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Foreword

For many years, Algebraic Topology rests on three legs: “ordinary” Coho-
mology, K-theory, and Cobordism. An introduction to the first leg and some
of its applications constitute the curriculum of a typical first year graduate
course. There have been all too few books addressed to students who have
completed such an introduction, and the present volume is the first such guide
in the subject of Cobordism since Robert Stong’s encyclopedic and influential
notes of a generation ago.

The pioneering work of Pontryagin and Thom forged a deep connection
between certain geometric problems (such as the classification of manifolds)
and homotopy theory, through the medium of the Thom space. Computations
become possible upon stabilization, and this provided some of the first and
most compelling examples of “spectra.”

Since its inception the subject has thus represented a merger of the Rus-
sian and Western mathematical schools. This international tradition was
continued with the more or less simultaneous work by Novikov and Milnor
on complex cobordism, and later by Quillen. More recently Dennis Sullivan
opened the way to the study of “manifolds with singularities,” a study taken
up most forcefully by the Russian school, notably by Vershinin, Botvinnik,
and Rudyak.

Attention to pedagogy is another Russian tradition which you will find
amply fulfilled in this book. There is a fine introduction to the stable homo-
topy category. The subtle and increasingly important issue of phantom maps
is addressed here with care. Equally careful is the treatment of orientability, a
subject to which the author has contributed greatly. And the various aspects
of the theory of Cobordism, especially the central case of complex cobordism,
are naturally given a detailed and ample telling.

Professor Rudyak has also performed a service to the history of science in
this book, giving detailed and informed attributions. This same care makes
the book easy to use by the student, for when proofs are not given here
specific references are.

It is to be hoped that this book is the first in a new generation of text-
books, reflecting the current vigor of the subject.

Haynes Miller
Cambridge, MA
April, 1997



Preface

I started to write this book in Moscow and finished in Heidelberg. I am grate-
ful to the Chair of Higher Mathematics of the Moscow Civil Engineering Insti-
tute (the Chairman is S.Ja.Havinson) and to the Forschergruppe “Topologie
und nichtkommutative Geometrie” (sponsored by Deutsche Forschungsge-
meinschaft) at the Mathematical Institute of the University of Heidelberg
which partially supported me during the writing of the book.

I express my especial gratitude to my Ph.D. advisor Michael Postnikov,
and I am glad to thank all the participants of the Algebraic Topology Seminar
(supervised by M.Postnikov) at Moscow State University, where my topolog-
ical tastes and preferences were formed and developed.

I am also very grateful to Albrecht Dold, Hans—Werner Henn and Dieter
Puppe for a lot of fruitful discussions at Heidelberg.

Among the others whose suggestions have served me well, I note Nils
Baas, Boris Botvinnik, Victor Buchstaber, Alexei Chernavski, Werner End,
Oswald Gschnitzer, Edward Fadell, Andrey Khokhlov, Karl-Heinz Knapp,
Matthias Kreck, Peter Landweber, Ran Levi, Mark Mahowald, Peter May,
Haynes Miller, Alexandr Mishchenko, Sergey Novikov, Erich Ossa, Andrey
Pazhitnov, Yury Solov’ev, Michael Stan’ko, Robert Stong, Paul Turner, and
Vladimir Vershinin.

I am grateful to the mathematics editorial of Springer-Verlag (Heidel-
berg), especially to Ruth Allewelt, Martin Peters and Catriona Byrne, for
their kind assistance and help. Thanks are also due to the production editors
Leonie Kunz and Karl-Friedrich Koch as well as to the TEX editor Thomas
Rudolf.

I would like to thank Samuel Maltby for proof-reading the manuscript for
publication.

Finally, Gregor Hoflleit, Waldemar Klemm and Hannes Reinecke helped
me with UNIX and TEX.

To all of these and others who have helped me, I express my best thanks.

Yuli B. Rudyak
Heidelberg
Februar, 1998



Table of Contents

Foreword ......... .. . ... VII
Preface ........ .. . X
Introduction ........... . . . . 1
Chapter I. Notation, Conventions and Other Preliminaries . 9
81.  Generalities . ........ i 9
82, Algebra ... 12
83. Topology ... 14
Chapter II. Spectra and (Co)homology Theories ............ 33
§1. Preliminaries on Spectra ............ ... ... .. . L. 33
§2.  The Smash product of Spectra, Duality, Ring and Module
SPECETA .« .ottt 45
§3.  (Co)homology Theories and Their Connection with
Spectra ... 53
84. Homotopy Properties of Spectra ............. ... .. ... ... 79
85. Localization .......... ... ... 97
86. Algebras, Coalgebras and Hopf Algebras ................. 107
§7. Graded Eilenberg—Mac Lane Spectra .................... 120
Chapter III. Phantoms .......... ... ... .. .. .. oo, 135
§1. Phantoms and the Inverse Limit Functor ................ 135
§2.  Derived Functors of the Inverse Limit Functor ............ 143
83. Representability Theorems ............................. 152
84. A Spectral Sequence ........... 162
85. A Sufficient Condition for the Absence of Phantoms ....... 171
86. Almost Equivalent Spectra (Spaces) ..................... 174
§7.  Multiplications and Quasi-multiplications ................ 180
Chapter IV. Thom Spectra ........... ... .. ... ... ... ...... 185
§1. Fibrations and Their Classifying Spaces ................. 185
§2.  Structures on Fibrations ............ ... ... .. .. ... ... 222
§3. A Glance at Locally Trivial Bundles .................... 228
84. R”-Bundles and Spherical Fibrations .................... 232
§5. Thom Spaces and Thom Spectra ....................... 250
§6. Homotopy Properties of Certain Thom Spectra ........... 268

§7.  Manifolds and (Co)bordism .......... ..., 276



XII Table of Contents

Chapter V. Orientability and Orientations .................. 299
§1. Orientations of Bundles and Fibrations .................. 300
§2.  Orientations of Manifolds .............................. 316
§3. Orientability and Integrality ........................... 323
84. Obstructions to Orientability ........................... 327
85. Realizability of the Obstructions to Orientability ......... 335
Chapter VI. K and KO-Orientability ....................... 339
§1. Some Secondary Operations on Thom Classes ............ 339
§2.  Some Calculations with Classifying Spaces ............... 351
83.  k-Orientability .......... .. ... 359
84. kO-Orientability ........ ... ... 374
85. A Few Geometric Observations ......................... 379
Chapter VII. Complex (Co)bordism ........................ 383
§1. Homotopy and Homology Properties of the Spectrum MU . 383
§2. C-oriented Spectra .. .......o.iiriin 393

83. Operations on MU. Idempotents. The Brown—Peterson
Spectrum BP . ... 402
84. Invariant Prime Ideals. The Filtration Theorem .......... 419
85. Formal Groups ...........c..iiiiiii 428
86. Formal Groups Input . .......... ... .. .. ... .. . ... 433
§7. The Steenrod—tom Dieck Operations .................... 446
Chapter VIIIL. (Co)bordism with Singularities .............. 457
§1. Definitions and Basic Properties ........................ 457
§2.  Multiplicative Structures ............. . ... .. ... 466
§3.  Obstructions and the Steenrod—tom Dieck Operations ..... 474
84. A Universality Theorem for MU with Singularities ........ 481

85. Realization of Homology Classes by PL Manifolds with
Singularities .......... 487
Chapter IX. Complex (Co)bordism with Singularities ....... 495
§1. Brown—Peterson (Co)homology with Singularities ......... 495
§2.  The Spectra P(n) ... 498
§3. Homological Properties of the Spectra P(n) .............. 505
84. The Exactness Theorem ......... ... ... .. .. .. .. ...... 514
§5. Commutative Ring Spectra of Characteristic 2 ........... 521
§6. The Spectra BP(n) and Homological Dimension .......... 528
§7. Morava K-Theories ............ it 538
References ....... ... ... . . . .. 553
List of Notations ............ ... . .. . .. . .. 573

Subject Index ... . 579



Introduction

First, tell what you are going to
talk about, then tell this, and then
tell what you have talked about.

Manuals of a senior country priest
for beginners

The contents of this book are concentrated around Thom spaces (spec-
tra), orientability theory and (co)bordism theory (including (co)bordism with
singularities), framed by (co)homology theories and spectra. These matters
have formed one of the main lines of development for the last 50 years in the
area of algebraic and geometric topology. In the book I consider some results
obtained in this field in the last 20-30 years, settled enough in order to be
exposed in a monograph and close to my research interests. As far as I know,
there are no books which cover substantial parts of the presented material.

In the book I tried to prove those referenced results which were not proved
in any monograph (unfortunately, there are a few exceptions there). More-
over, when I quote a result which I do not prove here, I quote the original
paper and a monograph where this result is treated as well. There are also
occasional remarks containing historical and bibliographical comments, ad-
ditional results not included in the text, exercises, etc.

A reference to Theorem II1.4.5 is to Theorem 4.5 of Ch. III (which is in
84 of the chapter); if the chapter number is omitted, it is to a theorem of the
chapter at hand.

The scheme of interconnections of chapters is very simple:

I=II=II=IV=V=VI= VI=IX

4
VI

I will not overview the contents, but I will discuss the subject of the book
and the place which it occupies in algebraic topology.



2 Introduction
Conceptional foundations

From the conceptual point of view, we consider the (inter)connections be-
tween geometry and homotopy theory, since Thom spectra and related mat-
ters are now the main tools for this interplay. Here I say a few words about
this.

Algebraic topology studies topological spaces via their algebraic invari-
ants. Evidently, these algebraic invariants should be simple enough in order
to be computable and deep (and so complicated) enough in order to keep
some essential information about a space. How does algebraic topology suc-
ceed in slipping between these two dangers: non-computable informativity
and non-informative computability? The answer is that homotopy provides a
desired balance between informativity and computability. Therefore, a rea-
sonable way from topology to algebra passes through homotopy theory. (If
you like artistic expressions, I can say that homotopy theory works like a
camera when we make an algebraic photograph of the topological world.)
In other words, one should reduce a geometric problem to a homotopic one
and then compute the corresponding homotopy invariants. Thus, interconnec-
tions between geometry and homotopy theory play a pivotal role in algebraic
topology.

One of the first results in this area was the Gauss—Bonnet formula, re-
lating a geometrical invariant (the curvature) to a homotopical one (the
Euler characteristic). Proceeding, we can recall the Riemann—Roch Theo-
rem, the Poincaré integrality theory, relationships between critical points of
a smooth function on a smooth manifold and its homotopy type (Lusternik—
Schnirelmann, Morse), the de Rham Theorem, etc. Hence, the geometry—
homotopy interconnections are very classical things, with a noble genealogy.
On the other hand, we’ll see below that this instrument works very success-
fully in the present as well.

The Characters

Here I discuss (briefly and roughly, because the body of the book contains
the details) the main concepts which appear in the book.

(Co)homology theories. We reserve the term “classical cohomology” or
“ordinary cohomology” for the functors H*(—;G). The term “cohomology
theory” is used for what was previously called “generalized” or “extraordi-
nary” cohomology theory, i.e., for functors which satisfy all the Eilenberg—
Steenrod axioms except the dimension axioms. Similarly for homology theo-
ries.

Every homology theory h.(—) yields a so-called dual cohomology theory
h*(—), and vice versa. They are connected via the equality h'(X) = h,_;(Y)
where Y is n-dual to X (and tilde denotes the reduced (co)homology).
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Thom spaces. The Thom space T¢ of a locally trivial R™-bundle £ = {p :
E — B} is defined as follows. Let £* be the S™-bundle obtained from & by
the fiberwise one-point compactification, and let E* be the total space of
£*. Then the “infinities” of the fibers form a section s : B — FE*, and we
define T¢ := E*/s(B). Furthermore, the Thom space of a spherical fibration
{p : E — B} is the cone C(p) of the projection p. For example, the Thom
space of the R™-bundle over a point is S™, the Thom space of the open
Mgbius band (considered as the R!-bundle over S') is the real projective
plane RP?, the Thom space of the Hopf bundle S — S§? (with fiber S!) is
the complex projective plane C'P2. We use Thom’s notation MQ©,, for the
Thom space Ty™ of the universal n-dimensional vector bundle " over the
classifying space BO,,, i.e., MO,, :=T~"; e.g., MO; = RP*.

A source of interest in Thom spaces is the unifying role which they play in
algebraic topology. Namely, they interlock geometric topology and homotopy
theory and, in particular, enable us to apply methods of one of them to
problems of the other. Now I discuss some examples.

J.H.C. Whitehead observed the importance of the structure on the normal
bundle in classifying structures on manifolds. It turns out that Thom spaces
establish an adequate context for this. Namely, for every closed smooth man-
ifold M™, the set of (diffeomorphism classes of) smooth manifolds homotopy
equivalent to M is controlled by the group 7,4+ n(Tv), where v is the normal
bundle of an embedding of M in R"*¥ with NN large enough, see Novikov [2,3],
Browder [1,2].

This is closely related to the Milnor—Spanier—Atiyah Duality Theorem,
which asserts that Tv and M/OM are stable N-dual for every compact
manifold M. This theorem clarifies connections between manifolds and
their normal bundles and enables us to transmit properties of bundles
to properties of manifolds. For example, we have the Thom isomorphism
0 : H(X;Z/)2) — HT™(T¢;7/2) for every locally trivial R"-bundle ¢ over
a space X, and the above theorem transforms it to the Poincaré duality
HY(M;Z/2) = H,_;(M,0M;Z/2) for every compact n-dimensional mani-
fold M.

Turning to another example, I recall the Thom formula

wi(€) = ¢~ 15q" ug

where £ is an n-dimensional vector bundle over a space X, w;(§) is its i-th
Stiefel-Whitney class, ¢ : H'(X;7Z/2) — Hitn (T¢;Z/2) is the Thom isomor-
phism and ue € H"(T¢;Z/2) is the Thom class of £&. This formula expands
a geometric invariant (the Stiefel-Whitney class) via the Steenrod operation
which is a purely homotopic thing. Moreover, we can use the formula in or-
der to define the Stiefel-Whitney classes of spherical fibrations. In particular,
it becomes clear that the Stiefel-Whitney classes are invariants of the fiber
homotopy type of a vector bundle. I note also that, in the book Milnor—
Stasheff [1], the authors preferred to define the Stiefel-Whitney classes via
the Thom formula and not to use the original geometric definitions.
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Generalizing, we can consider an arbitrary natural transformation 7 :
h* — k* of cohomology theories instead of Sq*. T hen, under suitable condi-
tions on &, there is a generalized Thom class ug € h™*(T¢) and a generalized

Thom isomorphism ¢y, : k'(X) — ki+"(T¢), and so we can form the class
K(&) = ¢p, ' Tug

which is an analogue and generalization of the Stiefel-Whitney class. So, we
have a large source of invariants of R"-bundles. For example, the Todd genus
and the A genus are particular cases of this construction. Moreover, the well-
known integrality theorems which are related to Todd and A genera can be
generalized for the class K as above, see Ch. V, §3.

Now I turn to the most impressive example: the relations of Thom spaces
to (co)bordism.

Bordism and cobordism. To start with, consider the following problem.
Given a closed manifold M, how can one recognize whether it bounds, i.e.,
when is it the boundary of a compact manifold? This can be developed as
follows. One says that two closed manifolds M and N are bordant if the man-
ifold MUN (the disjoint union of M and N) bounds. Clearly, “to be bordant”
is an equivalence relation, and so we have a set 9 of bordantness classes of
k-dimensional manifolds. It is easy to see that 1 is a group with respect to
disjoint union; it is called the bordism group of k-dimensional manifolds.

Pontrjagin [1] proved that if a manifold bounds then all its characteristic
numbers are trivial. In particular, RP? does not bound because ws(RP?) # 0.
So, Ny # 0, i.e., some groups Ny are non-trivial.

Well, but how to compute My ? Clearly, Mg = Z/2, M; = 0. Using the clas-
sification of closed surfaces, one can prove that Mo = Z/2: every orientable
surface bounds, and every non-orientable surface either bounds or is bordant
to RP?; and RP? does not bound. Rokhlin [1] proved that M3 = 0, using
complicated and tricky geometry. The further computation of 9t looked ab-
solutely hopeless; however this was done by Thom [2] via an exciting and
successful application of homotopy theory. Namely, Thom proved that

‘ﬂk = 7Tk+N(MON)

for N large enough. Now one can apply all the mighty machinery of homo-
topy theory and compute the right hand side groups. Thom did it and thus
computed the groups M;. The answer is

N, =7/2[x;), dima; =4, i € N1 #£2° -1

where M, = &Ny is the graded ring with the multiplication induced by
the direct product of manifolds. It is important to remark that, fortunately,
powerful computational methods (obtained mainly by the French topological
school) came just at the right time, and Thom took advantage of this.
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I want to mention here that Pontrjagin (in 1937, the available publication is Pon-
trjagin [2]) interpreted homotopy groups of spheres in terms of smooth manifolds,
and this result anticipated the contemporary research in the area of interconnections
between homotopy theory and geometry. In fact, as remarked by Stong [2], “Thom
brought the Pontrjagin technique to the study of manifolds, largely reversing the
original idea”.

The above constructions can be generalized: we can consider oriented
manifolds or, more generally, manifolds equipped with some extra structures.
As above, there arise certain bordism groups, and they can be interpreted
as homotopy groups of certain Thom spaces. Many mathematicians studied
and study this zoo of bordism groups. The monograph Stong [2] summed up
this level of the development of the theory.

Proceeding, consider two maps f : M — X and g : N — X of closed
smooth k-dimensional manifolds M, N. We say that these maps are bordant
if there is amap F: W — X with OW = M UN and FIM UN = fUg.
Similarly to the above, “to be bordant” is an equivalence relation, and we have
a bordism group 9 (X ). One can prove that in this way we get a homology
theory M. (—) which is called a bordism theory. The dual cohomology theory
Mk () is called a cobordism theory.

Clearly, 9, = Mk (pt). Moreover,

fﬁk(X) = 7Tk+N(X+ /\MON)

for N large enough, where X is the disjoint union of the space X and a
point.

Spectra. The reader should have noted that we deal with the condition “N
large enough”, i.e., with the so-called stable situation. However, as remarked
by Milnor [4], it is much more pleasant to work in a category where there
is, say, a single object M O rather than the spaces M O,, which approximate
it, i.e., “to put N = oo”. This approach has a convenient formalization; its
main tool is the conception of a spectrum. There are different categories of
spectra proposed by different authors, and for some particular applications
one may have an advantage over another.

We use a category of spectra proposed by Adams [5]. So, a spectrum E
is a sequence {E,, s, __ of pointed CW-spaces E, and pointed CW-
embeddings s, : SE, — FE,+1 where S denotes the pointed suspension.
There are the following examples.

(1) For every pointed space X we have the spectrum XX = {S"X, s, }
where s, : SS™"X — S"1X is the identity map.

(2) For every pointed space X and every spectrum E = {E,,, s,,} we have
the spectrum X AE={X AE,, 1A sp}.

(3) Let 6! be the trivial 1-dimensional vector bundle over BO,,, and let
the map BO,, — BO,,+1 (assuming it to be an embedding) classify the vector
bundle v* & 6. Then we have a map s, : T(y" @ ') — Ty"T1. Moreover,
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one can prove that T'(y" @ 0*) = STHy" = SMO,,, and so we have the Thom
spectrum MO = {MO,, s, }.
Given a spectrum FE, we have the homomorphisms

B T4 (En) — 731 (SEn) 2% mp iy (Bpia).

We define the homotopy group 7 (F) to be the direct limit of the sequence

hktn,n
T 7Tk+n(En) L’ 7Tk+n+1(En+1) —

ie, mp(E) = nlin;o Titn(Ep). Now we can rewrite the above equalities as

‘J‘(k:m(M(’)), ‘th(X):wk(X+AMO)

and so get rid of “N large enough”.

More generally, we can define bordism groups for manifolds with a struc-
ture, and they can also be interpreted as homotopy groups of certain Thom
spectra.

There is a remarkable connection between spectra and (co)homology the-
ories. Every spectrum E yields a homology theory E.(—) and a cohomology
theory E*(—) by the formulae

Ei(X) = lim mn(XTAE,), EY(X):= lim [S"X T, Eiy,].
n—oo n—oo
Moreover, F.(—) and E*(—) are dual to each other.

Conversely, every (co)homology theory can be represented by a spectrum
via the above formulae.

Note that, in particular, the spectrum MO yields the bordism (resp.
cobordism) theory M.(—) (resp. 91*(—)).

Orientability. We consider in this book orientability with respect to arbi-
trary cohomology theories, but it makes sense to go back to classical things
for a moment.

The orientation of R™ is defined as an equivalence class of its bases, but it
can also be defined homologically, as one of the two generators of the group
Z = H,(R™) (or H"(R™)), where R" = $™ is the one-point compactification
of R™. This approach is very useful from the global point of view, i.e., when
we consider the orientability of certain families of R™’s, like manifolds or R™-
bundles. It is reasonable to treat an orientation of such a family as a family
of compatible orientations of its members. For example, if M is a closed
connected manifold with H,, (M) = Z then every generator [M] of H, (M)
can be considered as an orientation of M. Indeed, in this case [M] yields
an orientation of every chart: this orientation has the form e,([M]) where
€: M — S™ collapses the complement of the chart. Moreover, we can define
orientations of charts to be compatible if there is a fundamental class [M]
as above. So, in this way we define M to be orientable if H,(M) = Z, and
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an orientation of M is defined to be a generator of H,(M). Similarly, we
define a locally trivial R”-bundle £ over a connected base to be orientable if
H™(T¢) = 7Z, and an orientation of £ is a generator of the group H™(T¢).

The homological approach to orientability enables us to develop ori-
entability theory for arbitrary (co)homology theories h. For example, an
h-orientation of an R"™-bundle { is a suitable element ue € E”(TE), an h-
orientation of a closed manifold M™ is an element [M] € h,,(M™). Orientable
objects have a lot of good properties, and, because of this, “... an orien-
tation is a necessary point of departure for many cohomological construc-
tions” (Adams [9]). For instance, there are a Thom-Dold isomorphism ¢ :
R{(X) — E“‘"(Tﬁ) for every h-oriented R"™-bundle £ over X and a Poincaré
(or Poincaré-Milnor—Spanier—Atiyah) duality h*(M) — h,,_;(M,0M) for ev-
ery h-oriented manifold M™, and the last one can be deduced from the first
one similarly to the classical case as above.

Now we can also tell more about the class K(§) = ¢~ '7ug considered
above: in order to define it, £ must be h- and k-oriented; so, orientability can
tell something about integrality.

Furthermore, one can develop an elegant theory of characteristic clas-
ses taking values in h*(—) provided that all complex vector bundles are h-
orientable; these classes generalize the classical Chern classes.

There is not enough space to give all applications of orientability. As the
last example, we mention that general orientabilty theory provides a formal
group input to algebraic topology; this matter is completely degenerate for
classical cohomology, and so this remarkable theory was able to appear only
under the general approach.

So, you can see that the orientatibilty theory yields new results as well
as makes clear some classical constructions. Summarizing, I cite May [4]:
“Orientations of bundles with respect to cohomology theories play a central
role in topology.”

1

(Co)bordism with singularities. (Co)bordism with singularities is now a
common and convenient notion, being a favorite tool as well as subject of
research in algebraic topology. Roughly speaking, we take a class of mani-
folds and extend it to a class of suitable polyhedra (manifolds with singu-
larities) where a notion of a boundary is reasonably defined. Then, based
on these polyhedra, we can define the bordism groups of topological spaces.
Under certain circumstances, these bordism groups form a homology the-
ory and, dually, the corresponding cohomology theory. This (co)homology
theory is called (co)bordism with singularities. In fact, the passage from
(co)bordism to (co)bordism with singularities can be treated as an analogue
and far developed generalization of the introduction of coefficients in classical
(co)homology.

Varying the classes of manifolds with singularities, we get a big enough
stock of (co)homology theories and, in particular, are able to construct ones
with prescribed properties. For example, in this way we can construct classical
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(co)homology and connected complex k-theory. Moreover, the famous Morava
k-theories are also constructed as certain cobordism with singularities.

I also want to mention an application of (co)bordism with singularities to
the topological quantum field theory: for example, the elliptic (co)homology
can be constructed as (co)bordism with singularities.

Finally, (co)bordism with singularities gives a natural geometric flavor
to algebraic or homotopical matters. For example, the Adams resolution of
certain spectra can be interpreted in terms of (co)bordism with singularities,
and this enables us to get useful information about some classical (co)bordism
theories, like MSU and M Sp, see e.g. Botvinnik [1], Vershinin [1].

Landmarks

The paper Thom [2] made a revolution and formed the contemporary
paradigm of algebraic topology, and it freshly demonstrated the power and
usefulness of the relations between homotopy theory and geometry. In order
to exhibit relatively recent advantages of this matter, I just write down a list
(unavoidably incomplete) of certain geometric problems which were (partially
or completely) solved via an application of homotopy theory. !

(1) When can a manifold M be immersed in a manifold N, and how can
one classify these immersions? (Smale [1], Hirsch [1].)

(2) When can a homology class in a space be realized by a map of a closed
manifold? (Thom [2].)

(3) When is a closed manifold a boundary of a compact manifold with
boundary? (Thom [2].)

(4) Which spaces are homotopy equivalent to closed smooth manifolds?
(Browder [1,2], Novikov [2,3].)

(5) How can one classify manifolds up to diffeomorphism (PL isomor-
phism, homeomorphism)? (Smale [1], Kervaire-Milnor [1], Browder [1,2],
Novikov [2,3], Hirsch-Mazur [1], Sullivan [1], Kirby—Siebenmann [1], Freed-
man [1], Donaldson [1].)

(6) How many pointwise linearly independent tangent vector fields exist
on the n-dimensional sphere? (Adams [3].)

(7) Which smooth manifolds admit a Riemannian metric of positive scalar
curvature? (Gromov-Lawson [1], Stolz [1].)

This completes my introduction.

1 You can see that the list of authors contains six Fields Medal Award Winners.
All of them got this award for the research in question.



Chapter I. Notation, Conventions and
Other Preliminaries

The main goal of this chapter is to introduce some notation and terminol-
ogy. We assume that the reader is more or less familiar with the basic con-
cepts of algebraic topology (homotopy and homology). Typical references
are: tom Dieck—-Kamps—Puppe [1], tom Dieck [2], Dold [5], Fomenko—Fuchs—
Gutenmacher [1], Fritsch—Piccinini [1], Fuks-Rokhlin [1], Gray [1], Hatcher [1],
Hilton-Wiley [1], Hu [1], May [5], Ossa [1], Postnikov [2], Spanier [2],
Switzer [1], Vick [1].

§1. Generalities

As usual, N;Z,Q,R and C will denote the sets of natural, integer, rational,
real and complex numbers.

We mark the end of the proof of a lemma, theorem, etc. by the symbol 0.
If the proof is omitted for some reason (for example, because it is obvious),
then we place the symbol [J at the end of the statement. Furthermore, we
use the symbol H to label the end of a proof of a lemma inside a theorem.
(The lemma is proved, but the theorem is not proved yet.)

The symbol “:=" will mean “is defined to be”.

We use the abbreviation “iff” for “if and only if”.

1 “gﬂ

The symbo will usually denote an isomorphism of algebraic objects
(groups, modules, rings, coalgebras, etc.) or a homeomorphism of topological
spaces. For example, given two topological spaces X,Y, the notation f :

X =Y means that f is a homeomorphism.

For the definitions of category, functor and natural transformation the
reader is referred to Mac Lane [2], see also Dold [5] and Switzer [1]. Given a
category £, we write X € JZ iff X is an object of . The identity morphism
of any object X is denoted by 1x. Given two objects X, B of £, the set of all
morphisms X — B is usually denoted by .# (X, B) unless otherwise noted.
As usual, a morphism « : A — B is called an isomorphism if there exists a
morphism 3 : B — A such that a8 = 1g and Ba = 14. In the categorical
context we say “product” and “coproduct” rather than “direct product” and
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“direct sum”. (However, in some particular situations we use the standard
terminology, e.g., we can say “the direct sum of abelian groups”.) Given a
family {X3} in o2, its product (if the product exists) is denoted by [], X,
and we let p; : [[, Xx — X; denote the projection onto the i-th factor. For a
finite family {X,Y,..., Z} we denote the product by X x Y x --- x Z.

By the definition of the product, for every family {f; : X — Ag} of
morphisms in J¢ there exists a unique morphism f : X — [], Ax such that
prf = fr for every k. We denote this f by {fx}.

The category consisting of sets (as objects) and functions (as morphisms)
is denoted by &ns. The category of pointed sets and pointed functions is
denoted by &ns®.

Given a family {X;} of sets, we use the standard notation
UX17 mX’L; HXH HX'L

for the union, intersection, Cartesian product and disjoint union of sets, re-
spectively. (Note that the Cartesian product of sets yields the product in
&ns, and so this notation [, X; does not lead to confusion.)

Given a function f : X — Y, a restriction of f is any function g : A — B
such that the diagram
A S X

7| [+
B—S.v

commutes. Given a function f: X — Y and a subset A of X, we denote the
composition A C X Ly by f|A.

1.1. Definition. (a) A quasi-ordered set is a category A such that its objects
form a set, and there is at most one morphism A — p for every A, u € A. In
this case we write A < pu. It is clear that
(1) A< ) forevery A € A;
(2) TA<pand g <vthen A <w.
(b) A quasi-ordered set A is called directed (with respect to increasing) if
for every A, u € A there exists v € A such that A < v and u < v.
(¢) A cofinal subset of a quasi-ordered set A is any full subcategory A’ of
A such that for every A € A there is p € A’ with A < p.
(d) A quasi-ordered set A is called discrete when A < p iff A = p for every
A p €A

In fact, < can be considered as a relation on the set A, and a quasi-ordered
set can be defined as a set equipped with a relation satisfying (1) and (2). Such a
relation is called a quasi-ordering.
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1.2. Definition. A partially ordered set, or a poset, is a quasi-ordered set
with the following condition: if A < p < A then A\ = p. A mazimal element of
a poset A is any A € A such that A < p implies A = u. A greatest element of
a poset A is an element p € A such that A < u for every A € A. Clearly, the
greatest element is a maximal element, but the converse is not true.

A chain in a poset is a family {a;} such that, for every pair 7, j of indices,
either a; < a; or a; < a;. An upper bound of the chain is any a such that
a; < a for every i. A poset is called inductive if every chain in it has an upper
bound.

We use the transfinite induction principle in the following form, see e.g.
Kelley [1].

1.3. Zorn’s Lemma. Fvery inductive set has a maximal element. (]

Let JZ be an arbitrary category. Every object B of J# induces a con-
travariant functor Tp : £ — &ns given by Tp(X) := # (X, B) for every
object X of # and Tp(f) := #(f, 1) : XX (Y,B) — 2 (X, B) for every
morphism f: X — Y of Z.

1.4. Definition. We say that a contravariant functor F : JZ — &ns is
represented by a certain object B of JZ if there exists a natural equivalence
F = Tg. In this case B is called a classifying or representing object for F.
Furthermore, F is called representable if it can be represented by some B.

Let F,G : & — &ns be represented by B, C respectively. It is obvious
that every morphism f : B — C yields a natural transformation Ty : Tp —
Tc and hence F' — G. The converse is also true.

1.5. Lemma (Yoneda). Fiz natural equivalences b : F ST, c: G Te.

For every natural transformation ¢ : F — G there exists a morphism f :
B — C such that for every object X of & the diagram

Tp(X) o, Te(X)

commutes, and such a morphism f is unique. In particular, the representing
object B for F is determined by F uniquely up to isomorphism.

Proof. Consider the function

h: 4 (B,B) 21— F(B) 2, G(B) S #(B,0)
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and set f = h(1p). Then the diagram commutes for X = B and hence, by
naturality, for arbitrary X. Let f’ : B — C be another morphism satisfying
the conditions of the lemma. Then f/ = h(1p), since the diagram commutes
for X = B. So, ¢ is unique. To prove the last assertion, put ¢ = 1p. 0

§2. Algebra

The category of abelian groups and homomorphisms is denoted by .2/¥4. Note
that the usual direct product of abelian groups is the categorical product in
/9, while the usual direct sum is the categorical coproduct in &/'¥.

We denote the cyclic group of order m by Z/m.

In algebraic context, we reserve the word “unit” for the neutral element
of a monoid (group). In particular, the multiplicative identity element of a
ring is also called the unit.

We restrict the notion of ring to rings which are associative and unital
(i.e. possess a unit), and every ring homomorphism is required to preserve
units. Furthermore, every module is required to be unitary (i.e. la = a, where
1 is the unit of the ring and a is any element of the module). Finally, modules
over a graded ring are required to be graded.

The degree of a homogeneous element = of a graded object (group, ring,
etc.) is denoted by degx or |z|. If A is a graded object then A, denotes its
component of homogeneous elements of degree n. A graded object A is called
bounded below if there exists n such that A; = 0 for i < n.

Given a commutative ring R, we denote by R[z,y,...,z] the polynomial
ring of indeterminates x,y, ..., z. The corresponding power series ring is de-
noted by R[[z,vy,...,z]]. If Ris a graded ring, we assume that z,y, ...,z are
homogeneous indeterminates. Furthermore, Ar(z,y,...,2) denotes the free
exterior algebra (with a unit) over R of indeterminates z,y,...,z, and for a
graded R we assume that x,y, ...,z have odd degrees. We use the notation
Az, y,...,z) for the ring Az(z,y,...,2).

The set of multiplicatively invertible elements of a commutative ring R is
denoted by R*.

Let p : A — B be a ring homomorphism, and let M be a right A-
module. The homomorphism p turns B into a left A-module ,B, where a-b =
pla)b for a € A,b € B, cf. Cartan-Eilenberg [1]. We can therefore form the
tensor product over A of A-modules M, B. This tensor product is denoted
by M ®, B.

We use the Five Lemma in the following form, see e.g. Mac Lane [2], 1.3.3.

2.1. The Five Lemma. Consider a commutative diagram in /9
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L

with exact rows.

(i) If aq is an epimorphism and oo, oy are monomorphisms, then as is
a monomorphism.

(ii) If a5 is a monomorphism and s, «y are epimorphisms, then asg is
an epimorphism.

In particular, if aq, as, a4, as are isomorphisms, then as is an isomor-
phism. ([l

2.2. Notation. Given a family {4;} of abelian groups, we use the notation
®;A; for its direct sum. By the definition of the direct sum, for every abelian
group G and every family ¢; : A; — G of homomorphisms there is a unique
homomorphism

(pi) @A —» G
such that (p;)|A; = @;.

2.3. Definition. Let A be a quasi-ordered set.

(a) Let o2 be a category. A direct system over A, or briefly, a direct A-
system, in JZ is a covariant functor .#Z : A — J#. In other words, .Z is a
family .# = {Myx,j\}r,n € A, where My € 2 and where j§ : M, — M,
for p < A are morphisms such that j;fj;j =¥ forv<pu<Xand j = 1p,.

(b) A morphism f : {My, j§'} — {Nx, hi} of direct A-systems is a natural
transformation of functors, i.e., a family {fx : M) — Nx} with R f, = faji.

2.4. Definition. Let A be a quasi-ordered set, and let { Ay} ca be a direct A-
system of abelian groups. Let iy : Ay — @)A, be the inclusion, and let B C
@Ay be the subgroup generated by all elements of the form (i,a, —ixj\a,).
The quotient group (®xAy)/B is called the direct limit of the direct system
{A,} and is denoted by lim{A\}.

It is clear that every morphism f : {Ax} — {B\} of direct A-systems
induces a morphism lim f : lim{Ax} — lim{Bx}.

Let g : @Ay — lim{Ax} be the quotient map. Define ky to be the com-
position

kx : Ay LA, DA, 4, li_H)l{AA}.

The direct limit has the following universal property.

2.5. Theorem. Let G be an abelian group, and let ¢y : Ax — G be a
family of homomorphisms such that v, = pxj\ for every p < X. Then there
exists a homomorphism ¢ : im{A\} — G such that pkx = @ for every A.
Furthermore, such a homomorphism ¢ is unique.
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It is useful to have a notation for ¢ in terms of ¢y. I suggest denoting ¢
by (px|lim). 2
Proof. If such ¢ exists, then ¢q = (py), and so ¢ is unique. To prove the
existence, note that (px) : @Ay — G passes through lim{A,}, i.e., (px) can
be decomposed as
@Ay L lim{A4,} % G.
Clearly, pkx = @a. 0

2.6. Definition. Given a quasi-ordered set A, let f: {Ax} — {Bx} and ¢ :
{Bx} — {C\} be two morphisms of direct A-systems in &/¢. We say that the

sequence {4} J, {By} L {C\} is exact if the sequence Ay LN NI NGN
is exact for every A € A.

2.7. Theorem. Given a directed quasi-ordered set A, let

(A L (B} S {0y}

be an exact sequence of direct A-systems. Then the sequence

. lim s li .
lim{Ay} —5 lim{B)} —2 Lim{C)}
15 exact.

Proof. See Dold [5], VIIL.5.21 or Eilenberg—Steenrod [1], VIIL.5.4. O

We discuss the inverse limit in Ch. III.

§3. Topology

3.1. Conventions. We reserve the term “map” for a continuous function
between two topological spaces.
All neighborhoods and coverings are assumed to be open, unless some-
thing else is said explicitly.
When we say “connected space” we mean “path connected space”.
Following Bourbaki [2], when we call a space compact we include the
Hausdorff property. In particular, every compact space is normal, see loc. cit.

We denote the one-point space by “pt”.

A pair (of topological spaces) (X, A) is a topological space X with a
fixed closed subspace A. A map f : (X,A) — (Y, B) of pairs is just a map
f: X — Y such that f(A) C B. Given a pair (X, A), a collapse ¢: X — X/A

2 If A is a discrete quasi-ordered set, then, clearly, (@, | lim) = (pa).
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is a quotient map which maps A to a point and induces a homeomorphism
of X \ A onto its image.

Given two pairs (X, A), (Y, B) of spaces and a map f : A — B, the
space X Uy Y is defined to be the quotient space (X [[Y)/ ~, where ~ is
the smallest equivalence relation generated by the following relation: a ~ b if
f(a) =0bfor a € A,b € B. We say that the space X Uy Y is obtained from X
by adjoining, or gluing, Y via f.

For instance, if Y = pt = B then X U; Y = X/A.

A triad (X; A, B) is a topological space and two of its closed subspaces
A, B such that X = AU B.

A filtration of a topological space X is a sequence
{"‘CXOC"' CXnC"'CX}

such that:
(1) X =UpX,.
(2) Every X, is closed in X.
(3) X inherits the direct limit topology, i.e., U is open in X iff UN X,
is open in X,, for every n.

A pointed space is a pair (X, {xo}) where x( is a point of X. We use also
the notation (X, o) and call g the base point of X. If there is no reason
to indicate the base point, we may write (X, x) (or even X if it is clear
that X is pointed). A pointed map f : (X,z0) — (Y,yo) is just the map
[ (X A{mo}) — (Y, {yo}) of pairs.

Given a space X, we denote by X T the disjoint union of X and a point,
and the added point is assumed to be the base point.

A pointed pair is a triple (X, A, zg) where (X, x) is a pointed space and
(X, A) is a pair such that g € A.

A pointed triad is a quadruple (X; A, B;xo) where (X, xz¢) is a pointed
space and (X; A, B) is a triad such that g € AN B.

Algebraic topologists prefer to deal with “nice” spaces, such as CW-
spaces. However, a class of spaces in which algebraic topologists work should
be closed under standard operations which topologists use. In other words,
the suitable category of spaces should be large enough to accommodate oper-
ations and small enough to rule out pathologies at the same time. One such
category was suggested by Steenrod [2] and improved by McCord [1]3, and
is known as the category of weak Hausdorff compactly generated spaces. We
recall the definitions here, see also Fritsch—Piccinini [1].

3.2. Definition. (a) A topological space X is called weak Hausdorff if, for
every map ¢ : C' — X of a compact space C, the set ¢(C) is closed in X.

3 We recommend also the paper of Vogt [1].
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(b) A subset U of a topological space X is called compactly open if p=1(U)
is open for every map ¢ : C'— X of a compact space C. A topological space
X is called compactly generated if each of its compactly open sets is open.

Clearly, every open set is compactly open.

Note that every point of a weak Hausdorff space is closed, and that every
Hausdorff space is weak Hausdorff. Thus, the weak Hausdorff property lies
between T and T5.

We denote by # the category of weak Hausdorff compactly generated
spaces and their maps. Similarly, we denote by #* the category of weak
Hausdorff compactly generated pointed spaces and their pointed maps.

3.3. Proposition. (i) Let ¢ : C — X be a map of a compact space C to a
weak Hausdorff space X. Then o(C) is compact.
(ii) Let X be a weak Hausdorff space. Then a subset U of X is compactly
open iff UNC is open in C for every compact subspace C' of X.
(i) If X € # and A is a closed subspace of X then A € # and XA € W .
(iv) Let
XocXiC---CX,C---

be a sequence in ¥, and let X := U X, have the direct limit topology. Then

n=0

Xew.
(v) Let X, Y € #, let A be a closed subset of X, and let f: A—Y bea
map. Then X Uy Y e #.

Proof. See McCord [1, §2] or Fritsch-Piccinini [1, Appendix]. O

Note that X/A is generally non-Hausdorff even when X is Hausdorff. So
we cannot restrict our class to that of compactly generated Hausdorff spaces.

3.4. Construction (Steenrod [2]). Given a topological space X, we denote
by kX the topological space which coincides with X as a set but has the
following topology: a set U is open in kX iff ¢=1(U) is open in C for every
map ¢ : C' — X from a compact space C. We leave it to the reader to check
that this family of open sets is a topology.

We define the function w = wx : kX — X, w(zx) = x. Furthermore, given
a function f: X — Y, we define the function kf := w{,lfwx kX — kY.

3.5. Theorem (cf. Steenrod [2]). (i) For every space X, wx is a map.
(ii) For every space X, kX is a compactly generated space.
(iii) If X is compactly generated then wx is a homeomorphism.
(iv) X and kX have the same compact subspaces.
(V) If f: X =Y is a map then so is kf : kX — kY.
(vi) If Z is compactly generated and f : Z — X is a map then so is

wy'f:Z — kX,
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(vil) If X is weak Hausdorff then so is kX.

Proof. (i)—(iv) follow from the definitions.

(v) Let U be open in kY, and let ¢ : C' — X be a map of a compact space
C. Then =1 (f~Y(U)) = (fe) 1 (U) is open in C. Thus, f~(U) is open in
kX.

(vi) By (ii) and (iii), wy' f = (kf)wy,"'. Now, by (v) and (iii), (kf)w," is
a map.

(vii) Let ¢ : C — kX be a map of a compact space. We must prove that
»(C) is closed in kX. But this follows, since wg(C) is closed in X. O

Generally speaking, the usual Cartesian product of two spaces from # is
not in #. See Dowker [1], §5. Nevertheless, the category #  admits products.

3.6. Definition. Given a family {X;} of topological spaces, we define their
compactly generated direct product

[+ (1)

where [ is the usual Cartesian product of topological spaces.
3.7. Lemma. The compactly generated direct product is the product in # .

Proof. Firstly, we prove that [[X; € # if every X; € # . In view of
3.5(ii), it suffices to prove that [[° X; is weak Hausdorff. Let

pf:ﬁXiﬂXi

be the projection. Consider a map ¢ : €' — X of a compact space C and
set C; = p§(e(C)). Then, by 3.3(i), C; is a Hausdorff subspace of X;. Fur-
thermore, p(C) C []°Cy, and so p(C) is closed in [[“C; since the latter
is Hausdorff. Finally, []°C; is closed in []° X; since C; is closed in X;, see
Bourbaki [2].

2

Now consider the projection p; : [ X; — [[° X; — X;. We must prove
that, for every Y € # and every family f; : Y — X, of maps, there is a unique
map [ : Y — []X; such that p;f = f;. Indeed, since [[° is the product in
the category of all topological spaces, there is a map f' : Y — [[° X; such
that pSf' = fi, and we set f:=w™'f : Y — [[ X;. By 3.5(vi), f is a map.
Now, if there is another map g : Y — [[ X; with p;g = f then wg = f’, and
sog=f. O

3.8. Proposition. If X is a locally compact Hausdorff space and Y € W
thenw: X XY — X x°Y is a homeomorphism. *

4 Clearly, every locally compact Hausdorff space belongs to # .
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Proof. See Steenrod [2], 4.3 or Vogt [1], §3. O
Note that the disjoint union yields the coproduct in # .

Define the compact-open topology as follows: let ¢ : C — X be a map of a
compact space C, and let U be an open set in Y. We denote by W (p, U) the
set of all maps f : X — Y such that fo(C) C U. Then the family {W (p,U)}
for all such pairs (o, U) forms a subbasis of the compact-open topology on
the set of maps from X to Y.

3.9. Definition. (a) Given two spaces X, Y, we let C(X,Y’) denote the topo-
logical space of all maps X — Y equipped with the compact-open topology.
We let

Y¥ = kC(X,Y).

(b) Given two pairs (X, A) and (Y, B), we define (Y, B)X*Y) to be the
subspace of YX consisting of maps f : X — Y such that f(4) C B. In
particular, given two pointed spaces (X, *) and (Y, %), (Y, *)(**) is a pointed
space, whose base point is given by the constant map X — {x} C Y.

(c) The loop space Q(X, ) of a pointed space (X, ) is just the pointed
space (X, *)5"*) where S is the circle.

3.10. Theorem. Let XY, Z € W .
(i) The map
u: (Y X Z)X - YX X ZX) U(f) = (p1f7p2f)

is a homeomorphism.
(ii) The map

e: 27N = (Z)%, (e(f)(@))(y) = f(y.2)

is a homeomorphism.
(iii) The function

p:Z¥ xY* = Z% u(f.g9) = fg

18 continuous.
Proof. See Steenrod [2], 5.4, 5.6 and 5.9. |

3.11. Convention. Throughout the book we will assume that all spaces
belong to # unless somthing else is said explicitly, i.e., the word “space”
means “weak Hausdorff compactly generated space”. Furthermore, all the
products and function spaces are taken as in 3.6 and 3.9.

Clearly, the direct product topology on R® = R x - -+ x R coincides with
the standard topology on R™ (defined e.g. by the inner product).
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We define the standard n-dimensional disk

D" = {(:z:l,... ,z") e R”

and the standard n-dimensional sphere

S"i= {(:L’l,... , 2"t e R

n+1 )
D (@) = 1}.

=1

3.12. Basic homotopy theory. (a) Two maps f,g : X — Y are called
homotopic if there is a map (homotopy, or deformation) H : X x I — Y such
that H|X x {0} = f and H|X x {1} = g. In this case we use the notation
f~gor H: f~g. The homotopy class of a map f is denoted by [f]. The
set of all homotopy classes of maps X — Y is denoted by [X,Y].

(b) Amap f: X — Y is called a homotopy equivalence if there is a map
g:Y — X such that gf ~ 1x and fg ~ 1y. In this case we say that f and
g are homotopy inverse to each other. Two spaces X,Y are called homotopy
equivalent if there is a homotopy equivalence X — Y, and we write X ~ Y.
The homotopy type of a space X is the class of all spaces homotopy equivalent
to X.

(¢) By saying that two maps f,g : (X, A) — (Y, B) are homotopic we
mean that there exists a homotopy (X x I, A x I) — (Y, B). Furthermore,
we say that two maps f, g : (X, A) — (Y, B) are homotopic relative to A, and
write f ~ g rel A, if there is a homotopy H : f ~ g such that H(a,t) = f(a)
for every a € A,t € I. Similarly, one can define homotopy equivalences of
pairs and homotopy equivalences rel A. We leave further such definitions to
the reader.

3.13. Definition. We say that a map is essential if it is not homotopic to a
constant map. Otherwise we say that a map is inessential.

3.14. Definition. Let 5% denote the category whose objects are the same
as those of # but whose morphisms are the homotopy classes of maps.
Clearly, every diagram in # yields a diagram in 7% . We say that a di-
agram in # is homotopy commutative if the corresponding diagram in JZ%
is commutative.

3.15. Definition. We say that two sequences (finite or not)
X I x,

and
g1 92
i &2y, &
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of maps are homotopy equivalent if there exists a homotopy commutative
diagram

f1 f2

X3 Xs

w

g1 g2
Yy Ys

where every h; is a homotopy equivalence. In particular, two maps f : X; —
Xs and g : Y7 — Y5 are homotopy equivalent if there are homotopy equiva-
lences h; : X; — Y;,i = 1,2 such that hof = gh;.

3.16. Definition. Let f: X — Y be a map.
(a) The mapping cylinder, or just the cylinder, of f is the space

Mf:=X x[0,1]U;Y,
where f is considered as the map X x {0} = X 7, ¥. Recall that there is a
standard deformation F : M f x I — Y where
F((z,t),s) = (x,st) if (z,t) € X x (0,1] and s > 0
F((x,t),0) = f(z) if (z,t) € X x (0,1]
Fly,s)=yifyeY.

Note that F' | M f x {0} : M f — Y is aretraction and F | M f x {1} = 1y,
i.e., Y is a deformation retract of M f.

(b) The mapping cone, or the cofiber, or just the cone, of f is the space
Cf:=Mf/(X x {1}). Recall that the mapping cone has the following uni-
versal property: If h: Y — Z is a map such that hf is inessential then there
exists a map ¢ : C'f — Z such that g|Y = h.

(c¢) We define the canonical inclusion

(3.17) k:Y —=Cf
by setting k(y) = y.
3.18. Definition. (a) Given twomaps f: X — Y and g : X — Z, the double
mapping cylinder of the diagram Y L x2z is the space
D:=X x[0,2] U, (YUZ)

where ¢ is defined to be the composition

o (Xx{0pUXx{2h=xux 1% yvuz
Furthermore, we have the inclusions

i]eft:YCD,iright2ZCD,imid:X:XX{1}CD.
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For instance, C'f is (homeomorphic to) the double mapping cylinder of

the diagram Y Ix pt.

(b) The mapping cone of the constant map X — pt is called the sus-
pension over a space X and denoted by SX. Thus, the suspension is the
double mapping cylinder of the diagram pt «— X — pt. Given a point
(x,t) € X x I, we denote by [z,t] its image under the quotient map
X xI—SX=XxI/Xx{0,1}. Furthermore, given amap f: X — Y, we
define a map Sf : SX — SY by setting (Sf)[x,t] := [f(x), ]

(¢) The mapping cylinder of the trivial map X — pt is denoted by CX.
So, Cf =CX Uy Y, and SX = CX/X x {1}

(d) The join X Y of the spaces X, Y is defined to be the double mapping
cylinder of the diagram

X X xy By,

For instance, X xS = SX. Given a point (z,t,y) € X x [0,2] x Y, we denote
by [z,t,y] its image under the canonical map X x [0,2] XY — X x Y.

(e) We define the iterated suspension S™X by induction, by setting
SYX := X and S"X := S(5"'X). By induction, every map f : X — Y
yields a map S™f : S”X — S™Y; this turns the suspension into a functor.

fnl

3.19. Definition. Given a sequence X = {--- —— X, ELN Xnt1 Ina, }

of maps, define its telescope TX to be the space

7%= (|J (X x nn+ 1)) / ~,
where under ~, (z,n+1) € X,, x [n,n+ 1] is identified with (f,(xz),n+1) €

Xnt1 X [n+1,n+2].
Let Tey X be the subspace

JXan—1 x 20— 1,2n] U Xa, x {2n})/ ~

of TX, and let ToqX be the subspace

UJ(X2n x 20,20 + 1] U Xopi1 x {204 1})/ ~
of TX. Then
TooX ~ [ [ Xon, ToaX ~ [[ Xont1, TevX N ToaX ~ [ ] X0,

T X UTogX =TX.

As an important special case, one can consider a filtration
F={  cX,CX,nC--}

of a space X as a sequence of inclusion maps, see 3.51 below.
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3.20. Definition. Let {(X;,z;)} be a family of pointed spaces.
(a) The pointed direct product is the pointed space

HXZ,xl. (HX“*)

where * is the point [[{z;}.
(b) The wedge is the pointed space

X,
\/(Xi,:ci) = LI JE
; Ui{l'i}
where * is the image of U;{x;}.
(c) The obvious injective maps (X;,z;) — (H X, *) yield an injective

map
(Vi X, %) — (HXi’ *) .

Generally speaking, this map is not closed, but it is closed for a finite set
of spaces. So, given two pointed spaces (X, ), (Y,x*), we define the smash
product

(X, %) x (Y, %)

S (XR) Vv (V)

Furthermore, we set

(X, 20) A (Yyyo) A== A (Z,20) i= (- ((Xs20) A (Yyg0)) A=) A (25 20) -

3.21. Definition. Let {(X;,2;)} be a family of copies of a pointed space
(X, x). We define the folding map

V(Xia :Ci) - Xa
to be the unique map 7 such that | X; = 1x.

There are also analogs of constructions 3.16 for pointed spaces.

3.22. Definition. We say that two pointed maps f,g: (X, z0) — (Y, yo) are
pointed homotopic if f ~ g rel{xo}. In this case we also write f ~* g. The
set of all pointed homotopy classes of maps (X, *) — (Y, %) is denoted by
[(X, %), (Y,*)] or [X,Y]*. The set [(S™,*), (X, )] is denoted by m, (X, *). If
n > 1 then it possesses a natural structure of a group (abelian for n > 1) and
is called the n-th homotopy group of (X, ), see any text book for details.

3.23. Definition. (a) The reduced mapping cylinder of a pointed map f :
(X, %) — (Y, %) is the space M f = (X x [0,1]U; Y)/(* x [0,1]). Note that
the base points of X and Y yield the same point * € M f; we agree that * is
the base point of M f.
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(b) The reduced mapping cone of f is defined to be C'f = M f/(X x {1}).
It is a pointed space in the obvious way: its base point is the image of the
base point of M f.

(¢) The reduced mapping cone of the constant map (X,*) — (pt,=*) is
called the reduced suspension over a space X and denoted by SX. Further-
more, we can define the iterated reduced suspension S™X, and S™ turns out
to be a functor on #*, see 3.18(e).

(d) The reduced telescope of a sequence

fn-1

x={ 25X, —>Xn+1ﬂ>-~-}

of pointed maps is defined to be the pointed space

T%::(U(X X [n,n+1 )/N

where (z,n 4+ 1) € X,, X [n,n + 1] is identified with (f,(z),n+ 1) € X, 11 X
[n+1,n+ 2] and all the points of the form (x,t) are identified. These points
of the form (x,t) yield the base point of TX.

Let Tey X be the subspace

J(Xan-1 x [20 = 1,20) U Xy, x {20})/ ~
of TX, and let ToqX be the subspace
UJXan x [2n,2n + 11U Xong1 x {20+ 1})/ ~

of TX. We have TX = Toy X V104X, TevX ~ VpXon, ToaX ~ VyXopt1, and
TewXNTogX ~ VX

Again, given a pointed filtration § = {X,,} of a pointed space X, we can
introduce the reduced telescope T'§.

You can see that we introduce no special notation for reduced objects.
(In fact, the reduced and unreduced cone (cylinder, etc.) of any map(s) of
CW-spaces are homotopy equivalent, see 3.26 below.) Moreover, we omit the
adjective “reduced” when it is clear that we work with pointed spaces and
maps, i.e., we just say “the cone of a pointed map”, etc.

Note that, because of 3.3, the categories # and #'* are closed under
constructions defined in 3.16-3.23.

Prove as an exercise that SX = S' A X for every X € #°.

3.24. Definition. Given a pair (X, A), the inclusion i : A — X is called
a cofibration if it satisfies the homotopy extension property, i.e., given maps
g: X —-Y and F: AxI —Y such that F|A x {0} = g|A, there is a map
G : X x I — Y such that G|X x {0} = g and G|A x I = F'. In this case we
also say that (X, A) is a cofibered pair.
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We discuss fibrations in Ch. IV.

3.25. Proposition. (i) (X, A) is a cofibered pair iff every map h : X x {0} U
AXx T —Y can be extended to a map X x I — Y.
(i) (X, A) is a cofibered pair iff X x {0y U A x I is a retract of X x I.

Proof. (i) Let (X, A) be a cofibered pair, and let h: X x {0}UAXI - Y
be a map. We set F' := h|A x I, g := h|X x {0}. Then G : X x I — Y as
in 3.24 is the desired extension of h. Conversely, consider g : X — Y and
F:AxI—Y asin 3.24. We define h : X x I — Y be setting h|A x I := F,
h|X x {0} := g. Since A is assumed to be closed, h is continuous. This map h
has an extension G: X x I — Y. Clearly, G|X x {0} =g and G|[Ax I =F.
Thus, (X, A) is a cofibered pair.

(ii) Let (X, A) be a cofibered pair. Weput Y = X x {0} UA X I, h =1y
in (i). Then any extension G : X x I — Y of h is a retraction. Conversely,
let 7 : X xI — X x {0} UA x I be a retraction. Then every map h :
X x{0}UA x I — Y has the extension hr : X x I — Y. Thus, by (i), (X, A)
is a cofibered pair. O

3.26. Proposition. (i) For every map f: X — Y, the inclusion
i: X=Xx{1}>Mf

is a cofibration. In particular, every map is homotopy equivalent to a cofibra-
tion.

(i) Let (X, A) be a cofibered pair. Then Ci ~ X/A.

(iii) Let (X, A) be a cofibered pair. If A is contractible then the collapsing
map ¢: X — X/A is a homotopy equivalence.

Proof. (i) Let I’ be a copy of the segment I, and let
p:IxI'— {0} xI'UIlx{0}

be a retraction. We must prove that X x I’ U (X x T UY) is a retract of
(X xIxI'YU(Y xI') x {0}. To this end, we define a retraction

re (X xIxXxIU(Y xI')>XxT'U(X xIUY)

by setting r(x, s,t) = (x, p(s,t)) and r(y,t) = y.
(i) Let g : Ci — X/A be the quotient map which collapses C A. We define
f: XUA XTI — Cito be the quotient map which collapses A x {1}. Since
(X, A) is a cofibered pair, f can be extended to a map F': X x I — Cf%, and
we set g := F|X x {1} : X — Ci. Since g(A) is a point, g passes through
amap j: X/A — Ci. We leave it to the reader to prove that ¢ and j are
homotopy inverse.
(iii) This can be proved similarly to (i) and (ii), see e.g. Switzer [1], 6.6.
O
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3.27. Lemma. If (X, A) and (Y, B) are cofibered pairs then so is the pair
(X xY,XxBUAXY).

Proof. See Strgm [2], tom Dieck—-Kamps—Puppe [1], Satz 1.3.20 or May [5],
Ch. 6. 0

3.28. Definition. A pointed space (X, xg) is called well-pointed if (X, {zo})
is a cofibered pair.

3.29. Lemma (Puppe [1]). Let f : (X,z9) — (Y,y0) be a pointed map
of well-pointed spaces. If f : X — Y is a homotopy equivalence then f :
(X, z0) — (Y,y0) is a pointed homotopy equivalence.

Proof. Firstly, we prove the following sublemma.

3.30. Sublemma. Let ¢ : (X, x9) — (X, 20) be amap, and let H : ¢ ~ 1x be
a free (i.e., unpointed) homotopy. Suppose that the loop H|({zo}xI): I — X
is homotopic to the constant loop. Then there is a pointed homotopy between
p and lx.

Proof. We set A =X x {0} U {xo} x TUX x {1} and consider the map
F:A—- X, FIXx{0}=¢ FIX x{1} =1x, F{zo} x I) = xo.

Then F ~ H|A,. By 3.27, (X x I, A) is a cofibered pair, and hence F can
be extended to a map G : X x I — X. Clearly, G is a pointed homotopy
between ¢ and 1x. H

We continue the proof of the lemma. Let ¢’ : Y — X be free homotopy
inverse to f, and let F : ¢'f ~ 1x be a free homotopy. We define the map
u: {yo} x I — X by setting u(yo,t) = F(xo,1 —t). Since (Y,yo) is well-
pointed, there is a map G : Y x I — X such that G|Y x {1} = ¢’ and
GHyo} x I =u. Weset g := G|Y x {0} : Y — X and prove that gf ~* 1x.
We define the free homotopy H : gf ~ 1x by setting

H(z,t) = { G(f(x),2t) if 0 <t <1/2,

F(z,2t —1)if1/2<t< 1.
Clearly, the “shrunk” loop H|({z¢} xI) : I — X is homotopic to the constant
loop. (Indeed, the point ¢ runs along some path until ¢ = 1/2 and then runs
along the same path but in the opposite direction.) Hence, by the sublemma,
gf ~* 1)(.
Now we prove that fg ~* 1y. Indeed, we can apply the arguments as
above to g and find h : (X, z9) — (Y, yo) such that hg ~* 1y. Now,

h~* h(gf) ~* hg(f) ~* [,
so that we indeed have fg ~* 1y. O
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3.31. Definition. Let (X, ), (Y, *) be two pointed spaces. We define their
homotopy wedge (or, briefly, h-wedge) (X, *) V" (Y, *) to be the double map-
ping cylinder (unreduced) of the diagram

X —pt—Y

of pointed maps. We equip (X, *) V* (Y, ) with the base point via the map
imid : pt — X VP Y.

3.32. Convention. For brevity, we write (VXj, ) or just VX; instead of
V(X;, z;), and use similar shorthand for smash products and h-wedges.

3.33. Construction. Let f : (X,*%) — (Z,%) and g : (Y,x) — (Z,%) be
two pointed maps. Regarding X V" Y as the quotient space of the space
X 1U]0,2] 1Y, we define a pointed map fTg: X V*Y — Z by setting

(fTg)(x) = f(x), (fTe)y) =9(), (fTg)(t) =% z € X,y Y, t 0,2
Clearly, fTg is well-defined. Furthermore,
(fTg)iese = f and (fTg)irigns = g-

3.34. Lemma. Let X,Y be two pointed spaces, and let a : X — X VY, a(x) =
x, and b :'Y — X VY, bly) = y be the obvious inclusions. Then aTb :
XVPY — X VY is a homotopy equivalence. Moreover, if X and Y are
well-pointed then aTb is a pointed homotopy equivalence.

Proof. By 3.26(iii), aTb is a homotopy equivalence. Hence, by 3.29 and
3.26(i), aTb is a pointed homotopy equivalence provided that X and Y are
well-pointed. OJ

3.35. Definition. Let (X, ), (Y, *) be two pointed spaces. We consider the
maps

u: X - X xY, u(z) =(x,%) and v:Y — X XY, v(y) = (%,y)

and define the homotopy smash product (or, briefly, the h-smash product)
(X, %) A" (Y, %) of (X,*) and (Y, *) to be the double mapping cylinder of the
diagram

pt— X VY 4% X Y
of pointed maps. We turn X A" Y into a pointed space by choosing et (pt)
to be the base point.

Since the composition X VA Y ™% X x Y 4 X AY is inessential, the
quotient map ¢ can be extended to a map f: (X A"V, %) — (X AY, x).
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3.36. Proposition. If X,Y are well-pointed then f is a pointed homotopy
equivalence.

Proof. Indeed, we have X A" Y = X x Y UC(X V" Y). Now, by 3.27,
(X xY,XVY) is a cofibered pair. We can also see that (X A"Y, X V"Y) is a
cofibered pair. Hence, by 3.26, f is a homotopy equivalence since it collapses
a contractible space C(X V" Y). Thus, by 3.29, f is a pointed homotopy
equivalence. O

3.37. Lemma. Let (X; A, B) be a pointed triad such that A and B are well-
pointed. Suppose that there are two maps u,v : X — [0, 1] such that u|X\ A =
0=v|X\ B. Define amap f: AVB — X, f(a) =a, f(b) =b,a € A,be B.
Then C(f) ~ S(AN B).

Proof. Set C = AN B and consider the double mapping cylinder Y of the
diagram A < C' — B of inclusions. We claim that ¥ ~ X. Indeed, there is
the obvious map

g:Y — X, g(c,t) =c¢,g(a,0) =a,g(b,2) =b,a€ A,be B,ce C,t € 0,2].

We define h : X — X x I by setting h(x) = (z,2v(x)). Clearly, h(X) C Y,
and so we have the map h : X — Y, h(x) = h(x). We leave it to the reader
to prove that h is homotopy inverse to g.

Now, the inclusions A C¢ X, B C X induce a map F : AV"» B — Y and,
by the above, this map is homotopy equivalent to f. It remains to note that

C(F) ~SC. O

3.38. Definition. (a) A strict cofiber sequence is a diagram A = B % C
where v : A — B is a map and v is the canonical inclusion as in (3.17).

(b) A sequence X Lv % Z s called a cofiber sequence if there exists a
homotopy commutative diagram

f

X vy 2 2z
A
A——B——C
such that all the vertical arrows are homotopy equivalences and the bottom

row is a strict cofiber sequence.
(c) A long cofiber sequence is a sequence (finite or not)

= X — X1 — Xiygo — -

where every pair of adjacent morphisms forms a cofiber sequence.
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3.39. Proposition. Let f : X — Y be an arbitrary map of pointed spaces,
and let g :' Y — Cf = Z be the canonical inclusion. Then C(g) ~ SX =
SY A X. Moreover, there is a long cofiber sequence

xLy Lz ox 3oy S ... gnyxy S gny S9

Proof. See Switzer [1], 2.36-2.37. O

Proposition 3.39 was originally proved by Puppe [1]. Because of this, the
long cofiber sequence is often refered to as the Puppe sequence. Barratt [1]
had obtained some preliminary results in this area.

3.40. Conventions about CW-complexes and C'W-spaces. We use
the definition of CTW-complexes as in Switzer [1] and Fritsch—Piccinini [1]. A
CW -space is a space which is homeomorphic to a CW-complex. Throughout
this book, the word “cell” means “closed cell”, i.e., the image of the closed
disk under a characteristic map, see loc.cit.

A finite (resp. finite dimensional) CW-space is a space which is home-
omorphic to a finite (resp. finite dimensional) CW-complex. The category
of CW-spaces and their maps is denoted by %, and the category of pointed
CW -spaces and pointed maps is denoted by %*. Furthermore, %.on (resp. ¢,
resp. %tq) denotes the full subcategory of € consisting of connected (resp.
finite, resp. finite dimensional) CW-spaces. Similarly, €z, €, €5 are the
corresponding subcategories of €*. Finally, € (resp. #¢*) denotes the
category whose objects are the same as those of € (resp. *) but whose mor-
phisms are the homotopy classes of maps (resp. pointed homotopy classes of
pointed maps).

We denote by X (™ the n-skeleton of a CW-complex X, i.e., X" is the
union of all n-dimensional cells of X.

Recall that a map f : X — Y of CW-complexes is called cellular if
F(XM) c Y™ for every n.

3.41. Theorem. (i) Let i : X" — X be the inclusion. Then i,
m(X(”),*) — m;(X, %) is an isomorphism for i < n and an epimorphism
fori=n.

(ii) Every map [ : X —'Y of CW-complezes is homotopic to a cellular
map.

Proof. See e.g. Switzer [1], 6.11 and 6.35 or Fritsch—Piccinini [1], 2.4.8 and
2.4.11. O

We recall that i : A — X is a cofibration for every CW-pair (X, A). In
particular, every pointed C'W-space is well-pointed, and so we can safely omit
base points from notation.
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Every CW-space is Hausdorfl (and so weak Hausdorff) and compactly
generated. Thus, when we talk about products (or smash products) of CW-
complexes we follow 3.6. Then the direct product X x Y and the smash
product X AY of two CW-spaces X, Y are also CW-spaces.

Note that, for every cellular map f: X — Y, the spaces M f and C'f are
CW-complexes in an obvious canonical way, see e.g. Fritsch—Piccinini [1]. In
particular, the suspension SX of a CW-complex X is a CW-complex.

3.42. Definition. (a) Two maps f,g : X — Y of topological spaces are

called CW -homotopic if fi ~ gi for every map i : K — X of a CW-space K.

In this case we write f ~¢W ¢.

(b) A map f : X — Y is called a Whitehead equivalence if f, :
(X, o) — (Y, f(x0)) is a bijection for every n > 0 and every zy € X.
(c) Let

a

X Y

denote that either thereisamapa: X — Y ora:Y — X. We say that two
spaces X,Y are CW -equivalent if there is a sequence

aop al a;—1 a; QAn—1

X =X, X3 X; X, =Y

where every a; is a Whitehead equivalence.

3.43. Remark. Traditionally, C'W-equivalences, as well as Whitehead equiv-
alences, are called weak equivalences. We refrain from using this terminology
in this book because these names are not quite compatible with the concept
of weak homotopy (see Ch. I below).

Note that if X and Y are connected then f : X — Y is a Whitehead
equivalence provided that f. : m;(X,x0) — (Y, f(x0)) is an isomorphism
for some single point z, see Spanier [2], 7.3.4. Furthermore, every homotopy
equivalence X — Y is a Whitehead equivalence, see e.g. Spanier [2], 7.3.15.

3.44. Proposition—Definition. For every topological space X, there is a
Whitehead equivalence f :'Y — X where Y is a CW -space. Every such CW -
space Y s called a CW-substitute for X.

Proof. Without loss of generality, we can assume that X is connected. We
construct a commutative diagram

Yo —C oy, —C ... Sy _C
fol lfl lfn

such that (fn)« : T (Yn,v0) — 7 (X, 20),20 = fo(yo), is an isomorphism
and that the inclusion Y;, C Y, 41 induces an isomorphism 7;(Yy,y0) —
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i (Ynt1,y0) for every i < n. Then we define Y := UY,, and define f: Y — X
by the condition f|Y,, = fn.

We construct this diagram by induction on n. We set Yy to be a point.
Suppose that f, : Y, — X is constructed. Let {z,} be a family of gen-
erators of the group m,4+1(X,70)). Let St be a copy of S"™!. Choose a
map g, ¢ (S2H1, %) — (X, o) which yields the element x,. Now, we define
g Vo (S %) — (X, z0) by requiring g|S"*! = g,. Clearly,

G« - 7Tn+1(VSZ+1a %) = Tnp1(X, T0)

is epic. We set (Z, %) := (Y, *) V (VS"F1 ). Define
h:Z=Y,v (st IV xyx T X,

Note that hy : mp41(Z, %) — mpy1(X, 20) is an epimorphism.
Let {z3} be a family of generators of the group

Ker(hy : mp41(Z, %) = w1 (X, 20)).

Let Sg“ be a copy of S"*1. Choose a map ag : (Sg“,*) — (Z, ) which

yields the element z5. Now, we define a : V3S5T! — Z by requiring a|SgJr1 =

ag, set Y41 := C(a) and define fy41 : Y41 — X to be any extension of h.
(Note that h can be extended on Y, 11 because of the universal property of
the cone.) By 3.41, the map f,+1 has the desired properties. The induction
is confirmed. ]

3.45. Lemma. Let h : Y — Z be a Whitehead equivalence.

(i) Let (X, A) be a CW-pair, and let f : A — Y,u: X — Z be two maps
such that hf = u|A. Then there is a map g : X — Y such that g|A = f and
hg ~ u.

(i1) Let (X, A) be a CW -pair, and let f : A —Y be a map such that hf
can be extended to all of X. Then f can be extended to all of X.

(iii) Let K be a CW -space, and let u,v : K — Y be two maps such that
hu ~ hv. Then u ~ v.

Proof. (i) This is an exercise in elementary obstruction theory, see e.g.
Switzer [1], 6.30.

(ii) This follows from (i).

(iii) This follows from (ii) if one puts X = K x I, A = K x {0,1} and
defines f: A — Y by setting f|K x {0} = u, f|K x {1} =v. O

3.46. Corollary. Let Z be a CW -space, and let h : Y — Z be a Whitehead
equivalence. Then there exists a map g : Z — Y such that hg ~ 17 and
gh ~CW 1y

Proof. If we put A = 0,u = 1z in 3.45(i), we conclude that there is
g 1 Z — Y such that hg ~ 1z. We prove that ghi ~ i for every map
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i: K —Y of a CW-space K. Indeed, hi ~ (hg)hi ~ h(ghi), and thus, by
3.45(iii), i ~ ghi. O

3.47. Corollary (the Whitehead Theorem). If h : Y — Z is a Whitehead
equivalence of CW -spaces then h is a homotopy equivalence.

Proof. By 3.46, there is g : Z — Y such that hg ~ 1z. We prove that
gh ~ 1ly. Indeed, g is a Whitehead equivalence, and so, by 3.46, there is
f:Y — Z such that gf ~ 1y. Now, f ~ (hg)f ~ h(gf) ~ h, i.e., gh ~ 1y.

|

3.48. Corollary. If CW-spaces X,Y are CW -equivalent then they are ho-
motopy equivalent. In particular, any two CW -substitutes for a given space
are homotopy equivalent.

Proof. It suffices to prove that if A * B o C'is a diagram where A is
a CW-space and a, b are Whitehead equivalences then there is a Whitehead
equivalence j : A — C. Indeed, then one can construct a Whitehead equiv-
alence f : X — Y by induction on such diagrams, and so, by 3.47, f is a
homotopy equivalence.

a b a
So, we consider the diagram A —— B —— C. For the case A — B LA C,
the desired j is clear. In the case A <~ B L. ¢ we can construct, by 3.46,
a Whitehead equivalence h : A — B, and we put j = bh. In the case A <-

B C, the desired j : A — C exists by 3.46. Finally, in case A — B L C,
the desired j : A — C exists by 3.45(i). O

Now we compare the homotopy types of kX and X. Of course, in these
theorems X is assumed to be an arbitrary topological space, not necessary
belonging to # .

3.49. Theorem. For every topological space X, the map w : kX — X is a
Whitehead equivalence.

Proof. We prove that w, : m,(X,*) — m,(kX,*),n > 0, is a bijection.
Indeed, if f : S — X is a map then, by 3.5(vi), w=f : S® — kX is, and
hence w, is surjective. Furthermore, if f,g : S — kX are two maps and
H:S" x I — X is a pointed homotopy between kf and kg then w™'H is a
pointed homotopy between f and g, and so w, is injective. (I

3.50. Theorem. Let X be an arbitrary topological space having the homotopy
type of a CW-space. Then w : kX — X is a homotopy equivalence. In
particular, if X € # and X has the homotopy type of a CW -space then QX
has the homotopy type of a CW -space.



32 Chapter I. Notation, Conventions and Other Preliminaries

Proof. Let Y be a CW-space, let f: Y — X be a homotopy equivalence,
and let g : Y — X be homotopy inverse to f. By 3.5(vi), w™lf:Y — kX is
a map since Y € #. We prove that w™! f is homotopy inverse to gw. Firstly,
gww™lf = gf ~ 1y. Furthermore, there is a homotopy H : X x¢I — X
such that H|X x°{0} = f, H|X x° {1} = g. Now,

(wxxcl)71 wx xer kH
-

kX x°T X x¢T 22 p(x xe 1) L kx

is a homotopy between k(fg) = w)_(l fowx and 1gx.
The last assertion follows from the above and the result of Milnor [3] that
the space C((S', %), (X, %)) has the homotopy type of a CW-space. a

3.51. Exercise. Let T be the telescope of a filtration { X, } of a space X. We
define a map f: T — X by setting f(x,t) = z. Prove that f is a Whitehead
equivalence. Furthermore, prove that f is a homotopy equivalence provided
that every inclusion X,, — X, 11 is a cofibration.



Chapter II. Spectra and (Co)homology
Theories

In this chapter we discuss some preliminaries from stable homotopy theory.
Sections 1-3 are concerned with basic properties of spectra and (co)homology
theories. Here we mainly follow Adams [8] and Switzer [1]. Sections 4-7 con-
tain an exposition of standard material, at a level suitable for students.

§1. Preliminaries on Spectra

In this section all spaces and maps are assumed to be pointed. Let SX denote
the reduced suspension of a pointed space X, i.e., SX = S' A X.

1.1. Definition. (a) A spectrum E is a sequence {E,, s,}, n € Z, of CW-
complexes F,, and CW-embeddings s,, : SE, — E,41 (ie., s,(SE,) is a
subcomplex of E,41).

(b) A subspectrum of a spectrum E is a spectrum {F,,t,} such that F,
is a pointed CW-subcomplex of E, and t, : SF,, — F,41 is the obvious
restriction of s,,. In this case we also write FF C E.

(c) Given a family {E(«)} of subspectra of E, we can form a subspec-
trum Uy E(a) of E by setting (UgE())n := UaEn(), etc. A filtration of a
spectrum F is a family

{~-CE()CE@{i+1)C---CE}

such that each E(7) is a subspectrum of E and, moreover, UE(i) = E.

(d) Given a spectrum E and an integer k, we define a spectrum X*E by
setting (X*F),, = E, 1% where the map S(X*E), — (S*E), 11 is spik.

(e) For every CW-complex X the spectrum 3*°X is defined as follows:

pt, if n <0,

(X*°X), = .
S*X, ifn >0,

and s, : S(S"X) — S"TLX, for n > 0, are the identity maps.

For example, the spectrum $°°SY is the sphere spectrum {S™, i, }, where
in: SS™ — SNt
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It is convenient to regard SF,, as a subspace of E, 1, i.e., to identify SE,
with its image s, (SE,). Under this convention, if e is a cell of E,, then Se is
a cell of E,, 1. We also write just E = {E,,} rather than E = {E,,, s, } when
the maps s,, are clear, and we denote the spectrum 2°°5° just by S.

1.2. Definition. (a) A cell of a spectrum E is a sequence {e, Se, ..., S¥e, ...}
where e is a cell of any F, such that e is not the suspension of any cell of
E,_1. If e is a cell of E,, of dimension d then the dimension of the cell
{e,Se,...,S¥e,...} of E is d—n. Furthermore, the base points of E,,’s yield
the cell of dimension —ooc.

(b) A subspectrum F of a spectrum E is cofinal (in E) if every cell of E
is eventually in F', i.e., for every cell e of F,, there exists m such that S™e
belongs to Fyipm,-

(c) The n-skeleton of a spectrum FE is the subspectrum E™ of E consist-
ing of all cells of dimensions < n.

(d) A spectrum F is finite if E has finitely many cells.

(e) A spectrum E has finite type if each skeleton of F is a finite spectrum.

(f) A spectrum E is finite dimensional if E = E(™) for some n.

(g) A suspension spectrum is a spectrum of the form $*%%° X where X is
a pointed space and k € Z.

If F = {F,},F' = {F]} are two subspectra of a spectrum E, we set
FNF' ={F,NF]}. 1t is obvious that FNF’ is a subspectrum. Furthermore,
if F and F’ are cofinal in E then so is F'N F'.

1.3. Definition. (a) Let E = {E,,s,} and F = {F),,t,} be two spectra. A
map f from FE to F (i.e., amap f: F — F) is a family of pointed cellular
maps f, : E, — F, such that f,(1s, = t,°Sf, for all n.

(b) Let f: E — F be a map of spectra. Given a subspectrum G = {G,}
of E, the restriction of f to G is the map f|G : G — F of the form {f,|G,, :
G, — Fp}.

(c) Let E, F be two spectra. Consider the set o of pairs (f’, E’) where E’
is cofinal in F and f’ : £/ — F is a map. Consider the equivalence relation
~ on & such that (f',E') ~ (f",E")iff f'|B = f"|B for some B C E'NE"
with B cofinal in E. Every such equivalence class is called a morphism from
E to F, and we use the notation E — F for morphisms as well as for maps.

(d) Given two maps f : E — F and g : F — @, define the composition
gf : E — G by setting (¢f)n = gnfn- It is straightforward to show that the
composition £ — G of morphisms £ — F and F' — G is also well defined.
We can thus form a category . of spectra and their morphisms.

For every spectrum E and every integer n there is the embedding
(1.4) in: X "Y°E, > FE

where (in)ntk 0 (Z7"E®E, ) ntk — Entr, for k> 0, is the composition
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k—2 k—1
Sn4k—10...08 Sn4+18S Sn

(in)n-l-k : (ZinZOOEn)n-i-k = SkEn En-i—k;

note that (X" "X E,)n+r = * for k < 0. We can thus regard X" "X°F,, as
a subspectrum of F.

1.5. Proposition. (i) For every spectrum E and every k € Z, the spectrum
{(E,)™ R is cofinal in the spectrum(E®)).
(ii) If E is a finite spectrum, then all the spaces Ey, are finite spaces.
(iii) If E is a finite spectrum, then there is N such that Y~NY®Ey is
cofinal in F.

Proof. (i) This follows from the definitions.

(ii) The number of cells of Ej, is bounded above by the number of cells of
E.

(iil) Let aj be the number of cells of Ej, and let a be the number of cells
of E. Choose N such that ay = a; this is possible because a = Max aj. Now,

Y-NY®Ey is cofinal in E because these two spectra have the same number
of cells. O

Let o be as in 1.3(c). We can regard &7 as a poset as follows: (f/, E') <
(f”,E") iff E' is a subspectrum of E” and f”|E’ = f'.

1.6. Proposition. (i) Let f,g: E — F be two maps such that f|B = g|B
for some cofinal subspectrum B of E. Then f = g.

(ii) Let E',E" be cofinal in E, and let f' : E' — F and f" : E" — F be
two equivalent maps. Then f'|E'NE" = f"|E'NE".

(iil) Fvery morphism contains a greatest element with respect to the above
partial ordering.

Proof. (i) Let {e, Se, ... ,S¥e,...} be a cell of E where e is the cell of E,,.
Since f,1x|S*e = gnir|S¥e for some k, we have f,|e = gy|e.

(ii) This follows from (i).

(iii) Fix a morphism . If (f,E’') € ¢ and (f',E') < (f”,E"), then
(f",E") € . Hence, by Zorn’s Lemma, ¢ has a maximal element. We de-
note this element by (f, E) and prove that (f, E) is the greatest element
of . Suppose not. Then there exists (f’, E’) € ¢ which does not satisfy
the inequality (f',E’) < (f, E). Then, by (i), f'|E' N E = f|E' N E since
(f,E) ~ (f',E’). Hence, the map fU f': EUE’ — F is well defined. On the
other hand, (f, E) ~ (fU f', EUE’). But this contradicts the maximality of
(f,E) in . O

1.7. Definition. (a) Let f : E — F be a map of spectra. Define the cone
of f to be the spectrum Cf := {Cf,, s, } where Cf,, is the cone of the map
fn: Ep — F, and s, has the form
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SF SE
s S(Cfn) = SF, UC(SE,) 222, Bt UC(Bnsr) = Cfnsr.

(b) Let ¢ : E — F be a morphism of spectra. Define the cone Cp of ¢ by
setting Cp = C'f’, where f' : B/ — F is the greatest element of ¢. The cone
Co is also called the cofiber of ¢. Furthermore, define the canonical inclusion
¥ F — Cop by setting ¢ = {¢, : F, — Cf],}, where 1), is as in 1.(3.17).

1.8. Proposition. If ¢ : E — F is a morphism of finite spectra (resp. of
spectra of finite type) then Cp is a finite spectrum (resp. a spectrum of finite

type).
Proof. Decode the definitions. O

Given a spectrum E and a CW-complex X, we define spectra E A X :=
{E, AN X} and X A E :={X A E,}. In particular, the suspension S A E of
a spectrum FE is defined.

1.9. Definition. (a) Two maps go,g1 : E — F of spectra are called
homotopic if there exists a map G : EA IT™ — F (called a homotopy) such
that G coincides with g; on the subspectrum E A {i,*},i = 0,1, of E. In this
case we write go ~ g1 or G : go =~ ¢1.

(b) Two morphisms ¢g, 1 : E — F of spectra are called homotopic, if
there exists a cofinal subspectrum E’ of F and two maps g; : B/ — F,g; €
©i,i = 0,1, such that go|E" ~ ¢g1|E’. It is straightforward to show that homo-
topic morphisms form equivalence classes, and in particular we can define the
homotopy class [¢] of a morphism ¢ to be the set of all morphisms homotopic
to ¢. The set of all homotopy classes of morphisms £ — F' is denoted by
[E, F].

(c) We say that a morphism of spectra is trivial, or inessential, if it is ho-
motopic to the trivial morphism ¢ = {e,, : E,, — F,,}, e,(Ey) = *. Otherwise
we say that it is essential.

Omne can prove that the homotopy class [¢1)] of the composition @i de-
pends only on the homotopy classes of the morphisms ¢, ¥, see e.g. Switzer [1].
So, we can define the composition of homotopy classes of morphisms by set-
ting [¢][¢] = [py]. Thus, we can define a category . with spectra as ob-
jects and sets [E, F) as sets of morphisms. Isomorphisms of /2.7 are called
equivalences (of spectra), and we use the notation E ~ F when F is equiva-
lent to F'.

It is straightforward to show that the cones of homotopic morphisms are
equivalent.

Let S = XS0 be the spectrum of spheres. The group [2*S, E] is called
the k-th homotopy group of E and denoted by 7i(FE). It is easy to see that
m(F) = J\}im 7+ (En) where the direct limit is that of the direct system

(8N )
= TN (EN) = Tra N1 (SEN) —5 Ty ve1 (Eng1) — -
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see Switzer [1], 8.21. In particular, if £ = 3°°X then 7 (E) is just the stable
homotopy group II;(X) (denoted also by m5*(X)).

Given a morphism ¢ : E — F, define ¢, = m;(¢) : mx(F) — 7 (F) by
setting ¢« (a) = [py] where ¢ : ¥*S — E is a morphism with a = [¢)]. Hence,
7y is a functor .Y — /4. Note that 7, (E) can be non-zero even for k < 0,
a simple example being the spectrum £ = XN,

An analog of the Whitehead Theorem is valid for spectra.

1.10. Theorem. A morphism ¢ : E — F is an equivalence iff the induced
homomorphism ¢, : mp(E) — mx(F) is an isomorphism for every integer k.

Proof. See Switzer [1], 8.25. O

One of the important advantages of the category 7. is that the sus-
pension operator is invertible there.

