 expansions of those first terms mentioned are as follows:

23 = 2123

1805 = 21102123

174578 = 222121102123

351725 = 1222121102123.

These seem to be converging to some 3-adic number.

Now considering shifting factors that return the same accuracy, it can be seen that the

numbers 23, 104, and 266 all share an accuracy of 46 non-zero terms. Considering all shifting

factors that return an accuracy of at least 46 non-zero terms, we see that there appears to

be trend in how accurate a particular shifting factor is.
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Figure 2: Here we mark the x-axis with the shifting factors of the generalized Fibonacci

sequence Fn + 2Ln, while the y-axis denotes the accuracy of the shift.

In the figure above, it becomes clear that all shifting factors between 0 and 20,000 repeat the

same accuracies, namely 46, 127, and 870. Note that beyond 20,000, these numbers continue

to show a similar pattern (differing only by a slow growth), but become increasingly more

difficult to compute. Though the idea has not undergone much testing, this trend contributes

to the belief that the values of Km can be determined using a closed-form formula.
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Conjecture 5.5. Consider the sequence {Km}. If p = 3, then Km → c, where c is some

3-adic number, as m→∞.

This begs the question: why is 3 special? This leads into the next conjecture.

Conjecture 5.6. (1) Existence of ni

For all natural numbers i, there exists an ni such that 3i | Sni
.

(2) Convergence under 3-adic Metric

ni → γ as i→∞ for some 3-adic number γ.

Attempted proofs for Conjecture 5.6 are as follows.

5.6.1 Binet’s formulas for Fn and Ln:

Binet’s formulas are as follows:

Fn =
ϕn − (−ϕ)−n√

5
and Ln = ϕn + (−ϕ−n),where ϕ =

1 +
√

5

2
.

We show that
√

5 /∈ Q3.

First, if
√

5 was in Z3, then x2 ≡ 5 ≡ 2 mod 3. Consideration of x ≡ 0, 1, 2 mod 3 shows

that there are no solutions. So,
√

5 /∈ Z3.

Now, if it were an element of Q3, then one would see ν3(x
2) = 2ν3(x) < 0. However,

notice that ν3(x
2) = ν3(5) = 0, thus providing a contradiction.

As such, Binet’s formulas could not be used since there was no ability to discuss 1+
√
5

2
.

5.6.2 Periods of Fn and Ln Modulo 3i:

It is known that Fn and Ln are periodic modulo m for any integer m. The goal was to find an

index ni such that Fn + 2Ln ≡ 0 mod 3i for any i, which is equivalent to saying {ni} exists.

However, the index where the linear combination yielded a zero modulo powers of 3 could

not be determined. Therefore it was not definitive that there exists zeros of Fn+2Ln mod 3i.
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5.6.3 The Identity Ln = Fn + 2Fn−1:

Using the well-known formula above, we have

Sn = Fn + 2Ln

= Fn + 2(Fn+1 + Fn−1)

= Fn + 2(Fn + Fn−1 + Fn−1)

= 3Fn + 4Fn−1.

Taking the 3-adic valuation of both sides yields

ν3(Sn) = ν3(3Fn + 4Fn−1)

= min(ν3(Fn) + 1, ν3(Fn−1)) if ν3(Fn) + 1 6= ν3(Fn−1).

It is well-known that any 3 consecutive Fibonacci numbers are pairwise coprime, and so it

is clear that if 3 | Fn, then 3 - 4Fn−1, and thus one can only show that there exist indices

such that ν3(Sn) = 0.

Theorem 5.7. If the sequence {ni} exists and converges to some 3-adic number γ, then

Sγ = 0 in the 3-adics.

Proof. By definition, Sγ is infinitely divisible by 3, which is precisely 0 in the 3-adics.

Theorem 5.8. Suppose that sequences {nj} and {nk} exist where nj is the first index such

that 3j | Snj
, and nk is the first index such that ν3(Snk

) ≥ k. Both of these sequences converge

to the same limit as {ni}, some 3-adic number γ.

Proof. It is clear that in the limiting case, both Snj
and Snk

are infinitely divisible by 3. Thus,

in the 3-adics, they are equivalent to 0, and thus it is clear that they must also converge to

γ.

Theorem 5.9. Suppose that one can always find a shifting factor Km for p = 3, then the

sequence ni exists and converges to γ.

Proof. It is clear that ν∗3(n) can be made arbitrarily large by considering powers of 3. So,

by considering terms n = 3j −Km, notice that ν∗3(Sn) = j for some arbitrary j. However,

ν∗3(Sn) is just the removal of the zero terms from ν3(Sn), and so ν3(Sn) can clearly be made

arbitrarily large, and thus, by Theorem 5.8, the proof is complete.
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6 Prime Characterizations

It is well-known that no Lucas number is divisible by 5, and so ν5(Ln) = 0. Primes that

return a p-adic valuation for the sequence Sn = Fn + 2Ln can also be found, and a partial

list is as follows.

Theorem 6.1. If p ∈ {13, 19, 29, 37, 41, 47, 53, 61, 89, 97, 107}, then νp(Sn) = 0.

Proof. For all p ∈ {13, 19, 29, 37, 41, 47, 53, 61, 89, 97, 107}, Sn mod p is periodic with period

according to the following table.

p 13 19 29 37 41 47 53 61 89 97 107

π(p) 28 18 14 76 40 32 108 60 44 196 72

Calculating νp(Sn) up to n = π(p) shows that because none of the terms are 0, νp(Sn) ≤ 0,

and thus νp(Sn) = 0.

What remains curious are the primes that always return a p-adic valuation of 0. Checking

first few terms in the On-Line Encyclopedia of Integer Sequences (OEIS) [5], it became clear

that those primes had a particularly interesting property: either 5qp± 6 was prime for some

q, or p = 5qp0 ± 6 for some q and some other prime p0.

However, it became clear that this seemed to be true for any prime p, which leads to the

following conjecture.

Conjecture 6.2. If p ≥ 5 is prime, then at least one of the following holds for some q ∈ N.

1. At least one of 5pq ± 6 is prime, or

2. p is of the form p = 5pq0 ± 6 for some other prime p0.

This has been tested for the first 10 million primes. Curiously, most of the exponents

q are quite small, indeed less than 10. Only few, comparatively, require exponents much

higher.

It appears as though this can be extended to the following:
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Conjecture 6.3. Given primes p0 and p̃ such that p̃ ± 1 and p0 are relatively prime, so

(p̃± 1, p0) = 1, then there exists some integer q ≥ 0 such that

p̃qp0 ± (p̃± 1)

is prime. Furthermore, every prime can be expressed in this form for some p0 and p̃.

7 Completeness of Lucas Numbers

Are there any natural numbers which cannot be expressed in terms of Lucas numbers? If

we were to allow multiplicity, then the statement is trivial, as 1 is a Lucas number. What

happens if this is disallowed? Brown [2] provides information on sequences which can be

used to express every natural number in a non-trivial manner.

Definition 7.1. A sequence {bn} is complete if every natural number can be expressed by

summing the terms of a subsequence {bni
}. That is,

k =
∞∑
i=0

δibi,

where δi = 0 or 1.

Theorem 7.2 (Brown). Without loss of generality, assumed the sequence {an} is nonde-

creasing. {an} is complete if, and only if, the following criteria are met:

1. a0 = 1

2. The partial sums sk−1 ≥ ak + 1 for all k ≥ 1, where k ∈ N

Corollary 7.3 (Brown). If a0 = 1 and 2an ≥ an+1 for all n ≥ 1, where n ∈ N, then the

sequence {an} is complete.

Theorem 7.4. The Lucas numbers, Ln, are complete.

Proof. Let {L′n} be the set of Lucas numbers arranged in nondecreasing order. In this case,

we can define L′n = L′n−1 + L′n−2 for all natural numbers n ≥ 4.
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The first requirement of Corollary 7.3 is clearly true, and so the only trouble is the second

requirement. The first cases where the recurrence does not hold follow as such:

2L′0 = 2 = L′1

2L′1 = 4 ≥ 3 = L′2

2L′2 = 6 ≥ 4 = L′3.

Now, given any natural number k ≥ 4, it is clear that L′k ≥ L′k−1. It follows that

Lk ≥ Lk−1

2Lk ≥ Lk−1 + Lk

2Lk ≥ Lk+1.

This, together with the first cases where the recurrence does not hold, proves that the second

requirement is satisfied. Now, this shows that {L′n} is complete. However, the ordering on

the set does not affect the completeness, and thus it follows that {Ln} is complete.

We have shown that every natural number can be represented by the Lucas numbers,

but is there anything interesting about those representations? For the Fibonacci numbers,

Zeckendorf [8] was able to provide a characterization of the representations for the Fibonacci

sequence.

Theorem 7.5 (Zeckendorf). Any natural number has a unique representation of the form

n =
∞∑
i=0

εiFi,

where εi = 0 or 1, and εiεi+1 = 0.

It was later shown by Daykin [4] that the Zeckendorf represenation was also a character-

ization of the Fibonacci sequence.

Theorem 7.6 (Daykin). If {an} is a sequence with unique Zeckendorf representations, then

{an} is strictly increasing and {an} = {Fn}.

What has yet to be seen is whether or not there is a Zeckendorf representation in the

Lucas numbers. The proof that these representations do exist follows similarly to the proof

of Zeckendorf’s Theorem given in [3].
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Theorem 7.7. Every natural number n has a Zeckendorf representation in the Lucas num-

bers.

Proof. We proceed by induction. If n = 1, 2, 3, or 4, then the representation is clear, as those

are all Lucas Numbers. Now, take k = 5. Then we have

n = 5 = 1 + 4 = L1 + L3.

Suppose that every natural number n ≤ k has a Zeckendorf representation.

Now, for n = k + 1, we have two possibilities.

Case 1: If k + 1 is a Lucas number, then the proof is complete.

Case 2: If k+ 1 is not a Lucas number, then there exists some j such that Lk < k+ 1 <

Lj+1. Consider a = k + 1 − Lj. Because a < k, a has a Zeckendorf representation in the

Lucas numbers.

Lj + a = k + 1

Lj + a < Lj + Lj−1

a < Lj−1.

From this, it is clear that the Zeckendorf representation of a in the Lucas numbers does not

contain Lj−1. As such, the Zeckendorf representation of k + 1 is the representation of a in

the Lucas numbers plus Lj. Thus, every natural number has a Zeckendorf represenation in

the Lucas numbers.

It is clear from Theorem 7.6 that despite the fact that there is a Zeckendorf representation

in the Lucas numbers, it won’t be unique. For example, we could take 12 = L1 + L5 =

L0 + L2 + L4.

Furthermore, there is no Zeckendorf representation for generalized Fibonacci sequences

as we could take (f0, f1) = (1, 3), and thus there is no representation of 2.
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Abstract

Methods for determining p-adic convergence of sequences which are expressible in

terms of products of factorials are established. The Catalan sequence is investigated,

using these methods, for p-adically convergent subsequences. An infinite class of con-

vergent subsequences of Catalan numbers is found for every prime, and the limits of

these subsequences are evaluated.

1 Introduction

1.1 The p-adic numbers

A student familiar with introductory analysis will be familiar with the construction of R as a

completion of Q. In this construction of R, its elements are defined as equivalence classes of

sequences in Q which are Cauchy convergent with respect to the familiar Euclidean distance

metric.

The p-adic field, denoted Qp, is a second completion of Q. Instead of the familiar Eu-

clidean metric, it uses a metric induced by the p-adic norm.

Definition 1.1. The p-adic valuation of an integer n, denoted νp(n), is defined to be the

greatest power of p that divides n. For a rational number x = a
b
, define νp(x) = νp(|a|) −

νp(|b|). The p-adic norm of x is defined as |x|p = p−νp(x).
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Example 1.2. ν5(35) = 1, because only one power of 5 divides 35, and |35|5 = 5−ν5(35) =

5−1 = 1
5
. ν5(25) = 2, so |25|5 = 5−ν5(25) = 5−2 = 1

25
.

The p-adic metric is defined as the p-adic norm of the difference of two numbers in Qp.

As noted, the completion of Q under the p-adic metric yields Qp. A detailed account of the

completion of Q to Qp can be found in [FG].

