
I. J. Computer Network and Information Security, 2015, 7, 10-23
Published Online June 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.07.02

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

A Model for Detecting Tor Encrypted Traffic

using Supervised Machine Learning

Alaeddin Almubayed
Yahoo Inc., California, US

Email: alaa_bus@yahoo.com

Ali Hadi and Jalal Atoum
Princess Sumaya University for Technology (PSUT), Amman, Jordan

Email: {a.hadi, atoum}@psut.edu.jo

Abstract—Tor is the low-latency anonymity tool and one

of the prevalent used open source anonymity tools for

anonymizing TCP traffic on the Internet used by around

500,000 people every day. Tor protects user‘s privacy

against surveillance and censorship by making it

extremely difficult for an observer to correlate visited

websites in the Internet with the real physical-world

identity. Tor accomplished that by ensuring adequate

protection of Tor traffic against traffic analysis and

feature extraction techniques. Further, Tor ensures anti-

website fingerprinting by implementing different

defences like TLS encryption, padding, and packet

relaying. However, in this paper, an analysis has been

performed against Tor from a local observer in order to

bypass Tor protections; the method consists of a feature

extraction from a local network dataset. Analysis shows

that it‘s still possible for a local observer to fingerprint

top monitored sites on Alexa and Tor traffic can be

classified amongst other HTTPS traffic in the network

despite the use of Tor‘s protections. In the experiment,

several supervised machine-learning algorithms have

been employed. The attack assumes a local observer

sitting on a local network fingerprinting top 100 sites on

Alexa; results gave an improvement amongst previous

results by achieving an accuracy of 99.64% and 0.01%

false positive.

Index Terms—Anonymity, Censorship, Interception,

Machine Learning, Tor, Traffic Analysis, Traffic

Classification

I. INTRODUCTION

Tor is widely known low latency network anonymity

project and is currently used by around 500,000 daily

users and carrying 2500 MB of data per second [1]. Tor

stands for ―The onion router‖ or the onion routing network,

it provides two ways bidirectional anonymized connection

over the network. Tor provides strong implementation,

which protects against both sniffing and analysis making a

secure communication to protect both data confidentiality

and users privacy. TLS protocol is used in Tor

communication to provide the required encryption [2].

For example, if we have both Bob and Alice

communicating on a public Internet connection, by using

the mean of Tor, they can ensure that their communication

cannot be intercepted or monitored by eavesdroppers and

that the information passed back and forth is encrypted

and anonymized.

Tor is free open source software that works almost on

every platform, once Tor installed, users can use web

browser to anonymize their traffic. Traffic passes between

Tor nodes and users are secure via strong encryption [3].

Moreover, Tor works perfectly on modern browsers such

as Firefox and Chrome with Tor bundles.

Bundles enable users to install Tor as browser extension

that makes it easier for users to protect their

communication and attain anonymity and privacy [4].

However, despite Tor is used for online anonymity, it‘s

heavily used by hackers and cybercriminals in order to

avoid traceability [5]. With the increasing usage of the

Internet, concerns over censorship and privacy have

become a big goal, users heavily rely on anonymity tools

in order to conceal their identity and gain privacy. For

those users, anonymity is significantly important and Tor

analysis against various attacks is deemed necessary to

ensure adequate protection of user‘s privacy.

Further, although there is a huge evolution of

developing more anonymity tools, blocking anonymous

traffic and developing anti-blocking tools attracting many

researchers [6], this makes a strong reason for Tor to

monitor and track down anti-anonymity tools to ensure

secure anonymity for users all the times. In fact, the

detection of anonymity tool is become a hot topic as there

is an infinite battle between developers work to improve

the anonymity tools and organizations, governments who

work also tremendously to break anonymity. Internet

users strongly believe that the need for anonymity to

protect user‘s privacy is very important; users in

totalitarian regimes strongly rely on such networks to

freely communicate. Breaking Tor anonymity in fact

reduces the protection that Tor claims to have for

concealing users identities, and thus, increases the chances

for those totalitarian regimes to physically identify users,

which could lead to severe consequences such as

imprisoning or even life threatening [7].

 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning 11

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

In this paper, the research has considered many

machine learning (ML) algorithms in order to fingerprint

Tor usage in the network. This study will help Tor

developers to improve Tor security, provide more

advanced techniques, and solutions in order to boost Tor

anonymity. Furthermore attain a complete protection for

the users, this in case the same analysis has conducted by

either attacker or totalitarian regime. The main objectives

of this work can be summarized as the following:

1. Researching different techniques and tools in order

to identify Tor usage in the network by tracing an

offline network traffic data.

2. Researching the possibility of fingerprinting Tor

traffic of top 5 sites on Alexa amongst other top

100 sites on Alexa using ML algorithms by

extracting statistics in the SSL flows used by Tor

software.

3. Generating an extensive HTTPS traffic along with

Tor traffic using two virtual machines (VMs).

4. Feature selection exercise from network pcap files

generated from a different network traces to build

the ML data model.

5. Conducting an analysis on how many packets of

SSL flows are required to classify Tor amongst

HTTPS.

6. Performing a detailed experimentation to measure

the accuracy of ML classifiers.

In this research, studying the possibility of identifying

the individual users who use Tor is out of this research

scope; the focus is to only identifying Tor usage in an

offline network traces via websites fingerprinting. Also

studying ML algorithms in this research is limited, since

this is more of computer science knowledge, the focus is

mainly on researching traffic classification for Tor using

specific ML algorithms in order to perform websites

fingerprinting. Further, the analysis of Tor is conducted in

a closed-world local network environment considering the

fact that it‘s difficult to obtain traffic from an open-world

environment such as Internet Service Providers (ISP).

II. TOR BACKGROUND

Tor allows people to access and publish content on the

Internet without being tracked or identified or cleared to

authorities. Considering the usage of Tor by various and

different type of people the risk is varied from a risk of

child accessing forbidden sites to other type of risks such

as employees or political activist accessing Tor where the

risk is higher. However, while many people agree on

positive reasons to use Tor, some people see Tor as a big

threat that could make criminals to commit their crimes

with impunity. The good reasons of using Tor are several,

for example normal people use Tor to protect their

information from external adversaries, and also, military

uses Tor to protect government communication, in

addition to that, law enforcement offices and agencies are

using Tor for their investigation and operation. Low and

high profile people also use Tor to make an opinion that

may be unpopular or conflict with their public persona [8].

Tor completely relies on TLS protocols for its network

communication. TLS encrypts and authenticates the

communication between Tor instances.

A. Transport Layer Security

Netscape Communication Corporation first introduced

secure Socket Layer (SSL) protocol in 1995 to enable e-

commerce transaction security on the web. TLS is being

used heavily nowadays by most Internet communication

to protect confidentiality through encryption and integrity,

as well as authentication, to ensure a safe transaction.

However, to achieve this, SSL protocol was built up over

the application layer directly on the top of TCP, which

enables the protocol to work on HTTP, SMTP, FTP, and

many others. The primary reason of SSL and TLS is to

protect HTTP traffic in the network. In HTTP, when a

new TCP connection is created, the client sends the

request to the server and then the server responds back

with the content, when SSL is utilized, the client first

create a TCP connection and establishes an SSL stream

channel to relay the TCP connection, at that point of time,

the HTTP request is sent over the SSL connection instead

of the regular TCP connection. SSL and TLS handshake

cannot be understood by the ordinary HTTP, thus, a

protocol specification HTTPS is used instead to indicate

the use of a connection over SSL [9]

TLS is layered protocol and consists of mainly two

layer protocols, at the lower level is the record protocol

which is responsible for transmitting the message,

fragments the data into blocks, and many other steps. On

the top layer is the Handshake Protocol, Alert Protocol,

Change Cipher Spec Protocol and Application Protocol,

Fig. 1, which shows TLS protocol, layers. TLS handshake

protocol allows both client and server to authenticate and

exchange encryption keys and algorithm before the

protocol starts to send data over the network [10].