1.11. Proposition. The spectra S' A E and ©E are equivalent.
Proof. See Switzer [1], 8.26. O
1.12. Definition. (a) A strict cofiber sequence of spectra is a diagram
4 P
E—=F—Cyp

where ¢ : E — F' is a morphism of spectra (resp. map of spaces) and 9 is a
canonical inclusion as in 1.7(b).
(b) A sequence

xLy gz

in .7 is called a cofiber sequence of spectra if there exists a homotopy com-
mutative diagram in .%

such that all the vertical arrows are equivalences and the bottom row is a
strict cofiber sequence of spectra.
(c) A long cofiber sequence of spectra is a sequence (finite or not)

= Xy = X1 — Xiygp — -

where every pair of adjacent morphisms forms a cofiber sequence of spectra.
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1.13. Lemma. (i) IfX Ly L Zisa coﬁber sequence of spectra, then

there exists a map h : Z — XX such that X Ly 470 vx s a long
cofiber sequence.

(i) Let X Ly Lz and X' v L 27 be two cofiber sequences of
spectra. For all morphisms a: X — X" and 8:Y — Y’ with f'a ~ Bf, there
exist morphisms v, h and h' with h and h' as above, such that the following
diagram commutes up to homotopy:

XX

N [

x Ly 9y M sy

(i) If X oy % Zisa cofiber sequence of CW -complexes, then
seox 2 ooy 279 o0z 4o g cofiber sequence of spectra.

Proof. (i) Consider a diagram as in 1.12(b). We have Ct ~ S A E (the
proof is similar to the one for spaces). Therefore, in view of 1.11, we have an
equivalence u : Cip — X FE. So, we have the homotopy commutative diagram

X ‘1 .y _9., 7 1306

ST -

E—*2.F Y ,0p 0Oy " 3E

where Xa is an equivalence. Thus, we can define the desired h by setting
h = (Za)"tuéc.
(ii) Proved in Switzer [1], 8.31, but the proof is implicitly based on (i).
(iii) This holds since C(X*°h) ~ X*°C(h) for every map h : A — B of
CW -spaces. O

Given a family E(X),A € A, of spectra, we define the wedge \/, E(X)
by setting (VAE(N))n = Va(En(A)). Since S(VAEL(A) = VASEL(N) C
VaEnt+1(A), we conclude that Vy E()) is a spectrum. Let iy : E(X) — VAE(A)
be the obvious inclusion.

1.14. Proposition. For every spectrum F' the function
{7’)\} [\/)\E - H 5 7 where {7’)\}( ) = {fl)\}a
s a bijection.

Proof. See Switzer [1], 8.18. O
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Since [E,F] = [S2E,X2F] = [S? A E,X?F] (the last equality follows
from 1.11), [E, F] admits a natural structure of an abelian group. Indeed, let
v:8% — 52V S2 be the usual comultiplication on 52, the pinch map. Since
(S?2V S?)AE ~ (S2AE)V (5% A E), we obtain the function

[E,F]®[E,F]=[S* \NE,S*F| @ [S* A E,%*F]
=[(S? ANE)V (§* A E),¥?F]

(A1)
e

=[(S? Vv S*) AE,X*F) [S?AE,%?F] = [E, F)

which turns [E, F] into an abelian group. Moreover, the composition
[E,F] x [F,G] — [E,G]
is biadditive, see Switzer [1], 8.27. Thus, /7. is an additive category.

In view of 1.11 and 1.13(i), every cofiber sequence X Ly 4z yields a
long cofiber sequence

yly sz o x Ly tg vy Elyy o
1.15. Theorem. For every spectrum E, the long cofiber sequence

Ly ly 2 sty o x Lyt wx sy

yields the exact sequences

— [2712,E) — [X,E] L [V, E] & [2,B] — [EX,E] —

— [BE,27'Z] — B, X] L5 [B,Y] 2 [E, 2] — [E,£X] —

)

of abelian groups and homomorphisms.

Proof. See Switzer [1], Proposition 8.32. O

The first of the above sequences is similar to a sequence which holds for a
cofibration X — Y with cofiber Z, while the second one is similar to a sequence
which holds for a fibration X — Y with fiber ¥~ Z. Thus, the difference between
fibrations and cofibrations disappears in the category .7 . For this reason we call
Y 71Cy the fiber of a morphism .

1.16. Proposition. (i) For every spectrum F the function

(i3} : (VaBO), F] = TTIEQ), Fl. - {i53(F) = {Fin),

A

s an isomorphism of abelian groups.
(ii) For every spectrum F' the homomorphism
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o PIF. — [F Vil E(F)]

k=1

as in 1.2.2 is an isomorphism.
(iii) For every finite spectrum F the homomorphism

((ix)«) s OA[F, EQ)] — [F,VaE(N)]

is an isomorphism. In particular, m.(VAE (X)) = @xm.(E(N)).

Proof. (i) It is easy to see that {i}} is a homomorphism of abelian groups,
and the result follows from 1.14.

(ii) Tt suffices to consider m = 2. Let p : Ey V E5 — Ej be the projection,
pi1 = 1g,. Then the cofiber sequence Fs 2, EiVE, LN F4 induces an exact
sequence [F, E1] — [F, E1 V Es| — [F, Es] which splits by 42 and/or p. Thus,

((ir)«) : [Fy E1) @ [F, Eq] — [F, E1 V Eo]

is an isomorphism.

(iii) Let # = { K} be the family of all finite subsets of the index set A. For
every K € J¢ we have the monomorphism lx : [F, Viex E(k)] — [F, VAE(N)].
We set K < K’ iff K C K’, consider the homomorphism

= (lK|h_H}> :H_Hrl[F,\/keKE(k?)] — [Fa\//\E()‘)]

as in 1.2.5 and prove that it is an isomorphism. Firstly, it is monic since
li is monic for every K. Furthermore, F is finite, and so, for every f :
F — V)E()\), there exists K such that f(F) C ViexE(k). Thus, [ is an
isomorphism. Now, ((i)).) can be written as

OAF, BOV)] = limy @rex [F, E(k)] 2 iy [F, Viex E(k)] > [FVAEO)
4 V4

(The isomorphism holds by (ii).) O

(i
By 1.16(ii), [X, X V X] & [X, X] @ [X, X]. Hence, the element 1x & 1x
of the right hand side yields a (unique up to homotopy) morphism V : X —
X vV X. We leave it to the reader to show that addition in [X, E] is given by
the composition

[X,E|® [X,E] = [X V X,E|] > [X, E].

Because of this, we call V coaddition.

1.17. Proposition. Let X LYy % Zbea cofiber sequence of spectra. The
following two conditions are equivalent:

(i) The morphism g is inessential;

(ii) There is a morphism s:Y — X such that fs~ly.
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Furthermore, if these conditions hold then X ~X"'Z VY.
Proof. We prove that (i) = (ii). Consider the exact sequence
v, x] L vy [y, 2

Now, f. is epic since g, = 0. Hence, there is s : Y — X such that f.[s] = [1y],
ie., fs~1y.
We prove that (ii) = (i). Indeed, g ~ g(fs) ~ (gf)s, but gf is inessential.
Now we prove that Y ~ %71 ZV X. Indeed, the cofiber sequence X! Z —
X — Y induces the exact sequence

0—[B,27'Z] - [B,X] - [B,Y] -0,

and s gives us a natural splitting of this sequence. So, we have a natural in
E isomorphism [E, X| 2 [E,X71Z] & [E,Y]. On the other hand, by 1.16(ii),

there is a natural isomorphism
[E, X' Z|o B, Y] [E, 2 'ZVY].
Hence, we have a natural isomorphism
[E,X|=[E,2"'ZVY], Ec.7,
and thus, by the Yoneda Lemma 1.1.5, X ~ £"1Z VY. O

1.18. Definition. A prespectrum is a family {X,,t,},n € Z, of pointed
spaces X,, and pointed maps t,, : SX,, — X,41.

A CW-prespectrum is a prespectrum {X,,,¢,} such that every X,, is a
C'W-complex and every t,, is a cellular map.

1.19. Lemma—Definition. For every prespectrum {X,,t,}, there exist a
spectrum E = {E,,s,} and pointed homotopy equivalences fy, : B, — X,

such that the diagram

SE, I, sx,

frt1
En+1 - Xn+1

commutes. Fvery such spectrum E is called a spectral substitute of the pre-
spectrum X . Furthermore, if X,, are CW -complexes such that (Xn)("+k) = %
for all n and some fized k, then E can be chosen so that E) = x.

Proof (cf. Switzer [1], Proposition 8.3.). Firstly, because of 1.3.44 and
1.3.45, we can replace X,, by its CW-substitute X/, and construct a homotopy
commutative diagram
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Sxt S §x,

A

’ gn+1
XnJrl Xn+1

where gy, gn+1 are homotopy equivalences and ¢/, is a cellular map. So, we can
assume that {X,,,¢,} is a CW-prespectrum. Now we use iterated mapping
cylinders (i.e., telescopes) to convert the t,, into inclusions. Set

E, = < U S X A fm,m + 1]+> UX,

m<n

with the following identifications: (z,m + 1) € S"™X,, A [m,m + 1]T is
identified with (S™"~™ ¢, (x),m+1) € "™ X, 1 A[m+1,m+2]"; and
(x,n) € SXp—1 A[n—1,n]" is identified with t,,_1(z) € X,,.

Now, the maps t,,, m < n, yield the obvious inclusion s, : SE, — FE,1,
and the map f,, : E, — Xp, fu(z,58) = ty_10Sty_g0...08" ™71t (z) for
(x,5) € 8" X,, Alm,m+1]T, is a deformation retraction. Clearly, the dia-
gram of the lemma commutes up to homotopy. But, since s,, is a cofibration,
we can deform f such that the diagram turns out to be commutative, step
by step.

Furthermore, if A(™ = % for a CW-complex A then (SA)™*Y = x and
(AATH)™ =« Thus, if (X,)"+%) = « for all n then (E,)™*) = x for all
n, and hence E®) = «. O

Let X denote the loop space of a pointed space X.

1.20. Definition. A prespectrum X = {X,,,¢,} is called an Q-prespectrum
if for every n the map 7, : X,, — QX,4; adjoint to ¢, is a homotopy
equivalence. A spectrum is called an Q-spectrum if it is an -prespectrum.

1.21. Proposition (cf. Adams [5]). Every spectrum E = {E,, sy} is equiv-
alent to some Q-spectrum.

Proof. Let €, : E,, — QE, 11 be the adjoint map to s,, and let QFE,, be
a CW-complex homotopy equivalent to Q¥ E,, (such a CW-complex exists
by 1.3.50). Fix some mutually inverse homotopy equivalences

a=pm: WE, — OB, B=Bkm: QE, — QFE,,.

Fix some n and consider

QkETLJrk k41 3
— O Bk — Qk+1En+k+1~

©r: QFEp 1~ QFE,
Let T, be the reduced telescope (see 1.3.23) of the sequence

E,=E, 25 QF 0 —...— QB 25 .
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Define ¢, to be the composition

o QFen
Yr QB 5 OFE, — S QFE o = QR B, 1)

Q
2 Nk By gosn)-

Then we have a homotopy commutative diagram

E, —2— QFE.; OFE, ., ——2 ..
lfn lwl lwk
OBpey —22% Q(QE,.») QOB 1) —25 .

where 1, = (Q8)oaop,. Passing to telescopes, we get an obvious map w :
T, — QT, 11 induced by the 1’s. Since every compact set in T}, is contained
in some finite union

U QFE, i p x [k, k4 1],
k=0

we conclude that m;(Ty,) = li_rr;m(QkEnJrk) = 7m;i—n(E). Firthermore, if
a € m(QQ*E,1r11)) then (Qpr)«(a) € Im(Ygt1)s, and so wy : m(T) —
i (0T 41 is an epimorphism. Similarly, if (¢%)«(a) = 0 for some a €
mi(Q*Enyk) then (¢g)«(a) = 0, and so w, is a monomorphism. Hence, w
is a homotopy equivalence by the Whitehead theorem, and so T is an €)-
prespectrum. Let F' be a spectral substitute of T'. The inclusions i,, : F, — Ty,
yield maps hy, : E, — F,, (such that the composition E,, — F,, — T}, is ho-
motopic to i,). The diagram

SE, M, sp,

A

hnt1
Enpn —— Fopa

commutes up to homotopy, and hence, since s,, is a cofibration, we can replace
hn+1 by a homotopic map making the diagram commutative. Without loss of
generality, we can assume that E, = pt for n < 0, and so we can change the
hy’s map by map so that each diagram as above will become commutative.
Thus, we have constructed a morphism E — F which induces isomorphisms

mi(E) = im min (En) — M iy (F) = m (F). O

1.22. Proposition (cf. 1.3.37). Let A, B be two subspectra of a spectrum X
such that X = AU B. Consider the map h: AV B — X such that h(a) = a
for every a € A and h(b) = b for every b € B. Then Ch ~ (AN B).

Proof. We set C = AN B. We have
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(Ch)n = C(hy) = (CAn V CBp) U, Xn = (CApV CB,)/Cp = S* A Ch

because C'A,, V CB,, is contractible. Clearly, these homotopy equivalences
yield the equivalence Ch ~ S' A C ~ ZC. ]

1.23. Construction. We give an analog of the telescope construction for
spectra. Let E = {F,, s,} be a spectrum with E,, = pt for n < 0. We define
a spectrum 7F = {7, E,t,} as follows: 7, FE is the reduced telescope of the
sequence

n—i—1
S Si

{S"Fy — - — S""Ei Ny
in other words,
TmE = (S"Eg A[0,1]T)U---U(S" *Ex Ak, k+1]F)U---
U(S'E,_ 1 A[n—1,n]")UE,,
with the following identifications: (z,k) € S***1E;_; A [k — 1,k]* is iden-
tified with (S" *s;_1(x), k) € S"*Ey A [k, k +1]F and (2,n) € STE,_1 A

[n—1,n]" is identified with s,,_1(z) € E,. Furthermore, the homeomorphism
i : SS™"*E, — S k1 E, induces a homeomorphism

op = ixgAL : SSTTRELAR k1T = SRR E AR k1T, E=0,1,...n—1,
and the inclusion j : {n} C [n,n + 1]7 induces an inclusion
on:=1Nj:SE,=SE, x{n}=SE, AN{n}t C SE, A[n,n+1]".

We define ¢, = U}_gor @ SThE — 7p41E. Thus, the spectrum 7E =
{mnE,t,} is constructed.

The standard deformation retractions 7,,E — E,, (which shrink each seg-
ment [k, k + 1]) form a morphism 7E — E. Clearly, this morphism is an
equivalence.

Define subspectra 7o F, Toq F of TE by setting

]
(Tev)n(B) : = | J(S" 2" Eyi_1 A [20 —1,2i]T U S" %' Eyy),

03

Il
I o

("]

(Tod)n(E) : = (S""% By A 2,20+ 1]T U S 2 By ).

—:

=0

It is clear that

Tev(E) UToa(E) = 7(E),  7ev(E) N7oa(E) = \/ S7"5%E,,
(1.24) . L
Tev(E) =~ \/ PIELD Yol S Tod (E) >~ \/ DONELEED Vel NI

n=0 n=0
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1.25. Remark. The concept of a spectrum was in fact introduced by
Lima [1], [2]. Later, different categories of spectra were constructed. We use
the category suggested by Adams [8]. Some authors have developed a finer
theory by indexing terms of a spectrum not by integers but by finite di-
mensional subspaces of R*>. This approach was suggested by Puppe [2] and
May [3]. Such spectra are very useful for working with some fine geometry.
However, the foundations of this theory are quite complicated. For our pur-
poses, the mass of preliminaries outweighs the gain; thus we do not use these
spectra here and so do not dwell on them. However, they seem to be very
useful for advanced homotopy theory. The reader who is interested in this
theory is referred to the books Elmendorf-Kriz—Mandell-May [1] or Baker—
Richter [1].

§2. The Smash Product of Spectra, Duality, Ring
and Module Spectra

One can introduce a smash product E' A F' of spectra E, F' as a generaliza-
tion of the smash product £ A X of a spectrum and a space. The definition
(construction) of the smash product of spectra can be found in Adams [8] or
Switzer [1]. However, we do need to know the consrtuction; throughout the
book we use only the properties listed in 2.1 below.

2.1. Theorem. There is a construction which assigns to spectra E,F a
certain spectrum denoted by E N F. This construction is called the smash
product E A F (of spectra) and has the following properties:

(i) It is a covariant functor of each of its arguments.

(ii) There are natural equivalences:

a=a(E,F,G): (ENF)ANG —EAN(FAG)
J:ENF—-FAE
J:SAE—FE
r=r(E):ENS—FE
J:ZEANF - X(EAF).

(iil) For every spectrum E and CW -complex X, there is a natural equiv-
alence e = e(E,X) : EANX — EAX®X. In particular, X°(X AY) ~
XXX ANX®Y for every pair of CW-complezes X,Y .

(iv) If f : E — F is an equivalence then f ANlg: EANG — FAG is.

(v) Let {Ex} be a family of spectra, and let iy : Ex — VA E\ be the
inclusions. Then the morphism (see 1.16(i))

{i>\ A\ 1} : \/>\(E,\ A\ F) — (VA(E,\)) ANF

18 an equivalence.
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(vi) If A L B%Cisa cofiber sequence of spectra, then so is the sequence
ANE L BAE L ONE for every spectrum E.

Proof. The proof can be found in Adams [8] or Switzer [1], but I want to
say the following. The terms of the spectrum E A F' are aggregated from the
spaces Ep, A F,,, but, in order to get them as CW-complexes, we must follow
definition 1.3.6. By 1.3.49, this modification keeps the theorem valid. (|

2.2. Theorem. The following diagrams commute up to homotopy:
(i)
(EANF)NG)NH —*— (EANF)AN(GANH) —%— EAN(FA(GAH))

H [

(EAF)ANG)ANH —2Ls (EA(FAG)AH —%— EA((FAG)AH))

EAF EAF
(i) ﬂ {
FAE FAE

(EAF)NG 2 (FAE)AG —2— FA(EAG)

(iid) o) iar |

EAN(FAG) —/— (FAG)AE —*— FA(GAE)

(SAEYAF —%— SA(ENAF)

(iv) zml lz

ENFE ENF

(EANF)AS —%— EA(FAS)

v) vl ll/\r

ENF ENF

(EASYNF —*— EAN(SAF)

(vi) T/\ll lmz

ENF ENF
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SAE ———~ EAS

(vii) ll l

E E

SAS —L 5 SAS
(viii) H H

SAS —— SAS.

Proof. See Adams [8] or Switzer [1]. O

2.3. Definition. (a) A morphism u : S — A A At is called a duality mor-
phism, or simply a duality, between spectra A and AL if for every spectrum
FE the homomorphisms

ug : [A E] — [S,E/\AJ‘]7 up(p) = (@A lz0)u

and
u? : [AYE] - [S,ANE], uP(p)=(1aNAe)u

are isomorphisms.

(b) A spectrum At is called dual to a spectrum A if there exists a duality
S — AN AL, By 2.1(ii), in this case A is dual to AL. So, “to be dual” is a
symmetric relation.

(c) Let u:S — AANAL and v : S — B A Bt be two dualities, and let
f:+ A — B be a morphism. Consider the isomorphism

@

D:[A, B] 22 [S,B A AY] B+, A

and define a dual morphism f+ : B+ — AL by requiring D[f] = [f*]. Thus,
f+ is defined uniquely up to homotopy.

2.4. Lemma. (i) Let u: S — AANAL andv: S — B A Bt be two dualities.
Then, for every spectrum E and morphism f : A — B, the following diagram

is commutative:
B,E] —*— [S,EA B

f*l l(IEAfL)*
[A, E] —£— [S,E A AL

(i) Suppose that a spectrum A admits a dual spectrum A+. Then At is unique
up to equivalence. In particular, (A+)* ~ A.

Proof. (i) Decode the definitions.
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(ii) Let ug : S — AN AL ug: S — AN A be two dualities. If we put v =
ug, B = A, B+ = Ain (i), we get the homomorphism D : [A, A] — [A, A*].
Let ¢ : A — At be a morphism such that [¢] = D(14) € [A, AY]. Then ¢ is
an equivalence since ¢, : [E, A] — [E, A] is an isomorphism for all E. O

2.5. Lemma. Let A and A+ be two finite spectra.

(i) Let u: S — AN AL be a morphism such that ug and uf are isomor-
phisms for E = X*S, k € Z. Then u is a duality morphism.

(ii) Ifu: S — AN AL is a duality then for every pair of spectra E,F the
homomorphisms

FUE : [FAA,E] - [F,E/\AJ‘], FUE(QO) = (‘P/\lA)(lF/\u)
and
FuE  [A* ANFE) — [F,ANE], "uP () = 1a Ap)(uAlp)

are isomorphisms.
(iil) Letu: S — AN AL+ and v: S — B A B+ be two dualities. Then

w:S M ANAL = ANSA AT 2N AANBABEA AL

is a duality between AN B and B+ N AL,

Proof. (i) Firstly, two remarks.

Remark 1. Let {E(a)} be a family of spectra. Set E' = VE(a). If ug,)
(resp. u(®) is an isomorphism for every «, then ug (resp. u) is an isomor-
phism. This follows from 1.16.

Remark 2. If F; — F, — Fj is a cofiber sequence of spectra and v, u
(resp. up,,ur,) are isomorphisms, then uf2 (resp. ur,) is an isomorphism.
Indeed, by 2.1(vi), ANF1 — AANF, — AA F3 is a cofiber sequence. Now

consider the following commutative diagram:

F3
)

—— [ANR] —— [ANR] —— [ANF] ——

wF1 l qul qul

- ——— [SSANF) —— [SSANE)] —— [S,ANF3] ——— -

By 1.15, its rows are exact sequences. Now apply the Five Lemma.

Now we prove that u” is an isomorphism.

Step 1. Let E = vX™S) where S) is a copy of S and n is a fixed integer
number. Then, by Remark 1, u” is an isomorphism.

Step 2. Let E' = ¥*° X where X is a finite dimensional CW-complex. Then
E = E(™) for some m. We prove that uP™ is an isomorphism by induction.
By Step 1, uP” is an isomorphism. Suppose that wP" 7 s an isomorphism.
Then, by Remark 2 and Step 1, uP™ s an isomorphism since there is a
cofiber sequence E("~1 — E(™ — v¥"S,. The induction is confirmed.
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Step 3. Let E = V), X>° X, where every X, is a finite dimensional CW-
complex. Then, by Step 2 and Remark 1, u¥ is an isomorphism.

Step 4. Let E be an arbitrary spectrum. Consider the spectrum 7 = 7F
as in 1.23, 7 ~ E. By 1.22, we have a cofiber sequence

Tev V Tod = T — S(Toy N Tod)-

By Step 3 and Remark 1, u% is an isomorphism for F = 7., V Toq and
F = 7ey N Toq Thus, by Remark 2, 47 is an isomorphism.

(i) This can be proved similarly to (i). We leave this to the reader.

(iii) The isomorphism

[AA B, E] 2%, [A, E A BY] ZE22, (S E A BY A AL

coincides with wg (prove it). Similarly, one can prove that the homomorphism

w® is an isomorphism for every FE. O

2.6. Remarks. (a) Some authors define duality to be a morphism
v:ANAT = S

such that pvp : [E, AL AF] — [ANE, F] and FoP : [E, FAA] — [EAALF)
are isomorphisms, see Switzer [1], Husemoller [1]. This definition is equivalent
to ours, at least for finite spectra. Namely, considering u : S — A A A+ as in
2.3, we have a morphism

ViANAL AT AA=(ANADE st =g
such that pvg and Fof are isomorphisms, cf. Dold—Puppe [1]. Conversely
(and similarly), any morphism v : A A A+ — S as above yields a duality
u:S — AN AL But 2.3 is preferable for our goals.

(b) Originally Spanier—Whitehead [1] considered a certain special case
of duality, as in 2.8(a) below. Then Spanier [1] defined duality in terms of
pairings between homology and cohomology. Later some authors proposed
defining duality via the pairings A A A+ — S, cf. (a). A nice categorical
approach to duality can be found in Dold—Puppe [1].

2.7. Definition. Spectra A, B are called n-dual if the spectra A,>~"B are
dual. Spaces X,Y are called stably n-dual if the spectra X°°X XY are n-
dual.

2.8. Examples. (a) Let X be a finite cellular subspace of R™, and let U
be a regular neighborhood of X. Then X is stably (n — 1)-dual to R™ \ U,
Spanier—Whitehead [1]. Indeed, let 0 denote the origin of R™. Without loss of
generality we can assume that o € X, and we agree that o is the base point
of X. Let € be a positive number which is less than the distance between X
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and R™ \ U, and let O, be the e-neighborhood of 0. Consider the map
f: X x(R"\O0.)—R" f(a,b) =a—0>.

Clearly, f((X x R*\U))U{o} x (R"\ O.)) C R™\ O, and so we get the
quotient map

12 X x (R™\ O¢) ., R

(X x RrA\U) U{o} x (R*\O:)  R™\ O’

Now, there are canonical homeomorphisms
X x (R"\ O¢) R™\ O, 5™\ Oe
~ X =X
(X x RPN\ V) U{o} x R1\O;) " Re\U ~ > sm\U

where S™ is considered as the one-point compactification of R™. So, f/ turns
into the map

"X A(S™ 0)/(S"\ D)) — R/ (R O.) = S™.

Finally, since S™\ O is contractible, we conclude that (S™\ O.)/(S™\ U) ~
S(S™\ U), and so f” turns into the map

"X ANS(S"\U) — S™.
We define the morphism

v NITTERX AR®(ST\U) = BTE®X AX®S(S™\ U)

T yryesn = s,

~NTER(X A S(S"\U)) =
Now, one can prove that v has the properties as in 2.6(a), see Dold—Puppe [1].
Thus, X and S™\U are (n—1)-dual. In fact, Dold and Puppe proved that ug
and u” are isomorphisms for every finite spectrum E, but this is sufficient
because of 2.5(i).

(b) Let a finite CW-complex X be cellularly embedded in a sphere S™,
let U be a regular neighborhood of X in S™, let U be the closure of U, and
let U be the boundary of U. It follows easily from (a) that X% is n-dual to
U/0U, but we want to construct here the duality morphism explicitly. Let
p: U — X be the standard projection (which is a deformation retraction).
Define A : U — U x X, A(a) = (a,p(a)). Since A(OU) C OU x X, the map

AN :UJOU — (U x X)/(0U x X) = (U/oU) A XT

is defined. Let ¢ : 8™ — S™/(S™\U) = (U/9U) be a map which collapses
S™\U. We have a map f : S™ % U/oU 2, (U/OU)AX T, and the morphism

U=Y""S%f 8 5 NTHEX(U/OUYASCXT) ~ STS®(U/OU) AS® X

is a duality. A proof can be found in Dold—Puppe [1].
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2.9. Corollary. (i) Every finite CW -space X admits an n-dual finite CW -
space X' for n large enough.
(ii) Every finite spectrum A admits a dual finite spectrum A*.

Proof. (1) This follows from 2.8 because every finite CTW-space X can be
embedded in a sphere S™ for some n = n(X).

(ii) By 1.5(iii), A ~ X~™X~>°4,, for m large enough. Since A,, is a finite
CW-space, it admits an n-dual finite CW-space Y for n large enough. Now
set AL =N~ nyey, O

2.10. Proposition. If A LB Cisa cofiber sequence of finite spectra,

4 €L
then C+ 2— Bt I At isa cofiber sequence.

Proof. This can be proved as in Switzer [1], 14.33. We leave it to the
reader. g

If X,Y are finite CW-complexes such that £°X ~ LY, then SV X ~
SNY for N large enough. This follows from 1.5(iii). Furthermore, if f, g : X —
Y are two maps of finite CW-complexes and X f ~ g : ¥*®°X — XV,
then there exists N such that SV f ~ SNg: SN X — SNY. This follows from
the Freudenthal Suspension Theorem. Thus, passing from spectra to spaces,
we have the following fact.

2.11. Theorem. (i) Let X be a finite CW -space. Choose a natural number
n such that there exists a finite CW -space X' which is n-dual to X. Then
the homotopy type of S™ X' is uniquely determined by the homotopy type of
X for N large enough.

(ii) Let f : X — Y be a map of finite CW-spaces. Choose a natural
number n such that there exist finite CW -spaces X', Y’ which are n-dual
to X,Y respectively. Then there exist a natural number N and a map f' :
SNY" — SNX' such that S"NE®f and X=NX>®f' are dual morphisms.
Furthermore, [’ is unique up to homotopy for N large enough.

(iii) Let X YL Zbea cofiber sequence of finite CW -spaces. Choose
N, f:SNY' — SNX" and g’ : SNZ' — SNY as in (ii). Then the sequence
SNz LN SNy’ 7, SN X" is a cofiber sequence for N large enough. a
2.12. Definition. (a) A ring spectrum is a triple (E,u,t) where E is a
spectrum and p : EA E — E (the multiplication) and ¢« : S — E (the unit

morphism, or the unit) are certain morphisms with the following properties:
(1) Associativity. The following diagram commutes up to homotopy:

(ENEYNE —'  EAE

| |

EAEANE) XS BEANESE.
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(2) Unitarity. The following diagram commutes up to homotopy:

SAE M EAE A EAS

I

A pair (p, ) is called a ring structure (on E).
The ring spectrum (E, p, ¢) is commutative if p is commutative, i.e., if the
following diagram commutes up to homotopy:

EANE ——— EANE

4 lu
E E
(b) A ring morphism ¢ : (E,pu,t) — (E', i, (") of ring spectra is a mor-
phism ¢ : E — E’ such that the following diagrams commute up to homo-
topy:

ENE 222, B'AE S —“ , E
| [« I
E —* . F s —“ . E

2.13. Definition. (a) A module spectrum over a ring spectrum (E, p,¢), or
an F-module spectrum, is a pair (F,m) where F is a spectrum and m :
E AN F — F is a morphism such that the following diagrams commute up to
homotopy:

(ENE)ANF pAl EAF SAF M. BAF
al lm ll J{m
EANEANF) XS EAFR - F F F

(b) An E-module morphism ¢ : (F,m) — (F',;m’) of E-module spectra
is a morphism ¢ : F' — F’ such that the following diagram commutes up to
homotopy:

EAF 2, EAF
F - . p

As usual, we shall simply say “a ring spectrum E”, omitting p and ¢.
Note that every ring spectrum E is an E-module spectrum with m = pu.
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Furthermore, if ¢ : E — E’ is a ring morphism then the pairing F A E’ AN

E'AE'" 25 E' turns E’ into an E-module spectrum.

2.14. Construction-Definition. Let (F,m) be a module spectrum over
the ring spectrum (E,p,:). Given a morphism a : S¢ — E, consider the
morphism

ay: STANFLLEANFLF

This morphism ay is called multiplication by a.

2.15. Proposition. Let ¢ : E — E’ be a ring morphism of ring spectra.

If the morphism S¢ % E 5 FE' is inessential then so is the morphism
ay : SE" — E'.

Proof. The morphism a4 has the form
SIANE DL pAE L AR 2 R,

ie., ay = /' (pa A 1). But ga is inessential. O

§3. (Co)homology Theories and Their Connection with
Spectra

In the early of the 1950’s Eilenberg—Steenrod [1] discovered that the ho-
mology theory H.(—;G) as a functor on the category of finite CW-spaces
is determined by certain axioms, called thereafter the Eilenberg—Steenrod
axioms. Later (end of the 50’s, beginning of the 60’s) it was noticed that
many useful constructions of algebraic topology (K-functor, (co)bordism,
etc.) are formally similar to (co)homology theories. Afterwards the reason
for this phenomenon was clarified: namely, most of these constructions sat-
isfy all the Eilenberg—Steenrod axioms except the so-called dimension ax-
iom. So, it seemed reasonable to consider the objects satisfying these ax-
ioms. These objects were called extraordinary (co)homology theories. How-
ever, later mathematicians came to call these objects just (co)homology the-
ories, while H(—;G) got the name ordinary (co)homology theory. > Now this
terminology is commonly accepted, and we use it in this book.

Recall that € denotes the category of all CW-spaces and maps and that %
(resp. 6tq) denotes the full subcategory of € consisting of all finite (resp. finite

5 In fact, the classical (co)homology should be called extraordinary, because it has
a certain extraordinary property: it satisfies the dimension axiom. (This is note
of Peter Hilton.)
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dimensional) CW-spaces. Let €2 be the category of all CW-pairs (X, A) and
maps (X, A) — (Y, B). The category 67,67 are defined similarly. Let %~
(resp. #?) denote one of the categories €, 6iq, ¢ (vesp €2, %f%i, €?). We
define a functor R : #? — 2 by setting R(X, A) = (4,0).

3.1. Definition. (a). An unreduced homology theory on #? is a family

{hn,On}, n € Z, of covariant functors h,, : #2? — /94 and natural transfor-
mations Oy, : hy, — h,_1°R satisfying the following axioms:

(1) The homotopy axiom. If (X, A), (Y, B) € #? and the maps f,g :

(X, A) — (Y, B) are homotopic, then the induced homomorphisms

ho(f), hn(g) : hn(X, A) — h,(Y, B)

coincide for every n.
(2) The exactness axiom. For every pair (X, A) € 2, the sequence

e B (X, A) 2 A )

—_—

ha (X, 0)
is exact. Here ¢ : (4,0) — (X,0),7 : (X,0) — (X,A) are the

inclusions.
(3) The collapse axiom. For every pair (X, A) € #2, the collapse c :
(X, A) — (X/A,{x}) induces an isomorphism hy,(c) : h, (X, A) —
I (XA, {x}).
(b) A morphism
T :{hn,0n} — {hl,0.}

nr=n

of homology theories is a family of natural transformations {7}, : h, — h/,}
such that the following diagram commutes:

hn L} hn—lR

n| o onel

n — % p R
Given a pair (X, A) € #2, we use the notation T for the corresponding
homomorphism h, (X, A) — h! (X, A).

It is easy to see that we have a category of homology theories and their
morphisms. In particular, the equivalence (isomorphism) of homology theo-
ries is defined in the usual way: it is a morphism of homology theories which
is also a natural equivalence of functors.

It is well known that the classical homology { H,,, 0, } satisfyies 3.1, see e.g.
Dold [5], Vick [1]. Moreover, Eilenberg—Steenrod [1] proved that a homology
theory {hy,,d,} in 7 with the additional property h, (pt,0) = 0 for n # 0
(the dimension axiom) is just a classical homology theory {H,,, 0, }.
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3.2. Proposition. Let {h,,0,} be a homology theory on 2.

(G) If f : (X, A) — (Y, B) is a homotopy equivalence, (X, A), (Y, B) € A2,
then hn(f) @ hn(X,A) — hn(Y,B) is an isomorphism. In particular, the
inclusion t : (X UCA, {x}) = (X UCA,CA) induces an isomorphism hy(t).

(ii) If the inclusion i : A C X, (X, A) € 2, is a homotopy equivalence
then hy, (X, A) = 0 for every n and hy (i) : ho(A,0) — hy(X,0) is an iso-
morphism for every n. In particular, hy,(X,{xzo}) = 0 for every contractible
X € X and every xp € X.

(iii) For every (X, A) € % the inclusion k : (X, A) — (X UCA,CA)
induces an isomorphism hy, (k) : hp(X, A) — hpy(X UCA,CA).

(iv) For every CW-triple AC X CY,Y € X the sequence

(

o b (VX)) S (X, A) 2 v Ay v X -

is exact. Here I : (X, A) — (Y, A), J : (Y A) — (Y, X) are the inclusions

and d is the composition d : hyp+1(Y, X) —— On, ha(X,0) —= fon (D) ho(X, A).

(v) Let (X;A,B) be a CW-triad, X € 2. Set C = AN B. Let i; :
A— X,is : B — X,ig: C — Aiqg : C — B be the inclusions. Define
A hyp(X,0) = hy—1(C,0) to be the composition

B (X, 0) = hn(X, A) => hy(X/A, %)
= hn(B/C, %) < hn(B,C) 2 hyu_1(C,0).

Consider o : hy,(C,0) RLIOLCICON hin(A,0) @ hy,(B,0) and
B hn(A,0)  hn(B,0) — hn(X), B(z,y) = hn(i1)(x) = hn(i2)(y).

Then the sequence

R (C,0) 5 1 (A,0) & ho(B,0) 2> By (X,0) 2 iyt (C,0) — -

s exact.

Proof. (i) This follows from the homotopy axiom.

(ii) The homotopy axiom implies that h, (X, A) = 0, and hence h, (i) is
an isomorphism in view of the exactness axiom.

(iii) This follows from the collapse axiom.

(iv) For every U € ¢ we have a natural splitting h, (U, 0) = h, (U, *) @
hy(pt,0) (consider the exact sequence of the pair (U, x*)). Hence, for every
(U,V) € 2 the exact sequence 3.1(2) yields an exact sequence

R (i

o gt (U, V) = b (Vo) 22 b (U, %) = b (U V) — -+

where hy, (i) is the restriction of h, (i) to the direct summands.
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Furthermore, the collapse axiom yields the isomorphisms h, (Y, X) =
hn(Y/A, X/A) and hy,(Z, A) = h,(Z/A,{*}) for Z = X,Y. Because of this,
the desired exact sequence turns out to be the above exact sequence of the
pair (Y/A, X/A)

(v) Do this as an exercise, or see Switzer [1]. (Alternatively, this follows
from 3.11 and 3.18 below.) O

The exact sequences as in 3.1(2), 3.2(iv), and 3.2(v) are known as the
exact sequence of a pair, the exract sequence of a triple, and the Mayer—
Vietoris exact sequence .

Given a pointed CW-space (X, o), let (CX, {*}), resp.(SX, {*}), denote
the reduced cone, resp. suspension, over (X, zg). Because of 3.2(iv), the triple
{20} C X C CX yields the exact sequence

B (CX, {5}) = hn(CX, X) 5 b1 (X, {5}) = hno1(CX, {+}).

By 3.2(ii), h;(CX,{xzo}) = 0 for every 4, and so we get the isomorphism
(33)  ha(SX,{z0}) = ha(CX/X, {20}) 2 hu(CX, X) S hyoi (X, {mo}).

Recall that ¥* denotes the category of pointed CW-spaces and pointed
maps and that 47, resp. €5, denotes its full subcategories of finite, resp.
finite dimensional, CW-spaces. Let JZ"* denote one of the categories ¢°*, 6,
¢, and let S : #* — * be the (reduced) suspension functor.

3.4. Construction-Definition. Let {h,,d,} be an unreduced homology
theory. Given (X, zq) € £, set hn(X,z9) = hn(X,{x0}) and define the
suspension isomorphism

5t g1 (SX, %) = By 1 (SX, {5}1) = b (X, {z0}) = hn(X, 20)

to be the composition (3.3). Thus, we get a family {71”,5”}, n € Z, of covari-
ant functors h,, : #* — &9 and natural equivalences s,, : h,415 — hy,. The

family {En,sn} is called a reduced homology theory (on J£*) corresponding
to {hn, On }.

3.5. Proposition. Let {h,,0,} be an unreduced homology theory on 2.
(i) Homotopic maps f,g : (X,x0) — (Y,y0) in H* induce the same
homomorphism Fi(£) = hn(9) : (X, 0) — fn(¥: ).
(ii) For every pointed CW -pair (X, A, xo), (X, A) € H2, the sequence

h(A, 20) — ha(X, 20) = hn(X/A, %)

is exact. Here the homomorphisms are induced by the inclusion A — X and
the projection (collapsing map) X — X/A.
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Proof. (i) follows from the homotopy axiom, (ii) follows from 3.2(iv). O

3.6. Proposition. Let {F,,t,}, n € Z, be a family of covariant functors
F, : X — &9 and natural equivalences t,, : F,415 — F, satisfying the
following properties:

(i) Homotopic maps f,q : (X,xz0) — (Y,y0) in & induce the same homo-
morphism F,(f) = F.(g9) : Fr(X,20) = Fo(Y,90);

(ii) For every pointed CW -pair (X, A, o), (X, A) € H2, the sequence

Fo(A xo) — Fo(X,20) = Fp(X/A, %)

18 exact.
Then there exists a homology theory {hy, 0, } such that its reduced homol-

ogy theory {En,sn} is equivalent to the family {F,,t,}, i.e., there are natural
equivalences ,, : F,, — hy, such that the diagram

Sx
Prnt1

For1(SX, %) % Tui1(SX, %)

txl lsx
wn ~
Fn(X7x0) — hn(X7$0)

commutes for every (X, xg) € J . Furthermore, this homology theory {h,, O}
18 unique up to equivalence.

Proof (cf. Switzer [1], 7.33-7.42). Every pair (X, A) yields the long cofiber

sequence
AT S Xt S xtuoAt) LS.

as in 1.3.39. Recall that every space Y' is assumed to be pointed so that its
base point is the added point. Set

hn(X,A) = F,(XTUC((AT), %), ho(X,0) = F,(XT, %)
and define 9y, : hy, (X, A) — hn—1(A, D) to be the composition

B ho(X, A) = Fu(XTUC(AT), %) U B (5(A%), %)

tn—71> n—l(A+a *) = hn—l(A7 (Z)) ;1> hn—l(Aa (Z))v
where —1 is multiplication by —1. Clearly, {h,, 9, } is an unreduced homology
theory.
Because of (i), every pointed homotopy equivalence f : (X, z) — (Y, yo)

induces an isomorphism F, (f) : F,(X,z0) — F.(Y,y0). By 1.3.26 and 1.3.29,
the projection

p: (XTUCHzo} ), *) — (X,20), p(x)=z,p(20,t) =t,2 € X, tEI,
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is a pointed homotopy equivalence. Hence, we have a canonical isomorphism
Fo(X,20) 2 Fo(XTUC{zo}T), ).
We define ©X : F,(X,20) — hn(X,z0), (X,20) € #* to be the composition

Fo(X,20) 2 Fo(XTUC{mo}T), %) = hn(X, {z0}) = hn(X, z0).

We prove that s:X go,ffl = ¢:XtX. Consider the homomorphisms

U Frp1(SX, 20) 25 Fo(X, 20) & Fu (Xt UC{ao} ), %)
and
v Fpp1(SX, xg) & Fn+1((SX)+ U C({x0}+), *)
T T (XY UCXT) U C({ao} ), %)
= Fun((CX)PUC(X ), %) 220 B (S(X), %)
L (X ) 2 B (X, a) 2 Fa (X U C({o} ), %),

where a : (CX)TUC(XT) — (SX)* collapses C(X 1), 1 : (CX)TUC(XT) —
S(X™T) collapses (CX)T, and € : (X*,%) — (X, zg) collapses {z}T, i.e., €
maps the added point to zyp and ¢|X = 1x. Then u = —v (prove it!). Now,

the homomorphism ;X X has the form

Fri1 (SX, 20) =5 Fo(X, 1) = Fo (XY UC{zo} "), %)

= hn(X, {20}) = " (X, 20),

ie., pxtX = u. Furthermore, the homomorphism s; 5, has the form

Foy1(SX,20) 2 Foy1 ((SX)TUCH{zo} ), %) = hug1 (SX, {z0})
= hnt1(SX,20) = hn(X, o),
i.e., the form

Fui1(SX, %) 5 Fy(XTUC{zo}h), %) = hn(X, {z0})

= ha(X, m0) — hn(X, z0).

Thus, XX = s oS3,
Suppose that there is another homology theory {h/,, 9/} such that its re-
duced homology theory {h!,, 5.} is equivalent to {F,,t,}. So, we have equiv-

alences 9, : b, (=) — F,(—). Given (X, A) € %2, consider the isomorphism

h(X,A) = (XA, %) 2 Fo(X/A, %) 2 h(X/A, %)
= ha(X/4, {5}) <2 by (X, A4).
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These isomorphisms constitute an equivalence h!, — h.. ([

This proposition shows that there is a bijective correspondence between
unreduced and reduced homology theories. In other words, every unreduced
homology theory is completely determined by its reduced form. Moreover,
based on 3.6, sometimes one defines a reduced homology theory to be a
family (F,,t,) as in 3.6. So, when we say “Let {h,,s,} be a reduced homol-
ogy theory...” this means that {En,sn} is a reduced form of an unreduced
homology theory, but, on the other hand, one can think of {En, s, } as a fam-
ily satisfying 3.6; there is no contradiction. Moreover, sometimes it is more
convenient to construct reduced homology theories and then corresponding
unreduced ones rather than unreduced ones immediately.

The groups h;(pt, ) = 7%-(50, ) are called the coefficient groups of the
homology theory {hy,d,}. To justify this term, note that H,.(pt,0; A) = A
for every abelian group A.

3.7. Proposition. Let {Tzn,sn} be a reduced homology theory on J£°.

(i) Let (pt,*) denote the one-point pointed space. Then }L'n(pt7 x) =0 for
every n.

(i) If f : (X,z0) — (Y,y0) is a pointed homotopy equivalence in &',
then the homomorphism hy(f) = hn(X, 20) — hn(Y,yo) is an isomorphism
for all n. In particular, the quotient map p: X UCA — (XUCA)/CA=X/A
induces an isomorphism by (p) : hy (X U CA, %) — hy(X/A, %).

(iii) Every cofiber sequence (X, xo) ER (Y,90) 2% (Z,20) in X induces
an exact sequence

B (X, 20) 22 o (Y, 0) 222, 1, (Z, 20).

(iv) Let (X, A) be a pointed CW -pair, X € . Define

By (XA, %) L) (X UOA, «) L R (S A %) S Rl (A, %),
where p : X UCA — X/A collapses CA (see (ii)) and k : X UCA — SA

collapses X . Then the sequence

e (A ) = (X %) = B (XA, ) 25 Bya (A %) — -

18 exact.

(v) Let (X; A, B;xg) be a pointed CW-triad, X € # . Set C = AN B.
Letiy: A— X,ig: B— X,i3: C — A,iy : C — B be the inclusions. Define
A hp(X,20) = hn—1(C,xz0) to be the composition

Ton(X, 20) — hn(X/A, 20) = hp(B/C,x0) 2 hn_1(C, 20),
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where the first homomorphism is induced by the collapsing map and d is

defined in (iv). Consider a : hy,(C,xo) Jinlis)Oha (i), hn(A, 20) & b (B, x0),

and § = hn(4,20) & hn(B,20) — ha(X), Bla,y) = ha(ir)(x) — hu(iz) (y)-
Then the Mayer—Vietoris sequence

e (€ w0) - T (A, 20)Bhn (B, 70) 2 hn (X, 70) 2> o1 (C ) — -+ -

s exact._ _ _
(Vi) hp (X VY, %) = hyp (X, %) @ by (Y, %) for every X, Y € # and every n.

Proof. See Switzer [1], Ch. 7. O

3.8. Definition. (a) An unreduced cohomology theory on #? is a family

{h", 6"}, n € Z, of contravariant functors h, : #? — &% and natural
transformations 6" : h"oR — h"*1 satisfying the following axioms:

(1) The homotopy axiom. If (X, A), (Y, B) € 2#?2 and the maps f,g :

(X, A) — (Y, B) are homotopic, then the induced homomorphisms

h"(f),h"(g) - K" (Y, B) — h"(X, A)

coincide for every n.
(2) The exactness axiom. For every pair (X, A) € 2, the sequence
n—1 smt n R"(4) n
e A T e, A) 2 (x,0)
PO g4y ——
is exact.

(3) The collapse axiom. For every pair (X, A) € 2, the collapse c :
(X,A) — (X/A, ) induces an isomorphism h"(c) : h"(X/A,*) —
h(X, A).

(b) A morphism of cohomology theories
T:{h", 6"} — {(h"),(6")'}

is a family of natural transformations {T™ : h™ — (h™)'} such that the
following diagram commutes:

R X pnt

T" J{ Tn+1 J{

(hn)/R (™) (h"+1)'
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Given a pair (X, A), we use the notation T{}Q ) for the corresponding homo-
morphism A"(X, A) — (h™) (X, A).

Reduced cohomology theories {E”,s”}, n € Z can be introduced and con-
nected with unreduced ones as above. Here K" ' — /9 is a contravariant
functor, and s” : h™ — h"*1S is a natural equivalence. Moreover, the obvious
analogs (with inverted arrows) of 3.2 and 3.7 hold. For example, the Mayer-
Vietoris sequence of the pointed triad (X; A, B; xo) (the analog of 3.7(v)) has
the form

C— BHC, o) — hM(X, 20) — B™(A, 20) @ B™(B, x0)
-»E”(C’,:EO) — e

The details can be found in Dyer [1], Switzer [1].

The groups h"(pt, ) = hi(S°, %) are called the coefficient groups of the
cohomology theory {h", §"}.

3.9. Convention. Below we shall use the usual brief and more convenient
notation. Namely, we write h,(X) instead of h, (X, zo), hn(X) instead of
hn(X,0), and f. instead of h,(f), ﬁn(f) Furthermore, a homology theory
{hn, On} is denoted by h., or h.(—), or h.(X) where X is a variable. Similarly
for cohomology. Finally, sometimes (if there is no danger of misunderstand-
ing) we shall write 9, 5,0 instead of Oy, s, 0.

It is possible and useful to introduce (co)homology theories on spectra.
Consider the following full subcategories of .7

Stq4: its objects are all finite dimensional spectra;

S5 its objects are all suspension spectra;

Fstd: its objects are all spectra of the form ¥X"X*°X,n € Z, X € G3y;

Y its objects are all finite spectra.

3.10. Definition. Let .Z be one of the categories .7, Htq, L5, Sstd, -5, and
let ¥ : .2 — £ be the functor defined in 1.1(d).

(a) A homology theory on % is a family {hn,5,},n € Z of covariant
functors h, : ¢ — &% and natural transformations 5, : h, — h,11%
satisfying the following axioms:

(1) The homotopy axiom. If the morphisms f,g : X — Y are homo-
topic, then the induced homomorphisms h,(f), hn(g) : hn(X) —
hn(Y') coincide for every n.

(2) The exactness axiom. For every cofiber sequence X Ly & 7 of
spectra, the sequence

ha(X) 229 p (v L9,

hn(Z)

is exact.
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(b) A cohomology theory on & is a family {h™,5"}, n € Z, of contravariant
functors A" : ¥ — /% and natural transformations 5" : A"T1Y — A"
satisfying the following axioms:

(1) The homotopy axiom. If the morphisms f,g : X — Y are homo-
topic, then the induced homomorphisms A™(f), h"(g) : K" (Y) —
h™(X) coincide for every n.

(2) The exactness axiom. For every cofiber sequence X Ly % 7zof
spectra, the sequence

h"™(

is exact.
¢) A morphism ¢ : {h,,s,} — {h’ 5"} of homology theories on .Z is a
(c) P ® ; o 8p, gy
family of natural transformations ¢, : h,, — h/, such that 8,0, = @n1+15n.

We leave it to the reader to define a morphism of cohomology theories on
Z.

3.11. Proposition. Let £ be as in 3.10, and let {hy,5,} be a homology
theory on £ . Then:
(i) hn(X VY) 22 h(X) ® ha(Y).

(ii) For every cofiber sequence X Ly 2z of spectra there is a natural
exact sequence

Bt (Z) — B (X) L5 b (V) 25 hn(Z) — Bt (X) — - -

(i) Let A, B be two subspectra of a spectrum X such that X = AU B.
Set C = AN B. Then there is a natural (Mayer-Vietoris) exact sequence

+ = h(C) = hn(A) @ hn(B) — hn(X) = hn1(C) — -

Proof. (i) Let i : X — X VY be the inclusion, and let p : X VY — X

be the projection. The cofiber sequence X LXVY Y yields an exact
sequence

B (X) 25 B (X VYY) — b (Y),

and i, is a split monomorphism because p,i, = 1.
(ii) The cofiber sequence X — Y — Z yields a long cofiber sequence

oY Z X Y 525X X 5 YY 527 -

Y

which, in turn, induces an exact sequence

c = by (BTZ) = b (X) = (YY) = ho(Z) — hp(RZ) — - -
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Using the isomorphism &, : h,41(2X) = h,(X), we get the desired exact
sequence.

(iil) By 1.22, there is a cofiber sequence C' — AV B — X. Considering its
exact sequence as in (ii) and using an isomorphism h,, (AVB) 2 h,,(A)®h,(B)
as in (i), we get the desired exact sequence. (]

For future reference, we formulate a cohomological analog of 3.11. The
proof is similar.

3.12. Proposition. Let £ be as in 3.10, and let {h™,5"} be a cohomology
theory on £ . Then:
(i) "X VY) 2 h"(X)® h"(Y).

(ii) For every cofiber sequence X RNy of spectra there is a natural
exact sequence

s RYX) = h(Z) L hY) L R (X)) — ke NZ) —

(iii) Let A, B be two subspectra of a spectrum X. Set C = AN B. Then
there is a natural (Mayer-Vietoris) exact sequence

.—>hn(X)-»hn(A)@hn(B)_)hn(c)_)hnfl(X)_)”.. 0

3.13. Construction. (a) Given a homology theory (h,,5,) on .%, set By 1=
hpoX™® : H* — /Y and define s,, : hy, — hyp 105 to be the composition

Ry = hpoS® =% by 100X 2 b 10808 =, 0S.

In other words, hp(X) = h,(5°°X), etc. We leave it to the reader to check
that (fin,5,) is a reduced homology theory on J¢*.

(b) Similarly, given a cohomology theory (h",5") on ., we get a reduced
cohomology theory (ﬁ”,s”), where A" = h"eX> and s" is the composition

o~

oS = Bty @08 o prtloyiono® 2L, proye —

Thus, every (co)homology theory on .7 (resp. 5, -S4, Lstd, -7%) yields a re-
duced (co)homology theory on €* (resp. €*, 65, 65, €r)-

3.14. Lemma. Let X(1) A, X(2)—--- na, X (n) be a sequence of maps

of spectra. Then there exists a set ) and a family of sequences

(.fl)w (fn—l)w
— - _

X(1)w X(2)w — X(n)w, w€Q
with the following properties:

(i) X (i) is a finite subspectrum of X (i);
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(i) (fi)w 1is the restriction of f;, i.e., the following diagram commutes:

X 20 X(i1 1)

nl ln
X() —— X(@i+1)

(iii) For every i, every finite subspectrum of X (i) is contained in some

X (i)

We can turn Q into a quasi-ordered set, by setting w < o’ iff X (i), C
X (7)), for every i. Then the family

(f1)w

X(2)w N . (fnfl)w

X(l)w X(R)W,WEQ
can be considered as a direct 2-system of sequences.

Proof. We prove this by induction on n. For n = 1 we can set {X,} to
be the family of all finite subspectra of X. Suppose that the lemma holds for
some n > 1 and consider the sequence

f1 frn-1 fn
X(1)—=X2)— - — X(n) =5 X(n+1).
Applying the inductive assumption to the sequence

I X ) L X (1),

xX(@2) & ...
we find a quasi-ordered set A and sequences

(f2)a (fn)a

X(2)a X(n+1)g,a€ A

with the desired properties. Let {X (1)} be the family of all finite subspectra
of X(1), and let X (1)(4,) be a maximal subspectrum of

X0 (fT (X (2)a))-
We set Q := {(a,A\)} and X (i)(a,n) = X(1)a; (fi)(a,n) = (fi)a for every

(a, A) and every i > 2. Clearly, f1(X (1)), C X(2)w for every w € Q, and so
we can form (f1), : X(1)o — X (2)o. Now, the family

X1 Y2 x@), — - P X 1), we

satisfies conditions (i)—(iii). O
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3.15. Lemma. Let X Y % Z be a strict cofiber sequence of maps of

spectra. Then a family {X, EEN Y, 2% Z,} as in 3.14 can be chosen such
that Z, = C(f.).

Proof. Consider a family {X, S, Y, %% Z,} as in 3.14 and set

(Z)new = C(fw). Let hy, : Y, LN (Z.)new be the canonical inclusion.

Then {X, EEN Y, LN (Zw)new } is the desired family. O

Given a family {X,} of spaces or spectra, let i) : Xy — VX, denote the
inclusion.

3.16. Definition. (a) Let .Z be as in 3.10. A homology theory h. on .Z is
called additive if
((0x)+) : Baha(XX) = ha (VX))

is an isomorphism for every family {X, A € A} in ¥ with VX, € .Z.
Similarly, a cohomology theory h* on .Z is called additive if

{i3} - h*(vXy) — [ 1 (xn)
A

is an isomorphism for every family {X, A € A} in £ with VX, € Z.

(b) Let J£* be as in 3.4. A reduced homology theory h, on J£* is called
additive if B B

<(Z>\)*> : @Ah*(X/\) — h*(\/XA).

is an isomorphism for every family {X, A € A} in J£* with VX, € J".

Similarly, a reduced cohomology theory h* on JZ* is called additive if

{3} b (vxa) — [ (x)
A

is an isomorphism for every family {X, A € A} in JZ* with VX € .

(c) An unreduced (co)homology theory h on #? is called additive if the
corresponding reduced theory on J¢* is additive. In this case h*(UX)) =
[Th*(X)). Indeed,

PH(UXN) = B (X)) = B (V) = TR0 = [ (-
Because of 3.7(vi), the homomorphisms {(ix)«}, {i}} are isomorphisms for
every (co)homology theory if A is a finite set, and so the additivity condition

gives no restrictions on the (co)homology theories on 47, as well as on ;.

3.17. Example (James—Whitehead [1]). There are non-additive cohomology
theories on %*. For example, set
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~ > H,(X
hk(X) — HZOZO ~ ( )
Zn:O H"(X)
for every k. Then h,(S™) = 0 for all n, but h, (\/ S”) #£0.

n=1

3.18. Proposition. Every (co)homology theory {h,s} on €* (resp. Cor 67)
can be obtained from a (co)homology {h,s} on % (resp. Fsta, %) by Con-
struction 3.13, and this (co)homology theory on % (resp. Sutd, -S%) is unique
up to equivalence. Furthermore, {h,s} is additive iff {%,5} is.

Proof. If X € ¢* and Y = 2" X, we sct hy(Y) = hp_n(X), etc. O

3.19. Proposition. (i) Let ¢ : h(X) — k(X) be a morphism of reduced
(co)homology theories on 6. If ¢ is an isomorphism for X = 59 then ¢ is
an isomorphism for every X € €7.

(i) Let #* be as in 3.4, and let ¢ : h(X) — k(X) be a morphism of
reduced additive (co)homology theories on J*. If ¢ is an isomorphism for
X = SY then ¢ is an isomorphism for every X € J°.

(i) Let & be as in 3.10, and let ¢ : h(X) — k(X) be a morphism of
additive (co)homology theories on L. If v is an isomorphism for X = S then
@ is an isomorphism for every X € £.

Proof. We prove this for the homology case only, because the cohomology
case can be proved similarly.

(i) Note that ¢ is an isomorphism for every sphere S™, and hence it is an
isomorphism for every finite wedge \/ S™. Given X € %7, let X™ be the n-
skeleton of X . Since X"/ X"~ ~\/ S™ (a finite wedge), we have the following
commutative diagram:

he(V S") —— ha(X"7) —— (X)) —— (V5" ——

= o [t [#n x| enes |

BV S") —— k(X" —— k(X)) —— k(YY) —— -,

whose rows are the exact sequence from 3.7(iv). We prove by induction that
¢y, is an isomorphism. Note that g is an isomorphism since X = \/ S°. Now,
if 1 is an isomorphism then, by the Five Lemma, ,, is an isomorphism.
The induction is confirmed. It remains to note that X = X* for some k.

(ii) The case J£* = %; is proved in (i). Let J£* = €. Because of addi-
tivity, ¢ is an isomorphism for every wedge \/ S™. Now, similarly to (i), we
can prove that ¢ is an isomorphism for every finite dimensional CW-space
Y. Thus, (ii) holds for J#* = €. Let #* = €. Then, by additivity and
what was proved above, @ is an isomorphism for every wedge \/ Yy with finite
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dimensional Y. Let T be the reduced telescope of the skeletal filtration of
a CW-complex X, see 1.3.23. We have T.y ~ V, X", Tog ~ Vo, X2 and
TevNToq ~ V,X". Since T ~ X, it suffices to prove that ¢ is an isomorphism
for T'. Consider the commutative diagram

T h*(Tev) @E*(Tod) — h*(T) —_— E*(Tev mT'od) —

| J I

D B (Ty) @ ki (Tog) ——— kn(T) ——— ke (Toy N Tog) — - --

)
IR

of the Mayer—Vietoris sequences of the triad (T;Tey,Toq). Now, using the
Five Lemma, we conclude that ¢ is an isomorphism.

(iii) Because of 3.18, the assertion holds for & = %, %%, Fsa. Now we
give a proof for £ = . only, because the proof for ¥ = %4 is similar.
By (ii), ¢ is an isomorphism for every Y € €. Hence, by additivity, ¢ is an
isomorphism for every spectrum of the form V,X"¥°°Y), where each Y) is a
CW-complex. Consider a spectrum X = {X,, }and the spectrum 7 = 7X as in
1.23. By (1.24) and what was proved above, ¢ is an isomorphism for ey, Tod,
and Tey N Toq- Since 7 ~ X, it suffices to prove that ¢ is an isomorphism for
7. Consider the commutative diagram

M h*(Tev) (&5) h*(TOd) - h*(T) _— h*(TeV ﬁTOd) _— -

o |- |

- — ]C*(Tev)@k*(Tod) - k*(T) E— k*(Tevaod) —

IR

of the Mayer—Vietoris sequences of the triad (7; 7oy, Tod ), see 3.11. Now, using
the Five Lemma, we conclude that ¢ is an isomorphism. [

3.20. Proposition. Let {Xx, A € A} be the set of all finite subspectra of a
spectrum X .

(1) Let h. be a homology theory on . Set k. (X) := lim{h.(X)} for any
X € .&. Then k, is an additive homology theory on & .

(ii) For every additive homology theory h. on ., the inclusions {iy :
X — X} induce an isomorphism {((ix)«|lim) : Um{h.(Xx)} = h(X).

(iii) Fvery homology theory on # can be extended to an additive homology
theory on 7, and this extension is unique (up to equivalence).

Proof. (i) Firstly, we show that the extension k. is a functor on .. Given
a morphism f : X — Y of spectra, consider a family {f, : X, — Y, } as in
3.14. Then k.(A) = lim{h.(Ay,)} for A= X,Y. Now, f induces a morphism

of direct systems {h.(X,)} — {h.(Y,)} and, hence, a homomorphism

Fot Ra(X) = iR (X,)} — L. (Vo)) = ka(Y).

Furthermore, the isomorphism s extends from . to .% in an obvious manner.
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The homotopy axiom holds obviously. To verify the exactness axiom, first
consider a strict cofiber sequence X Ly %= C'f of maps of spectra and

take X, ECN Y, 2% Z,, as in 3.15. Now, one has an exact sequence of direct
systems

{h(Xo)} = {he(Yo)} = {he(Z0)},
and hence, by 1.2.7, the sequence k.(X) — k.(Y) — k.(Z) is exact. Finally,

given an arbitrary cofiber sequence X Ly %z , we have a commutative
diagram

x L.y Cf

I €

x -t .yv_9., 7

where h is a homotopy equivalence. Hence, the sequence

is exact.

The additivity property holds because lim and & commute.

(ii) Given X € .7, set k. (X) := lim{h.(X\)}. Consider the homomor-
phism ¢* := ((i))«] lim) : ko (X) — he(X) as 1.2.5. In view of (i), the family
{©X} is a morphism k. — h, of additive homology theories on .. It is an
isomorphism for every finite X, and so, by 3.19(iii), for every X € .%.

(iii) This follows from (i) and (ii). O

This proposition shows that, in fact, there is no difference between homol-
ogy theories on .#; and additive homology theories on .#. For cohomology
theories the situation is similar, but more complicated: we discuss this in
detail in Ch. III.

3.21. Construction-Definition. Given any cohomology theory h* on .%%,
one can construct a homology theory h, on % by setting h;(X) = h=¢(X1).
Since ¥(X1) = (¥7'X)*, the suspension isomorphism A!'7H(X(X1)) —
h~%(X1) induces a suspension isomorphism h;_;(X7'X) — h;(X). By
2.4(ii), h is a well-defined homology theory on .. Conversely, in this manner
one can construct a homology theory on .#; starting from a cohomology the-
ory on .%;. Moreover, the correspondences {homology} — {cohomology} and
{cohomology} — {homology} are mutually inverse (if we assume (X1)+ =
X, etc). Cohomology and homology theories related in this manner are called
dual (to each other, i.e., h* is dual to h,, and vice versa). In other words,
k* is dual to h. if k. is isomorphic to h.. In this case we have the duality
isomorphism D : k*(X) — h_;(X71).

We leave it to the reader to transfer this construction to the category ;.
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3.22. Construction. Let F be an arbitrary spectrum.

(a) Define covariant functors E,, : .¥ — &9 where E,(X) := m,(E A X)
for every X € . and E,(f) := mn(1g A f) for every morphism f: X — Y
of spectra. Furthermore, define s, : E,, — F,, 112 to be the composition

En(X)=mn(EAX)=Tpi1(S(EA X))~ i1 (EASX) = By (SX)

for every X € .. By 1.15 and 2.1(vi), (E,,%,) is a homology theory on .#,
and, by 1.16(iii) and 2.1(v), it is additive.

(b) Define contravariant functors E" : . — /¥ by setting E™(X) :=
[X, X" E] for every X € . and

E*(f): [V, 5" E] — [X,X"E],  E"(f)lg] := [g/]

for every f : X — Y and ¢ : Y — X" E. Furthermore, define 5" : E"t!'Y —
E™ to be the composition

E"Y(2X) = [2X, 2" E] = [X,%"F] = E"(X).

By 1.15 and 1.16(i), { E™, 5"} is an additive cohomology theory on .#.

Thus, every spectrum yields a (co)homology theory on .#. Hence, by 3.6
and 3.13, every spectrum yields a reduced (co)homology theory on J¢* and
an unreduced one on . 2. For example, for every X € ¥ we have

En(X)=E,(X*) =1 (EAXT)and E"(X) = EMX ") = [S*X*, E].

Here the coefficient groups E;(S) = E;(S°) = E;(pt) = E~i(pt) = E~(S°) =
E~#(S) are just the homotopy groups 7;(E).
Notice that E;(X) = X;(F) for any two spectra X, E.

Every morphism ¢ : E — F of spectra induces a morphism ¢ : E.(—) —
F.(—) of homology theories and a morphism ¢ : E*(—) — F*(—) of cohomo-
logy theories on .# (and, hence, on .#* and .#2). Here

¢ = {1 Ei(X) = Fi(X)}, ¢lf] = [(pAlx)o(f)] for every f: B'S — EAX
for homology and
o = {@ : E{(X) = FI(X)}, ¢lf] = [(Zig)ef] for every f: X — LB

for cohomology. So, we have a functor from spectra to (co)homology theories.
In particular, equivalent spectra yield isomorphic (co)homology theories.

According to 3.22, one can assign a (co)homology theory to a spectrum. This

situation turns out to be invertible, see Ch. III, §3 below.

3.23. Proposition. For every spectrum E, the cohomology theory E* is dual
to the homology theory F..
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Proof. We have a natural isomorphism

E(XY) =[2S,EAX =[S, 2" EAXY] = [X,27'E] = ET{(X). O

3.24. Example. Let 7 be an abelian group, and let H () (or simply Hm)
be a spectrum such that

m ifi=0

7MHM»{01H¢Q

Firstly, we construct such a spectrum. Let K (m,n) be an Eilenberg—Mac
Lane space, m, (K (m,n)) = 7 and m;(K (7, n)) = 0 for ¢ # n. Obvious homo-
topy equivalences wy, : K(m,n) — QK (m,n+1) yield an Q-prespectrum, and,
thus, an Q-spectrum E with E,, ~ K(m,n). Of course, E satisfies the above
conditions.

We prove that the conditions above determine H (7) uniquely up to equiv-
alence. Indeed, let F' be another spectrum with 7o (F') = 7 and m;(F) = 0 for
i # 0. By 1.21, we can assume that F' is an Q-spectrum. Then F,, must be an
Eilenberg-Mac Lane space K (m,n). The identity map 1, induces a homotopy
equivalence K (m,n) = F,, — E, = K(m,n), and, clearly, these homotopy
equivalences constitute an equivalence F' — E of spectra.

Consider the (co)homology theory associated with H (7). We have
~ 0 ifi#0

(o0 = i (80) =miritey = { 0 17
n if¢=0.

Similarly, H(7)%(pt) = «, H(w)!(pt) = 0 for i # 0.
Thus, according to the Eilenberg—Steenrod Theorem, the spectrum H (7)
produces the ordinary (co)homology theory on %,

H(m)i(X) = Hy(X;m), H(n)'(X) = H(X;) for every X € %;.
Hence, for every X € ¢°°,

Hi(X;m) 2 H(n)i(X) =m(H(mr) NXT) = Nlim mian (K (m, N) A XT)
(the last isomorphism holds for every X € ¢ and can be proved directly or
deduced from 3.19(ii), since the homomorphisms

Nlim TN (K(m, N)AXT) — m(H(m) A XT)
yield a morphism of homology theories on €*).
In view of the above, we write H*(X;7) instead of (Hn)*(X) and

H,.(X;7) instead of (Hn).(X) for every X € € or X € . Furthermore,
we write H(X) instead of H(X;Z) = HZ(X).

3.25. Proposition. If E = {E,} is an Q-spectrum, then for every space X
there is a natural equivalence E*(X) = [X, E;]*.
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Proof. We have

E(X)=[2%X, % E] ~ Jim SN X, Eiyn]* Jim [X, OVEi N

1%

th [X, Ez]. = [X, Ez]. O

3.26. Corollary. For every spectrum E and every i, the functor
E A€ — 749, X E(X),
is representable.

Proof. Let F be an Q-spectrum equivalent to E. Then Ei(X) = Fi(X) =
[X, F;]*, i.e., the space F; represents the functor E'. a

We are especially interested in the case ¢ = 0.

3.27. Proposition-Definition. Given a spectrum E, let Q°FE denote a
representing space for B . € — oY (i.e., Q°E = Fy for some Q-
spectrum F equivalent to E). This space Q°FE is called the infinite delooping
of E and has the following properties:

(i) It is uniquely defined up to homotopy equivalence.

(ii) Consider a pair of spectra E, F and fix certain spaces Q®°E,Q®F and
equivalences [—, Q¥ E]* = E0(—), [=, Q% F]* = F9(=) of functors. For every
morphism ¢ : E — F there exists a map f : Q°FE — Q®F such that for
every space X the diagram

E(X) —& FX)

=| ) |=

[XaQOOE]. - [XaQOOF].

commutes, and such f is unique up to homotopy. This map f is called the
infinite delooping of ¢ and is denoted by Q.

(iii) For every E 2, F % G we have Q% (i) =~ QY Q.

Proof. (i) and (ii) follow from the Yoneda Lemma 1.1.5, and (iii) follows
from (ii). O

3.28. Remarks. (a) A space X is called an infinite loop space if it has the
form Q°F for some E. If F = {F,} is an Q-spectrum equivalent to E, then
X ~ Q"F,, ie., an infinite loop space is an n-loop space for all n. This
justifies the term “infinite loop space” (and the notation 2°°).

(b) Of course, the notation Q*°FE, Q° f is not pedantically rigorous be-
cause, say, 2°F is defined only up to homotopy equivalence. In particular,
Q% is not a functor .¥ — % *. Nevertheless, we shall use this notation
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because it is very convenient, and there is no danger of confusion. However,
if one wants to consider 2*° as a functor, one can choose a space 0*°FE for
every spectrum F, etc.

3.29. Corollary. (i) Let F be an Q-spectrum equivalent to E (see 1.21).
Then Q*FE ~ Fy.

(ii) (an adjointness relation) For every spectrum E and every pointed CW -
complex X we have a natural equivalence [X*°X, E] & [X, Q> E]°. a

If we put X = Q°F in 3.29(ii), we obtain a map j : ¥*Q*FE — FE
which is adjoint to lgw~pg. If we put £ = XX, we obtain a morphism
i: X — QXX which is adjoint to Ix«x.

Consider the actions of 2°° and 3°° on homotopy groups. Firstly, 7, (E) =
7 (Q°FE) (where on the left hand side we have the homotopy group of the
spectrum, while on the right hand side we have that of the space). Further-
more, the group 7 (X°X) = NlimOO meen (SN X) is just the stable homotopy

group IT;(X) of X, and
Tx - Wk(X) — Fk(QOOEOOX) = Wk(EOOX) = Hk(X)
is just the stabilization homomorphism.

Finally, if X is an infinite loop space, X = Q*°FE, then the map i : X —
1>°¥,*° X has a homotopy left inverse 7 : Q°¥*°X — X. Namely, 7 is the
composition

OPN®X = 0°8*0°E 2L 0¥ = X
We leave it to the reader to prove (by purely categorical arguments) that
7i ~ 1x. In particular,

me(X) 25 mp (PR X) I my(X)
coincides with 1., (x). Since m(Q*°X*°X) = I[Ix(X), we have

3.30. Proposition. If X is an infinite loop space, then 7 (X) is a direct
summand of i(X). O

3.31. Remark. Given a spectrum FE, it is possible and useful to extend the
functors E* and E, to the whole category #'*. We define

E™"(X):=[X,Q°%"E]*,  E,(X):= lm 7 (B AX)

for every X € #'*. Clearly, the functors E" and F,, are homotopy invari-
ant, and there are exact sequences of pairs for every cofibered pair (X, A).
Moreover, given a pointed triad (X; A, B), there is the Mayer—Vietoris ex-
act sequence provided that A, B is a numerable covering of X and A, B are
well-pointed, cf. 1.3.37.
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3.32. Examples. Here we give some examples of spectra and (co)homology
theories which will be discussed and used later.

(a) The sphere spectrum S. Clearly, Si(E) = m(E) for every spectrum
E and Si(X) = IIx(X ™) for every space X. In particular, S represents the
stably (co)homotopy functor on €.

(b) The Moore spectrum M (A) of an abelian group A, which is charac-
terized by the conditions m;(M(A)) = 0 for i < 0, H;(M(A)) = 0 for i # 0,
Ho(M(A)) = A, see 4.32 below.

(¢) The Eilenberg—Mac Lane spectrum H () of an abelian group m, see
3.24. This spectrum yields the ordinary (co)homology with coefficients in .

(d) Let G = ®G,; be a graded abelian group with homogeneous compo-
nents G;. The graded Eilenberg-Mac Lane spectrum of G is the spectrum
H(G) := VX'H(G;). In particular, m.(H(G)) = G. These spectra will be
discussed in §7.

(e) Complex K-theory, see Atiyah [4], Karoubi [1], etc. It is represented
by a spectrum K such that 32K ~ K and 7,(K) = Z[t,t"!], dimt = 2.

(f) There exist a spectrum k and a morphism p : k — K such that
7« (k) = Z[t], dimt = 2 and p, : m;(k) — m;(K) is an isomorphism for ¢ > 0.
This morphism p : £ — K is constructed as a connective covering over K,
see §4 below. The (co)homology theory given by k is called the connected
complez k-theory. Sometimes one uses the notation bu instead of k.

(g) There are real analogs of examples (e), (f). Namely, there is a real
K O-theory KO which is 8-periodic, Y8 KO ~ KO, and it has a connective
covering kO (also denoted by bo).

(h) Certain (co)bordism theories, which are represented by the so-called
Thom spectra, see Ch. IV.

(i) The Brown—Peterson spectrum BP, see Ch. VII.

(j) Certain (co)bordism theories with singularities, see Ch. VIII, IX. For
example, Morava K-theories K(n) and k(n), Morava—Johnson—-Wilson spec-
tra P(n), Baas—Johnson-Wilson spectra BP(n), see Ch. IX.

Consider now a spectrum E and a morphism « : S — FE. Let X be an
arbitrary spectrum. The homomorphism

(3.33) ay T (X) = B (X)

is called the Hurewicz homomorphism with respect to a and denoted by

he. It has the following alternative description: ho[f] = E.(f)(5%[a]), where
E.(f) : E.(248) — E.(X) is induced by f: £4S — X and §¢ is the iterated

suspension. In order to see the equivalence of these two descriptions, note

that a.(f) is given by the composition ©4S A S TNy A s 2 XA E,

while h,[f] is given by Z4SA S 1o sdg A B L2 X A E. But each of these

compositions is just a A f.
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Now, let E = (E, p,¢) be a ring spectrum. The Hurewicz homomorphism
h, we denote just by h. For every pair of spectra X,Y and every pair of
integers m, n, we have pairings u~Y and px,y induced by u. Here

(3.34) pY D E™(X)@ EM(Y) — E™TY(X AY)
maps [f] ® [g] to (the homotopy class of)
s X AY Yy S pAE S E
where [f] € E™(X), [g] € E™(Y); and
(3.35) Lx.y B (X) ® En(Y) = Enpin(X AY)
maps [f] @ [g] to
SmSASS L (BEAX)VAEAY) S (EAE)A(XAY) S EAXAY
where [f] € Epn(X), [9] € En(Y) and ¢ is the composition

a(E,X,EAY) 1Ana™ Y (X,E)Y)
—_— _—

(EAX)AN(EANY) EAN(XA(EANY))

IAT(X,E)AL 1Aa(E,X,Y)
B B ——

EAN((XNE)AY) EAN(EANX)NY)

a” Y (E,E,XA\Y)
2 et )

EA(EA(XAY)) (EAE)A(XAY).

The pairings %Y and pyy are associative, and they commute with
suspensions (i.e., with the shift of dimension). Here, for instance, the asso-
ciativity of px y means the commutativity of the diagram

En(X)® En(Y)® Ep(Z) —— Ep(X) @ Ensp(Y A Z)
(3.36) l l

Epin(XANY)® EP(Z) - m+n+p(X NY NZ)

while commuting with suspensions means the commutativity of the diagrams
E,(X)® E,(Y) Enin(XAY)
a®1l la
Em1(3X) @ En(Y) = Epgn1i(BX AY) = Enpn1 (S(X AY)),
(3.37)

En(X)®E,(Y) ——  Empn(XAY)

100 | |

Enm(X) ® Epa(3Y) Emint1(B(X AY))

1 Jio

Emint1(X ASY) —— Epmpnr1(S(XAY)).



§3. (Co)homology Theories and Their Connection with Spectra 75

The commutativity of the diagrams (3.36) and (3.37) follows from the defi-
nition of ring spectra and the properties of the smash product, see §2. Fur-
thermore, if F is a commutative ring spectrum then

(3.38) e Y (a@b) = ()P (b2 a),
where 7 = 7(X,Y) : XAY — Y AX. The same is true for px y, cf. Adams [6],
Switzer [1].
Moreover, there is a pairing
(3.39) 1y t E™(X)® En(X AY) = Ep_n(Y)
where 15y ([f] ® [g]) is represented by the morphism

lE/\f/\ly Emu/\ly
—— —_

'S LEAXAY EAYTEANY SMEAY.

Similarly, one can construct a pairing
(3.40) p%y CE™(XAY)® En(X) — E™T(Y).
If we put Y = S in (3.39) and/or (3.40), we get the Kronecker pairing
(3.41) (=, =) E™(X)® En(X) = En_m(S) = mp_m/(E).

If we put X =Y = S in (3.35), we see that F,(S) = m.(E) is a ring; its
unit is given by ¢ : S — E. If we put X = S in (3.35), we see that E,(Y)
is a graded left 7, (F)-module. Of course, one can consider E,.(Y) as a right
7« (E)-module: the equivalence [ : SAY ~ Y yields the left 7. (E)-module
structure, while the equivalence r : Y AS ~ Y yields the right one. Similarly,
E*(Y) is a (left) graded E*(S)-module. Finally, if X is a ring spectrum with
a multiplication v : X A X — X then there is a pairing

nx,x

Eo(X) ® Bo(X) 2% B(X AX) 25 B(X),
turning F,(X) into a ring. In particular, E,(F) is a ring.

More generally, let (F,m) be a module spectrum over a ring spectrum
(E, p, ). As above, m induces pairings

mXY  E™M(X)@ F'(Y) — F™"™(X AY),

mx.y : Bm(X)® Fy(Y) = Fryn(X AY),
(3.42) mEy E™(X) @ Fo(X AY) = Frp(Y),

m%’ cE™(XAY)® Fy(X) — F™™(Y),
'm%Y  F(XAY)® Ey(X) — F™(Y),

and the Kronecker pairings
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(= =) E™(X) @ F(X) = Fpem(S) = Tn—m (F),
(=, =) F™"(X) ® En(X) — F™7(S) = Tn—m(F).

Notice the following fact. Given a morphism a : S — E, the morphism
ag : SYF — F defined in 2.14 induces the homomorphism (ax), : F,,(X) —
F,1+4(X). This homomorphism coincides with multiplication by [a] € 7. (F)
on the 7, (F)-module F.(X) (prove it). This justifies the term “multiplica-
tion” in 2.14.

3.43. Conventions. (a) We shall write ab instead of u*¥ (a ® b) as well as
of nx.y(a®b). Similarly for m*Y (a ® b), etc.

(b) The spectrum X"S will be denoted simply by S™, when there is no
danger of confusion.

(c) For any morphism f : X — X¢E we shall write just f € E*(X) rather
than [f] € E*(X).

Let E and F' be as above, and let Y be a module spectrum over a ring
spectrum X. Then we have the homomorphism

E.(X)@F(Y) X5 F(XAY) — F(Y)

(the right map is induced by the pairing X A Y — Y) turning F,(Y) into
a (left) E.(X)-module. In particular, F,(F) is an E,(E)-module (put X =
E,Y = F). Similarly, F.(E) is an E.(E)-module.

Every morphism a : S — X yields an element a € 74(X). The composi-
tion

ay: SIAY LLXAY - Y

induces a homomorphism F;(S¢ AY) — F;(Y), i.e., a homomorphism a, :
F_q(Y) 2 F(STAY) — F(Y).

On the other hand, given z € F,(X), the multiplication by x yields an
additive homomorphism z : Fi.(Y) — F.(Y),a — za,a € F.(Y).

3.44. Lemma. The homomorphism a. is the multiplication by h(a) € E.(X).
Proof. Consider the commutative diagram

E.(S)e F.(y) @l

l l

F.(SAY)=F.(Y) —%— F.(Y).
Since E(a)(t) = h(a), the lemma follows. O

In the above discussion (from (3.34) to (3.42)) one can replace spectra
X,Y by spaces. In this case all the formulae for reduced (co)homology remain
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valid (we only need to replace ¥ by S). For unreduced (co)homology we must
slightly modify the formulae. Recall that

X/AANY/B=(XxY)/(X x BUAXY),

and so (3.34) must be replaced by a pairing
p=p B (X A) @ E"(Y,B) —» E™T(X xY,X x BUAXY),
etc.

Let d: (X,AUB) — (X x X, X x BUA x X) be the diagonal. Define a
pairing (called the cup-multiplication)

U: E™(X,A)®@E"(X,B) & E™™(X x X, X x BUA x X)
L, Emin(X, AUB).

For A = B this pairing yields a multiplication on E*(X, A) converting it

into a graded ring. As with 3.43, we write ab instead of a U b. By (3.38),
ab = (—1)9lPlpg, for every commutative ring spectrum E.

Furthermore, the pairing

= u(ﬁyf‘}g) tE™(X,A)QEp(X XY, X X BUAXY) — E,_p(Y,B)

induces an inner operation (called the cap-multiplication)
N:E"(X,A)@ E,(X,AUB) — E,_,,(X,B)

of the form

E™(X,A) ® En(X, AU B) 224, E™(X, A) ® En(X x X, X x BUA x X)

L E,_n(X,B).
Below we shall meet many ring spectra. Note that sometimes it is difficult
to prove the existence of a ring structure on a given spectrum, see Ch. VIII.

Now we formulate two useful technical theorems which enable us to con-
struct ring morphisms of ring spectra. Let X be any spectrum, let E be a
ring spectrum, and let F' be an E-module spectrum. The Kronecker pairing
(—, =) : F*(X) ® E«(X) — m(F) yields the evaluation homomorphism

ev: F"(X) — Hom} (g (B (X), m(F)),
(ev(a))(b) = (a,b), a € F*"(X),b € E.(X).

3.45. Theorem. Suppose that there exists N such that m;(X) =0 fori < N.
If the Atiyah—Hirzebruch spectral sequence ©

6 The necessary information about the Atiyah—Hirzebruch spectral sequence (here-
after denoted AHSS) can be found e.g. in Adams [8], Ch. IIL
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EL(X) = Eu(X), E2,(X) = Hy(X;7,(E))

collapses (i.e., all its differentials are trivial), and if the m.(E)-module
E? (X) is free, then

ev: F"(X) — Homy () (Ew(X), . (F)), (ev(a))(b) = (a,b)
s an tsomorphism.

Proof. See Adams [5], p.20, Prop. 17 or Adams [8], p.48, Lemma 4.2. O

3.46. Theorem. Let X be a ring spectrum, and let E be a commutative ring
spectrum. Consider the evaluation

ev : E"(X) — Hom?, () (Bx (X),m.(E)),  (ev(a))(b) = (a,b)

and suppose that all the conditions of 3.45 hold for X and X AN X. Then a
morphism f : X — E is a ring morphism iff the homomorphism

ev(f) € Hom?r*(E) (B« (X), m(F))

is a homomorphism of m.(E)-algebras.

Proof. This is a direct consequence of 3.45, but we want to demonstrate
why E should be commutative. Let pux (resp. pg) be the multiplication on
X (resp. E). Given a morphism f : X — E, set ev(f) = e: E.(X) — m.(E).
We want to prove that the left square below commutes up to homotopy iff
the right square commutes.