1.2 Convergence in Zp

The definition of p-adic convergence is analogous to that of convergence with respect to the

Euclidean metric.

Definition 1.3 (p-adic Convergence). Given a sequence {an} ∈ Qp, we say that {an} con-

verges p-adically if for all k ≥ 1, there exists an N ∈ N such that for all m, n > N,

|am − an|p ≤ p−k.

Example 1.4. In Qp, lim
n→∞ p

n = 0. This is because as n increases, νp(p
n) = n increases, and

thus |pn|p = p−n tends to 0.

The sequence {pn + 1}, however, tends to 1. This is because νp(p
n + 1) = 0 for all n, and

thus for all n, |pn + 1|p = p0 = 1.

Because elements of combinatorial sequences are natural numbers, to investigate the con-

vergence of the sequences it is superfluous to work in Qp. Instead, one need only work in

the completion of Z under the p-adic metric; this is a subset of Qp called the p-adic integers

(denoted Zp). It is well-known that Zp is a compact subset of Qp, which is itself a metric

space. Thus, every combinatorial sequence has convergent subsequences in Zp.

Investigating the convergence of these subsequences with respect to the p-adic metric has

a few important advantages. The most important of these is that the p-adic metric satisfies

a strong-triangle inequality.

Proposition 1.5 (Strong Triangle Inequality). For all x, y ∈ Qp,

|x− y|p ≤ max{|x|p, |y|p}.
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Using the strong triangle inequality, it can be shown that a sequence converges p-adically if

and only if its difference sequence converges.

Proposition 1.6 (Convergence Criterion). In Qp, a sequence {an} converges if and only if

the sequence {an+1 − an} converges.

For proofs of Proposition 1.5 and Proposition 1.6, see [FG] or [SK].

Finally, we note an equivalent statement of the definition of p-adic convergence.

Proposition 1.7 (Equivalent Definition of p-adic Convergence). In Qp, a sequence {an}

converges if and only if for all k ≥ 1, it is eventually constant modulo pk. Furthermore, {an}

converges to a limit L if and only if for all k ≥ 1, it is eventually constant to L modulo pk.

Proof. Given k ≥ 1 and sufficiently large m and n,

|f(n)− f(m)|p ≤ p−k if and only if νp(f(n)− f(m)) ≥ k

if and only if f(n)− f(m) ≡ 0 (mod pk)

if and only if f(n) ≡ f(m) (mod pk),

proving the first statement of Proposition 1.7. The proof of the second statement is almost

identical.

Note that it is easy to see that pn → 0 using Proposition 1.7. Given k ≥ 1, for all n > k,

pn ≡ 0 (mod pk).

1.3 Catalan Numbers

This paper finds p-adic limits of subsequences of the Catalan numbers, C(n). The Catalan

numbers are a famous sequence of natural numbers with numerous combinatorial interpre-

tations. For example, they count the number of ways to balance n pairs of parentheses (i.e.,

such that each open parathesis is closed and each closed parenthesis is opened). For example,

3 pairs of paretheses can be arranged in the following ways.

((())), ()()(), (())(), ()(()), (()()).

Thus, C(3) = 5.
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The Catalan numbers have a convenient closed form in terms of the central binomial

coefficients:

C(n) =
1

n+ 1

(
2n

n

)
.

We can use this formula to check that C(3) is indeed 5.

C(3) =
1

4

(
2 · 3

3

)
=

6!

4 · 3!2
=

5 · 6
3!

= 5.

Finally, the closed form can be used to derive a recurrence for consecutive Catalan numbers.

C(x+ 1) =
2(2x+ 1)

x+ 2
C(x).

2 Finding the p-adic Limit of C(apn)

In this section,

lim
n→∞ C(apn)

is determined for all a ∈ N.1

Example 2.1. Data generated in Mathematica suggest that {C(2n)} converges. The fol-

lowing graphic shows the binary expansion of C(2n) for n = 1, 2, . . . , 25. The ith row and jth

column gives the coefficient on 2j−1 of C(2i). Coefficients with value 1 are represented by a

black dot, those with value 0 by a white dot.

Figure 1: Binary expansions of the first 25 terms of the sequence C(2n); the power of 2

increases from left to right.

For example, the first row shows the binary representation of C(1) = 1. In binary, 1 =

1 + 0 · 2 + 0 · 22 + · · · . The coefficient 1 on 20 is represented by the black dot in the first

1This limit is a p-adic limit, as are all other limits stated in this paper.
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column, and the 0 coefficients on the remaining powers of 2 are represented by white dots

in the remaining columns.

It is perhaps easiest to see why Figure 1 suggests that {C(2n)} converges by appealing to

Proposition 1.6. The binary expansion of C(2n) − C(2n−1) can be obtained by subtracting

the n − 1st row from the nth row. The resulting binary expansion has a 0 coefficient for all

powers of 2 for which the coefficient of C(2n) agrees with that of C(2n−1). As n increases,

Figure 1 indicates that the binary expansion of C(2n) − C(2n−1) has a 0 coefficient for an

increasingly long string of powers of 2 (starting with 20). This indicates that the 2-adic

valuation of C(2n)−C(2n−1) is increasing with n, and thus that |C(2n)−C(2n−1)| is tending

to 0.

For general a and p, to find the limit of {C(apn)} it suffices to find the limit of {
(

2apn

apn

)
}.

This is demonstrated by the following lemma.

Lemma 2.2. In Zp, lim
n→∞ C(apn) = lim

n→∞

(
2apn

apn

)
.

Proof. Let k ≥ 1 be arbitrary. Given n > k, note that∣∣∣∣ 1

apn + 1

(
2apn

apn

)
−
(

2apn

apn

)∣∣∣∣
p

< p−k if and only if νp

[
1

apn + 1

(
2apn

apn

)
−
(

2apn

apn

)]
> k,

so it suffices to show the latter. We have

νp

[
1

apn + 1

(
2apn

apn

)
−
(

2apn

apn

)]
= νp

[(
1

apn + 1
− 1

)(
2apn

apn

)]
= νp

(
apn

apn + 1

)
+ νp

[(
2apn

apn

)]
≥ n > k,

as desired.

Thus, the problem of finding the limit of {C(apn)} can be reduced to that of finding the

limit of the sequence of central binomial coefficients {
(

2apn

apn

)
}. The elements of this latter

sequence can be expressed in terms of the well-known gamma function. On Z, the gamma

function is defined to be

Γ(n) = (n− 1)!.
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We can thus write (
2apn

apn

)
=

Γ(2apn + 1)

(Γ(apn + 1))2
.

But since we are concerned with convergence in Zp, it will be more useful to write
(

2apn

apn

)
in

terms of a p-adic analog to the gamma function.

Definition 2.3 (p-adic Gamma Function). Let p be prime, and x ∈ Zp. The p-adic gamma

function, Γp(x), is defined to be the unique continuous p-adic interpolation of the function

taking the following values over N.

Γp(n) = (−1)n
n−1∏
k=1
p-k

k , and Γp(0) = 1.

For a detailed exposition of the p-adic gamma function, including a proof of its existence

and uniqueness, see [FG]. The following proposition can be used to prove Lemma 2.5, which

expresses
(

2apn

apn

)
in terms of the p-adic gamma function.

Proposition 2.4. For all primes p and all n ∈ N,

n! =

⌊
n

p

⌋
!Γp(n+ 1)(−1)n+1pb

n
pc.

Proof. We have

Γp(n+ 1) = (−1)n+1

n∏
k=1
p-k

k =
(−1)n+1(n)!

n−1∏
k=1
p|k

k

=
(−1)n+1(n)!

pb
n
pc
⌊
n
p

⌋
!
.

Solving for n! gives the result.

Lemma 2.5. For all primes p and all a ∈ N,(
2apn

apn

)
=

(
2a

a

) n∏
i=1

Γp(2ap
i)

Γp(api)2
.

Proof. We first use Proposition 2.4 to express (apn)! which gives

(apn)! = (apn−1)!Γp(ap
n + 1)(−1)ap

n+1pap
n−1

. (2.1)

This is a first-order recursion on n. It can be used to show via induction that

(apn)! = a!p
apn−a
p−1 (−1)

∑n
i=1 ap

i+1

n∏
i=1

Γp(ap
i + 1). (2.2)
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For the base case (n = 0), we have (ap0)! = a! = a!p0.

For the inductive step, assume that Equation 2.2 holds when n = k. Then

(apk+1)! = (apk)!Γp(ap
k+1 + 1)(−1)ap

k+1+1pap
k

=

[
a!p

apk−a
p−1 (−1)

∑k
i=1 ap

i+1

k∏
i=1

Γp(ap
i + 1)

]
Γp(ap

k+1 + 1)(−1)ap
k+1+1pap

k

= a!p
apk+1−a

p−1 (−1)
∑k+1

i=1 ap
i+1

k+1∏
i=1

Γp(ap
i + 1),

completing the induction and proving that Equation 2.2 holds for all n. It can thus be shown

that (
2apn

apn

)
=

(2apn)!

(apn)!2
=

(2a)!(−1)n

(a!)2

n∏
i=1

Γp(2ap
i + 1)

Γp(api + 1)2
=

(
2a

a

) n∏
i=1

Γp(2ap
i)

Γp(api)2
,

the desired result.

Lemma 2.2 and Lemma 2.5 imply that

C(apn)→
(

2apn

apn

)
→
(

2a

a

) ∞∏
i=1

Γp(2ap
i)

Γp(api)2
, (2.3)

if the latter converges. To show this, one more lemma is needed.

Lemma 2.6. Let p be prime and let a ∈ N. In Zp, lim
n→∞ Γp(ap

n) = 1.

Given Lemma 2.6, Equation 2.3, stated here as a theorem, can be proven.

Theorem 2.7 (Limits of Catalan Subsequences). For all primes p and all a ∈ Z, the p-adic

limit of C(apn) exists and is given by

lim
n→∞ C(apn) =

(
2a

a

) ∞∏
i=1

Γp(2ap
i)

Γp(api)2
.

Note: An elementary proof that {C(apn)} converges (not that it approaches the stated

limit) is given in an Appendix (Section 6).

Proof of Theorem 2.7. By Lemma 2.2 and Lemma 2.5, it suffices to show that

∞∏
i=1

Γp(2ap
i)

Γp(api)2
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converges.

To do so, fix k ≥ 1, and let n > k be arbitrary. Then∣∣∣∣∣
n∏
i=1

Γp(2ap
i)

Γp(api)2
−

n−1∏
i=1

Γp(2ap
i)

Γp(api)2

∣∣∣∣∣
p

=

∣∣∣∣∣
(
n−1∏
i=1

Γp(2ap
i)

Γp(api)2

)(
Γp(2ap

n)

Γp(apn)2
− 1

)∣∣∣∣∣
p

=

∣∣∣∣∣
n−1∏
i=1

Γp(2ap
i)

Γp(api)2

∣∣∣∣∣
p

·
∣∣∣∣Γp(2apn)

Γp(apn)2
− 1

∣∣∣∣
p

= 1 ·
∣∣∣∣Γp(2apn)

Γp(apn)2
− 1

∣∣∣∣
p

→ 0,

where lim
n→∞

(
Γp(2apn)

Γp(apn)2
− 1
)

= 0 because by Lemma 2.6, Γp(2ap
n)→ 1 and Γp(ap

n)→ 1.

We conclude this section by proving Lemma 2.6.

Proof of Lemma 2.6. By Proposition 1.7, to prove Lemma 2.6 it thus suffices to prove that

for all k ≥ 1 and all sufficiently large n,

Γp(ap
n) ≡ 1 (mod pk). (2.4)

To verfiy this, taking n > k will suffice. For such n,2

Γp(ap
n) = (−1)ap

n


(1) · · · (pn − 1)

(pn + 1) · · · (2pn − 1)
...

((a− 1)pn + 1) · · · (apn − 1)


≡ (−1)ap

n

((1) · · · (pn − 1))a (mod pk)

= (−1)ap
n



(1) · · · (pk − 1)

(pk + 1) · · · (2pk − 1)
...

(pk+1 − pk + 1) · · · (pk+1 − 1)

(pk+1 + 1) · · · (pk+1 + pk − 1)
...

