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FREE ACTIONS OF FINITE GROUPS ON SPHERES

C. T. C. WALL

Just about a century ago it was realised (by Killing, Klein and others) that the
sphere and real projective space offered two different global models for geometry
which were locally the same. In 1891, Killing formulated (in terminology that now
appears vaguc) the problem of determining all such models. In 1926 Hopf revived
the problem, gave a clear statement of its topological setting, and also raised the
more general question of studying manifolds covered by spheres. This problem
lies deep, and though much was done in the 3-dimensional case serious progress
in general is comparatively recent, and can be said to start with Cartan and Eilen-
berg [1956] and Milnor [1957].

I will discuss the problem of classifying the homotopy types of such manifolds;
in the first half I outline a reduction of this problem to two others, less complex
though perhaps not less deep; then I will discuss the current state of knowledge
on these. This includes a virtually complete determination of which groups can act
freely on which spheres. This work is part of a collaboration with Charles Thomas
and Ib Madsen. To save time, I will omit discussion of the smooth case, except to
state one of our main conclusions.

Examples. Orthogonal space-forms. Since the isometries of the sphere S7°1 are
all lincar, the solution to the original problem is to be sought as follows: Seck
linear representations ¢ of the given group = such that for 1 # g € z, é(g) has no
fixed points on §#71, or equivalently, 1 is not an eigenvalue of ¢(g). In the present
state of representation theory, this is not too hard and a full solution can be found
in the book of Wolf [1967], with references to much earlier work.

Let us call representations ¢ satisfying the above condition & -representations.
Then the sum ¢; @ ¢, is an F-representation if and only if ¢, and ¢, are (this
construction corresponds to the equivariant join of the corresponding spheres). so
it is enough to look at irreducible ¢. The simplest examples are the (cyclic) sub-
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groups of SO,: taking sums of thesc representations yields the lens spaces of de
Rham [1931]: the 3-dimensional case goes back to Tictze [1908]. Another carly
example was that of binary polyhedral groups. which can be considered as sub-
groups of the group S of unit quaternions. acting on S* by right translations. This
includes the case of generalised quaternion groups Qy, of order 4k,

Finally if 7 = po is a split extension of a cyclic group p by a cyclic group ¢ of
coprime order, the faithful irreducible representations are all obtained by taking
a faithful I-dimensional (complex) representation of o, extending (faithfully) to the
centraliser £ of p in ¢, and inducing up to z. If z admits an & -representation, {
meets each Sylow subgroup of ¢: if this holds. all faithful irreducible representa-
tions are & -representations (Burnside, [1905]). An cquivalent condition is that
every subgroup of z of order pg (p, ¢ primes not necessarily distinet) is cyclic. It
was also shown by Vincent [1947] that any soluble group = satisfying this latter
condition possesses Z -representations.

Homotopy theory. We shall follow the basic method of surgery theory (assumed
known) and accordingly treat the problem in three stages: homotopy classification,
normal invariant and surgery obstruction.

Let us first observe that by the fixed point theorem of Brouwer {1912], an orien-
tation-preserving homeomorphism of §7-1 has a fixed point if » is odd. Thus if 7
acts freely, the orientation-preserving subgroup (of index 1 or 2) is trivial. As
Z/2 can act freely on any sphere. and the orbit space is homotopy equivalent to real
projective space, we shall not discuss this case further. So suppose n even. By the
same argument, 7 Now respects orientation, so the quotient manifold is orientable.
We also ignore the trivial case of actions on S (#n = 2). son = 4 throughout. And
for our positive results (using surgery) we have to omit the case # = 4, and so
n = 61s even.

According to Smith [1944], Z/p x Z/p cannot act freely on any sphere. Thus if
7 can so act, all subgroups of z of order p% (p any prime) are cyclic. Call z an #-
group if it satisfies this condition. The structure of #-groups is known: the soluble
case is due to Zassenhaus [1935] and the rest essentially to Suzuki [1955]. The
Sylow p-subgroups of r arc cyclic, or perhaps (if p = 2) generalised quaternionic.
If all are cyclic (c.g.. if 7 has odd order), = 1s metabelian. In general the quotient
of z by the maximal normal subgroup O,(x) of = of odd order, belongs to one of
SiX types:

1. cyclic,
II. generalised quaternion 2-group,

III. binary tetrahedral,

IV. binary octahedral,

V. SLy(p){(p = 5 prime),

VI. TLy(p).

We can define TLy(p) as follows. Choose a nonsquare w € F;. Then TLy(p) =
[y e GLy(p): det 3 = 1 or w} with product given by

V1o Vo = yi o (product in GL,) if det y; = 1 ordety, =1,
= w ly;py if det y; = det y» = .