XAX M BAE B.(X)® E.(X) —2% 1,(E) ® 1.(E)
I I
x L. E B, (X) . (B

Assume that the left square commutes. Given a : S* — EAX, b: S' - EAX,
consider the following commutative diagram where 7 switches the factors:

IATAL

EAXANEAX 2L EABEAXAX HEMX, BA X

a/\bT 1/\1/\f/\fl le

Sk A Sl EANENEANE FEME pAE M2, B

We have ey’ (a ® b) = ppe(1 A flo(ur A pix)e(L AT A 1)o(a A D), and this
morphism is homotopic to pge(pup A pg)o(LATA fA fo(1 AT AL)e(aAb).
On the other hand, p/(e ® e)(a ® b) is represented by the composition

SEASE Y pAXAEAX SMNN B A BEAEAE PEME B AR ME R



84. Homotopy Properties of Spectra 79

Now, p'(e ®@ e)(a ® b) = ep”’(a ® b) since E is commutative, i.e., the right
square above commutes. Similarly, one can prove that the left square above
commutes if the right one commutes. [

3.47. Construction-Definition. Let E be an arbitrary spectrum. The
graded group E*(F) admits a ring structure where the multiplication is given
by the composition of morphisms E — X’E. In greater detail, if a € F(E)
and b € E™(E) then ab is given by the morphism E % $IF 2% sin+dp,
Furthermore, given a € E4(E) and z € EF(X), X € .7, we define
a(r) € EE(X) to be the element which is represented by the morphism

N
X & wkp 2% sk+d g So. we have a homomorphism
E*'(E)® E*(X) — E*(X), a® x — a(x),

which turns E*(X) into an E*(E)-module, and this module structure is nat-
ural in X.

Look at this from another point of view. Given a cohomology theory
{h™, 5"} on ., we define an h-operation (of degree d) to be a family a =

{a™ : h"(=) — hnFtd(=)}2 _ _ of natural transformations such that a"s" =
57 tdgnt1 Clearly, every operation a is completely determined by a’.

Now, by the above, for every spectrum E each element a € FE4(E)
yields an operation (of degree d). Moreover, by the Yoneda Lemma I.1.5,
the set E*(F) is in a canonical bijective correspondence with the set of all
E-operations. For this reason, E*(E) is called the ring of E-operations.

Finally, it makes sense to remark that E*(FE) acts also on F,(X). Namely,
given a € E4(X) and 2 € Ey(X), we define a(z) € Ej_q(X) to be the element

d
which is represented by the morphism S*¥ % X A E RN @

4. Homotopy Properties of Spectra

In this section we develop the homotopy theory of spectra. Namely, we dis-
cuss Postnikov towers, Cartan killing constructions, Serre theory of classes
of abelian group, etc., for spectra. (We assume that the reader knows these
notions in the case of spaces; otherwise he can find them e.g. in Mosher—
Tangora [1].) Closely related material is exposed in Dold [3] and Margolis [1].

4.1. Lemma. (i) Let X, E be two spectra. Suppose that EF(X}) = 0 =
E*1(X},) for every k. Then E°(X) = 0.

(i) Let E be a spectrum with m;(E) = 0 for j < n+1. Let X be a spectrum
with X(™ = X. Then E°(X) = 0.
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(iii) Let E be a spectrum and Y be a pointed CW-space. If EO(Y(T)) =
0= Eil(Y(T)) for every r then E°(Y) =0."

(iv) Let E be a spectrum with m;(E) =0 for j > n. Let X be a spectrum
with 7;(X) = 0 for i < n. Then E°(X) = 0.

Proof. (i) By (1.24) and 1.16(i),
EM(1eu(X)) = B¥(154(X)) = E*(Tev (X) N 70a(X)) = 0 for k=0, —1.

Hence, by 1.22 (or 3.12(iii)), E°(7(X)) = 0, and thus E°(X) = 0 because
T(X) ~ X.
(ii) We can assume that F is an Q-spectrum, and so m;(Ey) = 0 for
i < k+mn+ 1. By obstruction theory, [Xk, Ex] = 0 = [X, Ex—1] since X}, =
X So, E¥(X,) = 0 = EF=1(X}) for every k. Thus, by (i), E°(X) = 0.
(ili) Consider the reduced telescope T of the sequence

iYW cy D)
We have
E*(Ty) = E¥(Toq) = E*(Toy N Thq) =0 for k=0, —1,

and T = Tuy V Toq. So, by 3.12(iii), E°(T) = 0. Thus, E°(Y) = 0 because
T~Y.

(iv) Assume that F and X are Q-spectra. Fix any k. Then X,g ~
and m;(Ey) = 0 for ¢ > k 4 n, and so, by obstruction theory, [Xj, E;] = 0
[Xk, Ex—1]. Now, we can finish the proof just as in case (ii).

k+n)

*

O

4.2. Lemma. A spectrum E is equivalent to a spectrum F with F(™ = x if
and only if m;(E) =0 fori < n.

Proof. The “only if” part is trivial. So, let 7;(E) = 0 for ¢ < n. Assuming
E to be an Q-spectrum, we have ;41 (Ey) = 0 for ¢ < n. Replacing Ej by
a homotopy equivalent CW-complex FEj with (E;)™*) = % we obtain a
CW-prespectrum E’. Now, by 1.19, we can construct a spectral substitute F’
of B/ with F(") = x, O

4.3. Proposition. Let h, be an additive homology theory on . such that
hi(S) = 0 for i < m. Let X be a spectrum such that 7;(X) = 0 for j < n.
Then hi(X)=0 fori <m+n+1.

Proof. Firstly, we prove by induction that h;(X®*) =0fori <m+n+1
and every k. By 4.2, we can assume that X(™ = %, and so hi(X(”)) =0
for every i. Fix k > n and suppose by induction that h;(X®) = 0 for
i <m +n+ 1. Then the exactness of the sequence

7 This holds for a spectrum Y also, see I11.4.18 below.
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hi(X®)) — by (X DY - @h;(SFHL)

(induced by the cofiber sequence X*) < X(*+1) — vGk+1) implies that
hi(X*+HD)) =0 for i <m +n+1.

Now, every finite subspectrum of X is contained in some X (%), and so, by
3.20(il), hi(X) = lim, {h;(X™)}. Thus, h;i(X) =0 for i <m+n + 1. O

4.4. Definition. (a) A spectrum (space) E is called n-connected if ;(E) = 0
for i < n. A spectrum is called connected if it is (—1)-connected. A spectrum
is called bounded below if it is n-connected for some n € Z.

(b) A morphism ¢ : E — F of spectra (resp. map of spaces) is called
n-connected, or an n-equivalence, if its cone C'p is (n+ 1)-connected. In other
words, ¢ : m;(E) — m;(F') is an isomorphism for ¢ < n and an epimorphism
fort =n+1.

4.5. Proposition. (i) If E is m-connected and F is n-connected, then EAF
is (m 4+ n 4+ 1)-connected.

(ii) If E is m-connected and ¢ : F' — G is an n-equivalence, then 1g A :
EANF — EANG is an (m+ n+ 1)-equivalence.

(iii) Given integers N, k, let f : E — F be a map of spectra such that
fn : En — F, is an (n + k)-equivalence for every n > N. Then f is a
k-equivalence.

(iv) For every spectrum E and every k the inclusion E®) c Eis a k-
equivalence.

Proof. (i) By 4.3, E;(F) =0fori <m+n+1, ie, m(EAF) =0 for
i1 <m+n+1.
(ii) By (i), C(dg A ¢) = E A Cyp is (m + n + 2)-connected since Cyp is
(n + 1)-connected.
(iii) The homomorphism f, : m;(E) — m;(F) has the form
7T1(E) = nl_)Il;lQ 7Ti+n(En) — nh—>H;o 7Ti+n(Fn) = ﬂ'i(F).

(iv) By 1.3.41, for every space X the inclusion X *) € X is a k-equivalence.
Now the result follows from (iii) and 1.5(i). O

4.6. Corollary. Let o : S — FE be a 0-equivalence, and let X be a spectrum.
If m(X) =0 for i <m, then E;(X) =0 fori <n and o, : m(X) — Ep(X)

s an isomorphism for k =n and is an epimorphism for k =n+ 1.

Proof. The morphism a Alx : SAX — E A X is an n-equivalence. [

For every spectrum X we have the Hurewicz homomorphism h = ¢, :
7T«(X) — H.(X), where ¢ : S — HZ yields the unit 1 € Z = mo(HZ).
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4.7. Corollary. (i) Let X be a spectrum with m;(X) = 0 for i < n. Then
H;(X) =0 fori<mn, and the Hurewicz homomorphism h : m(X) — Hp(X)
is an isomorphism for k = n and an epimorphism for k=n+ 1.

(i) If X is a spectrum bounded below and such that H;(X) =0 for i <n,
then m;(X) =0 for i <mn.

(iii) Let E, F be two spectra bounded below. If ¢ : E — F is a morphism
such that @, : H,(E) — H,(F) is an isomorphism, then ¢ is an equivalence.

Proof. (i) This follows from 4.6, because the morphism ¢ : S — HZ is a
0-equivalence.

(i) This follows from (i).

(iii) The cone Cyp is bounded below, and H.(Cy) = 0. So, by (i),
m(Cp) = 0. Thus, ¢, : m(E) — 7 (X) is an isomorphism. O

4.8. Remark. The boundedness below in 4.7(ii) is essential. Indeed, given a
prime p and a natural number n, consider the spectrum K (n) of the corre-
sponding Morava K-theory, see Ch. IX, §7. By IX.7.27, we have H,(K(n)) =
0, while 7. (K (n)) # 0.

4.9. Theorem (the Universal Coefficient Theorem). For every spectrum E
and every abelian group G, there are exact sequences

0 — Ext(H,—1(E),G) —» H"(F;G) — Hom(H,(F),G) — 0

and

0— H,(E)®G — H,(E;G) — Tor(H,-1(F),G) — 0.
In particular, Ho(H(A); B) = A® B, H°(H(A); B) = Hom(A4, B).

Proof. We prove the first formula in detail and indicate a proof of the
second one. Given a morphism ¢ : E — X" HG, consider the homomorphism

¢yt Ho(E) — Ho(S"HG) = Ho(HG) = G
(the last equality holds by 4.7(i)). In this way we get a homomorphism
ev: H"(E;G) —» Hom(H,(E),G), ev(y)= px.

Firstly, if G is an injective group I, then Hom(H,(—), ) is an exact functor,
and so Hom(H.(X),I) is an additive cohomology theory on .. Thus, by
3.19(iii), ev is an isomorphism for every X € . because it is for X = S.

Given an arbitrary G, there is an exact sequence 0 — G — | R
with injective I, J. It yields an exact sequence

L B — BB G) — HY(BS D) L HY (B ) = -

i.e., the exact sequence
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0 — Coker f,,-1 — H"(E;G) — Ker f,, — 0.
On the other hand, for every m, there is an exact sequence
0 — Hom(H,,(E),G) — Hom(H,,(E),I) LR Hom(H (E),J)
— Ext(Hm(E),G) —
and we have the commutative diagram

o™, 1) I HvE )

Hom(H, (E), ) —*— Hom(Hn(E), J)

where every homomorphism ev is an isomorphism. Thus,
Ker f,, = Hom(H,(F),G), Coker f,_1 = Ext(H,_1(E),G),

and we get the desired formula.
We prove the second formula. By the above, we have

HY(Z A HG;G) = Hom(Hy(HZ A HG); G) = Hom(mo(HZ A HG); G)
= Hom(Hy(HG),G) = Hom(m(HG), G) = Hom(G, G).

In particular, the unit 1¢ € Hom(G,G) corresponds to an element m €
H°(HZ N HG; @), i.e., to a morphism m : HZ A HG — HG. Given two
morphisms f : S® — EAHZ and g : S° — HG, consider the morphism

m(f,g): S L% EAHZ AN HG ™ E A HG.
We define a natural homomorphism
¢: Hi(E)® G — Ho(E;G), o([fl® [9]) = [m(f,9)l, E€..

If G is a flat (e.g., free) abelian group then there is an additive homology
theory in the domain, and thus, by 3.19(iii), ¢ is an isomorphism. Given an
arbitrary G, there is an exact sequence 0 — R — F — G — 0 with free
abelian R, F', and the proof can be completed as in the previous case. O

4.10. Proposition. For every ring R the spectrum HR admits a ring struc-
ture p : HRAHR — HR, v : S — R such that uP*P* : HO(pt) ® H(pt) —
HO(pt) coincides with the multiplication R ® R — R.

Proof. Since HR and HR A HR are connected,

Ho(HRANHR) =ng(HRAN HR) = Hy(HR; R) = Hy(HR) ® R
=m(HR)® R=R®R.
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Hence, by 4.9,
H°(HRA HR; R) = Hom(Ho(HR A HR), R) = Hom(R ® R, R).

Thus, the multiplication R ® R — R yields a pairing p: HRAHR — HR.
Furthermore, the unit 1 € R = mp(R) yields a morphism ¢ : S — R, and it is
easy to see that (HR, u,¢) is a ring spectrum. O

In particular, for every pair of spectra F, F' we have the homomorphisms
peF: Ho(E; R) @ Ho(F; R) — Ho (E N F; R)

and
pBF . H*(EB;R) ® H*(F;R) — H*(E A F; R).

4.11. Theorem (the Kiinneth Theorem). Let k be a field, and let E, F be a
pair of spectra.
(i) The homomorphism

per Ho(E k) @ Ho(Fi k) — Ho (E A F3 k)
is an isomorphism. In particular,

Ho,(EAF;k) = > Hi(E;k) @ Hi(F;k).
i+j=n

(ii) Assume that E is bounded below and F has finite type. Then the
homomorphism

pP B (B k) @ H*(F; k) — H*(E A F; k)
is an isomorphism. In particular,

H™(EAF;k)= Y H'(E;k) @ H (F; k).
1+j=n

Proof. (i) Fixing E and considering I as indeterminate, we see that pup
is a morphism of additive homology theories on ., and so, by 3.19(iii), it is
an isomorphism.

(ii) Below H*(—) denotes H*(—; k). Let i,, : ™) — F be the inclusion
of the skeleton. Clearly, for every j there exists N such that i, : H/(F) —
HI(FW)) is an isomorphism. Furthermore, since F is bounded below, for
every n there existts N such that the morphism 1z Aiy : EA FN) L EAF
is an n-equivalence, see 4.5, and so (1g Ain)*: H"(EAF) — H"(EAFW))
is an isomorphism. Now, since every skeleton of F' is finite, it suffices to
prove the theorem for finite spectra F. Now, fixing E and considering F' as
indeterminate, we see that ¥ is a morphism of homology theories on 7,
and so, by 3.19(i), it is an isomorphism for every finite F. a
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We need 4.11 only, but, of course, there is a Kiinneth exact sequence

0— Y Hi(E;R)®gH;(F;R) — Hn(E A F;R)
i+j=n

- Z Tor®(H,;(E; R), H;(F; R)) —

i+j=n—1

for every pair of spectra E, F' and every ring R of homological dimension 1
(e.g., for a principal ideal domain R), see e.g. Margolis [1]. Moreover, under
suitable conditions there is a spectral sequence

Tor,(H.(E; R), H.(F; R)) = H.(E A F; R)
for every ring R, see e.g. Adams [5].

4.12. Definition. A Postnikov tower of a spectrum E is a homotopy com-
mutative diagram of spectra

E E E

Tn+1J( TnJ( TnflJ/

+—— By — By —2— By —— -+,

where for every n we have:

(i) mi(Eemy) = 0 for i > n,

(i) (1)« : i (E) — m3(E(y)) is an isomorphism for i < n.

The spectrum FE(,) is called the n-coskeleton, or the Postnikov n-stage, of
E. We prove below that F(,) is uniquely determined by E up to equivalence.

4.13. Theorem. Every spectrum E has a Postnikov tower.

Proof. Step 1. Fix an integer n. We construct a sequence
E(n,0) C---C E(n,i) C E(n,i+1) C

of spectra with the following properties:
(1) E(n,0)=F
(2) m(E(n,i)) =0for n <k <n+i;
(3) The homomorphism 7 (E(n,%)) — 7 (E(n,i+ 1)) induced by the
inclusion
E(n,i) C E(n,i+1)

is an isomorphism for k < n.

We do this by induction on 4. The case ¢ = 0 is clear. Suppose that there

is a finite sequence
E(n,0) C--- C E(n,i);
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we construct the required inclusion E(n,i) C E(n,i + 1). Let {zx} be a
family of generators of m,111(FE(n,i)), and let ) be represented by a map
fr: ST — E(n,i). Consider the morphism

f . vSZ\H—i-ﬁ-l N E,f|5;+i+1 _ f,\,
and let E(n,i) C E(n,i+1) be the canonical inclusion in the cofiber sequence
vttt L B(n iy € E(nyi+1),

ie., BE(n,i+1)=Cf.Since fi: mptit1(VSYT) — 74001 (E) is epic, con-
dition (2) holds, while (1) and (3) hold obviously. The induction is confirmed.
Step 2. We set E(,,) := UiZqE(n,i) and define 7, : E = E(n,0) — E(,
to be the inclusion. It is clear that 4.12(i) and 4.12(ii) hold.
Step 3. We construct py, : E(,) — E(,_1) such that p,7, ~ 7,_1. Consider
the commutative diagram

q Tn
F E B

q Tn—1
F E En_1)

where the top line is a cofiber sequence. The exactness of the sequence

m(F) 25 7 (B) 7 1 (By)
implies that 7;(F) = 0 for i < n. Hence, by 4.1(iv), [F, E,—1)] = 0. In
particular, 7,_1¢ is inessential, and so there is p, : E(;) — E—1) with
PnTn = Tn—1. O

4.14. Definition. A morphism q = ¢ : F — Eis called an (n—1)-connective
covering of a spectrum E if m;(F) = 0 for i < n and g, : m;(F) — m;(E) is an
isomorphism for ¢ > n. A connective covering is a (—1)-connective covering.

Every spectrum F as in 4.14 is called an (n — 1)-killing spectrum of E
and denoted by F|n. We prove below that F|n is uniquely determined by F
up to equivalence.

4.15. Theorem. For every spectrum E and every n there exists an n-
connective covering.

Proof. (In fact, it was already proved in 4.13.) Consider the sequence

(Tn)*

7.(F) 25 7. (E)
induced by a cofiber sequence F & E Eyny. It is clear that 7;(F) = 0 for
i < n and that g, : m(F) — mx(E) is an isomorphism for every i > n, i.e.,
q : F' — E is an n-connective covering. g
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So, we have a cofiber sequence E|(n +1) — E — E,).

4.16. Theorem. Let ¢ = qf : Fln — F be an (n — 1)-connective covering of
a spectrum F, and let 6 : D — F be a morphism from an (n — 1)-connected
spectrum D. Then there exists 0:D — F|n with qé =40, and 0 is unique up
to homotopy. Moreover, if 0 ~ 0" then 0~ 0. Finally, for every morphism
¢ : E — F there exists a morphism p|n : Eln — F|n such that the diagram

E|n LN Fin

qfl Jqf

E . F

commutes up to homotopy, and such a morphism ¢|n is unique up to homo-
topy. In particular, every two (n — 1)-killing spectra of E are equivalent.

Proof. By 4.1(iv), [D,E_IF(n_l)] =0 = [D, F(,—1)]. Now, the exactness
of the sequence

[D, 57 Fiu—1)] = [D, Fln] — [D, F] = [D, Fiy—1)]

implies the existence and the uniqueness of 6 and the assertion about homo-
topy. To prove the second assertion, put D = E|n, 0 = oq¢Z, and set ¢|n = 0.
To prove the uniqueness of E|n, put ¢ = 1g. ([l

4.17. Theorem. Let 0 : D — F be a morphism of spectra, where m;(F) =0
for i > n. Then there exists 0 : D,y — F with 97',1? =0, and 0 is unique up
to homotopy. Moreover, if 6 ~ 0" then 6 ~ 0'. Finally, for every morphism
p: B — F there exists a morphism @(n) : E(,) — F() such that the diagram

E ., F

E F
Tn Tn

P(n)
By ——— F)

commutes up to homotopy, and such a morphism ¢y is unique up to homo-
topy. In particular, every two n-coskeletons of a spectrum are equivalent.

Proof. By 4.1(iv), [E(D|n+1), F] = 0 = [D|n+ 1, F], so, the exactness of
the sequence

()"

[E(D|n + 1), F] = [Dey, F] —— [D, F] — [D|n + 1, F]

implies the existence and the uniqueness of #. Now the proof can be completed
as in 4.16. (I
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4.18. Corollary (naturality and uniqueness of Postnikov towers). Let ¢ :
E — F be a morphism of spectra, and let

E E E
Pn
— Emiy Em) Epo1y ——
and
F F F
qn
C T oy Fn) Fn1y —— =

be Postnikov towers of E and F. Then there exist morphisms @) @ Eny —
Finy such that the diagrams

E %, F By —o Fu
Tnl anl pnl lqn
@(n) Lp(n—l)

Ewy —— Fuy En-1y —— Fa-

commute up to homotopy.

Proof. By 4.17, there exists ¢(,) such that the left diagram commutes,
and this ¢(,,) is unique up to homotopy. Since the Postnikov tower of F(,) is
a segment of the Postnikov tower of E, one can find ¢(,—1) : Ei—1) — Fn_1)
with ¥, _1)Pn = gnp(n)- But then v, _1)Th—1 = 0n—1¢, and hence, again by
4.17, w(nfl) ~ P(n—1)- 0

Consider a Postnikov tower of a spectrum FE. It is easy to see that the
cone of the morphism p,, : E¢,) — E(,_1) is the graded Eilenberg-Mac Lane
spectrum X" H (7, (E)). So, we have a cofiber sequence

Pn : E(n) £ E(n—l) = EnJrlH(Trn(E))

4.19. Definition. The element ,, € H""(E(,_1); m,(E)) is called the n-th
Postnikov invariant of E.

To be precise, the morphism k,, is defined up to self-equivalence of the spectra
S H (7, (E)) and E(n_1), i.e., the real invariant is the corresponding orbit in
Hrtl (E(n_l); mn(E)). However, the above terminology is commonly accepted and
does not lead to confusion.

4.20. Proposition. The Postnikov invariant k, is trivial iff p, admits a
homotopy right inverse morphism
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s:Em-_1) = Ewn), pas~1g, .

Furthermore, in this case B,y ~ E,_1)V E"H(m,(E)).

Proof. This follows from 1.17. O

Now we apply the Serre class theory (see Serre [1], Mosher—Tangora [1])
to spectra. Cf. also Margolis [1].

4.21. Definition. (a) A Serre class is a family of abelian groups € satisfying
the following axiom: If

0—-A—-A—-4">0

is a short exact sequence, then A is in € iff both A’ and A” are in C.

(b) Let H(A) denote the Eilenberg—Mac Lane spectrum of an abelian
group A. A Serre class is called stable if it satisfies the following axiom: If
A €@, then H;(H(A)) € € for every i.

(¢) A homomorphism f : A — B of abelian groups is called a €-
monomorphism if Ker f € €, and f is called a C-epimorphism if Coker f € C.
Furthermore, f is called a C-isomorphism if Ker f € € and Coker f € C.

Notice that if € is a Serre class and A — B — C is an exact sequence of
abelian groups then B € € provided A, C € C.

Recall that the Five Lemma mod € holds. This means that the Five
Lemma remains valid if we replace the words “monomorphism, epimor-
phism, isomorphism” by the words “C-monomorphism, €-epimorphism, C-
isomorphism”.

4.22. Proposition. Let € be a Serre class with the following properties:
(i) If A, B € € then A® B €€ and Tor(A, B) € C;
(ii) If A €€ then H;(K(A,1)) €€ for every i > 0.

Then @€ is a stable Serre class.

Here K(A,1) is the Eilenberg-Mac Lane space, m (K(A,1)) = A and
mi(K(A,1)) =0 fori > 1.

Proof. Let € be a class in question. Serre [1] proved the following theorem
(the so-called Hurewicz Theorem mod €): Given a simply connected space
X, suppose that 7;(X) € € for every i. Then H;(X) € € for every ¢ > 0.

Now, let A € €. Then m;(K(A,n)) €€ for every ¢ and every n > 1, and
so H;(K(A,n)) € € for every i > 0 and every n > 0. It remains to note that
H;(H(A)) = Hiy+n(K (A, N)) for N large enough. |

4.23. Proposition. (i) The class of all finite abelian groups is a stable Serre
class.
(ii) The class of all finitely generated abelian groups is a stable Serre class.
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(iii) Given a prime p, let C be the class of all abelian groups having p-
primary exponents (i.e., for every A € € there ewists k such that p*A = 0).
Then € is a stable Serre class.

(iv) Given a prime p, the class of all finite p-primary abelian groups is a
stable Serre class.

Proof. (1) It is well known that H;(K(Z/m,1)) is Z/m for i odd and 0 for
i even, i > 0, see e.g. Mac Lane [2]. Hence, because of the Kiinneth Theorem,
H;(K(A,1)),i> 0, is a finite abelian group if A is. Now apply 4.22.

(ii) This can be proved similarly to (i), with the additional remark that
K(Z,1) is the circle S*.

(iii) It suffices to prove that H;(H(A)) € € whenever A € €. By 4.9,
[H(A),H(A)] = Hom(A, A) for every abelian group A. Given m € Z, let
m: H(A) — H(A) be a morphism which corresponds to the element mly €
Hom(A, A). Tt is easy to see that, for every i,

my : Hi(H(A)) — H;(H(A))

is the multiplication by m. Now, let A € € have exponent p¥. Then the
morphism p* : H(A) — H(A) is inessential, and so (p¥). : H.(H(A)) —
H.(H(A)) is the zero homomorphism. Thus, for every i, p* H;(H(A)) = 0,
i.e., HZ(H(A)) €C.

(iv) This class is the intersection of the classes from (i) and (iii). O

4.24. Theorem. Let € be a stable Serre class. Let E be a spectrum bounded
below such that m;(E) €€ for i < n. Then H;(E) €€ for i < n, and the
Hurewicz homomorphism h : m,(E) — Hp(E) is a C-isomorphism. In par-
ticular, 7;(E) € € for every i iff H;(E) € € for every i provided E is bounded
below.

Proof. Let m, denote m;(F), and let E, denote E(yy. Fix any m such
that m; = 0 for ¢« < m. We can assume that m < n, and so Hi(E,,) =
Hy(H(mpy,)) € € for all k. For every s, there is a cofiber sequence ¥ H (7s) —
FEs — FEs_1. Now, using the exactness of the sequence

= Hy(3°H(7s)) — Hy(Es) — Hp(Es—1) — -+ -,

one can prove by induction on s (starting with s = m) that Hi(Fs) € € for
s < n and every k. Furthermore, for ¢ < n we have an exact sequence

0= Hi(S"H(m)) — Hi(En) — Hi(Ep—1) — Hi—1(S"H(m,)) =0

(the first and the last groups are trivial by 4.7(i)). So, H;(E,) € € for i < n.
Finally, for ¢ < n the exactness of the sequence

0=Hi(E|(n+1)) = Hi(E) — Hi(Ey)

implies that H;(E) € € for ¢ < n.
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We prove that h : m,(FE) — Hy,(F) is a C-isomorphism. Notice that
mi(E|(n+1)) = 0= H;(E|(n+1)) for i <n, and so we have the commutative
diagram

n(E) —— 7 (Ey)

hl R’
where the horizontal arrows are isomorphisms. Hence, it suffices to prove that
B (Ey) — Hy(Ey) is a C-isomorphism. The cofiber sequence X" H (,,) —
E, — E,_; induces the commutative diagram with exact rows (where the
vertical arrows are the Hurewicz homomorphisms):

0 _ Ty — m(En) — 0 —— 0

. I
Hn+1(En71) — Hn(EnH(Wn)) - Hn(En) - Hn(Enfl) — 0.

Here as and «j are isomorphisms. Furthermore, since H,.(F,-1) €€, we
conclude that a; and a4 are C-isomorphisms. Thus, a3 is a C-isomorphism
because of the Five Lemma mod C. O

4.25. Proposition. (i) Let C be a Serre class of abelian groups. If E is a
spectrum such that m;(E) € € for every i then E;(X) € € and E'(X) € € for
every finite spectrum X and all 1.

(ii) Let E be a spectrum such that all the groups m;(E) are finite. Then
the groups E*(X) and E;(X) are finite for every finite spectrum X and all i.

(iii) Let R be a commutative Noetherian ring, and let E be a spectrum
such that E;(X) and E*(X) are natural in X R-modules. Suppose that each
group 7;(E) is a finitely generated R-module. Then E;(X), as well as B*(X),
is a finitely generated R-module for every finite spectrum X and all 1.

Proof. (i) By duality, it suffices to prove only that E;(X) € € for every
finite spectrum X . Now, because of 1.5(iii), it suffices to prove that EZ(X) ee
for every finite C'W-complex X. Clearly, this holds for X = pt. Suppose by
induction that E;(X) € € whenever X has < n cells. Consider a CTW-complex
Y which has n + 1 cells. Then Y = X U e, where X has n cells and e is an
attached cell. We have the exact sequence

Ei(X) = Ei(Y) — Ei(S")

where the outside groups are in €. Thus, El(X ) € €. The induction is con-
firmed.

(ii) This follows from (i) and 4.23(i).

(iii) Let A — B — C be an exact sequence of R-modules. Since R is
Noetherian, B is finitely generated over R provided A and C are. Now the
proof can be completed similarly to (i). a
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4.26. Proposition. (i) If a spectrum X has finite type then all the groups
mi(X) are finitely generated.

(i) If X is a spectrum bounded below and such that all the groups m;(X)
are finitely generated then X is equivalent to a spectrum of finite type.

Proof. (i) Since m;(X) = m(XWN)) for N > i, it suffices to prove the
proposition for finite spectra X. But this follows from 4.25(i), since, by the
Serre theorem, all the groups m;(S) are finitely generated (and even finite for
i > 0, see Serre [1], Mosher—Tangora [1]).

(ii) We construct a sequence --- CY(0) C---CY(n)CY(n+1)C---
of spectra and morphisms f,, : Y(n) — X with the following properties:

(1) Each spectrum Y (n) is finite;

(2) Each morphism f, : Y (n) — X is an n-equivalence;

(3) fusa[Y (1) = fu.

Since X is bounded below, there is k such that m;(X) = 0 for ¢ < k. We
put Y(k — 1) = x. Now, suppose by induction that we have constructed a
finite spectrum Y (n) and an n-equivalence f, : Y(n) — X. Then (f5)« :
Tn+1 (Y (n)) — mp41(X) is an epimorphism. Note that, by (i), the group
K, = Ker(f,). is finitely generated, and choose generators aq, ..., a, of
K, Let SZ‘H,@' =1,...,m, be a copy of the spectrum S™**. Consider a map
g : VI, SM — Y (n) such that g|SI"! represents a;, and set Z := C(g).
Then f,, can be extended to a morphism h : Z — X and h, : m;(Z) — m;(X)
is an isomorphism for ¢ < n+1. Now, let b1,... , b be generators of m,42(X).
We set Y(n + 1) :== ZV (Vi_;SP*?) and define f,41 : Y(n +1) — X by
requiring fn41|Y(n) = f, and f,41|S7""? represents b;. The induction is
confirmed.

Now, we set Y :=JY (n) and define f : Y — X by setting f|Y(n) = fn.
Clearly, f is an equivalence, and Y has finite type. O

Now we explain how to equip connective coverings and Postnikov towers
of ring spectra with ring structures.

4.27. Lemma. For every pair of spectra E, F' and every pair of integers m,n,
there exists a morphism o @ Elm A F|n — (E A F)|(m + n) such that the
diagram

Elm A Fln ™" (E A F)|(m+n)

qm \qn J{ gm+n J{

ENFE ENFE

commutes up to homotopy (here the q’s are the connective coverings). Fur-
thermore, such a morphism « is unique up to homotopy.

Proof. By 4.5(1), Elm A F|n is (m + n — 1)-connected. Now apply 4.16.
0
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4.28. Theorem.

(i) If E is a ring spectrum, then E|0 admits a ring structure such that the
(=1)-connective covering q : E|0 — E is a ring morphism.

(ii) Let ¢ : D — E be a ring morphism of ring spectra. Equip D|0 and E|0
with any ring structures as in (i). Then ¢|0 : D|0 — E|0 is a ring morphism.
In particular, E|0 admits only one (up to ring equivalence) ring structure
such that q : E|0 — E is a ring morphism.

(iil) Let F be an E-module spectrum with the pairing (module structure)
m : EANF — F. Then there exists a pairing m : E|0 A F|0 — F|0 turning
F|0 into a E|0-module spectrum such that the diagram

ElOAFl0 —— F|0

qUEAqfl lqév
EAF ™. F

commutes up to homotopy, and this morphism m is unique up to homotopy.
(iv) If E is a commutative ring spectrum, then so is E|0.

Proof. (i) Firstly, the unit ¢ : S — E admits a ¢-lifting 7:=10: S — E|0
because n < 0. Furthermore, let : EA EF — E be the multiplication on F.
Consider the following diagram where qg is the —1-connective covering and
O s in 4.27:

El0AED —2 (EAE)0 " Bl

! ! !

EANE EANE " . E

We prove that the pairing @ = (p]0) i, is associative. Indeed, the mor-
phisms fio(1 A f)ea and po(r A1) : E|0 A E|0 A E|0 — E|0 (where
a: (E|0AE|0)AE|0— E|0OA(E|0A E|0) is as in 2.1(ii)) are homotopic
because they cover the homotopic morphisms po(1 A p)ea and po(p A 1) re-
spectively. By the above, (F|0, 1,7) is a ring spectrum and ¢ : E|0 — F is a
ring morphism.

(ii) Let u”, u® be the multiplications on D, E respectively, let ', i be
the multiplications (as in (i)) on D|0, E|0 respectively, and let ¢ : D|0 — D,
q? : E|0 — E be the (—1)-connective coverings. We must prove that the
diagram

Do A Djo A2 gio A B0
'u‘/l 'u‘//l
D0 20 El0

commutes up to homotopy. By 4.16, it suffices to prove that ¢ 1"’ (|0Ap|0) ~
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" (pl0)p'. But

a" 1" (00 A ]0) = 1 (¢ A q®) (9|0 A 9l0) =~ 1P (0 A ) (g” A gP)
~ o (qP N gP) ~ pqP ' ~ " (p|0)u.
111 1S can be prove as (1) was if one considers the diagram
iii) Thi b d as (i if iders the diag

EloaFlo —2— (EAFR)0 % Flo

| | |

EAF EAF . F.

TE|0

(iv) This holds because the morphism FE|0 A E|0 — E|0 A E|0 £ E|0

covers the morphism EAE —% EAE X E. But purg ~ p, and so ATEl0 2 fi-
O

4.29. Lemma. For every pair of connected spectra E, F the morphism
(T A3 )y (B AF) )y = (Eny A Finy) ()

s an equivalence.

Proof. By 2.1(vi), we have a cofiber sequence

EA(Fl(n+1) = EAF 270 B A .
By 4.5(1), E A (F|(n + 1)) is n-connected. So,
AATE), i m(EANF) — m(EA Finy)
is an isomorphism for ¢ < n. Similarly,
(TF AL)w t mi(E A Fly) = mi(Ey A Fiy)

is an isomorphism for i < n. But (77 A7) ) = (7 A1)e(1AT])) O

(n)
4.30. Theorem. Let E = (E, pu,t) be a connected ring spectrum. Fiz any
n > 0.

(i) Eny admits a ring structure such that 1, : E — E(y, is a ring mor-
phism.

(ii) Let ¢ : D — E be a ring morphism of ring spectra. Equip D,y and
Eny with any ring structures as in (i). Then @) @ D,y — Ey is a ring
morphism. In particular, E,) admits only one (up to ring equivalence) ring
structure such that T, : E —: E,) is a ring morphism.

(iii) Let F be an E-module spectrum with the pairing (module structure)
m: EANF — F. Then there exists a pairing m : Eu,y A Fny — F(yny turning
Fiyy into a E(,)-module spectrum and such that the diagram
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By N Fny —— F)

TE/\TFl lTF
ENF 2 F

commutes up to homotopy, and this morphism m is unique up to homotopy.
(iv) If E is a commutative ring spectrum then so is Ey).

Proof. Define i : E¢,) A E(,y — E(y) to be the composition

Tn h
E(n) A By == (Bm) A Em))(n) = (B A E)(n) = Eny,

where h is an equivalence inverse to that of 4.29. Furthermore, define ¢ :=
Tut + S — Eyy. Following 4.28(i), one can prove that (E(,), 1) is a ring
spectrum and that 7, is a ring morphism. All the other assertions can be
proved similarly to those of 4.28. (]

4.31. Remark. The connectedness of E in 4.30 cannot be omitted or re-
placed by the boundedness below of E. Indeed, given a prime p and a natu-
ral number n, consider the spectrum K (n) of the corresponding Morava K-
theory, see Ch. IX, §7. Let H(—) denote H(—;Z/p). We prove in IX.7.27(ii)
that Ho(K(n)(o)) = 0 while H.(K(n)q)) # 0. But, for every ring spectrum
E with Hyo(E) = 0 we have H,(E) = 0 for all n. Indeed, the homomorphism

70(S) ® Ho(E) “E% 70(E) @ Ho(E) 225 Hy(E) © H,(E)

22, H(B)
is an isomorphism, and hence Ho(E) = 0 implies H,(E) = 0. Thus, K (n) ) is
not a ring spectrum. Similarly, considering K (n)|N instead of K (n), N << 0,
one obtains a counterexample for a spectrum E bounded below.

4.32. Theorem-Definition. For every abelian group A, there exists a spec-
trum M (A) with the following properties:

(i) m(M(A)) =0 fori<0;

(ii) mo(M(A)) = A = Ho(M(A));

(iii) H;(M(A)) =0 for i #0.

Moreover, these properties determine M(A) uniquely up to equivalence.
This spectrum M (A) is called the Moore spectrum of the abelian group A.

Proof. Consider an exact sequence 0 — R — F % A — 0 with free
abelian groups F, R. Let {rg}gep and {f,},er be certain systems of free
abelian generators of R and F', respectively. Let Sg and S, be copies of the
sphere spectrum S. Consider any morphism ¢ : VgepSg — V,erS, such that
©|Sp yields the element i(rg) € F = mo(VyerSy). Such a morphism ¢ exists,
because, by 1.16(i),
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[\/BGBSB,E] = H [Sﬁ,E] and ﬂ-O(\/’yGFS’y) =F
BEB

It is clear that M (R) = VgepSs and M (F) = VyerS+. Now the exactness of
the sequences

- — Hyp1(Cyp) — Hn(VgeSg) — Hn(VyerSy) — Hy(Cp) — - -+
- = 1 (Cp) — 7"'n(\/ﬁeBSﬁ) - Wn(vveFSv) — T (Cp) — -

implies that Cp satisfies (i)—(iii). Thus, we can set M (A) := C.

Now, let N be a spectrum satisfying (i)—(iii). Consider a morphism g :
VyerSy, — N such that g|S,, yields ¢(fy). Then g¢|Ss is inessential for every
(B € B, and so, by 1.16(i), g is inessential. Hence, there exists f : M(A) =
Cyp — N with g ~ f1, where ¥ : V,erSy — C¢ is the canonical morphism.
Clearly, fi : H.(M(A)) — H.(N) is an isomorphism, and thus, by 4.7(iii), f
is an equivalence. O

4.33. Proposition. Let E be a spectrum, and let h : A — 7,(E) be a
homomorphism from an abelian group A. Then there exists a morphism [ :

S"M(A) — E such that h = f, : mp (X" M(A)) — 7, (E).

Proof. We use the notation of 4.32. Consider a morphism g : Vyer S} — F
such that g[SZ yields hq(fy). Since gy is inessential, there exists f :
S"M(A) — E with g ~ f1, and, clearly, h = f.. |

4.34. Remark. Given a spectrum F' and a spectrum (or a space) X, we can
consider the exact couple (given by the cofiber sequences Fi,,y — F(,—1) —
S H (7)), n € Z)

[X; F(n)]* — [Xﬂ F(n—l)]*

J i
(X, S H (7)) [X, ST H ()],

where 7, = m,(F) and degk = —1 (cf. Mosher-Tangora [1], Ch. 14); here
[A, B], := @®,[A, X" B]. This exact couple yields a spectral sequence E*(X)
with EY9(X) = HP(X; F9(S)) = HP(X;m_,), which converges (under cer-
tain conditions) to F*(X). (The diagram above gives us the term FEs.) One
can prove (see Mosher-Tangora [1], Ch. 14) that this spectral sequence coin-
cides with the Atiyah—Hirzebruch spectral sequence. Hence, the differential
et . HP(X;m_,) — HPT"(X;m_4—1) in the Atiyah-Hirzebruch spectral
sequence has the form

k i
[Xv EPH(W*q)] - [Xﬂ Ep-i_qF‘(—q)] — [Xﬂ Ep-i_qF‘(l—q)] e
X, STy gy] e (X, SPROST U ()] = (X, 5P H (g 1))
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Thus, dP? (considered as a higher cohomology operation) is the r-th Post-
nikov invariant of the spectrum F|q. In particular, if F is connected then d?°
is the r-th Postnikov invariant of F'.

§5. Localization

Let @ be the field of rational numbers. Let p be a prime, and let Z[p] be
the subring of Q consisting of all irreducible fractions with denominators
relatively prime to p. The Z[p]-localization of an abelian group A is the ho-
momorphism A — A ® Z[p|, a — a ® 1. The group A ® Z[p] is simpler than
A in a certain sense: for example, it has no g-torsion if (p,q) = 1. On the
other hand, if we know the groups A ® Z[p] for all p then we can obtain
a lot of information about A; for example, if A is finitely generated then
it is completely determined by the groups A ® Z[p], where p runs through
all primes. So, we can describe an abelian group A via descriptions of the
simpler groups A ® Z[p], and this trick is very effective. For example, it is
very convenient to describe the ring H*(HZ) of cohomology operations via
the rings H*(HZ[p|; Z[p]). Also, localization enables us to ignore the torsions
which are irrelevant to a particular problem.

More generally, it makes sense to consider subrings A of Q. In this case
the localization A — A ® A deletes the g-torsion with ¢ € S, where S is the
set of denominators of all irreducible fractions of A.

It is remarkable that the localization can be transferred from algebra to
topology, and, in particular, one can consider the Z[p]-homotopy type of a
space and a spectrum. As usual, not one but several mathematicians (J.F.
Adams, F.P. Peterson) proposed the idea of this transfer, while Serre [1]
asked about developing a C-homotopy types theory (where € is a Serre class of
abelian groups) in 1953. Nevertheless, usually Sullivan is treated as the author
of the theory of localization of topological spaces, because he amplified the
language and theory with useful applications. Localization theory for spaces
is discussed, e.g., in Sullivan [2], Postnikov [1], Hilton—Mislin—Roitberg [1].
Localization theory for spectra is similar (but simpler), and we expose it here,
see also Margolis [1].

Let A be a subring of Q; its additive group is also denoted by A. Let 7
be an abelian group.

5.1. Definition. The homomorphism | = I} : 7 = 7T ® A, a — a® 1 is
called the A-localization of w. The abelian group  is called A-local if | is an
isomorphism. A homomorphism u : m — 7 A-localizes 7 if there exists an
isomorphism v : # ® A — 7 with u = vl.

It is clear that I{ : A — A ® A is an isomorphism. So, 7 ® A is a A-local
group for every abelian group .
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Let ¢ : S — M(A) be the morphism given by the unit 1 € A = wo(M(A)),
where M (A) is the Moore spectrum of A. We set Ej := E A M(A) for every
spectrum FE.

IV

5.2. Definition. The morphism j = j¥ : E=EAS —> EAM(A) = Ex
is called the A-localization of a spectrum E. Furthermore, F is called A-local
if 7 is an equivalence. A morphism f : E — F A-localizes E if there exists an
equivalence g : Ex — F with f = gj.

Sometimes (for simplicity) one says that the A-localization of E is just
the spectrum Fj, keeping in mind the morphism j implicitly.

Given a morphism f : £ — F, we define fo := f Alya) 1 Ea — Fa, and
it is clear that (¢f)a = gafa. So, A-localization is a functor.

5.3. Proposition. If E ER N G is a cofiber sequence of spectra then

E\ ELN Fy 2% Gy is. In particular, C(fa) = (Cf)a for every morphism

f: E — F of spectra.
Proof. This follows from 2.1(vi). O

5.4. Theorem. For every pair of spectra X, E there is an isomorphism
t:(EA)«(X) 2 E(X)®A

which is natural with respect to X and E, and this isomorphism can be chosen
such that the diagram

E.(X) —L— (BA).(X)

| .
E.(X)®A E.(X)®A
commutes. In other words, j. A-localizes E.(X).
Similarly, there is a natural isomorphism t : (Ep)*(X) 2 EX(X)®A, and
this isomorphism can be chosen such that j. : E*(X) — EX(X) A-localizes
E*(X).

Proof. We consider the case of homology only; cohomology can be con-
sidered similarly. Consider an exact sequence 0 — R — F — A — 0, where
R, F are free abelian groups. The cofiber sequence M (R) — M (F) — M(A)
(see the proof of 4.32) induces a cofiber sequence

EAM(R) 2 EANM(F) % EAM(A).

Let {f«} be a free basis of F', and let S, F,, be copies of S, F respectively.
We have M(F') ~ V4Sa, and so, by 2.1(v), EA M(F) ~ V4E,. We define
the isomorphism
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bi (EAM(F)).(X) 2 (VaBa)u(X) 2 @a(B).(X) 25 E(X) 0 F,

where B(z) = 2 ® f, for € (E,)«(X). Consider the following commutative
diagram (where c is defined just as b) with exact rows:

(EAM(R)«(X) ——— (EAM(F)).(X) —— (EAM(A)).(X)

IR

=~ |p
0 - E(X)9R —— EX)8F —— E(X)®A

The bottom row is exact because Tor(A4,A) = 0 for every abelian group
A, see e.g. Bourbaki [3]. So, s is monic, and hence o, is epic. So, there
exists an isomorphism ¢t : (EAM(A))«(X) — E.(X)® A which preserves the
commutativity of the diagram.

In order to construct ¢ with ¢j. = [ we shall assume that there is fo € {fa}
with £(fp) =1 € A. Then there exists a commutative diagram

(SIS YY) o
Ll M(e)l
M(A) M(A),
and the following diagram commutes:

) (INfo)« (1AM (€)).

(EAS).(X (E A M(F)).(X)

l | |

EX) ez Y Bx)eF 2. E(X)9A
Now, tj,. =l because E.(X) = (E A S).(X). O
Below we fix such a natural isomorphism ¢ with ¢j, = [ and use it

without any mention; e.g., the formula (Fj).(X) = E.(X) ® A means
t:(Fp)«(X) — E (X)®A.

5.5. Corollary. There are natural isomorphisms

such that the homomorphisms m;(E) <5 m;(Ey) = m(E) @ A, Hy(E) 2
H;(Ep) & H;(E)®A have the form x — x®1. So, j A-localizes homotopy and
homology groups. In particular, every A-local spectrum has A-local homotopy
and homology groups.
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Proof. We have

)R A=m(E)®A,

Ei(S
~ E;(HZ) ® A = H;(E) ® A. O

Hi(Ey) = (Ea z( )

5.6. Lemma. Let T be any flat abelian group (e.g., T is an additive subgroup
of Q). Then:

(i) Hr AM () ~ H(r @ m) ~ Hr A M(7) for every abelian group w. In
particular, HZ N M (r) ~ Hr.

(ii) M(7) AN M(m) =~ M (T @ ). In particular, M(A) A ( )~ M(A).

(111) If  is a A-local group then the A-localizations j% : H(m) — H(m)a
and jM : M(m) — M (7)s are equivalences. In other words, H(w) and M(m
are A-local spectra.

Proof. (i) If 7 is a free abelian group F with a basis {f,}, then 7 ® F' =
@7, and hence

H(r®F)=H(®aT) 2 Vo HT = (HT) A (Vo Sa) = HT A M(F),
where S, is a copy of S. For arbitrary 7 consider an exact sequence
0—-R—F—->7m—0

with free abelian groups R and F. Then the cofiber sequence M(R) —
M(F) — M (x) induces a cofiber sequence

Hr AM(R) — HTr AM(F) — HTt AN M ().

Since 7 is a flat abelian group, the sequence 0 - T® R —- 7 ® F —
T®m — 0 is exact, and hence we have a cofiber sequence

H(r®R)— H(T®F)— H(t ®).
Thus, we have a homotopy commutative diagram

Hr®R) —— H(ITQ®F) —— H(r®m) — XH(T®R)

| | J=
Hr AM(R) —— HT AM(F) —— HT AM(7m)— S(HT A M(R))

where the rows are long cofiber sequences and «, 3 are equivalences. By
1.13(ii), there exists a morphism H(t ® m) — H(7) A M () preserving the
commutativity of the diagram, and this morphism is an equivalence since it
induces an isomorphism of homotopy groups.

In particular, HZ A M(w) ~ Hn. So, HF AN M(7) ~ H(T ® F) for every
free abelian group F'. As above, we have the homotopy commutative diagram
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Hr®R) —— H(r®F) —— H(r®7n) — XYH(T®R)

| | -

HRAM(7) —— HFAM(1) —— Hrn AM(1)—X(HRA M(7))

where the rows are long cofiber sequences, etc. Thus, H(r7®m) ~ H(m)AM (7).
(ii) We have

H,(M(t)ANM(m)) =m(HZ N (M (1) AM(m))) = m(HZ A M (7)) AN M(7))
=m((Hr) ANM(1)) =m(H(t@m7)) .

This group is 7 ® w for ¢« = 0 and 0 for ¢ # 0. Moreover, by 4.5(i), we have
mi(M (1) A M(mw)) =0 for ¢ < 0. Thus, M(7) AM(7) = M(7r ® 7).
(iii) By 5.5,

jH .7 = m(H(m)) = me(H(m)a) > 7T QA

A-localizes 7, and so jH is an isomorphism since 7 is A-local. Thus, j is
an equivalence. Similarly, jM : 7 = H,(M(7)) — H.(M(7)p) =7 ® A is an
isomorphism, and thus j™ is an equivalence. (I

5.7. Lemma. Let E be an arbitrary spectrum, and let Cj be the cone of the
localization j : E — Ex. Then H*(Cj;7) =0 for every A-local group .

Proof. Firstly, consider the localization ¢ : S — M(A). Set C = Civ. We
prove that ¢* : HY(M(A); w) — H?(S; ) is an isomorphism for all d. Clearly,
both groups are trivial for d # 0, 1. In view of 4.9, the homomorphism ¢* for
d = 0 has the form k* : Hom(A,7) — Hom(Z,w) where k : Z — A is the
inclusion. But k£*is an isomorphism since 7 is A-local. Finally, for d = 1 we
have HY(M (A);7) = Ext(A,n), but Ext(A,7) = 0 for every A-local 7. So,
H*(C;7m) =0.

For arbitrary E we have Cj = E A C. By the above, H*(S" A C;7) =0
for every n. Choose any k € Z. By 4.1(ii), H*(E(™ A C;7) = 0 for m << k.
Considering the cofiber sequences E("~1 — E(") 8" n=m m+1,...,
we obtain by induction that H*(E™ A C; ) =0 for all n.

By 4.5(ii), in A1: E™M AC — EAC is an (n — 1)-equivalence because
in: E™ — Eis. Let X be the cone of i, A 1. We have m(X) =0 for i <n,
and so, by 4.7(i) and 4.9, HY(X;7) = 0 for i < n. Hence, H*(E A C;7) =
H*(E™ A C;7) for n > k. Thus, H*(E A C) = 0. O

5.8. Theorem. (i) For every spectrum E the morphism (j&)a : En — (Ex)a
18 an equivalence. In particular, Ex is A-local.

(ii) If F is a A-local spectrum then j* : [En, F] — [E, F] is an isomor-
phism.
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Proof. (i) Indeed, (j¥)a has the form
15 A NN D EAM(A) — EAM(A) AM(A).

But, by 5.6(iii), j/I\VI(A) is an equivalence.
(ii) Let k be an equivalence inverse to ji". Firstly, given a morphism
: E — F, we construct a morphism g : Ex — F such that go(j¥) = f, i.e.
E—F truct hi Ej — F such that go(j¥) = f, i
(8)*(g) = f. Namely, define g to be the composition Ex LN Fy L F.

Now we prove that such a morphism ¢ is unique up to homotopy. Let
h: Ex — F be such that ho(= f. Then

A oh 22 haojy = hpojy)a = (hojf ) & fa.
Thus, h 2 kofy = g. O

In the first edition of the book I proved the claim 5.8(ii) under the con-
dition that at least one of spactra E, F' is bounded below. I am grateful to
Javier Guttiérez who explained me how to get rid of this condition.

5.9. Corollary. Let E be an arbitrary spectrum, and let F' be a A-local
spectrum.

(i) The morphism f : E — F of spectra A-localizes E iff fi : m(E) —
m(F) A-localizes homotopy groups.

(i1) Suppose that both E,F are bounded below. Then the morphism f :
E — F A-localizes E iff fv : HJ(E) — H.(F) A-localizes homology groups.

Proof. The “only if” part was proved in 5.5, so we shall prove the “if”
part. By 5.8(ii), there exists h : Ex — F with f = hj{. In case (i), hy :
T (Ep) — 7« (F) is an isomorphism. In case (ii), hs : Hi(Ep) — H.(F) is an
isomorphism, and hence, by 4.7(iii), h is an equivalence. |

5.10. Corollary. Let E be a spectrum such that either m;(E) is A-local for
every i, or E is bounded below and H;(E) is A-local for every i. Then E is
a A-local spectrum. In particular, if a spectrum F' is A-local then so are F(,)
and F|n for every n.

Proof. By 5.8(i), E is A-local. By 5.5, j : E — E) A-localizes homotopy
and homology groups. So, j is an equivalence provided m;(E) (resp. H;(F)
for E bounded below) are A-local. O
5.11. Proposition. Let

E E E

7-71.+1J( TTLJ( TnilJ{

- —— Eny1) — By —2— Egng) — -+
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be the Postnikov tower of E. Then
E\ E\ Ep

(Tn+1)Al (‘M)Al (Tn—l)Al

- —— (Einy)a (Pnii)a (Eny)a (P (Bin-1))A —— -+,

is the Postnikov tower of E.

Proof. Clearly, m;((E(n))a) = 0 for i > n. Furthermore, by 5.5,

(Tn)+®1
(()a)s s 7i(En) = mi(B) @ A 24 1 (By) © A = m((Bmy)n)
is an isomorphism for i < n. O

This proposition enables us to construct localizations via Postnikov tow-
ers. Firstly, we have H(m)x ~ H(w ® A), see 5.6(i). Furthermore, consider a
Postnikov tower of E:

By /By

ln
S (1, (E)).

If a A-localization of E,_1) is already constructed, we define (E(,))a to be
the cone of (X7 'k)y : (7 E(,—1))a — X" H (1, (E)®A), and the localization
morphism j can be constructed in an obvious manner based on 5.11. Here we
have described the inductive step, but we must suppose that E is bounded
below in order to organize a base of the induction: namely, to set (E,))a =
H(mm(E)®A), where m;(E) = 0 for i < m. Finally, one can prove that there is
a spectrum Ex such that (Ea)m) is (E(m))a for every m, cf. I11.6.3(ii) below.

This approach enables us to construct the localization of spaces also. The
main results of this theory are Theorems 5.12 and 5.13 below. The proofs can
be found in Hilton—Mislin—Roitberg [1], Postnikov [1], Sullivan [2]. (These
theorems hold for so-called nilpotent spaces, but we formulate them for a
more special case: simple spaces.) Recall that a connected space X is called
simple if the action of m1(X) on m,(X) is trivial for every n. In particular,
71(X) must be an abelian group.

5.12. Theorem—Definition. For every simple space X there exist a simple
space X and a map j = jX : X — Xa such that the homomorphisms
mi(X) 5 m(Xa) = m(X) @ A and Hy(X) 25 H;j (X)) = Hi(X) ® A have
the form x — x ® 1. So, j localizes homotopy and homology groups. Every
such a map j is called localization of X . O

As in 5.2, a simple space X is called A-local if j : X — X, is a homotopy
equivalence.
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5.13. Theorem—Definition. For every two simple spaces X,Y the following
conditions are equivalent:

(i) The map f: X — 'Y A-localizes homotopy groups;

(ii) The map f: X — Y A-localizes homology groups;

(iii) For every A-local space Z the map f* :[Y,Z] — [X, Z] is a bijection.

If some (and hence all) of these conditions hold then there exists a homo-
topy equivalence h : Xn — Y with f = hjx. Furthermore, in this case we
say that f localizes X. O

So, by 5.9, if f: X — Y localizes a space X then ¥°°j : ¥*°X — XY
localizes the spectrum X*°X. In particular, j* : E*(Xj) — E*(X) is an
isomorphism for every A-local spectrum FE, cf. 5.8. Similarly, if ¢ : & — F
localizes a spectrum FE then Q¢ : Q> F — Q°F localizes the space Q*°F.

Now we show that localization respects multiplicative structures.

5.14. Lemma. For every two spectra E, F there exists an equivalence
© (E/\F)A—>EA/\FA

such that the diagram

ENF

EAF 21— (ENF)A
jE/\jFl gpl
EA N Fp Ep N Fy

s homotopy commutative.

Proof. We have
(EANFA)A = ((EAM(MNEAMA)AM(A) =~ (EAM(A)AN(FAM(A)).

Hence, Ep AF)y is a local spectrum, and so, by 5.8(ii), there exists a morphism
¢ such that the diagram commutes. Now, the morphism j¥ A j¥ induces a
homomorphism
) _ GPAT) _
h: F*(E) = 7T*(E/\ F) —_— 7T*(EA A FA) = (FA)*(EA) ~ F*(EA) QA
~(EA)«(F)QA~E,(F)Q AQA=E,(F) A~ F.(E)®A,

where h(a) = a ® 1. Thus, ¢ induces an isomorphism of homotopy groups.
O

5.15. Theorem. (i) If (E,u,t) is a ring spectrum then Ex admits a ring
structure such that j : E — FEa is a ring morphism, and this ring structure
is unique up to Ting equivalence.
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(ii) Let (E, u,t) be a ring spectrum and (F,m) be an E-module spectrum.
Then there exists a pairing m : Ex N Fx — Fa turning Fa into Ex-module
spectrum such that the diagram

B, F
EANF 2N By ARy

SR

r — F

commutes up to homotopy. Furthermore, this m is unique up to homotopy.

Proof. We prove only (i) because (ii) can be proved similarly. By 5.8(ii)
and 5.14, there exists a morphism fi : EAAEA — E5 (unique up to homotopy)
such that the diagram

EANE —*. B 2 . E,

l H

(EANE)y —=— ExANEy —2— By
]

is homotopy commutative. Likewise, there exist g;,7 = 1,2, unique up to
homotopy, such that the diagrams

EANEANE —% . E

| |
ExANEyANEy —2— E\,

i = 1,2, are homotopy commutative. Here ¢; = po(uu A1), co = po(1 A ). So,
g1 = fo(fi A1), go =~ fio(1 A ji)ea. Now, g1 ~ go because ¢ ~ co. Hence, i is
associative. d

Most frequently one uses the cases A = Q, A = Z[p|], A = Z[1/p], where p
is a prime (and Z[1/p] is the subgroup of Q consisting of the fractions m/p*).
In these cases, X, (where X is a space or a spectrum) is denoted by X|0],
X|[p], X[1/p] respectively.

5.16. Definition. A spectrum E has finite A-type if it is bounded below and
every group 7;(E) is a finitely generated A-module.

5.17. Remarks. (a) Any spectrum of finite type has finite Z-type. Every
spectrum of finite Z-type is equivalent to a spectrum of finite type, see 4.26.
A spectrum of finite A-type is a A-local spectrum.

(b) It is easy to see that every submodule of a finitely generated A-module
is finitely generated. So, a A-module is finitely generated iff it is finitely
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presented. Furthermore, A is a principal ideal domain, and hence every finitely
presented A-module splits into a direct sum of cyclic A-modules. In particular,
every finitely generated Z[p]-module splits into a direct sum of Z[p]-modules
Z[p] and Z/p".

5.18. Lemma. Let p be a prime.

(i) If E is a spectrum of finite Z|p|-type with H(E;Z/p) = 0 for i < n,
then m;(E) = 0 for i < n. In particular, a spectrum F of finite Z[p|-type is
contractible iff H'(F;Z/p) = 0 for all i.

(ii) Let E, F be two spectra of finite Z[p]-type. Then a morphism f : E —
F is an equivalence iff the homomorphism f* : H*(F;Z/p) — H*(E;Z/p) is
an isomorphism.

Proof. (i) Suppose that m;(E) = 0 for i < m < n and 7, (E) # 0. Then
7;m(E) contains a direct summand A = Z[p] or A = Z/p*. Thus,

H™(E;Z/p) = Hom(H,,(E),Z/p) = Hom(m,(E),Z/p) D Hom(A,Z/p) #0.

(ii) The “only if” part is clear, so we prove the “if” part. By 5.3 and
5.17(b), the cone Cf of f is a spectrum of finite Z[p]-type. Now, by (i), C'f
is contractible since H*(Cf;Z/p) = 0. O

5.19. Proposition. (i) Let E be a spectrum such that every group m;(E)
is finitely generated. If E[p] is contractible for every prime p then E is con-
tractible.

(ii) Let E, F be two spectra such that every group m;(E), m;(F) is finitely
generated. If f : E — F is such that f[p] is an equivalence for every prime
p, then f is an equivalence.

Proof. (i) We have 0 = m;(E[p]) = m(E) ® Z[p] for every p and every 1.
Thus, 7;(F) = 0 for every i.
(ii) By (i), Cf is contractible. O

5.20. Proposition. Let p be a prime, and let E be a ring spectrum such that
1 € mo(E) has order p. Then E is a Zp]-local spectrum.

Proof. Since all 7;(F) are my(E)-modules, they are Z/p-vector spaces and
thus Z[pl]-local groups. Now apply 5.10. O

Finally, we remark that one can localize spaces (and spectra bounded
below) cell by cell, see Sullivan [2].



86. Algebras, Coalgebras, and Hopf Algebras 107

§6. Algebras, Coalgebras, and Hopf Algebras

Here we discuss the notions mentioned in the title in order to use them in the
next section. We mainly follow Mac Lane [2] and Milnor-Moore [1]. Recall
that every ring is assumed to be associative and unitary.

Let R be a commutative ring. In this section ® denotes ®g. We consider
R as a graded ring, where Ry = R, R; = 0 for ¢ # 0. The words “an R-
module” mean “a left graded R-module”. Given two R-modules M, N, the
words “R-homomorphism f : M — N” mean that f is a homomorphism of
R-modules with deg f(m) = degm, m € M. We denote by T the switching
homomorphism 7' = Ty y : MON — N@M, T(men) = (—1)™"(ngm).

6.1. Definition. (a) An algebra over R (or simply an R-algebra) is a triple
(A, p,m), where A is an R-module and p : A A — A, n: R — A are
R-homomorphisms such that the diagrams

AARA 2, A4 RoA 2, AoA L2 AgR
1®ul lu gT lu Tg
AA —* A A A

commute. Here = denotes the canonical isomorphisms R@ A =X A~ AR® R,
eg, A= A® R has the form a — a ® 1. Furthermore, p is called the
multiplication and 7 is called the unit homomorphism. An algebra (A, u,n) is
commutative if pTa a4 = p.

(b) A (left) module over an R-algebra (A4, 1, n) is a pair (M, ¢), where M
is an R-module and ¢ : A® M — M is an R-homomorphism such that the
following diagrams commute:

AoAoM M2, Ao M AoM —2— M
R
Ao M —2— RoM R® M.

As usual, we shall simply say “algebra A” or “A-module M”, omitting
w,n, @, and we shall write ab instead of u(a ®b) and am instead of p(a @ m).

It is clear that A is a ring with multiplication p and unit n(eg), where
er is the unit of R. Furthermore, R can be tautologically considered as the
R-algebra (R, pr, 1r) where ur(r @ r') =rr'.

Note that every ring is a Z-algebra.

6.2. Definition. A homomorphism f : A — B of R-algebras is an R-
homomorphism such that the first two of the three diagrams below commute.
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A homomorphism h : M — N of A-modulesis an R-homomorphism such that
the third diagram commutes.

Ao A 1%, e B R ", 4 Ao M —27 ., M
(6.3) “Al lMB H lf ll@h lh
A I . B R ", B Ao N -2, N

6.4. Definition. An augmented R-algebra is a quadruple (A, u,7,¢), where
(A, u,m) is an R-algebra and € : A — R is a homomorphism of R-algebras
(called the augmentation). An augmented algebra (A, u,n,¢e) is called con-
nected if A; =0 for ¢ < 0 and €|Ap : A9 — R is an isomorphism.

6.5. Definition. Let A be a connected R-algebra, and let A be the R-
submodule consisting of all elements of positive degrees. The ideal AA is
denoted by Dec A, and its elements are called decomposable elements of A.
Given an A-module M, let GM denote the factor module M/AM. Further-
more, GA := A/Dec A usually is denoted by QA and is called (not very
aptly) the set of indecomposable elements of A.

Sometimes we write Dec rather than Dec A when A is clear.

The following lemma can be proved by an obvious induction on dimension.

6.6. Lemma. (i) Let h : M — N be a homomorphism of A-modules bounded
below over a connected R-algebra A. If the R-homomorphism Gh : GM —
GN s epic then so is h.

(ii) Let f : A — B be a homomorphism of connected R-algebras. If the
function Qf : QA — QB is onto then f is epic. O

The concept of a coalgebra is dual to the concept of an algebra.

6.7. Definition. (a) A coalgebra over R is a triple (C, A, ¢), where C is an
R-module and A : C — C® C, € : C — R are R-homomorphisms such that
the diagrams

c 2. cecC C C C
! T
CeC 22, ceCeC RoC <2 CceC —25 C®R

commute. Here A is called the comultiplication, or the diagonal map, or just
the diagonal, and ¢ is called the augmentation, or the counit homomorphism.
A coalgebra (C, A, €) is cocommutative if To,cA = A.
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(b) A comodule over a coalgebra (C,A,¢) (or, briefly, a C-comodule)
is a pair (V,1), where V is a graded R-module and ¢ = vy is an R-
homomorphism V' — C ® V such that the following diagrams commute:

v Y. cev v Y coeV
| R
Cov 2%, cecev RV ReV.

(¢) A homomorphism h : C — D of R-coalgebras is an R-homomorphism
such that Apoh = (h®h)eAc and epoh = ec. A homomorphism f:V — W
of comodules over a coalgebra (C,A,¢) is an R-homomorphism such that
(lc ® f)oy = vweof.

The set of all homomorphisms of C-comodules V' — W will be denoted
by Home (V, W).

The duality between algebras and coalgebras is exhibited not only in the
defining diagrams. For instance, let R be a field k. Given a k-vector space C,
consider the dual vector space C* = Homy (C, k). If C is a k-algebra (C, u, n)
then C* obtains a natural k-coalgebra structure (C*, A, e) provided that
every component C, of C is a finite dimensional k-vector space. Namely,
A(f)(a ®b) = f(ab),e = n* : C* — k* = k. Conversely, if (C,A ¢) is
a coalgebra over k then C* obtains a k-algebra structure with (fg)(a) =
> flah)g(al), where A(a) = > a}®a). Moreover, a homomorphism % : C' —
D of algebras induces a homomorphism A* : D* — C* of the coalgebras, and
vice versa. There is also a similar duality between modules and comodules.

Let (C,A,¢) be a coalgebra over R, and let M be an R-module. We turn
C ® M into a C-comodule (C' ® M,1pr) by setting ¢pr(c ® m) = A(c) @ m.

6.8. Lemma. For every C-comodule (V,), the function
t: Home(V,C ® M) — Homp(V, M), t(f)=(e®1)f,
1s bijective.
Proof. Define s : Homp(V, M) — Hom¢(V,C ® M) by setting s(g) =
(1®g)owp. Then ts(g) = (e®1)(1® g)y = g. On the other hand, the diagram

v . cewm CoM

| [ H
cov 2%, coceoMm 22N oo M

commutes, and thus

st(f)=s(ce)f)=1ea)f)y=(1eco)1a fly=f O
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6.9. Definition. A coalgebra (C, A, ¢) is called connected if C; = 0 for i < 0
and €|Cp : Cp — R is an isomorphism. In this case the element v = e71(1) is
called the counit of C.

Given two coalgebras C, D, we can turn C® D into a coalgebra by defining
Acgp and ecgp to be the compositions

Acop C@D 2222, coceDeD 2% e Do C® D,
ccop C®D S22, Ro R~ R.

It is easy to see that A : C' — C ® C is a homomorphism of coalgebras if the
coalgebra (C, A, ¢) is cocommutative.

Similarly, given two algebras A, B, we can turn A ® B into an algebra
by setting pagp = (pa @ up)o(1 ® T ® 1) and nagp = N4 ® np. Again,
u:A® A— Ais a homomorphism of algebras if (A, p,7n) is commutative.

6.10. Lemma. Let (C,A,¢€) be a connected coalgebra with counit v. Then:

(i) A(v) =v®w.

(i) For every ¢ € C, |c| > 0, we have A(c) =vQc+c@v+ Y., ¢/
with |cj| <, |cf'| <lel, [/ + || = |c].

(iii) Let (V,¢) be a comodule over C. Then, for every x € V, we have
Y(E)=v@x+ > @ with |2'| < |z|,|d| + |2'| = |=].

Proof. (i) Since C'is connected, A(v) = v® Av, A € R. Furthermore, A = 1
because v = (e ® 1)(A(w)) = (e ®@ 1) (v ® A) = e(v) ® Av = Aw.

(ii) Because of the commutativity of the right diagram of 6.7(a), and since
C' is connected, we conclude that A(c) = Aw @ c+c® pv + Y. ¢ ® ¢ with
|ci] < le|, || < |e|. Now, the equalities A = 1 = p can be proved as in (i).

(iii) This can be proved as (ii), using the commutativity of the right
diagram of 6.7(b). O

6.11. Examples. (a) Let p be a prime, and let (E, p,¢) be a ring spectrum
of finite Z[p]-type. Then H*(FE;Z/p) has the natural structure of a Z/p-
coalgebra. Indeed, consider the homomorphism

A H(E;Zp) *= H*(E A B; Z/p) —— H*(E;Z/p) © H*(E; Z/p)
R

(by 4.11(ii), p®F is an isomorphism) and set ¢ := * : H*(E;Z/p) —
H*(S;Z/p). Tt is easy to see that (H*(E;Z/p),A,e) is a coalgebra. The
naturality is clear.

(b) If the ring spectrum (E, i, ¢) in (a) is commutative then H*(E;Z/p)
is a cocommutative coalgebra.

(¢) If E is a spectrum as in (a) and F is any E-module spectrum of
finite Z[p]-type, then H*(F;Z/p) admits a structure of a comodule over
H*(E;Z/p).
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Case (c) can be considered in the same manner as (a).
(d) Dually, given a ring spectrum (E, u, t), consider the homomorphism

ftalg : Ho(E;Z)p) © H,(E; Z/p) Y25 H.(E A E) 25 H,(E)
and set n := v, : Hi(S;Z/p) — H.(E;Z/p). Then (H.(E;Z/p), ltarg,n) is
a Z/p-algebra. Similarly, H,.(F;Z/p) is an H,.(E;Z/p)-module for every E-
module spectrum F'.
(e) For every CW-space X and every field k we have a coalgebra H, (X k),
where the diagonal d : X — X x X yields a comultiplication

A H(X k)% Ho (X x Xik) & H.(X;k) ® Ho(X; k)

and the map X — pt yields an augmentation H,.(X;k) — k. This coalgebra
is connected iff X is connected.

(f) Dually to (e), H*(X; k) is a k-algebra for every field k£ and CW-space
X of finite type.

6.12. Definition. Let (C, A, ) be a connected coalgebra with counit v.
(a) An element m € C is called primitive if A(m) =m ® v+ v ® m. The
set (in fact, R-submodule) of all primitive elements of C' is denoted by PrC.
(b) Let (V,4) be a C-comodule. An element m € V is called simple if
(m) = v®@m. The R-submodule of simple elements of V' is denoted by SiV.

6.13. Remarks. (a) Under the duality between algebras and coalgebras over
a field, Pr C is dual to QC*.

(b) Sometimes simple elements are also called primitive, but we do not
like this because of the danger of confusion: Pr C # SiC where C' is regarded
as a coalgebra on the left and as comodule on the right.

6.14. Lemma. Let h : C' — D be a homomorphism of connected coalgebras
over a field k. If the map h|PrC is injective in dimensions < d then h is.

Proof. Let v be the counit of C'. Since h(v) is the counit of D, we conclude
that h(v) # 0, ie., h|Cy is monic. If h is monic on the subgroup of all
elements of dimension < d, then h® h : C ® C — D ® D is monic on the
subgroup A, generated by elements m ® m’ with |m| < d,|m’| < d. This is
true because C' and D are k-vector spaces. Now, let z € Ker h be a non-zero
element of minimal dimension. If dimz < d then z is not primitive, and so
Az) = z@v+ovc+) ' @2” where |2/ < |z|, |2"| < |z] and Y 2’ ®@2” # 0.
Now

0=A(h(z)) = (h®h)A(x) = (h®h)(v®x+a:®v+2x’ ® ")
= h(v) ® h(z) + h(z) ® h(v) + Z h(z") @ h(z") = Z h(z") @ h(z").
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However, Y h(z') ® h(z") # 0, since Y 2’ ® 2" # 0 and h ® h is monic on
Ag. This is a contradiction. O

6.15. Construction. (Boardman [1]). Given a connected coalgebra C, we
define a filtration F,,,C by setting
C, ifn<m,

0 otherwise.

(0 = {

Given a C-comodule (V, ), we set

F.V=0F,V={zeViyk) e F,C®V}.

6.16. Proposition. (i) |J,, F;nV =V for every V.
(ii) FoV = SiV.
(i) f(FnV) C F,W for every C-comodule homomorphism f:V — W.

Proof. This is obvious. O

6.17. Lemma. Let (V, 1)) be a comodule over a connected coalgebra (C, A, ¢)
over a field. Then ¢(F,V) C 377, Cj ® FpjV.

Proof. Choose = € F,,V. We have ¢(z) =v®x+ > ¢; ® x;, where ¢; € C
are assumed to be linearly independent. Since (A ® 1)otp = (1 ® 1)orh, we
conclude that

daev)=> (Ale)—vec) @
inC®C®YV.Since x € F,,V, we conclude that ¢; € F,,C, and so

A(Ci)—’U®Ci€ Z C7'®Cs

r4+s<m

for every i. Hence, ¢; @ ¥(x;) € Z C, ®Cs ® V. Thus, if ¢; € C; then
r+s<m
@) e Y Ce®V=F, ;CoV,ie,z; € Fpn_;V. O

s<m—j

6.18. Definition. Let M be a free R-module. Given a coalgebra (C, A, ¢),
define its cofree M -extension to be the C-comodule (V) where V = C® M
and P(c®@z) = Alc) @ z,c € C,z € M. A C-comodule V is called cofree if
there is M such that V' is isomorphic to the cofree M-extension of C.

Let C and V be as in 6.17. Define ¢’ : F,,V — C,, ® SiV to be the

composition

FuV 5N Cr @ FueV % G @ oV = G @ SV

=0
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where ¢ is the quotient map. Since ¢'(F,,—1V) = 0, ¢’ passes through the
homomorphism ¢ =, : F,V/F,,_.1V — C,,, ® SiV.

6.19. Lemma. For every m, the homomorphism ¢ : F,V/F, 1V —
Cm @ S1V is a monomorphism, and it is an isomorphism if V is a cofree C-
comodule. Furthermore, ¥ is natural in V, i.e., for every C-homomorphism
f:V =W and every m, the following diagram commutes:

FV/Fp V=L B W/Ep W

(6.20) M l oW

Cn®SiV 225 o esiw
m—1
Proof. If ¢(z) = 0 then ¢(x) € ¥ C; ® Fn_jV C FraC @V, e,
§=0
x € F,,,—1V. Thus, ¥ is monic. Furthermore, if V' is cofree, V =2 C ® M, then
F,V=2F,C®M. So, ¥ is an isomorphism. The naturality is clear. O

6.21. Corollary. Let C be as in 6.17, and let f : V — W be a homomorphism
of C-comodules.

(i) If Sif : SiV — SiW is a monomorphism then so is f.

(ii) If V is cofree and Si f : SiV — SiW is an isomorphism, then so is f.

Proof. (i) By 6.16(iii), the homomorphism f induces homomorphisms
Fo.f : F,V — F,W. By 6.16(i), it suffices to prove that F, f is monic. We
prove this by induction. By 6.16(ii), Fyf is monic. Suppose that F,,_1f is
monic. But 1®Si f is monic, and so, by 6.19, F,,,V/F,,_1V — F,,W/F,,_1W
is a monomorphism. Thus, by the Five Lemma, F},, f is a monomorphism. The
induction is confirmed.

(ii) By 6.16(i), it suffices to prove that F,,f is an isomorphism. Since V'
is cofree, 1V is an isomorphism for every m, and so W is epic, and so it is
an isomorphism. Now the proof can be completed similarly to (i). O

6.22. Definition. A Hopf algebra over R is a quintuple (A, u,n, A, &) such
that (A, p,n,e) is an augmented R-algebra, (A, A, ¢) is an R-coalgebra, A :
A— A® A and € : A — R are homomorphisms of algebras, and n: R — A
is a homomorphism of coalgebras.

It is easy to see that p: A ® A — A is a homomorphism of coalgebras.
Also, if A is connected then its unit 1 coincides with its counit v, i.e., v = 1.

Note that if A is a Hopf algebra over a field k and if dimy 4,, < oo
for every n then A* = Hom(A, k) is a Hopf algebra also (see the text after
6.7), but the multiplication and comultiplication interchange roles (e.g. if
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the multiplication on A is commutative then the comultiplication on A* is
cocommutative).

The homomorphism A ® R “9L, R® R = R turns R into an A-module;

the homomorphism R = R® R 721, A® R turns R into an A-comodule.

6.23. Constructions. Let (A, u,n, A, &) be a Hopf algebra.

(a) Given two A-modules (M, ¢), (N, ), we form an A-module (M ® N, 0)
by setting 6 to be the composition
AMON 225 Ao Ao Mo N 212 Ao Me A N 224 Mg N.
In other words, a(m ® n) = > aim ® a/n where A(a) = > a; @ aj.

(b) Given two A-comodules (V,) and (W, ¢), we form an A-comodule
(V @ W, 0) by setting 6 to be the composition

VoW 222 Aevedew 2% A aevew XL AoV e w.

6.24. Definition. Let A be a Hopf algebra over R.

(a) An A-module algebra is a quadruple (M, u,n, @), where (M, u,n) is
an R-algebra and (M, ) is an A-module such that g : M @ M — M is a
homomorphism of A-modules and ¢ : A® M — M is a homomorphism of
R-algebras. A homomorphism of A-module algebras is a homomorphism of
A-modules which is at the same time a homomorphism of R-algebras.

(b) An A-comodule algebra is a quadruple (M, p,n, ), where (M, u,n) is
an R-algebra and (M, ) is an A-comodule such that y: M @ M — M is a
homomorphism of A-comodules and ¢ : M — A ® M is a homomorphism of
R-algebras.

(¢) An A-module coalgebra is a quadruple (V, A, g, ), where (V,A,¢) is
an R-coalgebra and (V,¢) is an A-module such that A : V - V@V is a
homomorphism of A-modules and ¢ : A® V — V is a homomorphism of
R-coalgebras.

(d) We leave it to the reader to define the A-comodule coalgebras (and
homomorphisms in cases (b), (¢), (d)).

6.25. Recollection. A very important example of a Hopf algebra over the
field Z/p, p prime, is the Steenrod algebra

oy = H*(HZ/p; Z/p) = PIHZ/p, =" HZ/p].
d
The multiplication p: HZ/p AN HZ/p — HZ/p induces the diagonal map
H*(HZ/p;Z[p) — H*(HZ/p N HZ/p; Z/p)
= H*(HZ/p;Z/p) ® H*(HZ/p; Z/p);
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the algebra structure is given by the composition of cohomology operations
HZ/p — X"HZ/p.

All that we need to know about .27, can be found in Steenrod—Epstein [1],
Margolis [1]. The Steenrod algebra % is generated by elements S¢° of di-
mension 4, where i = 1,2,..., and all relations among Sq* follow from the
Adem relations

[a/2]
b—c—1
6.26 Sq"Sq" = Sq*tt=¢Sq° for a < 2b
(6.26) 4*Sq ;(a_Qc)q q° for a < 2b,
k
where Sq° := 1. The comultiplication has the form A(S¢*) ZS’q @S¢ .
=0

The Steenrod algebra o7, p > 2, is generated by elements 3 (the Bockstein
homomorphism) and P!, dim 3 = 1,dim P! = 2i(p — 1),i = 1,2,.... Again,
all relations in 7, follow from the Adem relations (for explicit formulae see
Steenrodepstein [1]). The comultiplication has the form A(8) = f®14+1®

B, A ZPU&P’“ i where P9 :=1.
1=0

Now we describe the primitive elements of 7,. Milnor [2] described the
Hopf algebra o7, = Hom" (47, Z/p). For p > 2 we have

’%* :Z/p[€1a€27"' a€n7"']®A(TOaTl7"' aTna"‘)a

where dim & = 2(p’ —1),dim 7; = 2p* — 1. The comultiplication V on <7 has

the form
ko ko
=& 08 Vi)=Y &, 9m
i=0 i=0

where & := 1. Let Z be the set of all sequences R = {ri,... ,rn,...}
of integers such that r; > 0 and r; = 0 for all but a finite number
of i’s. The algebra 7 has an additive basis {75 ---72% ...} | where
gi = 0or 1and &8 = & &m R = {r1,...,rn,...} € %Z. The ele-
ment of @, which is dual to 7; is denoted by Q;,dim@; = 2p’ — 1; the
dual to &% is denoted by @R,dim PR = S 2r,(p' — 1). A Z/p-basis of
), is just {2FQg - Q3F -}, where ; = 0 or 1. There are the relations
PRQi — Qr 2T =Y Qk+1 PR A , where A; is the sequence with 1 in the
i-th place and zeros elsewhere. Furthermore, Q? =0and Q;Q; +Q;Q; = 0.
The expansion of 2529 with respect to this basis can be found in Milnor [2].

Under this notation the comultiplication A on %7, has the form

AQ)=Qi®1+10Q;, AP = 3 2Tar™.
R'4+R'"=R
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So, Q; and 2% are primitive elements. Furthermore, there are no other
primitive elements (up to multiplication by constants), i.e.,

Prﬂp:Z/p{Qonla-" 7Qk7"' 79A17=@A25-“ “@An’.“},

where Z/p{. ..} denotes “the Z/p-vector space spanned by ...”. This is true
because dim Pr &7, = dim Q.7,;".
Mind the relations

Qo=0,Qi=[P" ,Qi1], ™ =P, @i =[PP P

where [z, y] = zy — (—1)I#I¥lyz. Furthermore, the two-sided ideal (Qo) of 7,
coincides with the left ideal <7,(Qo, ... ,Qn, ... ).

For p = 2 we have %" = Z/2[C1,C2;, - ;Cn,-- -], dim(, = 2" — 1, and
V() = Zf:o (7, ® (. As in the case p > 2, there is a Z/2-basis {¢?} of
oy, and so % has a Z/2-basis {S¢f}, dim S¢® = >"r,(2" — 1), and

Praty = Z/2{Sq™*,... ,S¢"",...}.

Moreover, Sg21 = Sqb, S¢® = [S¢® ", SqPi-1].

It is possible and useful to introduce the notation Q; = Sq~i+, i =
0,1,..., similar to the case p > 2. The relevance of this notation lies in the
fact that in this case some formulae for p = 2 look like those for p > 2. For
example, Q? = 0 and Q;Q;+Q;Q; = 0, and the left ideal @ (Qo, ... ,Qn,--.)
coincides with the two-sided ideal (Qg) (prove this).

Note that the Hopf algebra <7 can be described as H.(H), where H =
HZ/p. The multiplication has the form

H.(H)® H,(H) = H,(HANH) 5 H,(H)

where the isomorphism is g g, and the comultiplication has the form

IALAL

H.(H)=nm.HANH) — . (HANSNH) "> 7, (HNHAH)
~H(HANH)~H,(H)® H,(H).

6.27. Examples. (a) For every H-space X and every field k, we have a Hopf
algebra H,(X;k): the multiplication is induced by the H-structure X x X —
X while the comultiplication is induced by the diagonal d : X — X x X, cf.
6.11(e). Similarly, H*(X;k) is a Hopf algebra for every H-space X of finite
type, and H,.(X;k) is the Hopf algebra dual to H*(X; k).

(b) Let H(—) denote H(—;Z/p). For every spectrum E, the group H*(E)
admits a natural 7,-module structure. The action

@ : oy @ HY(E) — H*(E), p(a @) = a(z),
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is given by the evaluation of a cohomology operation a on an element z,
see 3.47. The detailed description of this action can be found in Steenrod—
Epstein [1], Margolis [1], Mosher-Tangora [1]. Here we recall that Sq’(z) = 0
if |z| < i, Sq'(x) = 22 if |z| = i, Pi(x) = 0 if |z| < 2i(p — 1), Pi(z) = P
if || = 2i(p — 1). Finally, if f : S™ — S™ is a map of degree p and z is a
generator of the group H"(C f;Z/p) = Z/p then B(x) # 0.

Furthermore, if F is a ring spectrum of finite Z- or Z[p]-type then H*(E)
is a coalgebra over the Hopf algebra 27,, see 7.19(ii) below. Moreover, one
can easily prove that a ring morphism E — F of such spectra induces a
homomorphism H*(F') — H*(E) of «,-module coalgebras.

(c) Dually, let ¢ : S — H be the unit. Given a spectrum F, the morphism

b8 ELE S AE Y HAE induces a homomorphism

(enT) s
—_—

b H(E) = H,(S\E) H.(HANE) = H.(H)® H.(E) = o/ © H,(E),

and this homomorphism turns H,(FE) into a comodule over the Hopf algebra
;. Furthermore, every ring morphism £ — F induces a homomorphism
H.(E) — H.(F) of &;-comodule algebras.

Let C be a connected module coalgebra over a Hopf algebra A, and let v
be the counit of C.