Application layer protocol

Handshake
protocol

Alert Protocol

Change

Cipher

Protocol

Application
Protocol

TLS Record Layer

Transport Layer Security

Fig. 1. TLS Protocol Layers

B. Onion Routing

The Onion Router (OR) was original created for Sun

Solaris 2.4 in 1997, which include proxies for remote

logins, email, and web browsing, also file transfer

protocol (FTP) [11]. The main purpose of onion routing is

to provide a real-time bidirectional anonymous interaction

between two parties that is resistant to eavesdropping,

sniffing and traffic analysis. Onion routing consists of a

series of ORs connected in a way that each OR has a

dedicated socket connection to a set of neighboring ones.

However, to build up the anonymous connection, the

application initiates a series of connections to a set of

Onion Router Proxies (ORPs) that ultimately build up the

anonymous connection. The routing occurs at the

application layer of the protocol stack, and not on the IP

12 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

layer. However, the IP network is the one who determines

where should the data move between each individual

onion routers.

III. RELATED WORK

Tor achieves anonymity by make it very difficult for an

adversary to identify client and server identities. In Tor

design, the entry node only knows the client who

communicates with middle node, and the middle node

knows the entry node is communicating with another

machine exit node. The middle relay machine cannot tell

if it‘s the middle node in the circuit or not. Also the exit

relay knows the middle node, which communicates with

the server (target destination). Finally, the server believes

the connection is coming from the exit node [12].

Historically, an extensive number of work on attacking

Tor anonymity circuits, which can degrade the anonymous

communication over Tor; most of these attacks are based

on traffic analysis. However, attacks based on traffic

analysis may suffer high rate of false positives (FP) due to

a number of reasons, such as Internet traffic dynamics and

determining the required number of packets for the

statistical analysis of traffic. That said, timing and latency

are important metrics in traffic analysis to identify Tor as

well as packet counting and volume metrics [13].

A previous work on path selection focused on latency

as property link and take delay in account primarily.

However in this attack by [14], attacker assumes

different approach, which is identifying the important of

latency as indicator of congestion, and accordingly,

suggesting an improved path selection algorithm. Further,

Tao proposed a way for Tor clients to respond to short-

term congestion by building timeout mechanism.

Existing traffic analysis attacks against anonymous

communication can be classified into two main categories:

traffic confirmation attacks and traffic analysis attacks.

Each category consists of both passive and active attacks.

Passive traffic analysis techniques is when the adversary

records the traffic passively and identify the resemblance

between client inbound traffic and server outbound traffic.

Meanwhile, the active attack, aims to embed specific

secret signal (or marks) into the target traffic and detect it

[15].

Meanwhile, traffic confirmation attack is when an

adversary tries to confirm that two parties are

communicating with each other over Tor by observing

patterns in the traffic, such as timing and volume of the

traffic. Ideally, traffic confirmation attacks are not in the

focus of Tor‘s threat model. Instead, Tor increases the

focus on preventing traffic analysis attacks, this occurs

when adversary tries to determine in which points in the

network a traffic pattern based attack should be executed

[15].

IV. TOR FINGERPRINT METHODOLOGY

The goal of this research is to fingerprint Tor traffic

flows in a local network environment in order to break

Tor‘s anonymity and identify top monitored sites on

Alexa using ML classification techniques. There are

several steps involved in Tor fingerprinting attack within a

local network environment; local network environment

means two things. First, all web pages are known in

advance, and second, the attack is launched by a local

attacker. The attacker observes the encrypted traffic to

find conclusions from certain features in the traffic such as

packet sizes, volume of data transferred, timing and many

others. This type of attack is considered in this research to

ensure the comparability of the outcome results to related

works. This method however is not in the position of

breaking the cryptographic used in Tor, although it does

not provide messages semantic, it can provide a way to

observe specific patterns in order to reveal a known traffic

instances like web pages.

In real world scenario, if a user runs Tor OP in a shared

local network, other users sit on the same network may

use different applications, and thus, passing different type

of network traffic traces such as HTTP, HTTPS, FTP and

others. Tor‘s uses TLS encryption between client, ORs

and destination server, thus, the hypothesis is that the

traffic of Tor should have similar characteristic as any

other TLS traffic such as HTTPS. Yet, if variation in the

traffic characteristic is found, then Tor instances can be

fingerprinted amongst other TLS traffic and anonymity

can be broken. In the experiment, HTTPS encrypted

traffic is considered as majority of sites encrypts their

communication use TLS encryption over port 443.

Similarly, Tor traffic is considered from a user (victim)

uses Tor OP on the same local network browsing top 5

sites on Alexa. Therefore, by identifying the variations in

the traffic instances between the HTTPS traffic and Tor‘s

victim traffic in the same local network environment is the

goal for this study.

In order to find those variations in the traffic

characteristic between Tor and HTTPS, ML methods need

to be employed using statistical classification technique

[16]. The focuses on using ML methods to detect patterns

in the packet information is to extrapolate and predict

traffic type contained within a TLS flow, which in this

research, using Tor encrypted traffic data and HTTPS data

to train the system.

Generally, the Tor Fingerprinting Methodology steps in

this work can be summarized in Fig. 2, as follows:

 Step-1, data collection step, it‘s required to capture

a ground truth, or HTTPS data for which the

underlying application is known. At the same time,

collects Tor traffic instances of top 5 sites on Alexa

to represents Tor instances. The data collected is to

be used to train the model using ML methods.

 Step-2 is feature extraction and feature selection;

feature extraction is crucial in order to detect the

variation between Tor instances and HTTPS

instances and feature selection is required to

identify which features to be used that improve the

accuracy of web sites fingerprinting.

 Step-3, labeling process means marking each row

in the traffic with the corresponded label.

 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning 13

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

 Step-4, classifying traffic flows based on those

characteristics variations either as Tor‘s site or

regular HTTPS traffic. In the following subsections

are the details descriptions of each step.

Fig. 2. Methodology steps for fingerprinting Tor

A. Data Collection

To validate the method used in this research, there is a

need for a ground truth, or SSL connections for which the

underlying application is known. Therefore HTTPS traffic

data is required for building the training dataset. Although

there is no public dataset sources that can be used in the

experiment, similar technique has been considered for

data generation from [14] which previously known to

achieve higher accuracy results ignoring the removal of

SENDMEs as it did not affect the results that much.

Precautions need to be taken in order to collect the data in

the same way a realistic attacker would. Firefox browser

and Selenium [17] Web Driver have been used to perform

an automation browsing process, web sites used are taken

from top 100 sites on Alexa in order to mimic the actual

real user behavior on the local network environment.

Ideally, capturing those traffic traces can be

accomplished from more than one machine; those captures

consist of a raw data that is transmitted over the physical

wire or wireless network at a given point, see Fig. 3. Each

machine runs different encrypted services. Few machines

run HTTPS traffic and others run Tor application to

generate Tor encrypted traffic. In the experiment two

virtual machines are used as clients, below is a details

about the software stack used for that.