7 is soluble for types I—IV., not for V, V1. Types I, IV may be regarded as the
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case p = 3 of V, VI but the detailed descriptions are somewhat different at the
prime 3. _

A deeper study by Cartan and Eilenberg [1956] with later work by Swan [1960]
gives converse results at the homotopy level. Using Tate cohomology, the coho-
mology of 7 is periodic if g € I"(z; Z) is such that for all @ € Z and all z-modules
A, cup product with g gives an isomorphism ffe(x; A) -» II"«(z; A). A cohomol-
ogy class g satisfies this condition if and only if #(x; Z) is cyclic, having the same
order as , and generated by g; so we will call such g generators. Then r has peri-
odic cohomology if and only if 7 is an #-group.

Now define a x-polarised space to consist of a CW complex X, dominated by a
finite complex, together with an isomorphism z,(X) -» z and a homotopy equi-
valance of the universal cover X on S*1(n = 3).

ProposiTION 1. Tuking the first k-invariant yields a bijection between ( polarised)
homotory classes of m-polarised spaces and generators g € Hx; Z).

Recall that such a space X determines an obstruction 0(X) = 0(g) € Ko(Zz) to
its being homotopy equivalent to a finitc complex. We will discuss this more fully
below.

Note that if X is z-polarised, there is a natural isomorphism Hi(z; A) —
Hi(X; A} for any coefficient module 4 and integer i < n — 1: from now on we
will identify these groups. Note also that any polarised spaceis a Poincaré complex.

Normal invariants. A Poincaré complex X has a Spivak normal fibration, class-
ified by a map X — BG. A homotopy class of liftings to X -» B Top is called a
normal invariant. It determines by transversality a normal cobordism class of nor-
mal maps ¢: M1 — X (n # 5) of degree 1.

PROPOSITION 2. Any polarised space X has a normal invariant.

PrROOF. We need some preliminary remarks. It folilows from work of Sullivan
that the obstruction corresponding to the top cell of X is zero (for any Poincaré
complex), so we may ignore obstructions in H# 1(X; A4). Next, since Top < G 1s
an infinite loop map, the obstruction to existence of a normal invariant is a homo-
topy class of maps X — B(G/Top). the image of X — BG. It is enough to show this
becomes nulthomotopic after localisation at any prime.

At odd primes, G/Top =~ BO, so we get a class in KO 1(X; Z,4,). This is a sum-
mand of K~ 1(X; Z,45), which is well known to vanish.

The localisation of B(G/Top) at 2 is an Eilenberg-Mac Lane space. so the ob-
struction is given by a string of cohomology classes with coeflicients Z,,, or Z/2.
For the covering map X(z;) — X corresponding to the Sylow 2-subgroup =z,, the
corresponding cohomology groups map injectively, and the obstructions are na-
tural, so it suffices to consider the problem for 7.

But if X(z,)}is homotopy equivalent to a manifold, it has a normal invariant. And
we have orthogonal space-forms in every homotopy type if 7, 1s cyclic, and (at least)
in every relevant dimension if 7, is generalised quaternionic. This is enough, since
we can obtain all generators g € I7(x,; Z) from one such by changing the at-
taching map of the top cell.

Up to this point, we have been surveying known results. The following, however,
is new. We continue the above notations.
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PROPOSITION 3. Any normal invariant of X(xt5) coming from a homotopy equivalence
with an orthogonal space-form extends to a normal invariant for X.

Proor. By the above, X does have a normal invariant. Taking this as base point,
we can identify normal invariants for X with homotopy classes of maps X —
G/Top. We can use the induced lift also for the covering space X(xp). Then the
given normal invariant here determines a map «a: X (xy) — G/Top, which we wish
to factor (up to homotopy) through X. Since (apart from the top cell) X(z,) 1s
2-local, it is sufficient to 2-localise throughout.

Now q determines classes au, € H¥(xy; Z9,), Qup.o € HY¥ Xxy; Z/2) in dimen-
sions < . Since H%(z; Z,,) maps onto H*(z,; Z,,) (this is obvious when one
recalls that z has 2-period 2 or 4), the ay, lead to no obstruction. As to the rest,
HY% 2z, Z12) is 0 (7, trivial), Z/2 (z; nontrivial cyclic) or Z/2 x Z/2 (z, gen-
eralised quaternionic) and—again since the 2-period divides 4-—the image of
H4% 2z Z/2) is determined as follows:

Types I, 11: surjective.

