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The basic set-up

Consider a formal power series

_ Z a, 2" yn(n—l)/Q
n=0

normalized to oy = a1 = 1, or more generally

fle,y) = ) an(y)a”
where
(a) ao(0) = a1(0) =
(b) a,(0) =0 forn > 2 and
(¢) an(y) = O(y"™) with 7}1_%10 Vp = 0.
Examples:

e The “partial theta function”

(0.9]

O(z,y) = Y a"y'n P

n=0

e The “deformed exponential function” studied in Lecture #1:

o0 n

x _
Py = 320yt
n=0

e More generally, consider

(0. 9]

o yn(n—l)/Q

R(z,y,q) = ;(1+q)(1+q+q2) o (4+g+...+ Y

which reduces to ©g when ¢ = 0, and to F’ when ¢ = 1.



The leading root xo(y)

e Start from a formal power series

flzy) = ) an(y) 2"

where _
(a) ap(0) = a1(0) =1
(b) a,(0) =0 for n > 2

(¢) an(y) = O(y") with lim v, = oo

n—oo

and coefficients lie in a commutative ring-with-identity-element R.

e By (c), each power of y is multiplied by only finitely many
powers of x.

e That is, f is a formal power series in y whose coefficients are
polynomials in x, i.e. f € Rlz|[ly]].

e Hence, for any formal power series X (y) with coefficients in R
[not necessarily with zero constant term|, the composition f(X(y), y)
makes sense as a formal power series in y.

e Not hard to see (by the implicit function theorem for formal
power series or by a direct inductive argument) that there exists a
unique formal power series zo(y) € R||y|] satisfying f(zo(y),y) = 0.

e We call z((y) the leading root of f.

e Since x((y) has constant term —1, we will write z¢(y) = —&(y)
where §(y) =1+ O(y).



How to compute &y(y)?

1. Elementary method: Insert & (y) =1+ Y b,y" into
n=1
f(—=&o(y),y) = 0 and solve term-by-term.

2. Method based on the explicit implicit function formula.

3. Method based on the exponential formula and expansion of log f(x, y).

e Methods #2 and #3 are computationally very efficient.

e Can they also be used to give proofs?



Tools I: The explicit implicit function formula

e See A.D.S., arXiv:0902.0069 or Stanley, vol. 2, Exercise 5.59
e (Almost trivial) generalization of Lagrange inversion formula
e Comes in analytic-function and formal-power-series versions

e Recall Lagrange inversion: If f(z) = > 7 a,a" with a1 # 0
(as either analytic function or formal power series), then

- y m— 1 C "
=2,
2. RO
where [("]g(() denotes the coefficient of (" in the power series g(().
More generally, if h(x) = > °  b,x", we have

h(f ) = +Zy "G (%)m

e Rewrite this in terms of g(z) = x/f(x): then f(x) = y becomes
x = g(x)y, and its solution x = (y) = f(y) is given by the
power series

and

e There is also an alternate form

h(e(y) = h(0) + > y" ¢ [9(O)" = ¢d'(g(¢)" ]



The explicit implicit function formula, continued

e Generalize z = g(x)y to x = G(x,y), where

— G(0,0) =0and |(0G/0x)(0,0)| < 1 (analytic-function version)
— G(0,0) = 0and (0G/0x)(0,0) = 0 (formal-power-series version)

e Then there is a unique ¢(y) with zero constant term satisfying
p(y) = G(p(y), y), and it is given by

oly) = 3 [ NG(C )"
9G (G, y)

ey — ¢ e

[ 10]e

m=1

More generally, for any H(x,y) we have

(0. 9]

Hie(w).) = HOw) + Y 1012 Gy
= H0.9) + S CHC [0 0" - (TR Gy

3
&

e [irst versions are slightly more convenient but require R to
contain the rationals as a subring.

e Proof imitates standard proof of the Lagrange inversion formula;
the variables y simply “go for the ride”.

e Alternate interpretation: Solving fixed-point problem for the
family of maps x — G(x,y) parametrized by y. Variables y
again “go for the ride”.



