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Abstract

This paper studies the cycle indices of products of permutation groups.
The main focus is on the product action of the direct product of permuta-
tion groups. The number of orbits of the product onn-tuples is trivial to
compute from the numbers of orbits of the factors; on the other hand, com-
puting the cycle index of the product is more intricate. Reconciling the two
computations leads to some interesting questions about substitutions in for-
mal power series. We also discuss what happens for infinite (oligomorphic)
groups and give detailed examples. Finally, we briefly turn our attention
to generalised wreath products, which are a common generalisation of both
the direct product with the product action and the wreath product with the
imprimitive action.

1 Introduction

Given two permutation groups(G1,X1) and(G2,X2), there are two ‘natural’ ac-
tions for the direct product and two for the wreath product, as follows. For the
direct productG1×G2, we have theintransitive action(G1×G2,X1∪X2), where
the union is assumed disjoint; and theproduct action(G1×G2,X1×X2). For the
wreath productG1 oG2, we have theimprimitive action(G1 oG2,X1×X2), and the
power action(G1 oG2,X

X2
1 ) (sometimes also called the product action).
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We are interested in calculating the cycle index of these products, and its spe-
cialisations including the number of orbits onn-tuples and onn-sets. For the in-
transitive and imprimitive actions, there are well-known techniques for this, which
we outline in the next section. However, for the power and product action, things
are less simple. For the product action of the direct product, the cycle index can be
calculated by an operation which we describe. The number of orbits onn-tuples
is obtained from the corresponding numbers for the factors simply by multiplying
them. It is not obvious how these two operations are related; we discuss this in
detail in the third section of the paper. In the fourth section we make some pre-
liminary remarks on the more complicated problems for power action of wreath
products.

Bailey et al. ([1]) defined ageneralised wreath productof a family of per-
mutation groups indexed by a poset. This reduces to the product action for direct
product and to the imprimitive action for wreath product. In the final section of
the paper we discuss this construction and summarise what is known about enu-
meration.

2 Preliminaries

This section contains definitions of the actions of products that we consider, and
a summary of known material about cycle index.

2.1 Actions of direct and wreath products

Let (G1,X1) and(G2,X2) be permutation groups. The direct productG1×G2 acts
on the disjoint unionX1∪X2 by the rule

x(g1,g2) =
{

xg1 if x∈ X1,
xg2 if x∈ X2

,

and on the Cartesian productX1×X2 by the rule

(x1,x2)(g1,g2) = (x1g1,x2g2).

Note thatX1×X2 is naturally identified with the set of transversals of the two sets
X1 andX2 in the disjoint union.

By G1 oG2 we mean thepermutational wreath product, the split extension of
the base groupB = GX2

1 by G2 (permuting the factors of the direct product in the
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way it acts onX2). It acts on the Cartesian productX1×X2 by the rule

(x1,x2) f = (x1 f (x2),x2), (x1,x2)g = (x1,x2g),

and onXX2
1 by the rule

(φ f )(x2) = (φ(x2))( f (x2)), (φg)(x2) = φ(x2g−1),

for f ∈ B = GX2
1 , g∈ G2, andφ ∈ XX2

1 . Again, there is a natural identification of
XX2

1 with the set of transversals for the copiesX1×{x2} of X1 in X1×X2.

2.2 Cycle index of products

Thecycle indexof a finite permutation group(G,X) is

Z(G) =
1
|G| ∑g∈G

n

∏
i=1

sci(g)
i ,

wheren = |X|, s1, . . . ,sn are indeterminates, andci(g) is the number ofi-cycles in
the cycle decomposition ofg. We denote the result of substitutingzi for si in Z(G)
by Z(G;si ← zi).

Knowledge of the cycle index enables various orbit-counting to be done. We
let fn(G), Fn(G) andF∗n (G) be the numbers of orbits ofG on n-element subsets,
n-tuples of distinct elements, and alln-tuples of elements ofX respectively; and
we let fG(t), FG(t), F∗G(t) be the ordinary generating function∑n≥0 fn(G)tn and
the exponential generating functions∑n≥0Fn(G)tn/n! and ∑n≥0F∗n (G)tn/n! re-
spectively. It is possible to show directly (see for instance [4]) that the following
equalities hold

fG(t) = Z(G;si ← t i +1),
FG(t) = Z(G;s1← t +1,si ← 1 for i > 1),
F∗G(t) = Z(G;s1← et ,si ← 1 for i > 1).