Fig. 3. Data collection

1) Environment Setup

In the data generation method, two virtual machines

(VM) are used in order to generate the traffic for the

experiment. The VM is a piece of software

implementation of a computing environment in which an

Operating System (OS) can be installed and run on an

emulated physical computing environment, it basically

utilizes the underlying physical hardware, including CPU,

memory, hard disk, network and other hardware resources

to create a virtual computing environment. Although

resources of guest OSs and programs are running on

virtualized computer, they are not aware that they are

running on a virtual platform [18]. Also, in the study,

different OS distribution systems have been installed to

ensure emulating the actual traffic in the network, a

breakdown of the OSs used as VMs to capture the

network traffic is presented in Table I, each of these

guests operating systems runs with specific VM

configuration, a 512 memory RAM, and 20 GB of disk

space with shared networking Network Address

Translation (NAT) setup. Further, a distribution of Linux

OSs on VMs with different processor architecture is used.

Table 1. Break Down Of Client Virtual Machines Operating Systems

Client

Operating System Operating System

Version

processor

CVM1 Linux Ubuntu 12.04 64 bit

CVM2 Linux Backtrack 5.01.3 32 bit

Linux BackTrack is a Linux-based penetration-testing

arsenal that aids security professionals in the ability to

perform assessments in a purely native environment

dedicated to hacking. Linux Ubuntu is the standard Linux

distribution system powers millions of desktop PCs,

laptops and servers around the world. Moreover, OSX

machine in Table II is used for conducting the analysis.

Table 2. Analysis Machine

Client

Operating

System

Operating System

Version

processor

A1 OSX 10.9.2 64-bit

2) Traffic Generation Tools

In order to obtain traffic traces for the dataset, capturing

the data from VMs and use it to build training data sets is

the first step, aforementioned VMs and Sniffer software

were used to sniff and capture the traffic from A1. VMs

are configured to run as NAT to A1 machine, which

means traffic will always route through A1 machine, this

provides two major benefits, first a full control on

capturing the dataset, and second, control specific filters

based on particular parameters without any traffic

disruption that could affect the quality of the dataset

which could cause invalid training data set. Ideally, there

are many sniffers available in the market today, the most

famous two are wireshark and tcpdump, however, any

sniffer will suffice for the testing, but simple, flexible,

low-cost, and fast tool is best, tcpdump works really well

as sniffer for the experiment.

Tcpdump is a free open source sniffer, which uses

libpcap to capture traffic and provides information about

IP layer packets i.e. the length of the packet, the time the

packet was sent or received, the order in which the packets

were sent and received. Tcpdump is quite flexible and fast,

it runs on most Linux and Unix variants, in fact, it‘s

installed by default on many Linux distributions, and it

has been ported to windows as WinDump. It does support

variety of filters, with a powerful language for specifying

individual filter types [19]. Further many other services

are running on the VMs, Table III breakdowns the

14 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

services installed on each machine, with the

corresponding versions, each one of these machines runs

completely independent in its VM environment.

Table 3. Services running on the machines

Machines Services

CVM1

Firefox 14.0.1

Tor 0.2.4.22
Netmate 0.9.5

Tcpdump 4.3.0

Libpcap 1.3.0

CVM2

Firefox 14.0.1

Tor 0.2.4.22

Netmate 0.9.5
Tcpdump 4.3.0

A1
Weka 3.7.3

Wireshark 1.10.7

The details about each VMs used is as the following:

a) CVM1

This VM is used to run Firefox and browse sites run

over HTTPS. The traffic generated is intended to represent

regular HTTPS traffic for the top 100 sites on Alexa. In

the real world scenario, most of this traffic is generated

during regular secure browsing activities such as email

communication, social network sites, and financial

activities. Unfortunately, these activities are somehow

difficult to mimic. Thus, the approach taken in this thesis

involves using Selenium [17] for automating web

applications for testing purposes with a complete list of

sites that run over HTTPS. Selenium operates by

controlling a standard browser. This is important because

the traffic generated needs to look like if it was captured

by a user browsing the web doing his regular business

activities. However, similar to Ian and Tao method [14]

the method obtained a specific list of websites in a local

network environment, those sites are taken from the top

100 sites on Alexa.com. Alexa is the leading provider of

free, global web metrics ranks the top sites based on the

number of unique users, page views, and number of visits

[20].

b) CVM2

This VM runs a specific list of what expected to be the

top monitored websites on Alexa, but this time with Tor

OP, in the attack scenario, the expectation is that the

victim uses this machine to browse top sites on Alexa. The

same method of CVM1 is used in CVM2. The 5 sites used

in the experiment are Google, Yahoo, Facebook,

Wikipedia and Twitter.

3) Dumping Traffic

Dumping traffic is required in order to capture training

datasets and record information to be used later for the

classification part. Basically the A1 machine is used to

capture all the traffic from all the CVM (i) machines, a

sniffer is installed on the interface to capture the traffic

passes through. Tcpdump is used to generate the packet

capture (pcap) file which previously developed by

wireshark. In the process, packets are captured and stored

on A1 machine for further analysis using ML. Traffic

generation process has been scheduled from each machine

using a small bash script to record traffic on hourly basis.

Tcpdump sniffer is installed in a way so it can capture

traffic from two machines on a scheduled basis see Fig. 4.

Fig. 4. Traffic capturing through A1

Traffic passes from CVM (i) through the NAT

connection to websites servers. Since traffic scheduled to

pass on a specific timeframe, HTTPS traffic was first

generated from CVM1, and is called regular-HTTPS.pcap.

Similarly, traffic from the other CVM2 which runs Tor

OP is captured, files named based on site corresponded to

that traffic, example for Google traces, it‘s called Google-

Tor.pcap and Yahoo traces Yahoo-Tor.pcap. The data

generation took two weeks to finish and the final output

files in a pcap format are listed in Table IV. The table

contains the number of packets, flows along with the sizes

for each. Fig. 5 shows a summery chart of each flow.

After dumping the network traffic from CVM (i), the next

step is to use those files to build the training model for the

classification method. The traffic generated contains a

number of flows; those flows will be used to create the

model.

Table 4. Traffic and Their associated number of flows

Traffic

Type

Size /

MB

Number

of Packets

Number of

Flows

Avg Packet

Size / Byte

HTTPS 808.7 1054835 38845 750.617

Google

Tor

110.1 146151 5231 737.407

Yahoo
Tor

155.4 206998 7959 734.596

Facebook

Tor

132.7 160491 4085 810.785

Twitter
Tor

132.2 171935 5577 752.653

Wikipedi

a Tor

87.7 122708 4465 698.716

Fig. 5. Summery chart for all pcap files

0

200

400

600

800

1000

1200

千

SIZE / MB

NUMBER OF
PACKETS

NUMBER OF
FLOWS

AVG PACKET
SIZE / BYTE

 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning 15

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

B. Feature Extraction

In the experiment, in order to perform the fingerprinting

attack, the dataset (or features) that represents each traffic

type (Tor or HTTPS) needs to be extracted from the

network dump file in order to use those features for our

classification model to find characteristic variation

between those instances.

The features need to be extracted from the network

generated traffic *.pcap files, but first it‘s important to

bring all the data together into a set of instances. In order

to accomplish this, NetMate is used, NetMate is a traffic-

monitoring tool, which converts IP packets into bi-

directional flows and generates several statistics regarding

these flows. The flows are actually defined using a

sequence of packets, source IP address, destination IP

address, source port, destination port, and type of protocol

[21]. NetMate has been used to extract features as flow

attributes from the traffic, NetMate works by processing

the datasets, generating flows, and computing feature

values which can be used to build the model, each flow is

described by a set of statistical features and associated

feature values.

