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It is well known that the proportion of square-free numbers among all numbers is

asymptotically 6/π2 (e.g. [1, p. 269], [2, section 2.5]). In a recent number of the Gazette,

J.A. Scott [3] conjectures that the proportion of odd square-free numbers is asymptotically

4/π2, so that ratio of odd to even square-free numbers is asymptotically 2:1. We show that

this is true, by a suitable adaptation of the standard proof of the 6/π2 result.

This proof is most efficiently presented in the language of Dirichlet series and convolu-

tions. For any arithmetic function a(n), there is a corresponding Dirichlet series
∑∞

n=1 a(n)/ns,

defining a function Fa(s) where it converges. If we multiply two Dirichlet series and collect

the terms in the obvious way (which is valid provided that both series converge absolutely),

we find

Fa(s)Fb(s) = Fa∗b(s), (1)

where the convolution (alias Dirichlet product) a ∗ b is defined by

(a ∗ b)(n) =
∑
jk=n

a(j)b(k) =
∑
j|n

a(j)b(n/j).

Define e1 by:

e1(n) =

{
1 if n = 1,
0 otherwise.

In other words, e1 is the sequence having 1 in place 1 and 0 elsewhere. Then a ∗ e1 = a for

any arithmetic function a, so e1 is the identity for convolution. The corresponding Dirichlet

series function is the constant function 1. We also define u by: u(n) = 1 for all n.

Recall that the Möbius function µ takes the value 1 at 1 and (−1)k at a square-free

integer with k prime factors. At all other integers its value is 0. Hence |µ(n)| is 1 when n

is square-free and 0 otherwise. The basic property of the Möbius function (found in most

books on number theory) is:

Lemma 1. We have u ∗ µ = e1. Hence for all n > 1,
∑

j|n µ(j) = 0.

Since
∑∞

n=1 1/ns = ζ(s) for s > 1, it follows from (1) that
∑∞

n=1 µ(n)/ns = 1/ζ(s).

(Alternatively, this identity, together with the definition of µ(n) itself, can be derived directly

from the Euler product; see [2].) In particular,

∞∑
n=1

µ(n)

n2
=

1

ζ(2)
=

6

π2
. (2)
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It will help to introduce the following notation:

v(n) =

{
1 for n odd,
0 for n even.

Clearly,
∞∑

n=1

v(n)

n2
= 1 +

1

32
+

1

52
+ · · · = π2

8
.

Let A(x) be the number of odd square-free numbers not greater than x. Clearly,

A(x) =
∑
n≤x

|µ(n)|v(n). (3)

We write ab for the pointwise product of a and b, so (ab)(n) = a(n)b(n).

Lemma 2: We have (µv) ∗ v = e1, hence
∞∑

n=1

µ(n)v(n)

n2
=

8

π2
.

Proof: Firstly, [(µv) ∗ v](e1) = (µv)(1)v(1) = 1. Take n > 1. Then

[(µv) ∗ v](n) =
∑
j|n

µ(j)v(j)v(n/j).

If n is odd, then all its divisors are odd, so v(j)v(n/j) = 1 for divisors j, hence

[(µv) ∗ v](n) =
∑
j|n

µ(j) = 0.

If n is even and j|n, then either j or n/j is even, so v(j)v(n/j) = 0 and again [(µv)∗v](n) = 0.

So (µv) ∗ v = e1. The series statement follows, by (1).

The proof of the 6/π2 result uses the fact that |µ(n)| =
∑

m2|n µ(m). The corresponding

result for us is:

Lemma 3: For all n, we have

|µ(n)|v(n) =
∑
m2|n

µ(m) v(m) v(n/m).

Proof: Denote this sum by S. If n is even, then v(m) v(n/m) = 0 for all such m, so

S = 0. If n is odd, then v(m) v(n/m) = 1 and S =
∑

m2|n µ(m). If n is square-free, then the

only such m is 1, so S = 1. If n is not square-free, express it as h2k, where h > 1 and k is

square-free. If m2|n, then m|h. Hence S =
∑

m|h µ(m), which is 0, by Lemma 1. So S = 1

when n is odd and square-free, 0 otherwise, which equates it to |µ(n)|v(n).

Theorem: A(x) =
4

π2
x + q(x), where |q(x)| ≤ 3x1/2.
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Proof: By (3) and Lemma 3,

A(x) =
∑
n≤x

∑
m2|n

µ(m) v(m) v(n/m).

For a fixed m ≤ x1/2, a term µ(m)v(m) will occur for each odd multiple n = rm2 of m2 with

rm2 ≤ x, so

A(x) =
∑

m≤x1/2

nmµ(m)v(m),

where nm is the number of these odd multiples. This means that (2nm − 1)m2 ≤ x <

(2nm + 1)m2, hence nm − 1
2
≤ x/2m2 ≤ nm + 1

2
, so

nm =
x

2m2
+ rm,

where |rm| ≤ 1
2
. So

A(x) =
x

2

∑
m≤x1/2

µ(m)v(m)

m2
+ q1(x),

where q1(x) ≤ 1
2
x1/2. Now by Lemma 2,∑

m≤x1/2

µ(m)v(m)

m2
=

8

π2
− q2(x),

where q2(x) =
∑

m>x1/2 µ(m)v(m)/m2, hence

|q2(x)| ≤
∑

m>x1/2

1

m2
.

Comparison with the integral of 1/t2 on [x1/2,∞) shows that this is no greater than

1/(x1/2 − 1), so less than 2/x1/2 if x > 4.

Further note. The heuristic reasoning given in [3] cannot be developed into a proof, for

the following reason. Given a set A of positive integers, let A[x] = {n : n ∈ A, n ≤ x}, and

let A(x) be the number of members of A[x] (watch the brackets!). If A(x)/x tends to a limit

as x → ∞, this limit is called the natural density of A, denoted by d(A). The logarithmic

density δ(A) is defined similarly, with weighting 1/n. In other words,

δ(A) = lim
x→∞

1

log x

∑
n∈A[x]

1

n

if the limit exists. The existence of d(A) implies the existence of δ(A), with the same value

(see [4, chapter III.1]). However, the existence of δ(A) does not imply the existence of d(A)

(though of course it does show that d(A) cannot take any other value). A counter-example

is given by A =
⋃∞

k=1 Ek, where Ek = {n : 2k−1 < n ≤ 2k}.
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