Note that
F∗G(t) = FG(et−1).

This equation can also be expressed as

F∗n (G) =
n

∑
k=1

S(n,k)Fk(G),
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whereS(n,k) are the Stirling numbers of the second kind; in other words, the
sequence(F∗n (G)) is theStirling transformof (Fn(G)) [5]. Hence we can recover
the second sequence from the first by theinverse Stirling transform:

Fn(G) =
n

∑
k=1

s(n,k)F∗k (G),

wheres(n,k) are the Stirling numbers of the first kind.
The cycle indices of direct and wreath products, with the intransitive and im-

primitive actions respectively, are given by (see [4])

Z(G1×G2) = Z(G1)Z(G2),
Z(G1 oG2) = Z(G2;si ← Z(G1;sj ← si· j)).

This paper is mostly about the cycle indices of these groups in the product and
power actions.

2.3 The cycle index theorem

The cycle index is used in solving several enumeration problems.
Let A be a set of “figures” (e.g. colours), each of which has a non-negative

integer “weight”, and leta(t) be the ordinary generating function∑n≥0antn, where
an is the number of figures of weightn (we are assuming that there is only a finite
number of figures of given weight).

Let X be a finite set; a functionf : X → A (in the example, a colouring of
the points ofX) is said to have weightw( f ) = ∑x∈X w( f (x)). The cycle index
theorem allows to enumerate such functions up to the action of a groupG acting
on X. Now G acts on the set of functions byf g(x) = f (xg−1) (with g∈ G). We
introduce the function-counting seriesb(t) = ∑n≥0bntn, wherebn is the number
of orbits ofG on the functions of weightn.

The theorem shows how to get the function-counting series from the knowl-
edge of the cycle index ofG and of the figure-counting series.

Theorem 2.1 (Cycle Index Theorem)With the above notation,

b(t) = Z(G;a(t),a(t2), . . . ,a(tn)).

For a proof, see for instance [4].
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2.4 Oligomorphic groups

It is sometimes convenient to extend these definitions to infinite permutation groups.
Such a group(G,X) is said to beoligomorphicif G has only a finite number of
orbits onXn for all natural numbersn.

For (G,X) a (finite or) oligomorphic permutation group, we define themodi-
fied cycle index̃Z(G) by the rule

Z̃(G) = ∑
∆

Z(G∆
∆),

whereG∆
∆ denotes the permutation group on∆ induced by its setwise stabiliser in

G, and the sum is over a set of representatives of theG-orbits on finite subsets of
X.

If it happens thatG is a finite permutation group, then we have nothing new:

Z̃(G) = Z(G;si ← si +1).

Some particular oligomorphic groups of interest to us are:

• S, the symmetric group on an infinite countable set;

• A, the group of order-preserving permutations of the rational numbers;

• C, the group of permutations preserving the cyclic order on the set of com-
plex roots of unity.

See [3] for further details.
We note one example here. IfG = S, thenG is n-transitive for alln≥ 0, and

so

F∗n (S) =
n

∑
k=1

S(n,k) = B(n)

thenth Bell number(the number of partitions of ann-set). Using the imprimitive
action of the wreath product, we find also that

Fn(SoS) = B(n)

(it is not difficult to construct a bijection betweenSoS-orbits onn-tuples of distinct
elements andS-orbits on arbitraryn-tuples); and so

F∗n (SoS) =
n

∑
k=1

S(n,k)B(k).
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This is the number of (possibly improper) chainsπ1≤ π2 in the poset of partitions
of ann-set ordered by refinement, and is sequence A000258 in theEncyclopedia
of Integer Sequences[7].

More generally,Fn(GwrS) = F∗n (G) for any oligomorphic groupG.

3 Product action of direct product

In this section we consider the product action of the direct product. Changing no-
tation slightly, we have permutation groups(G,X) and(H,Y), and are interested
in G×H in its action onX×Y.