A possible extension [open problem]

e Conditions on G and ¢ in the explicit implicit function formula
seem natural:

— If G(x,y) is a formal power series, it ordinarily makes sense
to substitute x = @(y) only when ¢(y) is a formal power
series with zero constant term.

— Then a solution to the fixed-point equation ¢(y) = G(¢(y), y)
with (y) having zero constant term can exist only if G(0,0) = 0.

e But there is one important case where these conditions can be
weakened: namely, if G(z,y) belongs to R|x][|y]], i.e. if the
coefficient of each power of y is a polynomzial in x.

— In this case it makes sense to substitute for x an arbitrary
formal power series ¢(y), not necessarily with zero constant
term.

— The result G(p(y), y) is a well-defined formal power series in .

— What can be said about existence and uniqueness of solutions to

ply) = Gley), v)?
— And is there an explicit “Lagrange-like” formula for ¢(y)?

— I suspect that the answer is yes, but I haven’t worked out
the details.

— And it looks like this may be useful in our application.



Application to leading root of f(x,y)

e Start from a formal power series f(x,y) = >~ a,(y) " satisfying
properties (a)—(c) above.

o Write out f(—&p(y),y) = 0 and add &(y ) to both sides:

fly) = anly) — larly) — Vély +zan

o Insert £y(y) = 1+(y) where (y) has zero constant term. Then
p(y) = Gle(y), y) where

Glzy) = > (=D au(y) (1 +2)"

n=0
and

. ap(y) —1 forn=0,1

an(y) =
an(y) for n > 2

And ¢(y) is the unique formal power series with zero constant
term satisfying this fixed-point equation.

e Since this G satisfies G(0,0) = 0 and (0G/0z)(0,0) = 0 [indeed
it satisfies the stronger condition G(z,0) = 0], we can apply the
explicit implicit function formula to obtain an explicit formula

for &(y):

EDIEIS (Z(—n’“ (1) (1+¢)" )

More generally, for any formal power series H(z,y), we have

H(&(y) — 1,y)

H(0,y) +Z %ﬁ@(—n“()mo)

n=0



Application to leading root of f(x,y), continued

e In particular, by taking H(z,y) = (1 + z)” we can obtain an
explicit formula for an arbitrary power of &y(y):

e Important special case: ag(y) = ai(y) = 1 and a,(y) = o, y™
(n > 2) where A, > 1 and lim A, = oo. Then

60 ﬁ—l - 1 S 5—1+Zni =
gL T (P
I

e Can this formula be used for proofs of nonnegativity???
e Empirically I know that the RHS is > 0 when A, = n(n—1)/2:

— For § > —2 with «,, = 1 (partial theta function)
— For 8 > —1 with a, = 1/n! (deformed exponential function)
— For g > —1 with o, = (1 — ¢)"/(q; q¢)n, and ¢ > —1

e And I can prove this (by a different method!) for the partial
theta function with 6 > —1

e How can we see these facts from this formula???
lopen combinatorial problem]|



Tools II: Variants of the exponential formula

e Let R be a commutative ring containing the rationals.

o Let A(z) = > " a, 2" be a formal power series (with coeffi-
cients in R) satisfying ag = 1.

e Now consider C(z) =log A(x) =7 ¢, a™

e [t is well known (and easy to prove) that

n
k
a, = chkan_k formn>1
=1

This allows {a,} to be calculated given {c,}, or vice versa.

e Sometimes useful to introduce ¢, = nc,, which are the coeffi-
clents in

PAE)
i)~ 2

e See Scott-Sokal, arXiv:0803.1477 for generalizations to A(z)*
and applications to the multivariate Tutte polynomial

e Now specialize to R = Ry[[y]] and A(z,y) = >~ an(y) 2"
where ay(y) = 1

e Assume further that a,(0) =1 and a,(0) =0 for n > 2
[conditions (a) and (b) for our f(z,y)]

e Then
:z:A’ (x y

Mg

Cn
n=1

where ' denotes 0/0x and cn( ) has constant term (—1)""1,
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Application to leading root of f(x,y)