6.28. Lemma. The map v : A — C, v(a) = av, is a homomorphism of
coalgebras.

Proof. Let A : C' — C' ® C be the diagonal. We have

(v @v)(Aa) = (Za ®a") :Zu(a’)@)u(a"):Za'v@)a”v.
Ou the other hand, by 6.10(i), A(v) = v ® v, and so
Av(a) = Alav) = aA(v) = a(v @ v) Zav@a"v
Thus, (v ® v)(Aa) = Av(a). 0

6.29. Theorem. Let A be a connected Hopf algebra over a field k, let C
be a connected module coalgebra over A, and let v be the counit of C. Let
p: C — GC be the canonical epimorphism (see 6.5), and let A : GC — C
be a k-homomorphism with pA = lgo. Let B, be the subspace of A @ GC
generated by all elements a®@x with |a| < m. If the mapv : A — C, v(a) = av,
is monic for |a| < m then the A-homomorphism n: AQ GC — C, n(a®x) =
a(Ax) is monic on By,. Furthermore, n is epic and thus is an isomorphism
in dimensions < m.

Proof. This theorem is a version of the Milnor—-Moore Theorem, and the
proof below follows its proof contained in Stong [3]. Consider the composition
of A-homomorphisms
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AoGe L oA cec e owao.

For every y,x € C and for every a € A (with A(a) = > d’ ® a”), we have

(epa o) =0ep) (Y dyods)=16p)(wysa)
= ay @ p()
(here - denotes the A-action on C'® C') because p(a”z) = 0 for |a”| > 0. Now,
(L@ p)An(a® ) = (1@ pla- (A(r))
=(1®pa- (W r+ v+ Y (M) @ (\))=awez+b,

where b € [y, C ® (GO)y. Since av # 0 for |a| < m, we conclude that
av ® x4+ b # 0 (for dimensional reasons). Hence, (1 ® p)An is monic on By,
and thus so is 7.

To prove that 7 is epic, consider any k-basis {e;} of GC and set ¢; = Ae;.
So, ¢; € Imn. Let ¢ € (C \ Imn) be a homogeneous element of minimal
dimension. We have pc = Y n;e;, n; € k. So, p(c — > n;c;) = 0, ie., ¢ —
S nici = Y. agxy, ar € A,z € C. So, dimay, > 0. Hence, dimz < dime,
and therefore xj € Imn. Thus, ¢ € Imn. a

6.30. Corollary (The Milnor-Moore Theorem). Let A and C' be as in 6.29.
Ifv: A — C, v(a) = av, is monic then there is an isomorphism of A-modules
C 2 A®GC. In particular, C' is a free A-module. O

6.31. Corollary. Let A and C be as in 6.29. If v(x) # 0 for every primitive
x € A, x#0, then C is a free A-module.

Proof. This follows from 6.28, 6.14, and 6.30. O

6.32. Remark. In fact, the proof of 6.29 shows that 6.29 and 6.30, 6.31
are valid also for “non-coassociative coalgebras”, i.e., for triples (C, A, ) not
satisfying the commutativity of the left diagram from 6.7. This remark is
useful for applications.

6.33. Lemma. If (V, %) is a comodule algebra over a connected Hopf algebra
A then SiV is a comodule subalgebra of V.

Proof. Only that SiV is a subalgebra needs proof. But ¢ : V — C®V is
a homomorphism of algebras, and thus

Y(ry) =Y(@)P(y) = (v 2)(vey) =ve Ty O

6.34. Theorem (cf. Boardman [1], Milnor-Moore [1]). Let V' be a commu-
tative comodule algebra over a connected Hopf algebra A over a field k. Let
b: A—V beahomomorphism of A-comodule algebras. Then the composition
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FiA®SIV L Vvesiv VeV ALY

s an isomorphism of A-comodule algebras.

Proof. Since V is commutative, p is a homomorphism of algebras, and
therefore so is f. Clearly, f is a homomorphism of A-comodules. Furthermore,
SiA = k = k{v}, and so Sif : Si{(A® SiV) = k® SiV — SiV is an
isomorphism. But A ® SiV is a cofree A-comodule, and thus, by 6.21(ii), f
is an isomorphism. O

6.35. Definition. Given a connected Hopf algebra (A4, u,n, A, ¢), we define
a canonical antiautomorphism ¢ : A — A (called also an antipode) as follows.
Firstly, ¢(1) := 1. Now, if

Aw) =zol+lor+) o @, |of <l l"| < o]

then ¢(z) := —x — > c(z’)2".
One can prove that ¢ = 14 and c(ab) = ¢(b)c(a). Moreover, ¢ can be
characterized by commutativity of the diagrams

A A
Al T“ Al Tﬂ
AoA &, Ag A AoA -, A4,

see Milnor-Moore [1].

The first example of such an antiautomorphism was found by Thom [1];
this was the canonical antiautomorphism x : 44, — <7, of the Steenrod
algebra 7,. For the dual Hopf algebra </, this antiautomorphism has the
form

df = Ho(H) = m.(HANH) 25 7 (HAH) = Ho(H) = o

i
where H = HZ/p and 7 switches the factors, see Switzer [1], Th. 17.8.

Every morphism 6 : E — F of spectra induces a morphism 6, : E,(X) —
F.(X) of the corresponding homology theories. In particular, every opera-
tion ¢ € 47, gives us a morphism ¢, : H.(X;Z/p) — H.(X;Z/p), cf. 3.47.
On the other hand, we can define another morphism ¢, : H.(X;Z/p) —
H.(X;7Z/p) of homology theories by setting (¢, (z),y) = (z, ¢(y)) for every
r € Ho(X,Z/p),y € H*(X;Z/p). In this case we have the right 7 -action
on H.(X;Z/p).

6.36. Proposition. ¢. = (x(¢)). for every ¢ € <7,.

Proof. Given ¢ € 47,, define an operation
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M) H(X;Z/p) — H*(X;Z/p)
via the formula

(ps(@),y) = (2, AMP)(y), =€ H(X;Z/p),y € H(X;Z/p).

Now check that A : &), — 7, preserves the commutativity of the above
diagrams, i.e., A = x, cf. Thom [1], Th. II1.23. |

6.37. Remarks. Hopf [1] found that ordinary (co)homology rings of Lie
groups (in fact, H-spaces) had certain specific algebraic properties. (For ex-
ample, the rational cohomology ring of a Lie group is a free commutative
algebra.) Afterwards Borel [1] clarified the situation: every algebra A (over
a field) admitting a diagonal A : A — A ® A, A(ab) = A(a)A(b), has such
properties. Borel suggested the name “Hopf algebra” for such object; as far as
I know, the paper of Borel [1] was the original paper where the term “Hopf
algebra” appeared. A systematic treatment of Hopf algebras was given by
Milnor—-Moore [1].

Milnor [2] discovered that the Steenrod algebra is a Hopf algebra. In this
way he got a new description of 7,, and this enabled him (and some others)
to compute initial terms of certain Adams spectral sequences.

Milnor-Moore [1] proved 6.30. Furthermore, they proved 6.34 for V
bounded below. Boardman [1] got rid of this restriction. To do this, he intro-
duced the filtration F;,,V as in 6.15 and proved its properties 6.16—6.21.

§7. Graded Eilenberg—Mac Lane Spectra

A graded Eilenberg-Mac Lane spectrum H(G) of a graded abelian group G
was defined in 3.32(d). For future reference we mention the following fact.

7.1. Proposition. For every two graded abelian groups G, G’ the homomor-
phism
[H(G), H(G")] — Hom®(G, &), [f] = m(f)

1S epic.
Proof. Let G; be the component of degree i of G. We have H(G) =

VYH(G;). Similarly for G’. Consider the inclusion j; : S'H(G;) — H(G)
and the projection p; : H(G') — X'H(G!). We have the homomorphism
hi s [H(G), H(G)] 25 [STH(GY), H(G)] 225 [SH(G,), S H(G))]
= [H(Gi)a H(G;)] = Hom(Gia 02)7
the last equality follows from 4.9. Note that h; is an epimorphism since both
j¥ and (p;)« are. These epimorphisms h; yield the epimorphism
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h:={hi}: [H(G), H(G")] = | [ Hom(G;, G}) = Hom"(G, &).

We leave it to the reader to prove that this homomorphism A coincides with
the homomorphism in question. (I

Every graded abelian group G can be realized as the total homotopy
group 7.(H(G)) of the graded Eilenberg-Mac Lane spectrum H(G), but
not every spectrum E is (equivalent to) the graded Eilenberg—Mac Lane
spectrum H (7. (F)). (For example, the sphere spectrum S is not, because
otherwise H,(HZ) would be a direct summand of H,(S).) It is clear that it is
useful to know whether a spectrum is a graded Eilenberg-Mac Lane spectrum.
For example, Thom [2] proved that the spectrum MO of the non-oriented
(co)bordism is a graded Eilenberg—Mac Lane spectrum, and this enabled him
to compute the group m.(MO) (i.e., non-oriented cobordism group) and to
prove the realizability of all Z/2-homology classes by singular manifolds, see
Ch. IV. In this section we give some sufficient conditions for a spectrum F
to be a graded Eilenberg-Mac Lane spectrum, i.e., E ~ H(m(F)); these
conditions will be used in next chapters.

7.2. Lemma. Let Y be a graded Filenberg-Mac Lane spectrum, and let
f:Y — Z be a morphism of spectra such that f. : 7.(Y) — m.(Z) is a split
epimorphism. Then Z is a graded Filenberg—-Mac Lane spectrum, and f has
a homotopy right inverse s : Z — Y, fs~ 1.

Proof. Since f, splits, there is a subgroup G of 7.(Y) such that f.|G :
G — 7.(Z) is an isomorphism. By 7.1, the inclusion G C 7. (Y) is induced
by a morphism j : H(G) — Y, and fj is an equivalence. Now set s = jg,
where g : Z — H(G) is a homotopy inverse to fj. O

7.3. Proposition. (i) If E is a graded FEilenberg-Mac Lane spectrum. then
so is each of its coskeletons E(,). In particular, every Postnikov invariant of
E is trivial.

(ii) If all Postnikov invariants of a spectrum E are trivial then E is a
graded FEilenberg—Mac Lane spectrum.

(iil) If every coskeleton of a spectrum E is a graded Eilenberg—Mac Lane
spectrum then E is a graded Eilenberg—Mac Lane spectrum.

Proof. (i) This follows from 7.2.
(ii) Set 7 = mx(E). By 1.17, E(y = E(,—1) V X" H (7, for every n. The

morphism E 5 E(, PrOJ, s (mp,) induces a homomorphism ¢, : [X, E] —
H"(X;m,), X € 7. So, we get a homomorphism ¢ := {p,} : [X,E] —
[L, H"(X;my,). Furthermore, ¢ yields a morphism

E(X)=E'27'X) 5 [[H (' Xsm) = [[H(X;570)
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of additive cohomology theories on .. Now, by 3.19(iii), this is an isomor-
phism of cohomology theories on ..
Similarly, by setting F := \/,—___ ¥"H(m,), we get a natural isomor-
phism [X, F] = [, H"(X;m,), X € 7. So, there is a natural isomorphism
[X, E] 2 [X, F], and thus, by general categorical reasons, E ~ F.
(iii) This follows from (ii). O

7.4. Proposition. Let E be a spectrum of finite Z-type such that its localiza-
tion E[p] is a graded Eilenberg—-Mac Lane spectrum for every prime p. Then
FE is a graded FEilenberg—Mac Lane spectrum.

Proof. By 7.3(i), every Postnikov invariant of E[p] is trivial. So, by 5.11,
the Z[p]-localization of every Postnikov invariant of E is trivial for every
p. Since E has finite Z-type, each of its Postnikov invariants belongs to a
finitely generated group, and so, by the above, every Postnikov invariant of
E is trivial. Thus, by 7.3(ii), F is a graded Eilenberg-Mac Lane spectrum.

O

Recall that HZ is a ring spectrum by 4.10. Let ¢ : S — HZ be its unit.

7.5. Theorem. Let E be a spectrum. Suppose that there exists a morphism
m: HZ N E — E such that the diagram

HZNE —— FE

L/\lT H

shE ‘P g

~

commutes up to homotopy. Then E is a graded Filenberg—Mac Lane spectrum.

Proof. By 4.33, for every k there exists a morphism f, : ¥ M (my(E)) — E
such that (fx)« : 7, (¥ M (7 (E))) — 71 (E) is an isomorphism. Consider the
morphism

gkt HZ N SFM (mp(B)) 2% gz A B ™ E.
By 5.6(i), HZAM (7r) ~ H(w), and so g has the form gy, : S*H (74 (E)) — E.
Furthermore, (g )« : 7 (X¥H (7% (FE))) — mx(F) is an isomorphism, since the
diagram

SASFM(mp(B)) 2 sAE = F

L/\lJ{ J{L/\l H

HZASFM(mp(B)) 2 HZAE —™ - B

commutes up to homotopy. Let iy : ¥ H (m,(E)) — Vi XFH(7x(E)) be the
inclusion. By 1.16(i), there is a morphism g : VxX*H (7 (E)) — E such that
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gir =~ gi for every k. Then g induces an isomorphism of homotopy groups,
and thus it is an equivalence. O

7.6. Corollary. Fvery HZ-module spectrum is a graded Filenberg—Mac Lane
spectrum. ([l

7.7. Corollary. Let E be a ring spectrum with the unit v : S — E. If there

exists a morphism f : HZ — E such that the composition S — HZ ENy 18
homotopic to tg, then E is a graded Filenberg—Mac Lane spectrum.

Proof. The composition HZ A E TN pAE S E satisfies the conditions
of 7.5. ]

7.8. Corollary. If a ring spectrum E admits a ring morphism HZ — E then
FE is a graded FEilenberg—Mac Lane spectrum. [

7.9. Corollary. For every spectrum E, the spectrum HZ N E is a graded
Eilenberg-Mac Lane spectrum.

Proof. Let p be the multiplication on HZ. The associativity of p implies
that the morphism

m:HZAN(HZANE) = (HLANHZ)ANE % HZAE

yields a HZ-module structure on HZ A E. d

7.10. Corollary. (i) For every abelian group m and every spectrum E, the
spectrum H(w) A E is a graded Eilenberg-Mac Lane spectrum.

(ii) If F is a graded Filenberg-Mac Lane spectrum then EAF is a graded
Filenberg—Mac Lane spectrum for every spectrum E.

Proof. (i) Hn) NE~HZANM(m)NE.
(ii) This follows from (i) and 2.1(v). O

7.11. Theorem. (i) The Q -localization of the sphere spectrum S is HQ. In
particular, the Hurewicz homomorphism h : m.(F) @ Q — H.(E) ® Q is an
isomorphism for every spectrum E.

(ii) The Q -localization E[0] of every spectrum E is the graded Eilenberg—
Mac Lane spectrum H (m.(E) @ Q).

(i) Let G, G’ be a pair of graded vector spaces over Q. Then the homo-
morphism [H(G), H(G")] — Hom®(G, G") in 7.1 is an isomorphism.

(iv) For every two Q-local spectra E,F, the homomorphism pg g
T«(E) @ m(F) — m (E A F) is an isomorphism.

(v) Given two ring Q -local spectra E| F, a morphism f : E — F is a ring
morphism iff fi : 7 (E) — m(F) is a ring homomorphism.
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Proof. (i) The groups m;(S) are finite for ¢ # 0 by the Serre Theorem, see
Serre [3] or Mosher-Tangora [1]. So, 7;(S[0]) = m;(S) ® Q = 0 for i # 0, and
mo(S[0]) = Q.

(ii) Because of (i), m.(MQ) 2 7.(S) ® Q = 7, (HQ), and so MQ ~ HQ.
Hence, HQ AN HZ ~ HQ. Thus,

E0=EANMQ~ENHQ~EANHQAHZ~ E[0)A\ HZ.
Now the result follows from 7.9. 4
(iti) By 1.16(i), we have [H(G), H(G")] = [, H(G;), H(G")]. By 5.8(ii),
[X'HQ,HG'| = [S', HG'| = G, = [S", HG!] = [S'HQ, HGY).
Hence,
[X'H(Gy), H(G")] = [S'H(Gy), %' H(G})] = Hom(G;, GY),

and thus [HG, HG'] = Hom’ (G, G").
(iv) By 5.14, EA F is a Q-local spectrum, and hence H.(X) = H.(X;Q)
for X = E,F, E A\ F. Consider the commutative diagram

™

m(E) @ M (F) —— m.(EAF)

non | [

H.(E)® H.(F) —“— H,(EAF).

Now, by (i), h is an isomorphism, and, by 4.11(i), u* is an isomorphism.
Thus, §™ is an isomorphism.
(v) We must prove that the left hand diagram below

EAE M paFR m(B) @ mo(E) L2 7 (F) @ n.(F)
| | | |
E . F . (E) ELIN . (F)

commutes up to homotopy iff the right hand diagram commutes. But this
follows from (iii) and (iv). O

7.12. Corollary. Let F' be a spectrum of finite A-type with A as in §5. Then:

(i) Each Postnikov invariant of F has finite order.

(ii) Let X be a spectrum bounded below. Consider the Atiyah—Hirzebruch
spectral sequence EX*(X) = F*(X), EYYX) = HP(X; Fi(pt)). Then ev-
ery differential in this spectral sequence for E*(X) has finite order (i.e., it
becomes trivial after tensoring by Q). Simiarly, every differential in the ho-
mology spectral sequence ET, (X) = F.(X) has finite order.
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Proof. (i) It follows from 4.25(iii) that each group (Fx)):(HA) is a finitely
generated A-module. Hence, each group H; (Fliy) is a ﬁmtely generated A—
module. So by 4.9, each group H'(F(4;7;(F')) is a finitely generated A-
module.

Consider a Postnikov invariant x € H”“(F(n,l); mn(F)) of F. By 5.11,

k®1E€H" N (Fo1)imn(F)) @ Q = H" M ((F—1))[0]; 7 (F) ® Q)

is the Postnikov invariant of F'[0]. So, by 7.11(ii) and 7.3(i), k®1 = 0. Thus,
has finite order since H"*!(F\,,_1y; m,(F)) is a finitely generated A-module.
(ii) This follows from (i) and 4.34. O

7.13. Theorem-Definition (cf. Dold [1]). For every ring spectrum E there
exists a ring equivalence E[0] — H(m.(E)®Q). This equivalence is called the
Chern—Dold character with respect to E and is denoted by chg.

Proof. There is a ring isomorphism h : 7. (E[0]) — 7. (H (7. (E) ® Q)). B
7.11(ii,iii), h is induced by a morphism f : E[0] — H(m.(E) ® Q), and, by
7.11(v), f is a ring equivalence. (]

7.14. Theorem. Let p be an odd prime, and let E be a Z[p]-local spectrum
of finite Z[p|-type. If E AN M(Z/p) is a graded Eilenberg-Mac Lane spectrum
then so is E.

Proof. For simplicity, denote M (Z/p) by M (p). The spectrum M (p) ad-
mits a ring structure for p > 3, while for p = 3 it admits a pairing (non-
associative) M (3) A M(3) — M (3). This can be proved directly, just by
considering the group [M(p) A M(p), M (p)], see Araki-Toda [1], or, alter-
natively, this can be deduced from certain general results, see Ch. VIII of
this book. Since mo(M(p)) = Z/p, every group m;(M(p)) has exponent p.
Furthermore, if p > 3 then the group M (p).(X) is a m.(M(p))-module
for every spectrum (space) X. Moreover, for p = 3 we have a pairing
(M(3)).(X) ® (M(3)).(X) — M(3).(X). So, the group M(p).(X) is a Z,/p-
vector space. 8

Let
E E

Tnl lrn,l

En Po Enfl

be a Postnikov tower of E (we are writing simply E,, instead of E,)).

7.15. Lemma. The homomorphism (Tp, A1), : m(EAM (p)) — m(E,AM (p))
is epic for every n.

8 This is not true for p = 2: the element Laree) € M(2)«(M(2)) has order 4, see
Araki-Toda [1].
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Proof. The cofiber sequence S % § ERN Y (p) yields the commutative
diagram

m(E) —— m(E) — m(EAM(p) — mi1(E) —— m1(E)

all aQI J«(THM)* lag la4

Ti(En) —2— 7i(En)—mi(En A M(p))—mim1(En) —2— mi_1(En)

with exact rows. If ¢ < n then ai, k = 1,2, 3,4, is an isomorphism, and hence
(Tn A 1)4 is an isomorphism. If ¢ > n + 1 then m;(E,) = 0 = m;_1(E,), and
hence 7;(E, AM (p)) = 0. Finally, if ¢ = n+1 then (7, A1) is an epimorphism
because 7;(E,) = 0 and a3, a4 are isomorphisms. H

We continue the proof of the theorem. By 7.15, the homomorphism
(7 A1)s 7 (B A M(p)) — 72 (B A M(p))

is epic, and it splits since m.(E A M(p)) is a Z/p-vector space. Hence, by
7.2, for every n, E, A M(p) is a graded Eilenberg-Mac Lane spectrum and
pnAl: E,AM (p) — E,—1AM(p) admits a homotopy right inverse morphism.
Suppose that F is not a graded Eilenberg—Mac Lane spectrum. Then, by
7.3(iii), there exists a minimal n such that E, is not a graded Eilenberg—
Mac Lane spectrum. Hence, the first non-trivial Postnikov invariant of F is
ke H""Y(E,_1;m,), where 1, = m,(E). We have
HO(H(mn) A M(p); Ty © Z/p) = Hom(Ho(H () A M (p); Z), 0 @ Z/D)
= Hom(mo(H (7, A M(p))), 7 @ Z/p) = Hom(Ho(M (p); ), 7n @ Z/p)
=Hom(7w, ® Z/p, 7 @ Z/p).

Let u € H°(H(m,) A M(p); m, @ Z/p) correspond to
17rn®Z/p € Hom(ﬂ.n ® Z/p, T & Z/p)

Consider the following commutative diagram:

E, N E, 1 _k S ()

! | I

E, AM(p) 2225 B,y AM(p) —224 S0+ H (7,) A M (p)

lZ"Jrlu

S H (m, @ Z)p)

Here the rows are cofiber sequences and the morphism 7 has the form

S () = ST H () A S 25 S H () A M (p).
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Let 7,7 be two cyclic Z[p]-modules (i.e., 7, as well as 7, is isomorphic to
Z/p™ or Z[p]). It is well-known that the group H*(H;7),i > 0 has exponent
p, see e.g. Cartan [1]. Hence, the group H*(E,_1;m,) has the exponent p,
since F,,_1 is a graded Eilenberg—Mac Lane spectrum and 7, is a direct sum
of the groups Z[p] and Z/p™. So, the reduction k € H"*(E,_1;7, ® Z/p)
of k is non-zero. However, k = X" yorok, and so k A 1 is non-zero. Hence,
by 4.20, p, A1 does not admit a homotopy right inverse morphism. This is a
contradiction. O

Fix a prime p. Until the end of the section, H denotes HZ/p and H(—)
denotes H(—;Z/p). Let <7, be the mod p Steenrod algebra, <, = H*(H),
and let </ be the Hopf algebra dual to &, @ = H.(H). Finally, let u :
H AN H — H be the multiplication on H.

7.16. Theorem. Let E be a spectrum of finite Z[p]-type. If H*(E) is a free
p-module then E is a graded Eilenberg-Mac Lane spectrum.

Proof. Note that every group H¥(E) is finite. Let a1,... ,as,...,|as| <
|as+1], be a family of free o7,-generators of H*(E). Every element a; yields
a morphism a; : E — XI%/H. Set

F(s) = vi_Slelg, F = v slelg,

We have obvious inclusions i¥ : Sl HZ/p — F(s),k < s, of direct sum-
mands, and we have projections p; : F(s+1) — F(s),qs : F — F onto direct
summands. By 1.16(ii), the morphisms a; form a morphism hs : E — F(s)
with pshsy1 >~ hg and ifak = hs. Clearly, for every N there exists s such
that ht : HY(F(s)) — HY(E) is an isomorphism for i < N + 1. Hence,
H¥(Chg) =0 for i < N, and so, by 5.18(i), m;(Chs) = 0 for i < N. Hence, hs
is an N-equivalence, and so (hs)(n) : E(vy — (F(s))(n) is an equivalence.
By 7.3(i), (F(s))(n) is a graded Eilenberg-Mac Lane spectrum. Hence,
E(,) is a graded Eilenberg-Mac Lane spectrum for every n, and thus, by
7.3(iii), F is a graded Eilenberg-Mac Lane spectrum. O

One can give a stronger version of the previous theorem.

7.17. Corollary (of the proof). Let E be a spectrum of finite Z[p|-type.
Suppose that there exist a free finitely generated of,-module V and an <,-
homomorphism f : V — H*(E) such that f is an isomorphism in dimensions
< m+1. Then the coskeleton E,,) is a graded Filenberg—-Mac Lane spectrum.

Proof. Let {a;} be a family of free generators of V. As in 7.16, one can
construct a morphism h : E — F := VX% H such that h* : H*(F) — H*(E)
is an isomorphism in dimensions < m+1. Thus, E(,,) >~ F,,). But, by 7.3(i),
Fin) is a graded Eilenberg-Mac Lane spectrum. d

7.18. Lemma. Let E, F be a pair of spectra. Then the following hold:
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(i) The homomorphism pp r : H (E)® H.(F) — H.(E A F) is an iso-
morphism of comodules over the Hopf algebra <, ;

(ii) Assume that E is bounded below and F has finite Z- or Z[p|-type.
Then p®F : H*(E) ® H*(F) — H*(E A F) is an isomorphism of modules
over the Hopf algebra a7,.

Proof. (i) Because of 4.11(i), it suffices to prove that pyg r is a homomor-
phism of comodules over 7. Consider the morphisms b¥:E — HAE and
b . F — HAF asin 6.27(c). Because of the naturality of uxy in X,Y, we
have the following commutative diagram:

HE,F

H,(E) ® H,(F) LEE, H.(EAF)
(bE»@(bF){ l(bEAbFn
H.(HANE)® H.(HAF) LB, H(HANEANHAF)

#H,E@,U‘H,FT% H

H.(H)® H.(H) ® H.(E) @ H.(F) H.HANEANHAF)
1®T®1l l(mml)*
H.(H)® H.(E)® H.(H)® H,(F) —Y— H,HANHAEAF)
;LH,H®1®1l l(umm)*
H.(H)® H.(E) ® H.(F) H.(HANEAF)
H %T#H,EAF

1Que,F
s

H.(H)® H.(E) ® H.(F) H.(H)® H,(EAF)

where
vi= ppangearo(lmm @ pe F).

Now, the aggregated left vertical homomorphism
H.(E) ® Ho(F) — H.(H) @ H.(E) ® H.(F)

is the Aj-comodule structure map for H.(E)® H.(F), and it easy to see that
the aggregated right vertical homomorphism H,(EAF) — H,.(H)®H.(EAF)
is the Ay-comodule structure map for H.(E A F).

(ii) Similarly to the above, one can prove that u¥ is a homomorphism
of modules over the Hopf algebra 7,. So, we must check that p®% is an
isomorphism (of groups). If F has finite Z-type then this follows from 4.11(ii);
we leave it to the reader. Now, let F' have finite Z[p]-type. Firstly, let F' =
H(rm) where 7 is a finitely generated Z[p]-module. Since 7 is a finite direct
sum of the groups isomorphic to Z[p] and Z/p*, we conclude that 7 = 7@ Zp]
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where 7 is a finitely generated abelian group. Since H(7) has finite Z-type,
pH () s an isomorphism. But H,(H(7)) = H,.(H(7)), and so u®#(™) is an
isomorphism.

Now, given F' as above, we prove that u is an isomorphism for every
n. We prove this by induction on n. For brevity, we write F,, instead of F{,,
and 7 instead of 7, (F). Since F' is bounded below, there is k such that
Fy, = X*H () and so, by the above, our claim is true for Fy. Now, suppose
that p -1 is an isomorphism, and consider the cofiber sequence

E,F(n)

S"H(my) — Fy — Froq.

It yields the commutative diagram

l I

H*(E)® H*(S"H(m,)) ———— H*(E AX"H(my))

l l

with exact columns. Now, the Five Lemma implies that pff» is an isomor-
phism. The induction is confirmed.

Finally, for every k there is N such that (1 A 7n). : H*(E A Fy)) —
HF(E A F) is an isomorphism. Thus, ¥ is an isomorphism for every spec-
trum F' of finite Z[p]-type. O

7.19. Corollary. Let (E, u,t) be a ring spectrum.
(i) Define the homomorphisms

ftaty - Ho(E) @ H.(E) Y25 H.(E A E) X5 H,(E)

and vy : Z/p = H(S) — H.(E). Then (H.(E), p,,,,t«) is a comodule algebra
over the Hopf algebra <7,;.

(ii) In addition, suppose that E has finite Z- or Zlp|-type. Define the
homomorphisms

* E,E ~
p™ H*(F) X5 H*(EANE) &—— H*(E) @ H*(E)
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and * : H*(E) — H*(S) = Z/p. Then (H*(E), u>=,.*) is a module coalgebra
over the Hopf algebra o7,. a

7.20. Lemma. If E is a connected spectrum and mo(E) = Z/p then H°(E) =
Z/p. Furthermore, Qo(u) # 0 for every u € HY(E),u # 0.

Proof. By 4.7, the Hurewicz homomorphism h : mo(E) — Ho(E;Z) is an
isomorphism, i.e., Hy(E;Z) = Z/p. Furthermore, by 4.9, the homomorphism

H(E) — Hom(Ho(E; Z), 70 (H)) 2 Hom(ro(E), 70(H)) = Z/p

is an isomorphism. In particular, H°(E) = Z/p.

Let u : E — H represent a non-zero element u € H°(E). Then, by the
above, the induced homomorphism w, : mo(E) — Hy(F;Z) is an isomor-
phism, and so u is a O-equivalence. Hence, u* : HY(H) — H°(E) is an iso-
morphism and u* : H'(H) — H'(FE) is a monomorphism. Thus, Qo(u) # 0.

O

7.21. Lemma. Let E be a connected ring spectrum (E, u, 1) of finite Z]p|-type
with mo(E) = Z/p. Then H*(E) is a connected <7,-coalgebra, and its counit
v € HY(E) yields a ring morphism v : E — H.

Proof. By 7.19(ii), H*(E) is an 7,-coalgebra. Furthermore, the argu-
ments in the proof of 7.20 show that the augmentation t* : Z/p = H°(E) —
H°(S) = Z/p is an isomorphism. So, H*(E) is a connected coalgebra. Its
counit v is defined by the condition (*(v) = 1 € Z/p = H°(S). We must
prove that v : F — H is a ring morphism, i.e., that the diagram

EANE —"“ L E

ono| |»

HANH ™ H.
commutes (up to homotopy). The morphism

LAL

S=SAS LS5 EAELESH

coincides (up to homotopy) with ve, while the morphism

S=SASSENE-S HAH S H
coincides with the unit ¢y of H. Also, 1y ~ vt since 1*(v) = 1 € HY(S).
Hence,

vopo(t Av) ~ve =~ g =~ ppo(v Av)o(L At).

Since (tA)* : HY(EAE) — HY(SAS) is an isomorphism, vou >~ pgo(v Av).
g
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Let E be a spectrum as in 7.21. We define v : &, — H*(E) by setting
v(a) = a(v).

7.22. Theorem. If v is monic in dimension < m + 1 then the coskeleton
E(yny of E is a graded Eilenberg-Mac Lane spectrum. Furthermore, if v is
monic then E is a graded Eilenberg—Mac Lane spectrum.

Proof. By 6.29, the homomorphism 7 : <, ® G(H*(E)) — H*(E) is
an isomorphism in dimensions < m + 1. Now, by 7.17, E(,,) is a graded
Eilenberg—Mac Lane spectrum. Furthermore, the last claim follows from the
above and 7.3(iii). O

7.23. Corollary. Fizx a natural number m. Suppose either

(i) p=2and v(Q;) #0 for 211 — 1 <m+1, or

(ii) p > 2 and v(Qi) # 0 for 2p' —1 < m+1, v(P2) £0 for 2(p' — 1) <
m+ 1.

Then E(y, is a graded Eilenberg-Mac Lane spectrum.

Proof. This follows from 6.14 and 7.22, because the elements @); for p = 2
and the elements Q;, 27 for p > 2 form a Z/p-basis of the vector space
Pr <, of primitives. i

7.24. Corollary. Suppose either
(i)p=2and v(Q;) #0 fori=0,1,..., or

(i) p > 2 and v(Q;) # 0 for i =0,1,..., v(PD) £0 for j =1,2,....
Then E is a graded Eilenberg-Mac Lane spectrum, E ~ H(n.(E)). In other
words, E is a wedge of iterated suspensions over HZ/p. (I

7.25. Remark. It follows from 6.32 that 7.22-7.24 are valid for “non-
associative ring spectra” also, i.e., for spectra which satisfy Definition 2.12
with condition (1) omitted.

Now we consider ring structures on graded Eilenberg—Mac Lane spectra
(following Boardman [1]). We work here with homology rather than with
cohomology because the homology Kiinneth formula holds without any re-
strictions, unlike the cohomology one.

7.26. Lemma. If a commutative ring spectrum E is a graded Filenberg—
Mac Lane spectrum with pm.(E) = 0, then there exists a homomorphism
b: o) — H.(E) of o, -comodule algebras.

Proof. We consider the case p = 2 only; the case p > 2 can be proved sim-
ilarly. By 7.1, the inclusion Z/p = mo(F) — 7.(E) is induced by a morphism
¢:H — E,and f = ¢, : @ = H.(H) — H.(E) is a homomorphism of
4, -comodules.
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Recall that o = Z/2[C1,...,(n,...] and define a homomorphism of
Z/2-algebras b : @ — H,.(E;Z/2) by setting b(¢;) = f(¢;). Such a homo-
morphism of algebras exists (and is unique) because F is commutative. We
check that b is a homomorphism of o/ -comodules, i.e., that the diagram

oy  —L  H(E;Z)2)

v| K
dy @ oy —= o © Ho(E;2/2)

commutes. In this diagram all arrows are homomorphisms of Z/2-algebras (b
and 1®b by construction, V by definition and v by general reasons, cf. 6.25).
So, it suffices to prove that (1 ® b)V({;) = ¥b((;) for every i. We have

1eb)V(G) =1eb) (Y@ e6) =3 ¢ ebc) =Y ¢ e /(&)
=1 ® f)V(CG) = ¥ f(Ck) = ¥b(Ck)-
The fifth equality holds because f is a homomorphism of comodules. O

Let E be a ring spectrum with mo(E) = Z/p. We turn 7.(E) into an </~
comodule by requiring 7, (F) = Si(m«(F)). In this way 7.(FE) turns into a
y-comodule algebra, and the Hurewicz homomorphism h : 7. (E) — H.(E)
is a homomorphism of 7 -comodule algebras.

7.27. Lemma. If a commutative ring spectrum E is a graded Eilenberg—
Mac Lane spectrum with pm.(E) = 0, then the Hurewicz homomorphism
h:7m(E) — H.(E) is a monomorphism, and h(m.(E)) = Si(H.(E)).

Proof. Since E ~ VXYH, h is monic. Furthermore, because of this
equivalence, H,.(FE) is just a cofree extension H,(H) ® h(m.(F)). Finally,
Si(H.(H))=17Z/p = Ho(H), and thus Si(H.(F)) = h(m(E)). O

7.28. Corollary. If a commutative ring spectrum E is a graded FEilenberg—

Mac Lane spectrum with pm.(E) = 0, then there is an isomorphism H,(E) =
Ay @ (E) of o,-comodule algebras.

Proof. The homomorphism b : & — H.(E) in 7.26 yields, by 6.34, an
isomorphism H.(E) = o/ @ Si(H.(F)). But Si(H.(F)) = m.(E). O

7.29. Proposition. Let E, I be two graded Filenberg—Mac Lane spectra with
pr.(E) = 0= pm.(F).

(i) The homomorphism ¢ : [E, F| — Hom (H.(E), Hi(F)), ¢(f) = fs
s an tsomorphism.

(ii) In addition, suppose that E, F are ring spectra. Then f: E — F is a
ring morphism iff fu : Hi(E) — H.(F) is a homomorphism of </, -comodule
algebras.
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Proof. (i) The spectrum E is a wedge of spectra of the form X¢H. Since
each of the groups [E, F| and Hom+ (H.(E), H.(F)) is additive with respect
to E, it suffices to prove (i) for E = H.

Since H is a ring spectrum and F = VXH, we conclude that F is an
H-module spectrum. By 7.28 and 6.8, we have an isomorphism

h: Homgx (H.(H), Ho(F)) = Homy: (H. (H), 2, @ 7. (F))
= Homz/p(H*(H)Jr*(F)).
We leave it to the reader to check that hy : F*(H) — Homg,(H.(H ), 7«(F))
coincides with the homomorphism ev as in 3.45. Hence, by 3.45, hy is an

isomorphism, and thus ¢ is an isomorphism.
(ii) If f. is a homomorphism of comodule algebras then the diagram

H.(E)® H.(E) H.(F)® H.(F)
H(EAE) Y g(FAF)
H.(E) BELIIN H.(F)

commutes. By 7.10(ii), E A F and F A F are graded Eilenberg—-Mac Lane

spectra, and so, by (i), the morphisms E A E X5 E Lo Fand EAE I,

FAF 25 F are homotopic. Furthermore, the Hurewicz homomorphism
h:7m.(X)— H.(X), X = E, F, is a ring monomorphism, and so f preserves
the units. Thus, f is a ring morphism. The converse is obvious. [

7.30. Theorem (Boardman [1]). Let E, F be two commutative ring spectra.
Suppose that E,F are graded Eilenberg—-Mac Lane spectra with pm.(E) =
0 = pm(F). Then every ring homomorphism r : w.(E) — 7. (F) is induced
by a ring morphism f : E — F. So, if there exists a ring isomorphism
7 (E) & 7, (F) then there exists a ring equivalence E ~ F.

In particular, there is a ring equivalence E ~ H(m.(E)).

Proof. The composition
H.(B) = o} @ m.(E) 2% o @ n.(F) = H.(F)

(where the first and the last isomorphisms come from 7.28) is a homomor-
phism of comodule algebras. By 7.29(i), it is induced by a morphism E — F,
which is a ring morphism by 7.29(ii). The last assertion follows if we put
F = H(r.(E)). O



Chapter 1II. Phantoms

A phantom, or a phantom map, is an essential map f: X — Y of a CW-
complex X such that f|X(™ is inessential for every n. Adams-Walker [1]
found an example of a phantom, and many other authors found phantoms
later. The existence of phantoms was very exotic at that time and adorned
(and adorns now, by the way) any results. However, as usual, the other ten-
dency occurred afterwards: phantoms began to frustrate mathematicians be-
cause they appeared (or could appear) in very unexpected situations. Keeping
in mind the two above tendencies, we give examples of phantoms and some
sufficient conditions for the absence of phantoms. In fact, this chapter can
be treated as an exposition of some effects arising when we pass from finite
dimensional spaces (spectra) to infinite dimensional ones. In this context it
is also natural to consider spaces (spectra) which have the same n-type for
all n.

Many other things about phantoms one can find in McGibbon [1].

61. Phantoms and the Inverse Limit Functor

Let & = {X,} be a family of subspaces of a space X (or subspectra of a
spectrum X ). Given a space (spectrum) Y, we say that maps f,g: X — Y are
Z -homotopic if f|X, ~ g|X, for every «. Similarly, elements a,b € E*(X)
are called 2 -equivalent if a|X, = b|X, for every a. The classes of 2 -
homotopic maps (or 2 -equivalent elements) form a set [X,Y ]2 (or a group
E%- (X)) with the distinguished element * given by a constant map . There
are the obvious quotient functions o : [X,Y] — [X,Y]e and 0 : E*(X) —
B (X).

1.1. Definition. A map f : X — Y of spaces (or a morphism of spectra)
is called an 2 -phantom if o[f] = * while [f] # . Similarly, an element
a € B*(X) is an 2 -phantom if o(a) = 0 while a # 0.

This definition is given for an arbitrary family 2", but really interesting
are families with UX, = X. Moreover, to justify the term “phantom” the
subspaces X, must be sufficiently “massive”, otherwise phantoms do not live
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up to their name. For example, if {X,} is a family of charts of a manifold X,
then every non-trivial element of E* (X) is a phantom. Usually one considers
the families { X} of all finite CTW-subcomplexes (subspectra) and {X (™} of
skeletons of a CW-complex (spectrum) X . We fix these cases in the following
definition.

1.2. Definition. (a) Given a CW-complex (spectrum) X, let 2" be the fam-
ily {X (™} of all skeleta of X. Then an .2 -phantom is called just a phantom.

(b) Given a CW-complex (spectrum) X, let 2" denote the family {X,}
of all finite subcomplexes (subspectra) of X. Then an 2 -phantom is called
a weak phantom.

Propositions 1.3 and 1.4 below are formulated for a spectrum X and
phantoms in E*(X). We leave it to the reader to consider the case of spaces
X and sets [X,Y].

1.3. Proposition. Let h : X — Y be an equivalence of spectra, and let
h* : E*(Y) — E*(X) be the induced isomorphism. Then h* maps phantoms
to phantoms and weak phantoms to weak phantoms.

Proof. Exercise. Use 11.3.14 (cf. 1.14 and 1.15 below). a

1.4. Proposition. Let X, E be a pair of spectra. Then every phantom in
E*(X) is a weak phantom. Furthermore, if X has finite Z-type then every
weak phantom in E*(X) is a phantom.

Proof. The first assertion is trivial. The second assertion is clear if X has
finite type, since in this case each skeleton X () is finite. Finally, by I1.4.26(ii),
every spectrum of finite Z-type is equivalent to a spectrum of finite type, and
the result follows from 1.3. g

1.5. Example of a weak phantom. Let X = S™[1/3] be a Z[1/3]-localized
sphere S™, n > 1, i.e., the telescope of a sequence

g dogndy gt
where f : S™ — S™ is a map of degree 3. If we regard S™ as a CW-complex
with two cells, we obtain a cellular decomposition of X with 0-, n- and (n+1)-
dimensional cells. This gives us a chain complex {C.(X), 0.}, where C,,(X)
has Z-basis {a1, ... ,ai,...}, and Cp41(X) has Z-basis {b1,... ,bn,... }, and
Ont1bi = a; — 3a;41. Let 27 = {X,} be the family of all finite CTW-
subcomplexes of X. It is clear that H3''(X) = H""1(S") = 0. On the
other hand, H""1 (X)) # 0 because the cocycle ¢ : Cpi1(X) — Z, ¢(b;) =1
for every 4, is not a coboundary. Indeed, if ¢ = ¢ for some ) : C,,(X) — Z,
then ¥ (a;) — 3¢ (a;4+1) = 1. In particular,
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3k_1

9 + 39 (ars1)

Y(ar) =
for every k. Hence, 3¥ divides 21(a1) + 1 for every k, and so 2¢(a;) = —1.
This is a contradiction. Thus, the subgroup of weak phantoms of H"!(X)
is nontrivial (and even uncountable, see 5.1 below).

1.6. Example of a phantom (Adams-Walker [1]). Let X = S' A CP*.
Consider the space T' = S3[0], the telescope of the sequence

3 P1 g3 P2, 3 3
53 S3 e 83 ISR —

where S2 is a copy of S® and degy, = n. As in 1.5, we have C5(T) =
{al,... ,an,...}, C4(T) = {blv"' ,bn,...} and 8bZ = Q; — iai+1. Let fo :
X — T be any essential map: they exist because T' ~ K(Q, 3). (This holds,
in turn, since 7;(S%) is finite for i > 3, cf. I.7.11(i).) We regard every sphere
S3 as a subspace of T: namely, S? = 5’3 x {i+1} C T. Let Y be the space
obtained by attaching a cone C; = C’(Sf’) across each sphere S?, and let
1 : T — Y be the inclusion. Set f = ify; we now prove that f is a phantom.

Firstly, f|X (m) is inessential for every m. Indeed, let T} be the telescope
of the finite sequence

P1 P2 SPk 1
i R N 1 6

it is clear that T} contracts to S,i’. The space X (™) is compact, and hence
f(X ™) is contained in some Ty. But the sphere S3; is coned off in Y, and
hence f|X (™) is inessential.

On the other hand, f is essential. Indeed, otherwise it can be extended to
amap F : (CX,X) — (Y,T). Let z be a generator of the group H4(CX, X) =
Z, and let ¢; be a generator of the group Hy(C;,C; NT) = Z. Since the ele-

ments ¢; generate Hy(Y,T), there exists N such that F( Z n;c;, where

n; € Z. Let 0 : Hy(CX,X) — H3(X) be the connecting homomorphlsm
It is clear that 0z generates H3(X), and hence Fi(z) = £(fo)«(0z). But
(f0)«(0z) # 0 by construction, and so there exists k such that ny # 0. Let p
be any prime which does not divide ng, and let ¢; be the mod p reduction of
¢;. Consider the class ¢; € H*(Y,T;Z/p) dual to ¢ with respect to the basis
{¢;}. We have F*c; # 0. Since P! : H*(CP>;Z/p) — H?**(CP>;Z/p) is
an isomorphism, so is P! : HY(CX, X;Z/p) — H?**T2(CX, X;Z/p). Hence,
PF*c; # 0. But Plc; € H**2(Y,T;Z/p) = 0. This contradiction proves
that f is essential.

1.7. Remarks. (a) There is no commonly accepted terminology concerning
phantoms. For example, some people use the term “phantoms” for what we
call weak phantoms; Margolis [1] uses the term “f-map” for weak phantoms,
ete.
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(b) Let 2 be the family of all suspension subspectra of a spectrum X.
Margolis [1] introduced the term “hyperphantom” for 2 -phantoms. I think
it is still unknown whether hyperphantoms exist.

(c) Probably, “theoretically” it is preferably to define, say, weak phantoms
as essential maps f : X — Y such that fy is inessential for every map
@ : A — X of a finite CW-complex. In this way 2 in 1.1 should be a
(small?) category with the terminal object X, etc. However, we do need this
flavor, preferring the style “for working mathematicians”.

Now we want to describe the groups E%, (X). Sometimes the inverse limit
concept helps to do it.

1.8. Definition. (a) Let A = (A, <) be a quasi-ordered directed set. Let .2
be an arbitrary category. An inverse system over A, or, briefly, an inverse
A-system, in JZ is a contravariant functor .#Z : A — 2. In other words,
M is a family A = {M, j\}x pen where My € # and where j§ : M, —
My, A < p, are morphisms such that jyj; = j§ for A <y < v and I = 1u,.

(b) A morphism f : {My, j§} — {Nx, h\} of inverse A-systems is a natural
transformation of the functors, i.e., a family {fx : My — Ny} with hA f, =
Vi

It is clear that there arises a category %, of inverse A-systems in JZ.

1.9. Definition. Let Z be one of the following categories: &ns, # , groups
and homomorphisms, R-modules over some ring R and R-homomorphisms,
topological groups (in #’) and continuous homomorphisms. Given a quasi-
ordered set A, let .# = {M,} be an inverse A-system in #. An element
{ax} € T[, My is called a string if j\a, = ay for every A\, p € A with X\ < p.
The set of all strings is called the inverse limit or projective limit of the inverse
system .# and is denoted by lim.# or lim{My} or lim, {M)}.

Clearly, lim{M)} = [[ My if A is a discrete quasi-ordered set.

It is obvious that lim is a functor .23 — % . Furthermore, lim commutes
with the forgetful functor 2 — &ns.

Note that the projections pj : H My — M, yield functions
A

(1.10) gx limZ — My, gy = pa|lim 4.

1.11. Proposition. Let {fx : N — My} be a family of morphisms such that
jﬁff# = fa for every A < p. Then there exists a morphism f : N — lim.#
with qxf = fx, and this morphism is unique.

Similarly to 1.2.5, we denote this f by {f\|lim}.
Proof. Set f(n) = {fa(n)} € [], Mx. Then {fr(n)} is a string, and py f =
fr. The uniqueness of f is obvious. O

As an illustration, consider the following important example.
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1.12. Example. Let E be a spectrum, let X be a CW-complex (resp. a
spectrum), and let 2~ = {X,} be a family of CW-subcomplexes (resp.
subspectra) of X ordered with respect to inclusions. We also assume that
XaUX, e ', XoonX, € & for every \,p € A Let iy : X\, — X
and iy : Xy — X, be the inclusions. Then we have an inverse system
{E*(X»), (i})*}. Considering homomorphisms gy : im{E*(Xy)} — E*(X»)
as in (1.10), we conclude that the family {fx := (ix)* : E*(X) — E*(X))}
satisfies the conditions of 1.11. Thus, there exists a unique homomorphism
p = {33 lim} : B*(X) — lm{E*(X,)} with qp = i5.

1.13. Proposition. The morphism p : E*(X) — Um{E*(X\)} can be de-
composed as
E*(X) = Bo(X) = lm{E* (X))},

where o is the epimorphism defined at the beginning of this section and s is
a monomorphism.

Proof. It is easy to see that i} : E*(X) — E*(X,) can be decomposed as
E*(X) 5 B3 (X) =5 E*(X)) with some . Furthermore, the homomor-
phisms s, satisfy 1.11, and so there exists » : E%-(X) — Im{E*(Xy)} with
qr» = 7. The equality p = »o follows from 1.11.

We prove that s is monic. Suppose that s(a) = 0 and choose b € E*(X)
with o(b) = a. Then i§(b) = 0 for every . Thus, b is 2 -equivalent to 0, i.e.,
a=0. (I

In particular, Kero = Kerp. Hence, £ -phantoms are just (nontrivial)
elements of the group Ker{p : E*(X) — Um{E*(X)}}.

1.14. Construction. Given two spectra X, Y, let {X,}, resp. {Y,} be the
family of all finite subspectra of X, resp. Y, and f : X — Y be a map of
spectra. By I1.3.14, there are families {X,,} C {X\}, {Y,} C {Y,} and maps
fo i Xo — Y,,w € Q, such that {X,,} is cofinal in {X,}, {Y,} is cofinal in
{Y.}, and the composition

X, v, cy

coincides with f|X,,. Now, for every spectrum E we have the homomorphisms
X EX(Y,) — E*(X,). They yield the homomorphism

f*i=lim G hm{ EY(Y,)} = I { B (Y,,)} — Im{E"(X,)} = im{E" (X))},

Furthermore, if f : X — Y is not a map but a morphism of spectra, we can
consider a map [/ : X — Y where X’ is cofinal in X, and get the similar
homomorphism f* : im{E*(Y,)} — im{E*(X))}.

1.15. Proposition. Let X,Y, E be three spectra, and let {X\}, resp. {Y,}
be the family of all finite subspectra of X, resp. Y.
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(i) Given a morphism f: X —'Y, the homomorphism
ST Im{ BT (Y,) ) — Im{E™ (X))}

in 1.14 does not depend on the choice of {X,} and {Y,}. In particular, the
group im{E*(X)} is natural in X.

(i) If feg: X =Y then f* = g* : im{E*(Y,)} — Um{E*(X\)}. In
particular, if h : X — Y is a homotopy equivalence then h* : lim{E*(Y,)} —
lim{E*(X)} is an isomorphism.

Proof. We leave it to the reader. O

1.16. Proposition. Let --- C X, C Xpq41 C --- be a CW-filtration
of a CW-complex X. Then for every space Y the function p : [X,Y] —
Um{[X,,Y]} is surjective. Similarly, if, in addition, we equip X and Y with
base points and assume that {X,} is a pointed filtration, then the function

p: [ X, Y] — lim{[X,, Y]} is surjective.

Proof. We consider only the case of non-pointed spaces. Let an element
a € lim{[X,,Y]} be represented by a family of maps {f, : X;, — Y} with
frt1|Xn == fn. Using the homotopy extension property for CW-pairs, one can
construct (by induction) a family of maps {g,, : X,, — Y} with g,+1|X,, = gn
and g, ~ f,. If we define g : X — Y by setting ¢g|X,, = g,, we conclude that
plg] = {lgnl} = {[/n]} = a. O

1.17. Lemma. Let --- — K, ELN K,_1 — --- be an inverse sequence of

non-empty finite sets. Then im{ K, } # 0.

Proof. We set P, :=(\°_ Im{K,, — K,}. Clearly, P, # 0 for every n,
and every function g, : P, — P,_1 (the restriction of f,) is surjective. So,
we can find elements z,, € P,,,n € Z, such that g,(x,) = z,—1. Now, {z,} is
a string in {K,}. O

1.18. Theorem. Let Y = (Y,yo) be a pointed space which is connected and
simple.

(i) Let (Z, A) be a CW -pair such that the group H*(Z, A; 1 (Y)) is finite
for every k > 0. Given a map u: A —'Y, suppose that u can be extended to
ZM U A for every n. Then u can be extended to the whole space Z.

(ii) Let X = (X,zg) be a pointed CW -complex such that the group
H*=Y(X;m,(Y)) is finite for every k > 0. Then both functions p: [X,Y]* —
Hm{[X ™, Y]*} and p: [X,Y] — Um{[X ™), Y]} are bijections.

Proof. (i) Tt suffices to construct a family {v, : Z(" U A — Y} such that
v|A = u and v,,41|Z™ ~ v,,. Indeed, then, deforming v, map by map, we
can construct a family {v/,} such that v/, ,|Z(™ = v/, and v],|A = u, cf. the
proof of 1.16. Then we define v(z) := v/, (x) if z € Z™).
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We set ky == {v: ZMWUA Y |v]4d =u} and K, := {[v] | v € ky}
(where [v] denotes, as usual, the homotopy class of v). Then we have the
inverse sequence

SR LI (. )
where f,[v] = [v|Z"~1 U A]. Since every group H*(Z, A; 7 (Y)) is finite, we
conclude, using the elementary obstruction theory, that every set K, is finite.
So, by 1.17, there is a string [v,] € im{ K}, i.e., the desired family {v,}.

(ii) The surjectivity of p is proved in 1.16. We prove the injectivity of p.

Firstly, we consider pointed maps. Let f,g : (X,20) — (Y,y0) be two
pointed maps such that p[f] = p[g]. We must prove that there a pointed
homotopy between f and g.

Weset Z .= X xI,A=Xx{0tUX x{1}U{zo} xI and defineu: A - Y
by setting U(I,O) = f(l’),u(l’, 1) = g(x),u(x(),t) = yo. Since p[f] = P[g], we
conclude that f|X(") and g|X(”) are homotopic for every n, and so u can be
extended to (X x I)(™ U A for every n. Now,

H*(Z, A;mp (V) = H(X x T/(X x {0,1}U {zo} x I); mx(Y))
= H*(SX;m(Y)) = HY (X m(Y).

So, every group H*(Z, A; 7, (Y)) is finite, and hence, by (i), u can be extended
to X, i.e., f and g are homotopic as pointed maps.

Now we consider non-pointed maps, i.e., we prove the injectivity of p :
[X,Y] — lim{[X™),Y]}. So, we consider two maps f,g: X — Y and prove
that f ~ g whenever p[f] = p[g]. Without loss of generality we can assume
that f(zo) = g(xo) = yo. Since p[f] = plg], for every n there is a homotopy
H, : X" x I —Y between f and g. We fix such a family { H,,}. Then every
loop Hy,(2o,t),t € I gives us an element o, € 71 (Y, yo). Since (X x I, {xo}xTI)
is a cofibered pair, we can assume that H,,(zg,t) = H,(xo,t) whenever
Qi = . Note that 1 (Y) is finite since the group H?(X; 71 (Y)) is finite. So,
there is an infinite subset M = {ny,... ,ng,...} of N such that a,, = ay, for
every i € M. Now we define a new family {H’ : X(™ x I — Y} of homotopies
by setting H!, := H,|X) x I where n := min{klk € M and m < k}.
In particular, H) (zo,t) does not depend on n. We set Z := X x [, A =
X x{0}UX x {1} U{ao} x I and define u : A — Y by setting u(x,0) =
f(@),u(z,1) = g(x),u(zo,t) = H] (xo,t). Now the proof can be completed
similarly to the previous case. ([

Let .# be an inverse A-system, and let A’ be a subset of A with the
quasi-ordering inherited from A. Consider the morphisms

@ im o — My, A € A and ¢ : lim.#Z — My, A € A/
A A’

as in (1.10). Based on 1.11, we define

(1.19) MR lim{My} — Hm{ My}

to be the unique morphism such that ¢ #Z3, = g\ for every A € A’.
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1.20. Lemma. If A’ is cofinal in A then .}, is an isomorphism for every
inverse N-system M .

Proof. This is obvious. O

We finish this section with some algebraic remarks. Let A, A’ be two quasi-
ordered sets. Consider the quasi-ordered set A x A’, where (A, ) < (p, i)
iff A< pand N <.

1.21. Lemma. lim, , ,, {Axx} = lim, {lim,, {Ax x }} = lim,, {lim , {4 x/}}.

In particular, if A’ is a discrete ordered set, then
lim {H A/\,X} = HliLn{A/\,X}-
A A A A

Proof. Routine. O

1.22. Definition. Let R be a commutative ring. Let {M}, resp. { Ny}, be
inverse systems of R-modules. Set M = lim{M)}, N = lim{Ny }. Define the
A — A'-completed tensor product M @~ N := lim{ M, ® Ny }.

Given @ € M,b € N, it is useful to denote the string {a) ® by} by
a @A b,

1.23. Examples. (a) Let A, B be two graded abelian groups, and let Ay, be
the subgroups of elements of degree < k, Ay} = ®i<xA;. We have the inverse
Z-system { Ay, ji }, where ji|A; = 14, for i <k and ji|A, =0 for k <r <.
In this way we have the completed graded tensor product

A B o= lim{ Ay @ By}

(b) Let E, F, X,Y be any spectra. Suppose that E*(X) = im{E*(X\)}
and F*(Y) = im{F*(Yx )}, where {X)},{Yx} are the families of all finite
subspectra of X,Y respectively. (See §4 about conditions when this holds.)
Then we have the profinitely completed tensor product

B (X)BF(Y) = im{E"(X») ® F* (Ya)}.

Furthermore, if F is a ring spectrum and F' is an E-module spectrum, we
define
E*(X)®E*(S)F*(Y) = M{E*(X,\) ®E*(S) F*(Y)\/)}.
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§2. Derived Functors of the Inverse Limit Functor

From here to the end of this chapter the words “inverse system” mean
“inverse system in /9" unless something else is said explicitly. Moreover, if
we use a script letter (say, &) in order to denote an inverse A-system then
we use the same capital letter (A in this case) in order to denote terms of
this system.

2.1. Definition. A sequence - -+ — &/ — B — € — - - - of inverse A-systems
is called ezxact if for every A € A the sequence

-— Ay —= By —>C\ — -

is exact.

2.2. Theorem. If the sequence
0—-o B —F—0
18 exact, then the induced sequence
0 — lim &/ — lim % — lim%
is exact. In other words, the functor lim is a left exact functor.

Proof. This follows immediately from the definitions, see e.g. Switzer [1],
7.63, or Eilenberg—Steenrod [1], VIII.5.3. O

However, the functor lim is not a right exact functor, i.e., the homomor-
phism lim % — lim% in 2.2 is not epic in general. There is the following
well-known example.

2.3. Example. Consider the following short exact sequence of inverse sys-
tems (the latter are vertically situated)

3

!
E

0

z 7.)2 0

where the number at the arrow means the multiplication by this number.
Applying the functor lim to this sequence, we get a non-exact sequence

0—-0—-0—>2%Z/2—0.
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This suggests the existence of right derived functors @k of lim, converting
the exact sequence 0 — &/ — Z — € — 0 into an exact sequence

Oﬂmﬂﬂ@%ﬂ@%ﬂmldﬂﬂmk_lcg

(2'4) _)l._kﬁ{ .k k . k+1
im — lim" % — lim"¢ — lim"" o/ — - .

These functors really exist, and now we describe them.

2.5. Definition. An inverse A-system <7 is called flabby if the homomorphism
MK\, tlimy o) Ax — lim, ), Ay as in (1.19) is epic for every A’ C A.

Note that {Ax|A € A’} is flabby for every A’ C A if {A\|X € A} is
flabby. Furthermore, if the system {4y} is flabby, then every homomorphism
JN Ay — Ax, A < p, is epic.

2.6. Theorem (cf. Godement [1], Th. 3.1.2). Let
0o =B —-%F—0
be an exact sequence of inverse systems. If o/ is flabby, then the sequence
0 —lime — lim % — lim% — 0
s ezact.

Proof. Given a string {cx} € lim%, we prove that it is the image of a string
{bx} € lim AB. Consider the set F of all “substrings” {by € Bx|A € A’ C A}
such that by — c) for every A € A’ and A’ runs over all subsets of A. We
say that {D)\|A € A" C A} < {W{|A € A C A} iff A C A" and b} = b)
for every A € A’. It is clear that F is an inductive set. Therefore, by Zorn’s
Lemma, it has a maximal element {b)|\ € Q}. We prove that Q = A. Indeed,
let v € A,v ¢ Q. Set [v] := {ala < v} C A. Choose an element b, with
b, — ¢, and set b, = jib, for every a < v. It is clear that the difference of
the substrings {bg|8 € [v] N Q} and {bg|F € [v] N Q} is the image of some
substring {ag € Ag|f € [v]NQ}. Since & is flabby, we can find a, € A, with
ag = jpay for every 8 < v. Set b, = b, + a, and b'ﬁ = jgbfj for 8 < v. Then
{balA € Q} and {b}|3 € [v]} agree on [v] N Q. But in this case they produce
a substring indexed by [v] U Q. Hence, {bx|A € Q} is not a maximal element.
This is a contradiction. O

2.7. Corollary. Let 0 — &7 I B %% 0 be an exact sequence of inverse
systems. If o and P are flabby then so is €.

Proof. In the commutative diagram
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limy By —— lim,,Ci

. im{g»} .
anAeA’BA i’ MAGA’CA

the homomorphisms lim{gy} and %4, are epic. Thus, €73, is epic. O

0 1 n
2.8. Corollary. If 0 — </° St LI gt s an exact
sequence of flabby inverse systems, then the induced sequence

Oﬂmﬂoﬁmdlﬁ...ﬁmqgﬂ_}...
15 exact.

Proof. Tt follows from 2.7 (inductively) that
00— —>Imf'—0, 0—-Imf"— " —Imf* -0

are exact sequences of flabby inverse systems. Now use 2.6. O

Let & = {Ax,j5} be an inverse system. Following Roos [1], consider an

inverse system Z(#/) = {Rx(«/), 7\'}, where Ry = H Ay and 7k is defined
a<

as follows: m{'|Aq = 14, for @ < X and 7§|A, = 0 otherwise. There is a

canonical embedding

roof — R(A), rx={j2}: A\ — HAO“ = Ry (o).

a<A

It is easy to see that Z is an autofunctor on the category of inverse A-
systems and that r : 1 — & is a morphism of functors.

2.9. Proposition. The inverse system Z (<) is flabby for every inverse
system o7 . Thus, every inverse system can be embedded in a flabby one.

Proof. This follows immediately from the definition of Z. (]

Given an inverse system o, we set Z°(&/) = Z() and %' () =
R(#°(A)/r(<)). We define the morphism

e B () _Quotient, R ) |r(d) = R(R(A)r(H)) = B ().
Now, by induction, for n =0,1,2,... we define

RN o) = (R (A)[e"H (2" (A)))
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and
e R(A) — R(F) )" N F" ()
= R(R" ()" (RN A)) = B (A).

2.10. Definition. The Roos resolution of an inverse system .o/ is the exact
sequence

n

0
0— o 5 R(A) o BNA) — - — B(A) S -
It is clear that the Roos resolution is natural with respect to ..

2.11. Proposition. If a sequence
0o -PB—F—0

of inverse systems is exact, then for every n the sequence

0> %" (o) > R (B) — %" (€)— 0
is exact. More generally, if a sequence

0o % > 7l — ... 5 gk ...
s exact, then the sequence
0— 2" () - B (F') - = B (") — -

18 exact.

Proof. The exactness of the sequence 0 — Z(«) — Z(B) — #(€) — 0
follows from the definition of Z. Furthermore, the sequence

is exact, and so the short sequence of the proposition is exact for n = 1.
By iteration of these arguments, we can prove the exactness of this short
sequence for every n. This implies the last assertion of the proposition: it can
be deduced from the previous one just as we deduced 2.8 from 2.7. (|

2.12. Definition. Given an arbitrary inverse system .o/, we set
§" = lim{e"} : im Z" (&) — im %" ().

Thus, we get a cochain complex

lim 7o) S lm @ () - lmZ () L B () -
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We define

lmlod = Ker 6, lim" ¢/ :=Ker¢"/Im ont
It is clear that lim"™ is a functor on the category of inverse systems.
2.13. Proposition. (i) lim’«/ = lim «7.

(ii) For every short exact sequence 0 — o/ Lw%e o of inverse
systems, there is a natural long exact sequence

0 —lim o 22 1im 2 229 g s il — - " —

L"ﬂm—n>11_ 1—911_%_>1_n+%_>m'
(iil) If an inverse system < is flabby then im" </ = 0 for every n > 0.
Proof. (i) We have the exact sequences
0 — lim o — Lim %(</) > lim(%(/) /r(/))
and
0 — (@ ()/r(7)) 20 Jn 7 (1),

where h is induced by the quotient map and lim(r)h = §°. Thus, liglo,szf =
lim <.

(ii) Consider the following commutative diagram with exact rows and
columns:

0 0
| |
B — € —0

0 —— %(427) B %(:@) e %(%) — 0

R
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It induces a commutative diagram
0 —— % () —— Im%(#) —— %) —— 0

0 —— lm#N () —— I #(B) —— lmZ(F) —— 0

l i
| |

0 —— lm @) —— Im&Z"(B) —— ImZ"(€) —— 0

! l

By 2.6 and 2.9, its rows are exact. Furthermore, each of its columns is a com-
plex, i.e., this diagram is a short exact sequence of complexes. The homology
exact sequence of this short exact sequence is the desired sequence.

(iii) This follows from 2.8. O

One says that an inverse system &7 is lim-acyclic, or simply acyclic, if
lim*e/ = 0 for all ¢ > 0. For example, every flabby system is acyclic. One
expects that one can compute lim" via any acyclic resolution, and in fact this
is true.

2.14. Theorem. Let
£° f "
00— -’ gt 2 g s

be an exact sequence of inverse systems with acyclic </* for everyi > 0. Then

@O,Q% =Kerd’, lim".« = Ker§"/Im o™, where

6n:lﬂ1fnlin£{n_’mﬂn+l

Proof. Consider the following commutative diagram:
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0 0
| | |
0 —— o — F° of 7 _—
| | |
0 —— ZN(A) —— Z°(F°) BN(AT) ———— -
| | |

0 —— Z(A) —— Z(F) R(AT) —— -

We apply lim to this diagram and obtain the bicomplex lim Z*(«/7). As
usual, there are two spectral sequences 'EP*¢ and " EP*?, both converging to
the same limit. Here for 'EP*? (given by the horizontal level filtration) we
have 'E?? = 0 for ¢ # 0 and 'E2° = lim”«7, ie., 'E2? = lim”«/. On the
other hand, by 2.8 and 2.9, "E?? = 0 for p # 0, while ”ES? coincides with
the group Kerd?/Im§?~! of the theorem. Thus, lim" .« = Ker§"/Im "1,

O

Now we consider the important special case: the index set A is the set
Z of integers. So, let & = {A,,j} be an arbitrary inverse system over Z.
Define the endomorphism

0: ﬁ A, — ﬁ A,
by setting

9 41
S5(..ya1, ey an,. )= (.. a1 — jiag, ... ;an — 30 ans, .. L),  ar € Ay.

2.15. Theorem. lim &/ = Ker, liLnl,;zf = Coker d, liLni,;zf =0 fori>1.
Proof. Consider the inverse system . (&) = {S, (<), pl’} where

Su()= 1] Ax

k<n-—1

and the homomorphisms p”* : Sy, (27) — S, (), m > n, have the form
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m 1Ak if k& S n— 1,
Pl Ak = .
0 ifn—1<k<m.
Define ¢ = {pn} : Z(&) — L (&) by setting pn(...,a1,...,a4,) =
(...,a1 — jiag,... ,an_1 — j"_jay). Obviously, the sequence of the inverse
systems

0o 5 RA) L S(d)—0

is exact. Also, it is easy to see that (&) is flabby, and hence this sequence
is an acyclic resolution of &7, i.e., it satisfies the condition of 2.14. It remains

to note that lim{y : Z(&) —» L (&)} =6 : [[ An — [[ An. O

Now we describe a useful class of acyclic resolutions, cf. Kuz'minov [1].

2.16. Definition. (a) An inverse system {Aj,j\'} of topological abelian
groups and continuous homomorphisms is called compact if all the groups
A, are compact.

(b) An inverse system & of abelian groups is called algebraically compact
or, briefly, a-compact if it can be obtained from a compact one by ignoring
the topology. Similarly, a group is called a-compact if it can be obtained from
a compact topological group by ignoring the topology.

(c) Given an inverse system &/, an exact sequence

0 n
0o of >0 2. . g 2, ...

of inverse systems is called an a-compact resolution of < if every inverse
system &/*, 1 > 0, is a-compact. An a-compact resolution of a group is defined
similarly.

Clearly, every finite group is a-compact. The group Z is not a-compact.

2.17. Theorem. Let {Ax} ELY {Bx} Y {C\} be an exact sequence of
compact inverse systems such that all the homomorphisms fx, gx are contin-
uous. Then the induced sequence im{Ax} — Um{By} — Um{C\} is ezxact.

Proof. See Eilenberg—Steenrod [1], Theorem VIIIL.5.6. O

2.18. Corollary. (i) Every compact inverse system </ is acyclic.
(ii) Fvery a-compact inverse system is acyclic. In particular, every system
of finite abelian groups is acyclic.
(iii) Let
0 n
0o >F° L. .. L gn 2, ...

be an a-compact resolution of <. Then lim"«/ = ker " /Tm¢" !, lim’e/ =
Ker 6%, where 6™ = lim ™ : lim .&/™ — lim &/ +1.
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Proof. (i) Since the product of compact topological spaces is compact, all
the groups Ry (&) are compact. ? It is easy to see that all the projections
7 R, (/) — Rx(&/) are continuous, as well as the maps ry : Ay — Ry ().

Hence, the Roos resolution 0 — &7 — #°(&/) — -+ —— Z"+ () — --- of
&/ consists of compact inverse systems, and all the homomorphisms e¥ are
continuous. Hence, by 2.17, the sequence

lim 2°(/) — -+ — im 2" (/) 2 lim 2" () = -

is exact. Thus, lim" (&) = 0 for every n > 0.
(ii) This follows from (i).
(iii) This follows from 2.14 and (ii). O

2.19. Lemma. FEvery abelian group can be naturally embedded in an a-
compact one. In other words, there exist a functor ® : Y — FY and a
natural transformation ¢ : 1yq — ® such that, for every abelian group A,
O(A) is algebraically compact and cy : A — ®(A) is a monomorphism.

Proof. Given a topological group G, let x(G) be the character group of
G, i.e., the topological group of all continuous homomorphisms G — SO(2).
Recall that the canonical map w : G — x(x(G)), w(g)(¢) = ¥(g), is an iso-
morphism and that y(A) is a compact group for every discrete group A, see
Pontrjagin [1], Th. 39 and 36. Clearly, the correspondence A — x(A) yields
a contravariant functor /94 — @9. Let x°(G) be the discrete group which
has the same underlying set as x(G). Then ¢ : x°(G) — x(G) is a contin-
uous epimorphism, and hence x(¢) : x(x(G)) — x(x°(G)) is a continuous
monomorphism. Now, given an abelian group A, we set ®(4) = x’x°(A4),
and we define ¢ by setting c4 to be the composition

w ( ) o
(2.20) cat A= x(x(4) == x(x°(4)) = X°x°(4) = o(4)
where the last arrow is the additive isomorphism 5;51( A) (I

2.21. Definition. In future we write A instead of ®(A) and call the homo-
morphism ¢ = ¢4 : A — A the canonical a-compactification of A.

2.22. Definition. Let A be an abelian group, and let ¢ : A — A°
be the canonical a-compactification of A. We consider the canonical a-

compactification ¢y : Cokerc — A! and define ¢® : A% % Cokerc <% A,
where hg is the canonical epimorphism. Inductively, let ¢, : Cokerc®~! —
A" be the canonical a-compactification, and let h,, : A” — Cokerc” ! be

9 Recall that we use definition 1.3.6 of the product of topological spaces. It is well-
known that [[© X is compact provided every X is compact, see e.g. Bourbaki [2].
However, kY is compact if Y is compact.
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the canonical epimorphism. Set ¢® = c,h, : A" — A™t!. Then we have an
exact sequence

., 0 n—1 n
0> A5 A0 S5 4 ... & s 4qn &L

where all the groups A? are a-compact. This exact sequence is called the
canonical a-compact resolution of A.

2.23. Theorem. Every inverse system </ admits an a-compact resolution.
Furthermore, this resolution can be constructed naturally with respect to < .

Proof. Given an inverse A-system &7, consider the canonical a-compact
resolution of Ay

Cn
0—>Ak—>A§—>---—>A§—*>A’;+1—>---

for every A € A. By naturality, these sequences form an exact sequence of
inverse systems

0_,€Q{_)€Q{0_>..._,(Qﬂﬂﬂn+l_,..._

Clearly, this is the desired a-compact resolution of .o7. O

§3. Representability Theorems

According to I1.3.22, one can assign a (co)homology theory to a spectrum.
This situation turns out to be invertible.

3.1. Notation. As in Ch. II, §3, let J#* denote one of the categories
C*, 6, 6, and let £ denote one of the categories .7, 7, Sd, Litd, 4.

3.2. Definition. (a) One says that a reduced cohomology theory h* (resp.
homology theory 71*) on £ * is represented by a spectrum F if there is an
isomorphism h* = E* of cohomology theories (resp. an isomorphism he 2 E,
of homology theories) on J¢*.

(b) One says that a cohomology theory h* (resp. homology theory h,) on
% is represented by a spectrum FE if there is an isomorphism A* = E* of
cohomology theories (resp. an isomorphism h, = E, of homology theories)

on . %.

3.3. Definition. (a) Let #*, £ be as in 3.1. Two morphisms f,g: E — F of
spectra (resp. maps of spaces) are called £ -homotopic (resp. £ *-homotopic)
iff fi ~ gi: A — F for every morphism (resp. map) i : A — E of every
spectrum A of .Z (resp. every space A of J¢*).
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(b) Two #-homotopic morphisms (resp. €;-homotopic maps) are called
weakly homotopic. In this case we write f ~" g.

Clearly, f ~¥ g : E — F iff f|E\x ~ g|E\ for every finite subspectrum
(subspace) Ey of E.

3.4. Theorem—Definition. Let h* be an additive cohomology theory on &,

and let -+ — X(n) ELN X(n+1) — -+ be a sequence of morphisms of
spectra. Then there exist a spectrum X and morphisms i, : X (n) — X with
the following properties:

(1) in-l—lfn =~ in;
(ii) The homomorphism

((in )« lim) : lim{m. (X (n))} — m(X)

as in 1.2.5 is an isomorphism;
(iil) There is an exact sequence

(385) 0 — L' (A (X ()} — WE(X) 2 Hm{ (X ()} — 0

where p = {3} |lim} as in 1.11. Such a spectrum X is called a weak homotopy
direct limit of the sequence {X(n)}.

Proof (cf. Milnor [5], Margolis [1], Ch. 3). In fact, X is a suitable telescope
of the sequence {X (n)}. Consider the morphism

1V(=fn)
el

gn 1 X(n) 5 X(n)V X (n) X(n)vX(n+1)c\/X(n),

where V is the coaddition. Let g : \/,, X(n) — \/,, X(n) be the morphism
such that g|X(n) = gn. Set X := C(g) and define i,, to be the morphism
X(n) c V, X(n) — X. We prove properties (i)—(iii).

The property (i) follows from the definition of gj,.

To prove (ii), consider the homomorphism

Jx : D (X (n)) = s (\/ X(n)) — T (\/ X(n)) = B (X (n)).

Then there is the following commutative diagram with the exact rows:
0— @, (X (n) —2— @ (X (n) —— liy{m. (X (n))} —— 0
H H l«in)*\li_nw
0—@nm(X(n) —2— @nm(X(n) ——  m(X) ——0,

and so ((i,)«|lim) is an isomorphism, and (ii) is proved. (Here the top row
is exact because of the definition of lim, see 1.2.4.)
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The cofiber sequence \/, X(n) 2% \/, X(n) — X induces the exact se-
quence

[T (@) = [TA4 ) — 1)
— [[r*xm) > [[n*(x ()
where ¢ is as in 2.15. Now, by 2.15, the exact sequence
0 — Cokerd — h*(X) — Kerd — 0

yields the desired exact sequence (3.5). O

3.6. Theorem. (i) Every additive cohomology theory h* on . can be repre-
sented by a spectrum.

(i) Let E, F be two spectra. Every morphism E*(—) — F*(—) of cohomo-
logy theories on . can be induced by a morphism E — F of spectra, and this
morphism of spectra is unique up to homotopy. In particular, a representing
spectrum for a cohomology theory on . is unique up to equivalence.

Proof. (i) Given a spectrum F, every element f € h(F) yields a morphism
f:Fr (X) — h*(X) of cohomology theories on .7, f(a) = a*(f) for every
a: X — X"F. We construct a spectrum E and an element e € h°(E) such
that ¢ : E9(S™) — h°(S™) is an isomorphism for every n € Z. Then, by
I1.3.19(iii), E represents h*.

Let A, = {a;(r)} be a family of generators of the group h°(S™),r € Z.
Consider a spectrum F(0) := \, ; (V4. S;(r))’ where S7 is a copy of the
spectrum S”. By additivity, there exists ey € h°(£(0)) such that eo|S ) =
a;(r) for every r,i. It is clear that €, : E(0)°(S") — h°(S™) is epic. By
induction, suppose that we have constructed a sequence

E(0) — --- 2% BE(n)

and elements e; € h%(E(i)),i < n, with the following properties:
(1) ¢j(ext1) = ey for every k < n. In particular, €, : E(n)°(S") —
hO(S™) is epic for every r.
(2) Forevery r € Z and every k < n, Kerey, C Ker(pg)« in the diagram

o~

RO(S™) <5 E(R)°(ST) 2K Bk + 1)0(s7).

In order to construct p,, Fn+1 and e,41, let B, = {b;(r)} be a family of
generators of Ker (&, : B(n)?(S"™) — hO(S")). Set ¥ :=\/ (\/BT sgi(,,)), and
let 2 € h9(Y) be such that z|S£i(T) = b;(r) for every r,i. By (1), there exists
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y € E(n)°(Y) such that €,(y) = z. Constructing a cofiber sequence
Y L E(n) £ E(n+1),

we get an exact sequence
RO(B(n +1)) 25 hO(E(n)) 2 hO(Y).

Now, y*(e,) = 0, and hence there exists e,+1 € h°(E(n + 1)) such that
@ (ent1) = en. The induction is confirmed.
Consider the sequence

E(0) — -+ 225 B(n) 25 ..

and its weak homotopy direct limit E. Then, by 3.4(iii), p : h°(E) —
lim{h°(E(n))} is an epimorphism, and so there exists e € h?(E) such that
e|E(n) = e,. Hence, € : E°(S™) — h%(S™) is an epimorphism for every r.

Now we prove that € : E°(S") — h%(S") is monic. Let f : S™ — E be
such that e(f) = 0 € h°(S™). Since 7.(E) = lim{m,(E(n))}, there is n such
that f can be decomposed as S” % E(n) — E with €,(g) = 0. But then, in
view of (2), (¢n)«(g) =0, and so f : S % E(n) — E is inessential.

(ii) This follows from the Yoneda Lemma I.1.5. O

Now we prove the Representability Theorem for cohomology theories on
7. We need some preliminaries.

3.7. Definition. We say that an inverse A-system .# = {I),j{'} of sets is
totally surjective if every function j{ is surjective and every set Iy is non-
empty.

3.8. Definition. A quasi-ordered sequence is a quasi-ordered set {b;}$2; such
that b; < b;11 for every i. (Of course, it may happen that b; > b;11 for some
i, or that b; = b; for i # j.)

3.9. Lemma. If .7 is a totally surjective inverse system over a quasi-ordered

sequence then lim . # (). O

3.10. Lemma. Every countable directed quasi-ordered set </ contains a co-
final quasi-ordered sequence.

Proof. Let &/ = {a;}$2,. By induction, define a sequence {b;} by setting
b1 = a1 and choosing b,, so that b, > a,, and b, > b,_1. It is clear that {b;}
is a desired quasi-ordered sequence. [l

3.11. Lemma. Let % = {I,j\'} be a totally surjective inverse A-system of
sets. If A contains a countable cofinal subset then lim % # ().
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Proof. Indeed, by 3.10, A contains a cofinal quasi-ordered sequence, and
so, by 1.20 and 3.9, lim .# # 0. O

3.12. Construction. Let .# be a totally surjective inverse A-system of sets.
Given A\, u € A, we say that A < pu iff there exists a commutative diagram

L, I,

a B
kI-L
I# —)\> I)\
with some k. It is clear that A < p if A < p, and for every A < p there is
just one function k{ : I, — I\ (and k§ = j§ for A < p). Now we define a
quasi-ordered set A, which has the same objects as A and where a morphism
A — p exists iff A < p. Let .# be the inverse system {Iy, k§} over A.

3.13. Lemma. Let .5 = {1,535} be a totally surjective inverse A-system of
sets. If A contains a countable cofinal subset then lim % # ().

Proof. Tt is clear that .# is totally surjective. Hence, by 3.11, lim .# # 0.
But every string {z,} € lim . is at the same time an element of lim .. O

3.14. Lemma. Let o L B % € ™ 9 be an exact sequence of inverse
A-systems of abelian groups. Suppose that &7 is a system such that Ay = A
and ji =14 for every X < p. Set Py := Ker(A = Ay ELN B,). Suppose that
there exists a countable set {\;}32, such that every P\ contains some Pj,.
Then the sequence

lim # — lim % — lim 7

18 exact.

Proof. Choose a string {y»} € im% and set Iy := gy '(y»). Let B =
{By, ¢i}. Clearly, ¢X(I,) C Ix; we define j4 : I, — I to be the restriction
of & and set & := {1, j{'}. We must prove that lim{I,} # 0. So, it suffices
to prove that .# satisfies 3.13. Firstly, we prove that j{ is surjective for every
A < p. Consider the commutative diagram

Al B, c,
| =l |
A, B, Ch.

Take any zx € I. Given z, € I,, we have Nz, —zx = fi(a), and so
N (@ — fula)) = xy, e, zx € Im i,
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3.15. Sublemma. If P, C Py then there is a function kY : I, — I as in
3.12.

Proof. Choose v such that v > u, A and consider the commutative diagram

Al B, c,
H [E—
A, B, c,
| =]
A DB Ch.

Given z/,2" € I,,, we must prove that ¢X(z') = ¢} (") if o}, (') = ¢} (2").
We have ¢’ — 2" = f,(a) for some a € A. Hence, ¢¥(z' — 2”) = fi(a) and

ep(a —a") = fu(a). But fa(a) =0if fu.(a) =0, since P, C Py. B8
Now, given A € A, choose A; such that Py, C Py. Then, by 3.15, A < A;.
Thus, {\;} is a countable cofinal subset of A. O

3.16. Lemma. (i) There is a countable family F of finite spectra such that
every finite spectrum is equivalent to some spectrum of F .
(ii) For every pair of finite spectra F, A, the set [A, F] is countable.

Proof. (i) Every finite spectrum is equivalent to one of the form X"%*°X
for some n € Z and some X € ¢ (cf. I1.1.5(iii)). Furthermore, every finite
CW-space is homotopy equivalent to a finite polyhedron. But every poly-
hedron is completely determined (up to homeomorphism) by its scheme of
vertices. Thus, finite polyhedra form a countable set.

(ii) Following (i), we can assume that F = ¥*°X, A = XY where X
and Y are finite polyhedra. Then [F, A] 2 [X,Y]*. But every map X — Y of
finite polyhedra is homotopic to a simplicial map X" — Y where X" is the
r-th barycentric subdivision of X, see e.g. Hilton—Wiley [1]. But a simplicial
map is determined by its values on vertices, and so the set M, of simplicial
maps X" — Y is countable, and hence | J M, is. O

3.17. Corollary. Let .7 be as in 3.16(i). Then the set |Jpc & [F, A] is count-
able for every finite spectrum A. O

Given a cohomology theory h* on ., set

7*(X) = lim{h* (X))}

where {X,} is the family of all finite subspectra of a spectrum X. Because
of 1.15, h? is a functor . — /Y.
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3.18. Proposition. Let { X}, Xo = X, be a family of subspectra of a spec-
trum X. Then h*(X) = lim{h*(X4)}. In particular, h*(VXg) = [[ h*(X3)
for every family { X3} of spectra.

Proof. This follows from 1.21. O

3.19. Theorem. Let X LY — Cf be a strict cofiber sequence of maps of
spectra such that X = VX, with finite X,. Then the induced sequence

R*(Cf) — h*(Y) — h*(X)
18 exact.

Proof. Firstly, let X be a finite spectrum. Put Z = C'f and consider a
cofiber sequence

xLy-z%5sx

By I1.3.15, we can form an exact sequence of the inverse systems
{h"(Xo)} —A{p"(Yo)} — {p7(Z0)} — {P"(B(Xu))}, w € O,

with finite A, for every w and such that every finite CW-subspectrum of A is
contained in some A,,, where A denotes X,Y, Z or ¥ X. Passing to a certain
cofinal system A of Q, we can assume that X, = X for every A € A and get
an exact sequence of inverse systems

[ (X)} — (B (V)} — {720} < (b (X))}

with h* (A) = @{E*(A)\)} for A= X,Y, Z. By 3.14, it suffices to prove that
the set of subgroups Ker{k} : h*(£X) — h*(Z))} of h*(XX) is countable.
But this holds because, by 3.17, the set |J,[Z), X] is countable.

Now, let X = VX, with finite X,. Note that Y is a subspectrum of C'f.
Let y € h*(Y) be such that f*(y) = 0. We can and shall assume that f :
VX, — Y is an inclusion. Given a subset I' C {a}, set Zr := C(f| Vaer Xa)-
Consider the set 2 of all pairs (I', z) where I" runs over all subsets of {a}
and z € h*(Zp) is such that z|Y = y. We say that (I',z) < (I, 2/) if T C T”
and z'|Zr = z. In this way 2 becomes a partially ordered set. By 3.18, 2
is inductive, and so it contains a maximal element (Ig, zg). We prove that
Zr, = C'f, and this will complete the proof.