In what follows we shall discuss how the sequences associated with a direct
product of permutation groups (in the product action) are related to the sequences
of the factors. We shall see that the tamest sequence in this regard is(F∗n ), for
which F∗n (G×H) = F∗n (G)F∗n (H) holds. This is because ann-tuple of pairs is
determined by then-tuples of its first and second components, and this correspon-
dence respects the action ofG×H.

The sequence(Fn) and the cycle index are also in principle easy to compute,
although less immediately, while( fn) tends to be, more often than not, quite wild.

In the former part we deal mostly with finite groups. In the latter part we shall
study the sequences for groups obtained as products of the groupsS, A andC; in
particular, forS×S, A×A, andC×C.

3.1 Cycle index

Take ani-cycle in a permutationg ∈ G and a j-cycle in a permutationh ∈ H.
The pair(g,h) acts on the product of the supports of these two cycles as gcd(i, j)
cycles each of length lcm(i, j). Hence the cycle index ofG×H can be computed
as follows: definesi ◦sj = (slcm(i, j))gcd(i, j), and extend multiplicatively to arbitrary
monomials and then additively to arbitrary polynomials. Then

Z(G×H) = Z(G)◦Z(H).

The equalityF∗n (G×H) = F∗n (G)F∗n (H) will be deduced from this fact.
In what follows, we often have to substitutes1← et andsi← 1 for i > 1 into a

cycle index; we denote this particular substitution by(E). We also use the notation
[xn]A(x), whereA(x) is a power series, to denote the coefficient ofxn in A(x). Now
we have:
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F∗n (G×H) =
[

tn

n!

]
F∗G×H(t) (1)

=
[

tn

n!

]
FG×H(et−1) (2)

=
[

tn

n!

]
Z(G×H;(E)) (3)

=
[

tn

n!

]
(Z(G)◦Z(H);(E)) . (4)

The equality in (1) is just the definition of the exponential generating function
F∗G(t). That in (2) relates the sequences(Fn) and(F∗n ), and that in (3) relates them
to the cycle index ofG, as described earlier.

On the other hand, we have:

F∗n (G)F∗n (H) =
[

tn

n!

]
F∗G(t)

[
tn

n!

]
F∗H(t) (5)

=
[

tn

n!

]
(F∗G(t)•F∗H(t)) (6)

=
[

tn

n!

]
(Z(G;(E))•Z(H;(E))) . (7)

We have denoted by• the operation between exponential generating functions
given by

∑ antn

n!
•∑ bntn

n!
:= ∑ anbntn

n!
,

that is, the operation induced on the e.g.f. by the termwise product (sometimes
called Hadamard product) of the corresponding sequences.

So we have to prove the equality between (4) and (7). Here it is, slightly
rephrased.

Proposition 3.1 If A and B are polynomials in s1, s2,. . . ,

(A◦B)((E)) = A((E))•B((E)).

Proof Firstly, the thesis holds for thesis:

(s1◦s1)((E)) = s1((E)) = et , and s1((E))•s1((E)) = et •et = et ;
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for i > 1,

(s1◦si)((E)) = si((E)) = 1, and s1((E))•si((E)) = et •1 = 1;

and finally, fori and j both greater than 1,

(si ◦sj)((E)) = (slcm(i, j))
gcd(i, j)((E)) = 1, and (si((E))•sj((E)) = 1•1 = 1.

This holds for monomials as well. In fact, assuminga< b< .. . < z,

(sma
a smb

b . . .smz
z )((E)) = sma

a ((E))

(that is, is equal to 1 ifa> 1, or to emat if a = 1). So, we can limit ourselves to
considering polynomials consisting only of monomials in which a single indeter-
minate appears.

(
(sl

1 +sm
i )◦ (sp

1 +sq
j )
)

((E)) =
(

sl
1◦sp

1 +sl
1◦sq

j +sm
i ◦sp

1 +sm
i ◦sq

j

)
((E))

=
(

sl p
1 +slq

j +smp
i +(slcm(i, j))

mq·gcd(i, j)
)

((E))

= el pt +3;

and

(sl
1 +sm

i )((E))• (sp
1 +sq

j )((E)) = (elt +1)• (ept +1)

=

{
2, ∑

r1+...+r l =n

(
n

r1, . . . , r l

)}∞

n=1

•

{
2, ∑

s1+...+sp=n

(
n

s1, . . . ,sp

)}∞

n=1

=

{
4, ∑

a1+...+al p=n

(
n

a1, . . . ,al p

)}∞

n=1

= el pt +3.