©¢)

e Start from a formal power series f(x,y) =1+ 2z + > a,(y)x
n=2

n

satisfying
an(y) = O =Dy forn > 2

for some real o > 0. [This is a bit stronger than (a)—(c).]
e Define {¢,(y)}°° by

z f’ ( y
Cn
Ty — 2
where " denotes 0/0x.
e Theorem: We have

aly) = (=1)" " &(y)™" + Oy™)

or equivalently
y) = (=) "G + Oy™)

e This theorem provides an extraordinarily efficient method for
computing the series &(y):

— Compute the ¢,(y) inductively using the recursion
Cn = NGy — Y CkAp_k
— Take the power —1/n to extract &(y) through order yl*m1-!
e This abstracts the recursive method shown in Lecture #1 for the

o0 n

special case F(z,y) = Z % y"(=/2

n=0

11



Proof of Theorem (via complex analysis)

e Use complex-analysis argument to prove Theorem when R = C
and f is a polynomial.

e Infer general validity by some abstract nonsense.

Lemma. Fix a real number o > 0, and let P(z,y) = 1 + x +
SV an(y)z” where the {a,(y)}Y_, are polynomials with complex
coefficients satisfying a,(y) = O(y*"~Y). Then there exist numbers
p > 0and v > 0 such that P(-,y) has precisely one root in the disc
x| < v|y|~* whenever |y| < p.

Idea of proof: Apply Rouché’s theorem to f(x) = x and g(z) =
14+ 32 a,(y)z" on the circle |z| = ~|y| .

Proof of Theorem when R = C and f is a polynomial:

Write
k(y)

P = 100 )

1=1

with k(y) < N. Therefore

k(y)

x Plz,y) —z/Xi(y)
P(z,y) ;1 — x/Xi(y)

and hence
k(y)
Gly) = =) Xiy) ™.
i=1

Now, for small enough |y|, one of the roots is given by the convergent
series —&y(y) and is smaller than ~v|y|™® in magnitude, while the

12



other roots have magnitude > ~|y|™ by the Lemma. We therefore
have

Culy) — ()" &) < (N =1y "[y|™"

for small enough |y|, as claimed. [J

Proof of Theorem in general case: Write
(0.9}

an(y) — Z Anm ym

m=la(n-1)]

Work in the ring R = Z[a] where @ = {aun}n>2 m>[a(n-1)] are
treated as indeterminates. Then the claim of the Theorem amounts
to a series of identities between polynomials in @ with integer coethi-
cients. We have verified these identities when evaluated on collections
a of complex numbers of which only finitely many are nonzero; and
this is enough to prove them as identities in Z[a]. [

There is also a direct formal-power-series proof (due to Ira Gessel)
at least in the case @ = 1. I don’t know whether it extends to
arbitrary real a > 0.

13



Computational use of Theorem

e Can compute &y(y) through order y¥=! by computing ¢y (y)

e Do this by computing ¢,(y) for 1 < n < N using recursion

e Observe that all ¢,(y) can be truncated to order y¥~!

[no need to keep the full polynomial of degree n(n —1)/2)]

e For I, have done N = 900
[N = 400 takes a minute, N = 900 takes less than 6 hours;
but N = 900 needs 24 GB memory!]

e For O, have done N = 7000
[V = 500 takes a minute, N = 1500 takes less than an hour;
N = 7000 took 11 days and 21 GB memory]

~

e For R, have done N = 350
[N = 50 takes a minute, N = 100 takes less than an hour;
N = 350 took a month and 10 GB memory]

14



Some positivity properties of formal power series

e Consider formal power series with real coefficients
fly) =1+ iamym
m=1
e For a € R, define the class S, to consist of those f for which
f(y);: -1 i () "
m=1

has all nonnegative coefficients (with a suitable limit when ac = 0).
e In other words:

— For a > 0 (resp. a = 0), the class S, consists of those f for
which f¢ (resp. log f) has all nonnegative coefficients.