(pn − pk + 1) · · · (pn − 1)



a

(mod pk)

2The arrays here are not matricies. Each row is a product, and the rows are being multiplied together.

They are displayed in this way because it makes it easier to see what the terms of Γp(apn) are equivalent to

modulo pk.
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≡ (−1)ap
n (

(1) · · · (pk − 1)
)apn−k

(mod pk)

≡ (−1)ap
n

(pk − 1)ap
n−k ≡ (−1)ap

n

(−1)ap
n−k ≡ (−1)ap

n−k(1+pk) ≡ 1 (mod pk).

The second to last equivalence is due to the fact that the factors of the product (1) · · · (pk−

1) are precisely the elements of the multiplication group (Z/pkZ)×. After multiplying in-

verses, pk − 1, which is its own inverse, remains. The last equivalence follows because either

apn−k or 1 + pk is even. This proves Equation 2.4.

As was noted at the beginning of the proof, Equation 2.4 implies that for arbitrary k and

all n > k,

Γp(ap
n)− 1 ≡ 0 (mod pk),

so that

νp(Γp(ap
n)− 1) ≥ k,

and finally

|Γp(apn)− 1|p ≤ p−k.

Example 2.8. This example demonstrates Lemma 2.6 for the case where a = 1 and p = 2.

For an arbitrary k ≥ 1 and n > k,

Γp(2
n) = (−1)2n(1)(3) · · · (2n − 3)(2n − 1).

The power of (-1) clearly evaluates to 1. The remainder of the expression can be further

expanded by writing

Γp(2
n) =

︷ ︸︸ ︷
(1)(3) · · · (2k − 1)

︷ ︸︸ ︷
(2k + 1)(2k + 3) · · · (2k+1 − 1) · · ·

︷ ︸︸ ︷
(2n−1 + 1)(2n+1 + 3) · · · (2n − 1) .

As the braces indicate, the product can be divided into sections containing 2k

2
= 2k−1 terms.

There are 2n

2k
= 2n−k such sections. The first is (1)(3) · · · (2k − 1), and the rest are all of the

form

(2l + 1)(2l + 3) · · · (2l+1 − 1),

where l runs from k to n− 1. Thus each section is equivalent to

(1)(3) · · · (2k − 1) (mod 2k),
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and we have that

Γp(2
n) ≡

(
(1)(3) · · · (2k − 1)

)2n−k

(mod pk).

As noted in the proof of Lemma 2.6, the product (1)(3) · · · (2k − 1) contains precisely the

elements of (Z/2kZ)×. Now

(
(1)(3) · · · (2k − 1)

)2 ≡ 1 (mod pk),

because when one copy of (1)(3) · · · (2k − 1) is multiplied by a second copy, every element of

the group is multipled by its inverse, yielding 1. Thus, since in the expression for Γp(2
n) the

product (1)(3) · · · (2k − 1) is raised to a multiple of 2, we get that Γp(2
n) ≡ 1 (mod pk) for

all k ≥ 1 and all n > k. By Proposition 1.7, this implies that Γp(2
n)→ 1.

The next section uses the fact that lim
n→∞ C(apn) is known to find lim

n→∞ C(apn + r) for all

r ∈ Z.

3 Finding the Limit of C(apn + r)

Given that lim
n→∞ C(apn) is known, it is not hard to find lim

n→∞ C(apn + r) for all r ∈ Z. The

latter limit is thus presented as a corollary to Theorem 2.7.

Corollary 3.1. Let r ∈ Z and let L = lim
n→∞ C(apn). Then

lim
n→∞ C(apn + r) =


C(r) · L if r > 0

−1
2
L if r = −1 and p 6= 2

0 if r < −1.

Proof. Each case will be proven using induction and the recurrence

C(x+ 1) =
2(2x+ 1)

x+ 2
C(x),

with the base case C(0) = 1. Begin with the r > 0 case. For the base case (r = 1), we have

C(apn + 1) =
2(2apn + 1)

apn + 2
C(apn)→ 2

2
· L = C(1) · L,

as desired.
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For the inductive step, suppose that C(apn + r)→ C(r) · L. Then

C(apn + r + 1) =
2(2(apn + r) + 1)

apn + r + 2
C(apn + r)→ 2(2r + 1)

r + 2
C(r) · L = C(r + 1) · L,

proving the r > 0 case.

For the cases for which r < 0, rewrite the recurrence as

C(x) =
(x+ 2)

2(2x+ 1)
C(x+ 1).

If r = −1, then

C(apn − 1) =
apn − 1 + 2

2(2(apn − 1) + 1)
C(apn) =

apn + 1

4apn − 2
C(apn)→ −1

2
· L,

as desired.

For the base case of the r < −1 case, we have

C(apn − 2) =
apn − 2 + 2

2(2(apn − 2) + 1)
C(apn − 1) =

apn

4apn − 6
C(apn − 1)→ 0

−6
· −1

2
· L = 0.

Now suppose that C(apn − r) = 0. Then for the inductive step,

C(apn−r−1) =
apn − r − 1 + 2

2(2(apn − r − 1) + 1)
C(apn−r) =

apn − r + 1

4apn − 4r − 3
C(apn−r)→ r − 1

4r + 3
·0 = 0,

completing the r < −1 case and proving the theorem.

We note two interesting consequences of Corollary 3.1. First, since lim
n→∞

C(apn+r)
C(apn)

= C(r)

even when r < 0, it suggests a definition of C(n) for n < 0. Such a defintion would, for

example, give C(−1) = −1/2.

Secondly, Corollary 3.1 implies that C(n) does not converge p-adically. This is because

for a fixed a we can choose distinct values of r that yield convergent subsequences with

different limits.

Proposition 3.2. For any prime p, {C(n)} does not converge p-adically.

Proof. Given a prime p, suppose that {C(n)} converges p-adically. Then every infinite

subsequence of {C(n)} converges to the same limit. But consider the two subsequences

{C(pn + 1)} and {C(pn + 2)}. By Corollary 3.1,

lim
n→∞

(
C(pn + 1)

C(pn + 2)

)
=
C(1)

C(2)
=

1

2
6= 1,

contradicting that all subsequences of {C(n)} approach the same limit.
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4 An Alternative Way of Stating the Limit of C(apn)

Theorem 2.7 showed that

lim
n→∞ C(apn) =

(
2a

a

) ∞∏
i=1

Γp(2ap
i)

Γp(api)2
. (4.1)

The goal of this section is to find a more illuminating expression of these limits. Hence, we

arrive at the following proposition.

Proposition 4.1. The limits in (4.1) can be written as(
2a

a

) ∞∏
i=1
p-i

i2blogp(i/a)c−blog(i/2a)c.

The proof of Proposition 4.1 requires a lemma similar to Lemma 2.6.

Lemma 4.2. Let p be prime and let a ∈ N. In Zp,

lim
n→∞ (Γp(ap

n))n = 1.

Proof. The proof of Lemma 2.6 showed that for all k ≥ 1,

Γp(ap
n) ≡ (−1)ap

n

((1) · · · (pk − 1))ap
n−k ≡ 1 (mod pk).

Thus (Γp(ap
n))n ≡ 1n ≡ 1 (mod pk), so (Γp(2ap

n)n → 1, proving Lemma 4.2.

Proposition 4.1 can now be proven.

Proof of Proposition 4.1. The goal is to prove that

∞∏
i=1

Γp(2ap
i)

Γp(api)2
=
∞∏
i=1
p-i

i2blogp(i/a)c−blogp(i/2a)c.

We have

n∏
i=1

Γp(2ap
i)

Γp(2api)2
=

(1 · · · (2ap− 1))n((2ap+ 1) · · · (2ap2 − 1))n−1 · · · ((2apn−1 + 1) · · · (2apn − 1))

[(1 · · · (ap− 1))n((ap+ 1) · · · (ap2 − 1))n−1 · · · ((apn−1 + 1) · · · (apn − 1))]2
.

Factoring out a copy of each factor raised to n, we thus have(
Γp(2ap

n)

Γp(apn)2

)n
(1 · · · (2ap− 1))0((2ap+ 1) · · · (2ap2 − 1))−1 · · · ((2apn−1 + 1) · · · (2apn − 1))n−1

[(1 · · · (ap− 1))0((ap+ 1) · · · (ap2 − 1))−1 · · · ((apn−1 + 1) · · · (apn − 1))n−1]2
.
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The factor on the right has a nice form as the product of coprime numbers raised to

logarithmically increasing powers. The whole expression is written as follows.

(
Γp(2ap

n)

Γp(apn)2

)n
apn−1∏
i=1
p-i

(
i2blogp(i/a)c

)
2apn−1∏
i=1
p-i

(
iblogp(i/2a)c

) =

(
Γp(2ap

n)

Γp(apn)2

)n
apn−1∏
i=1
p-i

(
i2blogp(i/a)c−blogp(i/2a)c

)
2apn−1∏
i=apn+1

p-i

(
iblogp(i/2a)c

)

=

(
Γp(2ap

n)

Γp(apn)2

)n
apn−1∏
i=ap+1
p-i

(
i2blogp(i/a)c−blogp(i/2a)c

)
2apn−1∏
i=apn+1

p-i

(in−1)

=

(
Γp(2ap

n)

Γp(apn)2

)n(
Γp(ap

n)

Γp(2apn)

)n−1 apn−1∏
i=ap+1
p-i

(
i2blogp(i/a)c−blogp(i/2a)c

)

=

(
Γp(2ap

n)

Γp(apn)n+1

) apn−1∏
i=ap+1
p-i

(
i2blogp(i/a)c−blogp(i/2a)c

)
.

The result follows from Lemma 4.2 and Lemma 2.6.

Using Proposition 4.1, lim
n→∞ C(2n) (see Example 2.1) can be expressed nicely as a product

numbers coprime to 2 raised to logarithmically increasing powers.

Example 4.3. In Zp, lim
n→∞ C(2n) = 2 · 3 · (5 · 7)2 · (9 · 11 · 13 · 15)3 · · · . This is an infinite

product consisting of blocks of 2n consecutive odd numbers raised to the n+ 1st power.

5 Conclusion

Combinatorial sequences, while they may not have limits, are integer sequences, and as such

they have convergent subsequences by compactness of the p-adic integers. Sometimes the

form of these limits can be difficult to characterize explicitly. In the case of the Catalan

numbers, the sequence does not converge p-adically. However, we have an infinite class of

increasing subsequences which have limits.
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The limits of these subsequences appear to resist evaluation by any standard means (such

as power series expansions, or continuity). However, we have evaluated the p-adic limit of

the subsequence C(apn), and even more generally C(apn + r), where a is a constant and

r ∈ Z. The limits of these sequences can be written as an infinite product of numbers which

don’t divide p, raised to powers increasing logarithmically.

5.1 Open Problems

It remains an open problem to characterize all convergent subsequences of Catalan numbers

as well as to find the limits of these subsequences. The methods used to answer these ques-

tions will no doubt present their utility in a similar analysis of other combinatorial sequences.

Furthermore, it is unknown whether or not the limits established here are transcendental

over the rational numbers.

6 Appendix: An Elementary Proof that {C(apn)} Con-

verges

Proposition 1.7 states that to show that a sequence {f(n)} converges p-adically, it suffices

to show that its elements are eventually constant modulo arbitrarily large powers of p. This

equivalent definition of p-adic convergence is useful because there are existing results on

factorials, binomial coefficients, and Catalan numbers modulo powers of primes. One such

result is used to prove

Theorem 6.1. For all primes p and all a ∈ N, {C(apn)}n≥0 converges p-adically.

The proof of Theorem 6.1 relies on a 1997 result due to Granville.

Theorem 6.2 (Granville 1997). Let n be an integer, and write n = γ0 + γ1p + · · · + γdp
d

in base p. For j ≥ 0 and pk a power of p, define nj to be the least positive residue of b n
pj
c

(mod pk) (so that nj = γj + γj+1p + · · · + γj+k−1p
k−1). Define (nj!)p to be the product of

numbers ≤ nj that are coprime with p. Then

n! ≡ pνp(n!)(δ(p, k))νpk (n!)
∏
j=≥0

(nj!)p (mod pk),
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where δ(p, k) =

1 if p = 2 and k ≥ 3

−1 otherwise.

Since C(n) = (2n)!
n!(n+1)!

