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Abstract

This paper studies the cycle indices of products of permutation groups.
The main focus is on the product action of the direct product of permuta-
tion groups. The number of orbits of the product mtuples is trivial to
compute from the numbers of orbits of the factors; on the other hand, com-
puting the cycle index of the product is more intricate. Reconciling the two
computations leads to some interesting questions about substitutions in for-
mal power series. We also discuss what happens for infinite (oligomorphic)
groups and give detailed examples. Finally, we briefly turn our attention
to generalised wreath products, which are a common generalisation of both
the direct product with the product action and the wreath product with the
imprimitive action.

Introduction

Given two permutation group&s1,X;) and(Gg, X2), there are two ‘natural’ ac-
tions for the direct product and two for the wreath product, as follows. For the
direct products; x Gy, we have théntransitive action(G; x Gz, X3 U Xz), where

the union is assumed disjoint; and gm®duct action(G; x Gg, X1 x Xp). For the
wreath produc6; G, we have thémprimitive action(G1: Gz, X3 x X2), and the
power action(Gy? Gz,XfZ) (sometimes also called the product action).
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We are interested in calculating the cycle index of these products, and its spe-
cialisations including the number of orbits artuples and om-sets. For the in-
transitive and imprimitive actions, there are well-known techniques for this, which
we outline in the next section. However, for the power and product action, things
are less simple. For the product action of the direct product, the cycle index can be
calculated by an operation which we describe. The number of orbitstoples
is obtained from the corresponding numbers for the factors simply by multiplying
them. It is not obvious how these two operations are related; we discuss this in
detail in the third section of the paper. In the fourth section we make some pre-
liminary remarks on the more complicated problems for power action of wreath
products.

Bailey et al. ([1]) defined ageneralised wreath produdf a family of per-
mutation groups indexed by a poset. This reduces to the product action for direct
product and to the imprimitive action for wreath product. In the final section of
the paper we discuss this construction and summarise what is known about enu-
meration.

2 Preliminaries

This section contains definitions of the actions of products that we consider, and
a summary of known material about cycle index.

2.1 Actions of direct and wreath products

Let (G1,X1) and(G2, X2) be permutation groups. The direct prodGgtx G, acts
on the disjoint uniorX; U Xz by the rule

) X1 if xe Xy,
X(gl792> - {ng if xe X2 )

and on the Cartesian produ€t x Xz by the rule

(X1,%2)(91,92) = (X101, %202).

Note thatX; x Xz is naturally identified with the set of transversals of the two sets
X1 andX; in the disjoint union.

By G11G2 we mean thgermutational wreath produgcthe split extension of
the base group = G)l(2 by G, (permuting the factors of the direct product in the
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way it acts onXp). It acts on the Cartesian produ¢t x Xp by the rule
(X1, %) f = (xaf(x2),%2),  (X1,%2)g = (X1,%20),

and onX;? by the rule

(9F)0) = (@(x2)) (), (99)(xe) = Qg ™Y,

for f e B= G>1<2, ge Gy, andge sz. Again, there is a natural identification of
X{(Z with the set of transversals for the copMsx {X2} of Xz in X; x Xa.

2.2 Cycle index of products

Thecycle indexof a finite permutation groufG, X) is

Z(G) = %g; ﬂsq(g),

wheren = |X|, s1,...,S, are indeterminates, am{ g) is the number of-cycles in
the cycle decomposition @ We denote the result of substitutingor s in Z(G)
by Z(G;s «— z).

Knowledge of the cycle index enables various orbit-counting to be done. We
let fn(G), Fn(G) andF; (G) be the numbers of orbits @ on n-element subsets,
n-tuples of distinct elements, and altuples of elements ok respectively; and
we let fg(t), Fa(t), F&(t) be the ordinary generating functigh,-o fa(G)t" and
the exponential generating functiof$.oFn(G)t"/nl and 3 -0 Fy (G)t"/n! re-
spectively. It is possible to show directly (see for instance [4]) that the following
equalities hold

fG(t) = Z(G;S <—ti—|—1)’
Fa(t) Z(G;sp —t+1,5 «1fori>1),
F(t) = Z(Gis1+€,s5« 1fori>1).

Note that
F&(t) = Fo(d — 1).