— For a < 0, the class S, consists of those f for which f* has
all nonpositive coefficients after the constant term 1.

e Containment relations among the classes S, are given by the
following fairly easy result:

Proposition (Scott—A.D.S., unpublished):
Let o, 8 € R. Then &, C Sg if and only if either

(a) « < 0and B > a, or
(b) @ > 0 and § € {a, 2v, 3, . . . }.

Moreover, the containment is strict whenever o # 3.

15



Application to deformed exponential function F’

As shown last week, it seems that &y(y) € Si:

2 3 4 5 7 6
Sy) = 1+ g3y + 307 + 507 + 5y" + 597 + 15y

493 7 . 163.8 |, 3239 . 1603 10 |, 57283 11

1Y T osstY T Yt o3sw0Y T 1352409

170921 .12, 340171 13 , 22565 14
+ 1420 + Somo¥ T 552069

+ ... + terms through order y®%

and indeed that &(y) € S_1:

-1 2 3 4 5) 7 .6
W) =1 =3y — W — Y — 1Y — 1Y — gV

1.7 7.8 49 .9 113 10 17 11
96Y 763Y 69129 230409 1608 Y
203 12 737 13 3107 , 14
921607 976430 Y 1658330 Y

899

— ... — terms through order y

But I have no proof of either of these conjectures!!!
e Note that &(y) is analytic on 0 < y < 1 and diverges as y T 1

like 1/[e(1 — y)].
e It follows that &y(y) ¢ S, for a < —1.

16



Application to partial theta function O

It seems that &(y) € Sy
Eo(y) = 14+y+2y° +49° + 9y* + 219° + 525 + 133y" + 3513°
+948y” +2610y" + ... + terms through order 5%
and indeed that &(y) € S_1:
&y = 1-y—y —y’ =2y —dy’ — 10y° — 25y" — 66y°
—178y” — 490y — ... — terms through order y%%
and indeed that &y(y) € S_o:
Sy 7 = 1=~y —y =2 =Ty’ — 18y  — 50y
—138y” — 386y'" — ... — terms through order y%%

Here I do have a proof of the first two properties (but not the third).
Coming next week!

e Note that
Soy)*—1 oz+32+(oz+2)(oz+7) 5

e So&(y) ¢ S, for a < —2.
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" yn(n—l)/Z

0
Application to R (x,9,q Z

—~(1+q) - (1+qg+...+¢""

e Can use explicit implicit function formula to prove that

Slyia) = 1+ ) SZ((?) y'

where
0

Qule) = [0 +q+...+ /)]

k=2
and P,(q) is a self-inversive polynomial in ¢ with integer coefficients.

o Empirically P,(q) has two interesting positivity properties:

(a) P,(q) has all nonnegative coefficients. Indeed, all the
coefficients are strictly positive except [q'] P5(q) = 0.

(b) P.(q) > 0 for ¢ > —1.

o Empirically &(y; q) € S_1 for all ¢ > —1:

1
= LU

:Cl
-15-
5
4 7
-35
L 1 I I I | I I I I [ I I I I |
-10 -0.5 0.0 05
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Can any of this be proven???

e [t secems that }NB(:E, Y, q) is the right unification of ©y and F'.

e But thus far my proofs are only for ¢ = 0 (i.e. ©y).
Coming next week!

e Can anything be generalized to q # 0777
e Open problem: For ¢ = 0, prove &(y) € S; or S_; (or even S_»)

directly from the explicit itmplicit function formula.

e [f this works, it might be generalizable to q # 0.
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