, applying Theorem 6.2 to C(n) yields

C(n) ≡ δνpk (C(n))pνp(C(n))

P(n)︷ ︸︸ ︷∏
j≥0((2n)j)!p∏

j≥0(nj)!p
∏

j≥0((n+ 1)j)!p
(mod pk). (6.1)

Theorem 6.1 uses the case n = apn. To show that {C(apn)} is eventually constant modulo

pk, it thus suffices to show that all three components of the right-hand side of (Equation 6.1)

(the power of δ, the power of p, and P(n)) are eventually constant modulo pk.

Proof of Theorem 6.1. Fix k ≥ 1. Write a = α0 + α1p+ · · ·+ αmp
m in base p (αi 6= 0 for all

i), so that apn = α0p
n + · · ·+αmp

n+m in base p. To show that δνpk (C(apn)) and pνp(C(apn)) are

eventually constant modulo pk, it is clearly sufficient to show that νpk(C(apn)) is constant

for all n. This is an easy application of Legendre’s 1808 result that νp(n!) = n−s(n)
p−1

, where

s(n) is the sum of the base-p coefficients of n. We have

νpk(C(apn)) = νpk

(
(2apn)!

((apn)!)2

)
= νpk((2apn)!)− 2νpk(n!)

=
2apn − s(2apn)

p− 1
− 2

apn − s(apn)

p− 1

=
2apn − s(2apn

p− 1
− 2apn − 2s(apn)

p− 1

=
2s(apn)− s(2apn)

p− 1
,

which does not vary with n.

Thus, all that remains to show is that P(apn) is eventually constant. This expression

can be simplified considerably by showing that

(apn + 1)j =

ap
n
0 + 1 if j = 0

apnj if j 6= 0

(6.2)

and that

(2apn)j = 2(apnj ) for all j. (6.3)
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To verify Equation 6.2, note that the base-p expansion of apn + 1 differs from that of apn

only in that its p0 coefficient is 1, whereas the p0 coefficient of the base-p expansion apn is 0.

The p0 coefficient is included in apnj = ajp
j + aj+1p

j+1 + · · ·+ aj+k−1p
j+k−1 only when j = 0;

thus, (apn + 1)0 = apn0 + 1 for j = 0 and (apn + 1)j = apnj otherwise.

To verify Equation 6.3, simply note that for all j

(2apn)j = b2ap
n

pj
c (mod pk) = 2apn−j (mod pk) = 2bap

n

pj
c (mod pk) = 2apnj .

Applying Equation 6.2 and Equation 6.3 to P(apn) gives

P(apn) =

∏
j≥0((2apn)j)!p∏

j≥0(apnj )!p
∏

j≥0((apn + 1)j)!p
=

2

apn0 + 1
·

P ′(apn)︷ ︸︸ ︷∏
j≥1

(2apnj )!p

((apnj )!p)2
.

Clearly, this is eventually constant modulo pk if apn0 and P ′(apn) are. It is easy to check that

the former is constant for all n > k. P ′(apn) varies with n only if the set {apnj }j≥1 does.

Define

apnJ = {apnj }j≥1.

Then P ′(apn) is eventually constant modulo pk if apnJ is constant for all sufficiently large n.

To prove this, it suffices to take n > k. Given such an n, write apn = anp
n + an+1p

n+1 +

· · · + an+mp
n+m, where an+i = αi for i ∈ {0, . . . ,m}. For j ∈ N \ {n − k + 1, . . . , n + m},

apnj = 0, since none of an through an+m (the non-zero coefficients of the base-p expansion of

apn) appears as a coefficient of apnj for any such j. Thus there are n+m− (n− k) = m+ k

values of j for which apnj is non-zero (crucially, this number does not depend on n). Running

j from n−k+1 to n+m, we get that apnJ = {α0p
k−1, α0p

k−2 +α1p
k−1, . . . , αm−1 +αmp, αm}.

None of the elements of this set depends on n, as desired.

Retracing the steps of the proof, showing that apnJ is eventually constant modulo an arbi-

trary power of p (say pk) was sufficient to show that P ′(apn), and thus P(apn), is eventually

constant modulo pk. This was was needed to prove our original objective, that Equation

6.1 is eventually constant modulo pk. Furthermore, recall that this is sufficient to show

convergence because for all k and sufficiently large m and n,

|f(n)− f(m)|p ≤ p−k if and only if f(n) ≡ f(m) (mod pk).
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Showing that apnJ is eventually constant modulo pk is thus crucial step of the proof. It is

also its most difficult step. The following example is meant to give the reader a better sense

of apnJ , and of why it is eventually constant, by way of the sequence {C(pn)}.

Example 6.3. Suppose that a = 1, so that apn = pn. Fix k = 3. For a given n > 3, the

base-p expansion of pn = anp
n = 1 · pn has only one non-zero coefficient, so for all j ≥ 1,

pnj = aj + aj+1p+ aj+2p
2 will have at most one non-zero term. If none of j, j + 1, or j + 2 is

n, then pnj =0; thus, pnj = 0 for all j ∈ N \ {n − 2, n − 1, n}. For the remaining values of j,

we have tht pnn−2 = p2, pnn−1 = p, and pnn = 1, so that pnJ = {1, p, p2}. The cardinality of this

set, 3 = 0 + 3 = m+ k, does not depend on n, and neither do its elements.

Notice that taking n > k = 3 is necessary because if n = 2, for instance, p2
1 = p, p2

2 = 1,

and p2
j = 0 for all j > 2. Thus p2

J = {1, p}; p2 is excluded from p2
J because there are no j for

which aj+2 is non-zero.
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Abstract

The Franel numbers are the sums of the cubes of binomial coefficients. This se-

quence is of great interest. They are the first power for which the sums are not defined

by a closed form formula. Primes may be partitioned with respect to the p-adic valu-

ations of Franel numbers: those whose valuation is always 0, those whose valuation is

equal to the number of occurrences of a particular digit in base-p, and those which fall

into neither category. Furthermore, the 2-adic valuations of the Franel numbers have

interesting properties. The goal of this paper is to investigate the properties of these

numbers.
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1 Introduction

The sums of the first and second powers of the binomial coefficients are

n∑
k=0

(
n

k

)
= 2n and

n∑
k=0

(
n

k

)2

=

(
2n

n

)
,

respectively. The Franel numbers are the sums of the third powers.

Definition 1.1. Let n ∈ N.1 The nth Franel number, denoted Fran, is

n∑
k=0

(
n

k

)3

.

The Franel numbers are the first sum of powers of binomial coefficients that do not have

a closed form expression. In [PWZ], Petkovsek, Wilf and Zeilberger show that the Franel

numbers do not have a closed form as a finite sum of hypergeometric functions. However,

1Throughout, N denotes the set of natural numbers, { 0, 1, . . . }, while Z+ denotes the set of positive

integers, { 1, 2, . . . }.
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Franel, after whom the numbers are named, derives a second order recurrence formula and

proof for the Franel numbers in [Fr].

Theorem 1.2. Let n ≥ 2 be a natural number. Then

n2 Fran =
(
7n2 − 7n+ 2

)
Fran−1 +8(n− 1)2 Fran−2

with Fra0 = 1 and Fra1 = 2.

Example 1.3 illustrates the second order recurrence of the Franel numbers.

Example 1.3. A few of the first Franel numbers are

Fra5 =
5∑

k=0

(
5

k

)3

= 2252,

Fra4 =
4∑

k=0

(
4

k

)3

= 346,

Fra3 =
3∑

k=0

(
3

k

)3

= 56.

Then, the values are replaced in the recurrence equation and the following is the result:

52(2252) = 56300 = (142)(346) + 128(56) =
(
7 ∗ 52 − 7 ∗ 5 + 2

)
(346) + 8(5− 1)2(56).

It is not clear that the Franel recurrence yields an integer sequence. Section 4 investigates

which initial conditions of the Franel recurrence yield integer sequences. Additionally, the

divisibility of the Franel numbers will be discussed.

Definition 1.4. Let p be a prime. Let n ∈ N. The p-adic valuation of n, denoted νp(n),

is the highest power of p that divides n.

Example 1.5.

1. The 3-adic valuation of 24, ν3(24) = 1, since 31 | 24 but 32 - 24.

2. The 2-adic valuation of any odd number is 0, since no odd number is divisible by 2.

If νp(Fran) = 0 for some prime p for all n ∈ N, then no Franel number is divisible by p.

These primes, which will be referred to as type I, will be discussed in Section 2.

Using the Mathematica code below, the p-adic valuations for Fra0,Fra1, . . . ,Franmax were

evaluated.
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Table[IntegerExponent[Franel[n],5],{n,0,nmax}]

where

Franel[n ]:=Sum[Binomial[n,k]^3,{k,0,n}]

After much experimentation, it was found that for some primes, which will be referred to as

type II, the p-adic valuation of the nth Franel number is given by the number of occurrences

of a particular digit in the base-p representation of n. This is discussed in Section 2.

During experimentation with the above code, it was seen that 2-adic valuations of the

Franel numbers seem to have a different structure than valuations with other primes. A

thorough treatment of the topic is given in Section 3.

A few results tangential to the main study are presented in Section 4 and potential

directions for future research are given in Section 5.

2 Prime types

Based on the valuations of the Franel numbers, a natural partition of the primes into types

arises. Prior to this paper, this partition does not seem to exist within the literature. The

goal of this section is to classify the primes are of each type.

Definition 2.1.

(a) A prime p is type I if p does not divide any Franel number.

(b) A prime p is type II if νp(Fran) = Cp
(
n, p−1

2

)
for all n ∈ N, where Cp(n, k) is the

number of k’s in the base-p representation of n.

(c) A prime p is type III if p is neither type I nor type II.

2.1 The prime 3

Fermat’s little Theorem will be applied in Proposition 2.2. As this is a well known result,

the proof is omitted.
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Fermat’s Little Theorem (FLT). Let p be a prime. Let a ∈ Z. Then

ap ≡ a (mod p).

Using this, the modular residues of the Franel numbers are determined.

Proposition 2.2. Let n ∈ N. Then

Fran ≡

1 (mod 3) if n is even

2 (mod 3) if n is odd.

Proof. Observe

Fran =
n∑
k=0

(
n

k

)3
FLT≡

n∑
k=0

(
n

k

)
(mod 3)

= 2n ≡ (−1)n (mod 3)

=

 1 if n is even

−1 if n is odd
≡

1 (mod 3) if n is even

2 (mod 3) if n is odd.

The type of the prime 3 is now determined.

Theorem 2.3. The prime 3 is type I.

Proof. This follows immediately from Proposition 2.2.

2.2 Divisibility using modular arithmetic and valuations

One may recover several results regarding the divisibility of Franel numbers using modular

arithmetic and p-adic valuations. The goal of this subsection is to explore these applications.

2.2.1 Preliminaries

Functions for the sum of the digits of a number are introduced, as they will appear in the

discussion.

Definition 2.4. For any prime p and any n ∈ N, define Sp(n) to be the sum of base-p digits

of n.
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Example 2.5. Consider the prime 2 and the number 346. The base-2 representation of 346

is 1010110102. Thus,

S2(346) = 1 + 0 + 1 + 0 + 1 + 1 + 0 + 1 + 0 = 5.

Lemma 2.6 and its proof were given by Legendre in [Le].

Lemma 2.6. Let p be a prime. Let n ∈ N. Then

νp(n!) =
∞∑
i=1

⌊
n

pi

⌋
=
n− Sp(n)

p− 1
.

From this, the p-adic valuations of the binomial coefficients are obtained.

Corollary 2.7. Let p be a prime. Let n, k ∈ N. Then

νp

((
n

k

))
=
Sp(n− k) + Sp(k)− Sp(n)

p− 1
.

Proof. The proof follows directly from Lemma 2.6.

Additionally, note the following relation regarding the sums of digits of base-p represen-

tations of a number, given in [JLF].