This equation can also be expressed as
n
Fr(G) = Y SIKR(G).
K=1
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whereS(n,k) are the Stirling numbers of the second kind; in other words, the
sequencéF;(G)) is theStirling transformof (F(G)) [5]. Hence we can recover
the second sequence from the first byitheerse Stirling transform

n

F(G) = sk (G),

k=1

wheres(n, k) are the Stirling numbers of the first kind.
The cycle indices of direct and wreath products, with the intransitive and im-
primitive actions respectively, are given by (see [4])

Z(G1xGy) = Z(G1)Z(Gy),
Z(G11Gy) = Z(Gys <—Z(Gl;8j <—S,j)).

This paper is mostly about the cycle indices of these groups in the product and
power actions.

2.3 The cycle index theorem

The cycle index is used in solving several enumeration problems.

Let A be a set of “figures” (e.g. colours), each of which has a non-negative
integer “weight”, and le&(t) be the ordinary generating functighoant", where
an is the number of figures of weight(we are assuming that there is only a finite
number of figures of given weight).

Let X be a finite set; a functior : X — A (in the example, a colouring of
the points ofX) is said to have weightv(f) = S,.xW(f(X)). The cycle index
theorem allows to enumerate such functions up to the action of a gagqting
on X. Now G acts on the set of functions byg(x) = f(xg™!) (with g € G). We
introduce the function-counting seribt) = -0 bnt", whereby, is the number
of orbits of G on the functions of weight.

The theorem shows how to get the function-counting series from the knowl-
edge of the cycle index @& and of the figure-counting series.

Theorem 2.1 (Cycle Index Theorem)With the above notation,
b(t) = Z(Gia(t),a(t?),...,a(t").

For a proof, see for instance [4].



2.4 Oligomorphic groups

Itis sometimes convenient to extend these definitions to infinite permutation groups.
Such a grougG, X) is said to beoligomorphicif G has only a finite number of
orbits onX" for all natural numbers.

For (G, X) a (finite or) oligomorphic permutation group, we define thedi-
fied cycle inde¥ (G) by the rule

Z(G)= %Z(Gﬁ),

WhereGﬁ denotes the permutation group Annduced by its setwise stabiliser in
G, and the sum is over a set of representatives of3twebits on finite subsets of
X.

If it happens thaG is a finite permutation group, then we have nothing new:

Z(G)=Z(G;s —s+1).
Some particular oligomorphic groups of interest to us are:
e S the symmetric group on an infinite countable set;
e A, the group of order-preserving permutations of the rational numbers;

e C, the group of permutations preserving the cyclic order on the set of com-
plex roots of unity.

See [3] for further detalils.
We note one example here. &= S thenG is n-transitive for alln > 0, and
o)

(9= 3 Sink = B(n)

thenth Bell number(the number of partitions of amset). Using the imprimitive
action of the wreath product, we find also that

(itis not difficult to construct a bijection betwe&aS-orbits onn-tuples of distinct
elements an&-orbits on arbitrarnyn-tuples); and so

Fa(SUS) = kils(n, K)B(K).
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This is the number of (possibly improper) chams< 1 in the poset of partitions
of ann-set ordered by refinement, and is sequence A000258 iErtbgclopedia
of Integer Sequencgg].

More generally/,(GwrS) = F; (G) for any oligomorphic grous.

3 Product action of direct product

In this section we consider the product action of the direct product. Changing no-
tation slightly, we have permutation grou(@s, X) and(H,Y), and are interested
in G x H inits action onX x Y.

In what follows we shall discuss how the sequences associated with a direct
product of permutation groups (in the product action) are related to the sequences
of the factors. We shall see that the tamest sequence in this reg@il)jsfor
which By (G x H) = F{(G)FR;(H) holds. This is because amtuple of pairs is
determined by the-tuples of its first and second components, and this correspon-
dence respects the action®fx H.

The sequencér,) and the cycle index are also in principle easy to compute,
although less immediately, whildy,) tends to be, more often than not, quite wild.

In the former part we deal mostly with finite groups. In the latter part we shall
study the sequences for groups obtained as products of the gdgoA@ndC; in
particular, forSx S, Ax A, andC x C.

3.1 Cycle index

Take ani-cycle in a permutatioy € G and aj-cycle in a permutatiom € H.
The pair(g, h) acts on the product of the supports of these two cycles as,g¢d
cycles each of length Icfn j). Hence the cycle index @ x H can be computed
as follows: defing osj = (Scm(i j))9°*"}), and extend multiplicatively to arbitrary
monomials and then additively to arbitrary polynomials. Then

Z(Gx H) =Z(G)oZ(H).