Types 111, V: zero.

Types IV, V1: Z]2.

There is thus no obstruction for types I, II.

For the remaining cases, we first reduce to considering the generalised binary
tetrahedral groups T (v = 1): defined as the nontrivial (split) extension of a
quaternion group of order 8 by a cyclic group of order Z/3». This has type III,
and for any group = of type I, z, is contained 1n a subgroup 7. Thus if a ex-
tends to X(T¥). the obstructions to extending to X must already vanish. If z has
type 1V. there is a subgroup 70, of index 2, of type IIl. Set 79 = 7% "\ z5. Then
H¥ Yzo. Zi2) » H¥% 2(7); Z/2) has image Z/2. If the restriction of « to X(z9)
extends to X(z9). then the restriction of ag-» to z3 must vanish. This single mod 2
obstruction must thus coincide with the obstruction to extending ay,., to 7. So the
type [V case reduces to the type HI case. Finally for types V, VI we know by {II,
Lemma 3.3] that o extends if and only if for each subgroup Qg of 75 lying in a
subgroup T7¥ of z, the restriction of a to Qg extends to T .

We have thus reduced to the case # = T.f, 7o = QOs. Then the (unique) free or-
thogonal action of ; on §7~1 extends to a free orthogonal action of 7. By the above,
the obstruction to extension is a sequence of classes ay,.0€ H* 2%(714; Z/2). The
outer automorphism ¢ of period 3 of xz, preserves the orthogonal normal invariant
(which is unique) and becomes inner in z. Thus the classes ay;. 0 are invariant under
¢. But ¢ permutes the three nonzero elements of H4¥**2(Qg; Z/2): the only invariant
class is zero. This completes the proof.

Surgery. Instead of going back to first principles, we appeal to [II, Theorem 4.2],
which was devised for the present purpose, and now restate it as

PROPOSITION 4. Let ¢: M — Y be a normal map of degree 1 from the closed
manifold M of odd dimension m Z S to the Poincaré complex Y with finite fundamen-
tal group =. Then we can perform surgery on ¢ to obtain a homotopy equivalence if
and only if

() Yis homotopy equivalent to a finite complex,
(i) for every 2-hyperelementary subgroup o of w, the corresponding covering

space Y(p) of Y is homotopy equivalent to a manifold, and
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(iil) surgery is possible for the covering normal map ¢(7wz): M(zz) — Y(x3), 7o the
Sylow 2-subgroup of .

I recall that the main ingredients in the proof of this result were the induction
theorem due to Andreas Dress [1975] and the transfer formula of the author [1976].
It is now easy to deduce our first main thecorem on homotopy type.

THEOREM 1. The polarised space X (with n =z 6) is homotopy equivalent to a mani-
fold if and only if

(i) the finiteness obstruction 0(X) e Ko(Zx) is zero, and

(1) for all 2-hyperelementary v < 7w, X(0) is homotopy equivalent to a manifold.

PrOOF. The conditions are clearly necessary, If they are satisfied, first consider
X(xy). This too has zero finiteness obstruction. It follows (by listing cases) that
X(r2) has the homotopy type of an orthogonal space-form Y(x5). This homotopy
equivalence induces a normal invariant for X(z,), which by Proposition 3 extends
to one for X. This determines a class of normal maps ¢: M — X of degree 1. We
now apply Proposition 4. Conditions (i) and (ii} are assumed explicitly here, and
(111) holds by the choice of normal invariant. Hence we can do surgery to obtain a
homotopy equivalence. This proves the result,

Concerning this result, it scems appropriate to make two remarks. First, we can
prove an analogous result in the smooth case, as follows:

If the polarised space X is homotopy equivalent to a manifold, then it is homotopy
equivalent to a smooth manifold vwhose universal cover is diffeomorphic to S7 1
(n = 6).

Thus we do obtain free smooth actions of 7 on 71,

Secondly, note that it does not provide an existence theorem for free actions of
7 on spheres. Indeed, the well-known necessary condition due to Milnor has not
yet even been mentioned. Accordingly. we now turn to the second part of our prob-
lem: namely, the consideration of which homotopy types X—or equivalently,
generators g—satisfy conditions (i), {ii) above. Here, I now have to admit that the
only examples of manifolds X(p) with p 2-hyperelementary that we yet possess
come from orthogonal space forms. Since these also yield information about the
finiteness obstruction, we now reconsider them.