Lemma 2.8. Let p be a prime number. Let n1, n2, . . . , nk ∈ N. Then

Sp(n1) + Sp(n2) + · · ·+ Sp(nk) ≥ Sp(n1 + n2 + · · ·+ nk)

with equality if and only if there are no carries in the base-p sum of n1, n2, . . . , and nk.2

Proof. The lemma is proven for k=2 and the general result follows by induction. Each carry

in the base-p sum of 2 numbers subtracts p from the two digits being added, and adds 1 to

the sum of the next two digits. That is, each carry reduces the digit sum by p− 1. Since p

is prime, p ≥ 2. That is, p − 1 ≥ 1. The result follows due to the fact that the number of

carries is nonnegative.

Theorem 2.9 is given by Strehl in [S]. The proof is reproduced here as well.

2For example, there are 2 carries in the base-10 sum 279 + 541 = 820.
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Theorem 2.9. Let n ∈ N. Then

Fran =
n∑
k=0

(
n

k

)2(
2k

n

)
.

Proof. The nth Franel number can be rewritten as:

Fran =
∑
k

(
n

k

)3

=
∑
i+j=n

(
n

i

)(
n

j

)(
i+ j

i

)
=
∑
i+j=n

(
n

i

)(
n

j

)∑
k

(
i

k

)(
j

k

)

=
∑
k

(
n

k

)2 ∑
i+j=n

(
n− k
n− i

)(
n− k
n− j

)

=
∑
k

(
n

k

)2 ∑
i+j=n

(
k

i

)(
k

j

)

=
∑
k

(
n

k

)2(
2k

n

)
.

Motivated by Theorem 2.9, the function g is defined as follows.

Definition 2.10. For any n, k ∈ N, define

g(n, k) =

(
n

k

)2(
2k

n

)
.

Note. For any n ∈ N,

Fran =
n∑
k=0

g(n, k)

by Theorem 2.9.

The divisibility of g(n, k) by p can be determined as in the lemma below. As the sums

in the lemma will be often used, they are labeled for future referencing.

Lemma 2.11. Let p be a prime. Let n, k ∈ N. Then g(n, k) is not divisible by p if and only

if the sums

k + k = 2k and (n− k) + (n− k) + (2k − n) = n (2.1)

have no carries in the base-p representations.
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Proof. Observe

νp(g(n, k)) = 2νp

((
n

k

))
+ νp

((
2k

n

))
= 2

(
Sp(n− k) + Sp(k)− Sp(n)

p− 1

)
+
Sp(2k − n) + Sp(n)− Sp(2k)

p− 1

(Corollary 2.7)

=
2Sp(k)− Sp(2k) + 2Sp(n− k) + Sp(2k − n)− Sp(n)

p− 1

=
γ(n, k) + δ(n, k)

p− 1
,

where

γ(n, k) = Sp(k) + Sp(k)− Sp(2k)

and

δ(n, k) = Sp(n− k) + Sp(n− k) + Sp(2k − n)− Sp(n).

By Lemma 2.8 (where n1 = k, n2 = k for γ and n1 = n− k, n2 = n− k, and n3 = 2k− n for

δ), γ and δ are nonnegative. Thus, νp(g(n, k)) = 0 if and only if γ(n, k) = 0 and δ(n, k) = 0.

Therefore, by Lemma 2.8, νp(g(n, k)) = 0 if and only if (2.1) has no carries in the base-p

sums.

Theorem 2.12 and its proof were given by Lucas in [Lu].

Theorem 2.12. Let p be a prime. Let n = ndnd−1 · · ·n0 and k = kdkd−1 · · · k0 be natural

numbers with their associated base-p representations, allowing for leading zeroes in the latter.

Then (
n

k

)
≡

d∏
j=0

(
nj
kj

)
(mod p).

With an additional condition, a similar congruence holds for the function g.

Corollary 2.13. Notation as in Theorem 2.12. If n and k are such that (2.1) has no carries

in the base-p sums, then

g(n, k) ≡
d∏
j=0

g(nj, kj) (mod p).
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Proof. Suppose n, k are such that (2.1) has no carries in the base-p sums. Then kj <
p
2

for

each digit kj of k. Thus, (2k)j = 2kj for each digit (2k)j of 2k. Therefore,

g(n, k) =

(
n

k

)2(
2k

n

)

≡

(
d∏
j=0

(
nj
kj

))2 d∏
j=0

(
(2k)j
nj

)
(mod p) (Theorem 2.12)

=
d∏
j=0

(
nj
kj

)2(
2kj
nj

)
=

d∏
j=0

g(nj, kj).

2.2.2 The prime 3 (revisited)

An alternate proof that 3 is type I is presented. This proof, based on the proof of Theorem

2 in [JLF], starts with a lemma.

Lemma 2.14. Let n, k ∈ N. Then (2.1) has no carries in the base-3 sums if and only if for

each digit n∗ in the base-3 representation of n, the following correspondence holds:

n∗ = 0↔ k∗ = 0

n∗ = 1↔ k∗ = 1

n∗ = 2↔ k∗ = 1.

where k∗ is the digit of the base-3 representation of k corresponding to n∗.

Proof.

(⇒) Suppose the sums have no carries. Let n∗ be a digit in the base-p representation of n.

Note that by the first sum, k∗ ≤ 3−1
2

= 1, else there is a carry. Suppose n∗ = 0. Then

by the second sum, k∗ = 0, else (n− k)∗ = 2, and there is a carry. The cases of n∗ = 1,

n∗ = 2, n∗ = 3, and n∗ = 4 are similar.

(⇐) Suppose the correspondence holds. Then clearly there are no carries in the sums.

Example 2.15. Let n = 142 = 120213 (120213, for example, denotes 142 in base-3). Then

k = 130 = 111113 is such that (2.1) has carries in the base-3 sums. In particular, the second

sum has a carry in the third least significant digit.
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Example 2.16. Let n = 142 = 120213. Then k = 112 = 110113 is the unique k such that

(2.1) has no carries in the base-3 sums. This k is obtained by replacing each 2 in the base-3

representation of n by 1, each 1 by 1, and each 0 by 0. Uniqueness is given by Lemma 2.14.

Corollary 2.17. Let n, k ∈ N. Then g(n, k) is not divisible by 3 if and only if the corre-

spondence from Lemma 2.14 holds.

Proof. The proof follows directly from Lemma 2.11.

Example 2.18. Let n = 15 = 1203 and k = 14 = 1123. Then g(15, 11) is divisible by

3, since n and k do not follow the correspondence of Lemma 2.14. This may be checked

numerically by observing that g(15, 14) = 8424486000 ≡ 0 (mod 3).

Example 2.19. Let n = 15 = 1203 and k = 12 = 1103. Then g(15, 12) is not divisible

by 3, since each digit of n and k follows the correspondence of Lemma 2.14. This may be

checked numerically by observing that g(15, 12) = 270686015600 ≡ 2 (mod 3). Additional

numerical checks verify that k = 12 is the unique k such that g(15, k) is not divisible by 3.

A new proof of Theorem 2.3, restated here, is presented.

Theorem 2.3. The prime 3 is type I.

Proof. Let n, k ∈ N. By Corollary 2.17, g(n, k) is not divisible by 3 if and only if the

correspondence of digits from Lemma 2.14 holds. Thus, there exists a unique k0, given by

the correspondence of digits with n, such that g(n, k0) is not divisible by 3. Thus,

Fran =
n∑
k=0

g(n, k) ≡ g(n, k0) 6≡ 0 (mod 3).

2.2.3 The prime 5

Next, the prime 5 is discussed, beginning with a lemma.

Lemma 2.20. Let n, k ∈ N. Then (2.1) has no carries in the base-5 sums if and only if for

each digit n∗ in the base-5 representation of n, the following correspondence holds:
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n∗ = 0↔ k∗ = 0

n∗ = 1↔ k∗ = 1

n∗ = 2↔ k∗ = 1 or 2

n∗ = 3↔ k∗ = 2

n∗ = 4↔ k∗ = 2,

where k∗ is the digit of the base-5 representation of k corresponding to n∗.

Proof. The proof is similar to the proof of Lemma 2.14, and so is omitted.

Example 2.21. Let n = 606836 = 1234043215, then

k1 = 1122022115 = 506556

k2 = 1122022215 = 506561

k3 = 1222022115 = 584681

k4 = 1222022215 = 584686

are the unique k’s such that (2.1) has no carries in the base-5 sums. These k’s are found by

replacing each 4 in the base-5 representation of n by 2, each 3 by 2, each 1 by 1, and each 0

by 0. Then, for each 2 in the base-5 representation of n, there are two corresponding values

of that digit of k such that (2.1) has no carries in the base-5 sums, producing 22 = 4 k’s

with no carries. By Lemma 2.20, these k’s are the only such k.

Corollary 2.22. Let n, k ∈ N. Then g(n, k) is not divisible by 5 if and only if the corre-

spondence from Lemma 2.20 holds.

Proof. The proof follows directly from Lemma 2.11.

Corollary 2.23. Let n = ndnd−1 · · ·n0 and k = kdkd−1 · · · k0 be natural numbers with their

associated base-5 representations, allowing for leading zeroes in the latter. If n and k are

such that the correspondence of digits from Lemma 2.20 holds, then

g(n, k) ≡
d∏
j=0

g(nj, kj) (mod 5).
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Proof. The proof follows directly from Corollary 2.13 (with p = 5).

Hellof

Theorem 2.24. Let n ∈ N. Then Fran is divisible by 5 if and only if n contains at least

one 2 in its base-5 representation.

Proof.

(⇒) Suppose n does not contain a 2 in its base-5 representation. By Corollary 2.22, g(n, k)

is not divisible by 5 if and only if the correspondence of digits from Lemma 2.20 holds.

Since there is no 2 in the base-5 representation of n, there exists a unique k0, given by

the correspondence of digits with n, such that g(n, k0) is not divisible by 5. Therefore,

Fran =
n∑
k=0

g(n, k) ≡ g(n, k0) 6≡ 0 (mod 5).

(⇐) Suppose n contains a 2 in its base-5 representation. Let n = ndnd−1 · · ·n0 be the base-5

representation of n. Proceed by induction on the number of digits of n that are 2 in

the base-5 representation.

Case I. Suppose n has q = 1 digit that is 2 in its base-5 representation. Let α be the

index of the digit of n that is 2. Define

k1 = k
(1)
d k

(1)
d−1 · · · k

(1)
0 and k2 = k

(2)
d k

(2)
d−1 · · · k

(2)
0

by using the correspondence of Lemma 2.20 for all digits of k1, k2, so k
(1)
j = k

(2)
j

for j 6= α with k
(1)
α = 1 and k

(2)
α = 2. Since there is exactly one digit of n that is

2 in the base-5 representation, by Corollary 2.22, k1, k2 are the only values of k

such that g(n, k) is not divisible by 5. By Corollary 2.23 (with p = 5, n = n, and

k = k1, k2),

g(n, k1) ≡
d∏
j=0

g
(
nj, k

(1)
j

)
(mod 5)

and

g(n, k2) ≡
d∏
j=0

g
(
nj, k

(2)
j

)
(mod 5).
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Then

Fran =
n∑
k=0

g(n, k) ≡ g(n, k1) + g(n, k2) (mod 5)

≡
d∏
j=0

g
(
nj, k

(1)
j

)
+

d∏
j=0

g
(
nj, k

(2)
j

)
(mod 5)

=

 ∏
j∈S\{α }

g
(
nj, k

(1)
j

)(g(nα, k(1)α

)
+ g
(
nα, k

(2)
α

))
(S = { 0, 1, . . . , d })

≡ 0 (mod 5),

since

g
(
nα, k

(1)
α

)
+ g
(
nα, k

(2)
α

)
= g(2, 1) + g(2, 2) = 10 ≡ 0 (mod 5).

Case II. Suppose n has q > 1 digits that are equal to 2 in its base-5 representation.

Note that there are 2q values of k corresponding to n such that g(n, k) 6= 0

(mod 5). Observe that these k may be paired so that the elements of each pair

differ in only one digit. The base step demonstrates that for each of these 2q−1

pairs, the factor g(2, 1) + g(2, 2) = 10 appears. Therefore, Fran ≡ 0 (mod 5).

2.2.4 Lucas’ theorem for the Franel numbers

A general formulation of the congruence (mod p) of the nth Franel number follows. This is

analogous to Theorem 2.12.

Theorem 2.25. Let p be a prime. Let n = ndnd−1 · · ·n0 be a natural number with its

associated base-p representation. Then,

Fran ≡
d∏
j=0

Fnj
(mod p).

