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Our next topic is auctions. Our objective will be to cover a few of the
main ideas and highlights. Auction theory can be approached from different
angles — from the perspective of game theory (auctions are bayesian games
of incomplete information), contract or mechanism design theory (auctions
are allocation mechanisms), market microstructure (auctions are models of
price formation), as well as in the context of different applications (procure-
ment, patent licensing, public finance, etc.). We're going to take a relatively
game-theoretic approach, but some of this richness should be evident.

1 The Independent Private Value (IPV) Model
1.1 A Model

The basic auction environment consists of:
e Biddersi=1,...,n

e One object to be sold

Bidder i observes a “signal” S; ~ F\(-), with typical realization s; €
[s,3], and assume F is continuous.

e Bidders’ signals S, ..., .S, are independent.
e Bidder i’s value v;(s;) = s;.

Given this basic set-up, specifying a set of auction rules will give rise
to a game between the bidders. Before going on, observe two features of
the model that turn out to be important. First, bidder i’s information (her
signal) is independent of bidder j’s information. Second, bidder i’s value is
independent of bidder j’s information — so bidder j’s information is private
in the sense that it doesn’t affect anyone else’s valuation.



1.2 Vickrey (Second-Price) Auction

In a Vickrey, or second price, auction, bidders are asked to submit sealed
bids b1, ..., b,. The bidder who submits the highest bid is awarded the object,
and pays the amount of the second highest bid.

Proposition 1 In a second price auction, it is a weakly dominant strategy
to bid one’s value, b;(s;) = $;.

Proof. Suppose i’s value is s;, and she considers bidding b; > s;. Let
bdenote the highest bid of the other bidders j # ¢ (from 4’s perspective this is
a random variable). There are three possible outcomes from i’s perspective:
(i) b > b, s;; (ii) by > b > s;; or (iii) by, s; > b. In the event of the first or
third outcome, i would have done equally well to bid s; rather than b; > s;.
In (i) she won’t win regardless, and in (ii) she will win, and will pay b
regardless. However, in case (ii), ¢ will win and pay more than her value if
she bids B, something that won’t happen if she bids s;. Thus, ¢ does better
to bid s; than b; > s;. A similar argument shows that i also does better to
bid s; than to bid b; < s;. Q.E.D.

Since each bidder will bid their value, the seller’s revenue (the amount
paid in equilibrium) will be equal to the second highest value. Let S*"
denote the ith highest of ndraws from distribution F' (so S“" is a random
variable with typical realization s%™). Then the seller’s expected revenue is
E [SQ:n] .

The truthful equilibrium described in Proposition 1 is the unique sym-
metric Bayesian Nash equilibrium of the second price auction. There are also
asymmetric equilibria that involve players using weakly dominated strate-
gies. One such equilibrium is for some player i to bid b;(s;) = v and all the
other players to bid b;(s;) = 0.

While Vickrey auctions are not used very often in practice, open as-
cending (or English) auctions are used frequently. One way to model such
auctions is to assume that the price rises continuously from zero and players
each can push a button to “drop out” of the bidding. In an independent pri-
vate values setting, the Nash equilibria of the English auction are the same
as the Nash equilibria of the Vickrey auction. In particular, the unique sym-
metric equilibrium (or unique sequential equilibrium) of the English auction
has each bidder drop out when the price reaches his value. In equilibrium,
the auction ends when the bidder with the second-highest value drops out,
so the winner pays an amount equal to the second highest value.



1.3 Sealed Bid (First-Price) Auction

In a sealed bid, or first price, auction, bidders submit sealed bids b1, ..., by,.
The bidders who submits the highest bid is awarded the object, and pays
his bid.

Under these rules, it should be clear that bidders will not want to bid
their true values. By doing so, they would ensure a zero profit. By bidding
somewhat below their values, they can potentially make a profit some of the
time. We now consider two approaches to solving for symmetric equlibrium
bidding strategies.

A. The “First Order Conditions” Approach

We will look for an equilibrium where each bidder uses a bid strategy
that is a strictly increasing, continuous, and differentiable function of his
value.! To do this, suppose that bidders j # 4 use identical bidding strategies
bj = b(s;) with these properties and consider the problem facing bidder i.