Hyperelementary space-forms: homotopy types.

Type 1. 7 is an extension of a cyclic group p of order a prime to p by a cyclic
group ¢ of order p” (p prime). The extension is split, and is determined by a homo-
morphism a: ¢ — Aut o. Let Im o have order ps. Then x has an & -representation
<> every subgroup of order pg 1s cyclic < a 1S #ot injective <> 5 < r.

The cohomology period is 2ps. If s < r, the irreducible & -representations all
have (complex) degree ps. If one of them has k-invariant g,, the others have -
invariants b#’g,, and any b prime to x| can occur. Since adding representations
corresponds to multiplying A-invariants, it remains only to characterise g;. This
we can do via its restrictions to Sylow subgroups (or to p and to g). These are cy-
clic, so have cohomology rings which are polynomial on a 2-dimensional generator.
It is not hard to see

PROPOSITION 5 (1). The k-mvariants which arise from & -representations are those
cohomology classes whose restriction to each Sylow subgroup is a nonzero psth power.
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Type 11. 7 is an extension of a cyclic group p of odd order by a generalised qua-
ternion group ¢ of order 2% = 8. Again the extension splits, and we have a:
¢ — Aut p. Now Aut p is abelian, so the commutator subgroup of ¢ (in particular
the element of order 2) is in Ker a:: every subgroup of order 2p is automatically
cyclic. Moreover, ¢ is a four-group, so we can decompose o into eigenspaces
under Im . Explicitly, if ¢ = (x, y/x* '=1, y2=x#¥ 7% y lxp = x 1),
we can write o = 4 x B x C x D as Cartesian product of (cyclic) groups of co-
prime orders a, b, ¢ and d such that

transformation by x centralises 4 and B, but inverts C and D;

transformation by y centralises 4 and C, but inverts B and D.

In the notation of Milnor [1957], this appears as Zja x Q(2%b; ¢, d). If k = 3, ¢
has outer automorphisms permuting x, y and xy; so b, ¢ and d play a symmetrical
role. We will suppose b = ¢ =z d. If k¥ > 3, we can only permute y and xy, and
normalise by ¢ = 4.

All these groups have cohomological period 4.

Though all have 7 -representations, the degrees no longer match up. If ¢ = ¢ =
1, all irreducible #-representations have real degree 4. Otherwise, all have real
degree 8. There is a corresponding dichotomy in determining their homotopy types.
As before, we restrict to Sylow subgroups. The part of H*(¢; Z) in dimensions
divisible by 4 is a polynomial ring. The Chern class (alias k-invariant as above) of
an irreducible 2-dimensional representation (nccessartly an #-representation)
yields a generator y, € H4, unique modulo squares.

ProposSITION 5 (ii). If ¢ = d = 1, the k-invariants of & -representations are the
classes which restrict to nonzero squares at odd Sylow subgroups, and to nonzero
squares times powers of o on o.

If ¢ > |, we have nonzero fourth powers at odd Sylow subgroups, and nonzero
Sourth powers times powers of v on a. (Note, however, that changing the orientation
of 87 Vwill change the sign of g.)

[t is now time to discuss

Condition (ii) in Theorem 1. We observed above that the only homotopy types of
X(x), = 2-hyperelementary, currently known to contain manifolds, are those which
contain orthogonal space-forms. While I do not expect this to be the complete
result, this gives already a fairly large and representative set of examples.

A 2-hyperelementary #-group n has an #-representation if every subgroup of
order 2p is cyclic (and this can only fail for 7 of Type I). But a theorem of Miinor
[1957] shows that this condition is already necessary for the existence of free topolo-
gical actions. We may thus impose it.

Next, in 1973 Ronnie Lee reproved Milnor’s result by exhibiting an explicit sur-
gery obstruction. He went on to show that if Q(m; ¢, d) acts freely on S7~1, 16|m
and ¢ > 1, then 8|n. Thus 2-hyperelementary groups of type II can be placed in
three categories:

K, ¢ = 1. Free orthogonal action on any S !

L, k 2 4, ¢ > 1. Free orthogonal action on any S8 ~!. No free action on any
S8r:3

M,k = 3, ¢ > 1. Free orthogonal action on any S% ! but on no $% '3, Unknown
if free actions exist on any S8 3,
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The most obvious outstanding problem in this area is deciding this last case.