1) Feature Selection

In total, 40 features were obtained from NetMate as of

Table V, ignoring the other features including the protocol

feature, which represent as (TCP=6 & UDP=17)

considering that they don‘t impact the classification

results positively or negatively [22] and proofed in this

experiment. Further, It is important to mention that only

TCP and UDP flows are considered, and specifically,

flows that have at least one packet in each direction, and

transport no less than one byte of payload. Also, there are

a number of features have been excluded, IP addresses,

and source/destination ports numbers to ensure that the

results are not dependent from those biases.

2) Generating The Attribute Relationship File

Format

Attribute relation file format (ARFF) is an input ASCII

text file format that describes a list of instances sharing a

set of attributes; it was developed by the ML Project at the

Department of Computer Science of The University of

Waikato to be used for machine learning software [23].

ARFF file has three main sections, RELATION,

ATTRIBUTE and DATA. The header contains the

relation declaration and an attribute declaration,

RELATION is a string defined in the first line,

ATTRIBUTE contains both name and data type, whilst

DATA is the actual data declaration and actual instances

line.

C. Labeling

Obtaining flows from network traffic using NetMate

generates rows of attributes separated by commas in

ARFF file format. Those values will be used to build the

training dataset model using Weka, which is a collection

of ML algorithms for data mining tasks [23]. In order to

train the system Weka to use supervised ML with Weka

defaults to validate the method. There is a need for a

Table 5. Features obtained from Netmate

No# Abbreviations Features Description

1 Dscp The protocol (ie. TCP = 6, UDP = 17)

2 total_fpackets Total packets in the forward direction

3 total_fvolume Total bytes in the forward direction

4 total_bpackets Total packets in the backward direction

5 total_bvolume Total bytes in the backward direction

6 min_fpktl
The size of the smallest packet sent in the forward

direction (in bytes)

7 min_fpktl
The mean size of packets sent in the forward

direction (in bytes)

8 min_fpktl
The size of the largest packet sent in the forward

direction (in bytes)

9 std_fpktl
The standard deviation from the mean of the packets

sent in the forward direction (in bytes)

10 min_bpktl
The size of the smallest packet sent in the backward

direction (in bytes)

11 mean_bpktl
The mean size of packets sent in the backward

direction (in bytes)

12 max_bpktl
The size of the largest packet sent in the backward

direction (in bytes)

13 std_bpktl
The standard deviation from the mean of the packets

sent in the backward direction (in bytes)

14 min_fiat
The minimum amount of time between two packets

sent in the forward direction (in microseconds)

15 mean_fiat
The mean amount of time between two packets sent

in the forward direction (in microseconds)

16 max_fiat
The maximum amount of time between two packets

sent in the forward direction (in microseconds)

17 std_fiat

The standard deviation from the mean amount of time

between two packets sent in the forward direction (in

microseconds)

18 min_biat
The minimum amount of time between two packets

sent in the backward direction (in microseconds)

19 mean_biat
The mean amount of time between two packets sent

in the backward direction (in microseconds)

20 max_biat
The maximum amount of time between two packets

sent in the backward direction (in microseconds)

21 std_biat

The standard deviation from the mean amount of time

between two packets sent in the backward direction

(in microseconds)

22 duration The duration of the flow (in microseconds)

23 min_active
The minimum amount of time that the flow was

active before going idle (in microseconds)

24 mean_active
The mean amount of time that the flow was active

before going idle (in microseconds)

25 max_active
The maximum amount of time that the flow was

active before going idle (in microseconds)

26 std_active

The standard deviation from the mean amount of time

that the flow was active before going idle (in

microseconds)

27 min_idle
The minimum time a flow was idle before becoming

active (in microseconds)

28 mean_idle
The mean time a flow was idle before becoming

active (in microseconds)

29 max_idle
The maximum time a flow was idle before becoming

active (in microseconds)

30 std_idle
The standard deviation from the mean time a flow

was idle before becoming active (in microseconds)

31 sflow_fpackets
The average number of packets in a sub flow in the

forward direction

32 sflow_fbytes
The average number of bytes in a sub flow in the

forward direction

33 sflow_bpackets
The average number of packets in a sub flow in the

backward direction

34 sflow_bbytes
The average number of packets in a sub flow in the

backward direction

35 fpsh_cnt
The number of times the PSH flag was set in packets

travelling in the forward direction (0 for UDP)

36 bpsh_cnt
The number of times the PSH flag was set in packets

travelling in the backward direction (0 for UDP)

37 furg_cnt
The number of times the URG flag was set in packets

travelling in the forward direction (0 for UDP)

38 burg_cnt
The number of times the URG flag was set in packets

travelling in the backward direction (0 for UDP)

39 total_fhlen
The total bytes used for headers in the forward

direction.

40 total_bhlen
The total bytes used for headers in the backward

direction.

truth, or SSL connections for which the underlying

application is known. In other words, there is a need to

16 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

specify which data is HTTPS and which data is Tor, to

accomplish that, a labeling process is required by

specifying the label attribute on each data instance in the

ARFF file. However, this data is known as ground-truth.

Building up ground-truth is very important and critical

phases of any traffic classification method since the entire

classification process relies completely on the accuracy of

this labeling. Thus, accuracy is important by labeling data

instances based on their types to ensure the minimum false

positives and false negatives. Also, because traffic has

been completely separated based on CVM(i), validation

has been conducted to ensure only traffic generated by

each CVM is corresponded to that CVM, and no other

traffic noise mixed up with the intended traffic to be used.

D. Building Ml Classification Model

Supervised ML is employed in order to create the

training dataset. In Supervised learning ML; the algorithm

takes a known data called training dataset to make some

predictions. The method attempts to discover the

relationship between input attributes and target attributes,

the output relationship discovered represents a structure

called ―model‖ see Fig. 6.

Fig. 6. Generating Model in ML using supervised learning

Weka is an open source project that contains different

tools for data pre-processing, regression, classification,

clustering, association rules, and visualization, and can be

used directly by providing a dataset or from a java code,

as in Fig. 7.

Fig. 7. Weka GUI in OSX

In order to apply ML algorithms and build the data

model, given the different traffic data training sets, Weka

is chosen for this exercise. Weka GUI or direct command

line interface can be used to accomplish this, Fig. 8 below

presents the use of Weka as a simple command line

interface to generate a data model.

Fig. 8. Creating data model using Weka CLI

V. EVALUATION TECHNIQUES

In this experiment, in order to fingerprint websites over

Tor, a few ML methods were used. The experiment was

repeated multiple times using Weka, each time using

different set of training and test cases (changing the

number of packets used to create the case). However, to

obtain a simulated test performance, the testing data used

in the evaluation are the same as the training data set but

with 10 cross-validation using Weka.

Cross-validation means that part of the data will be

reserved for testing while the rest will be used for training.

In other words, the data is partitioned into 10 parts (folds),

one part for testing and the remaining 9 parts for training.

Further, different set of attributes (features) used for

classification, and a deep investigation has been

performed in order to find relevant attributes and building

minimal rule sets for classifying Tor traffic (finding the

minimal rule set is proved to be an NP-hard problem [25])

and different classification test cross-validation option to

achieve higher accuracy with less FPR and FNR. Fig. 9

diagram shows the steps of classification method in

general.

Fig. 9. Detection Diagram using ML

The sites used fingerprinting evaluation is the top 5

websites on Alexa, the sites are listed with a localization

domain to avoid Tor redirection into the local IP location.

Table VI ists the top websites that have been chosen in the

evaluation process.