Proof. For each natural number k < pd+1, let k = kdkd−1k0 be the base-p representation

of k, allowing for leading zeroes. Notice that for all natural numbers kj, if kj > nj, then

g(nj, kj) = 0. Thus,

d∏
j=0

Fnj
=

d∏
j=0

nk∑
kj=0

g(nj, kj) =
d∏
j=0

p−1∑
kj=0

g(nj, kj).
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By Lemma 2.11, g(n, k) 6≡ 0 (mod p) if and only if the sums of (2.1) have no carries in the

base-p representations. Thus, by Corollary 2.13,

pd+1−1∑
k=0

g(n, k) ≡
pd+1−1∑
k=0

d∏
j=0

g(nj, kj) (mod p).

Observe that n = n0p
0+n1p

1+ · · ·+ndpd ≤ (p− 1)p0+(p− 1)p1+ · · ·+(p− 1)pd = pd+1−1.

Additionally, pd+1 − 1 ≥ pd − 1 with equality if and only if d = 0. Therefore,

Fn =
n∑
k=0

g(n, k) =

pd+1−1∑
k=0

g(n, k) ≡
pd+1−1∑
k=0

d∏
j=0

g(nj, kj) (mod p)

=

p−1∑
k0=0

p−1∑
k1=0

· · ·
p−1∑
kd=0

d∏
j=0

g(nj, kj) =

p−1∑
k0=0

p−1∑
k1=0

· · ·
p−1∑
kd=0

(g(n0, k0)g(n1, k1) · · · g(nd, kd))

=

p−1∑
k0=0

· · ·
p−1∑

kd−1=0

[g(n0, k0) · · · g(nd−1, kd−1)g(nd, 0) + g(n0, k0) · · · g(nd−1, kd−1)g(nd, 1) + · · ·+

g(n0, k0) · · · g(nd−1, kd−1)g(nd, p− 1)]

=

p−1∑
k0=0

· · ·
p−1∑

kd−1=0

d−1∏
i=0

g(ni, ki)
d∏
j=d

p−1∑
kj=0

g(nj, kj)

=

p−1∑
k0=0

· · ·
p−1∑

kd−2=0

[[g(n0, k0) · · · g(nd−1, 0)g(nd, 0) + · · ·+ g(n0, k0) · · · g(nd−1, 0)g(nd, p− 1)]+

[g(n0, k0) · · · g(nd−1, 1)g(nd, 0) + · · ·+ g(n0, k0) · · · g(nd−1, 1)g(nd, p− 1)] + · · ·+

[g(n0, k0) · · · g(nd−1, p− 1)g(nd, 0) + · · ·+ g(n0, k0) · · · g(nd−1, p− 1)g(nd, p− 1)]]

=

p−1∑
k0=0

· · ·
p−1∑

kd−2=0

d−2∏
i=0

g(ni, ki)
d∏

j=d−1

p−1∑
kj=0

g(nj, kj)

...

=

p−1∑
k0=0

0∏
i=0

g(ni, ki)
d∏
j=1

p−1∑
kj=0

g(nj, kj) =
d∏
j=0

p−1∑
kj=0

g(nj, kj) =
d∏
j=0

Fnj
(mod p).

By applying Theorem 2.25 it is possible to verify if a prime is type I.

Corollary 2.26. A prime number p is type I if and only if p does not divide any of

{Fra0,Fra1, . . . ,Frap−1 }.
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Proof. By Theorem 2.25, for all n ∈ N, Fran 6≡ 0 (mod p) if and only if

Frand
Frand−1

· · ·Fran0 6≡ 0 (mod p), where n = ndnd−1 · · ·n0 is the base-p representation of

n. Since p is prime, for all n ∈ N, p - Fran if and only if p - Frand
,Frand−1

, . . .Fran0 . The

result follows by observing {n∗ : n∗ is a digit of n for some n ∈ N } = { 0, 1, . . . , p− 1 }.

Corollary 2.26 easily recovers Theorems 2.3, 2.24, and 2.41 and provides a list of type I

primes.

Proposition 2.27. The primes 3, 11, 17, 19, 43, 83, 89, 97, 113, 137, 139, 163, 193, 211,

233, 241, 283, 307, 313, 331, 347, 353, 379, 401, 409, 419, 433, 443, 491, 499, 523, 547,

569, 587, 601, 617, 619, 641, 643, 673, 811, 827, 859, 881, 929, 947, 953, and 977 are the

only primes less than 1000 that are type I.

Proof. For each prime p ≤ 1000, numerically check if p divides any of {Fra0,Fra1, . . . ,Frap−1 },

and the result follows by Corollary 2.26.

Additionally, Theorem 2.25 may be used to extend Theorem 2.24.

Theorem 2.28. Let n ∈ N. For the primes p = 5, 7, 13, 23, 31, 37, 47, 53, 71, 101,

103, 167, 181, 191, 197, 199, 223, 229, 263, 271, 293, 317, 349, 383, 397, 431, 439, 461,

479, 503, 509, 541, 557, 599, 607, 613, 647, 653, 677, 709, 719, 727, 733, 743, 751, 757,

797, 821, 823, 839, 877, 887, 911, 919, 991, and 997, Fran is divisible by p if and only if n

contains at least one p−1
2

in its base-p representation.

Proof. For each prime p listed, numerical checks verify that of {Fra0,Fra1, . . . ,Frap−1 }, only

Fra p−1
2

is divisible by p and the result follows by Theorem 2.25.

Example 2.29. By Theorem 2.28, for each n ∈ N, Fran is divisible by the prime 13 if and

only if n contains at least one 6 in its base-13 representation. For example, 13 | Fra19 since

19 = 1613 has a 6 in its base-13 representation, while 13 - Fra20 since 20 = 1713 has no 6 in

its base-13 representation.
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2.2.5 A congruence for prime multiples of indices

The goal of this subsection is to find a congruence relation between Franpr and Franpr−1 . The

proof begins by reformulating Lemma 2.8 to give an exact relation between the sum of the

sum of digits of numbers and the sum of the digits of the sum of numbers.

Lemma 2.30. Let p be a prime. Let n1, n2, . . . , nk ∈ N. Then

Sp(n1) + Sp(n2) + · · ·+ Sp(nk)− Sp(n1 + n2 + · · ·+ nk) = (p− 1)c(n1, n2, . . . , nk),

where c(n1, n2, . . . , nk) denotes the number of carries in the base-p sum n1 + n2 + · · ·nk.

Proof. When k = 2 the lemma follows from the proof of Lemma 2.8. The general result

follows by induction on k.

With Lemma 2.30, an inequality between the valuations of g(n, k) and n is found.3

Lemma 2.31. Let p be a prime. Let n, k ∈ N. If p - k, then

νp(g(n, k)) ≥ νp(n).

Proof. From the proof of Lemma 2.11,

νp(g(n, k)) =
Sp(k) + Sp(k)− Sp(2k) + Sp(n− k) + Sp(n− k) + Sp(2k − n)− Sp(n)

p− 1
.

By Lemma 2.30,

νp(g(n, k)) = c(k, k) + c(n− k, n− k, 2k − n),

where c(k, k) and c(n− k, n− k, 2k − n) denote the number of carries in the base-p sums

k + k = 2k and (n− k) + (n− k) + (2k − n) = n,

respectively.

Define r = νp(n).

Case I. Suppose r = 0. Then the result holds trivially.

3Recall that g(n, k) =
(
n
k

)2(2k
n

)
.
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Case II. Suppose r > 0. It is clear that the r least significant base-p digits of n are 0. Since

p - k, the least significant base-p digit of k is non-zero. Thus, the least significant base-

p digit of n − k is non-zero. Thus, the base-p sum (n− k) + (n− k) + (2k − n) = n

has carries in the r least significant base-p digits. That is, c(n− k, n− k, 2k − n) ≥ r.

Therefore,

νp(g(n, k)) ≥ νp(n).

A similar method of proof shows the following.

Lemma 2.32. Let p be a prime. Let n, k, r, s ∈ N such that r ≥ s. If p - k, then

pr−s | g(npr, kps).

Proof. As seen in the proof of Lemma 2.31,

νp(g(npr, kps)) = c(kps, kps) + c(npr − kps, npr − kps, 2kps − npr),

where c(kps, kps) and c(npr − kps, npr − kps, 2kps − npr) denote the number of carries in the

base-p sums

kps + kps = 2kps and (npr − kps) + (npr − kps) + (2kps − npr) = npr,

respectively.

Case I. Suppose r = s. Then the result holds trivially.

Case II. Suppose r > s. It is clear that the r least significant base-p digits of npr are 0.

Since p - k, the s least significant base-p digits of kps are 0, and the (s+ 1)th least

significant base-p digit of kps is nonzero. Thus, since r > s, the s least significant base-

p digits of npr − kps are 0, and the (s+ 1)th least significant base-p digit of npr − kps

is nonzero. Thus, the base-p sum (npr − kps) + (npr − kps) + (2kps − npr) = npr

has carries in the (s+ 1)th, (s+ 2)th, . . . , rth least significant base-p digits. That is,

c(npr − kps, npr − kps, 2kps − npr) ≥ r − s. Therefore,

νp(g(npr, kps)) ≥ r − s.
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Letting s = 0, the following result ensues.

Corollary 2.33. Let p be a prime. Let n, k, r ∈ N. If p - k, then

pr | g(npr, k),

that is,

g(npr, k) ≡ 0 (mod pr).

Proof. The proof follows directly from Lemma 2.32 (with s = 0).

To proceed, Corollaries 2.34 and 2.35 are necessary. Corollary 2.34 and its proof were

given by Jarvis and Verrill in [JV] as Corollary 5.2.

Corollary 2.34. Let p be an odd prime. Let r ∈ Z+. Let n = ndnd−1 · · ·n0 be a natural

number with its associated base-p representation. Let Nj be the residue of
⌊
n
pj

⌋
modulo pr

(that is, Nj = nj + nj+1p
1 + · · ·+ nj+r−1p

r−1) for each j = 0, 1, . . . , d. Let k = kdkd−1 · · · k0
and l = ldld−1 · · · l0 be natural numbers with their associated base-p representations such that

n = k + l. Make corresponding definitions for Kj, Lj based on Nj. Let e0 be the number of

indices i such that ki + li ≥ p, that is, the number of carries in the base-p sum of k and l.

Then
1

pe0

(
pn

pk

)
≡

(
((pN0)!)p

((pK0)!)p((pL0)!)p

)
· 1

pe0

(
n

k

)
(mod pr).

Additionally, Corollary 2.35 and its proof were given in [JV] as Corollary 5.3. Note

that a slightly different set of hypotheses are given here: rather than the stricter condition

r ≥ s ≥ q, only r ≥ q and s ≥ q are imposed here. That is to say, no specific ordering

between r and s is required. An analysis of the proof shows that this is valid.

Corollary 2.35. Let p be an odd prime. Let n, k, q, r, s ∈ Z+. Let e0 ≤ νp

((
npr

kps

))
. If r ≥ q

and s ≥ q, then
1

pe0

(
npr

kps

)
≡ 1

pe0

(
npr−1

kps−1

)
(mod pq).

That is, (
npr

kps

)
≡
(
npr−1

kps−1

)
(mod pq+e0).

The key to the proof of Theorem 2.37 is now shown.
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Lemma 2.36. Let p be an odd prime. Let r ∈ Z+. Let n, k ∈ N. Then

g(npr, kp) ≡ g
(
npr−1, k

)
(mod pr)

Proof. Write k = jps, where p - j.

Case I. Suppose s + 1 > r. By Corollary 2.35, (with p = p, n = n, k = j, q = r, r = r,

s = s+ 1, and e0 = 0), (
npr

kp

)
=

(
npr

jps+1

)
≡
(
npr−1

jps

)
(mod pr)

=

(
npr−1

k

)
.

Similarly, (
2kp

npr

)
≡
(

2k

npr

)
(mod pr).

Therefore,

g(npr, kp) =

(
npr

kp

)2(
2kp

npr

)
≡
(
npr−1

k

)2(
2k

npr

)
(mod pr)

= g
(
npr−1, k

)
.