We have Cf =Y UC(VX,). So, if Zp, # Cf then there exists o with
C(Xa) ¢ Zr,. We let Q =T U{a} and consider the inclusion ¢ : Zp, — Zq.

Consider the composition 7 : X, — VoXa Ly C Zr,- Since C(VgEg) ~
VgCEg for every family {Eg} of spectra, we conclude that

X, = Zr, L Zg
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is a cofiber sequence. By the above, the sequence
h°(Zo) *= B (Zr,) = 1'(Xa)

is exact. Since f*(y) = 0, we conclude that i*(z9) = 0, and so there is
z € h%(Zq) with g*z = 2z, i.e., 2|Zr, = 20, i.e., (T, 20) is not a maximal
element. This is a contradiction. g

3.20. Theorem. (i) Every cohomology theory h* on %t can be represented
by a spectrum.

(ii) For every cohomology theory h* on ¥ and every spectrum X the
homomorphism p : h*(X) — h*(X) is an epimorphism.

(iil) Given two spectra E, F, every morphism ¢ : E*(=) — F*(=) of co-
homology theories on % can be induced by a morphism E — F of spectra,
and this morphism of spectra is unique up to weak homotopy. Furthermore, a
representing spectrum for a cohomology theory on %% is unique up to equiv-
alence.

Proof. (i) Because of 3.18 and 3.19, we can follow the proof of 3.6. So, we
get a spectrum E and an element x € EO(E) such that the homomorphism
7 : E(S™) — h9(S™) is an isomorphism for every r € Z. Thus, by I1.3.19(iii),
z: E*(X) — TL*(X) = h*(X) is an isomorphism for every X € %, i.e., E
represents h*.

(i) (Brown’s trick.) Given Y € . and y € h°(Y), we prove that y €
Im{p: hO(Y) — hO(Y)}. Let E and e € h°(E) be as in 3.6. Set E'(0) := Y VE,
and let e € h°(E'(0)) be such that )| E = p(e) and €)Y = y. Such ¢, exists
by 3.18. Note that €}, : £/(0)°(S") — h°(S") is an epimorphism for every .
Now, we can follow the proof of 3.6 and construct a sequence

E'0) = — E'(n) — -,

its weak homotopy direct limit E’ and an element ¢’ € EO(E’ ) such that
@ : (E)°(X) — h°(X) = h°(X) is an isomorphism for every X € .%.

Let a: Y — E'(0),b: E — E'(0),c: E'(0) — E’ be the obvious inclu-
sions. Consider the commutative diagram
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Since € and €’ are isomorphisms, we conclude that ¢b : E — E’ is an equiv-
alence. Let i : ' — E be homotopy inverse to cb. We set f :=ica:Y — FE
and prove that p(f) = y.

We have b*c*(e’) = p(e). Furthermore, ¢bf = cbica = ca. Now,

y=da'epg=a’c'e’ = fb"ce’ = fp(e) = p(f).
(iii) Let {E)} be the family of all finite subspectra of E. The inclusions
ix : Ex C E form a string {ix} € E°(E). Since p : FO(E) — F(E) is an
epimorphism, there exists § € FY(E) such that p(0) = {¢(ix)}. It is clear
that 6 induces .
If there is another morphism 6’ which induces ¢ then 0iy ~ ') for every
A, and so # and 0’ are weak homotopic.

Finally, if both spectra E, F' represent h*, then every morphism 6 : £ — F
inducing 1j is an equivalence. O

3.21. Theorem. Let .Z be as in 3.1. Every additive cohomology theory h* on
£ can be represented by a spectrum, and this representing spectrum is unique
up to equivalence. Furthermore, every morphism of cohomology theories on £
can be induced by a morphism of the representing spectra, and this morphism
of spectra is unique up to £ -homotopy.

Proof. The case .& = %% is proved in 3.20. We consider the case .£ = .%%¢q
only, all the other cases can be considered similarly. Given a spectrum X €
Fitd, set h*(X) = @nmm{h*(E_"E‘”(X,(}m)))}. It is clear that the analog
of 3.18 holds for A*. Furthermore, if Vo Xo — Y — Z is a cofiber sequence
with X, € P then the sequence h*(VX,) «— h*(Y) «— h*(Z) is exact.
This can be proved just as 3.19, but we do not need 3.17 because the family

{E_"E‘X’(X,(,m))} is countable for every spectrum X. Now we can complete
the proof just as the one of 3.20. O

3.22. Corollary. Let 2 be as in 3.1. Then every additive cohomology the-
ory (reduced) on JH* can be represented by a spectrum, and this representing
spectrum is unique up to equivalence. Furthermore, every morphism of co-
homology theories on J£* can be induced by a morphism of the representing
spectra.

Proof. This follows from 3.21 in view of I1.3.18. O

Now we turn to homology theories. First, if a homology theory on . is
represented by some spectrum, then its unique additive extension to .7 (see
I1.3.20(iii)) is represented by the same spectrum. This is true because each
spectrum produces an additive homology theory on .. Second, given any
homology theory on .4, one can construct the dual cohomology theory on
& and use 3.20 and I1.3.23 in order to represent the homology theory. In
other words, we have the following theorem.
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3.23. Theorem. (i) Every additive homology theory on J&*, as well as on
£, can be represented by a certain spectrum. Furthermore, its representing
spectrum is unique up to equivalence.

(ii) Every morphism of additive homology theories on J£* or on £ can
be induced by a morphism of corresponding spectra, and this morphism of
spectra is unique up to weak homotopy. [

Let J7€,,, be the homotopy category for the category 6, of all con-
nected pointed C'W-spaces and maps. Let 52 be the category 2%, or its

con
full subcategory consisting of all finite dimensional CW -spaces.

3.24. Definition. A contravariant functor F' : 7 — &ns*® is called half-exact
if it satisfies the following axioms:

(i) Let (X; A, B) be a (pointed, CW-) triad such that X, A, B, ANB € JZ.
Then for every a € F(A),b € F(B) with a|AN B = b|A N B there exists an
element z € F(X) such that z|A = a,z|B = b (the Mayer—Vietoris axiom,
below simply the MV-axiom).

(ii) Let X, be a family of objects of 5 such that X := Vv, X, € 5, and
let io : Xo — X be the inclusions. Then {F(is)} : F(X) — ], F(Xa) is a
bijection (the wedge axiom, or the additivity axiom).

It is clear that every representable functor F': 57 — &ns® is half-exact.

3.25. Theorem (the Brown Representability Theorem). For every half-exact
functor F : 7 — &ns® there exists a connected CW -space B such that there
is a natural equivalence F(—) — [—, B]* of functors on €. In other words,

every half-ezact functor F : € — &ns® is representable.

Proof (some words about). In Switzer [1], Ch. 9 this theorem is stated for
functors on the category €%, not only on %, (Theorem 9.12 there).
In this general form the theorem is wrong, see Heller [1], Matveev [1], but
the proof in Switzer [1] can be used and appears correct for the formulation
above.

The case when J is the category of finite dimensional connected spaces

can be considered similarly; or see Dold [3]. O

3.26. Example. Let E, be a family of spectra. Then F*(X) :=[], E%(X) is
an additive cohomology theory on ., and so, by 3.6(i), it can be represented
by a spectrum F'. This spectrum is called the product of spectra E, and is
denoted by [],, Ea.

By 3.6(ii), for every a the projections pX : F*(X) — EX(X),X € &
yield a morphism p,, : F' — F,.

By 3.6(ii), the inclusion E}(X) C (][], £a)*(X) can be induced by a
morphism j, : Eq — ], Eo of spectra. So, by 11.1.16(i), we get a morphism
J: V4 EBa — 1, Ea with j|Eq = jo. It induces a homomorphism
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u @Wk(Ea) = Ty <\/ Ea> — T (H Ea> = Hﬂk(Ea)

of homotopy groups, which coincides with the standard inclusion. Hence,
7 is not an equivalence in general. For example, j is not an equivalence if
E, = HZ and {a} is a countable set. On the other hand, the morphism
Jj:V, X"H(m,) — [, X" H (my,) is an equivalence.

3.27. Proposition. Given a family {f, : X — E.} of morphisms of spectra,
there is a morphism f : X — [[, Ea such that pof =~ fo for every o, and
this f is unique up to homotopy.

Proof. Left as an exercise, based on what was said above. (|

3.28. Example. Given two spectra X, E/, we have an additive cohomology
theory [X AY,E] on .; here Y is a variable. Hence, by 3.21, there is a
unique spectrum F'(X, E) such that [X AY, E] = [Y, F(X, E)]. This spectrum
F(X,E) is called the functional spectrum. (Note that the equality looks like
the exponential law.)

3.29. Remarks. (a) The Representability Theorems enable us to reduce any
research of (co)homology theories and interconnections between them to an
investigation of universal objects — namely, spectra. Spectra, in turn, can be
studied by the powerful machinery of stable homotopy theory. This approach
was originally demonstrated by Serre [2] and Thom [2], and the further de-
velopment of algebraic topology affirms the fruitfulness of this methodology.

(b) It was Brown [1] who discovered that half-exactness implies repre-
sentability. He proved 3.22 for #* = %*. Furthermore, Adams [7] proved
3.23 for #* = ¢ (without uniqueness of a representing spectrum).

(c) In the proofs of the Representability Theorems we followed Margo-
lis [1], which, in turn, followed the original papers of Brown [1] (in case 3.6)
and Adams [7] (in case 3.20).

§4. A Spectral Sequence

Throughout this section { X} denotes the family of all finite subspectra of a
spectrum X . The goal of this section is to express E*(X) in terms of E*(X),
see 4.11-4.22.

By 3.20(ii), the homomorphism p = p& : E*(X) — Uim{E*(X,)} is epic
for every X, E € ., and, by 1.15, p% is natural with respect to X and E.

4.1. Definition. A cohomology theory E on .%% is called compact if all groups
E"(X), X € Y%, are compact topological groups and all induced homo-

~

morphisms f* : E"(X) — E"™(Y) and suspension isomorphisms E"(X) &
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E"t1(XX) are continuous. A cohomology theory E on .#; is called alge-
braically compact, or a-compact, if it can be obtained from some compact
cohomology theory by ignoring the topology. The spectrum F' is called a-
compact if it represents an a-compact cohomology theory on .%%.

For example, by 11.4.25(ii), F is a-compact if every group m;(F) is finite.

4.2. Theorem. If a spectrum F' is a-compact then the homomorphism p =
px : F*(X) — Um{F*(X\)} as in 1.12 is an isomorphism for every X € ..
In other words, F*(X) does not contain weak phantoms.

Proof. Considering X as a variable, we prove that G*(X) := im{F* (X))}
is an additive cohomology theory on .¥. Firstly, we prove that G* is a func-
tor. Indeed, given f : X — Y, consider a family {f, : X, — Y,} as in
I1.3.14. Then G*(A) = lim{F*(A,)} for A = XY, and hence f induces a

homomorphism
F* 1 GHY) = Im{F*(Y.)} — im{F*(X,)} = G*(X).

Now we prove the exactness of G*. Firstly, consider a strict cofiber sequence

xLy %z Cf of maps of spectra. Now, the cofiber sequences X, —
Y, — Z, as in I1.3.15 yield an exact sequence of the inverse systems

{F"(Z0)} = {F"(Yo)} = {F"(Xo)}

Furthermore, 2.17 and the a-compactness of F' imply the exactness of the
sequence

Um{F*(Z,)} — Im{F*(Y,)} — im{F"(X,)},
i.e., the sequence
a(2) L ar(v) L e x)
is exact.

Finally, given an arbitrary cofiber sequence X Ly 2z , we have a
commutative diagram

x L.y Cf

L

x 1 . y_9., 7

where h is a homotopy equivalence. Hence, the sequence
¢'(2) L @ (y) L 6 x)

is exact.
Clearly, the homotopy axiom is valid.
The additivity holds because lim and [] commute, see 1.21.
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Thus, G* is an additive cohomology theory on .. Therefore, the family

{px : F7(X) — Im{F" (X))} = G*(X)}

is a morphism F*(—) — G*(—) of additive cohomology theories. Because of
11.3.19(iii), this morphism is an equivalence. a

4.3. Corollary. Let F, X be as in 4.2. Let {X,} be a family of subspectra
of X such that every finite subspectrum of X is contained in some X,,. Then

F*(X) = lim{F*(X,)}. In particular, F*(X) = lim{F*(X™)}.
Proof. This follows from 4.2 and 1.20. g
Let ¢ and A be as in 2.21.

4.4. Lemma. If A S B C is an exact sequence of abelian groups, then
the sequence

ALpsLo

is exact. In other words, the functor c is exact.

Proof. The functor Hom(—, SO(2)) is exact because of the infinite divisi-
bility of the group SO(2). Thus, c is exact. O

4.5. Theorem. For every spectrum F, there erists a morphism ¢ : F —
F such that the spectrum F is a-compact and c induces the canonical a-
compactification F*(X) — F*( ) for every X € Y. In other words, for

every n € 7 there is a natural isomorphism ax : F"(X) — F"( ) such that
the following diagram commutes for every X € % :

Fr(X) —= Fn(X)
(4.6) H axlg
rr(x) 2

Proof. For every X € .% we consider the canonical a-compactification
cpn(x) s FM(X) — F"/(E() By 2.19 and 4.4, F*( )isa cohomology theory on
%. Hence, it can be represented by a certain spectrum F and this spectrum
is a-compact. Now, given X € ./, consider the homomorphism

x UK L im P (%)) 2 ()} = Fr(x),

the last equality holding by 4.2. Arguments like 4.2 show that cx is natural
with respect to X, and in fact the family {cx} is a morphism of cohomology
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theories on .. Hence, by 3.20(iii), it is induced by a morphism ¢ : F — F.
It is clear that ¢ is the desired morphism. ([l

4.7. Definition. A morphism ¢ : F — F as in 4.5 is called an a-
compactification of the spectrum F.

4.8. Remark. One can ask why we do not use the a-compactification

F*(X) — F*(X) with X € .. The answer is that the cohomology theory
F*(X) is not additive in general, and so it cannot be represented.

4.9. Lemma. Let G be a spectrum such that the canonical epimorphism p :
G*(X) — Um{G*(X)} splits naturally with respect to X for every X € ..
Then p is an isomorphism for every X € 7.

Proof. It suffices to prove that im{G*(X,)} is an additive cohomology
theory on ., cf. 4.2. Only the exactness axiom needs to be verified. Firstly,

consider a strict cofiber sequence X Ly & 7= C'f of maps of spec-
tra. Choose {X, — Y, — Z,} as in I1.3.15 and consider the commutative
diagram

m{G*(Z.)} —2— lm{G"(Y.)} —— lm{G"(X.,)}

[~ [ |
a2y L~ oy) L G

| I |
lm{G*(Z.)} —— Hm{G"(Y.)} —— lm{G*(X.))
with the exact middle row, where 7" and 7 are natural splittings (here g =
lim{g,}, f = lim{f,}). Let a € lm{G"(Y,)}, f(a) = 0. Then f*(7(a)) = 0,
ie., 7(a) = g*(b). Now, a = pra = pg*b = gp'b, i.e,, a € Img. Thus, the
bottom (as well as top) row is exact. The exactness for a general cofiber
sequence X — Y — Z can be proved as in 4.2. (I

4.10. Lemma. Let F be a spectrum such that lim"{F*(X))} = 0 for every
X € . Then the epimorphism p : F*(X) — Um{F*(X,)} is an isomor-
phism for every X € ..

Proof. Let ¢: F — F be an a-compactification of F. The cofiber sequence
FSFSG:=0C()
induces the following exact sequence of inverse systems:

0 — {F*(X2)} 5 {F"(X0)} 5 {G"(X2)} — 0.
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Note that R

5= limo : I {F* (X))} — m{G"(X,)}
is an epimorphism since lim' { F*(X)} = 0. Consider the following commu-
tative diagram with exact rows:

0 — lm{F*(X,)} —— m{F*(X))} —— Lm{G*(X))} — 0

! I -
(X)

i FY(X) o [ _9 G(X) — -

IR

Since p is epic, p1(Ime,) = Ime. By 4.2, py is an isomorphism. Hence, the
monomorphism F*(X)/Ime, — G*(X) yields a monomorphism

Hm{G*(X,)} = lm{F*(X\)}/Ime

= pi(F*(X)/Tme,) % F*(X)/Ime, — G*(X).

This is a natural splitting of po. Hence, by 4.9, ps is an isomorphism. Thus,
by the Five Lemma, p : F*(X) — lim{F*(X)} is an isomorphism. O

4.11. Theorem. Given a spectrum F', suppose that there exists a number
N such that Im?{F*(X)} = 0 for every ¢ > N and every X € . (resp.
X € €). Then for every X € % (resp. X € €) there is a spectral sequence
E**(X) converging to F*(X) and such that EY?(X) = lmP{F?(X))}.

Proof. We consider the case of a spectrum X only. Let ¢y : F — Fy be
an a-compactification of F. Let G; be the fiber of ¢g (i.e., ©G is the cone of
¢p). Consider an a-compactification ¢; : G; — Fj. Let G2 be the fiber of ¢y,
consider an a-compactification ¢y : Go — F5, and so on. For every n we get
a long cofiber sequence

(4.12) TR, O G PN Gy S By 2 NGy o

where ¢, is an a-compactification of G,, and XG,, 11 is the cone of ¢,,. Consider
the following diagram:

S-1F, S-1E 17,
.l . [
o Gpgg ——— Gy —— Gy — = G ——— Go=F
lcn lcn,l lcl lcO
F, F,_1 Iy Fy

For every Y € . the sequence (4.12) induces the short exact sequence
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0= GL(Y) = Fy(Y) = GFL(Y) — 0.
Hence, there arises an exact sequence
0 — FP(Y) = FP(Y) — FMHH(Y) — 0 0L pnotkyy

which is an a-compact resolution of the group F™(Y).
We can compute the groups F*(X), X € ., using the spectral sequence

(BP2,ap s Bt — BpFra=rHl)
based on the tower
(4.13) {=Gu1 G, — - -G — F}.

Here EY"? = FP+9(X), and the differential dy : BY'? — EV*19 is (cp10p)s -
EPra(X) — F]fiqu(X). Hence, EY? is the p-th cohomology group of the
cochain complex

s FPHTYX) - FPY(X) — FEITHX) —

Now, by 4.2, Fy(X) = lim{ F}; (X))}, and so this complex has the form

(4.14) s = AT (XO) ) — Um{ EP (X)) —

where {F9(X))} — {F§(Xx)} — --- — {FPT9(X)\)} — -+ is an a-compact
resolution of the inverse system {F9(X)}. Hence, E¥'? is the p-th cohomo-
logy of the cochain complex (4.14), i.e., EY? = limP{F(X)}.

We prove that this spectral sequence converges to F*(X). It suffices to
prove that for every m there exists M = M (m) such that the homomorphism
G3(X) — Gr (X) is trivial. We prove more: namely, the homomorphism
(Pn)s = G 1 (X) — G (X) is trivial for n > N. The exactness of the sequence

0 = {GL(XN)} = {F (XN} = {G (XN} = 0

and the equality lim'{F; (X))} = 0,4 > 0, imply (using 2.13(ii)) that
' (G, (Xa)} = ™ G (X)), # > 0. Hence,

lim'{G5(Xx)} = Lim"™ {F*(Xx)} = 0
for i+q > N. Therefore, if ¢ > N then liLni{G;(X,\)} = 0 for every i > 0 and
every X. Thus, by 4.10, G} (X) = im{G} (X))} for n > N, and it remains

to note that the homomorphism (px)« : Gj,,(Xx) — G7 (X)) is trivial for
every k, since X, € /. O

The following proposition gives us a sufficient condition for the existence
of the number N in 4.11. (Observe that the existence of such N is the con-
vergence condition of the spectral sequence.)
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4.15. Proposition (see Roos [2], Jensen [1]). Let R be a commutative Noethe-
rian ring of homological dimension d, and let .4 be any inverse system of
finitely generated R-modules. Then lim".# =0 for i > d. O

4.16. Corollary. Let R be a commutative Noetherian ring, and let F be a
spectrum such that F*(X),i € Z are natural in X R-modules. Suppose that
7 (F) is a finitely generated R-module for every k.

(i) If R has homological dimension < 1 (for example, a subring of Q),
then for every X € & there is an exact sequence

0 — lm"{F* (X))} — F¥(X) & lim{F* (X))} — 0.

(ii) If R has homological dimension O (e.g., R is a field), then the homo-
morphism p : F¥(X) — Um{F*(X\)} is an isomorphism for every X € 7.
In particular, im{F*(X)} is a cohomology theory on .#.

Proof. (i) By 11.4.25(iii), F¥(Y) is a finitely generated R module for every
Y € %. So, by 4.15, lim*{F*(X,)} = 0 for every i > 1 and every X € .7.
Now apply 4.11.

(ii) This follows from (i), since lmll{Fk’l(Xk)} =0. a

4.17. Corollary. Let F be a spectrum such that w;(F) is a finite abelian
group for every i. Then the homomorphism p : F¥(X) — Um{F*(X))} is an
isomorphism for every X € . In particular, im{F*(X,)} is a cohomology
theory on & .

Proof. If Y is finite then, by I1.4.25(ii), F¥(Y) is a finite abelian group
for every k. Hence, by 2.18(iii), lim"{F*(X\)} = 0 for every ¢ > 0 and every
X € €. Now the result follows from 4.11. a

Now, let --- c X(0)Cc ---Cc X(r) C ---C X, X =__X(r) be a

T=—00

filtration of a spectrum X by spectra X (r). Then for every a-compact spec-
trum F' the homomorphism p : F*(X) — lim{F*(X(r))} is an isomorphism
by 4.3. Furthermore, by 2.15, lim*{F*(X(r))} = 0 for ¢ > 1. Thus, we can
replace {X,} by {X (r)} in the proof of 4.11 and obtain the following fact.

4.18. Corollary. For every spectrum F and every X € . with a filtration
as above there is an exact sequence

0 — lim" {F*1(X(r))} — F*(X) % lm{F*(X(r))} — 0.
In particular, there is an exact sequence
(4.19) 0 — lim"{FF1(X™)} — FF(X) L lim{F*(X ™)} — 0. O

Thus, phantoms are just elements (# 0) of the group lim'{ F*(X (™)}
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4.20. Remarks. (a) Milnor [5] first proved 4.18. Moreover, 4.18 holds for an
arbitrary filtration X (0) C --- C X(n) C --- X = UX(n) (as defined in 1.3.1)
of an arbitrary space X, if we define F*(X) as in 11.3.31. The proof can be
done just as in Milnor [5].

(b) The spectral sequence in 4.11 was constructed (for a space X) by
Bousfield-Kan [1] and Araki—Yosimura [1] (in different manners).

4.21. Theorem. For every two spectra E, F, there is an exact sequence

0 — lmll{FkJrnfl(En)} N Fk(E) N lﬂl{F’H’”(En)} — 0.

Proof. Consider the filtration {7 "X*FE, } of F and apply 4.18. O

4.22. Theorem. For every two spectra F, F, the homomorphism
rlim Fryn(En) — Fip(E)

s an isomorphism.
Proof. This holds if F is a suspension spectrum. Hence, this holds for
a wedge of suspension spectra. In particular, r is an isomorphism for the

spectra TevE and 7oqFE as in I1.1.23. The Mayer—Vietoris sequence of the
triad (TE; Tev B, Toa F), see 11.3.12(iii), yields a commutative diagram

<= L1 (Tev ENToaE) = Li(TE)— Li(Tev E) @ Li(Toa E) —- -+
o= Fi 1 (Tew ENToa E) = Fi(TE) — Fi(TevE) @ Fi(ToaE) — - -

where L;(A) := im{F,4,(A,)}. Here the top row is exact because lim pre-
serves exactness, see 1.2.7. Since 7" and r” are isomorphisms, r is an isomor-
phism by the Five Lemma. (]

4.23. Proposition. Let F(,,) be the Postnikov n-stage of a spectrum F. Then
for every X € .7 there is an exact sequence

0 — I {F{,;1(X)} — F¥(X) — lm{F},)(X)} -0,

where o)
c— Fop(X) P, Fi (X)) — -

s the obvious inverse system.

Proof. Given Y € .7, consider the homomorphism
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150 =TT
{...,an,an-1,...} — {. .. ;an — (Pnt1)xCnt1,0n—1 — (Pn)sln, .. }

where a, € I, (Y). Considering Y as an indeterminate, we get a morphism
of additive cohomology theories on .. By 3.6(ii), this morphism is repre-
sented by a morphism ¢ : [], F(,y — [, Fin) of spectra, cf. 3.26. Let us

form a cofiber sequence G *, IL. Fin LN I1,, Fin)- Then we have the exact
sequence

H F(Zn)1 H F(Zn)1 - G — H F(" i’ H F(i") (X

n

By 2.15, it yields the exact sequence
0 — L' (! (X)} — G4(X) = In{ (X)) = 0

We must prove that G ~ F. Given Y € ¥/, we define the homomorphism
F*(Y) — L, (n)( ),a — {(7n)«(a)}. In this way we obtain a morphism
of cohomology theories. By 3.6(ii), this morphism is represented by a mor-
phism g : F — [[F,) of spectra, and, by 3.6(ii) again, the morphism
F 5 I, Fin) 2, 1., F(n) is inessential. Hence, there is f : F' — G such
that kf = p. So, we have the commutative diagram

f*l H

G'(X) —— lim, {F(,,(X)}.
Clearly, both horizontal arrows are isomorphisms for X = S™ n € Z. Thus,
f is an equivalence. O

4.24. Remarks. (a) Let .# be a sheaf of abelian groups over a space X.
Let % = {U} be the family of all open subsets of X ordered with respect to
inclusion. By definition, .# is a functor  — &/¥, and so it is just an inverse
U -system. Namely, Fy = .Z(U) for every U € % . Now, by the definitions,
we have lim".# = H'(X;.%), see Godement [1].

(b) I did not prove yet that 1'_i can be non-zero for every i. But now
this is clear because of (a). Indeed, if &/ is a constant sheaf over V2, S then
@n@zf = 0 for every 1.

(c) Let X, % be asin (a), and let f: Y — X be a map. Given a spectrum
F, define a sheaf Z* by setting #*(U) = FF((f~U)"). (In fact, f~1U might
not be a CW-space, but here I do not care about it.) Since the set {f~1(U)}
is cofinal in the quasi-ordered set {Y)}, we get (under suitable conditions) a
spectral sequence
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(4.25)  EPUY) = FY(Y), BT =l {F9((f~'U)")} = HP(X; 7).
In particular, if f = 1x then there is a spectral sequence
(426)  EPUX) = F*(X), E}Y = i {F(U)} = HY(X; 7).

For a good space X (defined below), we have HP(X;.Z9) = HP(X; F4(S°)),
where H means the Cech cohomology, and the spectral sequence (4.26) is just
the Atiyah—Hirzebruch spectral sequence. We recommend also comparing the
spectral sequence (4.25) with that in 15.27 from Switzer [1]. Probably, there
is some folklore about the spectral sequences (4.25) and (4.26), but, as far as
I know, nobody has written this down accurately. (Of course, the case F = H
in (4.25) is well known, see e.g. Godement [1].)

I want to explain what is meant to be a good space. We say that a covering % =
{U} is strongly contractible if it is locally finite and every finite intersection U N
--N Uy, U; € U is contractible. If % is strongly contractible then H*(X;.%) =
Hi(N@/; Fa), where Ng, is the nerve of % and %4, is the local system given
by Z, see e.g. Godement [1]. We say that X is good if every covering of it admits
a strongly contractible refinement. Since F*(UT) = F(S) for every contractible
U, we conclude that H?(X;.#9) = HP(X; F9(S%)) for every good space X.

§5. A Sufficient Condition for the Absence of Phantoms

The results of this section are due to Anderson [1], cf. also Atiyah [2].

As well as in §4, in this section {X,} denotes the family of all finite
subspectra of a spectrum X.

5.1. Lemma. Let {--- — A,11 — A, — -+ — Ag} be an inverse system
of monomorphisms of countable abelian groups. If liLnl{AT} = 0, then there
exists m such that A, — A, is an isomorphism for every n > m.

Proof. Set C, = Coker{A, — Ap}. Since lim'{A,} = 0, the sequence
0 — lim{A,} — Ay — Um{C,} — 0 is exact by 2.13(ii). Hence, im{C.} is
countable. It is clear that the inverse system

{..._>qu_"> o1 — -}

consists of epimorphisms. If it does not stabilize then there exists an ar-
bitrarily large n with ¢, # 0. Thus, lim{C.,} is not countable. This is a
contradiction. O

5.2. Definition. We say that an inverse system {--- — A,11 — A, —
- — Ap} satisfies the Mittag-Leffler condition if for every r there exists
m = m(r) such that Im{A,, — A,} =Im{A,, — A,} for all n > m.
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5.3. Lemma. (i) If an inverse system <7 satisfies the Mittag-Leffler condition
then ligllﬁf =0.

(i) If all the groups A, are countable and 1111142% = 0, then  satisfies
the Mittag-Leffler condition.

(iii) Let o satisfy the Mittag-Leffler condition. Suppose that a sequence
o = B L € of inverse systems be exact (at 9B). Then the sequence

lim &/ — lim % — lim% is ezact.

Proof. (i) See Switzer [1], Th. 7.75.

(ii) If o7 is an inverse system of monomorphisms then the assertion follows
from 5.1. Given an arbitrary system &7, we set B, = A, for m < n and
B = Im{A,, — A,} for m > n. For every r we have the inverse system
<. C Bmtl c B™ C ... C B% = A, of monomorphisms, and, by 5.1, it
stabilizes as m — oo. Hence, there exists m such that B! — B]" is an
isomorphism for n > m. Thus, o/ satisfies the Mittag-Leffler condition.

(iii) We prove that for every string {b,} € & with o{b,} = 0 there exists
{an} with 3¢,(a,) = by. Set P, = 3¢, 1(b,), Q, = N2°_, Im{P,, — P,}. The
homomorphisms p,, of the inverse system 7 induce epimorphisms ¢, : Q, —
Qn_1. The Mittag-Leffler condition for & implies that Q, # 0 for every r.
Thus, there exist elements a,, € @, with g,a, = a,—1 for every n, and it is
clear that {a,} is a string with sz, (a,) = by,. |

Now let & ={--- — A, I A = — Ap} be an inverse system of
countable abelian groups. Suppose that for every n there is a filtration

Ap = An(_l) ) An(o) 2D An(n) ) An(n+ 1) =0

with p, (A, (7)) C An—1(7), i.e., that a certain decreasing filtration of <7 is
given. Consider the inverse system #(i) = {-++ — Bp(i) = Bp_1(i) — ---}
where B, (i) = A, (1)/An(i + 1).

5.4. Lemma. If lim #(i) = 0 for every i then lilllJZ{ =0.

Proof. We prove that o/ satisfies the Mittag-Leffler condition. Since
Ap(n+1) = 0, it suffices to prove that {A, /A, (i)} satisfies the Mittag-Leffler
condition for every 4. Since A,, /A, (¢) is a finite extension of the groups B, (j)
and lim' B,,(j) = 0, we conclude that lim'{A, /A, (i)} = 0. Thus, by 5.3(ii),
{A, /A, (i)} satisfies the Mittag-Leffler condition. O

5.5. Theorem. Let X be a spectrum of finite Z-type. Fiz a natural num-
ber m. Let F' be a spectrum such that F’"(X(”)) is a finitely generated
abelian group for every n. Consider the Atiyah—Hirzebruch spectral sequence
EP4(X,F), EYY(X,F) = HP(X;7_4(F)). Suppose that for every (p,q) with
p+ q = m the differentials

4P . EP9(X, F) — EPTrarti (X F)
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are trivial for all but a finite number of r. Then

(X)) = liTm{Fm(X(”))} = liTm{Fm(XA)}-
In particular, F™(X) does not contain phantoms.

Proof. Because of 11.4.26(ii) and 1.15(ii), we can assume that X has finite
type. So, the family {X,} is cofinal in {X (™}, and it suffices to prove that
Fm(X) = lim {F™(X™)}. Now, because of 4.18, it suffices to prove that
lim' F™(X (™) = 0. Set A, = F™(X(™) and consider the filtration

Ap (i) := Ker{ F"(X (™)) — F™(x )}

of A,. Then A, (i)/An(i — 1) = EZ™ (X F). Since the groups A, are
finitely generated, it suffices to prove (by 5.4) that lim' EL™ (X F) =0
for every 1.

Recall that EPY(X, F) = Frre(X® X(@=1) Hence, E}'(X™ F) =0
for p > n, and the restriction EV'?(X, F) — EP?(X (™) F) is an isomorphism
for p < n. This implies that E?4(X, F) — EP9(X (™ F) is an isomorphism
forp<n—r+1,ie.,forn>p+r—1.If p+q=m, then EF9(X, F) does not
depend on r for r large enough. Hence, E2:9(X (™ F) stabilizes as n — oo.
Thus, lim' E2¢(X ™ F) = 0. 0

5.6. Corollary. If the conditions of 5.5 hold for all m, then EP9(X,F)
converges to F*(X).

Proof. By 5.5, im{F*(X (™)} = F*(X). But E*(X, F) is associated to
the graded group lim{F*(X()}. O

5.7. Corollary. Let X, F be two spectra of finite Z-type. Then

F™(X) = Bm{ P (X)) = Bm{ P (X))
provided at least one of the following conditions holds:

(i) All the groups m.(F) are finite;

(ii) All the groups H.(X) are finite;

(iil) All the groups H*(X) and w.(F) are torsion free.

Proof. (i), (ii) This follows from 5.5.
(iii) All the groups EYY(X, F) are torsion free, and so, by I11.7.12, all the
differentials are trivial. O

5.8. Proposition. Let X, F' be two spectra, and suppose that there exists N
such that m;(F) =0 fori > N. Then:
(i) p: FF(X) — lim{F*(X™)} is an isomorphism for every k.
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(ii) Two morphisms ¢, : X — F are homotopic iff the homomorphisms

Gus Us : X*(Y) — F*(Y) coincide for everyY € Hq.

Proof. Fix any k. The cofiber sequence X (™ — X"+ _ v g7+l yields
the exact sequence

Fk_l(\/SnJ'_l)—>Fk_1(X(n+1))—>Fk_1(X("))—>Fk(\/Sn+1).

Since m;(F) = 0 for i > N, we conclude that F*(S™) = 0 for m —i > N, and
so FF=1(vSntl) = 0 = F¥(vS™"*!) for n large enough. Hence, the sequence
{FF=1(X (™)} stabilizes as n — oo, and so it satisfies the Mittag-Leffler
condition. Hence, by 5.3, im' { F¥~1(X (™)} = 0, and thus, by 4.19, p is an
isomorphism.

(ii) Only “if” needs proving. Let f : X — F be a morphism with [f] =
(o] = [¥]. If ou, s : X*(Y) — F*(Y) coincide for every Y € .#q then the
morphism X ¢ X L, F is inessential. But, by (i), lim"{FO(X(™)} = 0,
and thus ¢ ~ 1. O

§6. Almost Equivalent Spectra (Spaces)

6.1. Definition. We say that two spectra (spaces) E, F are almost equiva-
lent if the coskeletons F(,) and F{,) are equivalent for all n, i.e., if £ and F
have the same n-type for all n.

Let [F] denotes the equivalence class of a spectrum F, and let

ALEQ(E) :={[F] | F is almost equivalent to E}.

The term “almost equivalent” and notation ALEQ are innovations. Tradition-
ally one uses the notation SNT'(X) (same n-type) instead of ALEQ.

Here we describe the set ALEQ(E) for a spectrum (space) E, but first
we give an example of almost equivalent but inequivalent spaces.

6.2. Example (Adams [1]). Let A,,, m = 1,2,..., be a countable family
of pointed C'W-complexes with finite skeletons. Consider the subset A of
[1_, Ay consisting of the elements (21,... ,Zy,...), , € Ay, such that all
but a finite number of x; coincide with the base points. Products of cells of
A, give the cells in A, and we introduce the weak topology with respect to
these cells. We call A the direct sum of A,, and denote it by ®A,,.
Consider the sphere S% d > 2. Set X = @:j:d(s(dm)), Y = 54 x X.
Then X(,) =~ Y{,) for every n. Indeed, given n, let Z be the direct sum
of a countable set of copies of Szin). One has Séin) X Z = Z, and therefore

KX(n) = Hd§m<n Séim) X Z ~Y(,). Hence, X and Y are almost equivalent.
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We prove that they are not equivalent. Suppose that there are f : X —
Y,g: Y — X with fg ~ 1y,¢gf ~ 1x. Consider the direct summand S¢
of Y = §% x X. The subspace g(S?%) of X is contained in a finite cellular
subspace of X, and so g(5%) C [T;<men S?m) for some N. Then the map

st [ Sty cx Ly 22 g
d<m<N

is homotopic to 1ga. Since m; (Hd§m<N S’(dm)) =0 for ¢ > N, we conclude

that m;(S%) = 0 for 4 > N. On the other hand, by a well-known theorem of
Serre [3], the groups 7;(S?) are non-trivial for arbitrarily large i (namely, the
dimension of the first nontrivial p-component increases with increasing p).
This is a contradiction.

Now we pass to a description of ALEQ(E).

6.3. Lemma. (i) Let E, F be two spectra (resp. spaces), and let

E E E
Pn
— En) En) By ——
and
F F F
qn
- Fagy Eny Fo1y —— -

be Postnikov towers of E and F. Let @y, : E,y — Fiy,y be morphisms (resp.
maps) such that every diagram

Pn
Ewy —— Fuw
pnl J{‘In
E(n_1) —= Fu)

commutes up to homotopy. Then there exists p : E — F such that every
diagram

Pn
By ——— Fw)

commutes up to homotopy.
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(il) Given a sequence of morphisms of spectra
-— E(0) — E(1) <—<—E(n—1)<p—"E(n)<—

such that m;(E(0)) = 0 for i > 0 and that the cone of p, is an Eilenberg—
Mac Lane spectrum " LH (w,) for some m,, there exist a spectrum E and
morphisms 1, : E — E(n) such that

E
| - I
- — En+1) E(n) 22— En—-1) —— ---

is a Postnikov tower of E, and this spectrum E is unique up to equivalence.
(iii) Given a sequence of maps of spaces

pte—X(1) —--—X(n—1) & X(n) — ---,

suppose that for every n the following holds: m;(X(n)) = 0 for i > n and
(Pn)« : mi(X(n)) — mi(X(n — 1)) is an isomorphism for i < n. Then there
exist a space X and maps 7, : X — X (n) such that

X X X

! oL

c—— X(n+1l) —— X(n) —— X(n—-1) —— ---

is a Postnikov tower of X, and this X is unique up to homotopy equivalence.

Proof. (i) Since the inclusion iy : E®) — E is a (k — 1)-equivalence, for
fixed n the function i} : [E, F(,,)] — [E(k),F(n)] is a bijection for k large
enough (for spectra this follows from II1.4.1(iv), for spaces from the obstruc-
tion theory). Similarly, since o, : F' — F{,, is an n-equivalence, for fixed k&
the function (o). : [E®), F] — [E® F,] is a bijection for n large enough.
So, we have the commutative diagram

B, F]  —"— lim [E, F

| B

lim, [0, F] —=— lim,  [E®), F,)]

where h = {(0y,)«|lim}. By 3.20(ii) (for spectra) and 1.16 (for spaces), p is a
surjection. Hence, h : [E, F] — lim, {[E, F{,]} is a surjection. Thus, there is
¢: E — F with h(e) = {¢n7}

(ii) Set E*(X) = Um{E(n)*(X)} for every finite dimensional spectrum
X. Fixing X, by 11.4.1(ii) we have E*(X) = E(N)*(X) for N large enough.
So, E* is a cohomology theory on #44. By 3.21, it can be represented by a
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spectrum F. Furthermore, also by 3.21, the morphisms E*(—) — E(n)*(—)
of cohomology theories are induced by certain morphisms 7,, : E — E(n). By
5.8(ii), pn7n =~ Tn—1. Hence, the diagram of the lemma is a Postnikov tower
of E. Finally, if there is a spectrum F with the same Postnikov tower, then,
by (i), E ~ F.

(iii) We can assume spaces and maps to be pointed. Given a tower as in
the lemma, define F(Y') := lim[Y, X (n)]* for every finite dimensional con-
nected CW-space Y. Then F is a half-exact functor on the category s of
pointed connected finite dimensional pointed C'W-spaces, and so, by 3.25,
F(Y) = [Y,X]* for a certain pointed connected CW-space X and every
Y € 7. Because of the universality of lim, we have certain natural maps
an : [V, X]* = [Y, X (n)]*.

Given a C'W-space Z, consider the diagram

[z, X]° 1Z, X (n)]*

0| |=

fm, (200, ) 2 iy (200, X ()

Here the right arrow is a bijection because 7;(X(n)) = 0 for i > n. Hence,
we get a natural map (lim,, a,)p : [Z, X]|* — [Z, X(n)]*. It yields a certain
map 7, : X — X(n), and p, 7, ~ 7,,—1. Thus, the tower above is a Postnikov
tower of X. The uniqueness of X follows from (i). O

Consider an inverse system of groups (not necessary abelian)

J1 J
e GG = =Gy Gy

The group G = H G, acts on the set H G, as follows:

n=—oo n=—oo

{gn}{an} = {gnanjn+1 (97741-1)}

Define lim'{G,,} to be the set of all orbits of this G-action. This construction
coincides with that given above (e.g. in 2.15) for abelian groups G,,.

6.4. Proposition (cf. 2.15). If {G,,jn} is an inverse system of compact
topological groups and continuous homomorphisms, then ligll{Gn} is trivial
(i.e., it is just a one-point set ). In particular, lim'{G)} is trivial for every
system of finite groups G, .

Proof. We leave it to the reader, but give a hint. (Also, see Wilkerson [1].)
Firstly, one must prove that {G,, } satisfies the Mittag-Leffler condition (using
the criterion for compactness in terms of the nested systems of closed sets).
This implies that @1{Gn} is trivial, cf. Switzer [1], Th. 7.75. O
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Let aut E be the group (under the composition law) of the homotopy
classes of all self-equivalences E — E of a spectrum (space) E. Because of
I1.4.18, we obtain the inverse system of groups (non-abelian)

< aut By «— aut By < -

6.5. Theorem (cf. Wilkerson [1]). There is a bijective correspondence be-
tween ALEQ(E) and lim"{aut E,}.

Proof. We write Ej instead of E(). Firstly, we construct a map ¢ :
[ aut B, — ALEQ(E). Consider a Postnikov tower of F
e By FE — i — By By, —

Given {a,} € [[,2__ aut E,, consider the tower

e By 2P B n—l‘ﬂEn‘_
By 6.3(ii), it is a Postnikov tower of a certain spectrum (space) F, and it is
clear that the spectra (spaces) F and F are almost equivalent. Define ¢({a, })
to be the equivalence class [F] of F'.

We prove that ¢ is surjective. Let F' be almost equivalent to E, and let
fn : Fy — E, be the corresponding equivalences. By 11.4.18, the morphism
frn+1 induces a morphism (frni1)n : Fn = (Fng1)n — (Ent1)n = En. Set
an = fno((fas1)n) 1. Tt is easy to see that p({a,}) = [F].

We prove that ¢ induces a well-defined map lim'{aut E,,} — ALEQ(E).
Let {6n} = {gn}{an}. For every n the diagram

In+1
EnJrl — EnJrl

pn+1l pn+1l

E, En

S

commutes up to homotopy. Now one can construct an equivalence p({a, }) —
©({f,}) in the same manner as in 6.3.

Finally, given spectra F, G with [F] = o({an}), [G] = ¢({Bn}), there are
equivalences a,, : F, — F, and b, : G,, — E, such that in the diagram
below the left and the right squares are commutative. Suppose that there
exists an equivalence h : F — G. By I1.4.18, it induces maps h,, : F,, — G,
such that the middle square of the diagram below commutes. Hence, there is
the homotopy commutative diagram
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ant1 hni1 bny1
Ent1 —— Fop1 —— Gyt —— Enn

E F fe] E
anpn+1l pn+1J/ lanrl lﬁnl’nJA

an B by
rk, ——» F, —— G, ——— E, .

So, {gnt{an} = {Bn}, where g, = byh,a,. Hence, ¢ : liLnl{aut Ewy} —
ALEQ(E) is injective, and thus it is bijective. |

6.6. Corollary. If E is bounded below and every group 7;(E) is finite, then
ALEQ(E) = {[E]}.

Proof. Every group aut E(,) is finite, being a subset of the finite set
E{,)(E(n))- Thus, by 6.4, lim" {aut E,,)} = 0. O

6.7. Theorem. Let E be a spectrum of finite Z-type. Given a sequence
ELFYal yp 2 yp 2o

of spectra such that the sequence

= Bi(X) £ F(X) 25 Gi(X) 25 By (X) — -

is exact for every CW -space X, suppose that . : m.(E) — m.(F) is monic.
Then the following hold:
(i) The spectra G and C¢ are almost equivalent;

(ii) If G°(E) does not contain phantoms, then G ~ Cp, and E % F % G
s a cofiber sequence.

Proof. (i) By duality, for every finite spectrum Y we have the exact se-
quence -+ — E{(Y) — FYY) — ... By 11.4.26(ii), we can assume that
E™) is a finite spectrum for every n. Putting Y = E(™ i = 0 in this exact

() (n)
sequence, we conclude that the morphism E() £ L) 2, gl g
trivial. Hence, there exists h : C(¢(™) — G+ such that the following
diagram commutes:

B 2 pe) ()

| | [

g 2" pey o™ amen)

For i < n—1 this diagram induces the following diagram with the exact rows:

0 —— m(EM) —— m(FM) —— m(Ce™) —— 0

H H H [ H

0 —— m(EM™) —— m(F™) —— m(G+Y)y ——— 0.

Hence, C(¢™) and G**1) are (n — 2)-equivalent for every n.
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This implies that Cp and G are almost equivalent. Indeed, the inclu-
sion Gt — @ is an (n 4+ 1)-equivalence, and so the induced morphism

GEZ;A) — G(y) is an equivalence. Similarly, there is an (n — 2)-equivalence

C(p™) — C(p), and so we obtain an equivalence C(¢(™),,_2) — C(©)(n—2)-
So, since C(p(™) and G"*V) are (n — 2)-equivalent, C(¢)(,—2) and G(,_o)
are equivalent. Since this holds for every n, we conclude that C'(¢) and G are
almost equivalent.

(ii) The morphism «yf is inessential for every morphism f : Y — FE
of a finite spectrum Y. In particular, for every n the morphism a<p|E(") is
inessential because E(™ is a finite spectrum. Hence, a is inessential because
G°(E) does not contain phantoms. Therefore, there exists f : Cp — G such

that the diagram (where E 2 F 2, C is the strict cofiber sequence)

commutes. Hence, in the diagram

0 —— m(E) —— 7w (F) —— m(Cp) —— 0

H H H =

0 —— m(E) —— m(F) —— m(G) —— 0

f+ is an isomorphism, and thus f is an equivalence. (|

§7. Multiplications and Quasi-multiplications

Every ring spectrum (E, y,¢) yields a family

{,U(X,A),(Y,B) :Ei(X, A) ® E](Y,B) — i+j(X X Y,X x BUA x Y)},
(X,A),(Y,B) € ¢

However, for certain homology theories F,(—), one can easily construct a
family {x,y} even when knowing neither the multiplication p nor the spec-
trum F. Typical examples are geometrically defined homology theories, like
bordism and bordism with singularities, see Ch. VIII, IX. Moreover, some-
times one can construct a family {ux y } with suitable properties even if we do
not know whether the multiplication u exists. We call such a family {ux v}
a quasi-multiplication. So, every multiplication yields a quasi-multiplication,
and we are interested in the converse of this situation.
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Recall that every spectrum E is an S-module spectrum. Hence, for all
CW-pairs (X, A), (Y, B) there is a natural pairing
P = P(X,A),Y,B) : HZ(X,A) X E](Y,B) — i+j(X XY, X xB UA X Y)
where p(a ® ) is given by the morphism

Sip ST MMy (X/AYAS®(Y/B) A E ~S¥(X/ANY/B) A E
=SC(X xY)/ (X XxBUAXY))AE

for a: St — X®°(X/A), : 57 — ¥°(Y/B) A E.
Similarly, there is a natural pairing

Y =Pxa),v,B)  Bi(X,A) @IL;(Y,B) = Ei j;(X xY,X x BUAXY).

7.1. Definition. (a) A quasi-ring spectrum is a triple (E, {(x,4),(v,B)}: 1),
where:
FE is a spectrum;

{/J/(X,A),(Y,B) : El(X,A)(X)E](Y,B) — i+j(X X KX X BUA XY),i,j (S Z}

is a certain family (called the quasi-multiplication) of natural pairings, defined
for all CW-pairs (X, A), (Y, B);

t:S — E is a certain morphism (called the unit).

Furthermore, we require that the following four diagrams are commuta-
tive:

(X, A)® E;(Y,B) —— Fi;(XxY,X x BUAXY)

o] H

Ei(X,A)® E;(Y,B) —"— Fi;(XxY,X x BUAXY)
and the similar diagram for ;

H(x,A),(Y,B)
-

Ei(X,A)® E;(Y, B) Ei j(X xY,X x BUAXY)

] |
Ei_l(A)(X)Ej(Y,B) El(XXBUAXKXXB)
Ei_1(A) ® E;(Y,B) 2202, Eiyj_1(AXY,Ax B)

and the similar for 0 : E;(Y, B) — E;_1(B). Here d is the (boundary) homo-
morphism in the exact sequence 11.3.2(iv) of the triple (X XY, X x BU A x
Y, X x B) and

¢c:E (X XxBUAXY,X xB) = E,(AxY/Ax B) & E,(AxY,Ax B)

is the composition of the collapsing isomorphisms.
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A quasi-multiplication is commutative if the diagram

Ei(X,A)® E;(Y,B) “2208, b (X XY,X x BUAXY)

x| |~
E;(Y,B)® E(X,A) X B (Y xX,YxAUBXX).

commutes. Here x(a®b) =b®@aand 7 = 7(X,Y) : X XY — YV x X. We leave
it to the reader to define the associativity condition for a quasi-multiplication.

(b) Let E,F be two quasi-ring spectra. A morphism ¢ = {p(*4) .
E.(X,A) — F.(X,A)} is a quasi-ring morphism if the following diagrams
commute for all pairs (X, A), (Y, B):

LE

IL(X,A) —— E.(X.A)

| e

LF

IL(X,A) —— F,(X,A)
E
‘P(X’A)®‘P(Y’B)l J/[P(X,A)X(Y,B)

F

where, as usual, (X, 4) x (V,B):= (X xY, X x BUAXY).
7.2. Construction. Let (E, {y(x a),v,p)},t) be a quasi-ring spectrum.

(a) Given two pointed CW-spaces X,Y, we define a pairing

Ei(X)® Ej(Y) = Ei(X, %) x Ej(Y,%) 25200, B (X x Y, X VY)

=Ei (X NY).

We leave it to the reader to prove that these pairings commute with the sus-
pension isomorphisms, i.e., that the diagrams like 11.(3.37) (with X replaced

by S) commutes.
(b) Because of (a), we have a pairing

for every pair of finite spectra A, B. Now, given two arbitrary spectra X, Y, let
X, resp.Yy be the family of all finite subspectra of X, resp. Y. By 11.3.20(ii),
there is a canonical isomorphism F;(X) = lm{F;(X))}, and similarly for
E.(Y). Now, we define the pairing
pxy Ei(X) © E;(Y) = lim{ E;(X))} @ lm{ E; (Y ) }
=lim{ (X)) ® Ej(Yx)} — In{ Eij (X AYn)} — Eigj (X AY)

(recall that lim and ® commute, see e.g. Bourbaki [1], §6, n°7).
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As we have already remarked, every multiplication induces a quasi-
multiplication, and we are interested in the converse of this situation.

7.3. Theorem (cf. Switzer [1], 13.80 ff.). Let (E, {i(x,a),(v,B)},t) be a quasi-
ring spectrum of finite Z-type. Let E* denote the k-skeleton of E. Then :

(i) There exists a pairing p: EAE — E inducing the pairings jix a),(v,B)-

(ii) If im"{E~Y(E™ A E™)} = 0 then the pairing p as in (i) is unique up
to homotopy.

(iii) If lim"{E~'(E™)} = 0 then the morphism S A E ML EANE L E
(with p as in (1)) is homotopic to l(E) : SN E — E. Thus, the diagrams as
in 7.1 commute for every p as in (i).

(iv) If im"{E~Y(E" A E® A E™)} = 0 and the quasi-multiplication on E
is associative then every pairing p as in (i) is associative.

(v) If im"{E~Y(E" A E")} = 0 and the quasi-multiplication on E is
commutative then every pairing p as in (i) is commutative.

In particular, if E is a spectrum of finite Z-type with finite groups 7;(F)
for every i then every associative quasi-multiplication on E is induced by a
multiplication p: EANE — E. This multiplication is unique up to homotopy,
and it is commutative if the quasi-multiplication is.

Proof. (i) By 7.2(a) and duality, we have pairings u*® : E'(A)® B/ (B) —
EiI (AN B) for all finite spectra A, B. By 11.4.26(ii), we can assume that all
skeletons of the spectra E, EAE, EAENAE are finite. Hence, there are certain
pairings

" E"  EY(E") @ E°(E™) — E°(E™ A E™).

Let a,, : E™ — E be the inclusion, and let a morphism v,, : E*" AE™ — FE give
the element p =" F" (an ® ay,). Since the inclusions a, Aa, : E"AE"™ - EAE
and by, : (E A E)*™ — E A E are n-equivalences, there exists a unique n-
equivalence h, : (E A E)*» — E™ A E™ such that (a, A ay)h =~ ba,. Set
Uz = Vphp @ (EA E)*™ — E. Then ug,.2|(E A E)?™ ~ ug,. Hence, the
family {uo,} gives an element u € im{E°((E A E)™)}. Now, the exactness
of the sequence

(74) 0—lm {E~'(EAE)")} — E°(EAE) — lm{E°(E A E)")} — 0

(see (4.19)) implies the existence of the pairing y: EAE — E.
(ii) This follows from the exactness of (7.4).

We only prove (iv) because the assertions (iii)—(v) can be proved in a
similar way. Let f: EA EA E — E be a morphism with [f] = [ue(pu A 1)] —
[o(1 A p)]. In the diagram

EnAEM A B Gnfhanhan papaAE MM BEAE

unt | I

EANE Y. F
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the morphisms po(p A 1)o(an A an A ap) and po(l A p)e(an A an A ay) are
homotopic (by associativity of the quasi-multiplication) for every n. Hence,
if f is essential then it must be a phantom. But E°(E A E A E) does not
contain phantoms because lim' { E='(E™ A E™ A E™)} = 0.

Finally, the validity of (ii)—(v) for spectra with finite homotopy groups
follows from 5.7(i). O

The following proposition can be proved similarly to 7.3(ii).

7.5. Proposition. Let E, I be two ring spectra. Let 0 : E — F be a morphism
such that {60% : E.(X) — F.(X)} is a quasi-ring morphism. If F°(E A\ E)
does not contain phantoms, i.e., im' {F~1(E™ A E(™)} = 0 (for example,
E has finite Z-type and every group m;(F) is finite), then the diagram (7.6)
below commutes up to homotopy.

EANE -2, pAF

(7.6) uEl lw

E —%. F

In other words, 0 is a ring morphism. (|

Similarly to quasi-ring spectra, we can consider quasi-module spectra.

7.7. Definition. Let (E, {(x,4),(v,B)}, ) be an associative quasi-ring spec-
trum. A quasi-module spectrum over E is a pair (F, {m(x,a),(v,5)}) where F
is a spectrum and

{m(X7A)7(y,B) : EZ(X, A) ®Fj(Y, B) — iJrj(X XY, X x BUAX Y), 1,] € Z}
is a family of natural pairings, defined for all CW-pairs (X, A), (Y, B). Fur-
thermore, we require that the following diagram commutes:

En(X,A)® E,(Y,B)® F,(Z,C) —En(X,A) ® Fp((Y, B) x (Z,C))

! !

Emin((X; A) x (Y, B)) ® Fyp(Z,C)— Fintp((X, A) x (Y, B) x (Z,C)).

Clearly, every module spectrum over a ring spectrum F is a quasi-module
spectrum over E. We suggest that the reader carries out an analog of 7.3 for
quasi-module spectra. We formulate its special case which will be used below.

7.8. Theorem. Let E be a ring spectrum of finite Z-type, and let F' be a
quasi-module spectrum over E. If every group m;(F) is finite, then the quasi-
module structure on F extends to a unique E-module structure on F. (|



Chapter IV. Thom Spectra

In the introduction we discussed the importance and usefulness of Thom
spaces (spectra). In this chapter we develop a general theory of Thom spec-
tra, investigate some special Thom spectra and apply this to certain geomet-
rical problems. Some aspects of a general theory of Thom spectra are also
considered in Lewis—May—Steinberger [1]. Now it is clear that a proper theory
of Thom spaces occurs in the context of sectioned spherical fibrations, and
so we pay a lot of attention to sectioned fibrations; they are discussed at the
beginning of the chapter.

§1. Fibrations and Their Classifying Spaces

Following Husemoller [1], we treat a bundle as “just a map viewed as an
object of a particular category”.

1.1. Definition. A bundle & over a space B is a map p : E — B. The spaces
E, B are called the total space and the base (or base space) of &, respectively,
and the map p is called the projection. The subspace Fj := p~1(b) of E is
called the fiber of £ over b € B.

We use the notation ts§ for E, bs¢ for B and proj, (or simply pg) for p.

A subbundle of a given bundle £ is just a map ¢ : Y — X, where Y C
ts(§), X C bs(€) and ¢(y) = pe(y) for every y € Y.

1.2. Definition. (a) Givenabundle{ = {p: E — B} andamap f: X — B,
a p-lifting of f to E, or a lifting of f with respect to p, is an arbitrary map
g: X — E with pg = f. If such a lifting exists, we say that the map f can
be lifted to a map g. Two p-liftings g, ¢’ of f are called vertically homotopic
if there exists a map H : X X I — FE (called a wvertical homotopy) with
H(z,0) = g(x), H(z,1) = ¢’(x) and pH(x,t) = f(z) for every z € X,t € I.
The set of all p-liftings of f we denote by Lift, f, and the set of the vertical
homotopy classes of all p-liftings of f we denote by [Lift,, f].

(b) A p-lifting of the map 1p is called a section of £. In other words, a
section is a map s : bsé¢ — ts¢ such that ps = 15. We use the notation
Sec & := Lift, 1, [Sec ] := [Lift, 15].
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(c) A sectioned bundle is a pair (€, s¢) where & is a bundle and s¢ is a
section of &.

1.3. Definition. Let { = {p: E — B},n = {p' : E/ — B’} be two bundles.
(a) A fiberwise map is a map g : E — E’ such that p’gx = p’gy whenever
px = py.
(b) A bundle morphism ¢ : £ — 1 is a pair ¢ = (g, f) of maps such that
the diagram

E 9% ., F

v| |»

f

B —— B

commutes.

We use the notation ts ¢ for g and bs ¢ for f. So, ts ¢ is always a fiberwise
map.

In particular, there is the identity bundle morphism 1¢ := (1g,1p). Fur-
thermore, a bundle isomorphism is a morphism ¢ : £ — £ such that there
exists a morphism ¢ :  — & with Yo = 1¢ and pip = 1.

(¢) A bundle morphism ¢ : £ — n of the form (g, 15) is called a morphism
over B. In this case we say also that ¢ is a map over B.

(d) Given two sectioned bundles (&, s¢), (1, sp), a sectioned bundle mor-
phism is a bundle morphism ¢ : €& — n which respects the sections, i.e.,
(tsp)se = sy bs . A sectioned bundle morphism of the form (g, 1p) is called
a sectioned morphism over B.

Let &,m be two bundles, and let { be a subbundle of £. Given a bundle
morphism ¢ : ( — 7, define a bundle p : ts(£) Ugs(y) ts(1) — bs(€) Ups(y) bs(n)
by setting p(z) = pe(x) for x € ts(€), p(z) = py(x) for « € ts(n). This bundle
is denoted by £ U, 1 and called a gluing of £ and n via .

1.4. Constructions—Definitions. (a) The product of two bundles £,  is the
bundle ¢ xn:={pxp : Ex E' — B x B'}. Given two morphisms ¢ : £ — &
and 9 : 7 — 1’ of bundles, define a morphism ¢ x ¢ : £ xn — & x ' by
setting ts(¢ X ©) := ts @ X tsp.

(b) In particular, we can consider a space P as a bundle P over a point
and get the bundle £ x P over bs&. On the other hand, we can consider the
bundle 1p and construct the bundle £ x 1p over (bs¢) x P.

(c) Given a morphism ¢ : £ — n over B, we define the mapping cylinder
Cyl(1p) over B to be the bundle { x I Uy 7, where ¢ is considered as a
morphism ¢ : £ x {0} — n.

(d) Given a diagram 7, <~ ¢ %% 5, of morphisms over B = bs¢ =
bsn;, i = 1,2, we define its double mapping cylinder over B to be the bundle

DCyl(p1, p2) := € x [0,2] Uy (m Ung),
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where 1) is the morphism ¢ : (£ x {0}) U (€ x {2}) = EULE RN m U no.
As in 1.3.18, there are morphisms e : 11 C DCyl(p1, 92), tright : 72 C
DCyl(p1,p2) and imiq : € = & x {1} C DCyl(p1, p2).

(e) Note that pe yields a morphism pg : £ — lpse of bundles. Define the
bundle join £ xn of bundles £, n to be the double mapping cylinder of the
diagram

Pex1 1xp,
1bs§><77 - §><77 W§X1bsn

of bundles over bs¢ x bsn. It is easy to see that the fiber of & * i over
(b1,b2) € bs& x bsn = bs(€ xn) is Fy, * Fp, where x is the usual join of the
spaces.

(f) Note that s¢ yields a morphism §¢ : lpse — £ of bundles for every
sectioned bundle (&, s¢). Given two sectioned bundles £, n over B, we define
the bundle h-wedge

o~ o~

EVhy:=DCyl(€ &£ 15 25 ).

For every b € B the fiber of £ V" 1 over b is the h-wedge of the (pointed)
fibers of &,7. We equip & V* 1 with the section ts(imiq) : B — ts(¢ V' n).
There is the following fiberwise analog of 1.3.33. Let ¢ : £ — (¢ :n — (
be sectioned morphisms over B. Then there exists a unique sectioned mor-
phism ¢ T : €V — ¢ over B such that (pTv)itere = @, (9T )iright = ¥
and ts(oT) (b, t) = s¢(b) for every b € B,t € [0,2].
(g) Given two sectioned bundles (, s¢), (1, s,), we define the bundle h-

smash product € \" 1 as follows. Set £ = £ x lbsn, T = lpse X 1. Define

_ 1%5. _ Sex1
@ E=E X lhsy — B EX N, 7= lpsg X ) —— € X7,

and let T : & VPG — € x 7 be asin (f). We set

P~ ot
EN" = DCyl(1psexbsy —n EVhg Ty, & xn).

We equip & A" i with the section ts(ijef) : bs& x bsn — ts(& A" 7). Clearly,
the fiber of £ A" n over (by,bg) is Fy, A" Fp,.

Given morphisms ¢ : £ — ¢ and ¢ : n — 7/, the diagram

;)\gxl IX;;V?
1bs§><77 §><77 §X1bsn
bscpxd;l cpxwl J{goxbsw
;7\51><1 , IX;)\n/

lbsg’ X 77/ — fl Xn — fl X lbsn’

induces a morphism of the double mapping cylinders. We denote this mor-
phism by @ x 1 : £ xn — & x . Moreover, if ¢ and i preserve the given
sections, then ¢ V"¢ and ¢ A" 1) can be defined in an obvious way (do it). In
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other words, the constructions x, *, V?, A" are natural with respect to bundle
morphisms.

1.5. Definition. (a) A bundle homotopy between two morphisms ¢, ¢’ : £ —
n is a morphism H : § x 17 — n such that H|{ x 119y = ¢ and H[{ x 141y =
¢’. If such a bundle homotopy H exists, we say that ¢ and ¢’ are bundle
homotopic and write ¢ ~P .

A bundle morphism ¢ : £ — 7 is a bundle homotopy equivalence if there
exists ¢ : n — £ such that ¢y and ¢ are bundle homotopic to the corre-
sponding identity maps.

(b) A homotopy over B between two morphisms ¢, ¢’ : £ — n over B is
a morphism H : £ x I — n over B such that H| x {0} = ¢, H| x {1} =
¢’. If such a homotopy exists, we say that ¢ and ¢’ are homotopic over B
and write ¢ ~p ¢’ or H : ¢ ~p ¢'. A morphism ¢ : £ — 7 over B is a
homotopy equivalence over B if there exists ¥ : n — & over B such that
oY ~p 1y, Yo ~p e

(c) If s¢ is a section of &, then s¢ X 17 : bs§ x I — ts& x I is a section
of £ x 17. A sectioned bundle homotopy between two sectioned morphisms
0, ¢ (£ 5¢) — (n,sy) is a bundle homotopy H : £ x 17 — 1 between them
which respects the sections, i.e., (ts H)(s¢ x 11) = s, bs H; furthermore, one
can define a sectioned bundle homotopy equivalence. Similarly, one can define
a sectioned homotopy over B and a sectioned homotopy equivalence over B
(do it). If there is a sectioned homotopy H over B between two morphisms
@, ¢ over B, we use the notation ¢ ~% ¢’ or H : ¢ ~% ¢'.

(d) Let & be a subbundle of a bundle 1, bs & = bsn = B. We say that the
inclusion ¢ : £ C n is a cofibration over B if every morphism & x T Un — ¢
over B can be extended to a morphism n x I — ( over B.

1.6. Remark. If B is a point then a bundle over B is just a space, and a
sectioned bundle over B is just a pointed space; furthermore, a homotopy
(resp. a cofibration) over B is just an ordinary homotopy (resp. cofibration).
So, notions “over B” can be regarded as fiberwise versions of ordinary notions.
Note that categorists call “a space over B” what we call “a bundle over B”,
etc., but this categorical flavor is irrelevant in our context.

1.7. Lemma. (i) Let (&, s¢) be a sectioned bundle over B. We set 1 := Cyl 5
and define s, : B — tsn,sy(b) := (s¢(b),1). Then the inclusion (&,s¢) —
(n, sy) is a sectioned homotopy equivalence over B, and s, : 1p — 1 is a
cofibration over B.

(i) Ifi : £ C n is a cofibration over B, then tsi : ts& C tsn is a cofibration.

Proof. (i) This is a fiberwise version of 1.3.26(i) (more precisely, of the
special case of 1.3.26(i) with X = pt). The proof is left to the reader.

(i1) We set A = ts&, X = tsn. We prove that every map f: AxIUX - Y
can be extended to amap g : X x I — Y. Weset ( = {p2: Y x B — B}
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and define ¢ : £ x T Un — ¢ by setting ts p(z) = (f(x), py(z)). Now, there
is ¢ : p x I — ¢ which extends ¢, and we define g : X x I — Y to be the
composition

XxI2%y«By, 0

1.8. Definition. For every bundle ¢ = {p: E — B} and every map f: X —
B the induced bundle f*(§) = {p’ : B/ — X} is defined via the pull-back
diagram

EF —— FE

4l &

In other words, E' = {(z,e) € X x E|f(x) = p(e)}, and p'(z,e) = z. We
define the canonical morphism 3 =Ty : f*6 — &, tsT(x,e) =e.

1.9. Proposition. (i) There are canonical bijections

Lift, f = Sec f*(€), [Lift, f] = [Sec f*(€)].

ii) Given a morphism ¢ : £ — n, there exists a unique morphism §, :
o]
& — (bsp)*™n over bs§ such that ¢ = Jnsp nSe-
(iii) Let ¢ : &€ — n be a morphism over B, and let f : X — B be a map.
Then there exists a unique morphism f*¢ : f*¢ — f*n over X such that the
following diagram commutes:

fre L2 po

jf,&l jfml

& —— 0.

(iv) If (&, s¢) is a sectioned bundle, then s : X — E', s(x) = (z, s¢(f(2)))
is a section of f*&, and Jpe @ f*E — € maps s to s¢, i.e., Tp¢ is a sectioned
morphism.

(v) If £, m are homotopy equivalent bundles (resp. sectioned bundles) over
B, then f*¢, f*n are homotopy equivalent bundles (resp. sectioned bundles)
over X for every map f: X — B.

Proof. Decode the definitions. (I

1.10. Notation and Convention. (a) If i : A C B is an inclusion, we write
&| A rather than i*¢ for a bundle & and ¢|A rather than i*¢ for a morphism
¢ in 1.9(ii).

(b) Sometimes E’ is denoted by X x g E.

(c) We shall say just “equivalence over B” rather than “homotopy equiv-
alence over B”.
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1.11. Definition. Given a space F', the product F-bundle, or the standard
trivial F-bundle 0 = 0% over B is just the projection p; : B x F — B. A
trivial F-bundle over B is a bundle which is isomorphic to the product F-
bundle. An isomorphism of a trivial F-bundle £ with the product F-bundle
is called a trivialization of €. A trivial bundle is a bundle which is a trivial
F-bundle for some F. A locally trivial bundle over B is a bundle £ such that,
for some covering {U;} of B, the bundle £|U; is trivial for every i. A fiberwise
homotopy trivial bundle is a bundle which is equivalent over the base to a
trivial bundle.

1.12. Definition. (a) A fibration (or a Hurewicz fibration) is a bundle £ =
{p : E — B} which satisfies the following covering homotopy property: For
every map F : X x I — B and every g : X — E with pg(z) = F(z,0), there
exists G : X x I — F with G(x,0) = g(z) and pG = F.

(b) A Dold fibration (a weak fibration in the terminology of Dold [2])
is a bundle £ = {p : E — B} which satisfies the following weak covering
homotopy property: For every map F': X x [0,1] —» B and every g: X — F
with pg(z) = F(z,0) there exists G : X x [-1,1] — E such that G(z,—1) =
g(z), pG(z,t) = F(z,0) for t € [-1,0], pG(x,t) = F(z,t) for t € [0, 1].

(¢) A quasi-fibration is a bundle £ = {p : E — B} such that for every
2 € B and for every a € F,, the map p, : mi(E, F,,a) — (B, ) is bijective
for every k > 1. In particular, one has the homotopy exact sequence (induced
by the homotopy exact sequence of the pointed pair (E, Fy, ag))

- = mi(Fyya0) = mi(E,a0) — mi(B,x) — mi—1(Fp,a0) — - -

for every = € B.
(d) A sectioned fibration is a sectioned bundle (€, s¢) such that £ is a
fibration and 5¢ : 1pse C € is a cofibration over bs&.

1.13. Proposition. Fvery fibration is a Dold fibration. Fvery Dold fibration
is a quasi-fibration.

Proof. Only the second claim needs proof. This is well known for fibrations,
see e.g. Switzer [1], Hu [1], and the proof can be immediately generalized for
Dold fibrations. 0

1.14. Proposition. Let f : X — B be a map. If ¢ ={p: E — B} is a
fibration (resp. Dold fibration, resp. sectioned fibration) then so is f*€.

Proof. Exercise. a

The advantage of Dold fibrations is that they are invariant under bundle
homotopy equivalences, unlike fibrations.

1.15. Proposition. Let £ — n be an equivalence over a space B. Then & is
a Dold fibration if n is.
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Proof. See Dold [2], 5.2 or tom Dieck—Kamps—Puppe [1], 6.7. O

1.16. Example. Consider the bundle p : [-1,1] — [0,1], p(t) = 0 for
t <0,p(t) =t for t > 0. This bundle is equivalent over [0,1] to the fibration
Lo,1}, but it is not a fibration (prove this). On the other hand, by 1.15, it is
a Dold fibration.

1.17. Theorem (Strgm [1]). Let p : E — B be a fibration.

(i) Let (Y, Z) be a pair such that Z is a strong deformation retract of Y.
Suppose that there exists a map h : Y — I with h=1(0) = Z. Then for all
maps v’ : Z — E and v’ : Y — B with pu” = v’ there exists u: Y — E with
pu=1u andu|Z =u".

(ii) Let (X, A) be a cofibered pair (e.g., a CW -pair). Then for every map
F:X xI— B and every map g: XUAX I — E withpg =F|(XUAXI)
there exists G : X x I — FE with GI(X UA xI) =g and pG = F.

Proof. (i) Let D : Y x I — Y be a map such that D(y,1) = y for every
y, D(y,0) € Z and D(z,t) = z for every z € Z,t € I. Such a map D exists
because Z is a strong deformation retract of Y. Define

[ D(y,t/h(y)) ift < h(y),
Dw.t) = { Y otherwise.

It is easy to see that D is continuous.

Since p : E — B is a fibration, the map v'D : Y x I — B can be lifted
to F: Y x I — E such that F(y,0) = u”D(y,0) for every y € Y. Now set
u(y) = F(y,h(y)).

(ii) This follows from (i), if we put ¥ = X x I,Z = X UA x [,u" =
g,u' = F and prove that Z is a strong deformation retract of Y. Let p; :
X xI — X,py: X xI — I be the projections. Firstly, Z is a retract of
Y by 1.3.25(ii). We choose a retraction r : X x I — X U A x I, and set
h(z,t) := sup,¢; |t — por(x,t)|. Considering the homotopy D : ir o~ 1x 1 rel
XUAxI, D(x,t,s) == (prr(z, (1 — 9)t), (1 — s)par(z,t) + st),s € [0,1], we
conclude that Z is a strong deformation retract of Y. O

1.18. Lemma. Let { = {p: E — B,s : B — E} be a sectioned bundle
such that 5 : 1g — £ is a cofibration over B. The following conditions are
equivalent:

(i) € is a fibration;

(ii) Let ¢ = {q : D — A,r : A — D} be an arbitrary sectioned bundle
such that 7: 14 — ¢ is a cofibration over A, and let ¢ = (g,f): ( — & be a
sectioned morphism. Then for every homotopy h: Ax I — B, h(a,0) = f(a)
there is a homotopy H : D x I — E such that H|D x {0} = g,pH = h(gx 1)
and H preserves the sections, i.e., H(r(a),t) = s(h(a,t)).

Proof. The implication (i) = (ii) follows from 1.17(ii) and 1.7(i). To prove
that (ii) = (i), consider certain maps F': X xI — Band u: X — E,pu(x) =
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F(z,0). We must find G : X x I — E such that pG = F and G|X x {0} = u.
Let X;,t=1,2, be a copy of X. We put

D=X,UXo=XUX, A:= X,h:=F,

q: X1 UXo — X, q|X; :=1x,

r: X — X5 UXy,r(x) :=x1, ie., ris the embedding on X;

g: X1UXo — E g(x) := s(F(x,0)) for z € X1, g(x) := u(z) for z € Xo.

If (ii) holds, then there is a homotopy H : D x I — E, and we set G =
H|Xy x I. O

1.19. Remark. Why do I need this lemma? Here I want to quote some results
of May [2], but he defined sectioned fibrations as in 1.18(ii), see May [2], 2.1
and 5.2. So, 1.18 just shows the equivalence of the definitions.

1.20. Lemma. (i) If§ = {p: E — X xI} is a Dold fibration, then &|(X x{0})
and &|(X x {1}) are Dold fibrations and equivalent over X .

(i) If¢ ={p: F — X x I} is a sectioned fibration, then &|(X x {0}) and
E|(X x {1}) are sectioned fibrations and are equivalent over X .

Proof. See Dold [2], 6.6, May [2], 2.4. O

1.21. Corollary. (i) Let f ~ g : X — B, and let n be a Dold fibration
(resp. a sectioned fibration) over B. Then f*n and g*n are equivalent Dold
fibrations (resp. equivalent sectioned fibrations).

(ii) Let & be a Dold fibration over a connected base. Then all its fibers are
homotopy equivalent.

Proof. (i) Let H : X x I — B be a homotopy between f and g, H(z,0) =
f(x),H(z,1) = g(x). Set & = H*n. Then f*n = ¢|(X x {0}) and g*n =
&|(X x {1}). Now apply 1.20.

(ii) For every two points by,by € B, the inclusions {1} C B,{b2} C B
are homotopic maps. Now the result follows from (i). O

1.22. Lemma. Let & be a Dold fibration over a space B.

(i) If f @~ 1g : B — B then Js¢ : f*¢ — £ is a bundle homotopy
equivalence.

(i) If f : X — B is a homotopy equivalence then Jy¢ : f*6 — € is a
bundle homotopy equivalence.

Proof. (i) Welet £ = {p: E — B} and f*¢ = {p' : E/ — B} where
B = {(be)be Bec B, f(b) = ple)).

Consider a homotopy
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F:Bx|[-1,1] = B, F(bt)=bforte[-1,0], F(b,1)= f(b).
It can be covered by a homotopy
G:Ex[-1,1]—-E, GIEx{-1}=1g.

Weset g = GIEx{1}and p = (g, f) : £ — & By 1.9(ii), ¢ can be decomposed
as
25 et e

It is clear that ¢ is bundle homotopy equivalent to 1¢, i.e., J;¢§, >~ 1¢. On
the other hand, the map ts(F,Js,¢) has the form (b,e) — (f(b), g(e)). Now,
the homotopy

B x[-1,1] = E', ((be),t) — (F(b,1),G(e,t))

yields a bundle homotopy 1f+¢ ~ §,J s ¢.
(ii) Let g : B — X be homotopy inverse to f. Weset I =T ¢, T =Ty f¢.
By (i)v ,
g fE e
is a bundle homotopy equivalence; let & be bundle homotopy inverse to JJ'.

Note that 7'« is bundle homotopy right inverse to J. Furthermore, similarly,
7’ has a bundle homotopy right inverse, say, 3. Now, 1 ~ aJJ’, and so

a3 ~3ad¥VB3~738~1.

Thus, J and 7'« are bundle homotopy inverse. a

1.23. Definition. A covering (not necessarily open) {C;} of a space X is
numerable if there exists a family {f;} of maps f; : X — [0,1] such that

1. For every z € X, f;(x) = 0 for all but finitely many indices.

2.3, file) =1.

3. £71(0,1] C C; for every i.
In other words, f; is a partition of unity such that ]"[1(07 1] refines {C;}.
1.24. Recollection. Recall that every locally finite covering of a paracom-

pact space is numerable, see e.g. Munkres [2]. Every CW-space is paracom-
pact, Miyazaki [1], see also Fritsch-Piccinini [1].

1.25. Theorem (Dold [2]). Let {C;} be a numerable covering of a space B,
and let £ be a bundle over B. If £|C; is a fibration for every i, then so is &.
If €|C; is a Dold fibration for every i, then so is €.

Proof. See Dold [2], 4.8 or tom Dieck—Kamps—Puppe [1], 9.4 and 9.5. O

1.26. Corollary. Every locally trivial bundle over a paracompact space (e.g.,
over a CW -space) is a fibration.
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Proof. Note that every trivial bundle is a fibration. Now, let £ be a locally
trivial bundle, and let {U;} be a covering of bs¢ such that &|U; is trivial for
every i. Then {U;} admits a locally finite refinement {V;}, which is numerable.
Thus, by 1.25, £ is a fibration since £|V; is a fibration for every j. O

1.27. Theorem (Dold [2]). Let £,n be two Dold fibrations over a space B,
and let ¢ : & — n be a morphism over B such that tsp : ts& — tsn is a
homotopy equivalence. Then ¢ is an equivalence over B.

Proof. See Dold [2], 6.1 or tom Dieck—Kamps—Puppe [1], 6.21. O

1.28. Corollary. Let ¢ : & — &2 be a morphism of Dold fibrations such that
tsp 1 ts& — tsés and bsp : bsé) — bs&y are homotopy equivalences. Then
@ s a bundle homotopy equivalence.

Proof. Set f =bs . By 1.9(ii), ¢ can be decomposed as

3 we Jf
& =5 fré 6,
By 1.22(ii), J7,¢, is a bundle homotopy equivalence, and so ts §, is a fiberwise
homotopy equivalence. Hence, by 1.27, §, is a bundle homotopy equivalence,
and thus ¢ = J; ¢, 8, is a bundle homotopy equivalence. O

1.29. Theorem. Let {U;} be a numerable covering of a space B such that
every inclusion U; C B is inessential. Then the following hold.

(i) Let ¢ : & — n be a morphism of Dold fibrations over B. If ¢y :
pgl(b) — p;l(b) is a homotopy equivalence for every b € B then ¢ is a
homotopy equivalence over B.

(i) Let ¢ : (&,s¢) — (n,sy) be a sectioned morphism of sectioned fibra-
tions over B. If vy : (pgl(b), s¢(b)) — (' (b), 5,(D)) is a pointed homotopy
equivalence for every b € B then ¢ is a sectioned equivalence over B.

Proof. The proof of (i) can be found in Dold [2] or tom Dieck—-Kamps—
Puppe [1], the proof of (ii) can be found in May [2], §§2, 5. O

1.30. Corollary. (i) Let B be a CW -space, and let ¢ : £ — n be a morphism
of Dold fibrations over B. If ¢ : pgl(b) — p;l(b) is a homotopy equivalence
for every b € B then ¢ is a homotopy equivalence over B.

(ii) Let B be a CW -space, and let ¢ : (€, s¢) — (1, s,) be a sectioned mor-
phism of sectioned fibrations over B. If py : (pgl(b), se(b)) — (py, ' (b),55(D))
is a pointed homotopy equivalence for every b € B then ¢ is a sectioned
homotopy equivalence over B.

(iii) Let ¢ : &€ — n be a morphism of Dold fibrations. Suppose that bsp :
bs& — bsn is a homotopy equivalence, that bs& and bsn are CW -spaces, and
that oy : pgl(b) — p;l(bs ©(b)) is a homotopy equivalence for every b € B.
Then ¢ is a bundle homotopy equivalence.
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Proof. (i), (ii) These follows from 1.29 because B admits a covering of
the type required by 1.29. Indeed, every CW-space is locally contractible,
i.e., it admits a covering {U;} such that every U; is contractible. Since B
is paracompact, {U;} admits a locally finite refinement {V;}. Now, {V;} is
numerable, and the inclusion V; C B is inessential.

(iii) For simplicity, we put f = bs . By 1.9(ii), ¢ can be decomposed as

¢ 22 prp L2y,

By 1.22(ii), J4, is a bundle homotopy equivalence, while, by (i), §, is an
equivalence over bs¢. O

1.31. Remarks. (a) For every CW-space B, a simple direct construction of
its covering required by 1.29 is given in Dold [2] and is credited to Puppe.

(b) Using 1.17 or 1.18, one can prove a sectioned analog of 1.22 and, based
on this, deduce a sectioned analog of 1.30(iii). We do not need this, but the
reader can do it as an exercise.

1.32. Lemma. Let (§,s¢) and (€, s¢) be two sectioned fibrations over a CW -
space B. If s¢ ~p s; + bs{ — ts& then (§,s¢) and (§,s;) are equivalent
sectioned fibrations over B.

Proof. Let £ = {p : E — B}, and let H : B x I — E be a vertical
homotopy H : s¢ ~p sé. We consider the maps

F:ExI— B, Flet)=p(e)

and

g:EUse(B)xI—E, g(e)=e,g(se(b),t) = H(b,1).
By 1.17(ii) and 1.7(i), there is a map G : E x I — E which extends g and
covers F'. Now we have the map

GIE x {1} : (E,s¢(B)) — (E, s¢(B))

which yields a bundle morphism (§,s¢) — (¢, 5’5) over B. By 1.30(ii), this
map is a sectioned equivalence over B. O

1.33. Definition. The homotopy fiber of a Dold fibration £ over a connected
base is the homotopy type of its fibers. By 1.21(ii), this is well-defined.

1.34. Proposition. Let &, 1 be two Dold fibrations over connected bases. If
& and n are bundle homotopy equivalent then they have the same homotopy
fiber. O

1.35. Proposition—Definition—Construction. For every bundle £ = {p:
E — B}, there exists a morphism ¢ : & — & over B such that £ is a fibration
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and ts ¢ is a homotopy equivalence. In other words, there exists a commutative
diagram

E " _ E
al s
B B

where £ = {p : E — B} is a fibration and h := ts ¢ is a homotopy equivalence.
Every such fibration £ is called a fibrational substitute of the bundle & (or
the map p: E — B).

Proof. Following Serre [1], we set
E={(e,w)le€ E,w:[0,1] — B,w(0) = p(e)}

and define p : E — B,p(e,w) = w(l). We define h : E — E by setting
h(e) := (e,we), where we(t) = p(e) for every t € I. It is easy to see that
p: E — B is a fibration and h is a homotopy equivalence, see e.g. Fuks—
Rokhlin [1]. O

1.36. Proposition. (i) If two maps p; : E; — B;,i = 1,2, are homotopy
equivalent then their fibrational substitutes are bundle homotopy equivalent.
Moreover, every two fibrational substitutes of a map p : E — B are equivalent
over B.

(ii) Let £ = {p : E — B} be a bundle, let £ be a fibrational substitute of
&, and let u: A — B be a map. Then u*§ is a fibrational substitute of u*€.

Proof. (i) Let &, = {p; : E; — B;},i = 1,2, be a fibrational substitute of
&;. Then there is a diagram

EIL,E2

i e

BlL?BQ

which commutes up to homotopy and where u, v are homotopy equivalences.
Since &, is a fibration, we can replace v by a homotopic map v : E; — FEq
such that the diagram will commute strictly. Now, by 1.28, ¥ is a bundle
homotopy equivalence.

Now, if we have two fibrational substitutes of a map f : E — B then
there is a diagram as above with v = 15. Thus, by 1.27, v is an equivalence
over B.