♦

Here we have identified a sequence and its exponential generating function,
and used the notation (from Wilf [11]) that denotes by{bn}∞

n=0 the sequence cor-
responding to the e.g.f.∑nbntn/n!. Expressions for the terms of products and
powers of e.g.f.s can also be found in Wilf’s book.

The fact that the equality∑
( n

r1,...,r l

)
∑
( n

s1,...,sp

)
= ∑

( n
a1,...,al p

)
holds is for in-

stance a consequence of it being justln · pn = (l p)n in disguise.
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3.2 Which substitutions work?

One could ask what happens to the equality in Prop. 3.1 if one substitutes for
the indeterminatessi generic functionsfi(t) = ∑n≥0 fi,ntn/n!. This suggests the
following problem:

For which sequences( fi) of power series does one have

(sj ◦sk;si ← fi(t)) = (sj ;si ← fi(t))• (sk;si ← fi(t))?

Our motivating example hasf1(t) = et and fi(t) = 1 for i > 1. We cannot deter-
mine all such sequences, but we give some information about them below.

Given such power seriesfi , we have

(sj ◦sk;si ← fi(t)) = ((slcm( j,k))gcd( j,k);si ← fi(t))
=

(
flcm( j,k)(t)

)gcd( j,k)

=
(

∑n≥0
flcm( j,k),n tn

n!

)gcd( j,k)

= ∑
n≥0

(
∑

r1+···+rgcd( j,k)=n

(
n

r1, . . . , rgcd( j,k)

)
flcm( j,k),r1

· · · flcm( j,k),rgcd( j,k)

)
tn

n!
.

On the other hand,

(sj ;si ← fi(t))• (sk;si ← fi(t)) = f j(t)• fk(t)

= ∑
n≥0

[
tn

n!

]
f j(t)

[
tn

n!

]
fk(t)

tn

n!

= ∑
n≥0

f j,n fk,n
n!

tn.

Thus, we are asking for conditions on the functionsfi(t) under which the
following happens:

f j,n fk,n = ∑
r1+···+rD=n

(
n

r1, . . . , rD

)
fL,r1 · · · fL,rD, (8)

where we have denoted gcd( j,k) by D amd lcm( j,k) by L.
If we examine what happens for the first few coefficients, i.e., forn= 0,1,2, . . .

we find, not too surprisingly:

f j,0 fk,0 = ( fL,0)D, (9)
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that is an analogue of the defining relations for the product betweensis (but one
must remark that here we are considering numbers, not indeterminates). The next
steps are less enlightening:

f j,1 fk,1 = D · fL,1( fL,0)D−1,

f j,2 fk,2 = D · fL,2( fL,0)D−1 +D(D−1) · ( fL,1)2( fL,0)D−2.

We can describe quite explicitly the terms of the sequence( fi,0) by means of
the following proposition, which describes the consequences of the relation (9).

Proposition 3.2 Let (ai) be a sequence of natural numbers such that

aia j = (alcm(i, j))
gcd(i, j).

Then either

(a) a1 = 1, ai = 0 for all i > 2, and a2 is arbitrary; or

(b) there is a function e from the primes toN∪{∞} such that ai = 0 if i is divisible
by pe(p) for some prime p, and ai = 1 otherwise.

Proof For eachi, we haveai ai = (ai)i : so, fori 6= 2 we haveai = 0 or(ai)i−2 = 1.
In the latter caseai is a (i−2)th root of unity; if we restrict ourselves to natural
numbers, it has to be 1.

If a2 6= 0,1, thena2a2k = a2
2k, and soa2k = 0 for k> 1; anda2a2k+1 = a2(2k+1),

soa2k+1 = 0 for k> 0. So we are in case (a). So we may suppose thatai = 0 or
ai = 1 for all i. The multiplicative property is clear, soai is the product of the
values ofapt for the prime power factorspt of i.

If k< l , thenapk apl = (apl )pk
= apl . So if apk = 0 thenapl = 0 for all l ≥ k.

♦

Analogous, but less neat, descriptions can be given for the sequences( fi,1)
(whose terms turn out to be 0 ori), ( fi,2) (with terms 0,i, i(1− i) or i2) etc.