Case II. Suppose s + 1 ≤ r. By Lemma 2.32 (with p = p, n = n, k = j, r = r, r − 1, and

s = s+ 1, s), pr−s−1 | g(npr, jps+1) and pr−s−1 | g(npr−1, jps). By Corollary 2.35 (with

p = p, n = npr−s−1, k = j, q = s+ 1, r = r, s = s+ 1, and e0 = r − s− 1),

1

pr−s−1

(
npr

kp

)
=

1

pr−s−1

(
npr

jps+1

)
=

1

pr−s−1

(
ps+1(npr−s−1)

jps+1

)
≡ 1

pr−s−1

(
ps(npr−s−1)

jps

)
(mod ps+1)

=
1

pr−s−1

(
npr−1

jps

)
=

1

pr−s−1

(
npr−1

k

)
.

Similarly,
1

pr−s−1

(
2kp

npr

)
≡ 1

pr−s−1

(
2k

npr−1

)
(mod ps+1).
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Thus, (
1

pr−s−1

)3

g
(
npr, jps+1

)
=

(
1

pr−s−1

)3(
npr

kp

)2(
2kp

npr

)
≡
(

1

pr−s−1

)3(
npr−1

k

)2(
2k

npr−1

)
(mod ps+1)

=

(
1

pr−s−1

)3

g
(
npr−1, jps

)
.

Thus,
1

pr−s−1
· g
(
npr, jps+1

)
≡ 1

pr−s−1
· g
(
npr−1, jps

)
(mod ps+1)

Therefore,

g
(
npr, jps+1

)
≡ g
(
npr−1, jps

)
(mod pr).

Theorem 2.37. Let p be an odd prime. Let r ∈ Z+. Let n ∈ N. Then

Franpr ≡ Franpr−1 (mod pr).

Proof. Notice

Franpr =

npr∑
k=0

g(npr, k)

≡
npr∑
k=0
p|k

g(npr, k) (mod pr) (Corollary 2.33)

=

npr−1∑
j=0

g(npr, jp)

≡
npr−1∑
j=0

g
(
npr−1, j

)
(mod pr) (Lemma 2.36)

= Franpr−1 .

Note. It is believed that Theorem 2.37 is the key to proving that particular primes are type

II. However, no such proof has yet been found. While an inductive proof was previously

attempted, that attempt was made before Theorem 2.37 was available.
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2.3 Divisibility using finite automata

In addition to previously discussed methods, primes may be categorized using finite au-

tomata, which, in this context, are directed graphs used for finding specific values of a

sequence. This subsection is dedicated to the use of this method.

2.3.1 Preliminaries

The following definition and theorem give the basis of this subsection.

Definition 2.38. A directed graph is a finite automaton if there exists k ∈ Z+ such that

each vertex is labeled with an output value and has k edges labeled 0, 1, . . . , k− 1 and there

exists a unique vertex that is the initial state.

Theorem 2.39. Let pr be a prime power. The residues of the Franel numbers, mod pr, are

given by a finite automaton.

Proof. In [E], it is shown that the Franel numbers are the diagonal terms of a generating

function for a rational function. By a result from [RY], this proves that a finite automaton

generates the residues.

Note. The finite automata referenced in Theorem 2.39 may be found by the Integer Se-

quences package of Mathematica provided by Dr. E. Rowland.

2.3.2 Type I primes

By Proposition 2.27, 11 is the next prime after 3 that is type I. A new proof of this fact is

presented using the finite automaton of the mod 11 residues of the Franel numbers.

Lemma 2.40. The following is the finite automaton for determining the residues mod 11 of

the Franel numbers.
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Figure 1: The mod 11 automaton

Proof. Apply Theorem 2.39.

Lemma 2.40 recovers Proposition 2.27 for the prime 11.

Theorem 2.41. The prime 11 is type I.

Proof. In Figure 1 0 does not appear as a state. Therefore, by Lemma 2.40, Fran 6≡ 0

(mod 11) for all n ∈ N.

Using Theorem 2.39, any prime may be checked for the type I property in the same

manner as Theorem 2.41. However, it is seen that generating the finite automata for residues

is significantly more computationally difficult than using Corollary 2.26. However, additional

applications of finite automata are explored in Subsubsection 2.3.3.

2.3.3 Type II and type III primes

Through computer experimentation, it was found that for some primes, which will be re-

ferred to as type II, the p-adic valuation of the nth Franel number is related to the base-p
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representation of n. This conjecture was confirmed in some cases using finite automata. This

discussion starts with the prime 5.

Lemma 2.42. The following is the finite automaton for determining the residues mod 5 of

the Franel numbers.

0,3,4

1

2

0,3,4

2 1

0,1,2,3,4

2 0,3,4

11 2

0,3,4

1

2

0 4

3

Figure 2: The mod 5 automaton

Proof. The proof follows directly from Theorem 2.39.

Example 2.43. Consider the number 113 = 4235. To determine Fra113 (mod 5), begin at

the initial state, indicated by the unlabeled edge in Figure 2. Then, read the digits of 113 in

base-5 starting with the least significant digit. In this case, begin with 3 and remain at the

initial vertex. Then, move to the vertex labeled 0 since the next most significant digit is 2.

Finally, remain at the vertex labeled 0 since the most significant digit is 4. By this process,

it is seen that Fra113 ≡ 0 (mod 5). Numerical checks confirm this congruence.

Lemma 2.42 recovers Theorem 2.24.

Theorem 2.24. Let n ∈ N. Then Fran is divisible by 5 if and only if n contains at least

one 2 in its base-5 representation.
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Proof. Let ndnd−1 · · ·n0 be the base-5 representation of n.

(⇒) Suppose n does not contain a 2 in its base-5 representation. Then by Lemma 2.42,

as the digits n0, n1, . . . , nd are read into the mod 5 automaton, the residue 0 never

appears. Therefore, Fran is not divisible by 5.

(⇐) Suppose n contains a 2 in its base-5 representation. Let α be an index of a digit of n

that is 2 in base-5. By Lemma 2.42, regardless of which state has been reached prior

to reading nα, the state of 0 will be reached after reading nα. Then, since any future

digits return to 0, it is seen that Fran ≡ 0 (mod 5). Therefore, Fran is divisible by

5.

A similar analysis yields the following.

Theorem 2.44. Let n ∈ N. Then Fran is divisible by 25 if and only if n contains at least

two 2’s in its base-5 representation.

Proof. Theorem 2.39 yields the finite automaton for the residues (mod 25) of the Franel

numbers. just as in the proof of Theorem 2.24, by analyzing the automaton, it is seen that 0

(mod 25) is reached if and only if there are two 2’s in the base-5 representation of n. Then,

once two 2’s have been read in the base-5 representation of n, any future digits return to 0.

That is, Fran ≡ 0 (mod 25) if and only if n contains two 2’s in its base-5 representation.

Theorems 2.24 and 2.44 motivate the following definition.

Definition 2.45. For any prime p and any n, k ∈ N, define Cp(n, k) to be the number of

k′s in the base-p representation of p.

Continuing in the spirit of Theorem 2.44, Theorems 2.46, 2.48, 2.50 arise. The proofs are

similar to those of Theorems 2.24 and 2.44, and thus are omitted.

Theorem 2.46. Let n ∈ N. Then Fran is divisible by 125 if and only if n contains at least

three 2’s in its base-5 representation.

Using Theorems 2.24, 2.44, and 2.46, Corollary 2.47 arises. The proofs of Corollaries 2.49

and 2.51 are similar, and so are omitted.
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Corollary 2.47. Let n ∈ N. Then

ν5(Fran)

= C5(n, 2) if C5(n, 2) ≤ 2

> 2 if C5(n, 2) > 2

Proof.

Case I. Suppose C5(n, 2) = 0. By Theorem 2.24, 5 - Fran. Therefore, ν5(Fran) = 0.

Case II. Suppose C5(n, 2) = 1. By Theorem 2.24, 5 | Fran. By Theorem 2.44, 25 - Fran.

Therefore, ν5(Fran) = 1.

Case III. Suppose C5(n, 2) = 2. By Theorem 2.44, 25 | Fran. By Theorem 2.46, 125 - Fran.

Therefore, ν5(Fran) = 2.

Case IV. Suppose C5(n, 3) > 2. By Theorem 2.46, 125 | Fran. Therefore, ν5(Fran) ≥ 3.

Theorem 2.48. Let n ∈ N. Then Fran is divisible by 7 if and only if n contains at least one

3 in its base-7 representation. Additionally, Fran is divisible by 49 if and only if n contains

at least two 3’s in its base-7 representation.

Corollary 2.49. Let n ∈ N. If C7(n, 3) ≤ 2, then ν7(Fran) ≥ C7(n, 3). In particular, if

C7(n, 3) = 1, then ν7(Fran) = C7(n, 3).

Theorem 2.50. Let n ∈ N. Then Fran is divisible by 13 if and only if n contains at least

one 6 in its base-13 representation. Additionally, Fran is divisible by 169 if and only if n

contains at least two 6’s in its base-13 representation.

Corollary 2.51. Let n ∈ N. If C13(n, 6) ≤ 2, then ν13(Fran) ≥ C13(n, 6). In particular, if

C13(n, 6) = 1, then ν13(Fran) = C13(n, 6).

Recall the definition for type II primes, again stated here. Corollaries 2.47, 2.49, and

2.51 motivated Definition 2.52. Due to this definition, Corollaries 2.47, 2.49, and 2.51 will

be collectively referred to as the small prime type II corollaries.

Definition 2.52. A prime p is type II if νp(Fran) = Cp
(
n, p−1

2

)
for all n ∈ N.
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Example 2.53. Observe the following.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n (base-5) 0 1 2 3 4 10 11 12 13 14 20 21 22 23 24

ν5(Fran) 0 0 1 0 0 0 0 1 0 0 1 1 2 1 1

n 15 16 17 18 19 20 21 22 23 24

n (base-5) 30 31 32 33 34 40 41 42 43 44

ν5(Fran) 0 0 1 0 0 0 0 1 0 0

It is apparent that ν5(Fran) = C5(n, 2) for the first 25 natural numbers n. This observation

has been verified computationally for the first million natural numbers. This, with Corollary

2.47 show that it is reasonable to believe that the prime 5 is type II. Similarly, it is reasonable

to believe that the primes 7 and 13 are type II. However, these statements are still conjectures

and have not been proven.

An additional condition to be a type II prime is given.

Theorem 2.54. If a prime is type II, then it is congruent to 5 or 7 (mod 8).

Proof. Let p be a type II prime. Then p | Fra p−1
2

, since νp

(
Fra p−1

2

)
= Cp

(
p−1
2
, p−1

2

)
= 1. By

Corollary 2.5 of [JV], p ≡ 5 (mod 8) or p ≡ 7 (mod 8).

From the small prime type II corollaries, Theorems 2.25 and 2.54, the following conjecture

arises.

Conjecture 2.55. The primes 5, 7, 13, 23, 31, 37, 47, 53, 71, 101, 103, 167, 181, 191, 197,

199, 223, 229, 263, 271, 293, 317, 349, 383, 397, 431, 439, 461, 479, 503, 509, 541, 557, 599,

607, 613, 647, 653, 677, 709, 719, 727, 733, 743, 751, 757, 797, 821, 823, 839, 877, 887, 911,

919, 991, 997 are type II.

Note. The small prime type II corollaries only apply to the primes 5, 7, and 13. That

is, analogous statements have not been proven for the other primes. This means that the

evidence is stronger that the primes 5, 7, and 13 are type II. However, Theorem 2.28 applies

to all of the primes and of course, each prime given is congruent to 5 or 7 mod 5.

The final type of prime is again defined.
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Definition 2.56. A prime p is type III if p is neither type I nor type II.

Example 2.57. Consider the prime 29. It is seen that ν29(Fra12) = ν29(2046924400) = 1

and there are zero 14’s (29−1
2

= 14) in the base-29 representation of 12. That is, C29(12, 14) =

0 6= 1. Thus, 29 is not type II.

Since ν29(Fra12) = 1, Fra12 is divisible by 29. Thus, 29 is not type I. Therefore, 29 is type

III.

While currently only conjectures may be made regarding type II primes, proving that a

prime p is type III may be achieved by finding a counterexample, that is, a natural number

n such that νp(Fran) 6= Cp
(
n, p−1

2

)
, as shown in Example 2.57.