General discussion. The ‘generators’ are the units of the Tate cohomology ring
H*(z; Z), and thus form a multiplicative group %, say. Thosc of degree 0 form a
subgroup %, isomorphic to the group of units in (Z/N)*, where N = |z|. We have
an exact sequence | — &, — ¥ —%4€ Z and the image of “deg” is dZ, where d is
the period.

The generators of positive degree form a subsemigroup %, and by Proposition
1 determine polarised spaces and hence finiteness obstructions. This gives a map
§: ¥~ — Ko(Zz) which, using the algebraic interpretation, is easily seen to be a
homomorphism and hence extends to . The restriction of @ to ¥ was described
by Swan [1960]: If re(Z/N)*, then O(r) is the class of the projective ideal
{r, 2 {gex} ) in Zx. Abstractly, ¥ = ¥, @ Z: can we choose the splitiing so
that (Z) = 0?

To study this question, first observe that by the induction theorem of Swan [1960]
the restriction

Ko Zr) = @ {Ko(Zo): p < = hyperelementary}

is injective, This map takes the finiteness obstruction for the (polarised) space X
to those for its covering spaces X (o). So again it suflices to consider the case where
7 is hyperelementary.

Herc again, orthogonal space-forms yield examples of manifolds, and hence of
vanishing finiteness obstructions, for x of Type Il, or of Type I with s < r. This
gap is filled by our next main result.

THEORFM 2, Let & be p-hyperelementary of Type 1 with s = r, g a cohomology
generator whose restriction to each Sylow subgroup is a psth power. Then §(g) = 0,

I will outline the proof of this result below. The following is an easy consequence
of Theorems 1 and 2.

THEOREM 3. Let © be an %-group such that all subgroups of order 2p are cyclic.
Let 2d; be the cohomology period of 7, and let dy = 2d, if d| = 4 (mod 8) and 7 has
a hyperelementary subgroup of tvpe lIL or IIM; dy= d, otherwise.

Then if X is a polarised space corresponding to a generator g whose restriction to
each cyclic Sylow subgroup is a dyth power, and to each quaternionic Sylow subgroup
a dyth power times a power of o, X is homotopy equivalent to a manifold.

By Theorem 1, with the induction theorem for Ky(Z7x), it is enough to consider
hyperelementary subgroups. Condition (i) is satisfied by Proposition 5—note that
the hypothesis on g is preserved on restriction to subgroups p, and that the coho-
mology period of p divides that of z. Condition (ii) 1s satisfied by Proposition 5
and Theorem 2,

Observe that we can choose g € H?2(z: Z). Thus z can act freely—and, in fact,
smoothly—on $%: 1 and on any §%4-1(this holds even if d; = 1 or 2, by checking
Milnor’s 1957 list of cases). These are the only spheres on which 7 can act freely,
except perhaps in case d, = 2d,. and 7 has subgroups of type HIM but none of type
IIL. This happens only rarely—for example, if z has type I, [Il or V, then dy = d,.

Though the result on dimensions is almost the best possible, that on homotopy
types is definitely not.
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ExamrLi 1. 7 p-hyperelementary of order pg (p # g odd primes). Then X(g) has
zero finiteness obstruction—and hence is homotopy equivalent to a manifold—if
and only if the restriction of g to the Sylow g-subgroup is a pth power. This is an
easy deduction from the calculation by Galovitch, Reiner and Ullom [1972] of
Ko(Z7).

EXAMPLE 2. 7 the binary tetrahedral group SL,(3). In this case, hyperelementary
subgroups are cyclic or equal to 7, (quaternion of order 8, and normal). Thus
0(g) = 0 <> glz, is a square times a power of 7y For such g, the corresponding
X is homotopy cquivalent to a manifold. The case g = 7g, does not come from
an orthogonal action, or from Theorem 3.

The projective class group. PROOF OF THEOREM 2. The localisation square

A=Zﬁ—>B=ZLLWi7r

-

|

C:Z(ﬁ)ﬂ'_’l)ZQ7r
satisfies the conditions (Bass, [1968]) for existence of a natural exact sequence

KB®K,C — K\D -2~ KA~ K,B@® K,C.
1 0]

Suppose we have a finite chain complex P, of finitely generated projective A-
modules such that y(P) = > (—1¥[P;] € Ko(A) is in Ker iy, = Im . Then P, ® B,
P, ® C arc chain homotopy equivalent to free, based complexes Fg, F-over B, C
respectively. We now have a preferred homotopy class of chain homotopy equi-
valences 7: Fg ® D — F: ® D of based free D-complexes, defining a torsion ele-
ment 7(») € K(D). Then ¥(P) = or(x). The proof is straightforward, reducing
to the definition of the homomorphism g.