We can also fix our attention on a sequence( fi,n) for a fixedi (which is more
meaningful, as this is the sequence of the coefficients of∑n≥0 fi,ntn/n! = fi(t)).
The equation (8), settingj = k = i, gives a recursion for the terms of the sequence
( fi,n) (fixed i):

f 2
i,n = ∑

r1+···+r i=n

(
n

r1, . . . , r i

)
fi,r1 · · · fi,r i .
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Unfortunately, this recursion is quite unwieldy due to the appearance in it of prod-
ucts ofi terms. However, at least fori = 1 andi = 2 it yields useful descriptions
of ( fi,n).

For i = 1 it becomes justf 2
1,n = f1,n; thus, each term of the sequence has to be

0 or 1 (when they are all equal to 1, we get backf1(t) = et , as in our motivating
example).

Taking i = 2 gives

f 2
2,n =

n

∑
r=0

(
n
r

)
f2,r f2,n−r .

If we take f2,0 = 0 or 1, we get respectivelyf2,n = ±
√

∑n−1
r=1

(n
r

)
f2,r f2,n−r and

f2,n = 1±
√

1+ ∑n−1
r=1

(n
r

)
f2,r f2,n−r . The solution obtained by takingf2,0 = 1 and

then always the sign “+” isf2,n = 2n.

3.3 The general case

The equalityF∗n (G×H) = F∗n (G)F∗n (H) holds in general (for finite or oligomor-
phic permutation groups). This makes computing the number of orbits onn-tuples
of a direct product a somewhat easy task.

Given any two oligomorphic groupsG andH acting onX andY respectively,
if we know their Fn-sequences, there is a straightforward way to work out the
number of orbits onn-tuples of distinct elements ofX×Y:

• take(Fn(G)) and(Fn(H));

• Stirling-transform them to obtain(F∗n (G)) and(F∗n (H));

• multiply them to obtain(F∗n (G×H));

• apply the inverse Stirling transform to obtain(Fn(G×H)).

Example: S×S Let us turn our attention to the action ofS×SonX×X, where
X is a countable set.

We start with the action onn-sets. The group is clearly transitive, so that
f1 = 1. There are three orbits on 2-sets: denoting by{(a,α),(b,β)} a generic
2-set, the orbits correspond toa = b, α = β or neither. A set of representatives for
the six orbits on 3-sets is shown in Figure 1, where points with the same first or
second coordinate are joined by a horizontal or vertical line.
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Figure 1: Orbits ofS×Son 3-sets

In general, an orbit onn-sets in this action determins two partitionsF and
G of n, corresponding to the equivalence relations “first component equal” and
“second component equal” for ann-tuple in the orbit. These satisfyG ≤ F∗,
whereF∗ is the partition dual toF , and≤ is the natural partial order on partitions.
However, the pair(F,G) does not determine the orbit uniquely.

The set of orbits onn-sets is in bijection with at least three other easily de-
scribed sets: the set of binary (0-1) matrices with exactlyn entries equal to 1 and
no zero row or column, up to row and column permutations; and the set of bipar-
tite graphs with a distinguished block, withn edges and no isolated vertex, up to
isomorphism; and the set of hypergraphs with no isolated vertex or empty edge
having sum of edge sizes equal ton. (The third interpretation is due to Klazar
(personal communication).) In the language of matrices, the number of matrices
corresponding to a given pair of partitions was studied by Brualdi [2].

For the orbits onn-tuples we have analogous correspondences, this time with
labelled versions of the matrices or graphs: The analogue of considering binary
matrices is taking matrices as above, with exactly one entry equal to 1, one equal
to 2, . . . , one equal ton, and the rest zero. The analogue of the graph interpreta-
tion is considering bipartite graphs as above with the edges labelled 1 ton. For
hypergraphs, the incidences or “flags” must be labelled.

While calculating the numbersfn(S×S) appears to be difficult, we can use the
procedure given above to work outFn(S×S). We know thatF∗n (S) = Bn, thenth
Bell number, and it is easy to see that with each partition of{1,2, . . . ,n} we can
associate an orbit onn-tuples of not necessarily distinct elements, and vice versa.
For instance, with the partition{{1,3,4},{2,5}}we associate the orbit containing
(a,b,a,a,b) (a 6= b).