Bidder i’s expected payoff, as a function of his bid b; and signal s; is:

U(bi, Si) = (Si - bz) - Pr [bj = b(SJ) S bi, Vj 7é Z]
Thus, bidder 4 chooses bto solve:
max (s; —b;) F™ 1 (bil(bi)) .
The first order condition is:

1
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(si = bi) (n = 1)F" 72 (b7 (b)) f (b7 (Bs)) o)
At a symmetric equilibrium, b; = b(s;), so the first order condition reduces
to a differential equation (here I'll drop the i subscript):

V(s) = (s — b(s)) (n— 1) ]{:((‘3

— " (b b) =0

This can be solved, using the boundary condition that b(s) = s, to obtain:

% Fn=1(3)ds
b(S) = S — fﬁF‘n——l(i))

n fact, it is possible to prove that in any symmetric equilibrium each bidder must use
a continuous and strictly increasing strategy. To prove this, one shows that in equilbrium
there cannot be a “gap” in the range of bids offered in equilibrium (because then it would
be sub-optimal to offer the bid just above the gap) and there cannot be an “atom” in the
equilibrium distribution of bids (because then no bidder would make an offer just below
the atom, leading to a gap). I’ll skip the details though.



It is easy to check that b(s) is increasing and differentiable. So any symmetric
equilibrium with these properties must involve bidders using the strategy

b(s).
B. The “Envelope Theorem” Approach

A closely related, and often convenient, approach to identify necessary
conditions for a symmetric equilibrium is to exploit the envelope theorem.

To this end, suppose b(s) is a symmetric equilibrium in increasing dif-
ferentiable strategies. Then i’s equilibrium payoff given signal s; is

U (Sz) = (Si — b(sz)) Fn_l(si). (1)
Alternatively, because i is playing a best-response in equilibrium:

U(si) = max (s; — b;) F*~1 (b (i)

7

Applying the envelope theorem (Milgrom and Segal, 2002), we have:

iU (s)

ds = F"7 (07 (b(s:)) = F" ' (s1)

S=3S8;
and also,

zum—v@+/%W1®ﬁ. 2)

S

As b(s) is increasing, a bidder with signal s will never win the auction —
therefore, U(s) = 0.

Combining (1) and (2), we solve for the equilibrium strategy (again drop-
ping the 7 subscript):

f;’ Fr=1(8)ds

b(s) =s— Fi(s)

Again, we have showed necessary conditions for an equilibrium (i.e. any
increasing differentiable symmetric equilibrium must involve the strategy
b(s)). To check sufficiency (that b(s) actually is an equilibrium), we can
exploit the fact that b(s) is increasing and satisfies the envelope formula
to show that it must be a selection from 4’s best response given the other
bidder’s use the strategy b(s). (For details, see Milgrom 2004, Theorems 4.2
amd 4.6).



Remark 1 In most auction models, both the first order conditions and the
envelope approach can be used to characterize an equilibrium. The trick is
to figure out which is more convenient.

What is the revenue from the first price auction? It is the expected
winning bid, or the expected bid of the bidder with the highest signal,
E [b(S*™)]. To sharpen this, define G(s) = F" !(s). Then G is the proba-
bility that if you take n — 1 draws from F', all will be below s (i.e. it is the
cdf of S1"~1). Then,

[2F"1(8)ds 1

) = sy T ) / SAFTTH(E) = B[S < o]

That is, if a bidder has signal s, he sets his bid equal to the expectation of
the highest of the other n — 1 values, conditional on all those values being
less than his own.

Using this fact, the expected revenue is:

E [b (Sln)] —F [Slznfllslznfl < Sl:n] —F [52:71] 7
equal to the expectation of the second highest value. We have shown:

Proposition 2 The first and second price auction yield the same revenue
i expectation.

1.4 Revenue Equivalence

The result above is a special case of the celebrated “revenue equivalence the-
orem” due to Vickrey (1961), Myerson (1981), Riley and Samuelson (1981)
and Harris and Raviv (1981).