(ii) By (i) and 1.9(v), it suffices to prove the assertion for some particular
fibrational substitute £. We choose £ as in the proof of 1.35 and use the same
notation. Let uv*¢ = {g : ¥ — A}, where Y = {(a,e)lu(a) = p(e)} and
g(a,e) = a. Furthermore, u*¢ = {q: V — A} where
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V ={(a,e,w) | u(a) = w(1),p(e) =w(0)}, a € A,e € E,w € B

and ¢(a,e,w) = a. We consider the map j : Y — V,j(a,e) = (a,e,w,)
and prove that j is a homotopy equivalence. Indeed, we define £ : V —
Y, k(a,e,w) = (a,e) and

G:VxI—-V G(aew),s)=(a e ws) where ws(t) = w(st),s € I.

Clearly, kj = 1y. Furthermore, G|V x {1} = 1y and G|V x {0} = jk, i.e.,
jk? >~ 1\/. d

1.37. Definition. The homotopy fiber of a bundle (or, if you prefer, of a map)
p: E — B over a connected base B is the homotopy fiber of its fibrational
substitute. By 1.36(i) and 1.34, this is well defined.

Given a space F', we say “F is the homotopy fiber of p” meaning that the
homotopy type of F' is the homotopy fiber of p.

1.38. Proposition. Let B be a connected CW -space, and let p : E — B
be a fibration such that every (or equivalently, some single) fiber of p has the
homotopy type of a CW -space. Then E has the homotopy type of a CW -space.

Proof. See e.g. Fritsch—Piccinini [1], Appendix. O

1.39. Examples (Serre [1]). (a) Let X be a connected space, and let i :
{zo} — X Dbe the inclusion of a point. What is the homotopy fiber of i?
Using the Serre construction as in 1.35, we get a fibration PX — X with
contractible PX, and its fiber over xq is just Q(X, z¢). Thus, the homotopy
fiber of ¢ is 2.X.

(b) Similarly to I1.4.14, we define an (m — 1)-connective covering of a
space X to be a map ¢ = ¢, : Y — X such that m;(Y) = 0 for i < m and
gs : m(Y) — m;(X) is an isomorphism for ¢ > m. As in I1.4.14, we denote
Y by X|m, and call every such Y a killing space. For example, the universal
covering X — X of a connected space X is its 1-connective covering.

How to construct an m-connective covering for an arbitrary m? Consider
a space X such that m;(X) = 0 for i < n, where n > 0, and set 7 = 7, (X).
Then there is a map f : X — K(m,n) such that f, : 7, (X) — m,(K(m,n))
is an isomorphism. (In fact, f is given by the element 1, € Hom(rm, w) =
H™(X;7).) Let p : E — K(m,n) be a fibrational substitute of f, and let
i : F' — E be the inclusion of a fiber. Then ¢ is an n-connective covering of F,
and so ¢, : F - E ~ X is an n-connective covering of X, i.e., F = X|(n+1).
Similarly, we can consider an (n + 1)-connective covering F; — X|(n + 1),
and the composition

Fi — X|(n+1) 25 x

is an (n + 1)-connective covering of X, i.e., F; = X|(n + 2). And so on.
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Summing up, in this way we get a tower of fibrations
= X4 k) IS X4+ k—1) — - — X|(n+1) 2 X

where the (homotopy) fiber of ¢+ is K(mp1x(X),n + k). Furthermore, the
composition ¢pt1°---o@ntk @ X|(n+ k) — X is an (n + k — 1)-connective
covering of X. This tower is natural with respect to X, and the obvious
analog of 11.4.16 holds, see e.g. Hu [1], Whitehead [1].

Serre [1] suggested the following program to compute homotopy groups.
Suppose that we are able to compute homology of killing spaces (e.g., using
the Leray—Serre spectral sequence). Then, because of the Hurewicz Theorem,

mn(X) = Hy(X),
Tn+1(X) = T (X[ (n + 1))
Tnt2(X) = Tnia (X[ (n + 2))

Hpp1(X|(n+1)
Hyi2(X|(n

~—

)

2))7

+

Unfortunately, really we can’t proceed to the very end, since the computation
of H,.(X|k) becomes more and more complicated as k increases, but, for
example, in this way Serre proved the finiteness of m;(S?"*1) i # 2n + 1.

1.40. Proposition. Fvery Dold fibration & over B is equivalent over B to its
fibrational substitute €. In particular, every Dold fibration over B is equivalent
over B to a fibration.

Proof. Let ¢ : £ — £ be as in 1.35. Then, because of 1.27, ¢ is an equiva-
lence over B. |

1.41. Proposition. (i) If£ is a quasi-fibration over a connected base B, then
each of its fibers is CW -equivalent to the homotopy fiber of &. In particular,
every two fibers of & are CW -equivalent.

(ii) (Dold—Thom [1]) Consider the commutative diagram

B < . B

a2 |
B — . B

where p' is a quasi-fibration and p' = p|E'. Assume that there exist defor-
mations Ry : E — E,r, : B — B, t € I, with the following properties:
pR: =rp, Ry = 1, R1(E) C E',rg = 1p,7m1(B) C B’. Furthermore, suppose
that (R1)« : m(Fy) — mi(Fy () s an isomorphism for every x € B and
every i. Then p is a quasi-fibration.
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(iii) Consider the commutative diagram

En In En+1 —_

Pnl lpn+1

B, fn

Bpyp —— -

Assume that all maps gn, fn are inclusions. Set E = UE,,B = UB, and
define p : E — B, p|E, = p,. Assume that every compact subset of B is
contained in some B,,. Then p is a quasi-fibration provided that every p,, is
a quasi-fibration.

(iv) Given the diagram in (iii), assume that g,, fn are arbitrary maps
(not necessary inclusions). Suppose that every space By is connected. Given
a CW -space F', suppose that every vertical map in the diagram is a quasi-
fibration such that each of its fibers is homotopy equivalent to F. Moreover,
suppose that gp|F, : Fp — Fy () is a homotopy equivalence for every k
and every x € By. Let E, resp. B, be the telescope of the top, resp. bottom,
sequence. Define p : E — B to be the telescope of the maps p,. Then p is a
quasi-fibration. Furthermore, every fiber of p is CW -equivalent to F .

Proof. (i) Consider ¢ : & — £ as in 1.35, and set F, = (p)~'(z). Let
vz Fy = Fu,p:(f) = (ts@)(f), be the induced map of fibers. Choose
ag € F, and set by = @, (ag). Consider the following commutative diagram
of exact sequences:

coo— Ty (B, x) =7 (Fy, a0)— m(E, ap) —mp(B,x)— - -

1l ("’”)*l gl% 1l

o= M1 (B, ) =7k (Fa, bo)— me(E, bo) —mp(B,x)— - -.

By the Five Lemma, (¢, )« is an isomorphism for every k& > 1 and a bijection
for k = 0.

(ii) Consider the deformation retractions ¢ := Ry : F — FE’ and
b :=r : B — B’'. They induces certain isomorphisms a,. : m;(E,y) —
mi(E' ay)), be : mi(B,z) — m;(B’,b(x)). Now, a yields a map of pointed
pairs (E, F,,y) — (E', Fyz),a(y)), and so, by the Five Lemma, we get iso-
morphisms a. : m;(E, Fy,y) — mi(E’, Fyg),a(y)). Hence, in the diagram

W*(E7any) L) 71-*(E‘Ia1;‘17(1)70/(?}))
lp* lp/*
7« (B, x) SN 7« (B’,b(x))

the horizontal arrows are isomorphisms, and the right arrow is an isomor-
phism because p’ is a fibration. Thus, the left arrow is an isomorphism.
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(iii) Given f : (S™, %) — (B,x), we conclude that f(S™, *) C (B, )
for some m, and so f ~ pg for some g : (D", S" ') — (E,, F) (because
Pm is a quasi-fibration). Thus, p, is epic. Furthermore, let g : (D™, 8"~ !) —
(E, F,) be such that p.[g] = 0 € m,(B,z). Then the map pg extends to
h: (D"1,0) — (B,z). Now, [g] = 0 € 7, (E, F,) since h(D"1,0) C (B, x)
for some m.

(iv) For every k there is a commutative diagram

Pkl lM(pk)

By ——— Mfy,

where M denotes the ordinary mapping cylinder. By (ii), the right-hand map
is a quasi-fibration. Thus, by (iii), p is a quasi-fibration. The last assertion
follows from (i). O

1.42. Definition. (a) Let F' be a topological space (in #/, as usual). An F'-
fibration, resp. a Dold F-fibration, is a fibration, resp. a Dold fibration, such
that all its fibers are homotopy equivalent to F'. A morphism ¢ = (g, f) : £ —
n of (Dold) F-fibrations, or simply an F-morphism, is a bundle morphism
such that
glFy : Fy — Fya

is a homotopy equivalence for every x € bs&. An equivalence of (Dold) F-
fibrations over B is just an equivalence over B of them.

(b) Let (F,*) be a well-pointed space. Define an (F, x)-fibration to be a
sectioned F-fibration (, s¢) such that (Fy, s(x)) is pointed homotopy equiv-
alent to (F, ) for every x € bs{. A morphism ¢ = (g, f) : (§,s¢) — (1, sy) of
(F, *)-fibrations, or simply an (F, *)-morphism, is a sectioned morphism such
that ¢ is an F-morphism and

9|Fw : (Fl,55($)) - (Ff(z)asn(f(w)))
is a pointed homotopy equivalence for every = € bs{. An equivalence of
(F, *)-fibrations over B is just a sectioned homotopy equivalence over B.

Sometimes we shall say “a fibration I — E — B” instead of “an F-
fibration £ — B”. Recall that a (Dold) fibration over a connected base is a
(Dold) F-fibration for some F'.

Given a space X, we define 7 = 7x : X! — X by setting (w) = w(0).
1.43. Proposition. (i) Given a bundle p : E — B, consider the pull-back

diagram

y — T . FE

| |7

B! ™5, B,
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The bundle p : E — B is a fibration iff there exists a map h: Y — ET such
that Tgh = 7 and p'h = q, where p! : ET — B!, p!(w) = pw.

(ii) The product of two (Dold) fibrations is a (Dold) fibration.

(iil) Let ¢ : & — & be a morphism of fibrations over B. Then Cyl(p) is
a fibration over B.

(iv) The double mapping cylinder of two fibrations over B is a fibration
over B.

(v) If € is an F-fibration and n is a G-fibration then £ xn is an F x G-
fibration.

(vi) If & is an (F,*)-fibration and 1 is a (G, *)-fibration then € A" 1 is an
(F A" G, x)-fibration.

Proof. (i) Suppose that there exists h as required. Consider maps F :
X xI — Bandg: X — E with F(z,0) = pg(z). We must construct
a p-lifting G of F with G(z,0) = g(z). Define F : X — B! by setting
F(z)(t) = F(x,t). Since mpF' = pg, there is a map k : X — Y such that
gk = F and 7k = g. Now, the map hk : X — E! yields the desired map
G: X xI— E, G(z,t) = hk(z)(t).

Conversely, if p is a fibration, we define the map F : Y x I — B, F(y,t) =
q(y)(t). Then pr(y) = F(y,0). Since p is a fibration, there exists a p-lifting
G :Y x I — E of F. Now we define the required h : Y — ET h(y)(t) =
G(y,t).

(ii) This is obvious.

(iii) (cf. Clapp—Puppe [1].) Let & = {p; : E; — B},i = 1,2, and let
Cylp = {p: E — B}. Let h; : Y; — E!,i = 1,2, be the maps as in (i).
We construct h : Y := E xg Bl — ET as follows. Firstly, let (e,t) € E, e €
Ei,t €1, and let w € BY. We define

(hi(e,w)(s),t — s+ st) ift >1/2,
h(e,t,w)(s) =< (hi(e,w)(s),t —s/2) ift <1/2 and s < 2¢,
ha(ts p(h1(e,w)(2t)),war)(s —2t) ift <1/2 and s > 2t,

where wo,(r) = w(min{2¢t + r,1}). Finally, we define h(e,w) = ha(e,w) for
(e,w) € Y. Thus, by (i), Cyly is a fibration.

(iv) This follows from (iii). Let £ = DCyl(& <& & 5 &). We set
&1 = Cyl(ypa), and let & = {p; : E; — B}. Let h; : Y; — El i =1,2,3, be as
(i), and let hy : Y4 — Ef be as in (iii). Let £ = {p : E — B}. We construct
h:Y — ET as follows. Firstly, let e € Eq,t € [0,2],w € B!. Set

ha(e, t, if0<t<1,
h(e,t,w):{ (e, t,w) !

ha(e,2 —t,w) f1<t<2
Finally, we set h(e,w) = h;(e,w) if (e,w) € Y;,i = 2,3.
(v) This follows from (iv) because the join is a double mapping cylinder.
(vi) By (iv), (€ X 1bsy) V" (1bse x 1) is a fibration, and thus, again by (iv),
€N s, d
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Let t(X) = tp(X) (resp. w(X) = wr(X)) be the class of all classes of
equivalent over X F-fibrations (resp. Dold F-fibrations) over X. We regard ¢
and w as functors on € (namely, ¢(f) =T : f*(§) — Efor f:Y — X,
etc.), and we want to prove the representability of the functors ¢ and w.

We want to apply the Brown Representability Theorem II1.3.25, but we
can’t do it directly. Recall that II1.3.25 deals with functors J£E,,, — &ns®.
So, preliminarily, we should treat ¢ and w as functors on J£%€,, and prove
that t, w are set-valued functors.

We need some brief preliminaries about set theory. Here we follow Kel-
ley [1], Appendix. We use the notion of a class, which is primitive and a wider
notion than a set. Furthermore, there are two primitive constants (besides
logical constants): € (belongs to) and { ... | ... } (the class of all ...| such that
...). The operations U and N and the relation C are defined in the usual way.
A set is defined to be a class which belongs to some other class, i.e., A is a set
iff, for some B, A € B. (An example of a class which is not a set is the class of
all sets. One can prove this, using the Hilbert—Bernays—von Neumann—Gdodel
axioms following Kelley [1], Addendum. Informally, if it were a set, then one
would have the well-known Russell Paradox, and in fact the classes were in-
troduced in order to avoid paradoxes like this one.) The singleton {X} of
a set X is defined to be a one-element class containing as an element only
the set X. An ordered pair (X,Y) of sets is a class {{X},{X}U{Y}}. The
Cartesian product X x Y of classes X,Y is defined to be a class of ordered
pairs { (x,y) ‘ reX,yey } Given two classes X, Y, a function f : X — Y
is a class f in X x Y with the following property: if (z,y) € f and (z,2) € f
then y = z; this y is denoted by f(x). The class of all functions X — Y is
denoted by Fun(X,Y). A relation on a class X is a subclass of X x X. The
notions of equivalence relation is defined in the usual way.

1.44. Theorem. (i) A class that is contained in a set is a set.
(ii) If X and Y are sets, then X xY is a set.
(i) If X and Y are sets, then Fun(X,Y") is a set.
(iv) If A is a set and {Ax}aea is a set of sets, then UyAy is a set.
(v) If R is an equivalence relation on a set X then the class X/R is a set.

Proof. (1)—(iv) See Kelley [1], Addendum, Theorems 33, 74, 77 and Axiom
VI respectively.

(v) Given z € X, we set [z] := {y € X | (z,y) € R}. Let {[z]} be the
singleton of [z]. By (iv), U,c x{[2]} is a set. But this set is just X/R. O

Define a rooted Dold F-fibration £ over a pointed space (X,zg) to be
a Dold F-fibration with a fixed homotopy equivalence (called a root) i =
et F — pgl(xo) (cf Milnor [7], §7). A rooted equivalence of rooted Dold
F-fibrations ¢,n is an equivalence ¢ : & — 1 over X such that pic ~ i,.
Let r(X) denote the class of all rooted equivalence classes of rooted Dold
F-fibrations over the pointed space X.
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1.45. Lemma. Let (X, zq) be a pointed space, and let {U,V'} be a numerable
covering of X such that xo € UNV. Let € be a rooted Dold fibration over U,
let n be a rooted Dold fibration over V, and let ¢ : EJlUNV = n|UNV be a
rooted equivalence over UNV . Then there exist a rooted Dold fibration ¢ over
X and rooted equivalences a : (U — £, b: (|V — n such that the following
diagram commutes up to homotopy over U NV :

qunv A qunav

H l

unv 2 unav.

Furthermore, olU\V : (JU\V = U\V and bJU\V : (JU\V = n|U\V
are fiberwise homeomorphisms over the bases.

Proof. For simplicity, denote U NV by W. Consider the map

W
W unW = n|W, 9[E[W) = ¢,d|(n[W) = 1,.
Set w = Cyl, bsw = W. We have the standard mapping cylinder inclusions
r W —w, s:nW —w

which both are homotopy equivalences over W (this is clear for s, and one
can prove this for r following Fox [1], cf. also Kamps [1], 8.2). Moreover, r and
s are cofibrations over W. Set ¢’ := £ U, w, 0’ := nUs w. Then the inclusions
1:&— ¢, 7 :n — 1 are equivalences over the bases because r and s are
equivalences over W. (Note that bs(¢') = U, bs(n’) = V.) So, by 1.15, ¢’ and
7’ are Dold fibrations. We set

(1.46) (=Cpi=EUp 7, bs¢ =X,

By 1.25, { is a Dold fibration because £ and n’ are.

Let a: ¢|U — & (resp. b: |V — n) be an equivalence over U (resp. over
V) inverse to the one £ — (|U (resp. to n — ¢|V). Since all the diagrams

5, — w w w w = 77'
d [+ dl [ d [
£ —— &w (W —— nglw W —=— g

are commutative up to homotopy over W, so is the diagram of the lemma.
The last assertion follows from the construction of (. (]

1.47. Lemma (the MV property for r). Let (X; A, B;xo) be a pointed CW -
triad. Let £ be a rooted Dold fibration over A, let n be a rooted Dold fibration
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over B, and let p : {AN B — n|AN B be a rooted equivalence. Then there
exist a rooted Dold fibration ¢ over X and rooted equivalences a : (|A —
&, b: ¢|B — n such that the following diagram commutes up to homotopy
over AN B:

AnB 75 qanB

(1.48) H l“’

b|ANB
 Em—

(JANB nlAn B.

Proof. Let C'= AN B. Consider the double mapping cylinder
Y=Ax{0}uC x[0,1]UB x {1} C X x [0,1]

with the base point (zg, 1/2). Put U = Ax{0}UCx%0,2/3); V = C'x(1/3,1]U
B x {1}. Consider the map f : Y — X, f(a,0) = a, f(b,1) = b, f(c,t) = ¢,
where ¢ € [0, 1]. It is easy to see that f is a homotopy equivalence. Indeed, f
has the form

Ax{0}UC x[0,1]UB x {1} % Ax [0,1/2]UB x [1/2,1] 2 AU B,

where « is the obvious inclusion and 3(a,t) = a, B(b,t) = b. It is clear that «
is the inclusion of a deformation retract (because the inclusions C' C A and
C C B are cofibrations) and that [ is a deformation retraction.

We define f; : U — A, f1(u) = f(u), and fo : V — B, fa(v) = f(v). We
set & = f16,n = fan, ¥ = 9o X 1z (UNV) - 7'|[(UNV). By
1.45, there exist a Dold F-fibration ¢’ over Y and equivalences a’ : {'|U —
&0 'V — 7 such that ¥’ [UNV = |UNV. Now, set ( = g*¢’ where
g : X — Y is homotopy inverse to f. O

1.49. Lemma (the wedge property for r). Let {(Xx,xx)} be a set of pointed
CW -spaces. Suppose that r(Xx,xy) is a set for every \. Then

h: T(V)\(X)\,.T,\)) — HT(XM-T/\)’ h(f) = {€|X/\}a
A

is a bijection. In particular, r(Vx(Xx,z)) is a set.

Proof. Throughout the proof “equivalence” means “rooted equivalence”
and “F-fibration” means “rooted Dold F-fibration”. Firstly, some construc-
tions. Let (Ix,0) be a copy of the pointed space (I,0). Let Yy := X V I,
let yx € Yy be the image of 1 € Iy, and let fx : (Y, yx) — (X, ) collapse
I; by 1.3.26(iii) and 1.3.29, fy is a pointed homotopy equivalence. Let gy
be a homotopy equivalence which is pointed homotopy inverse to fy, and let

g:=Vagx : Va(Xn, zx) — (Y, 90), where (Y, yo) := Va(Ya, y2)-
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Given a family of F-fibrations {£)}, bs(£)) = X, let F) be the fiber of
&x over xy, and let iy : F' — F) be the root. Set &, = f{&y, bs(§,) = Y. Let
F) ~ F be the fiber of £, over yy; then the root iy yields aroot hy : F — F
of £,. Consider a bundle morphism ¢ = ¢y : F' — &, where ts¢ has the

form F 12 F\ C ts&y, and set &, = &\ Uy, F. By 1.15, &, is an F-fibration.
The fiber of &} over y, is the mapping cylinder M (hy), and the inclusion
F = Fx{0} — M(hy) is the root of £} . Furthermore, we have the equivalence
€ = &\ = f16 over (Y, yn).

Let @, denote the subspace F' x {0} of M (hy), and let jx = 1p : Py — F.
Let E be the push-out of the diagram

F

[
LBy —2 Uts(ey),
where ky : @\ — ts(£)) is the inclusion and (j))|®x = jx. Then there exists

amap p: E — Y such that the diagram (where py is the projection in &y

and (px)|&x = pa)
Uts(é) —— E

o) | E

Y Y
commutes. We set & = {p: E — Y'}. Now, £'|([0,2/3),) = £€,]([0,2/3)) and
XAV (1/3,1]5) = &J(Xa V (1/3,1]5) are F-fibrations. So, by 1.25, ¢’ is an
F-fibration.
We prove that h is surjective. Consider a family {£,}, bs(€x) = Xx. Then
h maps g*(&') to {1}, because

(") Xn = gx(€'1X0) = gx(E)) = grfrén = &n .

We prove that h is injective. Let &, n be two F-fibrations over X := VX,
and suppose that for every A an equivalence ey : £| X\ — n|X) over X is
given. We set &y := &| X, nx := n| X and construct &’ and 1’ as above. The
equivalences ey : £&x — ny yield equivalences

ey 16\ X6 — fima )

over X, and there is a morphism e : £ — 1’ over X such that e|n coincides
with €. By 1.30(ii), e is an equivalence over X. Since £} ~ f5¥&\, we conclude

that &' ~ f*¢, ie., g*¢ ~ & Now, £ ~ g*¢' ~ g*n' ~ 7. O
Now we prove that r is a set-valued (contravariant) functor. This means
that for every (X, x*) there exists a set {£,} such that every rooted Dold F-

fibration over (X, ) is equivalent to some &y and &y % &, for A # u. Every
such set {€)} is called a representing set for r(X, ).
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1.50. Lemma. (i) Suppose that there is a set {€x} of rooted Dold F-fibrations
over (X, x) such that every rooted Dold F-fibration over (X, x) is equivalent
over X (as a rooted fibration) to some &x. Then r(X, ) is a set.

(i) If f : X =Y s a pointed homotopy equivalence and r(Y,*) is a set,
then r(X, %) is a set.

(iii) r(SX, ) is a set for every pointed CW -space X .

(iv) Let f : X — Y be a map of CW-spaces. If r(Y,*) is a set, then
r(Cf,x) =r(Y U CX, %) is a set.

Proof. Again, equivalence means “rooted equivalence over the base”, and
“F-fibration” means “rooted Dold F-fibration”.

(i) This follows from 1.44(ii).

(ii) Let {&x} be a representing set for r(Y, ). Then {f*(£x)} is a repre-
senting set for r(X, ). Indeed, let g : Y — X be homotopy inverse to f. If
F5(€0) = F*(€), then g* f*(2) = g* f*(£,), and thus &, = &,. Furthermore,
given 1 over X, one has n >~ f*g*n, but g*n ~ &, for some .

(iii) Let X_, resp. X4 be the subspace of SX given by X x [0,2/3), resp.
X x (1/3,1]. Note that, for every F-fibration £ over SX, the fibration £| X
is fiberwise homotopy trivial since the inclusion X, C SX is inessential.
Similarly for | X_. Let 6_, resp. 6 be the product F-bundle over X_, resp.
Xy Let ag : 04 — & X4, a— : - — & X_ be fixed equivalences over the
bases. We set X := X_ N X . Choose a morphism ¢ : 0, |Xo — 0_| X, over
X such that a_p ~x, ay|Xo.

Consider the bundle 04| Xy Ux, 0-|Xo :={p: Xo x FU Xy x F — Xy}
where p| Xy X F is the projection on Xy. We define the morphism

¥ 04| Xo Ux, 0-|Xo — 0_|Xo, ¥ | (04| X0) =, | (0-|Xo) =1

and set w = Cyley, bsw = Xy. A homotopy a_p ~ a4|Xo over Xy yields a
morphism ag : w — &|Xo over Xy, and, by 1.30(i), it is an equivalence. We
consider the inclusions-equivalences

r+ 04| Xo = (04|Xo) x {1} = w, r— : 0_|Xo = (0-]X0) x {1} - w

and set (4 =04 U, w,(_ =0_U,_wand ¢ = (4 Uy, ¢(—. Asin 1.45, one
can prove that ¢ is an F-fibration. Furthermore, by 1.30(i), the morphism
ay UagUa— : ¢ — £ is an equivalence over SX.

Note that ¢ is completely determined by ¢, i.e., { = (,. By 1.44(iii),
all functions Xg x F — Xy x F form a set, and so, by 1.44(i), all maps
Xo X F' — Xy x F form a set. So, all F-fibrations (, form a set. We have
proved that every F-fibration £ over SX is equivalent to some F-fibration
Cp- So, by (i), 7(SX, %) is a set.

(iv) Let j : Y — YUy CX be the inclusion. Roughly speaking, we consider
an “exact sequence of classes” r(Y,*) «— r(Y Uy CX, %) «— r(SX, %), where
the group r(SX, *) acts on r(Y Uy CX, ). So, orbits of the action are sets,
and the class of orbits is contained in the set r(Y, *), and thus it is a set, etc.
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Consider themap ! : YU;CX — (YU;CX)VSX which pinches X x{1/2},

see the picture.

SX
X

If you prefer formulae, we parametrize (SX, *) as
X x [1,2]/(X x {1,2} U {x} x I)
and define [ by setting

V=0 R0UZ oy e sx if1/2<t<1.

Given two F-fibrations p over Y Uy CX and A over SX, there is (by 1.49)
just one F-fibration (u, ) over (Y Uy CX) Vv SX which restricts to 1 and .
Set Ay := 1*(u, A). Clearly, the equivalence class of Ay depends only on the
equivalence classes of A, p.

Consider two F-fibrations &, over Y Uy CX such that £|Y ~ n|Y. Then
there is an equivalence ¢ : £]Y Uy X x (1/3,1] — n|Y Uy X x (1/3,1]. Set
Xo =X x(1/3,2/3) and define h : Xg — Xo, h(z,t) = (2,1 —1t). Let X be
the image of X x [0,2/3) in Y Uy CX. Since X is contractible in Y Uy CX,
there are equivalences a : 0x, — &| X4 and b: n|X, — Ox . Let ¢ be the
composition
(1.51) O, 2% €[ X0 T2 Xy 1% 0x, L 0x,
where ¢ = Jp, 9, . One can check that { ~ (,n, where (, is as in (iii). In
other words, ¢ ~ A\n for some A\ over SX.

Let A be a representing set for r(SX, *), and let T" be a representing set for
Im{j*: 7(Y Uy CX,*) — r(Y,*)}. Given v € T, choose = 1, over Y Uy CX
with j*n ~ ~. By 1.44(iv), V,, := {)\n ‘ A€ A} = UxAn is a set, and so, by
1.44(iv), U, V, is a set. Now, given £ over Y Uy CX, one has j*£ ~  for some
v €T, and so £ ~ An, for some A. Thus, ¢ is equivalent to &' € U,V,, and
so, by (i), (Y Uy CX, %) is a set. O

1.52. Theorem. r(X,x*) is a set for every connected pointed CW -space
(X, *). Furthermore, it can be turned into a pointed set naturally with respect
o (X,*). So, r is a functor HE€* — Ens.
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Proof. Firstly, we prove that r(X, %) is a set.

Step 1. r(S™, x) is a set for every n. This follows from 1.50(iii).

Step 2. 7(Vaea Sy, *) is a set for every n and every index set A. This
follows from 1.49 and Step 1.

Step 3. 7(X, %) is a set for every finite dimensional connected C'W-space
X. Indeed, X(™ is a cone of a certain map f : VS" 1 — X1 Now the
assertion can be proved by induction, using 1.50(iv) and Step 2.

Step 4. r(Va (X, xn)) is a set for every family of finite dimensional con-
nected CW-spaces X,. This follows from Step 3 and 1.49.

Step 5. 7(X, %) is a set for every connected CW-space X. Let (T, x*) be
the reduced telescope of the skeletal filtration of X, see 1.3.23(d). Note that
Tev, as well as T4, is the wedge of the finite dimensional summands, and
hence by Step 4, r(Tey, *) and r(Toq, *) are sets. Since (X, *) is homotopy
equivalent to Ty (X) V Toa(X), (X, *) is a set.

Now, we turn (X, *) into a pointed set, if we define the distinguished
element of r(X, %) to be the equivalence class of the trivial fibration. O

The restriction of r to J£E,, is also denoted by 7.

Now I11.3.25, 1.47, 1.49 and 1.52 imply

1.53. Corollary. The functor r : HE,,, — &Ens® is representable. In other
words, there exists a pointed CW -space (B, x) such that for every pointed

connected space (X, *) one has a natural equivalence
(1.54) (X, *) = [(X,%), (B, *)]. O

1.55. Theorem. wr(X) is a set for every X. Furthermore, the space B
from 1.53 represents the functor w = wg : JC — &Ens. In other words, for
every CW-space X we have a natural bijection w(X) = [X, B]. Finally, the
forgetful transformation tp — wg is a natural equivalence, and so the functor
tp : HE — Ens is representable by the same space B.

Proof. Because of 1.49, the standard map S' — S v S! (pinching S°)
turns 7(S*, *) into a group. This group acts on (X, *), and now we describe
this action.

Recall that there is the well-known 71 (Y, *)-action on [(X, %), (Y, *)] for
all spaces X,Y, see e.g. Hu [1], Spanier [2]. In particular, 71 (B, x) acts on
[(X, %), (B, )], and the orbit set of this action is just [X, B]. Consider the
elements

a€m (S VX, ) =[S %), (S VX *)] and x € [(X, %), (' V X, %)]

given by the inclusions of the direct summands S* — S'V X and X —
SV X. The 71 (St V X, x)-action on [(X, ), (S*V X, %)] gives us the element
ar € [(X, ), (ST V X, *)]. Consider

r(ax) 27"(51,*) x r(X,x) = 7’(S1 VX, %) = r(X, )
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This is the action mentioned above. The orbit set of this action is w(X). In
particular, w(X) is a set for every X. Furthermore, this action is compati-
ble with the 71 (B, *)-action on [(X,*), (B, *)] under the equivalence (1.54).
Hence, we have a natural equivalence w(X) = [X, B] for every connected X.
Finally, if a CW-space X is a disjoint union of connected spaces, X = LUX,,
then w(X) = [[w(X4). So, w(X) = [X, B] for every CW-space X.

Since every F-fibration is a Dold F-fibration, we have a natural forgetful
transformation t — w. Conversely, let £ be a fibrational substitute of a Dold
fibration ¢£. By 1.36 and 1.40, the correspondence ¢ — £ is a well-defined
natural transformation w — ¢, which is inverse to the forgetful transformation
t — w. So, the forgetful transformation is a natural equivalence. (I

1.56. Definition. (a) A universal F-fibration is an F-fibration
+" = {pr : Er — Br}

with the following properties:
(1) Every F-fibration over a CW-space X is equivalent to a fibration
f*~+F for some f: X — Bp.
(2) Let f,g : X — Bp be two maps of a CW-space X. Then F-
fibrations f*y% and g*yf are equivalent iff f ~ g¢.

(b) The base Br of a universal F-fibration is called a classifying space for
F-fibrations. If an F-fibration £ is equivalent to f*~* for some f : bsé — Bp,
we say that f classifies £ or that f is a classifying map for .

(¢) A classifying morphism for an F-fibration £ is any F-morphism ¢ :
£ —r.

1.57. Theorem. There exists a universal F-fibration v¥'. Furthermore, the
base Br of vF can be chosen to be a CW -space, and in this case Bp is
uniquely defined up to homotopy equivalence. Moreover, ¥¥ can be chosen so
that Fy, is the space F for some point by € Bp.

Proof. Considering B as in 1.55, we see that B is a C'W-space. Further-
more, under the bijection tp(B) = [B, B] the element 15 € [B, B] corre-
sponds to an equivalence class of a certain F-fibration over B. By 1.55, every
fibration in this class is a universal F-fibration. So, we have proved the exis-
tence of a universal F-fibration over a C'W-base. The homotopy uniqueness
of B follows from the Yoneda Lemma I.1.5.

We prove the last assertion. Consider any universal F-fibration v = {p :
E — B} over a CW-base B. Choosing a point b € B, consider B’ := (B,b) V
(I1,0), and let by € B’ be the image of 1 € I. Let p : B’ = B collapse I. Set
U:=DBVI[0,2/3),V:=(1/3,1]C I C B, W:=UnV, n:= (p|U)*, & :=6{.
One has ts(&§|W) = W x F, ts(n|W) = W x F,. Choose h : F' = F}, and define
@ EW = W, o(w, f) = (w,h(f)),w € W, f € F. Constructing ¢ asin 1.47,
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bs¢ = B’, we see that ¢ ~ p*v, and the fiber of ¢ over by is F. Since p is a
homotopy equivalence, ¢ is a universal F-fibration. Now put 7% := (. O

In future we always assume that % is a fibration as in the last phrase of
1.57. In particular, Bg is a CW -space.

1.58. Proposition. Let & be an F-fibration over a CW -base X.

() If p : & — v is a classifying morphism for & then Fy, : & — (bsp)*yF
s an equivalence over X.

(ii) If o : € — 4F is a classifying morphism for & then bs ¢ is a classifying
map for £.

(iii) If f : X — Brp is a classifying map for € then there exists a classifying
morphism o : & — v with bs o = f.

Proof. (i) This follows from 1.30(i) since §, induces a homotopy equiva-
lence of fibers.

(ii) By (i), (bs)*y and ¢ are equivalent over X.

(iii) Since f*yf" and ¢ are equivalent over X, we have the F-morphism

&= foF —w, bsy = f. O

We have proved that a classifying space for F-fibrations exists. However,
sometimes one prefers to have a more or less explicit construction of Br. To
do this, it is useful to use classifying spaces for monoids.

1.59. Definition. A topological monoid is a triple (M, u,e) where M is a
topological space,  : M x M — M is an associative multiplication and
e € M is a two-sided unit of p. A monoid is well-pointed if the inclusion
{e} C M of the unit e is a cofibration. A monoid is grouplike if p induces a
group structure on 7o (M).

1.60. Definition. (a) Let M be a monoid with the unit e. A principal M-
bundle is a pair (§,v), where{ = {p: E — B}isabundleandv: ExM — E
is a map such that (below y € E,h,h’ € M and yh means v(y, h), hh' means
pu(h, h')):
(1) ye =y, (yh)h' = y(hh') for every y, h, h';
(2) p(yh) = ply) for every y;
(3) Foreveryy the map M — F,, h — yhis a Whitehead equivalence.
(b) The map v is called an M -action on &.
(c) A principal M-(quasi-)fibration is a principal M-bundle which is at
the same time a (quasi-)fibration.

If M is grouplike, then condition (3) of (a) holds automatically. Moreover,
if M is a topological group, then the maps h — yh are homeomorphisms.
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1.61. Proposition. Let M be a topological monoid. For every principal M-
quasi-fibration § = {p : E — B} there is a principal M-fibration { = {p :
E — B} which is a fibrational substitute of €.

Proof. Consider the fibrational substitute £ = {p: E — B} of € as in 1.35,
ie, E:={(e,w)|le € E,w:[0,1] — B,w(0) = p(e)} and p(e,w) := w(1). We
define an M-action v on £ by setting v((e,w), h) := (v(e, h),w) where h € M
and v is the M-action on £. We leave it to the reader to check that (£,v) is
a principal M-bundle (to prove 1.60(a,3), use the proof of 1.41(i)). O

1.62. Definition. A classifying space for a grouplike monoid M is any space
B which is the base of a principal M-quasi-fibration EM — BM such that
EM is an aspherical space. '°

Let A™ be the standard n-simplex,
A" ={(to,... ta) ER"O<t; <1, 1 =1},

For every ¢ = 0,1,... ,n we define

51' . An_l — An, 5i(t07 e ,tnfl) = (to, e ,ti,l,(),ti, e ,tnfl),
g; . An+1 — An, Ji(th N 7tn+1) = (to, N 7ti717ti +ti+1,ti+27 e ,tn).

Given a well-pointed topological monoid M, consider left and right M-
spaces X and Y, respectively. Following May [2], [4], we set B, (Y, M, X) =
Y x M™ x X and define the maps 9; : B,(Y,M,X) — B,_1(Y, M, X),i =
0,1,...,nand s; : B,(Y,M,X) - B,1(Y,M, X),i=0,1,... ,n as follows.
Let [y|m1] - - - |my,|x] be the typical element of B, (Y, M, X). Put

[ymalmal - - [my 2] if i =0,
Oilylma|---Impla] = ¢ [ylma| - [mimipr|miga] - mg|z] if 1 <i<n,
[ylma|-- - [mp_1mn2] if i = n.
and si[ylmal - - - Imnlz] = [ylma] - - - [milelmiga] - - - [ma|x].

Consider the disjoint union B = | |77, B, (Y, M, X) x A™ and define an
equivalence relation ~ on B to be that generated by:

(O, v) ~ (u,8;v) for u € B, (Y, M, X),v € A",
(siu,v) ~ (u, 03v) for u € B, (Y, M, X),v € A"t

We set
(1.63) B.(Y,M,X) = B/(~).

10Recall that a space Z is called aspherical if 7;(Z, 29) = 0 for every 29 € Z and
every . In particular, every contractible space is aspherical, and, for CW -spaces,
the converse is also true.
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The construction B,(—, —,—) is natural: let h : M — M’ be a monoid
homomorphism, and let X (resp. Y) be a left (resp. right) M-space. Let
f:X — X' g:Y — Y’ be two maps such that the diagrams

Mx X 0« x Y x M -2 yrwom
X L, X/ Y _9 Y/

commute (here the vertical arrows are the actions). Then the maps
Y ox M" x X LIy (v x X!

induce a map B,(g,h, f) : B,(Y,M,X) — B,(Y',M', X’) with the usual
functorial properties.

Given a map « : Y x X — Z such that a(ym,z) = a(y, mx) for every
m € M, we define

by : Bu(Y,M,X) x A" 25 B, (Y, M, X) 2 Z

where ap[y|ma]|-- - |mnlx] = alymy - -my,x). The family b,,n = 0,1,...,
yields a map b : UB,, — Z,b|B,, = b,, which, in turn, induces a well-defined
quotient map

€a: BJY,M,X)— Z.

This construction is natural in the following sense. Let f : X — X' g :
Y ->Y' h: M — M’ be as above. Given o/ : Y’ x X’ — Z' with o/ (ym, z) =
o/ (y,mz), let k : Z — Z' be a map such that the left hand diagram below
commutes. Then the right hand diagram commutes.

YxX —%— Z B.(Y,M,X) —=- Z
ngl lk B.(g,h,f)l lk
Y x X~ g B.Y' M, X") —, 7.

Finally, for every right M-space Y we define the right M-action B, (Y, M, M)x
M — Bo(Y, M, M) of the form: [y|m1|--- |m,|m]m’ = [y|my|-- - |mp|mm/].

We set EM := B,(pt, M, M), B,M := B,(pt, M, pt), and
(1.64) PmMm = B.(lpt, 1]M;C]M) :EM — B.M,

where cps : M — pt.
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1.65. Theorem. For every well-pointed monoid M the following hold:

(i) Letv: Y XM — Y be an action. Then the map e, : B,(Y,M,M) —»Y
is a map of right M-spaces and a homotopy equivalence. In particular, EM
is contractible.

(ii) If M is grouplike, then B,(cy, 1y, 1x) : B,(Y,M,X) — B,(pt, M, X),
resp. B,(ly, 1y, ex) : B,(Y,M,X) — B,(Y, M,pt), is a quasi-fibration with
fiber (homotopy equivalent to) Y, resp. X. Furthermore, pps : EM — B,M
18 a principal M -quasi-fibration.

(iil) If M is a topological group (not necessary well-pointed) then pp :
EM — B,M is a locally trivial principal M -bundle.

Proof. See May [2], [4]. O

1.66. Corollary. Let M be either a well-pointed topological monoid or a
topological group. Then the following hold:

(i) The space B,M is a classifying space for M.

(ii) Let p: E — B be a principal M -quasi-fibration. Consider the map « :
Expt=F L B. Then e, : B,(E,M,pt) — B is a Whitehead equivalence.

Proof. (i) This follows from 1.65.
(ii) Consider the commutative diagram

E «— B,(E,M,M)

Pl lﬂ'
B «=*— B,(E, M, pt)

where 7 = B,(1g, 1y, cn). Both vertical maps are quasi-fibrations with
fibers CW-equivalent to M, and ¢,,e, induce Whitehead equivalences of
fibers. By 1.65(i), €, is a homotopy equivalence, and so &, is a Whitehead
equivalence. O

Because of 1.66(i), we call B,M May’s model of a classifying space for M.

1.67. Corollary. Let M be cither a well-pointed grouplike monoid, or a
topological group. Then the classifying space for M is defined uniquely up to
CW -equivalence. Furthermore, every CW -substitute of any classifying space
for M is a classifying space for M.

Proof. Let p : E — B be a principal M-quasi-fibration with aspherical F,
i.e., B is a classifying space for M. Consider the diagram

BQ(CE711\/I;1pt)
AN

B £~ B,(E, M, pt) B,(pt, M,pt) = B,.M

Now, by 1.66(ii) and 1.65(ii), o and B.(cg, 1a, 1pt) are Whitehead equiva-
lences.
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Furthermore, let Y be a CW-space and f : Y — B be a Whitehead
equivalence. By 1.61, there is a principal M-fibration ¢ over B with aspherical
ts&. Now, it is easy to see that f*¢ is a principal M-fibration with aspherical
total space. O

1.68. Corollary. Let M be a grouplike monoid or a topological group. Then
there is a Whitehead equivalence M — QB,M. In particular, if BM 1is a
classifying space for M then m;(M) = m;11(BM).

Proof. Let pyy : EM — B,M be the M-quasi-fibration (1.64) and let
PB,.M — B,M be as in 1.39(a). Since EM is contractible, there exists a
commutative diagram

EM —2 . PB.M

Wl

B.M B.M .
This diagram is a morphism of quasi-fibrations with contractible total spaces.
Thus, the induced map M — QB,M of the fibers is a Whitehead equivalence

of fibers (consider the ladder of the homotopy exact sequences).
The last assertion follows from 1.66(i) and 1.67. O

Let 52 (F') be the monoid of all homotopy equivalences F' — F' topologized
as the subspace of F¥'. Let £ = {p : E — B} be an F-fibration. Following
Dold-Lashof [1], we define a bundle

Priné = {Prinp : Prin F — B}

as follows. Prin E is the subspace of ET consisting of all maps ¢ : F —
E such that pp(F) is a point * = x(p) € Band ¢ : F — p~!(z) is a
homotopy equivalence; and (Prinp)(¢) = z(p). We define the action v :
Prin E x ##(F) — Prin E,v(p, h) = ph. By 1.3.10(iii), v is continuous.

1.69. Proposition (cf. Stasheff [1]). (Prin&,v) is a principal J€(F)-
fibration.

Proof. We recall the exponential law (AF)Y = AY*F see 1.3.10(ii). Given
maps f: X —» PrinE, h: X x I — B with (Prinp)f(z) = ho(z) := h(z,0),
consider the map 7: X x I 2% X = X x {0} C X x I and set a := Ty ¢ :
(rh)*¢ — h*¢. Then a is an equivalence over X x I. Define g : X x F —
ts(h$s), g(x,y) = (z, f(x)y). Then the map

X x Fx I 25 ts(hie) x I = ts((wh)*€) 2% ts(h*¢) — ts &

induces a homotopy equivalence of fibers. So, the adjoint map can be decom-
posed as X x I 25 PrinE C (ts &), and H is a (Prinp)-lifting of h with
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H|X x {0} = f. Thus, Prin¢ is a fibration. Furthermore, it is easy to check
that v turns Prin€ into a principal ¢ (F)-fibration. O

1.70. Theorem (cf. Allaud [1], [2]). An F-fibration { = {p : E — B} over
a CW-base is a universal F-fibration iff Prin(E) is aspherical.

Proof. Consider a universal F-fibration as in 1.57. The inclusion ig : F' =
F,, — Ep induces the inclusion Iy : J(F) — Prin(Er). We prove that
Prin(Er) is aspherical. We do it in two steps. Firstly, we prove that the map
(Io)s : [X,2€(F)] — [X,Prin(Er)] is onto for every X € ¥. Then we prove
that Im(Zy). consists of just one element for every X.

Step 1. Consider a map ¢ : X — Prin(Er). It yields the adjoint map
p: X X F — FEp, and we have the commutative diagram

XxF —%2 . Ep

al [P

x —L B
Since ¢ yields a homotopy equivalence of fibers, f*+v* is fiberwise homotopy
trivial. So, f ~ *. Deforming f to the constant map X — by, we can cover this
deformation by a deformation ¢, of ¢ such that v, = ¢ and (X x F) C F.
This implies that (Ip). is onto.
Step 2. Given p: X — FI with p(x) € #(F), consider the equivalence

Y X x(1/3,2/3) x F — X x (1/3,2/3) x F, ¥(x,t, f) = (x,t, p(x)(f))-

Let U C SX (resp. V C SX) be the image of X x (0,2/3) (resp. of X x
(1/3,1)). If 6_ (resp. 04 ) is the product F-bundle over U (resp. over V') then
1 induces an equivalence ¢ : 0_|[UNV — 0, |[UNV. Let ( =(,,bs¢ = 5SX,
be the (Dold) F-fibration which was constructed in the proof of 1.45. This ¢
is classified by the diagram

tSC L EF

l !

sx — . By,

and we can assume that f(X x [1/2,1]) = by € B. Consider the inclusion
io : F = Fy, C Ep. Clearly, the composition X x {3/4} x F —ts¢ % Ep is
homotopic to X x F 22 F % Ep, while the composition X x {1/4} x F —
ts¢ % Ep is homotopic to X x F % F % Fp. Thus, ¢ : X — FF —
Prin(Er) is homotopic to the constant map.

Conversely, suppose that Prin F' is aspherical. Let f : B — Bp classify
&, Then f can be covered by a fiberwise map f : E — FEp, which yields a
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fiberwise map Prin(E) — Prin(Er). This map induces a homotopy equiva-
lence of fibers, and thus, because of the asphericity of the total spaces, f is a
homotopy equivalence of the bases. (|

1.71. Corollary (Stasheff [1]). If F is a CW -space then B (F) ~“V Bp.

Proof. Lewis [1] proved that J#(X) is a well-pointed monoid for every
CW-space X. So, because of 1.67, it suffices to prove that B is a classifying
space for 52 (F). But this follows from 1.69 and 1.70. O

In fact, for every finite CW-space F, Stasheff [1] constructed a classifying
space BJ#(F) and proved that BJ#(F) classifies F-fibrations.

Thus, any CW-substitute for BsZ(F) can play the role of Bp, i.e.,
B, (F) gives us a more or less explicit construction of Bp.

1.72. Theorem (cf. Allaud [2]). Let & be an F-fibration over a CW -space
X, and let A be a CW -subspace of X . Then every F-morphism ¢ : £|A — ¥

can be extended to an F-morphism ¢ : &€ — ~F.

Proof. Tt suffices to consider the case X = D", A = S"~!. (Then we can
perform transfinite induction on cells.) Firstly, let & be the product F-bundle
6F. The map tsp : A x F — Ep yields the adjoint map

™A= PrinEr  ¢™(a)(u) = (ts¢)(a,u),a € A,u € F.

But, by 1.70, Prin Er is aspherical, and so ¢?! can be extended to a map
b: X — Prin Er. Now, define v : £ — 4F by setting

(ts)(z,u) = b(x)(u),z € X,u € F.

Clearly, v is an extension of .
In the general case £ is not trivial, but it is fiberwise homotopy trivial since
X = D™ is a contractible space. So, we have fiberwise homotopy equivalences

or 2 ¢ L gk

A
By the above, the morphism 64 4, ¢ 5 4 can be extended to a morphism
¥ 0% — 4 and there is the commutative diagram

5
¢ o, —L s HF
o] E H
Bl A vlA
¢lA 0% ~vF.

Notice that (¢|A4)(B|4) = ¢(a|A)(B|A) ~P"™ ». Now, we can deform the
morphism (0| A)(5|A4) to ¢, and, by 1.17(ii), this deformation can be extended
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to a deformation of ¥3. Thus, in the end of this extended deformation we
get the desired extension of . O

In fact, the property of v formulated in 1.72 can be treated as a criterion
of the universality, cf. Steenrod [1], §19.

Let 6 be the product S°-bundle over pt, and let ¢ : B — Bgp classify
the SF-fibration v % @. Consider the map

i: H(F) — H(SF), i(h)[z,] = [h(x),t],h € H(F),z € Ftel.

1.73. Proposition. (i) There are Whitehead equivalences g, f such that the
diagram
Ep e B.(pt,f%ﬁ(F%F)

pFl l
Br —L— B.(pt, #(F),pt),

7= B.(1pt, Lye(ry, cr), commutes up to homotopy.
(ii) There are Whitehead equivalences hy and hy such that the diagram

BF L) BSF

N J»

B.(pt, #(F),pt) —2— B.(pt, #(SF), pt)

commutes up to homotopy.

Proof. (i) We consider the commutative diagram

Ep 2 B,(PrinEp, #(F),F) 22110 g (ot #(F), F)

PF\L lq lr
€a . Be(c,1m,1pt)
Bp «—— B,(Prin Ep,7(F),pt) ————— B,(pt, #7(F), pt)
where

g = 1), q = B.(1pvinEp, L1, CF),
a = Prinpp : Prin Er — Bp, ¢ = Cprin Ep
and p : Prin Ep X F — Ep has the form p(p, f) = ¢(f),p € PrinEp, f € F.
All vertical maps are quasi-fibrations with fibers CW-equivalent to F', and, by

1.66(ii), €4 is a Whitehead equivalence. Hence, €, is a Whitehead equivalence.
Now, by 1.3.46, there are Whitehead equivalences

v: Ep — B,(Prin Ep, €(F), F) and v : Bp — B,(Prin Ep, £ (F), pt)
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such that ve, ~“W 1,e,0 ~ 1, ug, ~“W 1,e,u ~ 1. Hence, qv ~“W upp.

Moreover, qu ~ upp since Er has the homotopy type of a CW-space. Finally,
both maps B,(c,1,1) are Whitehead equivalences, and we set

g:=B.(¢,1a, 1p)v, f=B.(¢,1g,1p)u.
(ii) Let S*Ep = ts(y¥" % 0). Consider the commutative diagram
S*Ep —r Bp
“] [ee
B,(Prin Ep, #(F),SF) —%— B,(Prin Ep, #(F), pt)
B.(d,i,lsp)l lB.(d,i,lpt)
B.(Prin Esp, 5¢(SF),SF) —— B,(Prin Esp, #(SF),pt)
.| -
Esr L, Bsp
where « is as in (i), 3 is similar to «, v is similar to p as in (i),
q = B.(1pvin Br, Lw(ry, csr), 7= Ba(1Ptin Esp, Lw(sFy, CSF),

d: Prin Erp — Prin Esr maps ¢ : F' — EF to the composition
ts ja F

SF 2%, S*Ep —>"— Egp, and p : Prin Ep x SF — S*Ep has the form

p(@v [fﬂt]) - [cp(f)ﬂt]ﬂ@ € PrinEp, f € Fit €.

Similarly to (i), we conclude that all the €’s are Whitehead equivalences.
Now, let u : Bp — B,(Prin Ep, #(F),pt) be as in (i), and let v : S*Ep —
B.(Prin Ep, #(F), SF) be such that e,v ~ 1,ve, ~“W 1. Then, as in (i),
qu ~ up. This implies easily that

egB.(d, i, 1p)u ~ 0.
(Indeed, the left-hand map classifies 7" * §.) Furthermore, we construct
w: Bsp — B,(Prin Esp, #(SF), pt)

analogous to wu, i.e., such that egw ~ 1, weg ~CW .

Now, we consider the Whitehead equivalences

B-(CPrinEF; 13?’(F)7 1pt) : B.(PI‘IHEF,%(F),pt) - B-(ptaf%(F)vpt)
B.(CPrinESF; 1%(SF)7 1pt) : B.(PriHESF,%(SF),pt) i B-(ptaﬁ(SF)vpt)

and notice that

(B’L)B' (CPrin Er> 14#(F)a 1pt) = B- (cPrin Esp> 14#(3}7)’ 1pt)B- (d7 ia 1pt)-



§1. Fibrations and Their Classifying Spaces 219

Now we complete the proof by setting hy = B,(cprin Bp; Lg(r))u, ha =
B, (cPrin Esp» Le(sF)s Lpt)w. O

Now we pass to (F, *)-fibrations. Let { = {Y — X} be an (F, %)-fibration
with the section s : X — Y. Let t(p,)(X) be the class of the equivalence
classes of all the (F,x)-fibrations over X. Similarly to (and based on) the
above, one can prove that t(g,)(X) is a set for every X. By 1.20(ii), t(r) is
a functor on J£F.

1.74. Theorem. The functor t(p . : ¢ — &ns is representable.

Proof. The proof is similar to that of 1.55, therefore we give only a sketch.
Given a well-pointed space (F, fy), we define a rooted (F,x)-fibration over
(X,20) to be an (F,x)-fibration E = {p: Y — X, s: X — Y,ps = 1} with
a given pointed homotopy equivalence (root) tg : (F, fo) — (Fu,,s(z0)). A
rooted equivalence of rooted (F,x*)-fibrations &, n over (X, zg) is an equiva-
lence ¢ : £ — n of (F,*)-fibrations such that pi¢ ~ i, rel s(z). Consider
an auxiliary functor r* : J#E€L, — &ns® such that r(X,zg) is the set of
the equivalence classes of rooted (F, x)-fibrations over (X, zg), and r* acts on
maps as t(g ) acts.

As in 1.55, the representability of (g .y follows from the representability
of re.

We prove that r* satisfies the MV axiom. Given a pointed CW-triad
(X; A, B;xo), let € (resp. ) be a rooted (F,x)-fibration over A (resp. B).
Given an (F,*)-equivalence ¢ : {|C ~ n|C, C' := A N B, which preserves
roots, we get a rooted F-fibration ¢ over X such that the diagram (1.48)
commutes. (Indeed, take the Dold fibration ¢ from 1.47 and consider its
fibrational substitute.) Now, the equivalence £ — (|A gives us the section
sa: A =5 ts€ — ts(C|A). Similarly, we get a section sp : B — ts(¢|B).
Moreover, s4|C ~¢ sp|C because &|C and n|C are rooted equivalent (F, x)-
fibrations. By 1.17(ii), one can construct a section s = sx : X — ts( such
that s|A = s and s|B ~p sp.

Let 5: 1x — ¢ be the bundle morphism given by s. It would be good if
(¢, s) were a cofibration over X, but we can’t claim this. So, we consider the
(F, x)-fibration ¢’ := Cyls. Denoting by i : ( = ¢ x 1{1; C ¢’ the inclusion,
we get the sections

ts(i]Y)
_—

sh Y 25 ts(C]Y) ts(¢'|Y)

for Y = A, B, X. In particular, s’ = s’y is a section of (. Now, sy ~4 sa,
and so, by 1.7(i) and 1.32,

(C14, 8" A) ~a (C|A, 5T4) ~a (€14, 54) ~a (&, 5¢)-

Similarly, ({'|B, s'|B) ~p (1, s,), i.e., (" is the desired rooted (F, *)-fibration.
We leave it to the reader to prove that r* satisfies the wedge axiom. O
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Similarly to 1.57, we can prove the existence of a universal (F) *)-fibration
(%) = {P(Fx) : B(Fy) = B(rx}- Here B(p. is a classifying space for ¢ (g ).
Let JZ(F, ) be the monoid of self-equivalences (F,*) — (F, ) topologized
as the subspace of (F, %)),

Given a map f : (F,*) — (F,*), consider the map

fAL:(SE %)= (FAS' %) — (FAS' %)= (SF,x).

We define i : JZ(F,x) — H(SF,*), i(f) = f A 1. Let 6 be the product
(S1,%)-bundle over pt, and let o : B(p.) — Bsp, classify the (SF,x)-
fibration ~v(F*) % 6.

Given an (F), x)-fibration £ = {p : E — B} with the section s, we define

Prin® ¢ = {Prin® p : Prin* £ — B}
as follows. Prin® E is the subspace of EF" consisting of all maps ¢ : (F,*) —
(E,s(B)) such that po(F) is a point © = x(¢) € B and ¢ : (F,*x) —
(p~1(x), s(z)) is a homotopy equivalence; and Prin® p(p) = x(¢p).

The following pointed analog of 1.69, 1.70, 1.71 and 1.73 holds; we leave
the proof to the reader.

1.75. Theorem. (i) Prin® & is a principal 52 (F, x)-fibration for every (F,x)-
fibration &.

(ii) An (F,x*)-fibration & over a CW -base is universal iff ts(Prin®§) is
aspherical.

(iii) B(p,) and BA(F,*) are CW -equivalent.

(iv) There are Whitehead equivalences g, f such that the diagram

E(F*) — B-(pt;%(Fa*)aF)

P(F,*)J( lr

f
B(F,*) E— B-(pta %(Fv *)5 pt)a
r = B.(1pt, Lg(Fx), CF), commutes up to homotopy.
(v) There are Whitehead equivalences hy and hy such that the diagram

o

Br) — Bsr
.| -
B, (pt, #2(F, %), pt) N B, (pt, #(SF,*),pt)
commutes up to homotopy. O
Since every (F,x)-fibration is an F-fibration, we have a forgetful map

B(F«y — Br. Because of 1.35, we can consider this map as a fibration g :
B(r) — Br-
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1.76. Theorem (cf. Gottlieb [1]). The fibration q is a universal F'-fibration.
In particular, the homotopy fiber of q is .

Proof. Consider a universal F-fibration v = {pr : Er — Bp}. Clearly,
piyE has a canonical section s (given by the p-lifting 15, of pr). Let A be
the (F,x)-fibration (piy!,s). We set D = ts A and P = ts(Prin® \). Firstly,
we prove that P is aspherical. In fact, given a map f : S™ — P, we prove
that it can be extended to a map C'S™ — P. Indeed, let g : S x F — D
be the adjoint map to f. Regarding D as the subset of Fr x Ep, see 1.8,
define h : S™ x F — Ep by setting h = pag. The adjoint map to A has the
form S" — Prin(Er) C (Ep)¥, and it is inessential because Prin(Ep) is
aspherical. Thus, h can be extended to a fiberwise map h : CS™ x F' — Ep.
Define g : CS™ x F' — D, g(z,y) = (h(z,*),h(z,y)). Let f : CS™ — P be
the map adjoint to g. Since g extends g, f extends f. So, P is aspherical.

By 1.75(ii), A is the universal (F,x)-fibration over Er. Let a homotopy
equivalence u : Er — B(p ) classify A. Then, clearly, qu : Er — BF classifies
pivyE ie., qu~pp. Thus, pr : Er — Bp and q : B(F,+) — Br are homotopy
equivalent. ([

1.77. Remarks. (a) The Representability Theorem 1.53 was proved by Al-
laud [1] and Dold [3] (without proof that ¢ is set-valued), in the proof of 1.53
we also followed Schon [1]; the Representability Theorem 1.55 was remarked
by Dold [3].

(b) The construction of BII for a topological group I was originally given
by Milnor [1]. In fact, he constructed a locally trivial principal II-bundle with
aspherical total space. The classifying space for a monoid M was considered
by Dold-Lashof [1] and Stasheff [1]. The construction (1.63) of the classifying
space B,M is taken from May [2]. Similar constructions are in Boardman—
Vogt [1] and Milgram [1]. Each of these constructions can be treated as a
geometric realization of a certain bar-construction. All these constructions
are homotopy equivalent to one another.

(c¢) Every locally trivial bundle has a structure group. What is an ana-
log of structure group for F-fibrations? Of course, the monoid #(F) can
play this role, but this is not perfect because the fibers of the fibration are
different. It seems better to consider the category ¢ (F') with objects homo-
topy equivalent to F' and the homotopy equivalences as morphisms. May [2]
developed this approach, cf. also Segal [1].
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§2. Structures on Fibrations

Now we discuss structures on fibrations. We will define not one but several
notions of structures. While all are equivalent each has certain advantages in
different situations.

Consider an F-fibration & over a C'W-space X.

2.1. Definition (cf. Browder [2], [3]). (a) Let A = {¢ : E — B} be an
F-fibration. A A-prestructure on £ is a morphism of F-fibrations a : & — A
such that §, : & — bs(a)*\ is an equivalence over X. Two A-prestructures
ag : &€ — A\, a1 : £ — X are equivalent if there exists a prestructure b: € x 17 —
A such that b|(§ x {i}) = a;, i = 0, 1. An equivalence class of prestructures is
called a A-structure on €.

In particular, a v"-prestructure on ¢ is just a classifying morphism for &.

(b) Given a map ¢ : B — Bp, a (B, ¢)-structure on £ is a A-structure on
it where \ := @*yF".

2.2. Proposition. If ¢ : B — Bp and ¥ : C — Bp are homotopy equiva-
lent maps then (B, p)-structures on & are in a bijective correspondence with
(C,v)-structures on it.

Proof. This is obvious. O
Because of 2.2 and 1.35, it suffices to consider (B, ¢)-structures such that

¢ : B — Bp is a fibration.

2.3. Theorem (cf. Browder [3]). Let £ be an F-fibration over a CW -space
X, and let ¢ : B — Bp be an arbitrary fibration.
(i) Every classifying morphism w : € — v induces a bijection

®,, : [Lift, bsw] — {(B, ¢)-structures on }.

(ii) Let f : X — Bp classify €. Then the set of all (B, p)-structures on £
is in a bijective correspondence with the set [Lift, f].

Proof. (i) For simplicity, we denote v by v and set \ := p*y. We say
that a A-prestructure a : £ — X\ is special if

§5 A0y

coincides with w. Furthermore, we say that two special A\-prestructures ag, a1 :
& — X\ are specially equivalent if there is an equivalence b : € X 11 — A between
them which is itself a special prestructure on £ x 1;.

Let g : X — B be a ¢-lifting of f := bsw. Then

J
ag: & 25 fry=g"A A
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is a A-prestructure on &, and it is clear that vertically homotopic liftings yield
equivalent A-prestructures. So, we get a correspondence

® = @, : [Lift, f] — {A-structures on £}, g a,.

It suffices to prove that every A-prestructure is equivalent to a special one (the
surjectivity of ®) and that equivalent special A-prestructures are specially
equivalent (the injectivity of ®).

We prove the surjectivity of ®. We are given a A-prestructure a : £ — .
By 1.72, there is an F-morphism H : § x 17 — v such that H[{ x 1{gy = Ty, 4a
and H|{ x 1{1} = w. Furthermore, by 1.9(ii), H can be decomposed as

T,
€x1; SH u*7 Y 5

where u = bs H. Since ¢ is a fibration, there is a @-lifting v : X x I — B of
u such that v|X x {0} = bsa. Now, consider the F-morphism

Jo
b:gxlfg—H>u*fy:v*)\—’k>)\.

Clearly, b|§x 11} is a special A-prestructure. Finally, J, ~o(b|{x110y) = Ty 4a,
and so b|¢ x 1oy = a (we use the claim about uniqueness from 1.9(ii)).

We prove the injectivity of ®. Let ag,a; : & — X\ be two special A-
prestructures on &, and let b : € X 17 — X be an equivalence between
ap and aj. Consider the subspaces Y := I x {0} UT x {1} U {0} x I,
Z = I x{0}Ul x{1}uU{l1} x I of I x I. We define an F-morphism
c: € x1p|(X x 0I?) — ~ as follows: c|¢ x 1y is just the morphism

fxlyLoj>§i>fyandc|§><{l}><11:3¢X177b:§><1[—>'y.Then,

by 1.72, there is an F-morphism d : £ X 172 — 7 which extends ¢. By 1.9(ii),
d can be uniquely decomposed as

€ x 172 5% k*y ELLA v

where k = bsd. Since ¢ is a fibration, there is a ¢-lifting [ : X x I? — B of
k such that I|Z = (bsc)|Z. Consider the morphism

R:€x 1y 34 iy = ) 222 )

Now, R|¢ x Lioyxr : § X 11 — A is a special equivalence between ag and a;.
(ii) This follows from (i), because, by 1.58(iii), f = bsw for some classi-
fying morphism w : £ — . (]

Lashof [1] and Stong [3] considered a fibration ¢ : B — Bp and defined
a (B, p)-structure on (§, f) to be an element of [Lift, f] where f classifies £.
Because of 2.3, their definition is equivalent (in some sense) to 2.1. (I said “in some
sense” since their definition deals not just with £ but with the pair (£, f).)
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2.4. Definition (cf. May [2]). Given a space K, consider the space K of all
maps F' — K. We define the right J#(F)-action K& x 7 (F) — KT, (p, h) —
@h. Consider any 7 (F)-invariant subset .# of K¥'. An (.#, K)-prestructure
on { isamap [ : ts§ — K such that for every = € bs¢ and every homotopy
equivalence u : F' — p~!(x) the composition

FY%p i) ctse L K

belongs to .#. Two (A, K)-prestructures ly, l1 : ts{ — K on ¢ are called
equivalent if there exists a prestructure L : ts& x I — K on £ X 17 such that
L|ts€ x {i} = 1;, 1 =0,1. An (A, K)-structure on £ is an equivalence class of
(A, K)-prestructures on £.

Every F-morphism £ — 7 induces a function
{structures on 1} — {structures on £}

in an obvious way. So, the correspondence £ — {structures on £} is natural
in &.
One says that two structured fibrations over the same base X are equiv-

alent if there exists an equivalence over X which carries one structure to
another. More precisely, we have the following definition.

2.5. Definition. Consider two F-fibrations &;,7 = 1,2, over X and two
(A, K)-prestructures I; : ts&; — K, i =1,2, one says that (£1,11) and (€2, 12)
are (A , K)-equivalent structured fibrations if there exists an equivalence « :
&1 — & over X such that Iy ts(a) and I yield equivalent prestructures on
&y . Similarly, given two A-prestructures a; : & — \,i = 1,2, one says that
(&1,a1) and (&2, a2) are A-equivalent structured fibrations if there exists an
equivalence « : & — & over X such that asts(«) and a; yield equivalent
prestructures on &;.

Given X as in 2.1, set K := F and .#) := ts(Prin \).

2.6. Proposition. For every F-fibration & over a CW -base, there is a natural
bijective correspondence {A-structures on £} — {( My, Ky )-structures on £}.

Proof. Clearly, any A-prestructure £ — A yields an (.#), K))-prestructure
on &. Conversely, every (.#, Ky)-prestructure on £ yields a fiberwise map
f :ts& — FE which induces a homotopy equivalence of fibers. Let a : £ — A
be a morphism with bsa = f. Then §, : £ — (bsa)*) is an equivalence over
bs&, i.e., we get a A-prestructure on £. It is easy to see that in this way we
obtain the desired correspondence. (|

Now we prove that every (.#, K)-structure can be regarded as a certain
A-structure. Let ¢4 x)(X) be the set of all equivalence classes of (.Z, K)-
structured F-fibrations over X. (It is a set because (.#, K)-structures on
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every fibration £ form a set, say, by 1.52; and if £, are equivalent then there
is an obvious bijective correspondence between (., K)-structures on £ and
those on 7).) Clearly, in this way we get a functor t = t(_4 k) : HC — Ens.

2.7. Theorem. The functor t( 4 i) : A€ — Ens is representable.

Proof. The proof is similar to that of 1.55, and so we give only a sketch.
In the proof “F-fibration” means “rooted F-fibration”.

1. Fix amap f : F — K in .#. Given an F-fibration with a root i,
we define a rooted (#, K)-prestructure on £ to be an (., K)-prestructure
[ :ts& — K such that the composition /i is homotopic to f. Then one can
define a rooted (., K)-structure on ¢ and equivalence of rooted (A, K)-
structured F-fibrations. Let s(X,20) = s_z,kx)(X, 7o) be the class of all
equivalence classes of rooted (., K)-structured F-fibrations over (X, o).
Since (X, zo) as in 1.53 is a set for every (X, x¢), we conclude that s(X, zg) is
a set. To prove the representability of ¢, it suffices to prove the representability
of s: JHECL,, — Ens®.

2. We prove that s satisfies the MV-axiom. Let (X; A, B;xg) be a CW-
triad, set C := AN B. Let (§1),bs¢ = A and (n,m),bsn = B, be two
structured F-fibrations, and let ¢ : £|C — 7|C be an equivalence of structured
F-fibrations. By 1.47, there exists ( over X and the rooted equivalences
a:ClA — &b : (|B — n such that the diagram (1.48) commutes up to
homotopy over C. (More precisely, we take a fibrational substitute of a Dold
fibration ¢ from 1.47.) In particular, lots(a|C) ~ meots(b|C). So, using the
homotopy extension property for CW-pairs, one can construct an (#, K)-
prestructure ts({) — K which extends both [ and m.

We leave it to the reader to check that s satisfies the wedge axiom. [

So, we have the universal (.#, K)-structured F-fibration
ANAL) = Lp 4 k) Eeaiey = Bwo)}s

where B( 4 k) is the classifying space for ¢4 k). Of course, NAK) s clas-
sified by the forgetful map p : Bz k) — Br. Below we assume that p is a
fibration and that A\(#-5) = p* F

2.8. Theorem. (i) For every F-fibration & over a CW -base, there is a nat-
ural bijective correspondence between (M, K)-structures on & and NA LK)
structures on &.

(ii) For every F-fibration & over a CW -base, each classifying morphism
w: & —~F induces a bijective correspondence

U, : (A, K)-structures on § — [Lift, bsw].

iii) The homotopy fiber of p : By k) — Br is #, i.e., p is an M -
(A ,K)
fibration.



226 Chapter IV. Thom Spectra

Proof. (i) Let an (., K)-structure on £ be classified by h : bs§ — Bz k-
By 1.58(iii), there is a classifying morphism w : & — ¥ with bsw = ph. We
define ap, = ap,w : & = A= AAK) t6 be the composition

Thoa
_—

€ S prp*yF = B\ A
Clearly, ap, is just a A-prestructure on &. Furthermore, if hy ~ hy : bs¢ —
B(.#,K), then the A-prestructures apn, and ap, are equivalent. Conversely,

every A-prestructure a : &€ — A yields a map ts& — ts A LK , where [ is given
by the universal (.#, K )-structure. One can check that these correspondences
are mutually inverse.

(ii) This follows from (i) and 2.3(i).

(iii) Let @ be the homotopy fiber of p. Consider the product F-bundle §x
over a CW-space X. We require that 0x is classified by a morphism w such
that tsw : X x F — Ep has‘uheformXxFE»F:Fl70 C Er with by
as in 1.57. Then, by (ii), (.#, K)-structures on fx are in a natural bijective
correspondence with [X, ®]. On the other hand, the (.#, K)-prestructures on
Ox are just the maps [ : X x F — K such that {|({z} X F) : F — K belongs to
M for every x € X. Furthermore, under the exponential law KX* = (K)X
the (4, K)-prestructures on fx are in a bijective correspondence with the
maps X — .. Moreover, the set of all (4, K)-structures on 6 is in a bijective
correspondence with the set [X,.#]. In other words, we have the natural
equivalence [X, @] = [X, .#], and hence ® ~ .# . O

Thus, by 2.6 and 2.8, Definitions 2.1 and 2.4 are equivalent. We can refine
and develop this equivalence as follows.

2.9. Lemma. Every F-fibration \ over a CW -base is bundle equivalent to
the F-fibration N-#xKx)

Proof. By 2.6 and 2.8(i), we have a natural in £ bijection
{A-structures on &} «—— NN structures on €}.

Now, let a fibration ¢ : B — Bp (resp. ¢ : C — Bp) classify A
(resp AKX By 2.3(ii), for every f : X — Bp we have a bijection
[Lift, f] = [Lifty f], and this bijection is natural in the category of bun-
dles over Br. Now, standard category-theoretical arguments imply that ¢
and 9 are equivalent over Bp, and the result follows. O

Let A be an F-fibration over a CW-space B, and let ¢ : B — Bp classify
A. Similarly to the above, we define a functor ty : € — &ns by setting
tA(X) to be the set of equivalence classes of A-structured F-fibrations.

2.10. Theorem. The functor ty is representable. Moreover, t5(X) = [X, B].
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Proof. By 2.9, A ~ AX(#xEx) “and so B ~ B(.#, k). Furthermore, simi-
larly to 2.6, one can prove that t(X) =z, k,)(X). Now,

tA(X) = t(/ﬂA,K,\)(X) = [Xv B(//A,K)\)] = [Xv B] 0

2.11. Comments. (a) Let ¢ be classified by a map f : X — Bp, and let
A = ¢*vF where ¢ : B — Bp is a fibration. Because of 2.9, we have a
commutative square

{A-structures on &} —  [Lift, f]

{equivalence classes of A-structured F-fibrations over X} «— [X, B].

Here the horizontal arrows are bijections and the vertical arrows are forgetful
maps. Namely, the left-hand vertical arrow sends a structured fibration £ to
its equivalence class, the right-hand vertical arrow sends a vertical homotopy
class of a map X — B to its homotopy class.

Similarly, let p : Bz k) — Br be the forgetful map. Then we have the
commutative square

{(A#, K)-structures on &} — [Lift,, f]

{classes of (#, K )-structured F-fibrations over X} «— [X, Bz k)]

(b) Of course, the space B,(.#, 7 (F),pt) in (1.63) can play the role of
the classifying space B( . k). In fact, May [2] proved that B,(.#, 7 (F),pt)
represents ¢4 ), and this was the original proof of 2.7.

Structures on (F,*)-fibrations can be introduced similarly to structures
on F-fibrations. (By the way, observe that the section can be treated as a
structure, see 1.74.) Definition 2.1 can be reformulated for (F,*)-fibrations
word for word, with the replacement of F' by (F, *). Definition 2.4 changes in
the following way.

2.12. Definition. Consider a pointed space (K, *) and a pointed S (F, %)-
invariant subspace .4~ of (K,*)F**). An (., (K,*))-prestructure on an
(F, x)-fibration (£, s) over X is a map [ : (ts&,s(X)) — (K, *) such that for
every x € bs¢ and every homotopy equivalence u : (F,*) — (p~1(x), s(z))
the composition

(Fx) 2% (p7 Y (@), s(x)) C (ts€,5(X)) & (K, *)

belongs to A4

The equivalence of (A, (K, *))-prestructures can be defined just as in
2.5, and an equivalence class of (4, (K, *))-prestructures is an (4, (K, *))-
structure on &. As above, there is a functor t = t(_y (x.)), where t(X) is the
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set of all equivalence classes of (A, (K, *))-structured (F, )-fibrations over
X. The following theorem holds and can be proved as 2.7 and 2.8 were.

2.13. Theorem. (i) The functor t(y (k) : HC — Ens is representable.
(ii) Let By (k) be the representing space for t(_s (k. )). Then the ho-
motopy fiber of the forgetful map p: By (k) — B(ryx) is N .
(iii) Let & be an (F,x)-fibration classified by f : X — Bp ) where X is
a CW -space. Then the set of all (N, (K, x))-structures on & is in a bijective
correspondence with the set [Lift, f]. O

§3. A Glance at Locally Trivial Bundles

3.1. Recollections. Let II be a topological group. For a definition of
a locally trivial principal II-bundle and their morphisms, see e.g. Fuks—
Rokhlin [1], Husemoller [1], Steenrod [1], Switzer [1]. The equivalence (=iso-
morphism) of locally trivial principal II-bundles over the same base is defined.
Given a left II-space F', the term “(F,II)-bundle” means a locally trivial bun-
dle with fiber F' and structure group II. So, every (F, II)-bundle £ is associated
with a unique locally trivial principal II-bundle 7, ts& = (tsn) x F, bs& =
bsn. One says that two (F,II)-bundles over the same base are equivalent if
the corresponding locally trivial principal II-bundles are equivalent.

Given two locally trivial principal II-bundles 7,7, a II-bundle morphism
n — 7’ is just a bundle morphism ¢ : 7 — 1’ such that tsp : tsn — tsn’ is a
II-equivariant map.

Let & (resp. &) be the (F,II)-bundle associated with the locally trivial
principal II-bundle 7 (resp. n’). Clearly, every II-bundle morphism ¢ : n — 7’
induces a bundle morphism @ : £ — £’ where

bsg =bsp, tsg=tsp xg F :tsnxg F — tsn' xp F.

We define an (F,II)-bundle morphism to be a bundle morphism ¢ : £ — ¢’
which has the form 1 = @ for some II-bundle morphism ¢ :  — 7’. In partic-
ular, every (F,II)-bundle morphism yields a IT-equivariant homeomorphism
of fibers.

Given an (F,II)-bundle £, an admissible inclusion i : F — ts¢ is any map
F — F, C ts¢ such that F — F, is a morphism of (F,II)-bundles, where
F at the domain is the (F,II)-bundle over pt. Admissible inclusions can also
be described as follows. Let n = {p : E — B} be the principal II-bundle
associated with £. Then admissible inclusions are just maps of the form

Fl Ex P2 oo F=ts€, i (f) = (e, f),e € E, f € F.
Finally, we notice that the space of all admissible inclusions is equivariantly

homotopy equivalent to E (prove this).
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As in 1.56, the universal locally trivial principal II-bundle is defined to be
a locally trivial principal II-bundle v = {p : E — B} such that every locally
trivial principal II-bundle £ over a CW-space X is equivalent to a locally
trivial principal II-bundle of the form f*v for some f : X — B, and that two
maps f,g: X — B are homotopic iff f*y and g*v are equivalent.

According to 1.66, there exists a classifying space BII for II, and, by 1.67,
BII is uniquely defined up to CW-equivalence.

Let upn(X), resp. urr(X), be the class of all equivalence classes of (F,II)-
bundles, resp. locally trivial principal II-bundles over X. By definition, the
functors up m and uy are equivalent. Furthermore, one can check that up is
homotopy invariant.

3.2. Theorem. (i) un(X) is a set for every CW-space X, and the functor
urg : HC — Ens is representable. In particular, there exists a universal
locally trivial principal I1-bundle.

(ii) A locally trivial principal II-bundle is universal iff its total space is
aspherical.

(iil) Let v be the universal locally trivial principal M-bundle, let & be a
locally trivial principal I1-bundle over a CW -space X, and let A be a CW -
subspace of X. Then every morphism £|A — ~ of II-bundles can be extended
to the whole of €.

(iv) Bvery CW -substitute for BII represents ui.

Proof (Sketch). (i) Analogs of 1.47 and 1.45 can be proved in this case more
easily than for fibrations. One can just glue bundles, without any homotopy
tricks, see e.g. Switzer [1], Ch. 11. So, the representability holds.

(ii) See Steenrod [1], Switzer [1], Ch.11, Husemoller [1], Ch.4.

(iii) See Steenrod [1], §19.

(iv) This follows from (ii). O

3.3. Proposition. If a locally trivial principal I1-bundle & admits a section
then & is trivial.

Proof. The map f :bs& x II — ts¢&, f(x,9) = s(x)g,x € bs¢, g € II gives
an equivalence of £ with the product II-bundle over bs&. (I

Let i : X — II be an inclusion of a closed subgroup. Any locally trivial
principal ¥-bundle £ — B gives us a locally trivial principal II-bundle
E xs Il — B. So, there is a natural transformation i, : uy — wu, and thus
we get a map Bt : BYX — BII.

3.4. Theorem. Let X be a closed subgroup of a Lie group II. Then Bi is
homotopy equivalent to a (II/X,I1)-bundle BY. — BII.
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Proof. Let ETI — BII be the universal locally trivial principal II-bundle.
Since ¥ is a closed Lie subgroup of II, the quotient map

(3.5) p: EIl — EII/S

turns out to be a locally trivial bundle, and hence ETI/Y can be regarded
as BY. Now, the further factorization yields a (II/%, II)-bundle BY. — BII.
Clearly, this map yields the transformation i, : uy — ur. O

3.6. Definition. Let £ be an (F,II)-bundle.

(a) Given an (F,II)-bundle A, a A-prestructure on £ is an (F,II)-bundle
morphism a : & — A. Two A-prestructures ag,a; : & — A are equivalent if
there exists a A-prestructure b : £ x 1; — A such that b|(¢ x {i}) = a;, i =0,1.
An equivalence class of prestructures is called a A-structure on &.

(b) Given a map ¢ : B — B, a (B, ¢)-structure on £ is a A-structure on
it where A := ¢*¥ and ¥ is the (F,II)-bundle associated with the universal
principal m-bundle ~.

(¢) An analog of 2.4 can also be formulated for (F,II)-bundles: here .#
is required to be a II-invariant subset of K and the map [ : ts& — K is

required to be such that the map F 5 ts& LK belongs to .# for every
admissible inclusion 3.

3.7. Example. Let ¥ be a subgroup of II. We can regard every Il-space
F as a ¥-space, and so every (F,X)-bundle can be regarded as an (F,II)-
bundle. Now, let A be an (F, X)-bundle associated with the universal principal
Y-bundle. Then, by the above, we can consider A-structures on any (F,II)-
bundle €. If a I-structure on & exists, one says that the structure group II of
& can be reduced to X, cf. Steenrod [1], Husemoller [1].

Another examples (namely, orientations) appear in §5 and Ch. V below.

3.8. Theorem. Let f : X — BII be a map of a CW -space, and let £ := f*5
where 7 is the (F,II)-bundle associated with the universal principal TI-bundle.

(i) For every map ¢ : B — BII the set of all (B, )-structures on & is in
a natural bijective correspondence with the set [Lift, f].

(ii) Given an (F,II)-bundle X\, set Ky :=ts X and let .4 be the set of all
admissible inclusions ' — ts A. Then the set of all A-structures on £ is in a
natural bijective correspondence with the set of all (M, Ky )-structures on .

(i) Given a pair (M, K) as in 3.6(c), we turn the right -space M into a
left T-space by setting gr = xg~',x € M, g € 1. Consider the (. ,11)-bundle
NAE) — L4 B — BII} associated with the universal TI-bundle. Then the
set of all \7K) _structures on € is in a natural bijective correspondence with

the set of all (M, K)-structures on &.

Proof. (i) This is similar to 2.3.
(ii) This is similar to 2.6.



§3. A Glance at Locally Trivial Bundles 231

(iii) By (i), it suffices to prove that (.#, K)-structures on £ = f*¥ are in a
natural (with respect to f) bijective correspondence with [Lift, f]. Consider a
principal II-bundle n = {E — X} associated with £. Then f*\ is an (., II)-
bundle associated with 1. Furthermore,

Lift, f = Sec f*\ = { all Il-equivariant maps E — .},

see Husemoller [1], Ch. 4. Under the exponential law (K¥)¥ = KF*F  the
last set transforms into

{all maps ¢ : E x F — K such that ¢(eg,y) = ¢(e,gy) for every
gell,ee E;y € F, and p|{e} x F: {e} x FF — K belongs to .# for every
e € E}

={all maps ¢ : E x;i F — K such that F > E x1; F - belongs to .#
for every admissible inclusion 7}

={all .#-prestructures on ¢},
because ts{ = E x1 F'. So, Lift, f = {all .#-prestructures on &}.

Clearly, under this correspondence vertical homotopy classes of g¢-liftings
of f correspond to .#-structures on &. |

We leave it to the reader to define equivalent A-structured, resp. (#, K)-
structured, (#,1T)-bundles following 2.5. Let ux(X), resp. u(z, x)(X) be the
set of all equivalence classes of A-structured, resp. (.#, K)-structured, (F, II)-
bundles over X. The following analog of 2.10 holds.

3.9. Theorem. There are natural equivalences
ux(X) = [X,bs A, uiw k) (X) = [X, Blw k)

where By k) = bs NALE) qith \AK) s in 3.8(ii1).

Proof. This is similar to that of 2.10, so we give only a sketch. Firstly,
we can prove that uy : € — &ns is a representable functor, i.e., uy(X) =
[X, B] for some B € %. So, there exists a universal A-structured (F, II)-bundle
w over B. Let u be classified by a map ¢ : B — BII; we assume that ¢ is a
fibration. Now, for every f: X — BII, we have natural bijections

{A-structures on f*7} = [Lift, f] = {u-structures on f*7}

where 7 is the (F, IT)-bundle associated with the universal principal II-bundle.
The existence of the first bijection can be proved as in 2.8(i), the existence
of the second bijection follows from 3.7(i). Hence, A and p are equivalent
(F,II)-bundles, i.e., B ~ bs A, cf. 2.9. Similarly for u(_z k. |

3.10. Remarks. (a) The obvious analog of 2.11(a) holds for (F,II)-bundles.
(b) Clearly, 3.8(iii) is an analog of 2.8, but for bundles we are able to give,
and have given, an explicit construction of A¢#%) cf. 2.11(b).



232 Chapter IV. Thom Spectra

84. R™-Bundles and Spherical Fibrations

4.1. Recollection. We consider the following classes of objects arising in
geometric topology.

(a) Sm~lfibrations. They are classified by a space Bgn-1. By 1.71,
Bgn-1 =~ BG,,, where G, := 2 (S"71).