The equalityF (G x H) = K (G)F(H) will be deduced from this fact.

In what follows, we often have to substitige— € ands < 1 fori > 1into a
cycle index; we denote this particular substitution By. We also use the notation
[X"JA(x), whereA(x) is a power series, to denote the coefficient'difh A(x). Now
we have:



Ri(GxH) = H_ Féxn () @)
_ :TI Fon (e —1) 0
= :1_? Z(Gx H;(e)) 3)
_ :]_r: (Z(G) o Z(H): (€)). @

The equality in (1) is just the definition of the exponential generating function
F&(t). Thatin (2) relates the sequend@g) and(Fy), and that in (3) relates them
to the cycle index o5, as described earlier.

On the other hand, we have:

RERH = |5 R || o ©
- || Feweri) ©
~ Y] @@ @) ezt )

We have denoted bythe operation between exponential generating functions

given by . o o
ant nt andnt
2 tl i Tl a

that is, the operation induced on the e.g.f. by the termwise product (sometimes
called Hadamard product) of the corresponding sequences.

So we have to prove the equality between (4) and (7). Here it is, slightly
rephrased.

Proposition 3.1 If A and B are polynomials inj$s,. ..,
(AoB)((€)) =A((€)) e B((€)).
Proof Firstly, the thesis holds for thes:

(5108)((€)) = 1((€)) = &, and s;((€)) es((€)) =& o & = ¢

v



fori>1,
(5108)((€)) =s((€)) =1, and si((€)) es((€)) =€ ol=1;
and finally, fori andj both greater than 1,
(505)((€)) = (Sem(i.j))* MV ((€)) = 1, and (s((€)) e5((€)) = le1=1.
This holds for monomials as well. In fact, assumang b < ... < z,

(5o 5%)((€)) = s3=((€))

(that is, is equal to 1 i > 1, or to &% if a= 1). So, we can limit ourselves to
considering polynomials consisting only of monomials in which a single indeter-
minate appears.

(G+sMo+s)) (@) = (Sosf+dos]+g o +5os]) (@)
— (38T P (S ) ™D ((©)
= dM+3;

and

S+ (( %+§(e dt 4 1)e (e +1)

"2 3 (ulo))
7rl+4..—H’| rla rl ne Sl+ +5p n Sl, ce 7Sp ne1
S GO N O
g+ Fap=n \&1---,ap

= P43
&

Here we have identified a sequence and its exponential generating function,
and used the notation (from Wilf [11]) that denotes{ty }>_, the sequence cor-
responding to the e.g.fy,bnt"/nl. Expressions for the terms of products and
powers of e.g.f.s can also be found in Wilf’s book.

n
The fact that the equality (,, " )5 (") = (5, "4 ) holds is for in-

stance a consequence of it belng Jiu”stp = (Ip)"in dlsgwse

8



3.2 Which substitutions work?

One could ask what happens to the equality in Prop. 3.1 if one substitutes for
the indeterminates generic functionsfi(t) = 5,5 fint"/nl. This suggests the
following problem:

For which sequencdd) of power series does one have
(sjosis < fi(t)) = (sj;s « fi(t)) o (sgs — fi(t))?

Our motivating example hafy (t) = € and fi(t) = 1 fori > 1. We cannot deter-
mine all such sequences, but we give some information about them below.
Given such power seriefg, we have

(sjos6s < fit) = ((Sem(jk)%is — fi(t)

= ( fIcm(j K) (t)) ged k)

flcm(j,k),ntn ) gCCXLk)

= (ano o
> > ( " > f f &
- ) lem(j,k),r1 """ Hem(j,K),rgeq ik .
n>0 \rit+-+Tgeqj k=N ;.- gedj k) gedj.k) | nl

On the other hand,

(si;s — fi(t) o (sas — fi(t) = fj(t)efi(t)
t" " t"

- 3] 50 [ w0

n>0

— % fj7n;fk7ntn.
s n:

Thus, we are asking for conditions on the functidi@) under which the
following happens:

n
finfn = ( )fL, Lo, (8)

where we have denoted ggdk) by D amd Icn{j,k) by L.