Theorem 1 (Revenue Equivalence) Suppose n bidders have values s1, ..., sy,
identically and independently distributed with cdf F(-). Then all auction
mechanisms that (i) always award the object to the bidder with highest value
in equilibrium, and (ii) give a bidder with valuation s zero profits, generates
the same revenue in expectation.

Proof. We consider the general class of auctions where bidders submit bids
b1,...,bn. An auction rule specifies for all ¢,

xTr; B1 X ... X Bn — [0, 1]

t; B1X...><Bn—>R,



where x;(-) gives the probability i will get the object and t;(-) gives i’s
required payment as a function of the bids (b1, ..., b,).2

Given the auction rule, bidder i’s expected payoff as a function of his
signal and bid is:

Ui(SZ‘, bi) = SiEbﬂ. [l‘i(bi, b,i)] — Eb,i [ti(bi, b,i)] .

Let b; (+),b_;(-) denote an equilibrium of the auction game. Bidder i’s equi-
librium payoff is:

Ui (si) = Ui (si,b(s1)) = s F" " () — Bis_, [ta(bi(s), b-i(s_3)] ,

where we use (i) to write Bs_, [z;(b(s;),b(s_))] = F"1(s;).
Using the fact that b(s;) must maximize i’s payoff given s; and opponent
strategies b_;(-), the envelope theorem implies that:

=By, [zi(bi(si),b-i(s—))] = F" ' (s1),

and also

Ui(si) = Us(s) + / i@ = [

ES

where we use (i) to write U;(s) = 0.
Combining our expressions for U;(s;), we get bidder i’s expected payment
given his signal:

By [ti(bi,bi)] = s (s;) — / " El(5)ds — / CsaFm1(s),

where the last equality is from integration by parts. Since z;(-) does not
enter into this expression, bidder i’s expected equilibrium payment given his
signal is the same under all auction rules that satisfy (i) and (). Indeed,
i’s expected payment given s; is equal to:

E [Slzn—l ’ Sl:n—l < Si] —E [52:71 | Sl:n — Si] )
So the seller’s revenue is:

E [Revenue] = nE;, [i’s expected payment | s;] = E [SQ:”] 7

280 in a first price auction, z1 (b1, ..., bn) equals 1 if by is the highest bid, and otherwise
zero. Meanwhile ¢1 (b17 . bn) equals zero unless by is highest, in which case {1 = b1. In a
second price auction, z1(+) is the same, and ¢ (-) is zero unless b is highest, in which case
t1 equals the highest of (b2, ..., bn).



a constant. Q.E.D.

The revenue equivalence theorem has many applications. One useful
trick is that it allows us to solve for the equilibrium of different auctions,
so long as we know that the auction will satisfiy (i) and (ii). Here’s an
example.

Application: The All-Pay Auction. Consider the same set-up — bidders
1,..,n, with values s1, ..., s, identically and independently distributed with
cdf F' — and consider the following rules. Bidders submit bids b1, ..., b, and
the bidder who submits the highest bid gets the object. However, bidders
must pay their bid regardless of whether they win the auction. (These rules
might seem a little strange — the all-pay auction is commonly used as a
model of lobbying or political influence).

Suppose this auction has a symmetric equilibrium with an increasing
strategy b4 (s) used by all players. Then, bidder i’s expected payoff given
value s; will be (if everyone plays the equilibrium strategies):

U(si) = siF™(s5) — bA(s;) = / " F1(5)ds

S

bA(s) = sF"1(s) — / T (3)ds

S

In addition to the all-pay auction, many other auction rules also satisfy
the revenue equivalence assumptions when bidder values are independently
and identically distributed. Two examples are:

1. The English (oral ascending) auction. All bidders start in the auction
with a price of zero. The price rises continuously, and bidders may
drop out at any point in time. Once they drop out, they cannot re-
enter. The auction ends when only one bidder is left, and this bidder
pays the price at which the second-to-last bidder dropped out.

2. The Dutch (descending price) auction. The price starts at a very high
level and drops continuously. At any point in time, a bidder can stop
the auction, and pay the current price. Then the auction ends.