SoF∗n (S×S) is equal toB2
n and an orbit onn-tuples of pairs corresponds to a

pair of partitions of{1,2, . . . ,n}: for instance with the pair of partitions

({{1,3,4},{2,5}},{{1,4},{2,5},{3}})

we may associate the orbit containing

((a,x),(b,y),(a,z),(a,x),(b,y))
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(a 6= b, x 6= y 6= z 6= x).
Stirling-invertingF∗n (S×S), we find thatFn(S×S) = ∑n

i=1s(n, i)B2
i .

A generic pair of partitions corresponds to ann-tuple with repeated elements;
to obtainn-tuples of distinct elements, we have to add the condition that the two
partitions have meet{{1},{2}, . . . ,{n}} in the lattice of partitions of{1, . . . ,n}.
(See the papers by Pittel [9] and Canfield [6].) The sequenceFn(S×S) is sequence
A059849 in Sloane [7].

The above generalises in a natural way to the product ofk copies ofS in the
product action: one hasF∗n (Sk) = Bk

n, andFn(Sk) = ∑n
i=1s(n, i)Bk

i .

Example: A×A The links between the sequences counting orbits onn-sets and
n-tuples can be well described for the groupsG = A, A×A, A×A×A, . . .

The key observation is that the group induced by such aG on n points (ele-
ments ofQ, Q×Q, . . . ) is trivial. Therefore each orbit onn-sets gives rise to
exactlyn! orbits onn-tuples of distinct elements, so that the ratioFn(G)/ fn(G) is
equal ton! for eachn.

Let us now apply the procedure described above to the groupG= A×A acting
onQ×Q.

Recall that forA one hasfn = 1 andFn = n! for eachn. Applying the Stir-
ling transform to the sequence(Fn(A)), we get(F∗n (A)), whose terms also give the
number of labelled total preorders, also called weak orders or preferential arrange-
ments (this is sequence A000670 in [7]). The remaining steps of the procedure
give Fn(A×A); dividing by n! we obtain fn(A×A). UsingGAP [8], we find the
first terms to be 1, 4, 24, 196, 2016, 24976, 361792, . . .

Also in this situation one can give bijections between orbits and other struc-
tures: matrices, bipartite graphs, pairs of partitions.

Here we have one orbit onn-sets for each binary matrix with exactlyn entries
1 (without allowing permutations on rows or columns); and one orbit onn-tuples
of distinct elements for each matrix with entries 1, 2,. . . ,n (one each) and zero
elsewhere.

As for graphs, we consider here bipartite graphs with a total ordering on each
of the blocks; label the edges to get the correspondence with orbits onn-tuples.

Lastly, the correspondence with pairs of partitions whose meet is the parti-
tion into singletons requires the additional condition that each of the partitions be
ordered (that is to be an ordered list of subsets of{1,2, . . . ,n}).
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Example: C×C We may finally sketch what happens for the groupC×C;
recalling that fn(C) = 1 andFn(C) = (n− 1)!, one can apply the procedure to
work out Fn(C×C). It is also straightforward to describe the analogue of the
bijections: for instance, orbits onn-sets correspond to binary matrices as above
up to cyclic permutations of rows and columns.

4 Power action of wreath product

We do not have a convenient expression for the cycle index of a wreath product in
the power action. For the orbits onn-tuples, we have the following result.

Proposition 4.1 Let G= G1 oG2, in the power action. Then

F∗n (G) = Z(G2;si ← F∗n (G1)).

Proof If B = Gm
1 is the base group, then each orbit ofB onn-tuples is indexed by

anm-tuple of orbits ofG1 onn-tuples. Taking theG1-orbits onn-tuples as figures,
eachB-orbit is a function from{1, . . . ,m} to the set of figures, andG-orbits on
n-tuples correspond toG2-orbits on such functions. The result follows from the
Cycle Index Theorem. ♦

In particular,F∗n (A oC2) = F∗n (A)(F∗n (A) + 1)/2. From this, one can calculate
Fn(AoC2) by Stirling inversion as usual.