If we examine what happens for the first few coefficients, i.enter0,1,2,. ..
we find, not too surprisingly:
)D

, (9)

fiofo=(fLo
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that is an analogue of the defining relations for the product betwsgbut one
must remark that here we are considering numbers, not indeterminates). The next
steps are less enlightening:

fiifcr = D-fLa(fio)® 4
fiofke = D-fLa(fLo)® t+D(D—1)-(fL1)?(fLo)’ 2

We can describe quite explicitly the terms of the sequéiicg) by means of
the following proposition, which describes the consequences of the relation (9).

Proposition 3.2 Let (&) be a sequence of natural numbers such that

aaj = (ak:m(Lj))ng(i’j)-
Then either
(@)ay =1, =0foralli > 2, and & is arbitrary; or

(b) there is a function e from the primesNaJ{«} such that a= 0if i is divisible
by F(P) for some prime p, and;a= 1 otherwise.

Proof Foreach, we haves; gj = (a;)i: so, fori £ 2 we haveg; =0 or(ai)i—2 =1.
In the latter case; is a (i — 2)th root of unity; if we restrict ourselves to natural
numbers, it has to be 1.
If ap # 0,1, thenaz agk = a%k, and sk = 0 fork > 1; andaz ax+1 = a2(2k+1).
soax1 =0 fork > 0. So we are in case (a). So we may supposeghatO or
a; = 1 for all i. The multiplicative property is clear, s is the product of the
values ofay for the prime power factorg! of i.
If k<1, thenagay = (ay)™ = ay. Soifa

0 thena O for alll > k.

pk — ph =

&

Analogous, but less neat, descriptions can be given for the sequgiggs
(whose terms turn out to be 0 9r (i 2) (with terms 0/, i(1— i) ori?) etc.

We can also fix our attention on a sequeftg) for a fixedi (which is more
meaningful, as this is the sequence of the coefficients, g fint"/nl = fi(t)).
The equation (8), setting= k =1, gives a recursion for the terms of the sequence

(fi,n) (fixedi):
2 _ n E
f|,n a r1+~-~ZHi:n (r1> EE ri) fl’rl fl-,h .
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Unfortunately, this recursion is quite unwieldy due to the appearance in it of prod-
ucts ofi terms. However, at least fo= 1 andi = 2 it yields useful descriptions
of (fi,n)-

Fori =1 it becomes justfn = f1n; thus, each term of the sequence has to be
0 or 1 (when they are all equal to 1, we get bdgk) = €, as in our motivating
example).

Takingi = 2 gives

2 = (n
f2 = ( >f2,rf2.,n—r-
2\

If we take f,0 = 0 or 1, we get respectivelyo, = i\/z[‘j (7) f2r fan—r and

fon=1%1/1+3"F () f2, f2n . The solution obtained by takintyo = 1 and
then always the sign “+” i$o n = 2".

3.3 The general case

The equalitym; (G x H) = F;(G)F,;(H) holds in general (for finite or oligomor-
phic permutation groups). This makes computing the number of orbitsoples
of a direct product a somewhat easy task.

Given any two oligomorphic grougs andH acting onX andY respectively,
if we know their Fy-sequences, there is a straightforward way to work out the
number of orbits om-tuples of distinct elements &f x Y:

o take(Fy(G)) and(Fy(H));

e Stirling-transform them to obtaif; (G)) and(F; (H));

e multiply them to obtainF; (G x H));

e apply the inverse Stirling transform to obtdif,(G x H)).
Example: Sx S Let us turn our attention to the action®k Son X x X, where
X is a countable set.

We start with the action on-sets. The group is clearly transitive, so that
f1 = 1. There are three orbits on 2-sets: denoting{tg,a),(b,)} a generic
2-set, the orbits corresponddc= b, a = 3 or neither. A set of representatives for

the six orbits on 3-sets is shown in Figure 1, where points with the same first or
second coordinate are joined by a horizontal or vertical line.
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Figure 1: Orbits oSx Son 3-sets

In general, an orbit om-sets in this action determins two partitioRsand
G of n, corresponding to the equivalence relations “first component equal” and
“second component equal”’ for amtuple in the orbit. These satisi@ < F*,
whereF* is the partition dual té-, and< is the natural partial order on partitions.
However, the paifF,G) does not determine the orbit uniquely.

The set of orbits om-sets is in bijection with at least three other easily de-
scribed sets: the set of binary (0-1) matrices with exatiytries equal to 1 and
no zero row or column, up to row and column permutations; and the set of bipar-
tite graphs with a distinguished block, withedges and no isolated vertex, up to
isomorphism; and the set of hypergraphs with no isolated vertex or empty edge
having sum of edge sizes equalrio (The third interpretation is due to Klazar
(personal communication).) In the language of matrices, the number of matrices
corresponding to a given pair of partitions was studied by Brualdi [2].