Table 6. List of websites used in the fingerprinting process

Site

Google https://www.google.de

Facebook https://www.facebook.com

Yahoo https://se.yahoo.com

Twitter https://www.twitter.com

Wikipedia https://www.wikipedia.org/

 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning 17

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

A. Classification Methods Employed

The focus of this research is to employ ML methods in

classifying Tor encrypted flows, classifying is considered

based on the number of packets necessary to correctly

classify those flows and the number of feature sets used.

According to researcher knowledge, there is no any other

research that has exclusively worked to fingerprint and

classify Tor traffic amongst other HTTPS traffic. Below is

a description of each ML methods used in the experiment.

Each method is used to classify data collected from Tor

amongst HTTPS data, the variation in the flow

characteristics can be understood by each ML algorithm in

order to provide the classification accuracy.

The goal is to achieve high accuracy with low FP in

order for the methodology to successfully fingerprint Tor

sites on a local network environment.

1) Classification Using Statistical Model

Naïve Bayes is used in the evaluation methodology in

order classify Tor and HTTPS traffic. Naïve Bayes is a

classification algorithm that relies on Bayes‘ rule of

conditional probability [26]. Naïve Bayes ML technique

forms a statistical model of data that is given in the

training phase. The algorithm relates each feature to the

probability that feature will result in a particular outcome

based on the entire training set. To preform testing, the

probability of each possible outcome is calculated based

on the features each test instance has. Naïve Bayes gets its

name because it makes the (naive) assumption that each

feature is independent, and uses Bayes rule of conditional

probability.

2) Classification Using Decision Trees

The C4.5 is a decision tree classifier, which is built by

repeatedly splitting the training set on the feature

(attribute), which ―best‖ splits, the data. Thus, the

consideration is to use it in order to classify Tor and

HTTPS and provide high accuracy results. There are

multiple methods for deciding which feature is best, but

C4.5 uses a measure of information entropy. The exact

criterion for splitting the training set is the normalized

information gain, which is the difference in entropy

caused by choosing a specific attribute for splitting the

data. The attribute that has the highest normalized

information gain is ultimately selected to be the one on

which the training set is split. The resulting model of C4.5

is, in effect, a series of IF/THEN statements, which do not

necessarily employ all attributes. Given this structure,

there may be multiple paths for the same outcome class.

3) Random Forest

Random forest or (RF) is a ML algorithm that evolved

from decision trees, and used in this classification to

ensure the results are aligned with what is achieved by

both Naïve Bayes and C4.5 and because of classification

strength of the algorithm. RF consists of many decision

trees and supports two ML algorithms bagging and

random selection. In bagging, short for ‗bootstrap

aggregating‘, and one of the first ensemble methods,

ensemble methods are based on the idea that by

combining multiple weaker learners, a stronger learner is

created [27], the prediction is made based on the majority

of trees votes by training each tree on a bootstrap sample

of training sample data. Random feature selection

conducts a simple search to find the best split in each node

while growing a tree over a random subset of features.

4) Support Vector Machine

The support vector machine (SVM) that is first

pioneered by Vapnik and Chervonenkis [28] and is the

state-of-art supervised ML algorithm for the binary

classification problem. SVM is heavily used for data

mining and is very well known by its high performance in

terms of the classification accuracy, thus, it has been

considered in this research to make sure the results that are

achieved are not biased to specific ML algorithm and that

this type of ML classification is also capable to classify

Tor amongst HTTPS traffic. In SVM, Given a set of

objects that falls into two categories (training data), the

problem is how to classify a new point (test data) into one

of the aforementioned categories. SVM solves this issue

by calculating the line in which the data can be separated

into two categories, training and test data [29].

The key idea of SVM is the interpretation of instances

as vectors, in this research classification problem, the

instances are the data generated through site retrieval,

which represented as vectors. However, based on the

training data provided, the SVM classifier tries to fit a

hyperplane into the vector multidimensional space which

represents the instances in order to create a separation

between the instances that are belong to a different class.

The accumulated distance between the fitted plane and the

support vectors (instances) has to be as high as possible

where it needs to maximizes the gap between the two

classes. However, sometimes the vectors are not linearly

separable and require complex decision planes for optimal

separation of the categories similar to Fig. 10. Which

SVM can solve transforming the vector space into a

higher dimensional space by the so-called kernel trick, in

the higher dimension; the hyperplane can be fitted again.

Fig. 10. Nonlinear SVM separator

VI. RESULTS AND DISCUSSIONS

This section presents the evaluation results of the

classification experiment for fingerprinting Tor encrypted

traffic in the offline traffic traces, which has been

discussed previously. HTTPS and Tor-SSL traffic have

been used in order to create the training dataset. The main

goal of this research is to evaluate the possibility of

18 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

providing a high detection rate for Tor traffic amongst

HTTPS traffic in order to fingerprint most monitored

websites on Alexa from a local observer sitting on the

network.

In this research‘s traffic classification for Tor; two

factors are typically considered in order to quantify the

performance of the classifier: Detection Rate (DR) and

False Positive Rate (FPR). In this case DR or accuracy

will reflect the number of Tor-SSL flows correctly

classified whereas FPR will reflect the number of HTTPS

flows incorrectly classified as Tor-SSL. Naturally, a high

DR rate and a low FPR would be the desired outcomes for

us [30]. DR and FPR are calculated based on the

following equations:

 (10)

 (11)

In equation (10), FN represents False Negative, which

means Tor-SSL traffic classified as HTTPS traffic.

Likewise, in equation (11), FPR represents false positive

rate, which means HTTPS traffic classified as Tor-SSL

traffic. Since the main goal is to achieve a high DR rate

and a low FP rate results, the experiment has been

evaluated by four ML algorithms using Weka [31].

However, In order to evaluate the accuracy/errors of using

ML. The experiment has been run with 10-cross validation

set option in Weka, cross validation is a necessary step in

model construction, it assesses how the results of a

statistical analysis will generalize to an independent data

set and provides estimation on how this model will

perform in practice.

A. Classifiers Results

This research goal is to achieve High true positive rate

sometimes known as DR and less FPR. In order to attain

that, a feature selection exercise has been performed,

feature selection would eliminate features determined to

be of a little use in classifying and reducing the

computations needed, feature selection used by tuning the

features calculated from the training packets of the flow, a

high accuracy have been achieved using different features

set, this also improved the runtime of the ML algorithms

that require intensive mathematical calculations, data has

been generated on a local network environment by

following the best approach described in Ian and Tao

method [14] for Tor dataset generation. In the experiment,

the fingerprinting has been performed on the top 5

monitored sites on Alexa, the sites are Google, Facebook,

Yahoo, Twitter, and Wikipedia, those sites running

various types of content and serving almost more than 100

million users every day. Breaki

ng Tor anonymity meaning a direct identification of

those traffic instances within the network traffic. The

researcher has performed the fingerprinting using ML

classification technique; four ML algorithms have been

used to classify the traffic and all has shown very close

results. The accuracy, time training, and runtime including

some analysis are described below.

1) Naïve Bayes

Naïve Bayes is a classification algorithm that relies on

Bayes‘ rule of conditional probability [26]. In the

experiment, Naïve Bayes in Weka is used to classify Tor

instances with 10-fold cross-validation test mode, by

using 40 features, Naïve Bayes was able to achieve a high

TP Rate 99.60% and FP Rate 0.004% and 99.69%

accuracy. Table VII is breakdown of the detailed accuracy

using Naïve Bayes for each monitored site with the

weighted average details; the weighted average is

computed by weighting the measure of class (TP Rate, FP

Rate, Precision, Recall, F-Measure, ROC Area) by the

proportion of instances in that class. Fig. 11 also provides

an overall distribution in a chart presentation.