5 Generalised wreath products

Let I be a set with partial orderρ. Suppose that a permutation group(Gi ,Xi) is
associated with each elementi ∈ I . Baileyet al. [1] defined thegeneralised wreath
product(G,X) = ∏i∈I (Gi ,Xi), in such a way that

• X is the Cartesian product∏i∈I Xi ;

• if I is an antichain of size 2, then the generalised wreath product is the direct
product with the product action;

• if I is a chain of size 2, then the generalised wreath product is the wreath
product with the imprimitive action.
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The generalised wreath product is defined as follows. For eachi ∈ I , we define
the groupFi to be the direct product of copies ofGi indexed by∏ j>i Xj . The factor
corresponding to an element(x j : j > i) in the product acts as follows. Take any
element(x′k : k∈ I) of X. If x′j = x j for all j > i, thenGi acts on theith coordinate;
otherwise,Gi acts trivially.

Now the generalised wreath product∏i∈I (Gi ,Xi) is the group generated by the
subgroupsFi for i ∈ I . For further information on the structure of this group we
refer to [1]. We leave it as an exercise to check that it coincides with the product
action of the direct product ifI is a 2-element antichain, and with the imprimitive
action of the wreath product ifI is a 2-element chain.

The obvious question now is to calculate, if possible, the cycle index, or at
least the orbit-counting series, for a generalised wreath product.

Some results are already known. Baileyet al. showed that, if all(Gi ,Xi) are
transitive, then(G,X) is transitive, and gave a description of the orbits ofG on
X2 in terms of the orbits ofGi on X2

i and the antichains of the poset(I ,ρ). Their
result was as follows:

Theorem 5.1 Let (G,X) = ∏i∈I (Gi ,Xi) be a generalised wreath product. For
each antichain S of I, and each choice of an orbit Oi of Gi on pairs of distinct
elements of Xi for i ∈ S, there is an orbit of G on pairs((xi),(yi)) such that for
each i∈ S the pair(xi ,yi) satisfies

• xi = yi if i is not below any element of S;

• (xi ,yi) ∈Oi if i ∈ S;

• no condition if i< j for some j∈ S.

These are all the orbits of G on X2.

This list includes the case wherexi = yi for all i (with S= /0). SinceF∗2 (G) =
1+F2(G) for a transitive groupG, we have the following result:

Corollary 5.2 Let (G,X) = ∏i∈I (Gi ,Xi), where each(Gi ,Xi) is transitive. Then

1+F2(G) = ∑
S

∏
i∈S

F2(Gi),

where the sum is over all antichains of I.
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Example If eachGi is 2-transitive onXi , then 1+ F2(G) is equal to the number
of antichains inI . This number is also equal to the number of poset homomor-
phisms fromI to the 2-element chain.

Example If I is the 2-element chain, then 1+ F2(G) = 1+ F2(G1) + F2(G2). If
I is the 2-element antichain then 1+ F2(G) = (1+ F2(G1))(1+ F2(G2)). These
agree with our earlier results for imprimitive and product actions.

Subsequently, Praegeret al. [10] showed the following:

Theorem 5.3 Let(G,X) = ∏i∈I (Gi ,Xi). If (Gi ,Xi) is n-transitive for all i∈ I, then
the number of orbits of G on Xn is equal to the number of poset homomorphisms
from (I ,ρ) to the posetP (n) of partitions of an n-set (ordered by refinement).

In particular,F∗n (S2,X2) = B(n)2 (whereB(n) = |P (n)| is the Bell number),
andF∗n (SoS,X×X) is the number of chains of length 2 inP (n) (including trivial
chains(π,π)). These of course agree with our earlier results.

The main problem we wish to pose is to find a common generalisation of these
two results to count orbits onn-tuples of an arbitrary generalised wreath product,
or (better) to calculate its cycle index.

r r
r r
@
@
@

Figure 2: The poset N

Note that, if the poset(I ,ρ) is N-free(that is, if it does not contain the poset
shown in Figure 2 as induced subposet), then it can be constructed from singleton
posets by the operations of disjoint union and ordered sum, and so the generalised
wreath product can be built from its factors by the operations of direct product
(with the product action) and wreath product (with the imprimitive action). In
these cases, the cycle index can be calculated in principle. However, the propor-
tion of n-element posets which are N-free tends to 0 asn→ ∞.
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