2 Common Value Auctions

We would now like to generalize the model to allow for the possibility that (i)
learning bidder j’s information could cause bidder ¢ to re-assess his estimate
of how much he values the object, and (i) the information of 7 and jis not
independent (when j’s estimate is high, ¢’s is also likely to be high).

These features are natural to incorporate in many situations. For in-
stance, consider an auction for a natural resource like a tract of timber.
In such a setting, bidders are likely to have different costs of harvesting or
processing the timber. These costs may be independent across bidders and
private, much like in the above model. But at the same time, bidders are
likely to be unsure exactly how much merchanteable timber is on the tract,
and use some sort of statistical sampling to estimate the quantity. Because
these estimates will be based on limited sampling, they will be imperfect —
so if 7 learned that j had sampled a different area and got a low estimate,
she would likely revise her opinion of the tract’s value. In addition, if the
areas sampled overlap, the estimates are unlikely to be independent.

2.1 A General Model
e Bidderst=1,...,n
e Signals S, ..., S, with joint density f(-)

e Signals are (i) exchangeable, and (ii) affiliated.

— Signals are exchangeable if s’ is a permutation of s = f(s) = f(s').

— Signals are affiliated if f(s As')f(sV ') > f(s')f(s) (ie. sj|si
has monotone likelihood ratio property).

e Value to bidder i is v(s;, s—;).

Example 1 The independent private value model above is a special case:
Just let v(s;, s—;) = s, and suppose that St, ..., Sy are independent.

Example 2 Another common special case is the pure common value model
with conditionally independent signals. In this model, all bidders have the
same value, given by some random variable V.. The signals S1, .., Sy, are each
correlated with V', but independent conditional on it (so for instance, S; =
V + i, where 1, ..,&y, are independent. Then v(s;, s—;) = E[Vs1, ..., sn].



Example 3 A commonly used, but somewhat hard to motivate, variant of
the general model is obtained by letting vi(s;, s—;) = s; + ﬁZ#i s, with
6 <1, and assuming that Si,...,S, are independent. This model has the
feature that bidder’s have independent information (so a version of the RET
applies), but interdependent valuations (so there are winner’s curse effects).

A new feature of the more general auction environment is that each
bidder ¢ will want to account for the fact that her opponents’ bids reveal
something about their signals, information that is relevant for i’s own val-
uation. In particular, if ¢ wins, then the mere fact of winning reveals that
her opponent’s values were not that high — hence winning is “bad news”
about i’s valuation. This feature is called the winner’s curse.

2.2 Second Price Auction

Let’s look for a symmetric increasing equilibrium bid strategy b(s) in this
more general environment. We start by considering the bidding problem
facing i:

e Let s’ denote the highest signal of bidders j # i.
e Bidder i will win if she bids b; > b(s*), in which case she pays b(s")

Bidder i’s problem is then:

max/ [Es_, [v(si,S—) | 51,8 = si] — b(si)] l{b(si)gbi}f(si]si)dsi

(3

or

b71(b:) S , .
max/ [Es_, [v(si,S=) | s, 8" = '] = b(s")] dF(s"[s;)

7

The first order condition for this problem is:

1

U Yo

[Bs_, [0(si,5-0) | i,5" = b7 (bs)] — b(b™ 1 (b:))] f(b~"(i)]s:)
or simplifying:
bi =b(s;) = Eg_, |v(ss,5—) | i, maxs; = s;
J#i
That is, in equilibrium, bidder 7 will bid her expected value conditional

on her own signal and conditional on all other bidders having a signal less
than hers (with the best of the rest equal to hers).



Remark 2 While we will not purse it here, in this more general environ-
ment the revenue equivalence theorem fails. Milgrom and Weber (1982)
prove a very general result called the “linkage principle” which basically
states that in this general symmetric setting, the more information on which
the winner’s payment is based, the higher will be the expected revenue. Thus,
the first price auction will have lower expected revenue than the second price
auction because the winner’s payment in the first price auction is based only
on her own signal, while in the second price auction it is based on her own
signal and the second-highest signal.