Table 7. Breakdown of Naïve Bayes classification for top monitored

sites

Class TP

Rate

FP

Rate

Precisio

n

Recall F-

Measu

re

ROC

Area

Tor

Goog

le

0.991 0.002 0.99 0.991 0.99 0.999

HTT

PS

0.998 0.009 0.998 0.998 0.998 0.994

Weig

hted

Avg

0.997 0.008 0.997 0.997 0.997 0.994

Tor

Faceb
ook

0.994 0.002 0.988 0.994 0.991 0.997

HTT

PS

0.998 0.006 0.999 0.998 0.999 0.997

Weig

hted

Avg

0.998 0.005 0.998 0.998 0.998 0.997

Tor

Yaho

o

0.998 0.001 0.995 0.998 0.996 0.999

HTT

PS

0.999 0.002 0.999 0.999 0.999 0.998

Weig

hted

Avg

0.999 0.002 0.999 0.999 0.999 0.998

Tor

Twitt

er

0.992 0 0.999 0.992 0.995 0.999

HTT

PS

1 0.008 0.998 1 0.999 0.996

Weig

hted

Avg

0.998 0.007 0.998 0.998 0.998 0.996

Tor
Wiki

pedia

0.993 0.007 0.954 0.993 0.973 0.998

HTT

PS

0.993 0.007 0.999 0.993 0.996 0.996

Weig

hted

Avg

0.993 0.007 0.993 0.993 0.993 0.997

 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning 19

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

Fig. 11. Distribution of Naïve Bayes classification for each monitored

site

2) C4.5

C4.5 is a decision tree classifier, one of the amazing

features about C4.5 is the determination of how deeply to

grow a decision tree to avoid overfitting and choosing an

appropriate attribute selection measures. Table VIII shows

the result of using C4.5 with 10-fold cross-validation test

mode, C4.5 is known as J48 in Weka. Fig 12 shows the

overall distribution in chart representation, C4.5 achieves

higher accuracy compared to Naïve Bayes with 99.92%

and 99.85% TP Rate, 0.002% FP Rate.

Table 8. Breakdown of C4.5 classification for monitored sites

Class TP

Rate

FP

Rate

Precision Recall F-

Measure

ROC

Area

Tor

Google

0.997 0 0.999 0.997 0.998 0.999

HTTPS 1 0.003 1 1 1 0.999

Weighted

Avg

0.999 0.002 0.999 0.999 0.999 0.999

Tor

Facebook

0.998 0 0.999 0.998 0.999 0.999

HTTPS 1 0.002 1 1 1 0.999

Weighted

Avg

1 0.002 1 1 1 0.999

Tor

Yahoo

0.999 0 1 0.999 1 0.999

HTTPS 1 0.001 1 1 1 0.999

Weighted
Avg

1 0.001 1 1 1 0.999

Tor

Twitter

0.994 0.001 0.997 0.994 0.996 0.997

HTTPS 0.999 0.006 0.999 0.999 0.999 0.997

Weighted
Avg

0.999 0.005 0.999 0.999 0.999 0.997

Tor

Wikipedia

0.994 0 0.998 0.994 0.996 0.996

HTTPS 1 0.006 0.999 1 0.999 0.996

Weighted

Avg

0.999

0.005 0.999 0.999 0.999 0.996

Fig. 12. Distribution of Naïve Bayes classification for each monitored
site.

3) Random Forest

This algorithm evolved from decision trees and

supports bagging and random selection, random forest

performs much faster than boosting and bagging. The

results for the classification shows that Random forest

achieved the higher TP Rate results compared to Naïve

Bayes and C4.5 with 99.92% accuracy and 99.86% TP

Rate, 0.002% FP Rate as described in Table IX and Fig.

13, the algorithm is run using 10-fold cross-validation test

mode.

Table 9. Breakdown of Random Forest classification for top monitored
sites

0 TP

Rate

FP

Rate

Precision Recall F-

Measure

ROC

Area

Tor

Google

0.996 0 0.999 0.996 0.998 1

HTTPS 1 0.004 0.999 1 1 1

Weighted

Avg

0.999

0.003 0.999 0.999 0.999 1

Tor
Facebook

0.998 0 1 0.998 0.999 1

HTTPS 1 0.002 1 1 1 1

Weighted

Avg

1 0.002 1 1 1 1

Tor Yahoo 0.999 0 1 0.999 1 1

HTTPS 1 0.001 1 1 1 1

Weighted

Avg

1 0.001 1 1 1 1

Tor

Twitter

0.995 0.001 0.997 0.995 0.996 0.999

HTTPS 0.999 0.005 0.999 0.999 0.999 0.999

Weighted
Avg

0.999 0.004 0.999 0.999 0.999 0.999

Tor

Wikipedia

0.995 0 0.997 0.995 0.996 0.999

HTTPS 1 0.005 0.999 1 0.999 0.999

Weighted

Avg

0.999 0.004 0.999 0.999 0.999 0.999

0

0.2

0.4

0.6

0.8

1

TP Rate FP Rate Precision

Recall F-Measure ROC Area

0

0.2

0.4

0.6

0.8

1

TP Rate FP Rate Precision

Recall F-Measure ROC Area

20 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

Fig. 13. Distribution of Random Forest classification for each monitored

site

4) SVM

SVM is the state-of-the-art supervised ML method,

most of the previous studies on Tor fingerprinting used

SVM as classifier [14]. Thus, the researcher has

considered SVM in order to ensure the results achieve

better accuracy confirming the improvement of the

method considered in this research regardless of the

methodology used for Tor fingerprinting. SVM achieved

an accuracy of 99.04% and 97.72% TP Rate, 0.034% FP

Rate with 10-fold cross-validation test mode. Table X and

Fig. 14 are the complete detailed results.

Table 10. Breakdown of SVM classification for top monitored sites

Class TP

Rate

FP

Rate

Precision Recall F-

Measure

ROC

Area

Tor

Google

0.975 0 0.999 0.975 0.987 0.987

HTTPS 1 0.025 0.996 1 0.998 0.987

Weighted
Avg

0.996 0.022 0.996 0.996 0.996 0.987

Tor

Facebook

0.974 0 1 0.974 0.987 0.987

HTTPS 1 0.026 0.996 1 0.998 0.987

Weighted
Avg

0.997 0.023 0.997 0.997 0.997 0.987

Tor

Yahoo

0.818 0 1 0.818 0.9 0.909

HTTPS 1 0.182 0.953 1 0.976 0.909

Weighted

Avg

0.961 0.143 0.963 0.961 0.96 0.909

Tor

Twitter

0.972 0 0.999 0.972 0.985 0.986

HTTPS 1 0.028 0.995 1 0.997 0.986

Weighted

Avg

0.995 0.024 0.995 0.995 0.995 0.986

Tor

Wikipedia

0.975 0 0.998 0.975 0.986 0.987

HTTPS 1 0.025 0.996 1 0.998 0.987

Weighted

Avg

0.996 0.022 0.996 0.996 0.996 0.987

Fig. 14. Distribution of SVM classification for each monitored site.

Basically the four algorithms Naïve Bayes, C4.5,

Random forests, and SVM achieved almost very similar

results as shown in Fig. 15 for all top monitored sites with

less accuracy achieved for both Twitter and Wikipedia

considering the dynamic content in both sites. Also less

TP results achieved for Yahoo classification using SVM.