(b) Locally trivial R™-bundles equipped with sections. These are just
((R™,0),TOP,)-bundles, where 7TOP,, is the topological group of home-
omorphisms (R",0) — (R™,0) topologized as in 1.3.9(a). Thus, by 3.2(i),
they can be classified by the space BT OP,,. Note that two ((R",0),7OP,,)-
bundles &, i over B are equivalent iff there exists a homeomorphism

(ts &, s¢) — (tsm, sp)

over B. Indeed, consider the space E(§) of all maps f : (R™,0) — (ts(§), s¢)
such that f is a homeomorphism onto a fiber. Then

P(&) :==A{p: E) — B, p(f) = pef(0)}

is a locally trivial principal 7OP,-bundle, and ¢ is associated with P(&).
Now, the fiberwise homeomorphism ts¢ — tsn induces an equivalence
P(§) — P(n) over B.

(c) Piecewise linear (in future PL) R™-bundles. (See Rourke-Sanderson [1]
about PL notions.) These are ((R"”,0),7OP,,)-bundles p : Y — X, where X
and Y are simplicial complexes (not necessarily finite, see Hilton-Wiley [1],
1.10) and the projection p and the section X — Y are PL maps, and, more-
over, for every simplex A C B there exists a PL isomorphism ¢ such that
the diagram

p~1(A) —f L AxR®

/| |

commutes. Equivalence of such bundles is defined to be a fiberwise PL iso-
morphism which preserves the sections. One can formulate (and prove) a
variant of the Brown Representability Theorem for the category of simplicial
complexes and check that both MV and wedge properties hold for piecewise
linear R™-bundles, cf. Kirby—Siebenmann [1], Essay 4, § 8. The corresponding
classifying space is denoted by BPL,.

Justification of the last notation. Let A* be be the standard k-dimensional
simplex. Let pl,, be a simplicial group such that its k-simplices are PL isomor-
phisms AF x R* — A* x R? preserving the zero section and commuting with
the projections on AF. The faces and the degeneracies are induced by the cor-
responding maps of A, Let PL,, be the geometric realization of pl,. Then the
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classifying space BPL,, for the group PL,, classifies piecewise linear R™-bundles,
see Lashof-Rothenberg [1], Kuiper—Lashof [1].

(d) Vector bundles. These are well-known objects, see Fuks—Rokhlin [1],
Atiyah [4], Karoubi [1], Switzer [1], Fuks—Rokhlin [1], Husemoller [1], etc. Let
O,, be the group of all orthogonal transformations of R™. Every ((R™,0), O,)-
bundle can be regarded as an n-dimensional vector bundle, and every vector
bundle over a C'W-space admits a Riemannian metric and so can be turned
into an ((R™,0), O,)-bundle. Thus, vector bundles can be classified by the
space BO,, see loc cit.

4.2. Conventions. (a) Sometimes, when it is possible, we say just PL-bundle
rather than ((R™,0), PL,)-bundle, and so on. We also call objects of the four
classes above G-, TOP,-, PL,- and O,-objects, respectively. The reason is
that frequently we shall consider these four classes simultaneously. Therefore
we introduce the uniform symbol V in order to denote any of the four symbols
G, TOP,PL,O. For example, we can (and shall) speak about V,,-objects, V-
equivalences of V-objects, classifying space BV, etc. The universal V-object
over BV, will be denoted by ~3}.

(b) We denote by 0% the standard trivial V,,-object over a space B; there
is no necessity to specify V. Moreover, sometimes we shall omit the subscript
B if it is clear from the context.

(c) Because of 1.67, we can and shall assume that every space BV, is a
C'W-space.

Traditionally there arise PL and topological microbundles in geometric topol-
ogy (e.g., as tangent and normal microbundles of the corresponding manifolds).
However, one can prove that they are equivalent (as microbundles) to bundles of
the corresponding classes, cf. 7.7 below.

There is a hierarchy of the four classes above. Every n-dimensional vector
bundle over a simplicial complex is a PL,-object, every PL,-object is a
T OP,-object by definition, and every ((R™,0), 7 OP,,)-bundle can be turned
into a spherical fibration by deleting the section. This hierarchy induces the
sequence of forgetful maps

aO aPE aTOP
(4.3) BO, 2% BPL, 122, BTOP, —~— BG,,

where, say, a3, = a9.(n) classifies the universal ((R",0),0,)-bundle re-
garded as an ((R™,0), PLy)-bundle. We introduce the ordering

O<PLLTOP<G;

e.g., ¥V < TOP means that V = O, PL or TOP. Thus, for V' <V one has a
forgetful map a¥, (n) : BV, — BV, The homotopy fiber of a}; (n) is denoted
by Vi /V),.
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4.4. Definition. Let £ be a V,,-object.

(a) Given a V,-object \, we define a A-prestructure on £ to be a V,-
morphism a : £ — \. We say that two A-prestructures are equivalent if there
is a Vy,-morphism b : £ x 1; — A such that b|({ x {i}) = a;, ¢ = 0,1. An
equivalence class of prestructures is called a A-structure on €.

(b) Given a map ¢ : B — BV, we define a (B, )-structure on £ to be a
(¢*33)-structure on it.

4.5. Remarks. (a) If V < V' then A can be canonically regarded as a V'-
object, cf. (4.3). So, we can talk about A-structures on V’'-objects provided
V < V'. For example, we can consider y¢-structures on G,-objects, i.e., vector
structures on spherical fibrations, cf. Browder [3].

(b) We leave it to the reader to prove the following analog of 2.3 for
V-objects: Every classifying morphism w : § — ~yy; induces a bijection

®,, : [Lift, bsw] — {(B, ¢)-structures on £}.
(¢) Every morphism o : n — & of V,-objects induces a function

o’ : { -structures on £} — {A-structures on n},
{a:&— A} —{oa:n— A}

Consider a V,,-object £ over X and a V,-object n over Y. If V < TOP
then the product £ x 7 is a Vy,yn-0bject. If V = G then, by 1.43(v), the bundle
join € x n is a Gy yn-object. Given two V-objects &, 1 over the same base X,
we define the Whitney sum £ @ n to be d*(§ x n) for V < TOP and d*(£ xn)
for V=G, where d: X — X x X is the diagonal.

Let 6" = 0%, denote the standard trivial V,-object over BV, and let a
morphism p, = p¥ : 7% @ 01 — it classify 1 @ 0. We set r,, == bsp,, :
BV,, — BV, 1. Furthermore, let 1), ,, : BV X BV, — BV 4, classify the
V-object 43, x )t for V < TOP and g * 7§ for V =G.

4.6. Proposition. (i) For every m,n,p the following diagram commutes up
to homotopy:

om,n X 1

BV,, x BV, x BV, BVyyn x BV

1><:U'n,:DJ/ ll“‘ern,P

BV X BVnypy 0 BVoinis

(ii) For every m,n,p,q, the following diagram commutes up to homotopy:

m n

R™XR,
BV,, x BV, —~—% BV, x BV,

v |

m-+n

+
BViin B . S BVpiq
Here Ry = ry_1orp_g0---orgp10o7q : BV, — BVp, a < b.
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(iii) For every m,n and every V' <V, the following diagram commutes
up to homotopy:

an

BV, x BV, —"" BV ..

axa | |

BV,, x BV, ™" BVin.

(iv) For every m,n, the following diagram commutes up to homotopy:

BV x BV, 42" BVpin

dl H

BV, x BY,, —~m, BV in-
Here T switches the factors.

Proof. (i) This is clear for V < TOP, since ({ xn) x ( =& x (n x () for
all TOP-objects &, 1, (. So, it remains to prove that (€ xn) x { is equivalent
to & x (n * ¢) for every spherical fibrations &,n, (. Recall that every point of
ts(€ *m) can be written as a suitable equivalence class [z,t,y],x € ts&,y €
tsm,t € [0,2]. Given any three bundles &, 7, (, we define a bundle morphism

01 (Exm) x( — Ex (n*() by setting
tso((z,t,y),8,2) = (2,8, (y,8,2)),x €Ets&,y Etsn, z €ts(,s,t €[0,2].

Now, if &, 7, are spherical fibrations, then ts ¢ induces a homotopy equiv-
alence of fibers (prove it!), and so, by 1.30(i), ¢ is a homotopy equivalence
over the base.

(ii) This can be proved as (i), so we leave it to the reader.

(iii) This is clear for V < TOP, and so it suffices to consider V' =
TOP,YV = G. Let &,n be two 7TOP-objects over CW-bases, dim £ = 1,
dim n = j. Given a 7 OP-object ¢, let ¢’ be the spherical fibration (in fact, a
locally trivial bundle) obtained from ¢ by deleting the zero section. We must
prove that & xn' ~p (£ x )’ where B = bs(¢ x ).

The group 7 OP,,, x TOP,, acts on R™ x R™, as well as on (R™ x R™)\ 0,
in the obvious way. Furthermore, it acts on (R™ \ 0) x (R™\ 0) as follows:

(9,9, t,y] = gz, t, 9"yl
gETOPp, g € TOPy,[x,t,y] € (R™\0) * (R™\0).

Now, (& x 1)’ (resp. £ x ') is the (R™ x R™)\ 0,7 OP,,, x TOP,)-bundle
(resp. ((R™\ 0) * (R™\ 0),7OP,,, x TOP,)-bundle) associated with £ x 7.
We define the map

[ (Rm\o)*(Rn\O) - (RmXRn)\Oa f[x,t,y] = (tz, (2 — t)y) :

V212 — 4t + 4
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(Comment: t? + (2 — t)? = 2t — 4t +4.) Clearly, f is a TOP,, X TOP,,-
equivariant map, and so it yields a morphism ¢ : £’ x ' — (£ x 1)’ of the
associated bundles.

Furthermore, f is a homotopy equivalence. Indeed, it is easy to see that

f|Sm—1 % Sn—l . Sm—l % Sn—l N Sm+n—1

is a homeomorphism, where S*~1 := {z € R¥ | [|z|| = 1}.
(iv) We leave it to the reader. O
Let BV be the telescope of the sequence

w—=BV,_1 — BV, " BV — - .
We denote by
(4.7) jn =34y : BV, — BV
the obvious inclusion BY,, = BV,, x {n} C BV,, x [n,n + 1] — BV.

It is well known that for every finite (and in fact finite dimensional, see
4.27(viil) below) CW-space X the set [X, BV] can be described as follows.
One says that two V-objects & and 7, dim§ = m, dimn = n, are stably
equivalent if £ @ V1" ~ 1 @ ON+™ for some (large) N. Then, the set of all
stable V-objects over X is in a bijective correspondence with [X, BV].

Based on this, we give the following definition.

4.8. Definition. (a) Given a space X € €, we define a stable V-object £ over
X to be amap f: X — BV. In this case we also write £ = {f : X — BV}
and say (tautologically) that f classifies {. We say that two stable V-objects
a={f:X — BV}and §={g: X — BV} are equivalent if f ~g: X —
BY.

(b) Given two stable V-objects € = {f : X — BV} andn={g:Y —
BV}, a morphism ¢ : £ — 7 is a map ¢ : X — Y such that gg = f.

For every map h : X — Y and every stable V-object £ = {f : Y — BV}
we define the induced V-object h*¢ := {fh : X — BV}. We also have the
canonical morphism Jp ¢ :=h : h*¢ — &.

Notice that 15y is a universal stable V-object. We denote it also by .

(c) Let £ be a V,-object classified by f: X — BYV,,. We define its stabi-

lization &y = (£, f)s to be the stable V-object X %> BV, 2% BV.

4.9. Definition. Let £ = {f : X — BV} be a stable V-object. Given a map
¢ : B — BV, a (B, ¢)-prestructure on £ is a pair (a, H) where a : X — B is
amap and H : X x I — BV is a homotopy from ya to f. Two prestructures
(a0, Hp) and (a1, Hy) are equivalent if there are maps b : X x I — B and
J: X xIxI— BV such that b|X x {i} =a;,i =0,1and J|X x [ x {0} =
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b, J(x,t,1) = f(x) for every t € I, J|X x{i} x [ = H;,i=0,1. A (B, ¢)-
structure on & is an equivalence class of prestructures. We denote by [a, H|
the equivalence class of (a, H).

Below in this context we sometimes call ¢ a structure map, i.e., we use
the term “structure map” when we want to emphasize that ¢ is not just a
map but a map which is used for structuralization of V-objects.

4.10. Proposition. Let £ = {f : X — BV} be a stable V-object.

(i) If ¢ : B — BV and v : C — BV are homotopy equivalent maps then
(B, p)-structures on & are in a bijective correspondence with (C,)-structures
on t.

(ii) If ¢ : B — BV is a fibration then the set of all (B, p)-structures on &
is in a canonical bijective correspondence with the set [Lift,, f].

Proof. (i) We leave it to the reader.

(ii) Let g : X — B be a -lifting of f. Considering the (stationary) ho-
motopy H : X x I — BV, H(z,t) := f(z), we conclude that (g,H) is a
(B, p)-prestructure on £. Clearly, vertically homotopic liftings yield equiva-
lent prestructures, and so we have a correspondence

® : [Lift, f] — {(B, ¢)-structures on £}.

We prove that ® is surjective. Consider a (B, ¢)-prestructure (ag, Hp) on &
where ag : X — Bisamap and Hy : X x I — BV is a homotopy from ¢ag to
f. Then there is a homotopy b : X x I — B with b|X x {0} = ag and ¢b = Hy.
We set aq := b|X x {1} and define H; : X xI — BV, Hi(x,t) := f(z). Finally,
we define J : X x I x I — BV, J(z,s,t) := Ho(x,s +t — st), and it is clear
that (b, J) yields an equivalence between (ag, Hp) and (a1, Hy).

We prove that ® is injective. Let gg,g91 : X — B be two -liftings of f,
and let H; : pg; ~ f,i = 1,2, be the stationary homotopies. Suppose that
(90, Ho) and (g1, H1) are equivalent (B, ¢)-prestructures on &, and consider
b: XxI— Band J: X xIxI — BV such that (b, J) yields this equivalence,
see 4.9. By 1.17(ii), there is a @-lifting J : X x I x I — B of J such that
f|X x I x {0} = b, j(x,i,t) = gi(z) for every x € Xt € I,i = 0,1. Then
j|X x I x {1} is a vertical homotopy between gg and g¢;. O

4.11. Proposition-Construction. Let £ = {f : X — BV} and n = {g:
X — BV} be two equivalent stable V-objects over X. Then every homotopy
F: f ~ g induces a bijection

{(B, ¢)-structures on £} —— {(B, )-structures on n}

for every structure map ¢ : B — BYV.

Proof. Let (a, H) be a (B, ¢)-prestructure on £&. We define the homotopy
H' : pa ~ f ~ g where the first homotopy is H and the second one is F.
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Then, clearly, (a, H') is a (B, p)-prestructure on 7, and it is easy to see that
in this way we get a well-defined correspondence

L : {(B, p)-structures on £} — {(B, ¢)-structures on 7}.

Furthermore, we define a homotopy G : g ~ f, G(x,t) := F(x,1—t). Similarly
to above, we get a correspondence

L¢ : {(B, p)-structures on nn} — {(B, ¢)-structures on £}.

We leave it to the reader to check that L¢ is inverse to L. O

4.12. Proposition—Construction. Let w : § — vy be a classifying mor-
phism for a V,-object £, and let ¢ : B — BV be an arbitrary fibration.
(i) Consider the pull-back diagram

B, —— B

on | | I

By, —I* BYV.

Then w induces a bijection
D, : {(B, ¢)-structures on &} — {Bn, pn)-structures on £}

(ii) Fvery morphism o : n — £ of Vy,-objects induces a function

o {(B,)-structures on &} — {(B, @)-structures on g }-

Proof. (1) We let f := bsw. Because of 4.10(ii) and 4.5(b), we have the
bijections

{(B, p)-structures on &} < [Lifty, jn f]
=[Lift,,, f] RER {(Bn, @n)-structures on ¢}.

(i) We equip n with the classifying morphism wo : 7 — ~7;. We define o'
to be a function such that the diagram

{(B, ¢)-structures on &} e, {(Bn, ¢n)-structures on &}

/| :

{(B, @)—structures on nst} &) {(Bn; @)_Structures on 7’}

commutes. Here the horizontal arrows are the bijections from (i) and o” is
the function described in 4.5(c) (recall that a (B, ¢y, )-structure is just a
(@5, 735)-structure). O

Recall that 9’§( denotes the standard trivial Vg-object over a space X.
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4.13. Lemma. Let & be a V,-object classified by a map f : X — BV,,. Then
for every fibration ¢ : B — BV there is a canonical bijection

Ky : {(B,p)-structures on &} < {(B, ¢)-structures on (£ ® 0% )st }

where we assume that £ ® 0% is classified by r,f : X — BVy41.

Proof. Consider the composition BV, Iny BV, 41 2"t BY. The stan-
dard deformation F' : Mr, x I — BV,11, see 1.3.16(a), yields canonically
a homotopy H : j, =~ jnt17n. Now, by 4.11, the homotopy H f induces the
desired bijection. O

4.14. Constructions. Note that ts 0% = X x F where F =R for V < TOP
and F' = {—1,1} for V = G. For simplicity, we write 4" instead of 7}

(a) We define a morphism e = ex : 6% — 0% by setting (tse)(z, f) =
(x,—f),z e X,feF.

(b) For simplicity, we denote Gét by 6. Let w : £ — ~}} classify a V,,-object
& over X. We define

DrE@bk =Ex 0" Th Al x 0t =ah @ 0hy Pt

(c) Given w as in (b), consider the morphism @ : £ & 0% — "1, Now,

because of 4.12 and 4.13, we have the bijection

O~ Kisw 1 {(B, p)-structures on &g} < {(Bny1, Pnt1)-structures on Ea0y ).

4.15. Definition. Let £ be a V,-object over X.
(a) Given a V,,41-object A, let a morphism a : £B60 — A give a A-structure
on £ @0, see 2.1. Then the morphism

I Y N
gives us a certain (in general, another) A-structure on ¢ @ 6. This structure
is called the opposite A-structure to the given one.
We leave it to the reader to prove that the opposite structure is well-
defined and that opposite to opposite yields the original structure.
(b) Given a map ¢ : C — BV, 11, we set A = *4"*! and recall that, by
definition,

{(C,4)-structures on £ @ 0% } = {\-structures on £ @ 6%},

So, two (C,v)-structures on & @ % are called opposite to one another if the
corresponding A-structures on £ @ 6 are opposite, as defined in (a).

(c) Now we assume that £ is equipped with a classifying morphism § — 5.
Given a fibration ¢ : B — BV, consider the bijection as in 4.14(c). Two
(B, p)-structures on & are called opposite to one another if the corresponding
(Bys1, Pnt1)-structures on € @ 0% are opposite, as defined in (b).
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Now we consider (S™, x)-fibrations. By 1.74, they are classified by a space
Bsn 4. By 1.75(iii), B(gn +) ~ BF,, where F,, := J(S", ). We shall use
the simpler notation BJF,, rather then Bgn .y, and we shall use the term
“Fn-objects” for (S™,x)-fibrations. The universal F,-object over BJF, will
be denoted by 7.

Let @ = 0L be the (standard trivial) (S!,*)-bundle over pt. Let p7 :
v A — 7}“ be the classifying morphism for v AP0, We set 77 1= bs Pr
and define BF to be the telescope of the sequence

’I“F
{+— BF, — BFpy1— -},

and we denote by j, = j7 : BF, — BF the obvious inclusion, cf. (4.7).

4.16. Definition. Similarly to 4.8, we define a stable F-object a over X to
be a map f: X — BF. Given two stable F-objects « = {f : X — BF} and
B={g:Y — BF}, amorphism ¢ : « — fisamap a: X — Y with ga = f.

Given an F,-object « = {f : X — BJF,}, we define its stabilization
ast = (a, f)st to be a stable F-object X EN BF, % BF.

4.17. Construction. The 7 OP,,-action on R" can be extended to a 7OP,,-
action on the one-point compactification S™ = R"™ U {oc} of R™. So, we have
a TOP,-space (S™, *) where the base point x is co. Now, given a 7OP,,-
object &, one can form the ((S™, %), 7OP,,)-bundle £* using the fiberwise one-
point compactification, where the “infinities” of fibers form the section. More
accurately, if £ is associated with a locally trivial principal 7OP,-bundle A,
then &° is the ((S™,*),7 OP,)-bundle associated with A. Similarly, for every
Vn-object € with V < 7 OP we can construct the ((S™,*), V,)-object £°.

Furthermore, consider S° = {—1,+1} as the trivial S%bundle § over pt.
Given a G,-object &, set £&* = & x 6. Then the points of ts&°® are suitable
equivalence classes [z,t,y] of triples (x,t,y), x € ts{,t € [0,2],y € {—1,1}.
Now, we define

s:bsé — ts€°, s(b) = [z,2,1], where b = pe(x).
So, every Vp-object £ can be naturally converted into an JF,-object £°.
Note that the correspondence & — £° yields maps
(4.18) a¥(n): BV, — BF, and (as n — o) ay : BY — BF.

So, the sequence (4.3) can be elongated as

TOP

) oPL a ad
BO “E% BPL —I°%, BTOP —%— BG % BF

and we extend the ordering above by setting O < PLLTOP <G < F.
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4.19. Lemma. For every V,,-object & and V,-object n over CW -bases,
(€)= & A"y
where B =bs& X bsn and 1 means x for V < TOP and x for V =G.

Proof. Because of 4.6(iii), it suffices to consider only V = G. Firstly, some
constructions for spaces. Given a space Z, we regard (parametrize) the sus-
pension SZ as SZ = Z x[0,1]/(Z x{0}UZ x {1}), and we denote by [i] € SZ
the point given by Z x {i}, i = 0,1. As usual, points of the join X *Y are
written as triples [z,¢,y],z € X,y € Y,t € [0, 2].

Given two spaces X,Y’, we consider the map f: SX x SY — S(X xY),

Ha:, Sitt,y},s—i—t—st} if (s,t) # (0,0),

[0] otherwise,

f([ma 3]7 [yvt]) = {

where x € X,y €Y,s,t € [0,1].
We regard SZ as a pointed space with base point [1]. Now, f maps the
wedge
SXVSEY =8X x {x}U{x} xSY
to the base point of S(X #Y), and so one can pass f through a quotient map
g:SX A" SY — S(X xY) such that g|C(SX Vv SY) is a constant map.

We prove that ¢ is a pointed homotopy equivalence if X = S™~ 1Y =
S™~1. Indeed, g can be decomposed as

g: 8™ Al ST L gm A gn y ggm=l . gn-ly

where the quotient map ¢ is a homotopy equivalence. Note that both spaces
S™ A S™ and S(S™~1 % S"~1) are homeomorphic to S™*". Now, let

U= {lle\yl,n] € S(S™ 155" [0<A<1/2,0< p< 1}

Then U is an open set of S(S™~! % S"~1) and h|h~'U : h"'U — U is a
homeomorphism because for every (A, u) € (0,1/2) x (0,1) the system

{ sift = A

s+t—st=p

has just one solution (s,t) € (0,1) x (0,1). Thus, degh = 1, and so, by 1.3.29,
g is a pointed homotopy equivalence.

Now, the desired sectioned equivalence ¢ : £ A" np* — (£ % n)* oc-
curs as a “fiberwise version” of the above g. Let 6 be as in 4.17. Since
pg*la(b) = S’pgl(b), we can write points of ts(¢ *x #) as suitable equivalence
classes [z,t],z € ts&,t € I. Furthermore, the points of ts(¢ * n) will be writ-
ten as suitable equivalence classes [z,t,y],2 € ts&,y € tsn,t € [0,2]. We
define a morphism

P& xn = (Ex0) x (nx0) = (Exn)x0 = ({xm)*
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by setting

Hx, f_:t,y} ,S—i—t—st} if (s,t) # (0,0),
[0] otherwise,

ts ([, 5], [y, 1]) ={

where z € ts€,y € tsn, s,t € [0,1]. Since the composition
EVInt — € x5 (Exn)°

maps ts(£* V) onto the section of (£x1)*, we can pass ¢ through a sectioned
morphism 1 : £€* A" n* — (£ x n)* which maps ts(¢ V* ) x I to the section.
Now, 1 induces a pointed homotopy equivalence of fibers, since its restriction
to fibers coincides with g. Thus, by 1.30(ii), ¢ is a sectioned equivalence over
B. O

So, the homotopy smash product plays the same role for F-objects which
the direct product (or join) plays for V-objects. Now, given an F,,-object £
and F,-object 1, we define the Whitney sum £®n by setting £®n := d*(EA"n)
where d : X — X x X is the diagonal.

Let ui’n : BFp, x BF, — BF4n classify the F-object v e VE.
It follows from 4.19 that the diagram

v
BV, x BV, —*— BV,in
a;m;l la;
"
BF,, x BFn —"— BFmin

commutes up to homotopy. Moreover, an obvious analog of 4.6 holds for u”
(and the above diagram is the analog of 4.6(iii)); we leave it to the reader to
figure it out.

4.20. Theorem. Let Z denote one of the symbols V,F. There is a map
= u?: BZ x BZ — BZ such that, for every m,n, the diagram

BZ,, x BZ, 2mX", Bz x BZ

o | I

BZpin 2. Bz

commutes up to homotopy.

Proof. Let B, be the telescope of the finite sequence --- —» BZ,,, — -+ —
BZ,. Then we have a filtration {--- C B,, C By41 C ---} of BZ, and it
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is clear that BZ x BZ = U,(B, x B,). So, by II11.1.16, we have a surjec-
tion p : [BZ x BZ,BZ| — lim{[B,, x B,, BZ]|}. We can form a homotopy
commutative diagram where uy is a standard deformation retraction.

Vm,n
B X Bn ™" Biin

umxunl J(Uern

BZ,, x BZ, ™" BZ, ...

Now, we define f : Bn x B, —= By, C BZ and note that, by 4.6(ii),
frnt1|(Bn X Bp) =~ fn.So, {[fn]} is a string, and we define y : BZxBZ — BZ
by requiring p[u] = {[f.]}, i-e., u|(Bn X By) =~ f,. The commutativity of the
diagram is obvious. [

4.21. Definition. Given two stable V-objects &, 7, we define their product

(or join for ¥V = G) to be the map X x Y IX9, By x BY % BV where f
(resp. g) classifies & (resp. n7). The Whitney sum of two stable V-objects &,
7 over X is the V-object £ & n := d*(§ x ) where d : X — X x X is the
diagonal. Similarly, given two stable F-objects a, 3, we define

an'B:={X xY 2% BF x BF % BF}

where f (resp. g) classifies « (resp. 3). The Whitney sum of two stable F-
objects a, 8 over X is the F-object a @ 3 := d*(a A" B).

Because of 4.20, (a X B)st = ast X B, ete.

For future needs, we give the following definition.

4.22. Definition. A multiplicative structure map is a structure map ¢ : B —
BYV equipped with a map pp : B x B — B (multiplication) and a homotopy

H :pup > po(p x ).

The space Q™5™ can be interpreted as the space (S™, )5 *) of all pointed
maps S™ — S™. Let Q7S™ be the subspace of )" 5™ consisting of all maps of
degree k. It is clear that F,, ~ Q% == Q7 U Q™.

Every self-equivalence f : (S™, %) — (S™, %) gives a self-equivalence

FAL:(S™ %) = (ST ASY %) — (8" A S x) = (5™, %).
We define i, : F, — Fui1, in(f) = f AL

4.23. Lemma. Let k : S™ — QS™! be the adjoint map to lgn+1. Then
(Qk)yr - Q18" — QI{IS”*l is homotopic to i, : Fp — Fpy1. Further-
more, the homotopy fiber of i, is (n — 2)-connected.
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Proof. Only the last assertion needs proof. The map

w1 (S™) £ (ST 22y (57
is just the suspension map, and, by the Freudenthal Suspension Theorem, it
is an isomorphism for ¢ < 2n — 2 and an epimorphism for ¢ = 2n — 2. Thus,
the homotopy fiber of k is (2n — 2)-connected, and therefore the homotopy
fiber of Q™k is (n — 2)-connected. O

Let p,, : BF,, — BG,+1 be the forgetful map (regarding (S, *)-fibrations
as S™-fibrations).

4.24. Proposition. (i) The homotopy fiber of the forgetful map p,, is S™. In
particular, BF ~ BG.

(ii) The homotopy fiber of v : BF, — BF,41 is (n — 1)-connected.
(iii) The homotopy fiber of r9 : BG, — BG,11 is (n — 2)-connected.

Proof. (i) This follows from 1.76.
(ii) This follows from 4.23 and 1.75(v).

(iii) This follows from (i) and (ii), because r¢, 1 pn = Ppi17y . O

4.25. Let U, be the group of all unitary transformations of the complex vector
space C". Its classifying space BU, also classifies n-dimensional complex
vector bundles, see e.g. Husemoller [1], Stong [3]. Let ¢ be the universal
(C™,Uy,)-bundle over BU,,, and let § be the product C!-bundle over pt. Then
v¢ x 0 is classified by a map ™ . BU, — BlU,1, and we define BU to be
the telescope of the sequence {r¥}. Note that r¥ is homotopic to Bi,, where
the inclusion i,, : U, — Uy,41 is given by the splitting C"*! = C" & C!, cf.
3.4. Furthermore, similarly to (4.7), we define the map j% : BU,, — BU as
the inclusion BU,, = BU,, x {n} C BU, x [n,n + 1] — BU. Finally, there is
a map u%,nBUm x BU,, — BUp+rn which classifies v™ x ™. Based on this,
one can construct a map

(4.26) . BU x BU — BU

with properties like 4.20.

Similarly to 4.8, we define a stable complex vector bundle to be the ho-
motopy class of a map X — BU. In particular, there is a universal stable
complex vector bundle ¢ given by 1p.

Regarding ¢ as a real vector bundle, we can classify it by a map R, :
BU,, — BOy,, called realification. Conversely, given a real vector bundle &,
the vector bundle £ ® C admits a canonical complex structure and thus can be
considered as a complex vector bundle. In particular, 7, ® C is classified by
a map C, : BO,, — BU,, called complexification. As usual, there are maps
R:BU — BO and C': BO — BU as n — 0.
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Now we recall the necessary information on the homotopy of classifying
spaces.

4.27. Theorem. (i) m;(BG) = m;—1(S) for every i > 1, where S is the sphere
spectrum. In particular, every group m;(BG) is finite.

(ii) m;(BO) = Z for i = 0,4mod 8,9 > 0; mi(BO) = Z/2 for i =
1,2 mod 8, m;(BO) = 0 otherwise. Moreover, Q8BO ~ BO x 7. Further-
more, mo;(BU) = Z,i > 0, ma;41(BU) = 0, and Q>BU ~ BU x Z.

(iii) Each of the maps Cy : Z = 74,(BO) — 7wy (BU) =7 and Ry : Z =
Tak+4(BU) — Tap+a(BO) = Z is multiplication by ay, where ar, = 1 for k
even and ai = 2 for k odd.

(iv) The groups m;(PL/O) are finite. Moreover, m;(PL/O) =0 fori <7
and w7 (PL/O) =7/28.

(v) TOP/PL ~ K(Z/2,3), 14(BTOP) = Z. Furthermore, the homo-
morphism

(X’P[' .
Z = mi(BPL) 2707, o (BTOP) =7

s multiplication by 2.

(Vi) 7T4k(g/7)£) =7 fOT k> 0, 7T4k+2(g/7)£) = Z/Q, 7T2k+1(g/7)£) =0.

(vii) mi(G/TOP) = m;(G/PL) for every i.

(viii) For every n there exists N = N(n) such that ri : BVy — BVji1,
as well as ji : BVy — BV, is an n-equivalence for every k > N.

(ix) The spaces BV, and BY are connected, w1 (BV,) = m1(BV) = Z/2,
and the groups m;(BYV) are finitely generated. Furthermore, the space BY is
simple, and the groups H;(BV) are finitely generated.

Proof-survey. (i) If i << N, then

mi(BG) = mi(BGN+1) = mi—1(Gn+1) = Tic1(FN)
== 7TZ',1(QNSN) = 7Ti+N,1(SN) = 7TZ',1(S).

(ii), (iii) This is the famous Bott Periodicity Theorem, see e.g. Milnor [6]
or Husemoller [1] (or the original paper, Bott [1]).

(iv) Hirsch-Mazur [1] proved that the group m;(PL/O) is isomorphic to
the group ®; of smooth structures on a PL sphere S*. One can prove that
every smooth manifold which is PL isomorphic to the sphere is a so-called
twisted sphere, i.e., it can be constructed by gluing the two standard disks
along the boundary. The group (under the connected sum) of twisted n-
spheres is denoted by T',. So, m,(PL/O) =T,,. It is easy to see that I';, =0
for n < 3. Smale [2] and Munkres [1] proved that I's = 0, Cerf [1] proved
that Ty = 0. The h-cobordism Theorem of Smale [3] (a good proof can be
found in Milnor [8]) implies that Ty, = ©,, for n > 4, where ©,, is the group of
homotopy n-spheres. Kervaire-Milnor [1] considered these groups and proved
that ©5 = 0 = ©g, ©O7 = Z/28 and ©,, is finite for n > 3.

(v) This is a theorem of Kirby—Siebenmann [1].
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(vi) This is a theorem of Sullivan [1]. A good proof can be found in
Madsen—Milgram [1].

(vii) Consider the homotopy exact sequence of the 7OP/PL-fibration
G/PL — G/TOP. Since TOP/PL = K(Z/2,3) and 73(G/PL) = 0, we
conclude that m;(G/PL) = m;(G/T OP) for i # 4. Furthermore, this fibration
yields the exact sequence

0 — m(G/PL) — 74(G/TOP) — 7w3(TOP/PL) — 0.

Kirby—Siebenmann [1] proved that this exact sequence does not split. Thus,
7T4(Q/TO7)) =7Z.

(viii) The case ¥V = G follows from 4.24(iii), and for V = O it is clear
because there is a locally trivial bundle BO,, — BQO,,+1 with fiber S™. The
remaining cases can be found in Kirby—Siebenmann [1].

(ix) The spaces BV, are connected because there is just one V,-object
over pt. The connectedness of BV follows from that of BV,,. Furthermore,
m(BO,) = 7o(0n) = Z/2, m(BGn) = 70(Gn) = Z/2. Hence, by (viii),
m(BO) =7Z/2 = m (BG), and so, by (iv) and (v), m (BPL) = m (BT OP) =
Z/2. The isomorphisms m1(BPL,) = Z/2 = 7 (BTOP,,) are proved in
Kirby—Siebenmann [1]. The groups 7;(BG) and m;(BQ) are finitely generated
by (i) and (ii), respectively. The groups 7;(BPL) are finitely generated by (iv)
or (vi), and m;(BT OP) are finitely generated by (v). Furthermore, BV is a
simple space since, by 4.20 and (viii), the map BV x pt — BV x BY £ BV is
weakly homotopic to the identity (the proof can be done just as for H-spaces,
see e.g. Hu [1], Whitehead [2]). Thus, H;(BV) are finitely generated because
so are m;(BV) (use the Hurewicz Theorem mod € for spaces, where € is the

Serre class of finitely generated abelian groups, see e.g. Mosher—Tangora [1]).
O

4.28. Theorem. Let Z denote one of the symbols V,F. The map p: BZ x
BZ — BZ in 4.20 is uniquely determined up to homotopy. Furthermore, the
following diagrams commute up to homotopy:

(i) (Associativity.)

BZ x BZ x BZ "1, Bz x BZ

e | G

BZxBZ —"— BZ.
(ii) (Commutativity.)

BZ x BZ —L . BZx BZ
ul lu
BZ BZ

where T switches the factors.
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(i)
BZ' x BzZ' —“ Bz’

BZxBzZ —" , Bz.

where Z' < Z.
Similarly, the map p* : BU x BU — BU in 4.26 is associative and com-
mutative, and the properties like 4.20 determine it uniquely up to homotopy.

Proof. Since, by 4.24(i), BF ~ BG, it suffices to consider the case of
the spaces BV. Firstly, we prove that u = pY is uniquely determined up to

Tn—1

homotopy. Let B, be the telescope of the finite sequence BYy — - --
BYV,,. We prove the homotopy uniqueness of i if we prove that

p:[BY x BV,BV| — m{[Bn X By, BV}

is an injection (and so, by III.1.16, a bijection).
By 4.27(viii), for every n there is N = N(n) such that

(jn X jn)« : [(BY x BV)™ By x By] — [(BY x BV)™ BV x BV]

is a bijection. Let h,, : (BY x BV)™ — BY x BY be a map such that
(jn % jn)«(hy) is the inclusion (BY x BV)(™ C BV x BV. Then the family
{[hn]} yields a function

h = {hy|lim} : im{[B, x By, BV]} — lm{[(BY x BV)™), BV]},
and we have the commutative diagram

[BY x BV, BV] —*—  lim{[B, x B,, BV]}

| g
[BY x BV, BY] —”— lim{[(BV x BV)(™) BV|}.

So, it suffices to prove that p is injective, and now we do it.

By 4.27(ix), BV is a simple space. So, by II1.1.18(ii), it suffices to prove
that all the groups H*"1(BY x BV;m;(BV)) are finite. Since, by 4.27(ix),
all the groups 7;(BV) and H;(BV) are finitely generated, it suffices to prove
that H'='(BY x BV;7;(BV)) ® Q = 0, i.e., that

H™YBY x BV;Q) @ m(BV) ® Q = 0.

If V = G then, by 4.27(i), m;(BG) ® Q = 0 for every i > 0, and the result
follows.

If V = O then H/(BOx BO;Q) = 0 for i # 4k, see e.g. Milnor—Stasheff [1].
But, by 4.27(ii), m;(BO) @ Q = 0 for i # 4k. So, H"}(BO x BO;Q) ®
™ (BO) @ Q = 0 for every i.
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Finally, if V = PL,7OP then, by 4.27(iv,v), the groups m;(V/O) are
finite, and hence a$}[0] : BO[0] — BV[0] is a homotopy equivalence, i.e., BO
and BY have the same rational homotopy type. Thus,

H"Y(BY x BV;Q) @ 1;(BV) ® Q = H"Y(BO x BO;Q) ® m;(BO) ® Q = 0.

The commutativity of the diagrams in question can be proved similarly.
For example, we prove the associativity of u. Consider the diagram

o Xn X Jp ux1
_—

BY x BY x BY ——— BY x BV

e | [

BYxBYy —" ., By

BV,, x BV, x BV,

By 4.6(1) and 4.20, (g X 1)(fm X Jn X Jp) =2 (1 X 1) (G X Jn X Jp)- So, it
suffices to prove that p : [BY x BY x BV, BV| — lim{[B,, x B,, x B, BV]}
is an injection. This can be done as above; we leave it to the reader. (|

Let SV, be the submonoid of V,, consisting of the orientation preserving
maps R — R™ or S"~1 — S§7~! (we leave it to the reader to fix the case
V = PL). By 4.25(ix), m1(BV,,) = Z/2 for n > 0, and it is clear that BSV,,
is a 2-sheeted (i.e., the universal) covering of BV,. Furthermore, the space
BSYVY = lim BSV,, can be defined to be the universal covering space of BY.

n—oo

Finally, there is a hierarchy BSO — BSPL — BS7TOP — BSG similar
to (and given by) (4.3), and the homotopy fiber, say, of BSO — BSPL is
PL/O.

The (co)homology of BV has been studied quite extensively, but we use
only a small part of the known information. Additional information can be
found in Madsen—Milgram [1] and May [4].

4.29. Theorem. (i) H*(BO;Z/2) = Z/2 [w1, ... ,wp,...], dimw; = i. Fur-
thermore, H*(BO;Z/2) is contained in H*(BV;Z/2) as a subalgebra for ev-
ery V, and the homomorphism (a$)* : H*(BV;Z/2) — H*(BO;Z/2) is an
epimorphism.

(ii) If R is a ring such that 1/2 € R, then

H*(BO;R) = H*(BSO; R) = R[p1,.-- , Pk, - - - |, dim py, = 4k.
(iii) H*(BU) = Zlc1, .. . cp, - - . ], dim¢; = 2i.

Proof. See e.g. Milnor—Stashef [1]. O

We have Uy = {z € C | |2| = 1}. Set SU, := Ker(det : U, — U),
where det maps a matrix to its determinant. So, we have the inclusion ¢, :
SU,, — U,,. Furthermore, the inclusion %, : U,, — U,+1 induces the inclusion
kn : SU, — SUp41. Since ty, 41k, = int,, we get the homotopy commutative
diagram
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BSU, 2 BSU,4
(430) Btnl lBtni»l

BU, 2" By, .

We can and shall assume that Bt,, is a fibration.

4.31. Lemma. (i) The homotopy fiber of Bt,, is S*.
(ii) The fibration Bt, : BSU, — BlU, is a 3-connective covering.
(iii) The square (4.30) is a morphism of S-fibrations for every n.

Proof. (i) This follows from 3.4 since U,,/SU,, = S?.
(ii) Let ¢ : Uy — U, map z € U to the matrix with a1 = 2z,a,; = 1 for i >
1, and a;; = 0 for ¢ # j. We have m1(Uy,) = Z, m2(U,,) = 0, see e.g. Milnor [6].

Since det oi = 1y, dety : m (Uy,) — w1 (Uy) is an isomorphism. Considering

the homotopy exact sequence of the locally trivial bundle SU,, — U, det g L

we conclude that m;(SU,,) = 0 for i < 3. Thus, m;(BSU,,) = 0 for i < 4. Since
Bt,, is an S!-fibration and 7;(S') = 0 for i > 1, (ii) is proved.

(iii) The square (4.30) induces a morphism of the homotopy exact se-
quences of the vertical fibrations. Since m;(BSU,) = 0 for ¢ < 3, the map
Bk, provides an isomorphism of the fundamental groups of fibers. (Il

The squares (4.30) can be aggregated in a homotopy commutative dia-

gram

. — . BSU, B, BSUpiq —— -

Btnl lBtn+1

. — BU, B, BlUpiy —— e,

where every vertical map is an S'-fibration. We can assume that this lad-
der commutes (changing Bk, map by map, using the covering homotopy
property). Defining BSU to be the telescope of the top sequence, we have
the map ¢ : BSU — BU (the telescope of the Bt,’s). By 1.41(iii), ¢ is a
quasi-fibration, and each fiber is homotopy equivalent to S'. Passing to a
fibrational substitute of ¢, we have a fibration F — BSU 2 BU, where F is
CW-equivalent to S!.

4.32. Lemma. (i) The fibration p : BSU — BU is a 3-connective covering.
(ii) H*(BSU) = Zlca, ... ,cp,...], dime, = 2n.

Proof. (i) By 3.4, the homotopy fiber of Bk, is SU,+1/SU, = S?"+1,
and so m;(BSU) = 7;(BSU,,) for i < n. Thus, m;(BSU) = 0 for i < 4. Since
mi(F) = m;(SY) = 0 for i > 1, p is a 3-connective covering.

(ii) Cousider the cohomology Leray—Serre spectral sequence of the fi-
bration F — BSU 2 BU. We have H*(BU) = Zlci,... ,¢n,...] and
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H*(F) = H*(S'). Let * € H'(F) = Z be a generator, and let 7 denote
the transgression. Since H'(BSU) = 0 for i < 4, 7(x) = c¢1 (up to sign).
Hence, 7(c -+ ctrz) = o cor Thus, B/ = 0 for j > 1, EX0 =
Zlcay ... yCny. -] O

§5. Thom Spaces and Thom Spectra

5.1. Definition. (a) Let « = {p : Y — X} be an F,-object with a section
s. We define the Thom space Ta of « by setting Ta := Y/s(X). We set
Ta:=ptif bsa = 0.

(b) Given a V,-object &, define the Thom space TE of € as T¢ := T(£*),
where £° is as in 4.17.

Notice that T« has a canonical base point (the image of s(X)). Further-
more, Ta = (bs(a))™ for every Fy-object a.

It is easy to see that every morphism ¢ : @« — 3 of F,-objects induces a
map T : Tao — T3 of Thom spaces, and in fact we have a Thom functor T
Moreover, an F-equivalence of F-objects induces a homotopy equivalence of
Thom spaces.

5.2. Examples. (a) The Thom space of the (trivial) V,-object over a point
is S™.

(b) The open Mé&bius band fibered over the middle circle can be considered
as a line bundle. In greater detail, if we glue (identify) the points (—1, —x) and
(1,2) in [-1,1] x R, we obtain a space ¥ homeomorphic to the open M&bius
band. Now, the projection py : [-1,1] x R — [—1,1] yields the ((R,0),O1)-
bundle ¢ = {p: Y — S* = [-1,1]/{—1,1}}. Then T( is the real projective
plane RP? (prove this).

(¢) More generally, let &, be the canonical line bundle over RP™. Then
T¢, = RP™! (prove this, or see e.g. Stong [3]).

(d) Similarly to (c), let A, be the canonical complex line bundle over the
complex projective space CP™. Then T\, = CP"*1,

(e) There is the Thom space T3} of the universal V,-object ~35. It is
usually denoted by MV,, or TBV,,.

5.3. Definition. Given a point z € X, the pair (p~!(x), s(z)) can be regarded
as an (5", *)-fibration § = 6% over {z}. The morphism (the inclusion of the
fiber) & — « of F,-objects induces a map j = j, : S™ = T0 — Ta. We call
this map j, a root of Ta at x.

If X is connected, then the homotopy class of j, is uniquely determined
up to sign. In this case we write just j (and say just root).

There are also some other models of T'€. For example, given a spherical fibration
&, one can define T'¢ := C(p¢). Furthermore, given a V-object with V < TOP, one
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can consider the underlying (see (4.3)) spherical fibration £ and set T¢ := C' (pg).
These Thom spaces are homotopy equivalent (but not homeomorphic) to ours.
Furthermore, given a vector bundle &, let D(&) (resp. S(§)) be the unit disk (resp.
unit sphere) subbundle of £ with respect to some Riemannian metric in §. Then T°¢
is homeomorphic to ts(D(&))/(ts(S(£))). Moreover, if ¥V < TOP and the base of
a V-object ¢ is compact (e.g. it is a finite CW-space) then T'¢ is (homeomorphic
to) the one-point compactification of ts(§).

5.4. Construction—Definition. Let £ be any V,-object. Define a section
s’ :bs& — ts&* of £ as follows. If YV < TOP then s’ is the composition
bsé 5 ts€ C tsé®
where s is the zero section of . If V = G then
s'(b) := [z,2,—1] where b € bs£,2 € [0,2], -1 € S” = {—1,1} and pe(z) = b,
cf. 4.17. We define the zero section of T¢
3:bs¢ = T¢

to be the composition bsé == ts¢® _quotient

map.

T¢. Clearly, 3 is an injective

5.5. Proposition. (i) Given an F,-object o and an Fy-object 3, we have
T(a A" B) ~Ta NTB.

(ii) T(Exn) = TENTn for all V-objects &, n with V < TOP, and T'({xn) ~
TENTn for all G-objects &, 1.

(iii) T(€ @ 01) ~ ST(&). In particular, T(0%) ~ S"X*. Furthermore, for
every x € X the root j, is homotopic (up to sign) to the inclusion S™({x}T) C
SnXTt.

Proof. Exercise. (Il

Again, consider an Fy-object a = {p : ¥ — X}. Choose a point € X
and set F' = p~!(z). Given a loop w : [0,1] — X at z, w(0) = z = w(1),
consider a covering homotopy h, : F' — Y,t € [0,1] such that phi(a) = w(t)
for every a € F,t € [0,1]. Since h1(F) C F, there is a map f : F — F
such that the composition F EN F C Y coincides with hy. Since F ~ S™,

the degree of f is defined, and we set d(w) = deg f. It is clear that d(w) is
well-defined, and d(w) = £1 because f is a self-equivalence.

5.6. Definition. An F,-object o over X is called orientable if d(w) =1 for
every ¢ € X and every loop w at . A V,-object £ is called orientable if £* is
orientable.
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It is clear that an Fy,-object over a connected base is orientable iff d(w) = 1
for some single point z and every w at x.

Given « as above and an abelian group G, there are the homology local
system 1! {H,(F,;G)} and the cohomology local system {H"(Fl7 G)}, x €
X, over X. Recall that F, ~ S™, and so H,, (Fy;G) =2 G = H"(FI,G) for
every x € X.

Thom [1], [2] discovered the following important fact.

5.7. Theorem-Definition. For every abelian group G and every i there are

isomorphisms
Hy(X; {Hp(Fy; G)}) = Hin(To; G),

HZ(X; {H"(FQE7 G)}) = H"""(Ta; Q).

These isomorphisms are called Thom isomorphisms. They are natural in «

and G.

Proof. We can assume that X is connected. We prove only the homological
Thom isomorphism. Let s : X — Y be the section. Consider the homology
Leray—Serre spectral sequence of the relative fibration (Y, s(X)) — X (seee.g.
Switzer [1], p.351-352, or, in detail, Prieto [1]). This spectral sequence con-
verges to H.(Y,s(X);G) ~ H.(Ta; G), and E2, = Hy(X; {H,(Fy, % G)}).
So, Eﬁyq = 0 for g # n. Therefore 2 = E> . and Hy(X; {Ijln(Fz,G)}) =

P.q
H,(X;{Hn(Fp,%;G)}) = = E°° = Hp+n(To¢ Q).
The naturality of the Thom 1somorphlsms follows from the naturality of
the Leray—Serre spectral sequence. 0

5.8. Corollary. (i) H;(To;G) = 0 = HZ(Ta G) for i < n. Furthermore,
if the base X of o is conmected, then H,(Ta;G) = G = H"(To; G) for
orientable a and H,(To;G) = G/2G, H*(To; G) = {9eG|g=-g} for
non-orientable o.

(ii) m;(Ta) = 0 for every i < n. Furthermore, if the base X of « is
connected, then m,(Ta) = 7 for orientable o, and 7,(Ta) = Z/2 for non-
orientable «. Finally, the root j : S™ — T« yields a generator of m,(Ta) in
both cases.

Proof. (i) The first assertion is a trivial corollary of 5.7. The last assertion
follows from 5.7, because Ho(X; M) = M/{tm —m} and H*(X; M) = {m |
tm=m},m e M,t € m(X), for every m(X)-module M.

(ii) Since a has a section, the map p, : 7 (Y) — m(X) is onto for every
k. Let ¢: Y — Y/s(X) = Ta be the quotient map. Consider the diagram

HGee e.g. Hilton-Wiley [1], Hu [1], Spanier [2], Fuks-Rokhlin [1], Hatcher [1] about
local systems.
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7T1(X) 7T1(X)

| H
(

0 —— m(S™) . m Y) 2 (X)) —— 0

|
71 (S") —L— 7 (Ta)

with exact row. We prove that j,. is epic. Indeed, by the van Kampen Theo-
rem,

m(Y/s(X)) =m (Y UCs(X))
= 7T1(Y) *Trl(s(X)) ﬂl(CS(X)) = 7T1(Y) *771(3()()) {1}

Hence, ¢ : Y — Y/s(X) induces an epimorphism
G 2 (YY) = (YY) sy s0x)) {1} = m(Y/s(X)) = mi (Ta).

So, for every x € w1 (T'«) there exists y € 71 (YY) with ¢.(y) = z. Furthermore,
Yy — $«p«(y) = ix(2) for some z € m(S™). Now, j.(2) = q.i.(2) = q:(y —
340+ (y)) = ¢+ (y) = z, and so j, is epic.

If n > 1, then m (T«) = 0, and so, by the Hurewicz Theorem, m;(Ta) ~
H;(Ta) for 0 < i < n. Thus, m;(Ta) = 0 for i < n, and m,(T«) has the
required properties.

The inclusion of a fiber yields a morphism of relative fibrations

(57, %) —— (V,s(X))

! l

pt — X

Considering the corresponding morphism of the homology Leray-Serre spec-
tral sequences (as in 5.7), we conclude that j. : H,(S™;Z/2) — H,(Ta;Z/2)
is an isomorphism; moreover, j, : H,(S") — H,(T«a) is an isomorphism for
orientable a. Hence, j yields a generator of m, (T«).

Let n = 1. Since j, is epic, m1(Ta) is cyclic and j yields a generator. So,
again m (Ta) = Hi(Ta), etc. O

It makes sense to separate the orientable and non-orientable cases in 5.7.
Suppose that X = bs a is connected. It follows from 5.8 that H"(T'«; Z/2) =
Z./2. The non-trivial element uz,, € H"(T'o;Z/2) is called the Thom class
(mod 2) of a. Moreover, if « is orientable, then, by 5.7, H*(Ta) = Z. A
generator uz (either one) of H"(T«) is called the Thom class (integral) of .
Thus, orientability is equivalent to the existence of the integral Thom class.
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5.9. Corollary. (i) If 2G = 0 then there are Thom isomorphisms
oo HI(X;G) = H*(To;G), % : Hi(X;G) = Hiyn(Ta; G).
(i) If « is orientable then there are Thom isomorphisms

oo H(X;G) = H'™(Ta;G), 0% Hy(X;G) = Hiyn(Te; G).

Proof. In both cases the local systems {H,(Fy; G)} and {H"(Fy; G)} are
simple (prove this). Because of this, H;(X;{H,(Fy;G)}) = H;(X;G) and
HY(X; {H"(Fy; G)}) = H'(X;G). O

In the next chapter we discuss the orientability problem, interconnections
between orientability and Thom classes, etc. Here we remark that a V,-object
is orientable iff its structure group (monoid) can be reduced to SV,, (prove
this).

The line bundle ¢ in 5.2(b) gives us an example of a non-orientable bundle.
You can see it immediately, or notice that T'¢ = RP? and apply 5.8.

It is clear that « = {p: Y — X} is orientable iff o & 6% is (cf. V.1.10(iii)
below). Hence, ( ® 9’§( is non-orientable for every k, i.e., for every n there
exists a non-orientable V,-object. Moreover, if « is orientable then f*« is
orientable for every map f : Z — bsca. Thus, the universal V,,-object ~;; is
non-orientable.

Consider a pointed space K = (K, x), and let A C 7,(K) be such that
+A=A

5.10. Definition. Let a = {p : Y — X} be an F,-object over a space X,
and let j, : S™ — T« be a root with respect to a point z € X. We regard j,
as a canonically pointed map. An element v € [T'a, K]* is called an (A4, K)-
marking of a if j5(v) € A for all x € X. An (A, K)-marking of a V,,-object £
is defined to be an (A, K)-marking of &°.

It is clear that if the base X of « is connected then v is an (4, K )-marking
iff 53 (v) € A for some single point x¢ € X.

Let Q7% (K) be the subspace of Q"K = (K, x)(5"*) consisting of all maps
¢ : (8™, %) — (K, *) such that [¢] € A C 7, (K, *).

5.11. Theorem. Let Z be one of the symbols V, F. There exists a CW -space
B(Z,,A, K) with the following properties:

(i) The set of equivalence classes of (A, K)-marked Z,,-objects over X is
in a bijective correspondence with the set [X, B(Z,,A, K)], i.e., B(Z,, A, K)
is a classifying space for (A, K)-marked Z-objects;

(ii) The homotopy fiber of the forgetful map B(Z,,A,K) — BZ, is
Q% (K).
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Proof. An (A, K)-marking of any F,-object « is just an (Q% (K), (K, *))-
structure on «, see 2.12. Thus, the case Z = F follows from 2.13. Let a =
a¥%(n) : BV, — BF, be as in (4.18), and let A = {B(F,, A, K) — BF,} be
the forgetful Q7 (K)-fibration. Defining B(V,, A, E) to be the total space of
the fibration a*)\, we conclude that (i) and (ii) are true for Z = V. (Note
that, by 1.38, B(Vy,, A, E') has the homotopy type of a CW-space.) O

If Vis O or TOP, then B(V,, A, K) has an explicit geometrical descrip-
tion, see 3.9.

Now we turn to stable objects.

5.12. Constructions, Definitions, Notation. Let BF,, be the telescope

F
of the finite sequence {BF; — - - In1, BF,}. We regard BF,, as a CW-
subcomplex of BF, i.e., there is a CW-filtration {BF,} of BF. Recall that
BF, ~ BF,, and so we have the universal F,-object v over BF,,.

(a) Let « = {f : X — BF} be a stable F-object over a CTW-complex
X,andlet F = {0 = X1 CXpC--CX, C--},UX, = X be a
CW-filtration such that f(X,) C BF,. We define f, : X,, » BF,, fn(z) =
f(z) and put for simplicity ¢" := fiv%. Clearly, ("™ = (" & ' where
in ¢ Xn — Xpq1 is the inclusion. Considering the maps s, = T7J; cnt1 :
ST¢" =T("® ) — T¢" L, we get the Thom spectrum

T(ZF,a) :={T¢C", sp}.

In most applications T'(" is a C'W-space. Nevertheless, if not, one can apply
I1.1.19 in order to get a spectrum T'(F, «v).

(b) If X is connected, then the family of roots j, : S™ — T(" yields a
morphism j : S — T(F, a) of spectra, which we call a root of T(F, ).

(c) Given a stable F-object « = {f : X — BF} over a CW-complex X,
let X,,(«) be the maximal CW-subcomplex which is contained in f~1(BF,,).
So, we have a canonical filtration 2" = {X,,(«)} of X, and we set

Ta:=T(Z,a).

(d) Given a stable %-object « = {f : X — BF} and amap h:Y — X,
we define a map h,, : Y, (h*a) — X, (), hn(y) := h(y). Then we have the
map T3y, ¢» : Thy ¢, — T¢™. So, we get a morphism

Th:={T3,c}:T(Y,ha) — Ta.
(e) Given a stable V-object £ = {u: X — BV}, we set T := T¢* where,

%
as usual, £* := {X % BY -5 BF}.
(f) Given a structure map ¢ : B — BV, we can regard it as a stable
V-object ¢*yy and construct the spectrum T'(¢*vy). However, as usual, we
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introduce a special notation T(B, ) := T(p*vy) in order to emphasize that
 is a structure map.

(g) Because of (e), there is the Thom spectrum T+, of the universal
stable V-object yy. This spectrum is usually denoted by MV (or by TBYV,
as in Stong [3]). Clearly, its n-th term is (homotopy equivalent to) MV),.
In greater detail, let BYV,, be the telescope of the finite sequence {BV; —

v
LN BV, }; so, we have the filtration {BV,} of BV. Then the maps
a¥(n) : BV, — BF, yield a map a% : BY — BF of filtered spaces, i.e.,
(a¥)"Y(BF,) = BV,, and the n-th term of MV is the Thom space MV, of
the universal V,,-object over BV,,.

5.13. Lemma. Let « = {f : X — BF} and Z be as in 5.12(a). Then
T(Z,a) ~Ta, i.e., the homotopy type of the Thom spectrum does not depend
on filtration.

Proof. We define f,, : X,(a) — BF,, fu(z) = f(x). We set E, =
T(fay™), o =T (f37"|Xn). Then Tao = {Ey} and T(F, ) = {Fy.}.

According to I1.(1.4), we regard X~ "X*°E,, as a subspectrum of T'cr, and
Ta = UZ*"Z“’E”. Similarly, T'(.%, a) = UZ*"ZMF,,. Clearly, T(.Z, ) C

Ta. On the other hand, S"S®E, C | J S7"E%F,, for every n, and so
m=1

T(Z,a) is cofinal in Ta. O

5.14. Lemma. Let « = {f : X — BF} and 8 = {9 : Y — BF} be two
stable F-objects.

(i) Let u,v : @ — [ be two morphisms of stable F-objects, see 4.16. If
u~prv: X =Y thenTu~Tv:Ta— Tj.

(ii) Let a : @« — B be a morphism of stable F-objects. If a : X — Y is a
homotopy equivalence then Ta : Ta — T3 is an equivalence.

(iii) Here we assume that Y = X. If f ~g: X — BF (i.e., o and 3 are
equivalent stable F-objects) then Ta ~ T[.

Proof. (i) Let U : u ~px v be a homotopy over BF. We have the com-
mutative diagram

XxI —Y ., vy

le{ lg
x ' BF
Then
TU*B) =T(U*g*vr) = T(pif*vF) = T(pia) = TanIT.

Now, TU : Ta A T =T(U*B) — Tf is a homotopy between Tu and Tw.
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(ii) Let f: X — BT be the fibrational substitute of f constructed in the
proof of 1.35. Given a filtration 2" = {X,,} of X, we define the filtration 2"
of X by setting X,, = {(z,w)|r € X,,,w € X! w(0) = f(x)}. The inclusion

-~

X — 5571} — (z,w;) maps X, to X,, and so yields a map T(Z, f) —

o~

T(Z, f) of Thom (pre)spectra, and this map induces an isomorphism

m(T(Z, ) — m(T(Z, ) = lim{my v (TC™)}

where (™ is as in 5.12(a). So, without loss of generality, we can assume that
f and g are fibrations. But then, by 1.27, a is an equivalence over BF, and
the result follows from (i).

(iii) Let F': X x I — BJF be a homotopy between f and g. Considering
the commutative diagram

X —2 5 XxI

fl lF

BF BF
where a(xz) = (z,0), we conclude, by (ii), that Ta : Ta — T(F*vx) is an
equivalence. Similarly, T8 ~ T(F*yz), and thus Ta ~ T(. O

5.15. Construction. Let £ be a stable V-object classified by f : X — BV,
and let ¢ : B — BY be a map. Consider a (B, ¢)-(pre)structure (a, H) on &
as defined in 4.9, i.e., H : X x I — BV is a homotopy between f and ¢a.
The inclusions iy : X = X x {k} — X x I,k =0, 1, yield the morphisms

bo :=Tip: T, — T(H yy), by :=Ti1 : T(a*¢"yy) — T(H ),

and each b; is an equivalence by 5.14(ii). We define a morphism

bt a
Tr(a) : TE 25 T(H ) == T(a*¢* ) —% T(B, ¢).

By 5.14(i), equivalent prestructures yield homotopic morphisms, i.e., the ho-
motopy class of the morphism Ty (a) : T — T(B, ) depends only on the
(B, p)-structure.

5.16. Remark. Let « = {f : X — BJFy} be an Fi-object, and let ay be its
stabilization. Considering the Thom spectrum T'(ast), we see that its n-th
term T, (as) is T(a @ 0" %), n >k, ie., Th(ag) = X" FTa. So, we have an
isomorphism in .%

¢ T(ag) =X 7F8>Ta.

5.17. Definition. Given a CW-complex X, we say that a map f: X — BF
is reqular if f(X™=2)) C BF, for every n. A stable F-object « is called
reqular if it is classified by a regular map.
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5.18. Lemma. Let (X, A) be a CW-pair, and let h : X — BF be such that
h|A is reqular. Then h is homotopic rel A to a regular map f: X — BF.

Proof. This follows from 4.24 in a routine way. g

5.19. Construction, Notation. Let « be a stable F-object classified by a
regular map f : X — BF. We define f,, : X("=2) — BF,, f,(z) = f(z) for
every z € X("=2) and set

o = [

Note that we are able to write Taw = {T'a"}. Clearly, o = a|X ™2
(where, of course, ol = (a™)st).

5.20. Lemma. Let h:Y — X be a k-connected cellular map.

(i) If n > 1 then, for every F,-object o over X, the map T(Jpq) :
T(h*a) — T« is (n + k)-connected.

(ii) For every stable F-object o over X, the map Th : T(h*a) — T« is
k-connected.

Proof. (i) The homomorphism h, : H;(Y; {H,(F},)}) — Hy(X;{H,(F:)})
is an isomorphism for ¢ < k and an epimorphism for i = k£ 4+ 1. So, in
view of the Thom isomorphism 5.7, T'(Jp,a)« : Hi(T'(h*a)) — H;(Ta) is an
isomorphism for ¢ < k+n and an epimorphism for ¢ = k+n+ 1. Since n > 1,
both Thom spaces are simply connected, and thus T'J}, , is (n+k)-connected.

(ii) By 5.14(iii) and 5.18, we can assume that « is classified by a regular
map f : X — BF. Moreover, by 5.13, Taw ~ T (%, f) where .% is the filtration
such that X,, = X 2. Since h : Y2 — XV-2) ig k-connected for
N >> k, the map T'(Jj, o~ ) : Th*(aV) — Ta® is (k + N)-connected by (i).
Thus, by I1.4.5(iii), Th is k-connected. a

5.21. Theorem. (i) T(a A" B) ~ Ta AT for all stable F-objects o, 3, and
this equivalence can be chosen naturally with respect to o and (3.

(ii) T(ETn) = TE ATy for all stable V-objects &,m, and this equivalence
can be chosen naturally with respect to £ and n. (Here, as in 4.19, T means

x for V <TOP and x forV =G.)

Proof. (i) Welet « = {f : X — BF} and § = {g : Y — BF}. Without
loss of generality we can assume that pf'(BF, x BF,) C BFa,. Then there
is an inclusion

Bt X (@) X Y (B) C (X X Y)on(a A B).
This map h,, induces a map

Thy : T(fiv5) AT (giv5) — T((f * 9)5n77),
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and these maps form a morphism Th : Ta ATS — T(a A" 3). Clearly, Th is
natural with respect to @ and 8. We prove that T'h is an equivalence.

By 5.14(iii) and 5.18, we can assume that « and [ are regular. Then
X(=2) < X, (a) and Y(*=2) C Y, (8), and we have the following commuta-
tive diagram of inclusions:

X=2) y(r=2) ", X (a)x Y,(3)

aQT lhn

(X xY)D % (X % Y)an(a AP B).

Clearly, every a;,i = 1,2, 3, is an (n — 3)-equivalence. Hence, h,, is an (n — 3)-
equivalence. So, by 5.20, Th,, is a (2n — 3)-equivalence, and so, by I1.4.5(iii),
Th is an (n — 3)-equivalence for every n. Thus, Th is an equivalence.

(ii) This is an immediate consequence of (i). O

5.22.Corollary. The spectrum MYV is a commutative Ting spectrum.

Proof. Firstly, we consider MG. Let u = ¢ : BGx BG — BG be as in 4.20
and 4.28. For simplicity, let v denote g and A denote A". So, vy Ay = u*y,
and so there is a morphism v := J, , : v Ay — « which yields a pairing
w:TyANTy — T(y A7) Iy, T~. In order to prove the associativity of u we
must prove that the morphisms veo(r A1) and vo(1 Av) are bundle homotopic,
i.e., that there exists a bundle homotopy ® : Yy Ay Ay A 1 — « such that
Py AYAY ALy =vo(v Al) and @]y Ay Ay Alpy = vo(l Av). But this
follows easily from 1.72. Clearly, the root j : S — Ty of Ty can play the role
of the unit for p.

The commutativity can be proved similarly.

The proof for the spectra MV with V < 7TOP can be done similarly to
that for MG, using the universal property 3.2(iii) and the bijective correspon-
dence between principal V,-bundles and ((R™,0),V,)-bundles. Here PL,, is
the group described in 4.1(c). O

Given a regular stable F-object o, we say that « is orientable if a? is
orientable. Given a stable F-object (3, we say that 3 is orientable if it is
equivalent to an orientable regular stable F-object «. Finally, we say that a
stable V-object ¢ is orientable if £* is.

The following stable version of 5.7-5.9 holds.

5.23. Theorem. Let o be a stable F-object over a CW -complex X .

(i) mi(Ta) =0 fori < 0. If X is connected then mo(T'a) = Z for orientable
a and wo(Ta) = Z/2 for non-orientable o, and the root j : S — T« yields a
generator of mo(Tar).
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(ii) Let G be an abelian group. Suppose that either 2G = 0 or « is ori-
entable. Then there are Thom isomorphisms

oo H(X;G) = H(Ta;G), 0% Hy(X;G) = Hiy(Ta; G).

Notice that the (co)homology of a space X appears as the domain, while the
(co)homology of a spectrum T« appears as the range.

Proof. (i) We have m;(Ta) = lim ;4 (Ta™). So, by 5.8(ii), m(Ta) = 0
for ¢ < 0. Furthermore, if j : S™ — T'a™ is a root of T'a™ then

SS™ 5, STa™ — Tatt

is a root of Ta" 1. Hence, by 5.8(ii), 7, (Ta") — w11 (Ta™ 1) is an isomor-
phism, and thus 7 (T'«) is such as claimed.
(ii) The isomorphism, say, ¢ can be constructed as

HY(X;G)= H(XN=2. Q)= H*N(TaV; Q) = H(Tw; G),
where 1 << N. O

In particular, if the base of a is connected, then H°(T«;Z/2) = Z/2,
and H°(Ta) = Z for orientable . Thus, one can define a stable Thom class
uzo € H°(To; Z/2) and, for orientable o, uz € H(T'a) to be a generator of
the group.

Frequently we shall write simply u instead of uz or ugz/s.

Recall that, for every connected spectrum FE, there is a morphism g :
E — H(m(F)) as in 11.4.12.

5.24. Proposition. Let a be a stable F-object, and let u € H*(T'o; mo(Tx))
be a Thom class. We assume that bs a is connected.

(i) If « is orientable then the morphism u : Taw — HZ coincides (up to
sign) with 79 : Taw — HZ.

(i) If o is non-orientable then the morphism u : Taw — HZ/2 coincides
with 7o : Taw — HZ/2.

Proof. We prove (i) only. For simplicity, we denote 79 by 7. It suffices to
prove that 7 € H(Ta) generates H°(Ta) = Z. By 11.4.9, the evaluation

ev:7Z = HTa) — Hom(Hy(T«a),Z) = Hom(Z,Z) = Z

is an isomorphism, and so we must prove that 7. : Ho(Ta) — Ho(HZ) is
an isomorphism. But, since 7 : mo(T'a) — mo(HZ) is an isomorphism, this
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follows from the commutativity of the diagram

mo(Ta) ——— mo(HZ)

;l lg
Ho(To) —— Hy(HZ)

where the vertical isomorphisms are the Hurewicz homomorphisms. ([

Now we introduce a stable analog of (A, K)-markings.

5.25. Definition. (a) Let E be a spectrum, let « be a stable F-object over
X, and let A C mo(FE) be such that +A4 = A. If X is connected, we define
an (A, E)-marking of a to be an element v € E°(Ta) such that j*(v) € A,
where j : S — T« is a root of T'a. If X = LUX, with connected X, we define
an (A, E)-marking of a to be a family {vy}, where vy is an (A, F)-marking
of | X . Furthermore, an (A, E)-marking of a stable V-object £ is defined to
be an (A, E)-marking of £°.

(b) An equivalence of two (A, E)-marked F-, resp. V-objects is an equiv-
alence of F-, resp. V-objects which carries one of the given (A4, E')-markings
to the other.

Let t(r a,5)(X) be the set of all equivalence classes of (A, E')-marked F-
objects over X. An F-object induced from an (A, E)-marked one gets an
obvious (A, E)-marking. So, t(# 4 gy is a functor. I can’t prove the repre-
sentability of ¢z 4 ) on €, but this holds on 4. We prove this below, but
we need some preliminaries.

Let E be an Q-spectrum {E,}, and let Q¥ F be the union of all com-
ponents of Q>°F belonging to A. Since mo(E) = m,(E,) for every n, one
can regard A as a subset of m,(E,) and consider (A, E,,)-markings of F,-
objects. For simplicity, let B,, denote the space B(F,, A, F,) as in 5.11, and
let ¢™ be the universal (4, E,,)-marked F,-object over B,, with the universal
(A, E,)-marking a,, : T¢(" — E,. Then the map

T @ 6Y) = STC™ 2 SE, — By

gives us an (A, E,11)-marking of ¢" @ '. This marking can be classified
by a map b, : B, — Bpt1. We define B(F, A, E) to be the telescope of

brn
the sequence --- — B, LN Bny1 —= .-, and we define B,, (resp. BF,,)
; b
to be the telescope of the finite sequence --- — B; i 2 B, (resp.

Ti—1

- — BF, =L ... L BF,). So, {B,} (resp. {BF,}) is a filtration of
B(F, A, E) (resp. BF). Recall that there are standard deformation retrac-
tions d,, : By, — By, and d,, : BF,, — BF,.

Let l,, : B, — BJF, classify (,.
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5.26. Lemma. The map b, : B, — Bp+1 is (n — 1)-connected.

Proof. Let g, : C,, — BJF,, be a fibrational substitute of [,,. Then there are
maps ¢, : C;, — Cp41 homotopy equivalent to b,, and such that the square

Cn
Cn — CnJr 1

(5.27) qnl lqm
BF, —"— BFni1

commutes up to homotopy, and we can assume (deforming ¢,, if necessary,
using the covering homotopy property) that it commutes. Recall that Ey ~
O"E, ~ Q*E. Thus, by 5.11(ii), the homotopy fiber of ¢, is Q% E,, ~ QX E.
We fix z € BF,, and set ®,, = ¢, *(z), ®pi1 = q;il(rnx). First, we consider
the map ¢, : ®,, — P41, h(a) = c,(a) for every a € @, and prove that ¢,
is a homotopy equivalence.

Given a connected CW-space X, let M, (X) be the set of all (4, E,,)-
markings of 6%. Every (A, E,)-marking v of 6% gives us the (A, E,41)-
marking

0:TOV = STOY = SE, —pny1,

and we define
a:My(X)— M,1(X), a(v) =7,

for every (A, Ey,)-marking v of 0%. Consider the map f : X — {z} C BF,
and the commutative diagram

M, (X) [Lifty, f] (X, ®,]
l ycn)* l(an»
M1 (X) [Lift,, ., cnf] X, Dy 1]

where (¢,)«[g] = [cng] for every g,-lifting g : X — C,, of f. Clearly, for every
connected CW-space X, a is a bijection, and so (¢,)« is a bijection, and thus
¢n is a homotopy equivalence (since ®, ~ Q¥ F is homotopy equivalent to a
C'W -space).

Now, the square (5.27) induces a ladder of the homotopy exact sequences
of fibrations ¢, qn,+1. By the above, ¢, yields a homotopy equivalence of
fibers. Furthermore, by 4.24(ii), r,, is (n — 1)-connected, and so ¢, is (n —1)-
connected (by a diagram chase). (|

We define I, : B,, > B,, % BF, ¢ BF, and consider the ladder

c c
.—— B, ——— Bpi —— ---

an l[n+1

. — BF, —5— BFpi —— -
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This ladder commutes up to homotopy, and we can assume that it is commu-
tative (deforming I,, map by map if necessary, using the homotopy extension
property). Thus, we get a map | = UL, : B(F, A, E) = UB,, — UBF, = BF
of filtered spaces. We set n = [*vr.

Clearly, the universal (A, E,,)-marking a,, on (" yields an (A, F)-marking
v, on (. Furthermore, we have en = (} where e, : B,, — B(F,A,E) is
the inclusion. Consider the morphism T'(e,,n) : T¢G — Tn.

5.28. Proposition. The F-object n admits an (A, E)-marking v such that
T(en,n)*(v) = vy, for every n.

Proof. We have [*¢"t1 = (" @ §'. Consider the Thom spectrum T :=
{T¢", sn}, where s, = T3, cnt1 : STC™ — T¢™FL. For every k > n there is
a map sp_10---0S*"1s, : SFn¢" — T¢*. These maps form a morphism
on : T'¢ — T of spectra.

The family of the universal (A, E,)-markings a,,, n = 1,2,..., yields an
element a € E°(T), and it is clear that ¢} (a) = v, for every n.

By 5.26, the map 1p(z 4,p) is homotopic to a map f : B(F, A E) —
B(F, A, E) such that f(B(F,A, E)»=2) c B,,. Clearly, f*n ~ . We have
g*C" ~ ", where g is the composition g : B(F, A, E)("~2) EN B, 2 B,.

Tj n
Thus, for every n, we get a map Tn"™ ~ Tg*(" Sah LN T¢™, and these maps
form a morphism 7 : Tn — T'. Now, since the diagram

T T(en,n) Ty

H I

¢ s T
commutes, we are able to set v := 7%(a). O

We assume that 7 is equipped with the (A, E)-marking v, and we define
¢:[X,B(F,AE)] = tirap(X),Xc?,
by setting ¢(f) = f*(n) for every map f: X — B(F, A, E).

5.29. Theorem. The function ¢ is bijective for every X € %q. In other
words, the functor t(r a gy : Gta — &ns can be represented by B(F, A, E).
Furthermore, ¢ is surjective for every X € €.

Proof. Let t(, a,E,)(X) be the set of all equivalence classes of (A, E,)-
marked Fp-objects over X. For every Fj,-object 3 the equivalence e :
TlBsy — XL "X°TS as in 5.16 induces an isomorphism ¢* : E™(TS) =
EV(X7"2>TB) — E°(T ), which maps (A, E,)-markings of 3 to (A, E)-
markings of Bs. So, we have a function

On tr, B (X) = tra,m)(X), 0n(B) = B
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On the other hand, for every stable « there is the morphism T, : Taf, —
Ta, where 4, : X(™ — X is the inclusion. It induces a homomorphism

E%(Ta) ) BO(Tan) s EO(S"S%Ta") = E*(Ta™)
which maps (A, E)-markings of « to (A, E,,)-markings of a™. So, we have a
function

Tt am) (X) = tra,8,)(X72), 10(0) = o™
If dim X << n, then 7, is inverse to o,. In particular, o, is bijective if
dim X << n.
Consider the following diagram, where ¢,(f) = f*¢" and k : B, —
B(F, A, E) is the obvious inclusion like (4.7):

[X,B,] —=— [X,B(F, A E)

o e

tFaap)(X) ——  tFaEp)(X)
By 5.28, this diagram commutes. Now, by 5.11(i), ¢y, is bijective. Further-
more, if dim X << n then, by 5.26, k. is bijective, and, by the above, o, is
bijective. Thus, ¢ is bijective for every X € %iq.
The surjectivity of ¢ follows because, by I11.1.16, the map p : [X,Y] —
lim[X (™), Y] is surjective for all X,Y and, in particular, for Y = B(F, A, E).
O

5.30. Proposition. The homotopy fiber of I : B(F,A,E) — BF is QX E.

Proof. Consider the ladder which is composed of the squares (5.27),

- — O, LN Cn+1 ERLEEIN
(5.31) qnl lqm
Tn41

—)B]:nT—n)B]:n-i-l ]

where the (forgetful) maps g, are (2% E)-fibrations. This ladder commutes
up to homotopy, and we can assume that it is commutative (deforming c,,
map by map, using the covering homotopy property). Defining C(A, E) to
be the telescope of the top sequence

c Cn+1
o Oy S Oy 5

we get the map ¢ : C(4, F) — BF, which is the telescope of ¢,’s. Since ¢, is
homotopy equivalent to I, its homotopy fiber is Q% E,, ~ Q¥ E, see 5.11(ii).
So, by 1.41(i), every fiber of ¢, is homotopy equivalent to Q° E. Furthermore,
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by 1.41(iv), ¢ is a quasi-fibration, and every fiber of ¢ is CW-equivalent to
QX E. So, by 1.41(i), the homotopy fiber of ¢ is Q' E. Now the proposition
holds because ¢ is homotopy equivalent to [. ([

We have considered (2-spectra E, but this is not a real restriction. Indeed,
if E is an arbitrary spectrum, take an Q-spectrum E’ equivalent to E, see
I1.1.21, and set B(F, A, E) := B(F, A, E’). Clearly, 5.29 and 5.30 hold in this
case also.

Now we turn to V-objects. Let 1 C(F,A,E) — BF be a fibrational
substitute of the forgetful map | : B(F, A, E) — BF. We define B(V, A, E)
via the pull-back diagram

B(V,A,E) —"— C(F,A,E)

| g
aV

By - BF
By 1.38. B(V, A, E) has the homotopy type of a CW-space. Now, one has an
(A, E)-marked stable V-object 7Y := h*n.

Let t(y,4,g)(X) be the set of all equivalence classes of (A, E')-marked V-

objects over X. Define ¢ : [X, B(V, A, E)] — t( a,5)(X), X € €, by setting
&Y(f) = f*(nY). Now, 5.29 and 5.30 imply the following theorem.

5.32. Theorem. (i) The map ¢V is bijective for every X € %iq. In other

words, the functor ty a gy : Gta — Ens can be represented by B(V, A, E).
Furthermore, ¢y is surjective for every X € €.

(ii) The homotopy fiber of the forgetful map B(V, A, E) — BV is QY E.

O

From here to the end of this section, we choose a natural number N and
fix a base point sg € SY.

5.33. Construction. Consider a map t : X — Fy of a CW-space X. It
yields a map 7 : X x SNV — X x SN 7(2,s) := (a,t(x)(s)). Let i : X C
CX,i(z) = (z,0), be the inclusion of the bottom. We regard X x SV as the
subspace i(X) x SV of CX x SN and define

P (CX % SN )ies Ur (CX x SN )rigne 2225 (CX)tete U (CX )righe = SX.

One can prove that p is a quasi-fibration, see Dold-Thom [1]. Furthermore,
p has a section

SX — (CX x SN)left Ur (CX x SN)right, a— (a,so),

where a € (CX)iegy or a € (CX)right-
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Let £ = & be a fibrational substitute of p. Then, by 1.41(i), £ is an
(SN, x)-fibration (i.e, an Fy-object) over SX.

Alternatively, £ is classified by a map h : SX — BJFy which is the adjoint
maptot: X — Fny ~QBFn.

We define ¢ : X x SN 5 X x SN 22 6N Tt is clear that ¢ factors
through
X xSV  XxSN

_, gN
X _XX{S()} 5

0
Consider the diagram

CX xSV _Xx8N , &

cx - x 9

5.34. Lemma. T¢ ~ C)éé(s Uy SN.

Proof. Clearly, T¢ ~ Cp. Now, Cp = (CXXSN)1 f UxXS (C)éé(SN) .
t right

where Xé(SN C (C%XXSN) . is induced by the inclusion 7 : X € CX and the
left

map Xé(SN — (C)éXXSN) . is induced by 6 : X x SV — CX xSV, 0(z,s) =
right

(i(z),¢(x,s)). Now the lemma follows because X x SV 20X x SN P2, gN
coincides with ¢. O

There are two H-space structures on QY SN, One of them is given via
the loop structure, while another one is given via the compositions of maps
SN — SN The corresponding multiplications are denoted by * and o. These
H-structures do not coincide: for example, if z € QY SNy € QN SV then
THY E QkHS while zoy € QN SN, Note that *1gy : QN SN — QQ’HS is
a homotopy equivalence for every k.

Let X be a pointed connected space, let f : S X — SV be a pointed
map, and let g : X — QVSY be the adjoint map to f. It is easy to see that
g(X) c Q) SN. Consider the composition

t: X LoV 2 QNsN ¢ SFy.
This t gives an Fy-object £ over SX as in 5.33.
5.35. Theorem (cf. May [3], Ravenel [1]). T¢ ~ C(f).

Proof. For simplicity, let ¢ : X x SN — SV denote the projection po, and
let 7 : SV v SN — SN be the folding map, 7|SY = 1g~ for each of the two

summands. Consider the map h: X x SV — X A SN ERN SN, where the first
map collapses the wedge. Since h(z,s0) = so = ¢z, sp) for every z € X,
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the map 7o(h V q) : (X x SV) Vv (X x S¥) — SV factors through a map
k: (X x SN) Uxosegso (X X SN) — SN Consider the composition

@D:XXSNHXX(SN\/SN):(XXSN)UXx{sg}(XXSN)LSN

and denote by o : X — QNS the adjoint map to 1. It is easy to see that
o is homotopic to t = g * 1gn : X — QNSV. Thus, in order to prove the
theorem it suffices to prove that

Of ~ CXxS USN

where ¢ : X >;(S " SN is constructed as  was in 5.34. Consider the diagram

CXx(SNVvsN) Xx(SNvsM)
X

D)

H H

N N N hV
C’)g;(S \/C)g;(S DX>;(S \/X>;(S q SN\/SN ™ SN

where h,q are as in 5.34. By construction, h collapses the factor SN and
therefore induces the map h:XASN = S’N Clearly, h ~ f. There are the
diagrams

CX x SN
CX

XXS h\/q

X =L N v N I, gV,

(CX ASN)v O (X ASN)V

and
(CX ASNYV§" 5> NX v §N YL, N\ gN T, gN.
We set a = mo(h V q), b = 7ro(ﬁ\/q)7 c= ﬂo(ﬁ\/ 1gn). We have
C’XxS CX x SN\, 0X x SN N
Uos™= (T VLT U

CX x SN

~ ((CX A SN ox

) U es™Y ~ ((Cx ASY)v Sy esY
~(Cx ASY) 7SN
Now, the last space is homotopy equivalent to C'f because h~ f. O

5.36. Construction. Let & be an V,,-object over X,V < TOP, and let 6° be
the trivial Vo-object over X. We have T'((x 0°) = TEAX T, and d* (£ x0°) = ¢
where d : X — X x X is the diagonal. Thus, one has the map

A" =TT g exgo : TE — TEN XT.
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In order to construct A" for ¥V = G, we do the following. Let p; : X x X — X
be the projection, pi(z,y) = z. Then T(pi&) ~ T& A X+ (prove this; note
also that pi¢ = ¢ x 6° for V < TOP). Furthermore, d*pi¢é = &, and we define
A" = Tjdﬁﬂfﬁ'

Similarly, if £ is a stable V-object over X, we have a morphism (of spectra)

A:=T(d): T¢ > TEANXT.

6. Homotopy Properties of Certain Thom Spectra

Recall that 7, denotes the mod p Steenrod algebra, see I1.6.25.

6.1. Proposition. The homotopy groups of the Thom spectrum MYV are
finitely generated Z/2-vector spaces. In particular, MV is a Z[2]-local spec-
trum of finite Z[2]-type.

Proof. By 4.27(ix), every group H;(BYV) is finitely generated, and so every
group H;(BV;Z/2) is finite. Thus, by 5.23(ii), every group H;(MV;Z/2) is
finite.

By 5.23(i), MV is connected. The universal stable V-object over BV
is non-orientable, and so, by 5.23(i), mo(MV) = Z/2. Since MV is a ring
spectrum, 7;(MV) is a Z/2-vector space for every i. Hence, by 11.4.24,
2FH;(MV) = 0 for some k = k(i) (take € to be the Serre class of all abelian
groups having 2-primary exponents, see 11.4.23(iii)). Furthermore, H;(MV)
is a finite 2-primary group because H;(MV;Z/2) is finite (use the Univer-
sal Coefficient Theorem 11.4.9). So, by 11.4.24, m;(MV) is a finite 2-primary
group for every i (take € to be the Serre class of all finite 2-primary abelian
groups, see 11.4.23(ii)). Thus, m;(MV) is a finite dimensional Z/2-vector space
for every i. O

6.2. Theorem (Thom [2]). The spectrum MYV is a wedge of suspensions over
HZ/2, i.e., it is a graded Eilenberg-Mac Lane spectrum, MV = H(m.(MV)).