For the orbits om-tuples we have analogous correspondences, this time with
labelled versions of the matrices or graphs: The analogue of considering binary
matrices is taking matrices as above, with exactly one entry equal to 1, one equal
to 2, ..., one equal to, and the rest zero. The analogue of the graph interpreta-
tion is considering bipartite graphs as above with the edges labellee.1FRor
hypergraphs, the incidences or “flags” must be labelled.

While calculating the numberfs(Sx S) appears to be difficult, we can use the
procedure given above to work og(Sx S). We know that=;(S) = B, thenth
Bell number, and it is easy to see that with each partitiof102, ... ,n} we can
associate an orbit omtuples of not necessarily distinct elements, and vice versa.
For instance, with the partitiof{ 1,3,4}, {2,5} } we associate the orbit containing
(a,b,a,a,b) (a+#b).

SoF;(Sx S) is equal toB2 and an orbit om-tuples of pairs corresponds to a
pair of partitions of{1,2,...,n}: for instance with the pair of partitions

({{1,3,4},{2,5}},{{1,4},{2,5}, {3}})

we may associate the orbit containing
((a,x),(b,y),(a,2),(a,%),(b,y))
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(@a# b x#y#z#X).

Stirling-invertingF (Sx S), we find that,(Sx S) = S, s(n,i)B?.

A generic pair of partitions corresponds toratuple with repeated elements;
to obtainn-tuples of distinct elements, we have to add the condition that the two
partitions have meef{1},{2},...,{n}} in the lattice of partitions of1,... ,n}.
(See the papers by Pittel [9] and Canfield [6].) The sequBR(&®x S) is sequence
A059849 in Sloane [7].

The above generalises in a natural way to the produktaaipies ofSin the
product action: one hag (S¢) = BK, andFy(S¢) = 3, s(n,i)Bk.

Example: Ax A The links between the sequences counting orbits-sats and
n-tuples can be well described for the grops- A, Ax A, AxXAxA, ...

The key observation is that the group induced by su€an n points (ele-
ments ofQ, Q x Q, ...) is trivial. Therefore each orbit omsets gives rise to
exactlyn! orbits onn-tuples of distinct elements, so that the ra&gG)/ f(G) is
equal ton! for eachn.

Let us now apply the procedure described above to the géod\ x A acting
onQ x Q.

Recall that forA one hasf, = 1 andFR, = n! for eachn. Applying the Stir-
ling transform to the sequen¢E,(A)), we get(F; (A)), whose terms also give the
number of labelled total preorders, also called weak orders or preferential arrange-
ments (this is sequence A000670 in [7]). The remaining steps of the procedure
give Fy(A x A); dividing by n! we obtainf,(A x A). UsingGAP [8], we find the
first terms to be 1, 4, 24, 196, 2016, 24976, 361792, ...

Also in this situation one can give bijections between orbits and other struc-
tures: matrices, bipartite graphs, pairs of partitions.

Here we have one orbit amsets for each binary matrix with exactiyentries
1 (without allowing permutations on rows or columns); and one orbit-tuples
of distinct elements for each matrix with entries 1, 2,.n (pne each) and zero
elsewhere.

As for graphs, we consider here bipartite graphs with a total ordering on each
of the blocks; label the edges to get the correspondence with orbitsupies.

Lastly, the correspondence with pairs of partitions whose meet is the parti-
tion into singletons requires the additional condition that each of the partitions be
ordered (that is to be an ordered list of subset§loP, ... . n}).
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Example: CxC We may finally sketch what happens for the graiix C;
recalling thatf,(C) = 1 andF,(C) = (n— 1)!, one can apply the procedure to
work out Fy(C x C). It is also straightforward to describe the analogue of the
bijections: for instance, orbits amsets correspond to binary matrices as above
up to cyclic permutations of rows and columns.

4 Power action of wreath product

We do not have a convenient expression for the cycle index of a wreath product in
the power action. For the orbits ortuples, we have the following result.

Proposition 4.1 Let G= G1:Gy, in the power action. Then
Fy(G) =Z(Gz;s « Fy (Gy)).