3 Large Auctions & Information Aggregation

An interesting question that has been studied in the auction literature arises
if we think about auction models as a story about how prices are determined
in Walrasian markets. In this context, we might then ask to what extent
prices will aggregate the information of market participants.

We now consider a series of results along these lines. For each result, the
basic set-up is the same. There are a lot of bidders, and the auction has pure
common values with conditionally independent signals. We consider second
price auctions (or more generally, with k objects, k+ 1 price auctions, where
all winning bidders pay the k + 1st highest bid). The basic question is: as
the number of bidders gets large, will the auction price converge to the true
value of the object(s) for sale?

3.1 Wilson (1977, RES)

Wilson considers information aggregation in a setting with a special infor-
mation structure. In his setting, bidders learn a lower bound on the object’s
value. The model has:

e Bidder’s 1,...,n
e A single object with common value V' ~ U|0, 1]

e Bidder’s signals Sy, ..., Sy, are iid with S; ~ U[0,v] (so signal s; = V >
SZ').

Wilson shows that as n — 0o, the expected price converges to v. This is
easy to see: with lots of bidders, someone will have a signal close to v, and
you have to bid very close to your signal to have any chance of winning.

10



3.2 Milgrom (1979, EMA)

Milgrom goes on to identify a necessary and sufficient condition for infor-
mation aggregation with many bidders and a fixed number of objects. Mil-
grom’s basic requirement is, in the limit as n — oo, that for all v' € Q and
all v < v/, and M > 0, there exists some s’ € S such that

P(s'v')

M.
P(s) ~

That is, for any possible value v/, there must be arbitrarily strong signals
that effectively rule out any value v < v’.

This condition builds on Wilson, and the intuition is again quite easy.
As n — oo, there is a very strong winner’s curse. In a second price auction,
the high bid is:

EV v | slzn,max Sj — Sl:n
JF#i
While it is clear that s%™ is likely to be very high as n — oo, the only way
anyone would ever bid ¥ would be to have a signal so strong that conditioning

on millions of other signals being lower than your own would not push down
your estimate too much.

3.3 Pesendorfer and Swinkels (1997, EMA)
Pesendorfer and Swinkels consider a model that is quite similar to Milgrom.
e 1 bidders, k objects
e Each bidder has value V' ~ F(-) on [0, 1]
e Signals S; ~ G(-|v) on [0, 1], where g(-|-) has the MLRP.
e Signals St, ..., Sy, are independent conditional on V = v.

Remark 3 Clearly with a large number of independent signals, there is
enough information to consistently estimate v. The question then is whether
the bids will accurately aggregate this information — i.e. will the price be a
consistent estimator?

Pesendorfer and Swinkel’s big idea is the following. While the winner’s
curse will make a bidder with s = 1 shade her bid as n — oo with a fixed
number of objects k, as k — oo, there is also a loser’s curse: if lowering your
bid € matters there must be k people with higher valuations. This operates
against the winner’s curse, counterbalancing it.

11



Proposition 3 The unique equilibrium of k-+15 price auction is symmetric:
b(s;) = By [V | si, kth highest of other signals is also s;] .

Definition 1 A sequence of auctions (N, k) has information aggregation
if the price converges in probability to v as m — oo.

PS first consider necessary conditions for information aggregation. Clearly,
a requirement for information aggregation is that:

lim b,,(0) =0 and lim b,(1) =1

m—00 m—00

Without this, there will be no convergence when v = 0 or when v = 1. Now,

b (1) = Ey [V | s; = 1, kth highest of other signals is 1]
If k,, - oo, then this expectation will shrink below 1. So we must have
kp — oo. And similarly, looking at b,,(0), we must have n,, — k,, — oc.

PS go on to show that these conditions are not just necessary, but suffi-
cient for information aggregation.

Proposition 4 A sequence of auctions has information aggregation if and
only if nym — kpy — o0 and ky, — oo.

The basic idea is that conditioning on k,, — 1 bidders having higher
signals than s; gives a very strong signal about true value. So the bidder
who actually has the kth highest sighnal will tend to be right on when he
bids Ey [V | s;, kth highest of other signals is s;]. Thus, we will end up with
information aggregation.
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