Fig. 15. Results comparison between ML algorithms

B. Comparison

In order to compare this research results with previous

achieved results on Tor fingerprinting, the researcher

needs to perform the improved methodology on the same

data used in previous researches and compare results.

However, because Tor literature covers a wide verity of

techniques with many different goals, and no two

techniques can be directly compared, as the data used for

analysis is not publicly disclosed [32]. The researcher

used some parameters for data generation technique (Tao

Wang I. G., 2013) which previously known to achieve

higher accuracy results ignoring the removal of

SENDMEs as it did not affect the results that much and

then use this dataset with the improved methodology to

present the new results.

There are a couple of few researches that have been

known to achieve high fingerprinting results on some

monitored sites. The recent research by [14] had achieved

an accuracy of 91% using SVM. However, the

methodology used in that research is different on how

fingerprinting technique works, the accuracy achieved in

this research using SVM is 99.04%, which gives an

improvement of +8.04%. Fig. 6 shows a graph

comparison between both results.

0

0.2

0.4

0.6

0.8

1

TP Rate FP Rate Precision

Recall F-Measure ROC Area

0

0.2

0.4

0.6

0.8

1

TP Rate FP Rate Precision

Recall F-Measure ROC Area

0.996 0.999 0.999 0.99 0.996 0.998 0.998 0.977

0.004 0.002 0.002 0.034

0

0.2

0.4

0.6

0.8

1

Naïve Bayes C4.5 Random forests SVM

Accuracy TP Rate FP Rate

 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning 21

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

Fig. 16. Combined OSAD accuracy versus this research accuracy.

Considering the technique used in order to identify Tor

traffic, this research by [33] were able to identify Tor

traffic using ML and they proofed that simulated Tor

network can be distinguished from regular encrypted

traffic, suggesting that real world Tor users may be

vulnerable to the same analysis. Barker et al [33] were

able to detect Tor over HTTP and Tor over HTTPS.

Further, he was able to achieve a result of 90% using

different ML algorithms. Basically, their evaluation is

based on the size of individual packets in a stream as

feature for traffic classification. However, this research is

considered a similar approach to distinguish Tor traffic

from HTTPS in order to achieve websites fingerprinting

over Tor. Yet, employing different improved techniques

and different feature set for the evaluation, this research

results gave an improvement, in Random forest of +2.1%

and for C4.5 of +2.8%. Fig. 17 and Fig. 18 show a

comparison between both results considering the mutual

ML algorithms used Random Forest and C4.5.

Fig. 17. Results comparison between John and This research accuracy
using Random Forest ML algorithm

Fig. 18. Results comparison between John and This research accuracy
using C4.5 ML algorithm

C. Discussion

In this paper, the researcher has demonstrated a website

fingerprinting attack against the most widely known

anonymity project Tor. Tor is very hard to detect by

measuring one parameter, in our methodology, the

researcher presented an improved technique in order to

fingerprinting websites over Tor network, the method

combines various improvements in order to achieve higher

results amongst previous researches on Tor fingerprinting.

The results have shown that all ML algorithms employed

achieved very similar results, almost 99% for all top sites

on Alexa, meaning the accuracy achieved is not biased to

a specific ML algorithm and that the variation is in the

existence of in the characteristics of Tor traffic amongst

HTTPS traffic.

According to Tor project, the assumption for Tor is that

data over Tor and HTTPs traffic should look alike,

preventing the local observer from distinguishing both

traffic traces in Tor, and thus preserving privacy. However,

this research results refute this assumption by noticing that

Tor and HTTPS traffic have different flow characteristics,

which proofed by showing high accuracy on

distinguishing Tor and HTTPS traffic. Yet, this implies

that Tor protections are not enough to make both traffic

traces look alike in order to preserve users‘ privacy and

this indicates that the current protections in Tor

implementation breaks the anonymity that Tor promised.

The variations in flow characteristics can be shown in Fig.

19 the figure shows a sample traffic that is taken from

ARFF file represents Google Tor traffic in blue and

HTTPS traffic in red. As described in Table V , the

features represent different network traffic flows. Also Fig.

20 shows a plot matrix in Weka for the current dataset,

Tor Google traffic in blue and HTTPS in red, the plot

matrix shows the distribution for each class feature

amongst the other class features in a matrix distribution

form. From the chart, its obvious the variation between

each class of traffic instances for the current sample

provided in Fig. 20 However, in the evaluation, 40

features were used which gave a high classification

accuracy for both Tor and HTTPS traffic.

Fig. 19. Variation in flow characteristics of sample Google‘s ARFF file

D. Conclusions And Future Work

This research presents that Tor can be classified

amongst HTTPS encrypted traffic. Tor is the low-latency

anonymity tool and one of the prevalent used open source

anonymity tools for anonymizing TCP traffic on the

Internet. Tor has implemented different defenses

techniques in order to prevent automated identification of

Tor traffic such as TLS encryption, padding, and packet

0.91

0.99

0.85

0.9

0.95

1

Combined OSAD This Research

Accuracy

0.998 0.977

0.002 0.003

0.999 0.999

0

0.5

1

This Research Results Barker et al Results

True Positive Rate False Positive Rate ROC Area

0.998 0.97

0.002 0.007

0.998 0.992

0

0.2

0.4

0.6

0.8

1

This Research Results Barker et al Results

True Positive Rate False Positive Rate ROC Area

22 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

relaying. However, as proofed in this research, Tor does

not appear to appropriately succeed in blurring the

network packets features, which makes it possible for a

local observer to identify Tor traffic in the network and

fingerprint most top sites on Alexa. Different techniques

have been used in order to classify Tor, similar technique

in previous researches is used to generate the traffic and

dataset model, Netmate is used for features dump and

Weka is used to build the dataset model, several ML

algorithms have been employed to identify Tor traffic,

results gave an improvement amongst previous results by

achieving an accuracy of 99.64% and 0.01% FP. However,

the researcher believes that its hard to compare this

research results with previous researches as Tor literature

covers a wide variety of techniques with many different

goals, and no two techniques can be directly compared as

the data used for analysis is not publicly disclosed.

Fig. 20. Plot Matrix for a sample of Google‘s ARFF file

E. Recommendations for Future Work

The researcher believes that this research experiment

was based on a small set of simulated data, and thus, it is

not necessarily that it covers all possible real world

conditions including open world experiments. The noise

and variability present in the real Tor network may make

this classification technique inaccurate. As future

recommendation, it‘s important to involve different types

of noise in the dataset to mimic the real open world

experience The researcher believes it‘s important to study

the ability to classify Tor on a global scope like ISP or

even more with some fine-tuning to the parameters used in

the experiments. Also due to high computation costs of

SVM, it‘s important to use a parallel computing cluster to

perform the experiment. Further, increasing the scope of

fingerprinting to include more sites in the experiment and

study the variation in the accuracy for each. Finally, as

future recommendation for Tor protocol, the researcher

advices that developers should develop more defenses in

order to make it harder for local observer to classify Tor

amongst HTTPS traffic and thus pertain anonymity and

privacy for Tor users.

REFERENCES

[1] Inc Tor Project. (2012, July) torproject. [Online].

https://metrics.torproject.org

[2] J. R. Vacca, Computer and information security handbook.:

Newnes, 2012.

[3] B Schneier, Schneier on security.: John Wiley & Sons,

2009.

[4] M., Adair, S., Hartstein, B., & Richard, M Ligh, Malware

Analyst's Cookbook and DVD: Tools and Techniques for

Fighting Malicious Code.: Wiley Publishing, 2010.

