PRIMITIVE SOLUTIONS OF $n|2^n + 1$

TOBY BAILEY AND CHRIS SMYTH

Sloane's integer sequence A006521

 $=1, 3, 9, 27, 81, 171, 243, 513, 729, 1539, 2187, 3249, 4617, 6561, 9747, 13203, 13851, 19683,$

(0.1)

 \Box

29241, 39609, 41553, 59049, 61731, 87723, 97641, 118827, 124659, 177147, 185193, 250857, (0.2)

263169, 292923, 354537, 356481, 373977, 531441, 555579, 752571, . . . (0.3)

is the sequence of all integers n such that n divides $2^n + 1$. Here we discuss a sparse subsequence of it, the primitive solutions of $n|2^n + 1$:

 $1, 3, 171 = 3^2 \times 19, 13203 = 3^4 \times 163, 97641 = 3^2 \times 19 \times 571, 354537 = 3^5 \times 1459, 2354697 =$ $3^3 \times 87211, \ldots$

Proposition 1. (a) If $p|n$ and $n|2^n + 1$ then $pn|2^{pn} + 1$. (Here p need not be prime, but might as well be!)

(b) If $n|2^n + 1$ and $m|2^m + 1$ then $\ell|2^{\ell} + 1$, where $\ell = \text{lcm}(n, m)$.

Proof. (a) Clearly $p > 2$. Write and $M = 2ⁿ$, so that

$$
2^{pn} + 1 = (M + 1)(M^{p-1} - M^{p-2} + \dots - M + 1).
$$

Now $n|(M+1)$, and

$$
M^{p-1} - M^{p-2} + \dots - M + 1 \equiv (-1)^{p-1} - (-1)^{p-2} + \dots - (-1) + 1 = p \equiv 0 \pmod{p},
$$

so that $pn|2^{pn} + 1$.

(b) Let $\ell = nt$. Then, as t odd, $2^{nt} + 1$ is divisible by $M + 1$, and so by n. Similarly, it is divisible by m, and so by ℓ .

We call an *n* with $n|2^n + 1$ *primitive* if it is not generated from smaller members of the sequence by using either Proposition $1(a)$ or (b) .

Examples: 9 is not primitive, by (a), and $250857 = 3⁴ \times 19 \times 163$ is not primitive, being generated by (b) from $171 = 3^2 \times 19$ and $13203 = 3^4 \times 163$.

The following result is known. See for instance the exam at

http://www.math.ubc.ca/∼boyd/math537/

Proposition 2. For $n > 1$ and $n|2^n + 1$ we have $3|n$.

Proof. For $p|n, 2^{2n} \equiv 1 \pmod{p}$, $2^{p-1} \equiv 1 \pmod{p}$ so as p odd, $2^{2(n,(p-1)/2)} \equiv 1 \pmod{p}$. Now let p be smallest prime factor of n. Then $(n, (p-1)/2) = 1$, $2^2 \equiv 1 \pmod{p}$, $p = 3$. 1

Proposition 3. Every element $n > 3$ of A006521 is divisible by 9, and if n is not a power of 3 with $3^k || n$ then n also divisible by a prime $p > 3$ such that $p | 2^{3^k} + 1$.

Corollary 4. Every element $n > 9$ of A006521 is divisible either by 27 or by $9 \times 19 = 171$.

Proof of Proposition 3. Let $n = 3^k m$, and $p|m$, p prime, minimal. Then $2^{2n} \equiv 1 \pmod{3^k p}$, $2^{2 \cdot 3^{k-1}(p-1)} \equiv 1 \pmod{3^k p}$ (Euler's Theorem), so $2^{2(n,3^{k-1}(p-1))} \equiv 1 \pmod{3^k p}$,

 $2^{2 \cdot 3^{k-1}(3m,p-1)} \equiv 1 \pmod{p}$

. Now $(3m, p-1) = (3, p-1) = 1$ or 3. If $= 1$ get $2^{2 \cdot 3^{k-1}} \equiv 1 \pmod{p}$. If $= 3$ get $2^{2 \cdot 3^k} \equiv 1$ $(\text{mod } p)$, so the latter congruence certainly holds. As 2 must have even order $(\text{mod } p)$ have $2^{3^k} \equiv -1 \pmod{p}$. If $k = 1$ get $2^3 \equiv -1 \pmod{p}$, a contradiction.

Proof of Corollary. If $k = 2$ get $p/513 = 27 \times 19$, $p = 19$. So either

• $k = 2$ and $19|n$, i.e. $171|n$ or • $k \geq 3$, i.e. 27|*n*.

 \Box

By separating the cases $k = 2$, $k = 3$, $k = 4$ and $k \ge 5$, the same argument gives the following.

Corollary 5. Every element n of A006521 not a power of 3 is divisible by at least one of $171 = 3^2 \times 19$, $243 = 3^5$, $13203 = 3^4 \times 163$, $2354697 = 3^3 \times 87211$, $10970073 = 3^4 \times 135433$ or $22032887841 = 3^4 \times 272010961$.

For computational purposes, one then only has to search a proportion $1/171 + 1/243 +$ $1/13203 + \ldots$ of the odd integers to find the non-power-of-3 n. If one were to go further, for instance replacing 'k > 5' by 'k = 5 or k > 6', then in the above list one replaces 243 by $3^6 = 729$, $3^5 \times 1459 = 354537$, $3^5 \times 139483 = 33894369$, $3^5 \times 10429407431911334611 =$ 2534346005954454310473 and $3^5 \times 918125051602568899753 = 223104387539424242639979$. Doing this, the proportion of odd integers to be searched is $1/171+1/729+1/13203+\ldots$ a further 27% saving in integers to be tested.

If one restricts the above results to primitive n then the condition that n not be a power of 3 can clearly be replaced by the condition $n > 3$.