Proof If B= G]'is the base group, then each orbiBxbn n-tuples is indexed by
anmtuple of orbits 0fG; onn-tuples. Taking th&-orbits onn-tuples as figures,
eachB-orbit is a function from{1,...,m} to the set of figures, an@-orbits on
n-tuples correspond tG,-orbits on such functions. The result follows from the
Cycle Index Theorem. &

In particular,F; (A1C2) = Ry (A)(F(A)+1)/2. From this, one can calculate
Fn(A1Co) by Stirling inversion as usual.

5 Generalised wreath products

Let | be a set with partial ordgy. Suppose that a permutation gro(@,X;) is
associated with each elememrt|. Baileyet al. [1] defined thegeneralised wreath
product(G, X) = [iel (Gi, %), in such a way that

e X is the Cartesian produgyic Xi;

e if | is an antichain of size 2, then the generalised wreath product is the direct
product with the product action;

e if | is a chain of size 2, then the generalised wreath product is the wreath
product with the imprimitive action.
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The generalised wreath product is defined as follows. Forieathwe define
the group to be the direct product of copies Gf indexed byf] ;- X;. The factor
corresponding to an elemefx; : j > i) in the product acts as follows. Take any
element(x : ke I) of X. If xj = x; for all j > i, thenG; acts on théth coordinate;
otherwiseG; acts trivially.

Now the generalised wreath prodyigi, (G, %) is the group generated by the
subgroupss for i € I. For further information on the structure of this group we
refer to [1]. We leave it as an exercise to check that it coincides with the product
action of the direct product ifis a 2-element antichain, and with the imprimitive
action of the wreath product ifis a 2-element chain.

The obvious question now is to calculate, if possible, the cycle index, or at
least the orbit-counting series, for a generalised wreath product.

Some results are already known. Bailgyal. showed that, if al(G;, X;) are
transitive, thenG, X) is transitive, and gave a description of the orbitsG0én
X2 in terms of the orbits 06; on X2 and the antichains of the poggtp). Their
result was as follows:

Theorem 5.1 Let (G, X) = [1ic(Gi, %) be a generalised wreath product. For
each antichain S of I, and each choice of an orbjtd G, on pairs of distinct
elements of Xfor i € S, there is an orbit of G on pair§x), (yi)) such that for
each i€ S the pair(x;, y;) satisfies

e X; =Y, ifiis not below any element of S;
e (X,y) €Qifi €S;
e no condition if i< j for some je S.

These are all the orbits of G on?X

This list includes the case whexe=y; for all i (with S= 0). SinceF; (G) =
1+ F»(G) for a transitive groufss, we have the following result:

Corollary 5.2 Let (G, X) = [iel (Gi, Xi), where eac{G;, X;) is transitive. Then
1+F(G) = F(Gi),
2/l

where the sum is over all antichains of I.
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Example If eachG; is 2-transitive orX, then 1+ F(G) is equal to the number
of antichains inl. This number is also equal to the number of poset homomor-
phisms froml to the 2-element chain.

Example If | is the 2-element chain, thentlF(G) = 1+ F(G1) + F(Gy). If
| is the 2-element antichain thentlF(G) = (1+ F2(G1))(1+ F2(Gp)). These
agree with our earlier results for imprimitive and product actions.

Subsequently, Praeget al. [10] showed the following:

Theorem 5.3 Let(G, X) =[iel (Gi, X). If (Gi, X) is n-transitive for all ic |, then
the number of orbits of G on"Xs equal to the number of poset homomorphisms
from (1, p) to the posetP(n) of partitions of an n-set (ordered by refinement).

In particular,F; (S, X?) = B(n)? (whereB(n) = |P(n)| is the Bell number),
andF;(StS X x X) is the number of chains of length 2 #(n) (including trivial
chains(tt, 11)). These of course agree with our earlier results.

The main problem we wish to pose is to find a common generalisation of these
two results to count orbits omtuples of an arbitrary generalised wreath product,
or (better) to calculate its cycle index.

N

Figure 2: The poset N

Note that, if the posetl,p) is N-free(that is, if it does not contain the poset
shown in Figure 2 as induced subposet), then it can be constructed from singleton
posets by the operations of disjoint union and ordered sum, and so the generalised
wreath product can be built from its factors by the operations of direct product
(with the product action) and wreath product (with the imprimitive action). In
these cases, the cycle index can be calculated in principle. However, the propor-
tion of n-element posets which are N-free tends to @ as .
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