[5] B., Erdin, E., Güneş, M. H., Bebis, G., & Shipley, T. Li,

An Analysis of Anonymizer Technology Usage. Berlin:

Springer, 2011.

[6] X., Zhang, Y., & Niu, X. Bai, "Traffic identification of tor

and web-mix," in In Intelligent Systems Design and

Applications, 2008. ISDA'08. Eighth International

Conference, 2008, pp. 548-551.

[7] A., Niessen, L., Zinnen, A., & Engel, T Panchenko,

"Website fingerprinting in onion routing based

anonymization networks," in In Proceedings of the 10th

annual ACM workshop on Privacy in the electronic society,

2011, pp. 103-114.

[8] P. Loshin, Practical Anonymity: Hiding in Plain Sight

Online.: Newnes, 2013.

[9] Edward M. Schwalb, iTV handbook: technologies &

standards.: Prentice Hall, 2003.

[10] Manuel Mogollon, Cryptography and Security Services:

Mechanisms and applications.: CyberTech Publishing,

2007.

[11] M., Klonowski, M., & Kutyłowski, M. Gomułkiewicz,

"Onions based on universal re-encryption–anonymous

communication immune against repetitive attack," in In

Information Security Applications, Berlin , 2005, pp. 400-

410.

[12] E., Shin, J., & Yu, J. Chan-Tin, "Revisiting Circuit

Clogging Attacks on Tor," In Availability, Reliability and

Security (ARES), 2013 Eighth International Conference,

pp. 131-140, 2013.

[13] Nick Mathewson Roger Dingledine. (2004) torproject.

[Online].https://gitweb.torproject.org/torspec.git?a=blob_p

lain;hb=HEAD;f=tor-spec.txt

[14] T., & Goldberg, I. Wang, "Improved website fingerprinting

on tor," in In Proceedings of the 12th ACM workshop on

Workshop on privacy in the electronic society, New York,

2013, pp. 201-212.

[15] Z., Luo, J., Yu, W., Fu, X., Xuan, D., & Jia, W. Ling, "A

new cell-counting-based attack against Tor," IEEE/ACM

Transactions on Networking (TON), vol. 20(4), pp. 1245-

1261, 2012.

[16] S., Nguyen, T., & Armitage, G. Zander, "Automated traffic

classification and application identification using machine

learning," in In Local Computer Networks, 2005. 30th

Anniversary, 2005, pp. 250-257.

[17] Selenium. (2004) Selenium. [Online].

http://docs.seleniumhq.org/

[18] Margaret Rouse. (2011) search server virtualization.

[Online].http://searchservervirtualization.techtarget.com/de

finition/virtual-machine

[19] (1987) Tcpdump. [Online]. http://www.tcpdump.org/

[20] Alexa. (1996) Alexa. [Online]. http://www.alexa.com/

[21] The Fraunhofer Institute for Open Communication

Systems FOKUS. (2010) ip-measurement. [Online].

http://www.ip-measurement.org/tools/netmate.

[22] C., & Zincir-Heywood, A. N. McCarthy, "An investigation

on identifying SSL traffic," In Computational Intelligence

for Security and Defense Applications (CISDA), pp. 115 -

122, 2011.

[23] University of Waikato. (2008) Waikato. [Online].

http://www.cs.waikato.ac.nz/ml/weka/arff.html

 A Model for Detecting Tor Encrypted Traffic using Supervised Machine Learning 23

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2015, 7, 10-23

[24] O., & Rokach, L. Maimon, "Introduction to supervised

methods," In Data Mining and Knowledge Discovery

Handbook, pp. 149-164, 2005. [Online].

http://www.ise.bgu.ac.il/faculty/liorr/hbchap8.pdf

[25] J. Wroblewski, "Finding minimal reducts using genetic

algorithms," in In Proccedings of the second annual join

conference on infromation science, 1995, pp. 186-189.

[26] I. H., Gori, M., & Numerico, T. Witten, Web dragons:

Inside the myths of search engine technology.: Elsevier,

2010.

[27] B. Lantz, Machine Learning with R.: Packt Publishing Ltd,

2013.

[28] V. N., & Chervonenkis, A. J. Vapnik. (1974) Theory of

pattern recognition.

[29] V. Agneeswaran, Big Data Analytics Beyond Hadoop:

Real-Time Applications with Storm, Spark, and More

Hadoop Alternatives.: Pearson Education, 2014.

[30] R., & Zincir-Heywood, A. N. Alshammari, "Machine

learning based encrypted traffic classification: identifying

ssh and skype," in In Computational Intelligence for

Security and Defense Applications, 2009, pp. 1-8.

[31] University of Waikato. (2013) [Online].

http://www.cs.waikato.ac.nz/ml/weka/

[32] N., Zander, S., & Armitage, G. Williams, "A preliminary

performance comparison of five machine learning

algorithms for practical IP traffic flow classification,"

ACM SIGCOMM Computer Communication Review, pp.

5–16, 2006.

[33] J., Hannay, P., & Szewczyk, P. Barker, "Using traffic

analysis to identify The Second Generation Onion Router,"

in In Embedded and Ubiquitous Computing (EUC), 2011

IFIP 9th International Conference, 2011, pp. 72-78.

Authors’ profiles

Mr. Almubayed is a security researcher

was born in 1985 and received his B.S

degree from Al-Balqa applied university

(BAU) in 2008. Recently he has completed

his MS degree in information security and

digital crimes from Princess Sumaya

University for Technology (PSUT),

Amman in 2014.

Mr. Almubayed worked as a software developer with various

software companies in Jordan. In 2009, he joined Maktoob,

which later acquired by Yahoo Inc. He is currently based in

Sunnyvale, California, and works with Yahoo inc!, as a security

engineer. Mr. Almubayed has conducted researches in various

areas, including web defensive tools, employing machine

learning for traffic classifications, and he has more than 5 years

of experience in the fields of information security, ethical

hacking, reverse engineering, risk management, and computer

programming.

Dr. Hadi received the B.S. degree in

computer science from Philadelphia

University, Jordan, in 2002 and the M.Sc.

and Ph.D. degree in computer information

system from University of Banking and

Financial Sciences, College of Information

Technology, Jordan, in 2004 and 2010,

respectively.

He's a Senior Level Information Security Officer with 14+ years

of professional experience working for different high-reputed

companies. Since 2011 he's been teaching different computer

security, digital forensics, and networking courses for both

graduates and undergraduates. He's also an author, speaker, and

freelance instructor. His research interests include digital

forensics, operating systems internals, malware forensic analysis,

and network security.

Prof. Atoum is currently the Dean of The

King Hussein School of Computing

Sciences at Princess Sumaya University for

Technology (PSUT). He had received his

B.S. degree in Computer Science from

Yarmouk university-Jordan in 1984. He

had received his Master degree in

Computer Science from University of

Texas at Arlington-USA in 1987. He had received his PhD in

Computer Science from University of Houston-USA in 1993.

He had worked as an assistant professor at Yarmouk University

from 1993 to 1995. He had been appointed as the Computer

Science department Chairman at PSUT. He has supervised or co-

supervised several students on their Ph.D. dissertations and

several M.S. theses and has supervised numerous undergraduate

graduation projects. Finally, he have been involved in several

committees for degree plans, proposed and developed the Master

program in Information System Security and Digital

Criminology at PSUT.

How to cite this paper: Alaeddin Almubayed, Ali Hadi, Jalal Atoum,"A Model for Detecting Tor Encrypted Traffic

using Supervised Machine Learning", IJCNIS, vol.7, no.7, pp.10-23, 2015.DOI: 10.5815/ijcnis.2015.07.02