For our problem, the algebra and topology are related as follows (cf. Swan
[1960]). An exact sequence

0>Z—>P, > —>PysZ->0

with P, a finitely generated projective Zz-module determines a class g in
Ext3 (Z, Z) = H"(r; Z) which is a generator. Conversely, g determines the chain-
homotopy type of P,, and 6(g) = y(P,). Corresponding statements hold on
localising Z. Though it is difficult to write down P, explicitly, such complexes
can be produced after suitable localisations. We proceed indirectly as follows.
Write 7 = po as usual, with a: ¢ — Aut p. Choose an epimorphism ¢’ — ¢, with
g’ cyclic of order ps*! (so the kernel { has order p), and let the composition a':
o' — 0 — Aut p define the split extension 7z’ = po’. We have an epimorphism
n' — r with kernel {. Since o’ has nontrivial kernel, z’ has & -representations;
choose one whose k-invariant g’ is the image of g at primes other than p (such
exist by the conditions on g). This yields a free Zz'-chain complex Fy, defining g'.
Now F,®g, Zz does not give a multiple extension of Z by Z, but this fails only
at the prime p. We can thus take Fy = F, ® B. As to C, this contains the idempo-
tent &, = > {g € p}/lp|, which is central. Hence C splits as Ce, @ C(1 — &),
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and Ce, = Z,0. Since ¢ is cyclic, with generator 7, say, we now have the re-
solution

Ce, T, Ce, 1T, Ce, T, Ce, T, Ce, — Zi[p—-0

Fe: @ @ R @ @ @
Ol — ) = C(l — gy =C(1 =)~ C(l — ¢} = C(1 —¢,) —>0

To compute the torsion, define F, for 7’ similarly to F for z, using a generator
T’ for ¢’ which maps onto T. Observe that the corresponding cohomology classes
evidently restrict to psth powers at ¢, ¢’. We can choose T’ so that this restriction
agrees with that of g’. Then there is a chain homotopy equivalence F, ® C' — F;
whose torsion in K(C’) clearly maps to 0 in Ky(A4"). We can thus factor our equi-
valence ¢ as

Fs®@D=F, DL F,. @ DL F.® D.

Now 9z(f;) = 0 by an obvious commutative diagram. As to 0,, observe that F. ®
C differs from £ only in that cach map )77 is replaced by p>T* (since the order
of T" is p times that of T). Thus z(f;) € K{(D) is equal to I at summands of D corre-
sponding to nontrivial representations of z, and to p#* at the trivial component.

Our obstruction is thus 9(p? @ 1). Since z has Artin exponent ps (sce
Bass [1968]), this vanishes provided a(p @ 1) is trivial on cyclic subgroups =
of z. But if Zz =« Qr = @ ® (Qr) has projections Z, (Z7)', 9(p @ 1) is in
Ker(Ky(Z7) - Ky((Z7)")), which is known to vanish for r cyclic.

To conclude the proof, it remains to note that any triple (Fg, F, 0) does deter-
mine a chain-homotopy type of P 4 as above—this is a standard argument—so we
obtain a complex P, with 0 = y(P,) and hence (after easy modifications) a free
complex. The corresponding g” is (by the above) equal to g at Sylow g-subgroups
with g # p, and a psth power on ¢: now by changing g’ we see that we can make
this any psth power, and so achieve g” = g. This concludes our outline proof.

The proof of Theorem 3 shows that—apart from troubles with 2-hyperelemen-
tary groups of types IIL, IIM—we have succeeded in splitting ¥ = @, @ Z so
that 8(Z) = 0. Further progress therefore depends on a study of the ideals {r,
> {gen}>in Zx for x p-hyperelementary. This depends only on r modulo |z|,
and vanishes (as we have seen above) for psth powers, where ps is the period. In
the opposite direction, our best result so far is

PROPOSITION 6. If 0(g) = O, then for each odd prime p, the restriction of g to the
Sylow p-subgroup is a d jth power, where 2d , is the p-period of 7.

But even this (with the analogous result for p = 2) is not always sufficient. I hope
to give a fuller discussion of this problem at a future date.
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