Proposition 2.58. The primes 2, 29, 41, 59, 61, 67, 73, 79, 107, 109, 127, 131, 149, 151,

157, 173, 179, 227, 239, 251, 257, 269, 277, 281, 311, 337, 359, 367, 373, 389, 421, 449,

457, 463, 467, 487, 521, 563, 571, 577, 593, 631, 659, 661, 683, 691, 701, 739, 761, 769,

773, 787, 809, 829, 853, 857, 863, 883, 907, 937, 941, 967, 971, 983 are type III.

Proof. Numerical examples show that these primes are neither type I nor type II.

Note. The primes listed in Conjectures 2.55 and 2.58 do not appear in [OEIS].

3 Exploring 2-adic valuations

The 2-adic valuations of the Franel numbers produce interesting patterns. The outcomes

may be used to produce the following tree which describes the 2-adic valuations of various

Franel numbers of the index n up to 10000. The nodes of the tree below indicate the index

of the Franel number whose 2-adic valuation is being considered. The nodes of the tree that

have circles around them indicate the existence of a recurrence relation with other nodes.

Let m ∈ N, then the tree is created as follows.

It should be noted that this tree is created for n up to 10,000. When n is increased to

350000, at the 3rd level, where the level refers to the number of parent nodes a node has,

there no longer exists a consistent recurrence for any node. However, very few n do not

satisfy the recurrence relation, while the rest of the values of n do. It is seen that the 2-adic
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valuations of the Franel numbers provide certain recursions with a few exceptions, which

appear to be categorizable.

m
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Figure 3: The 2-adic tree

3.1 Observations of the 3rd level of the tree

The following statements apply for n up to 7.7 million.

The relationship between the index n and the nodes of the form am + b is that the node

only applies to the n values that satisfy the form of a particular node, where a = 2c, b < a

and a, b, c ∈ N. For the node of 8m, the exceptions to the previously supposed recurrence

occur at n = 349528, 1398104, 2446680, 3495256, and 4543832.

154



Example 3.1. The Franel number with index 349528 is of the form 8m, where a = 8, b = 0,

and m = 43691. The Franel number with index n = 87385 is of the form 8m + 1, where

a = 8, b = 1 and m = 10923.

The following table is the list of indices that have exceptions to the recurrence found for

n = 8m, the corresponding base-2 representation, and its index in the table, denoted by i.

n base-2 of n i

349528 000|010101010101010110002 0

1398104 001|010101010101010110002 1

2446680 010|010101010101010110002 2

3495256 011|010101010101010110002 3

4543832 100|010101010101010110002 4

5592408 101|010101010101010110002 5

6640984 110|010101010101010110002 6

7689560 111|010101010101010110002 7

Table 1: 8m exceptions

Note that the exceptions of n can be categorized. The last 20 digits on the right of the

base-2 representation are the same for all, but the digits on the left ascend in increasing

order from 0 to 7 in binary corresponding to the index.

Conjecture 3.2. The n terms of the form 8m can be expressed as:

349528 + i× 220,

where i is the corresponding index in the table. This has been verified for n up to 7.7 million.

This result is remarkable because it repeats for other nodes. In particular, the same

pattern is observed for the 8m+ 1, 8m+ 2 and 8m+ 3 nodes.

By observing the exceptions for the 8m + 1 recurrence, it is observed that the last 18

digits on the right of the base-2 representation are the same for all, but the digits on the left

ascend in increasing order starting from 0 in binary corresponding to the index.
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Conjecture 3.3. The n terms of the form 8m+ 1 can be expressed as:

87385 + i× 218,

where i is the corresponding index to the exception. This has been verified for n up to 7.7

million.

The last 19 digits on the right of the base-2 representation are the same for all, but the

digits on the left ascend in increasing order starting from 0 in binary corresponding to the

index.

Conjecture 3.4. The n terms in the form 8m+ 2 can be expressed as:

349530 + i× 219,

where i is the corresponding index to the exception. This has been verified for n up to 7.7

million.

The last 19 digits on the right of the base-2 representation are the same for all, but the

digits on the left ascend in increasing order from starting from 0 in binary corresponding to

the index.

Conjecture 3.5. The n terms in the form 8m+ 3 can be expressed as:

349531 + i× 219,

where i is the corresponding index to the exception. This has been verified for n up to 7.7

million.

It seems that the exceptions can be categorized by formulas given a node. Therefore

8m, 8m+ 1, 8m+ 2, and 8m+ 3 are almost recurrences with certain exceptions of n. Some

areas of concern are that there may be exceptions for other recurrences for greater values

of n. That is, for levels beyond 3 it is believed that there may be certain exceptions to the

supposed recurrences. However, due to computational limitations, this claim has not been

verified.
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3.2 Observations of other levels

The following conjectures have been formulated to describe some of the behavior in the tree.

Conjecture 3.6. For a fixed m, the following relations hold:

(i) ν2(Fra16m+4) + 1 = ν2(Fra16m+5).

(ii) ν2(Fra32m+28) + 2 = ν2(Fra32m+29) + 1 = ν2(Fra32m+30).

(iii) ν2(Fra64m+12)+6 = ν2(Fra64m+13)+5 = ν2(Fra64m+14) = ν2(Fra64m+22)+4 = ν2(Fra64m+15).

(iv) ν2(Fra128m+108) + 6 = ν2(Fra128m+109) + 5 = ν2(Fra128m+110) + 4 = ν2(Fra128m+111).

These conjectures have been verified for n up to 100000.

Upon further investigation of the recurrences listed above, almost every one of these

recurrences is related by the existence of shifts with recurrences in earlier levels, with the

one exception of the node 32m+ 31. Though it is unclear if such a recurrence exists for this

particular node among other nodes, this portion of the tree is under investigation so it can

be compared to other recurrences within the tree. It has been proved that there exists an

exception to the known recurrence of the node 32m+ 31 at n = 5592415. By observing the

base-2 representation of this number, it can be observed that it is 7 digits away from a shift

by a power of 2 of the earlier exceptions for the nodes of level 3. It is unclear why the first

exception occurs at this position, but in order to investigate more, a much greater amount

of data is required.

4 Other results

A few results unrelated to the main topics of discussion are presented here. For example,

almost every Franel number is even.

Proposition 4.1. Every Franel number except Fra0 is even.

Proof. Fra0 = 1 is not even. Let n ≥ 1 ∈ N. Then
n∑
k=0

(
n

k

)3

≡
n∑
k=0

(
n

k

)
= 2n ≡ 0 (mod 2)

Therefore, Fran is even.
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4.1 Initial conditions of the Franel occurrence

While the Franel numbers are given explicitly by a finite sum, a recurrence also gives their

values. The recurrence for the Franel numbers is given again here.

Theorem 1.2. Let n ≥ 2 be a natural number. Then

n2 Fran =
(
7n2 − 7n+ 2

)
Fran−1 +8(n− 1)2 Fran−2

with Fra0 = 1 and Fra1 = 2.

When the initial conditions of the Franel recurrence are of the form i and 2i, integer

sequences result.

Proposition 4.2. Let (Fran,i0,i1)
∞
n=0 denote the sequence generated by the Franel recurrence

with initial conditions Fra0 = i0 and Fra1 = i1. Let i ∈ Z+. Let n ∈ N. Then

Fran,i,2i = iFran,1,2. That is, the sequence generated by the Franel recurrence with initial

conditions i and 2i is simply the sequence of Franel numbers multiplied by i.

Proof. Proceed by induction on n. Let i ∈ Z+.

Base step. Clearly

Fra0,i,2i = i = iFra0,1,2 and Fra1,i,2i = 2i = iFra0,1,2 .

Inductive step. Suppose Fran−1,i,2i = iFran−1,1,2 and Fran−2,i,2i = iFran−2,1,2. Then

n2 Fran,i,2i =
(
7n2 − 7n+ 2

)
Fran−1,i,2i +8(n− 1)2 Fran−2,i,2i

=
(
7n2 − 7n+ 2

)
iFran−1,1,2 +8(n− 1)2iFran−2,1,2 (inductive hypothesis)

= i
((

7n2 − 7n+ 2
)

Fran−1,1,2 +8(n− 1)2 Fran−2,1,2
)

= in2 Fran,1,2 .

Therefore, Fran,i,2i = iFran,1,2 for all n ∈ N.

Corollary 4.3. Notation as in Proposition 4.2. For all positive integers i, the sequence

(Fran,i,2i) is an integer sequence.
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Proof. Apply Proposition 4.2 and the fact that the Franel numbers are integers.

Example 4.4. The Franel numbers have the initial conditions of Fra0 = 1 and Fra1 = 2.

The first 10 elements of the Franel numbers are 1, 2, 10, 56, 346, 2252, 15184, 104960,

739162, and 5280932.

Let Fra0,3,6 = 3 and Fra1,3,6 = 6. Then the first 10 elements of the sequence are 3, 6,

30, 168, 1038, 6756, 45552, 314880, 2217486, and 15842796, as expected, since the initial

conditions of Fra0,3,6 = 3 are 3 times that of the Franel numbers and the elements of Fran,3,6 =

3 are also 3 times the corresponding Franel numbers.

If the initial conditions of the Franel recurrence are not of the form i and 2i, then it is

conjectured that non-integer sequences are produced. For example, consider the sequence

(Fran,3,4). The first 10 elements of the sequence are 3, 4, 22, 121.78, 753.56, 4903.70, 33063.75,

228553.78, 1.61 × 106, and 1.15 × 107 (rounded to two decimal places). It is apparent that

not all of these elements are integers.

The following conjectures arise from Proposition 4.2. Currently, proofs are not available

for these statements, however, Conjecture 4.5 has been verified computationally for i0 up to

500, for i1 up to 1000, among n up to 5000.

Conjecture 4.5. Notation as in Proposition 4.2. The sequence Fran,i0,i1 is an integer se-

quence if and only if i0 = i and i1 = 2i for some i ∈ Z+.

5 Further work

It is clear that more questions can be explored regarding the Franel numbers and similar

sequences. Specifically, a deeper understanding of which primes are which types as well as

of the 2-adic valuations are desired. It also seems that for some type III primes, the p-adic

valuations are bounded below by the amount of occurrences of particular digits (putting em-

phasis on the fact that there are more than one) in the base-p representations. Additionally,

as the Franel numbers are the sums of the cubes of the binomial coefficients, it is natural to

look at the sums of powers of binomial coefficients for higher powers.
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Definition 5.1. Let a ∈ Z+. Let n ∈ N. The nth a-SPB number,4 denoted SPBn,a is

n∑
k=0

(
n

k

)a
.

Example 5.2. The 3-SPB numbers are the Franel numbers.

Example 5.3. The 5-SPB numbers are given by
n∑
k=0

(
n
k

)5
.

1. The 0th 5-SPB number is SPB0,5 =
0∑

k=0

(
0
k

)5
=1.

2. The 1st 5-SPB number is SPB1,5 =
1∑

k=0

(
1
k

)5
=2.

3. The 10th 5-SPB number is SPB10,5 =
10∑
k=0

(
10
k

)5
= 1883210876284.

The following conjecture has been verified computationally for a up to 100 checking the

first 250 primes for divisibility among n up to 2500.

Conjecture 5.4. For each a ∈ Z+, there exists a prime which does not divide any element

of the sequence (SPBn,a)
∞
n=0 if and only if a is odd. That is to say, there exists a type I prime

with regards to the sequence (SPBn,a) if and only if a is odd.

Note that Proposition 4.1 may be generalized.

Proposition 5.5. Let a ∈ Z+. Every a-SPB number except SPB0,a is even.

Proof. The proof is similar to that of Proposition 4.1.

The following conjecture arises from Proposition 5.5. It has been verified computationally

for a up to 250 and for n up to 2500.

Conjecture 5.6. For each positive integer a ≥ 2 and each n ∈ Z+, 1
2

SPBn,a is odd if and

only if n is a power of 2.5

4Note that SPB is used since the numbers are the Sums of Powers of Binomial coefficients. The “C” is

omitted for brevity.
5By Proposition 5.5, 1

2 SPBn,a is even for all a ≥ 2 and all n ∈ Z+.
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