Proof. Let u € H*(MV;Z/2) be the Thom class. By 6.1, MV is a con-
nected Z[2]-local ring spectrum with mo(MV) = Z/2, and so, by I1.7.24 (for
p = 2), it suffices to prove that @Q;(u) # 0 for all ¢ = 0,1,.... Since the
canonical morphisms MO — MYV maps the Thom class to the Thom class,
it suffices to prove that Q;(u) # 0 for the Thom class u € H*(MO;Z/2).
In view of universality of MO and stability of @Q;, it suffices to find a vector
bundle & with Q;(ug) # 0.

Let 1 be the canonical 1-dimensional vector bundle over RP>* = BQ;.
It is well known (see e.g. Stong [3]) that Tn = RP* and that = := u, is
the generator of H'(RP>;Z/2) = Z/2. We prove by induction that Q;(z) =
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22" Firstly, Qo(z) = Sq'z = #2. Suppose that Q,_1(z) = 22" . Then
Qu() = [Qn-1,5¢"")(2) = Qu_18¢” 2 + S¢%" Quorz = S¢% 2" = 27"
The induction is confirmed. O

Now we consider the Thom spectra M SV of orientable V-objects.

6.3. Proposition. Let £ be a V-object over a connected base, and let u =
ug € H"(T&;Z/2) be the Thom class. Then & is orientable iff Sq'(u) = 0.

Proof. Recall that Sq' is the coboundary homomorphism in the exact
sequence

S HU(XZ)2) — H(X;Z/4) — H(X;7/2) S0 1t (X 7/2) — -

induced by the exact sequence 0 — Z/2 — Z/4 — 7Z/2 — 0, see e.g. Mosher—
Tangora [1]. If £ is not orientable, then H,;(T¢) = 0 for i < n, H,(T¢) =7/2,
and so Sq'u # 0. If £ is orientable, then u is the reduction mod 2 of a class
v € HY(T¢), and so Sqlu = 0. O

6.4. Proposition. Fvery group m;(MSYV) is finitely generated. So, MSV has
finite Z-type.

Proof. Since BSYV is the universal covering of BV, we conclude that
m(BSV) = 0 and m;(BY) = m(BSV) for i > 1. By 4.27(ix), the groups
m;(BSYV) are finitely generated, and so the groups H;(BSYV) are finitely gen-
erated (use the mod € Hurewicz Theorem for spaces, where € is the class of
finitely generated abelian groups). So, the groups H;(MSV) = H;(BSV) are
finitely generated. Thus, by 11.4.24, 7;(MSV) are finitely generated. O

6.5. Theorem. MSO|2] is a wedge of spectra of the form Y*HZ and
SFHZ/2. In particular, MSO|2] is a graded Eilenberg-Mac Lane spectrum,
and every torsion element of m.(MSQ) has order 2.

Proof. See Wall [1] (the original proof), Stong [3], Ch. IX, or Theorem
IX.5.14 below. g

6.6. Theorem. MSV[2] is a graded Eilenberg—Mac Lane spectrum.

Proof. By 11.7.1, the homomorphism mo(HZ[2]) — 7o(MSOI2]),1 — 1, is
induced by a morphism f : HZ/2 — MSOJ2]. Since the composition

ao
HZ — HZ[2] £ Msop] 2, sy

satisfies I11.7.7, the result follows. O
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Now we fix an odd prime p and discuss p-primary properties of MSV.
Let j : S — MSV be a root; choose the Thom class v € H°(MSV) with
j*(w) =1 € H°S). Let u € H'(MSV;Z/p) be the reduction mod p of v.
We consider the action of .7, on the class u. Since j : S — MSV is the
unit of the ring spectrum MSV, the class u is the counit of the coalgebra
H*(MSV;Z/p), ct. 11.7.20.

6.7. Lemma. The operations Q;,i > 0, act trivially on H*(MSO;Z/p). In
particular, H*(MSO;Z/p) is an ,/(Qo)-module.

Proof. By 4.29(ii), H*(BSO;Z/p) = 0 for odd k, and so, by 5.23,
H¥(MSO;Z/p) = 0 for odd k. Hence, Q; acts on H*(MSO;Z/p) trivially
because dim Q; is odd. Since the left ideal 7,(Qo, - .. , Qn, - . . ) coincides with
the two-sided ideal (Qo), H*(MSO;Z/p) is an <,/(Qo)-module. O

The following theorem was proved by Averbuch [1], Milnor [4], and
Novikov [1].

6.8. Theorem. H*(MSO;Z/p) is a free o7,/(Qo)-module.

Proof. There is a unique morphism A such that the diagram

g —S e,

Ay (Qo) —2— 2,/(Qo) ® F/(Qo)

commutes. This A turns 7,/(Qo) into a Hopf algebra. Furthermore, the space
of primitives of this Hopf algebra is just Z/p{2?i|i = 1,2,...}. Indeed, the
dual Hopf algebra (27,/(Qo))* is the subalgebra Z/p[&1,... ,&n,...] of &,
Thus, by 11.6.31, it suffices to prove that 2% (u) # 0.

Let n be the canonical 1-dimensional complex vector bundle over C'P>°.
It is well known (see e.g. Husemoller [1], Stong [3]) that Tn = CP> and
that z := u, is a generator of H?(CP>;Z/p) = Z/p. We prove by induction
that 22%¢(z) = 27" (and thus 2% (x) # 0). This implies immediately that
PAi(u) # 0 because of the universality of u. We have 2241 (z) = P!(x) = aP.
Suppose that 2% (z) = 2" . Now,

PAr () =[PP, 2B (z) = PP 2B () £ 2P PP ()
= PP (2" = 2"
The induction is confirmed. O

Based on 6.8, one can prove that 7. (MSQO) has no odd torsion. More pre-
cisely, we have the following theorem (Averbuch—-Milnor—-Novikov). A proof
can be found in Stong [3].
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6.9. Theorem. For every odd prime p,
m.(MSO[p]) = Zp|[z1,-- . , Tk, - . .|, dimx,, = 4n. O

Now we consider the spectrum M SG.

6.10. Theorem. Q;u # 0,i = 1,..., and P™iu # 0,5 = 1,2,... for the
class u =u9 € H*(MSG;Z/p).

Proof. The inequality Z%iu # 0 holds because it holds in MSO.
We prove that Qiu # 0. Consider the Postnikov tower of the p-localized
sphere SN[p], N large. Since H;(SN[p]) = 0 for i > N, the first non-
trivial Postnikov invariant of SN[p] is PL. So, m;(SN[p]) = 0 for N < i <
N +2p — 3, n42p-3(SN[p]) = Z/p. Let f : SN+2r=3 — SN[p] be an es-
sential map. Then HN(Cf;Z/p) = HN*2P=2(Cf;Z/p) = Z/p, and gener-
ators ¢ € HN(Cf;Z/p),y € HNT*=2(Cf;7Z/p) can be chosen such that
Pl(x) = y. Let X be the cone of a map SN+2P=3 — GN+20=3 f degree p;
then the Bockstein homomorphism

8 HN*Y2P=3(X; 2 /p) — HYNP?P2(X; 2/ p)

is an isomorphism, cf. 11.6.27(b). Since [f] € mp42p—3(SV[p]) has order p, f
can be extended to a map g : X — S™[p]. So, the group fI*(Cg;Z/p) is
generated by three elements x,y, z, dimz = N,dimy = N + 2p — 2,dim z =
N +2p — 1. Moreover, BP'xz = 8y = z. Since 3z = 0,

Qix = P'fz — Pz = —BP'z = —2 £ 0.

By 5.35, the space Cg is the Thom space of a certain SV-fibration & over M,
and it is clear that x is the Thom class u¢ of this fibration. Hence, Q1ue # 0,
and so Qru # 0.

Now we prove that Q;u # 0 (following Tsuchia [1], [2]). We use some facts
about the stable homotopy groups of spheres and some standard notation for
their elements, see Toda [1].

Set ¢ = 2p — 2. Consider a map h : SP9~1 — S§P4=1 of degree p and
set M = Ch. The cofiber sequence SP4~1 2 §Pa=1 _ M induces an exact
sequence

B
Tpg+2p—3(M) — Tpgy2p—3(SP7) L Tpg+2p—3(ST).

(This sequence is exact since, by the Freudenthal Suspension Theorem, these
homotopy groups coincide with the stable ones.) Since mpg42,—3(SP?) = Z/p,
the generator of this group has the form h, (o) for some o € Tpgt2,—3(M). Set
L =M Uy et Tt is easy to see that m(,41)4(L) ® Q = Q, i.e., m(p11)q(L)
contains Z as a direct summand. Let ¢ be a generator of this subgroup Z. Set
K = LUy, ePthatl,
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Let b : SP1=! — BSG yield the element 31 € mpg—2(S) (under the iso-
morphism 7;(S) = m;41(BSG)). Since pf = 0, b can be extended to M.
Furthermore, since 7(,11yq—1(BSG) = 0 and 7(41)4(BSG) = Z/p, f can be
extended to some ¢ : K — BSG. Thus, there arises an SV -fibration ¢ over
K, and

T¢ = SN Ug, NP1y, eNtPay, NHEHDay N+ EFHDatt

Here a; is the N-fold suspension of a € mpgiap—3(M) and p corresponds to

the element p € 7, (D*, S*=1) =Z for k=N +pg—1,N+ (p+1)q. Let s €

HN(TEZ)p), epg—1 € HNYPIYTE L p), epg € HNTPUTE Z)p), etc., be

the cohomology classes corresponding to the cells above. Then in T¢ we have:
1. PP(s) = epq-

. PYPP(s) = PPT1(s) = e(pt1)q; PPP(s) = 0.

- BPPH(s) = e(pir)gr1; PPTB(s) = 0.

. PPP13(s) = BPPP!(s) = PPB3P(s) = P13PP(s) = 0.

- Blepg—1) = €pq-

: Pl(e;uq) = e(erl)q?BPl(epq) = €(p+1)g+1-

- Blep+1)q) = €p+1)g+1-

This implies that Q1(s) = 0 and

Q2(s) = PPQ1(s) — Q1PP(s) = —Q1(epq) = BP epg = e(pi1)q+1 # 0.

So, Q2(s) # 0, and hence Q2(u) # 0. Furthermore, Q;(s) = 0 for i > 2
because dim Q;(s) > dim K.

Let 3, be the symmetric group of degree p, and let 7 be its cyclic subgroup
of order p generated by the permutation which sends ¢ to i + 1 mod p. Let
E be a contractible free 7-space. Consider the SPV~!-fibration £ * --- x £ (p
times) over KP with the projection ¢ : Y — KP)Y :=ts(*--- % £). Since 7
acts on Y and KP (via permutations), one can construct the SPY ~1-fibration
n of the form 1 X, ¢ : E XY — E x,; KP. (Here A x, Bis (A x B)/7.)
Furthermore,

T = (B xr (T€)7 = B xr (TE A -~ ATE)/((E/7) x pt)

where A x, B := (A x, B)/A. Let P : HN(T¢;Z/p) — HPN(Tn;Z/p) be
the Steenrod construction, see Steenrod—Epstein [1], Ch. VII, §2. Since P(s)
generates HPN (Tn;Z/p), it is the Thom class of 0. Let d : T¢ — (T€)P be
the diagonal, and let

N O Uk W N

di=1x,d: (B/n)xT¢=Ex;TE — Exy (TE)M.

Finally, let + € HY(E/m;Z/p) = Z/p and y € H*(E/n;Z/p) = Z/p be the
generators. By the definition of the Steenrod operations P7 (see Steenrod—
Epstein [1], Definition VII.3.2), we have

diP(s) = S ()N

J

N(N+1)
2

()" N2 PA(5) ™ N2 6P (s
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where 2m = p — 1. In view of the properties 1-7 above, every summand with
j# 0,p,p+ 1 1is zero. Hence,

d)lkP(S) _ (m!)N(EoymN ® s+ 8pymN—pZ-‘rp ® €pq + €p+1ymN_p2+1 ® e(erl)q)

+ (71)N+m(N2+N)/2IymN*p2 ® C(pi)art,
where g; s 1 or (—1). If i > 2, then Q;(a) = 0 for a = s, €pq, €(p41)q> E(p+1)g+1-
Furthermore, Q;(y) = 0, Q;(x) = y?". Since Q; is primitive, we conclude that

Qidi P(s) = (=1)NHmNTHN2yptymN =27 ep+1)g+1 7 0.
So, Q;P(s) # 0, and thus Q;u # 0. O

6.11. Theorem (Peterson-Toda [1]). MSG is a graded Eilenberg—Mac Lane
spectrum.

Proof. By 11.7.4, it suffices to prove that MSG[p] is a graded Eilenberg—
Mac Lane spectrum for every prime p. For p = 2 this follows from 6.6. If p > 2,
then, by I1.7.14, it suffices to prove that E := MSG A M(Z/p) is a graded
Eilenberg-Mac Lane spectrum. If p > 3, then E is a ring spectrum because
M (Z/p) is (cf. the proof of I1.7.14). Furthermore, the spectrum M = M(Z/3)
admits a non-associative pairing M A M — M, and so E admits a pairing
E N E — FE (possibly non-associative).

Now, mo(E) = Z/p because mo(MSG) = Z. Hence, H*(E;Z/p) is a con-
nected coalgebra (possibly non-associative for p = 3). Let v € H°(E;Z/p) be
its counit. Then, by I1.7.20, Qo(v) # 0 because mo(E) = Z/p. Furthermore,
let ¢ : S — M(Z/p) represent a generator of mo(M(Z/p)) = Z/p. Considering

the map
1AL

f:MSG=MSGAS 25 MSG A (M(Z/p)) = E

we conclude that f*(v) = v € H*(MSG,Z/p) with u as in 6.10. Hence, by
6.10, Q;(v) # 0 for i > 0 and %4 (v) # 0 for j > 0. Thus, by 11.7.24 (and
I1.7.25), E is a graded Eilenberg—Mac Lane spectrum. O

Now we consider the action of the Steenrod algebra 7, on the Thom class
upe € H*(MSPL;Z/p), p > 2.

6.12. Theorem. Q(upz) =0, Q1(upz) =0.

Proof. We have mo(MSPL) = Z. Hence, Hy(MSPL) =7Z = H*(MSPL),
and thus Qo(u) = 0.
Furthermore, Sullivan established a splitting

BSPL[p] ~ BSO[p] x B Coker Jp,
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where B Coker J,, is some mysterious space (a good proof can be found in
Madsen-Milgram [1]). The notation B Coker J, is inspired by the isomor-
phism

mi(B Coker J,) = Coker(J[p] : mi—1(SO[p]) — mi—1(SG[p]))-

So, m;(B Coker J,) = 0 for i < 2p? — 2p — 1, see e.g. Toda [1]. This implies
that H'(B Coker Jp; Z/p) = 0 for i < 2p, and hence

H*~Y(BSPLIp); Z/p) = H*~(BSOIp]; Z/p) = 0.

Thus, Q1(u) = 0 since H*~1(MSPL;Z/p) = 0. (Another proof of the equal-
ity Q1(u) =0 can be found in VI.3.32 below). O

6.13. Theorem. Ifi > 1 then Q;(upc) # 0.

Proof. We use the notation from the proof of 6.10. We have the exact
sequence

7o 1(G/PL]) — g1 (BSPLI)) 2% 7, 1 (BSG[p])
- 7qu—2(g/7)£[p])-

By 4.27(vi), Tpq—1(G/PL[p]) = 0 and mpq—2(G/PL[p]) = Z[p]. Hence, (aF*).
is an isomorphism because mpq—1 (BSG[p]) is finite.

Let f: SP4=! — BSG yield the element 81 € mp—2(S) (under the iso-
morphism ;(S) = m;4.1(BSG)). Since (af*). is an isomorphism, there exists
f: SPa—1 — BSPL with oﬂgjﬁfz f. We prove that fcan be extended to a
map K — BSPL, and then we can follow the proof of 6.10 and prove that
Qi(upc) # 0. B

Elementary obstruction theory implies that f can be extended to some
h : L — BSPL. Given a map M — BSPL, any two of its extensions
hi,hy : L — BSPL differ by a certain element d(h1, ha) € m(p41)q(BSPL),
and every element of 7, 1),(BSPL) can be realized as d(h1, he) with fixed

hy. So, one can construct h : L — BSPL such that h extends f and hi(t) = 0.
Thus, f can be extended to K. O

Tsuchia [2] has proved the following conjecture of Peterson [1].

6.14. Theorem. The kernel of the homomorphism
2 "Q{p - H*(MSPE, Z/p)a @(a) = a(UPL),
18 %(QO? Ql)

Proof. Tt is clear that <7,/7,(Qo, Q1) admits a unique structure of a
coalgebra such that the quotient map ¢ : o4, — o7,/ 9,(Qo, Q1) is a homo-
morphism of coalgebras. Moreover, the dual homomorphism of algebras
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¢ () Fp(Qo, Q1)) = Z/pl&ili > 0] @ Ams]j > 1) C o]

is monic. Since the vector space of indecomposables of (,/%,(Qo, Q1))*
has basis {&;, ;i > 0,5 > 1}, we conclude that the vector space of prim-
itives of @,/,(Qo, Q1) has basis {22, Q;|i > 0, > 1}. By 6.12, the
coalgebra homomorphism ¢ factors through a coalgebra homomorphism
U2y Ip(Qo, Q1) — H*(MSPL;Z/p), and we must prove that ¢ is monic.
By 6.13, ¢¥(Q;) # 0 for ¢ > 1. Furthermore, considering the forgetful mor-
phism MSO — MSPL, we conclude, by 6.8, that ¢(221) # 0. So, 1 is
injective on primitives, and thus, by 11.6.14, it is monic. O

6.15.Theorem. The morphism
T(aZ5p)[1/2] : MSPL[1/2] — MSTOP[1/2]
s an equivalence. In particular, for every odd prime p the morphism
T(aZ6p)[p] : MSPL[p] — MSTOP[p|

s an equivalence. So, theorems 6.12 — 6.14 hold if we replace PL by T OP.

Proof. Let a denote
a?sp : BSPL — BSTOP.
By 4.27(v), a[1/2] : BSPL[1/2] — BSTOP[1/2] is an equivalence, and so
a* : H(BSTOP;Z/p) — H*(BSPL;Z/p)
is an isomorphism for every odd prime p. Hence, by 5.23(ii),
(Ta)* : H*(MSTOP;Z/p) — H* (MSPL;Z/p)

isomorphism, and so, by 11.5.18(ii), (T'a)[p] : TBST OP[p] — TBSPL[p] is
an equivalence for every odd prime p. Recall that X[1/2][p] = X|p] for p
odd and X[1/2][2] = X]0]. Thus, by IL5.19(ii), T(a)[1/2] : MSPL[1/2] —
MSTOP[1/2] is an equivalence.

6.16. Remark. Mahowald [1] proved that HZ is a Thom spectrum of some
stable spherical fibration and that HZ/2 is a Thom spectrum of some stable
vector bundle, see IX.5.8 below. In fact, it makes sense to state the following
problem: how can one recognize whether a given spectrum is a Thom spec-
trum? For example, Rudyak [10] proved that the spectra k and kO are not
Thom spectra.
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§7. Manifolds and (Co)bordism

Throughout this book the word “manifold” means “metrizable, separable, tri-
angulable topological manifold with a finite number of components”. Hence,
every manifold belongs to # since every metrizable space does, see Kelley [1].
The boundary of a manifold M is denoted by M. When we write M™, it
means that the manifold M has dimension n. We consider here topological
(in future TOP), piecewise linear (in future PL), and smooth, i.e., C*°, (in
future DIFF) manifolds. The necessary preliminary information can be found
in Kirby—Siebenmann [1], Munkres [2], [3].

Every DIFF manifold admits a canonical structure of a PL manifold, see
loc. cit., while every PL manifold is a topological manifold for trivial reasons.

Similarly to bundles, we introduce a uniform symbol .7 in order to speak
about manifolds of these three classes simultaneously. For example, “a 7 map
of .7 manifolds” is a map of topological manifolds, or a smooth map of smooth
manifolds, or a PL map of PL manifolds. Furthermore, a .7 isomorphism
is a homeomorphism of topological manifolds, or a PL isomorphism of PL
manifolds, or a diffeomorphism of smooth manifolds.

In view of a well-known connection between manifolds and ((R™,0),V,,)-
bundles, we introduce a uniform mnotation V7, where V;7-bundle means
((R™,0), Op)-bundle, ((R™,0),PL,)-bundle, and ((R™,0),7 OP,)-bundle if
7 is DIFF, PL and TOP respectively.

Clearly, every ((R™,0), Op)-bundle is an ((R™,0), DIFF,)-bundle where
DIFF, is the group of self-diffeomorphisms of (R™,0). Recall that, con-
versely, every ((R",0), DIFF,)-bundle is equivalent to an ((R™,0),O,)-
bundle (via assigning to a diffeomorphism its linear part), see loc. cit.

To justify the notation above, we formulate the following obvious fact.

7.1. Proposition. The total space of any V7 -object over a T manifold is
a T manifold. O

7.2. Definition. A 7 embedding (of .7 manifolds) is a 7 map i : M —
V such that i(M) is a . submanifold of V and ¢ : M — (M) is a
isomorphism. A bordered & embedding is a map i : (M,0M) — (V,0V)
such that the induced maps M — V and OM — 90V are .7 embeddings
and, moreover, i(m,t) = (i(m),t) for some collars OM x I C M,0V x I C 'V,
where m € OM,t € I, and i(M \ (OM x I)) C (V\ (OV x I)).

7.3. Definition. Fix any .7, and let V = V7.

(a) Let ¢ : (M,0M) — (V,0V),dimV = dimM + k, be a bordered
7 embedding of .7 manifolds. A 7 tubular neighborhood of i is a triple
(U, q,€) such that U is a neighborhood of i(M), £ is a Vi-object over M and
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q: (U,i(M)) — (ts&,s(M)) is a .7 isomorphism where s : M — ts¢ is the
zero section of &.

(b) A bundle ¢ which figures in (a) is called a normal bundle of the
embedding <.

7.4. Construction. Given a tubular neighborhood (U, ¢,§) of a bordered
embedding (M,0M) — (V,0V), consider the map

o quotient
_—

b:U Lts¢ Cts¢ TE.

Notice that T¢ = ts€ U {*} where * is the base point of T¢, and define
C,q.¢) + V — TE by setting

b(z) ifzxel,

* otherwise.

cwaefo) = {

Clearly, ¢(y,q,¢)(7) can be decomposed as

quotient
Vv —

V/(V\U) 5 Te.
7.5. Proposition. The map h: V/(V\U) — T¢ is a homeomorphism. O

7.6. Definition. (a) An n-dimensional microbundle over a space X is a
diagram ¢ = {X > E 2, X} with the following properties:
(1) ps=1x;
(2) For every x € X, there are neighborhoods U of = and V of s(x)
and a homeomorphism h, : U x R®™ — V such that ph,(u,v) = u
for all (u,v) € U x R™, hy(u,0) = s(u) for every u € U.
(b) Two microbundles & = {X 2% E; RLN X}, i = 1,2, over X are
equivalent if there are neighborhoods V; of s;(X) in E;, i = 1,2, and a home-
omorphism h : Vi — V5 such that the following diagram commutes:

X S1 Vl p1 X

oL

X 52 va P2 X.

(c) If X, E are .7 manifolds and ¢ = {X = E % X} is a microbundle,
we say that £ is a J microbundle if s and p are  maps and h, is (can be
chosen to be) a J isomorphism for every x.

(d) If X, Eq, By are Z manifolds, we say that two & microbundles &; =
{X 2 E; RiN X}, i=1,2, over X are .7 equivalent if there are V1, V5 and
h such as in (b), but the inclusions V; C E; are required to be .7 maps and
h is required to be a .7 isomorphism.



278 Chapter IV. Thom Spectra

7.7. Theorem. (i) Every V7 -bundle over a 7 manifold is a 7 microbundle.
(ii) Bvery I microbundle over a .7 manifold is equivalent to a V7 -
bundle, and this V7 -bundle is unique up to isomorphism.

Proof. (i) This is trivial.

(ii) This is difficult. We give the references. If .7 is TOP, this is proved in
Kister [1], Siebenmann—Guillou—Hahl [1]. If .7 is PL, resp. DIFF, the proof
can be found in Kuiper-Lashof [1], resp. Milnor [7]. All these cases are also
considered in Kirby—Siebenmann [1]. O

7.8. Theorem. Given a bordered J embedding i : (M,0M) — (V,0V), there
erists N such that the embedding

(M,0M) - (V,0V) L (V x RV, 0V x BY), j(v) = (v,0),
admits a tubular neighborhood.

Proof. We refer the reader to Kirby—Siebenmann [1]. In fact, there the
existence of a neighborhood isomorphic to the total space of a microbundle
is proved, but, because of 7.7(ii), the required result follows. O

We set RY = {(z',... ,2") e RN]2N > 0}.

7.9. Theorem (the Whitney Theorem). Every 7 manifold M"™ admits a
bordered 7 embedding (M,0M) — (RY " ORYT™) for some N = N(M).

Proof. The proof can be found e.g. in Munkres [3] or Dubrovin—Novikov—
Fomenko [1] for 7 = DIFF, but the proof for any .7 can be done in a similar
way. O

7.10. Definition. Given a .7 manifold M, a tangent bundle TM of M is

a V7 -bundle which is equivalent to the microbundle M oM ox MBS M
where d is the diagonal, d(m) = (m, m).

7.11. Proposition. Let & be a normal V7 -bundle of a bordered 7 embedding
i:(M,0M) — (V,0V). Then the V7 -bundles i*7V and M & & over M are

equivalent.

Proof. Do it as an exercise, or see Milnor [7]. O

Of course, if M is a smooth manifold, then 7M is equivalent to the usual
tangent bundle of M (prove it as an exercise, or see Milnor [7]). Furthermore,
ifi : M — V is a smooth embedding of smooth manifolds, then £ is equivalent
to the quotient bundle (¢*7V) /7M.

7.12. Definition. A normal bundle of a 7 manifold M™ is a pair (vV,w)
where vV is a normal V7 -bundle of any bordered .7 embedding (M, dM) —
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(Rf"‘”, 8Rﬁ+”) and w : vV — fy{yg is a classifying morphism for v™. A stable
normal bundle of M is a stable V7 -object v = vy of the form (vV)y =
(N, w)st, where (vV,w) is a normal bundle of M.

Clearly, if M is closed then there is no essential difference between em-
beddings M — RY and bordered embeddings M — Rf . Because of this, we
shall consistently treat a normal bundle of a closed manifold M as a normal
bundle of an embedding M — RY.

7.13. Theorem. Let (vN,wi) and (v, wy) be two normal bundles of a
T -manifold M. Then the V7 -bundles v and v} are stably equivalent. In
particular, the stable normal bundle of M is uniquely defined up to equiva-
lence.

Proof. This follows from 7.11. O

7.14. Proposition. If (v, w) is a normal bundle of M then (v|0M,w|0M)
is a normal bundle of IM (provided OM # 0).

Proof. Let (U, q,v"V) be a tubular neighborhood of a bordered embedding
(M,0M) — (RYT™ ORY ™). Then q(U NORY™™) C ts(vN|0M), and so we
get a map

¢ :UNIRYT™ — tsN|OM, ¢ () := q(a).

Clearly, (UNORY ™™ ¢, uvN|OM) is a tubular neighborhood of i|0M : M —
RN+7=1 = 9RY*", Finally, it is obvious that w|dM classifies vN|OM. O

7.15. Definition. (a) The following special case of 7.4 turns out to be very
important. Let M™ be a closed manifold, and let (U, g, VN) be a tubular
neighborhood of an embedding i : M™ — RN*" We regard SV*+" as the
one-point compactification of RV*" and we consider (U, ¢, V) as a tubular

neighborhood of the embedding M - R¥N+" ¢ SN+7_ The map
N o= C(U,quN) SN+n N

as in 7.4 is called the Browder—Novikov map.
(b) Given data as in (a), let v = (v"V)s. We define a morphism

— N oo,
> Cc, N

>
c: 8" = NNy gN+n wNyeery N = Ty

spectrum space
of spectra, where the last equality follows from 5.16. We call this morphism
¢ the Browder—Novikov morphism.

(c) Let D* be the standard k-dimensional disk. Similarly to above, given
a bordered embedding i : (M,0M) — (RY*", 0RY™"), we can construct
a Browder—Novikov map (DN+m aDN*+7) — (Tvd,, T(vN|OM)), we leave
details to the reader.



280 Chapter IV. Thom Spectra

7.16. Data. Let M be a compact 7 manifold, let f : M — Y be a map, and
let € be a V7 -bundle over a CW-space Z. Suppose that ts ¢ is an open subset
of the space Y. Considering the inclusion Z 5, ts¢ CY,set N = f~1Z and
define g: N — Z,g(n) := f(n),n € N. We set U := f~1(ts¢), and we denote
by i : N — M the inclusion.

7.17. Definition. Given data 7.16, the map f : M — Y is called transverse
to & if the following hold:

(i) N is a .7 submanifold of M.

(ii) There is a tubular neighborhood of ¢ of the form (U, ¢, g*£) such that
the following diagram commutes:

v .y
d Ju
ts(Jg.¢)

ts(g*€) —=> ts&.

7.18. Theorem. We assume data 7.16. Suppose that 7 is TOP and
dim M # 4, or 7 is PL, or . is DIFF. Then every map f' : M — Y
is homotopic to a map f : M — Y which is transverse to £. Moreover, if
A C B C M with A closed and B open and if f'|B is transverse to &, then f
can be chosen such that f'|A = f|A.

Proof. If 7 is DIFF, this can be deduced from the well-known Thom
Transversality Theorem. If 7 is PL, this was proved by Williamson [1] (for
microbundles). Both these cases are also considered in Kirby—Siebenmann [1].
Furthermore, Kirby—Siebenmann [1] proved the theorem when .7 is TOP
and dim M # 4 # dim M — dim&. Scharlemann [1] (cf. also Matsumoto [1])
proved that the theorem holds for dim M — dim & = 4 if there exists a four-
dimensional almost parallelizable topological manifold having signature 8,
and such a manifold was constructed by Freedman [1]. O

7.19. Definition. Fix any 7 and let V = V7. Let ¢ : B — BV be a
(structure) map. Roughly speaking, a (B, ¢)-structure on a manifold is a
(B, p)-structure on its stable normal bundle. We pass to a rigorous definition.

(a) A strict (B, p)-structure on M is a tuple i = (i,U, q,v",w, [a, H])
where i : (M,0M) — (RYT" oRY*") is a 7 bordered embedding, (U, ¢, ")
be a .7 tubular neighborhood of 4, w is a classifying morphism for vV and
[a, H] is a (B, ¢)-structure on vy = (v w), see 4.9.

(b) Given a strict (B, ¢)-structure i = (i,U,q,v",w,[a, H]) on M, we
define its suspension oi to be a strict (B, ¢)-structure

(’L'/, U/, q/’ Z/N o) 91,@7 [a’H’])
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where ¢’ is the embedding

(M,0M) = RYT" ORY*™) ¢ (RYT" x R, ORYT" x R)

— (RernJrl aRernJrl)

U=UxR, ¢ :=qgx1:UxR— (tsvN)xR=ts(vN @), &5:vN 9o —
7{}\“'1 is the classifying morphism as in 4.14(b), and [a/, H'] = Kyvs|a, H] as
in 4.13.
(c) Let iy = (ig, Uk, qr, vi¥ , wr, lak, Hi]), k = 0,1 be two (B, p)-structures

on M. We say that ig and i; are equivalent if there is a morphism h : ¥ — v
over M and a family J; : (RY ™" oRY ") — (RY T ORY ™) ¢ € I with the
following properties:

(1) The map J: (RYT" ORYT™) x T — (RYT" oRY*") x I, J(z,t) =

(Je(x),t), is a 7 isomorphism;
(2) Ji(Uy) = Un, J1(ig(m)) = i1(m) for every m € M;

(g0)7" J a . .
Uy 5 Uy == tsv coincides with

(3) The composition ts 1Y

ts h;

(4) wo=wih: 1 — Y

(5) the (B, p)-structure [a1, H1] on (¥)s is induced by h from the
(B, ¢)-structure [ag, Ho] on (1), as it is defined in 4.12(ii), i.e.,
[a'H'] = h'[a, H].

(d) We say that two strict (B, ¢)-structures iy and i; are stably equivalent
if there are non-negative integers k, [ such that the (B, ¢)-structures o*iy and
oli; are equivalent. (Here, of course, 0% = i and o*i = oo*~1i.) We denote
by [i] the class of stable equivalence of the strict (B, ¢)-structure i.

(e) A (B, ¢)-structure on M is a class of stably equivalent strict (B, ¢)-
structures on it. A (B, p)-manifold is a manifold equipped with a (B, ¢)-

structure.

7.20. Constructions. (a) Let a (B, ¢)-structure on M be represented by a
strict (B, p)-structure i = (i, U, q, v~ ,w, [a, H]), and let j : 9M — M be the
inclusion. We define the induced (B, ¢)-structure

' =@G"U, ¢, VN|8M, W' la’, H'))

on OM as follows: (U’,q', vV |0M) is the tubular neighborhood defined in the
proof of 7.14, w' := w|OM, and [a’, H'] := j'[a, H], as it is defined in 4.12.

(b) For every strict (B, ¢)-structure i = (i, U, ¢, vV, w, [a, H]) on M, there
exists a strict (B, p)-structure i’ = (i',U’,¢’,vV|0M,w’, [a’, H']) such that
[i] =[] and U’ C {(2?,... ,a™*") e RYF" | 2N+ > 0} (prove this).

(c) Given two (B, ¢)-manifolds M and M’ of the same dimension n, we
equip the disjoint union M U M’ with the following (B, ¢)-structure. Let
i=(i,U,q,v"N,w,[a, H]) (vesp. i’ = (i',U’, ¢, Z/N,|6M, W' [a’, H'])) represent
a (B, )-structure on M (resp. on M’). Without loss of generality we can
assume that N’ = N and that U C {(z%,...,2"¥*") e RY™ | 2! > 0},
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U {(at,...,a"+) e R | 2! < 0}. We define j : M UM’ — RY ™ by
requiring j|M =i, j|M’ = i’. Then we get a strict (B, ¢)-structure (4, UUU’,
etc.) on M U M.

The construction 7.20(a) can be generalized. If M™ is a submanifold of V"
with a trivial normal bundle v = I/‘I/VI then every trivialization of v yields an
isomorphism vp; = 1/V|M @ v. (This is more or less clear, but it is not so easy
to write it down neatly.) Then, in view of 4.11-4.14, every (B, ¢)-structure on V
yields a (B, ¢)-structure on M. In fact, in 7.20(a) we considered the (equivalence
class of a) trivialization given by the inner normal.

7.21. Definition. Let a (B, p)-structure on M be represented by a strict
(B, ¢)-structure i := (i,U,q,v",w,[a, H]). Consider the suspension oi =
@, U', ¢, vN @ 0,,[a, H]), see 7.19(b). The morphism 1 @ e as in 4.14(a)
defines the opposite (B, p)-structure (1 @ e)'[a, H] on vV @ 6, and we set
—oi:= (", U, ¢, vN ©0,&,(1 3 e)'[a, H]). The (B, p)-structure on M given
by —oi is called the opposite (B, p)-structure to that given by i.

The opposite (B, ¢)-structure to [i] is denoted by —[i]. Furthermore, given
a (B, y)-manifold M, we denote by —M the (B, ¢)-manifold which coincides
with M as a manifold but has the opposite (B, ¢)-structure.

We leave it to the reader to prove that opposite to opposite is the original
(B, p)-structure, i.e., that “to be opposite” is a symmetric relation.

An example of the opposite structure is the opposite orientation, see V.1.1.
We recommend it to the reader to keep it in the mind whenever we discuss
opposite structures.

Consider a closed (B, ¢)-manifold M and choose a representing strict
(B, ¢)-structure iy = (i, U, q,v™,w, [a, H]). Here we assume that 7 is an em-

bedding i : M — RN*" and that U C {(z!,... ,zV*") ¢ RN+ |zN+n > 0},
Let (u!,... ,u¥*™") be the coordinates of a point u € U. We define a bordered
embedding j : U x I — {x € RVT"+1 | zN+n+1 > 0} by setting
jlu,t) = (ut, ... uNFTT Nt cos ot uN T sin ), t € T
N+n+1
R o .
J((M) XI)
JU>X1I)
(M)

RN+I1

N/
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Furthermore, we define a tubular neighborhood (§(U x I),r, vV x 11) of
Jl(i(M) x I) by setting

r(j(u,t)) == (a(u),t) € ts(™) x I =ts(v™ x 1j).

Finally, we define the morphism v : vV x1; — vV ts)(z,t) = x. Then we
get a strict (B, ¢)-structure (5, (U x I),r,vN x 17, wi,¢'[a, H]) on M x I.
Hence, by 7.20, this (B, )-structure yields a strict (B, y)-structure i; on
M =M x {1}.

7.22. Proposition. The (B, p)-structures ig and iy on M are opposite to
one another.

Proof. We define J; : RN+n+1  RN+n+1 by setting

Jt(l’l, o ,l,NJrn’ zNJrnJrl) = (:Z:l, o ,l,NJrnfl’ zNJrn N+n+1

cost, T sint),

and we define h : vy @ 01 — v; @ 6! to be the unique morphism with the
property 7.19(c,3). It is easy to see that {J;, h} gives an equivalence between
oi; and —oig. [l

7.23. Construction. Let ¢ : B — BVY7 be a structure map. Given a (B, ¢)-
manifold M and a 7 isomorphism f : L. — M, we can canonically equip L
with a (B, ¢)-structure. Namely, the embedding ¢ : M — RJ_X " vields the
embedding if : L — RY*", etc. We denote this (B, ¢)-structure on L by f'[i]
where [i] is the (B, )-structure on M.

Furthermore, given a .7 isomorphism f : L — M of (B, ¢)-manifolds, we
say that f is a (B, ¢)-isomorphism of (B, ¢)-manifolds if f'[ias] = [iz].

7.24. Construction. Given two compact n-dimensional (B, )-manifolds
L, M, let

f:0L — M
be a 7 isomorphism such that f'[igas] = —[igr]- Recall that LUy M admits a
canonical structure of a .7 manifold. We equip LU; M with a (B, ¢)-structure
as follows. Take strict (B, p)-structures i, = (i, Uo, g0, ", [a0, Ho]) and
—in = (i1, Ur, q1, v, [a1, Hy]). Since f'ligr] = —[ians], we can assume that

i0|OL = i1]0M . Furthermore, we assume that, for some collar L x I of JL,
we have i(l,t) = (io(l), tz¥*t™), ie., L meets RN*"~1 = gRY*" orthogo-
nally. Similarly for ;. We can also assume that Uy N BRiV T =U N BRiV tn
and go|OL : Uy N 8Rf+n — t8(vp|OL) coincides with ¢1|0M : Uy N 8Rf+n —
ts(11|0OM).
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Consider the map

x:RNT S RN (@t 2N = (@ 2N

) ) ) )

and define the embedding i : LUy M — RN*" by setting (1) = ig(l) if l € L
and i(m) = xi1(m) if m € M. Now we can regard i as a .7 embedding, and
the (B, ¢)-structures on L and M yield a certain (B, ¢)-structure on LUy M.
In other words, the (B, ¢)-structure on LUy M is the result of gluing the ones
on L and M, and we are able to make a gluing because f'[ignr] = —[iaz].

7.25. Definition. (a) A singular (B, ¢)-manifold (M", f) of dimension n in
a space X is amap f: M™ — X, where M™ is a compact (B, ¢)-manifold.
The singular manifold (M, f) is called closed if M is closed. We say that a
closed singular (B, y)-manifold f : M™ — X bounds if there is a singular
manifold F : V"1 — X where V is a (B, ¢)-manifold such that 9V = M as
(B, ¢)-manifolds and F|M = f. In this case we write (V, F) = (M, f). We
say that two closed singular (B, ¢)-manifolds e : L — X and f: M — X are
(B, p)-bordant if e U (—f) : LU (—M) — X bounds. Here (—f): (—-M) - X
coincides with f as a map of spaces, but —M is equipped with the opposite
(B, ¢)-structure to M. A singular manifold (V, F') with (V, F') = (LU—M, elJ
—f) is called a membrane or a bordism between (L, e) and (M, f).

(b) The relation “to be bordant” is called also the bordism relation. This
is an equivalence relation (prove this; the reflexivity follows from 7.22). The
(B, ¢)-bordism class of a closed singular (B, y)-manifold f : M — X is
denoted by [M, f]. When X is a point we write just [M] rather then [M, f].
The set of all n-dimensional bordism classes in X is called an n-dimensional
(B, ¢)-bordism set of X and is denoted by Q;B’“’)(X), cf. Atiyah [1].

7.26. Proposition. The operation Ll of disjoint union of singular manifolds
induces an abelian group structure on the set Q%B’LP)(X).

Proof. Tt is easy to see that LI induces a well-defined associative and com-
mutative operation + on QSLB’W)(X), [L,e] + [M, f] :=[LUM, el f].

Any singular (B, ¢)-manifold which bounds can play the role of the
neutral element. Indeed, let (A,0) bound. Consider a singular manifold
f M — X and recall that, by 7.22, (M, f) U (—M,—f) bounds. So,
(=M, —f)u (M, f)U (A, o) bounds, i.e., (M, f) is bordant to (M, f)U (A,0),
ie., [M, fl4+[A,0] = [M, f], i.e., [4, o] is the neutral element 0. Furthermore,
since (—M, — f)U(M, f)U(A, o) bounds, we conclude that [—M, — f]+[M, f] =
0, i.e., we find the opposite element for every [M, f].

It remains to find a singular manifold (A, 0) which bounds. Consider the
disk D = D™*! and define O : D — X to be a constant map. Since the stable
normal bundle of D is classified by a constant map D — BY, D admits a
(B, p)-structure, and so (D, O) converts into a singular (B, ¢)-manifold. Now,
set (4,0) :=9(D,0) = (S™, constant).
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Thus, Q%B’W)(X) gets the structure of an abelian group. O

Frequently one chooses the bordism class of the empty set as the neutral ele-
ment, but I did not do it since I want to avoid a discussion about structures on the
empty manifold.

According to 5.12(f), there is a Thom spectrum T'(B, ). The following
theorem connects homotopy theory and geometry and plays the pivotal role
in algebraic topology.

7.27. Theorem (the Pontrjagin-Thom Theorem). There is a natural iso-
morphism Q%B’SO)(X) > T(B,¢)n(X).

Proof. Throughout the proof S* denotes the space (not the spectrum),
while S denotes the sphere spectrum.

We construct a function O : Q%B’SO)(X) — T'(B, ¢)n(X) and prove that it
is an isomorphism. Recall that

T(Bv @)H(X) = Wn(T(Ba 90) A X+)'

Let f : M™ — X be a closed singular (B, ¢)-manifold in X, and let
the (B, )-structure on M be represented by a strict (B, p)-structure i =
(i,U,q,vN,w, [a, H]); here we consider i as an embedding M™ c RN+", By
5.15, the (B, ¢)-prestructure (a, H) on v = v/} yields a morphism

Ty(a) : Tv — T(B, ¢),

and its homotopy class depends only on the (B, p)-structure [a, H].
Let A : Tv — Tv AM™ be the morphism as in 5.36, and let ¢ : ¥*S — Tv
be the Browder-Novikov morphism as in 7.15(b). The composition

(a)nft

IS S Ty Ay A Mt N T g oy A xt
(M) P

gives us an element [B(ys,5)] € T(B, ¢)n(X), and we set O[M, f] = [Bear, p))-

We prove that stably equivalent strict (B, p)-structures on (M, f) give
the same element [B(nr,)]. Clearly, /BE’M” = /BEM,f)' Hence, we must prove
that equivalent strict (B, ¢)-structures on (M, f) give homotopic morphisms
S — T(B,p). So, let (Ji, h) as in 7.19(c) give an equivalence between strict
(B, p)-structures i and i’ on M. Define J : RN+" x [ — RN J(z,t) :=
Ji(z,t). Consider the bordered embedding

G M X T — RN XL j(m,t) = (Jy(m), 1)
and its tubular neighborhood (U, q,v" x 1;) where
U:=JU xI), q(J(u,t)) = (q(u),t) € (tsv™) x I =ts(v x 11).
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Now, following 7.4, and 7.15(a), construct a map u” : SN*"x I — T(vN x 1)
(by collapsing the complement of U). Clearly, u” can be decomposed as

SN+ AOUNE N 1+ 2 (N ),

Furthermore, the projection v~ x 1; — v/~ induces a map T'(v" xI) — Tv",
and we get the map

w: SN AT LI»T(VN x I) — Tv™.
Now we consider the morphism
SNRy  SnG AT = BN R (9Nt A 1) 22U w-Nyeory N > 7y,
the last isomorphism is given by 5.16. Finally, we define

N geo0 ADOAFT
E:xrs ATt Z0ET0 oy, Ay gt TH@ONT

T(B,o) A XT.
It is easy to see that F is a homotopy between ﬂEM,f) and Béle).

We prove that © is well-defined, i.e., that [Bar, )] = [Ber,e)) if (M, f) and
(L,e) are (B, p)-bordant. Clearly, [Bn,pyun,g)l = (B, 1)) + [Bwv,g)]- So, it
suffices to prove that [By, 5] = 0 if (M, f) bounds.

Let (M, f) = 9(V, f) as (B, p)-manifolds. Choose a representing strict
(B, p)-structure on V and consider the induced (B, ¢)-structure on M. Let
V{/V , resp. VAA}, be the corresponding normal bundle of V', resp. M recall that

v, = vy [M. Then, by 7.15(c), we have the commutative diagram

N
SN+ —— T(vg))

ﬂl lNlﬂ
DN T ()

where ¢V is the Browder—Novikov map and [V is induced by the inclusion
vl C V{/V. In particular, the map [N is inessential. Let vy = (v3))st
and vy = (I/‘J/V )st- Then the above diagram induces the following homotopy

commutative diagram in .%:
S —5— Tvy —— Ty AMY ——— T(B,p) A XT
o I H
Tvy —— Tvy AVt ——— T(B,o) NXT;

here | = X~ NE>V the top line is B,y and the morphisms in the bottom
line are similar to the corresponding morphisms in the top line. Now, we
conclude that By, sy is inessential since lc = NS (NN is.
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So, we have constructed a well-defined map
0: QP P(X) = T(B, ¢)n(X).

It is easy to see that © is a homomorphism.
Now we prove that © is an isomorphism. Firstly, we prove that © is epic.

v

Let BV, be the telescope of the finite sequence {BV; — - - - BAN BV, },
and let By be the maximal CW-complex contained in ¢~(BVy). We set
¢k o= ng’yk where v* is the universal Vy-bundle over BV, and ¢ : By —
BV}, is a restriction of . Note that ts(¢¥ x 6°) is a neighborhood of By, x X
in T¢k A X+, Clearly, T(B, ¢) = {T¢*}, cf 5.12(a,b), 5.15.

Let 2 € T(B,¢)n(X) be represented by b’ : SNT7 — T(N A X+ N =
N(x). By 7.18, we can deform A’ into a map h : SN+ — T¢N A X+ which
is transverse to ¢V x 6°. We set M := h~!(Bx x X) and consider the map

f=fr M ByxXx X

where E(m) = h(m) for every m € M. Furthermore, we set g := p1f :
M — By. Finally, we notice that (¢V)s; gets a canonical (B, ¢)-prestructure
(pv,G) where v : By — B is the inclusion and G(b,t) = ¢v(b) for every
(b, t) € By x 1.

By 7.17(i), M is a Z-manifold. Now we equip M with the following strict
(B, p)-structure i = (i, U, q, g*¢"V,w, [a, H]):

i: M C RNT = GV [o0} is given by the inclusion M C SV
(U, q,9*¢"N) is the tubular neighborhood provided by 7.17(ii);
wi=TgeNnTpy N ¢ g N — AN

[a, H] := 3, -x[pv, G], see 4.12(ii).

So, f + M — X turns into a singular (B, y)-manifold in X. Clearly,
O[M, f] = x, i.e., © is an epimorphism.

We prove that © is monic, but we need some preliminaries. Let (M, f)
be a closed singular (B, ¢)-manifold in X, and let i = (i,U, q, f*¢"V,w, [a, H))
be a strict (B, ¢)-structure on M. Given k > N, we denote by v* the bundle
vN @ =N ie., the normal bundle of M with respect to ¢*~"i. Now, given
a morphism ¢ = 9y : ¥ — (¥ of Vi-bundles, we have the map

k k +
(7.28) by =byy: SF S Tk B Tk A Mt AT ek A xt

where c* is the Browder-Novikov map and AF is a map as in 5.36.

7.29. Lemma. Given a closed singular (B, p)-manifold f : M™ — X, there
ezists a natural number k and a morphism 1 : v* — ¥ such that the mor-
phism By : XS — T(B, ) A X is homotopic to the morphism
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—kwoo .
s g — y-kyoo gntk 5Ty SRS (TR A XT) 5 T(B, o) A XT

where iy is the morphism 11.(1.4). Moreover, if B(ar,y) is an inessential mor-
phism then k and 1 can be chosen so that by is an inessential map.

Proof. We have the strict (B, ¢)-structure i = (i, U, ¢, V", w, [a, H]). Given
k < N, we define wy, : ¥ — v* to be the composition

_ 1 _ ®1 _N—
Vk:VN@ekNWEB ,yN@GknPN 7N+1@9kN1—>"'

k

— et 2 R,

and we set fi, := bswy. Fix a (B, p)-structure on v = v{ = vk,

Since M is compact, and since | J B,, = B, there is a number k£ and maps
ag : M — By and Hy : M x I — BVj with the following properties:

(1) The composition M % By, C B coincides with a;

(2) The composition M x I v, BY), — BV coincides with H;

(3) H is a homotopy between ¢yay and fi.

We define r : M xI — M xI,r(m,t) = (m,1).So, Hyr = frop1 : MxI —
BV}, and hence we have the morphism

%’UJ k
w:v® x 1 =5 (frop1)*(¥F) = r* Hyy* —— Hpy"

Since Hy|(M x {0}) = pray, the restriction of u to the bundles over M x {0}
yields the morphism

J k
ko k * ag¢
vk =0k x {0} — akgok'yk = aka LN
It is clear that ﬂ(M,f) has the form

—k sv00 .
Z BT skyeo(Tch A XH) (B, ) A Xt

nnS = nhEeghtn
with by as in (7.28).
Now we prove the last assertion (about inessential morphisms). Recall
that m,(T(B,p) A XT) = lim, 00 T+ (TC"), and, by the above, the homo-
morphism
7Tn+k(T<k) - Tlggo T (TC")

maps [bi] = [by,i] € Tn4r(TCF) to [Bar,p)]. Let 7 : BVy — BVjq1 be the
inclusion. Given ay and Hy, as above, we set ag41 := rrpax and Hy 1 = 7 H.
Then the pair (ary1, Hry1) yields a new morphism ¢ = g1 : (81— yk+1
and we get an element bg1. Clearly, the homomorphism

Tk (TCH) = Mngpir (TCH)
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maps [bg] to [br+1]. So, we have a sequence
k] = [brta] — - = o] — - -
where each [b,,] maps to s,y under the homomorphism
Pk (TC™) = T 7, (TC7)
Thus, if [B(ar,f)] = 0 then [b,,] = 0 for m large enough. B

We continue the proof of the theorem. We prove that © is monic, i.e., we
suppose that [B(as, )] = 0 and prove that (M, f) bounds. Consider any map
b=10by: Sntk s T¢F as in 7.29; by 7.29, we can assume that b is inessential,
i.e., b can be extended to a map ¢’ : D*F+1 — Tk We regard D" HF+1 ag
Sktn 5 [/Sk+1 x {1}, and we let [z,t] € D"+ be the equivalence class of
(z,t) € S¥+nx . Givene € (0,1), we can assume that ¢'[z,t] = ¢'[x,0] = b(z)
for every (x,t) € S"T* x [0,¢). Then, clearly, ¢’ | Sk+n % [0,¢) is transverse
to ¢* x 09, Hence, by 7.18, ¢’ is homotopic to a map ¢ : D" F+1 — T¢F A X+
which is transverse to ¢*¥ x 6° and , moreover, g ’ Sktn — ¢ ‘ Sktn — b We
set V := ¢ 1(Bg x X) and define

F:V % B x X 2 X, 5(v) := g(v) for every v € V.

Now, asserting as in the proof of the epimorphicity of ©, we turn (V, F') into a
certain (B, ¢)-manifold. Clearly, O(V, F') = (M, f) as (B, ¢)-manifolds. O

Theorem 7.27 shows that QiB"p) can be considered as a homology theory.
Namely, we can set Q529 (X, A) = QP9 (X/A) = 1, (T(B, p)A\(X/A)), ete.
Geometrically, the group Q%B’“’)(X ,A) can be described as follows. A closed
singular (B, ¢)-manifold in a pair (X, A) is a map f : (M,0M) — (X, A)
of a compact (B, p)-manifold M. Of course, M = () if A = (). We say that
a closed singular manifold f : (M,0M) — (X, A) bounds if there exists a
map F : V — X such that M is a (B, ¢)-submanifold of 0V, F|M = f,
and F(OV \ M) C A. Now, similarly to 7.25, we can define the bordism
classes [M, f], which form a group Q%B"P)(X , A). Furthermore, we define 9 :
QP9 (x, A) - QP9 (4) by setting O[M, f] = [OM, f|oM]. One can prove
that {Q;B"p), 0} is a homology theory. See the details in Conner [1], Stong [3].

7.30. Definition. The homology theory T'(B, ¢).(—) = QiB’W)(f) is called
a (B, p)-bordism theory. The dual cohomology theory T(B, ¢)*(—) is called
a cobordism theory.

If ¢ : B — BV is a multiplicative structure map (see 4.22), then there
is the following pairing T'(B,¢) AT (B, ) — T(B,¢). Set v = vy and A :=
©*vy. Now, the homotopy H yields the following equivalence over B

* ok

1(N) = wpe™y ~p (9 x ©) 1 () = (e x @)* (y A" 7) = A" A,
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and we get a pairing
1 T(B, o) NT(B,g) = TANTA ~ T(AA"N) 225 T = T(B, ),
where the equivalence is given by 5.21(i). This pairing induces a pairing
T(B, 9)m(X) @T(B,)n(Y) = T(B,@)min(X X Y),
i.e., by 7.27, a pairing

QB2)(X) @ QP (V) - QP2 (X x V).

m n

We leave it to the reader to prove that this pairing has the form

{f M—-X}{g:N=>Y}r—{fxg: MxN—->XxY}

7.31. Examples. (a) (Pontrjagin, 1937, the available publication is Pontr-
jagin [2]). Let B be a contractible space. Then T(B, ¢) ~ S, i.e., the corre-
sponding bordism group is just IL.(X) for every space X. Geometrically, a
(B, ¢)-manifold is just a manifold with an equivalence class of trivializations
of its normal bundle. Such manifolds are called framed manifolds.

Pontrjagin used (proved) 7.27 with .7 = DIFF in order to compute m.(S),
and this was the first application of (co)bordism.

(b) (Milnor [4], Novikov [1]). There is a Thom spectrum T'(BU, R) where
R : BU — BSO is the realification. Geometrically, (BU, R)-manifold is
a smooth manifold with an equivalence class of complex vector bundle
structures on vV, N >> dim M. Such a manifold is called a stably almost
complex manifold. The corresponding (co)bordism group is called complex
(co)bordism.

The spectrum T (BU, R) is usually denoted by MU and can also be
described as follows. Let MU, be the Thom space Ty¢ of the univer-
sal m-dimensional complex vector bundle ¢ over BU,. Let r, = o
BU, — BlUy,y1 classify the bundle 7% @ 6. Without loss of general-
ity we can assume that r, is a CW-embedding. We consider the map
Tryp = T3, n+1 : S?MuU,, — MU,+1. Then MU = {(MU),, s,}, where
(MU)Qn = Mun, (MU)gn.H = SMUn and Son = 15Mun, Son4+1 = Trn.

Following 5.22, one can prove that MU is a ring spectrum.

(c) Let ¢ : BSY — BV, V < TOP, be the direct limit of the two-sheeted
coverings BSV,, — BV, see the text after 4.28. Then a V-object ¢ admits a
(B, p)-structure iff it is orientable in the sense of 5.6. It is easy to see that in
this case a (B, p)-manifold is in fact a manifold which is oriented in the clas-
sical sense (see the definition e.g. in Dold [5]), cf. V.2.4 below. In particular,
H,,(M,0M) = Z for every connected (B, ¢)-manifold M™, and an orientation
[M,0M] of M is just a generator (either of two) of the group H, (M,0M) =
Z. Furthermore, if M = L7, M where every M; is a connected manifold,
then H,, (M,0M) = ©H, (M;,0M;) = Z*, and an orientation [M,9M] of M
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is an element [M,0M] = ([My,0M,],... ,[My,0My)) € ZF = H, (M), where
[M;, 0M;] is an orientation of M;.

The groups m,(MSO) were computed by Averbuch-Milnor—Novikov—
Rochlin—Wall-Thom; the complete information about these groups is con-
tained in Stong [3] (cf. 6.5 and 6.9). The groups m,(MSPL) have not been
computed yet.

(d) We can consider the structure 1 : BY — BYV. In this case opposite
structure coincides with the original one. In particular, every element of the
group MV, (X) has order 2. Of course, this follows also from 6.1. Actually,
7« (M O) was the first example of the successful complete calculation of the
(co)bordism groups, Thom [2]. Namely,

T (MO) =Z/2[x; | dima; =i,i € N, i #2° - 1].

Furthermore, the groups m.(MPL) and 7, (M7 OP) are computed by
Brumfiel-Madsen—Milgram [1]

(e) Many other interesting examples are considered in Stong [3]. I want
also to remark that the general concept of (B, ¢)-(co)bordism was originated
by Lashof [1] and developed by Stong [3].

Pontrjagin used bordism in order to calculate homotopy groups, while
in other examples one applies homotopy techniques in order to investigate
bordism. It is reflected in the following: Pontrjagin introduced exotic objects
(framed manifolds) in order to compute homotopy groups of very natural
objects (spheres), while Thom computed homotopy groups of exotic objects
(Thom spaces MSO,,, MO,,) in order to deal with very natural objects (man-
ifolds).

Now we consider the problem of realizability of homology classes. Let
M™ be a closed connected manifold and [[M]] € H,(M;Z/2) = Z/2 be its
fundamental class mod 2, i.e., [M]] # 0 € Z/2. If M = U¥_| M[* where every
M is a closed connected manifold, set

[M]) = ([M]], - - [[MR]]) € (2/2)" = Ho(M;2/2).

Given a space X and a map f: M — X, we get a homology class f.[[M]] €
H,(X;Z/2). We say that a homology class z € H,(X;Z/2) can be realized
(by a manifold) if it can be represented as f.[[M]] with some f: M — X.

Similarly, we say that a homology class z € H,,(X) can be realized if it
can be represented as f.[M] with some f : M — X, where M" is a closed
oriented manifold and [M] € H, (M) is an orientation as in 7.31(c).

Question: Can every homology class be realized? If not, how can one
describe the realizable classes? Moreover, we can restrict this problem, con-
sidering .7 manifolds with given 7, or even (B, p)-manifolds with some

(B,¢).
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Define a homomorphism
t*  MSV,.(X) — H,(X)

as follows. By 7.27, MSV,,(X) can be interpreted as the bordism group of

oriented manifolds. If an element a € MSV,,(X) is represented by a singular

oriented manifold f: M — X, set t¥X(a) := f.[M] € H,(X). We leave it to

the reader to prove that ¥ is a well-defined homomorphism. It is clear that

the image of t consists precisely of all realizable integral homology classes.
Similarly, we define a homomorphism

o MV,.(X) = H(X;Z/2)

by setting tX[M, f] = f.[[M]] € H.(X;Z/2) for every f : M™ — X. The
image of t consists precisely of all realizable homology classes mod 2.
The homomorphisms t¥,tX are called the Steenrod—Thom homomor-

phisms.

The Thom class u € H°(MSV) gives us a morphism u : MSV — HZ.
Hence, for every space X we have a homomorphism

u™ : MSV.(X) — H.(X).
Furthermore, u generates H°(MS&YV), and so, by 5.24(i), the homomorphism
uP' 1 Z = MSVo(pt) — Ho(pt) = Z

is an isomorphism. We choose u such that uP*(1) = 1.
Similarly, the Thom class 4 € H°(MV;Z/2) gives us a homomorphism
wX : MV.(X) — H.(X;Z/2) natural in X.

X

7.32. Proposition. (i) The homomorphism u*X coincides with tX. Further-

more, uX coincides with the edge homomorphism

M8V (X) = BB, _i(X) — Exy(X) C B2 o(X) = Hy(X)

,n—1

in the AHSS E? (X) = MSV.(X), E2 (X) = Hy(X; 1 (MSV)).

X X

(ii) The homomorphism 4~ coincides with % . Furthermore, X coincides

with the edge homomorphism

MV, (X) = @EY,_(X) — EXy(X) C E2 o(X) = Hn(X;Z/2)

1,m—1

in the AHSS E: (X) = MV.(X), E2(X) = Hy(X; 7, (MV)).

Proof. We prove only (i). Given a CW-pair (X, A), we define a homomor-
phism
tA S MSY,.(X,A) — H, (X, A)

as follows. Let f : (M,0M) — (X, A) be a singular oriented manifold in the
pair (X, A), and let [M,0M] € H,(M,0M) be the orientation of M. Then
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we have a homology class f.[M,dM] € H, (X, A). Now, we set t XA [ M, f] =
f«[M,0M]. Clearly, (X0 = ¢X,

It is obvious that the family t = {t(X4) : MSY, (X, A) — H.(X,A)} is
a morphism of homology theories. By I11.3.23(ii), this morphism t is induced
by a morphism t : MSV — HZ of spectra. Since t*' : Z = MSVy(pt) —
H.(pt) = Z is an isomorphism, the element t € H(MSV) = Z must be a
generator, cf. 5.24. So, t = £u. But both morphisms t and v map 1 to 1, and
so t =wu.

Similarly, one can see that the edge homomorphism is natural, and so it
coincides (up to sign) with u.. O

7.33. Theorem. The homomorphism t* : MV,(X) — H.(X;Z/2) is epic
for every X and every V. Thus, every homology class mod 2 can be realized,
and, in particular, by a smooth manifold.

Proof. By 6.2, MV is a graded Eilenberg—Mac Lane spectrum. Further-
more, by 5.23(i), mo(MV) = Z/2. Hence, by I1.7.2, there is a morphism

j:HZJ2 — MYV such that HZ/2 % MV * HZ/2 is an equivalence. Thus,
X =a¥ is epic. O
On the other hand, t¥ is not an epimorphism in general.

Given an odd prime p, consider a morphism
On: HZ — HZ/p 2= s2" 1 H7p,

where the first morphism is the mod p reduction. Let (Qn). : H.(X) —
H,.(X;Z/p) be the induced homomorphism.

7.34. Lemma. (i) If a homology class z € H.(X) can be realized by a DIFF
manifold, then (Q;)«(z) =0 for every i and every odd prime p.
(ii) If a homology class z € H.(X) can be realized by a TOP manifold,

then (@1)*(z) = 0 for every odd prime p.

Proof. (i) By 6.7, the composition MSO - HZ Qi 2 17, is trivial.

(i) By 6.15 and 6.14, the composition MSTOP % HZ %% 217 is
trivial. O

7.35. Theorem. There exists an element z € H7(K(Z/3,2)) such that
(Q1)«(2) # 0 (for p = 3). In particular, z cannot be realized by a (topological)
manifold.

Proof. Let v € H3(K(Z/3,2);Z/3) = Z/3 be a generator of this group. Let
z be a generator of H7(K(Z/3,2)) = Z/3, and let Z be the mod 3 reduction
of z. Consider the Z/3-basis {3P',Q1:} of H'(K(Z/3,2);Z/3). We have
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(8P, z) = 0, because z comes from integral homology. So, (Q1t,2) # 0.
Now, by I1.6.36,

0 # (Q1t,2) = (1, (Q1).2) = (1, (X(Q1))«(2)).
But x(Q1) = —Q1. Thus, 0 # Q1(2) = (Q1)«(2). U

7.36. Theorem. For every z € H,(X) there exists k such that (2k+ 1)z can
be realized by a smooth manifold.

Proof. The proof is similar to that of 7.33. By 6.5, MSO[2] is a graded
Eilenberg—Mac Lane spectrum. Furthermore, by 5.23(i), mo(MSO) = Z.
Hence, t[2] : MSO[2].(X) — H.(X;Z[2]) is epic. O

7.37. Theorem. Every homology class z € H;(X) with i < 6 can be realized
by a smooth manifold. Furthermore, the morphism t : MSO — HZ is a 3-
equivalence, and hence the homomorphism t : MSO;(X) — H{(X;7Z) is an
isomorphism for i < 3.

Proof. To prove the first claim, it suffices to prove that the homomorphism
tp] : MSO[pl.(X) — H.(X;Z[p])

is epic for every prime p and every i < 6. For p = 2 this follows from
7.36. If p > 2, then, by 6.9, MSOlp|3) = HZ[p|, ma(MSO[p]) = Z[p] and
MSOIp|4y = MSO|p|(7), where the subscript denotes the coskeleton. So, the
cofiber sequence

MSO[pl(ay - MSO[p](s) = S°HZ[p],
see I11.4.19, can be rewritten as
MSOp) 7 25 HZ[p] = S°HZ[p).
Furthermore, by 7.32 and 5.24(i), the morphism
MSO[p] = MSOIp)z) = HL[p]
coincides with t[p]. Now, by I1.4.5(ii), the homomorphism
(77) + (MSO[p])i(X) — (MSO[p|(7))i(X)

is epic for ¢« < 6 and every C'W-space X. So, for ¢+ < 6, we have an exact
sequence

(MSOp)):(X) 2 1y(X; Zlp]) = Hi_5(X; Z]p)).
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Hence, for i < 6, t[p] : (MSOp])i(X) — H;(X;Z[p]) is epic if k. :
H;(X;Z[p)) — H;—5(X;Z]p]) is a zero homomorphism. So, trivially, t[p] is
epic if 1 < 4.

If p > 3 then H5(HZ[p|;Z[p]) = 0, see e.g. Cartan [1], and so k. = 0.
Thus, t[p] : MSOp|i(X) — H;(X;Z[p]) is epic for p > 3 and i < 6.

Let p = 3. We have

H°(HZ[3); Z[3) = /3 = {6P"p},

where § : HZ/p — HZ[p| is the integral Bockstein homomorphism and p :
HZ[p| — HZ/p is the reduction mod p, i.e., k = A\dPp, A € Z/3. (In fact,
it follows from 6.8 that A # 0, but we do not need it here.) So, it suffices to
prove that (6P1p),. : H;(X;Z[3]) — H;—5(X;Z[3]) is a zero homomorphism
for i < 6. This is clear for 7 < 5.

We choose any z € H;(X;Z[3]),i = 5,6, and prove that (0P1p).(z) = 0.
To the contrary, suppose that (§P1p).(z) # 0.

Firstly, let i = 5. We have 0 # (Plp).(2) € H1(X;Z/3). So, there is
y € HY(X;Z/3) such that 0 # ((P'p).(2),y) € Z/3. Since P'(z) = 0 for
every z € H'(X;7/3), we conclude that

0# ((P'p)«(2),y) = (2, pP'y) = 0.

This is a contradiction.

Now, let i = 6. We can assume that X is a finite CW-space (since z is con-
tained in a finite CW-subspace of X.) In particular, H;(X;Z[3]) is a finitely
generated Z[3]-module. Since H'(X;Z/3™) = Hom(H(X;Z[3]),Z/3™) and
since (6P'p).(z) # 0, there exist a natural number m and a class y €
HY(X;Z/3™) such that

0# ((6P'p)«(2),y) € /3™
Let f: X — K(Z/3™,1) be a map such that f* = y, where
L€ HY(K(Z/3™,1);Z/3™) = Z/3™
is a generator. Note that f,z = 0 because Hg(K (Z/3™,1)) = 0. Now
0# (6P p)«(2),y) = (6P )« (2), [*1) = (3P p)s(fs2),0) = 0.

This is a contradiction.

To prove the last claim, note that H'(HZ[2];Z/2) = 0 and H'(HZ[2);
Z/2) = Z/2 for i = 1,2. This can be proved directly or deduced from the
equality H*(HZ[2];Z/2) = o/ | 7/ Qo, cf. IX.1.3. Because of Theorem 6.6,

MSO[2] = HZ[2] Vv S"HZ[2) V; S“ HZ[2] vV S HZ /2 V; SY HZ,/2
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with a; > a and b; > b. Furthermore, we have

H*(MSO[2|;Z/2) = H*(MSO;Z/2) = H*(BSO;Z/2)
=7Z/2wa, ..., wy,...]

In particular, H (MSO|2];Z/2) = H'(HZ[2];Z/2) for i < 3. Hence, a,b > 4
and so m;(MSO[2]) = m(HZ[2]) for i < 3. So, in view of Theorem 6.9,
T (MSO) = mi(HZ) for i < 3. Since m4(HZ) = 0, we conclude that t :
MSO — HZ is a 3-equivalence. O

7.38. Theorem. (i) There exists a class z € H.(X) which can be realized by
a PL manifold, but cannot be realized by a DIFF manifold.

(i1) If a homology class can be realized by a TOP manifold, then it can be
realized by a PL manifold.

Proof. (i) By 7.34, it suffices to find z € H,(X) such that (Q2).(z) # 0
and z can be realized by PL manifolds. Dually, it suffices to find a finite
CW-space Y and a class y € H*(Y) such that Q2(y) # 0 and

y € Im(up, : MSPL*(Y) — H*(Y)).

(Then we set z = Dy, where D : H{(Y) — Hy_;(X) is the duality isomor-
phism and X is N-dual to Y.) Let Y be the 2N-skeleton of MSPLy, and
let y = i*un, where N > 2p? uy € HYN(MSPLN;Z/p) is the Thom class
and i : Y — MSPLy is the inclusion. It is clear that y can be represented
by a morphism

YVE®Y c 27VE® ¢ MSPLNy — MSPL 225 HZ.

Hence, y € Im(u¥, : MSPL*(Y) — H*(Y)). Finally, by 6.13, Q2(y) # 0.
(ii) Suppose that a class z can be realized by a TOP manifold. By 6.15,
MSPLI[1/2] ~ MSTOP[1/2]. Hence, there exists k such that 2¥z can be
realized by a PL manifold. On the other hand, by 7.36, there is n such that
(2n+1)z can be realized by a DIFF (and hence a PL) manifold. Taking a,b €
Z such that 2Fa + (2n 4+ 1)b = 1, we conclude that z = a(2*2) + b((2n+ 1)z)
can be realized by a PL manifold. O

7.39. Remarks. (a) The problem of realizing homology classes was for-
mulated explicitly by Steenrod, see Eilenberg [1]. However, it is really a
much older question in algebraic topology, dating back to Poincaré. In fact,
Poincaré [1] used the term “homology” for what we call bordism, and one can
say that Poincaré constructed a bordism theory. Of course, (sub)manifolds are
good naive models for cycles, but the correct definition of homology joins ge-
ometric and algebraic concepts. So, the problem of realizing homology classes
can be considered as an attempt to compare a naive conception of homology
with its strict definition.
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(b) The problem of realizing homology classes was solved by Thom [2] in
principle. Namely, Thom proved 7.32 and hence reduced the problem to a
pure homotopy problem. In this way he proved 7.33 and 7.37. Moreover, he
proved that a certain class z € H7(K(Z/3®Z/3,1)) cannot be realized by a
smooth manifold. In fact, his proof was like that of 7.35, but at that time there
was no information about B7 OP. We remark that Thom [2] introduced the
spaces M Oy, and M SOy, in order to attack the realizability problem.

(c) Thom [2] constructed the map © : Q9(X) — MO, (X) (as in the
proof of 7.27) as follows. Let M™ be embedded in S¥*". Then we have a
map U 5 tsvN — ts 'yg and it can be extended to a map SNt — MOy =
T~§. (In fact, Thom did not distinguish U and ts&.) The collapsing map
c: SNt — Tu arose later, in papers of Browder [1] and Novikov [2]. Of
course, this construction follows general ideas of Thom, but, I think, it is a
certain step further: we have here some universality. For this reason, I named
the collapsing map ¢ the Browder—Novikov map.

I want to remark that Browder and Novikov introduced the collapsing map
for needs of differential topology, i.e., in some sense, outside of cobordism
theory. Namely, Browder [1] described homotopy types containing smooth
closed manifolds; Novikov [2,3] also did it and even classified smooth closed
manifolds which are homotopy equivalent to a given one. So, we have here
another remarkable application of Thom spaces. However, this topic is beyond
this book; we refer the reader to Browder [3], Novikov [3].

7.40. Remarks. (a) It follows from 7.35 that for every ¢ > 6 there is a class
y € H;(X) which cannot be realized by a manifold. Namely, given i, consider
the suspension isomorphism s : H7(K(Z/3,2)) = H;(S"""K(Z/3,2)) and put
y = sz for z as in 7.35. Then Qy(z) # 0 (for p = 3).

(b) The minimal dimension n in 7.38(i) is n = 19, Brumfiel [1]. The proof
is similar to that of 7.37. Namely, 6 = dim @Q; + 1, while 18 = dim Q2 + 1, if
p = 3. Now, similarly to (a), one can see that the class in 7.38(i) exists for
every n > 18.

Résumé on Realizability

(i) Every homology class z € H.(X;Z/2) can be realized by a smooth
manifold.

(i) Every class z € H;(X) with i < 6 can be realized by a smooth manifold.

(iii) For every i > 6, there is a class z € H;(X) which cannot be realized
by a topological manifold.

(iv) Given a class z € H;(X), there is a natural number n such that
(2n+ 1)z can be realized by a smooth manifold.

(v) If a homology class can be realized by a topological manifold, then it
can be realized by a PL manifold.
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(vi) If a homology class of dimension < 18 can be realized by a topological
manifold, then it can be realized by a smooth manifold.

(vii) For every i > 18, there is a class z € H;(X) which can be realized by
a PL manifold but cannot be realized by a smooth manifold.



Chapter V. Orientability and Orientations

It seems that the orientability concept arose implicitly in the infancy of hu-
manity, when people became able to distinguish upward and downward (as
well as left and right) directions. Many epochs later we had suitable concepts
of the orientation of the line (arrow), the plane (circle arrow) and space (right-
left triples of vectors, spiralled arrow, etc.). Finally, in the nineteenth century
a satisfactory concept of the orientation of the space R™ as an equivalence
class of frames was formulated.

The orientability concept was developed further by considering families
X of spaces R", the orientation of X being a family of compatible (in some
sense) orientations of the members R™ of X. For example, an orientation of
a manifold is given by a family of compatible orientations of the charts, an
orientation of a bundle is given by the family of compatible orientations of
fibers.

Later the (co)homological nature of orientability was understood. For in-
stance, an orientation of R™ can be treated as one of the two generators of the
group H,(R") (or H"(R™)), where R" = S" is the one-point compactifica-
tion of R™. In this way we can define an orientation of an R™-bundle £ to be a
compatible family of orientations of the fibers, i.e., (successfully formalizing
this naive idea) to be a Thom class u € H™(T¢). Similarly, an orientation of
a (closed) manifold M™ can be defined to be a compatible family of orienta-
tions of the charts, i.e., to be a fundamental class [M] € H, (M). It is clear
that the definitions above are suitable for any (co)homology theory, and in
fact this generalization has been made and has turned out to be very fruitful.
For example, it makes very lucid such matters as Poincaré duality, integrality
phenomena, characteristic classes, etc.
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§1. Orientations of Bundles and Fibrations

As in §IV.5, we deal “theoretically” with F,-objects, i.e., with (S™,x)-
fibrations, but the results will be applied to V,-objects.

Let E be a ring spectrum, and let 0% € E?(S?) be the image of 1 €
mo(E) = E°(S°) via the iterated suspension isomorphism E°(S%) = E4(S%).

1.1. Definition (Dold [1]). Let a be an F?-object over a CW-space X,
and let j, : gd — Ta be a root with respect to a point z € X. The element
u =1, € B4Ta) is called an orientation of v with respect to E, or, briefly,
an E-orientation of a, if j(u) = £0? for all x € X. Furthermore, we define
an F-orientation of a V,-object £ to be an E-orientation of £°.

Here the sign before 0% can depend on z. Note that we are forced to

say ji(u) = +o¢ rather than j*(u) = o, because the homotopy class of a
root j is determined up to sign only. More precisely, the sign arises when
we want to fix a homotopy equivalence of the standard sphere S™ with the
fiber F, in order to construct the root j, : 5% — F, C Ta. From another
viewpoint, the sphere admits an involution of degree -1. This indeterminacy
can be eliminated if we consider rooted V-objects. Maybe, sometimes this
makes sense, but for a lot of applications such rigidity is not necessary.

Of course, the sign £1 really depends only on the component of the
base X. More precisely, for a connected base it is possible to choose homo-
topy equivalences of the standard sphere S% with fibers such that all maps
ju : 8 — Ta are homotopic, cf. §IV.5. Thus, for a connected base X an ori-
entation can be characterized by the equality j; (u) = +0? for some single
point zg € X.

An F-object with a fixed F-orientation is said to be E-oriented. In other
words, an F-oriented F-object is a pair (o, u) where u is an FE-orientation
of the F-object . An F-object is said to be E-orientable if it admits an
E-orientation. Similar terminology is used for V-objects (replacing F by V).

It is obvious that F-orientability is an invariant of the F-equivalence
because Thom spaces of F-equivalent F-objects are homotopy equivalent.

Corollary IV.5.8 shows that orientability as defined in IV.5.6 is just HZ-
orientability. Here, roughly speaking, a Thom class u € H*(T'«) enables us
to cohere orientations of fibers. Indeed, using the cohomological description
of orientability (see the introduction to this chapter) we conclude that the
restriction of the Thom class to each fiber induces an orientation of the fiber.
In other words, the existence of a Thom class enables us to equip the fibers
with compatible orientations. It seems that, rigorously speaking, we must
treat orientations of the fibers (i.e., generators of the groups H*(R?)) as
being compatible iff there exists a Thom class. Thus, it makes sense to call a
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Thom class an orientation of an F-object. This argument justifies the term FE-
orientation of Definition 1.1; it is a generalization of HZ-orientation (Thom
class). For this reason an E-orientation is also called a generalized Thom
class, or a Thom-Dold class, because Dold [1] introduced this concept for
arbitrary F. This generalization turns out to be very fruitful, e.g., in this
way it is possible to generalize the Thom Isomorphism Theorem IV.5.9, see
1.3 and/or 1.7 below.

Theorem IV.5.7 can also be generalized to an arbitrary ring spectrum F, see
Becker [1], Rudyak [3], but this generalization does not seem completely satisfactory,
e.g. I cannot immediately deduce from it Theorem 1.3 (or even (1.7)) below (as we
deduced IV.5.9 from IV.5.7).

Let a be an Fy-object over X, and let A : Tae — Ta A X be a map
as in IV.5.36. Let F' = (F,m) be any E-module spectrum with the pairing
m: EANF — F. Define

~ ~ Ta,xT dye
o BY(Ta) @ Fr(x+) 22, prd(po p x+) L2205, prtd(pg)

Ta
m
Q,X"F

)

oAad

¢ BYTa) ® Fy(Ta) ~225% B4Ta) ® Fy(Ta A X+) F_a(XH).

Now suppose that « is equipped with an F-orientation u € Ed(Toz). Define

oF = prxu: F(X) = FY(X1) — F"T(Ta), ¢r(z) = pu® ),
f =X Fy(Ta) = Foog(XT) = Fu_a(X), ¢ (2) = p(u® ).

1.2. Proposition. Let w : o — [ be a morphism of Fg-objects, and let
Tw:Ta— TP be the induced map of the Thom spaces.

(i) Ifu € E4TP) is an E-orientation of 3 then (Tw)*(u) is an orientation
of a. In particular, o is E-orientable if B is.

(ii) We set X = bsa,Y = bsf,f := bsw : X — Y. Let u be an
E-orientation of 8. If we equip « with the orientation (Tw)*(u), then the
following diagrams commute:

~ ~ F
FMY) —— F(T) Fo(TB) —— Fo_a(X)
| [aor @] |+
~ ~ F
Fr(X) =22 Frtd(Ta), Fo(Ta) —2— F,_4(Y).
Proof. This is obvious. O

1.3. Theorem-Definition. For every CW-space X the homomorphisms

of and pr are isomorphisms. These isomorphisms are called Thom-Dold

isomorphisms.
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Proof. The case X = () is trivial. So, we assume that X # ). Firstly, we
prove that ¢p is an isomorphism. We need some preliminaries.

For every X the pairing m5" X" : Ei(§%) @ FI(X+) — Fiti(X+) yields
a homomorphism

hp = hy : F{(XT) — FH(89X+) a0 — msd’X+(Jd ® a).

Since m commutes with suspensions, hr coincides with the iterated suspen-
sion isomorphism §'t4¢=1...g" : Fi(X+) — FiHd(X+) In particular, hp is
an isomorphism.

Similarly to the above, using the multiplication 1 : EA E — FE instead of
the pairing m : EA F — F, we have an isomorphism

hp =hy : E(XT) — EF4(8ixT).

Now we start to prove that ¢ is an isomorphism.

Step 1. We prove that ¢ is an isomorphism if « is the standard trivial Fy4-
object over a connected finite dimensional CW-space X. By IV.5.5(iii), T ~
S4X+ and so E™(X) = E"(Tq), but we must prove that pp establishes
an isomorphism of these groups. Fix a point 2o € X and let ¢ : {xo} C X be
the inclusion. We set j := S¢(i+) : S4({z}T) — S¢X+. By IV.5.5(iii), j is a
root of T'a. Now, we have the commutative diagram

E°({zo}*) " E°(XT)

glh/ gJ(h//

(S ({0} ) T EU(S°X)
where b’ and b are the isomorphisms hg for the spaces {z¢} and X, respec-
tively. In order to distinguish units of the rings E°({z¢}*) and E°(X 1), we
use the notation 1’ for 1 € E°({xz}™) and 1” for 1 € E%(X ™).
Let u € Ed(SdX"’) be an FE-orientation of a. Firstly, we prove that u =
+h"(1” 4+ a) where

a € Ker{i* : E%(X) — E°({zo})} = Ker{i* : E°(X+) — E°({zo}1)}.

Indeed, let u = h”(x) for some z € E°(X*) = E°(X). Without loss of
generality we can assume that j*u = 0. Then j*h"2z = 0%, and so h/i*z = .
Since ¢ = h'1’, we conclude that h'(i*z — 1') = 0, i.e., iz — 1" = 0, i.e.,
i*(x —1”) = 0. Thus, x = 1 + a where a € Keri*.

Now, the F-orientation u yields the homomorphism g, and it is easy to
see that ¢ is a composition of the isomorphism hpr and multiplication by
+(1+ a). So, it suffices to prove that 1 + a is invertible in E°(X).

Since X is connected, the reduced iterated diagonal

d: (X,z0) = (X,z0) A AN (X,20) = (X A ANX, %)

~ ~ -
k times
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is inessential if & > dim X. Hence, a* = 0 if ¥ > dim X, and thus 1+ a is an
invertible element of E°(X).

Step 2. We prove that ¢p is an isomorphism if « is the standard trivial
Fg-object over a finite dimensional C'W-space X. Let X = UX), with X
connected. Then (cf. 11.3.16(c))

Fr(X) = [[Frx) 2 [ (Tan) = F(VaTay) = F"(Ta)
A A

where the second homomorphism is given by Step 1.

Step 3. We prove that ¢ is an isomorphism if « is Fgz-equivalent to the
standard trivial F-object 0% over a finite dimensional CW-space X (i.e.,
there is a sectioned bundle homotopy equivalence between o and 9%). This
follows from Step 2, because the equivalence o — 9% yields a homotopy
equivalence T’ — T'0%, and the last one commutes with ¢p, cf. 1.2(ii).

Now we pass to the general case. Given a C'W-subspace Y of X, let
oy : F*(Y) — F"*+4(T(a]Y)) be the restriction of ¢r to Y.

1.4. Lemma. (i) Let Y be a CW -subspace of X, and let (Y; A, B) be a CW -
triad. Set C = ANB. If pa,pp and pc are isomorphisms then so is py. In
particular, if p4 is an isomorphism and B is a finite dimensional space such
that | B is Fq-equivalent to a trivial Fy-object, then oy is an isomorphism.

(ii) Let Xo C -+ C X,, C -+ be a sequence of CW-subspaces of X
such that X = JX,. If ¢x,, is an isomorphism for every n then ¢x is an
isomorphism.

Proof. (i) By 1.2(i), we have the following commutative diagram of the
Mayer—Vietoris sequences, where T'Z denotes T'(«|Z) for Z =Y, A, B, C (the
bottom sequence is the Mayer—Vietoris sequence of the triad (TY;TA, T B);
notice that TC = TANTB, even if C = ()):

= PO —— YY) —— FMA)eF(B) o
%lipc ltpy EJ/SOA@‘PB
- FH (PO s P TY) ——— F(TA) @ FY(TB)— - -.

Now, by the Five Lemma, ¢y is an isomorphism.

If a| B is Fy-equivalent to a trivial F4-object then, by the above, ¢ and
¢ are isomorphisms provided B is finite dimensional.

(i) By II1.4.18, we have the following diagram, where T, := T'(«| X,.) and
Pr = PXx,:

0— lm'{F"L(X,)} —— F*(X) —— lm{F"(X,)} —0
%lml{w} l“’x %lllﬂ{%}
0— lLim'{F+4=Y(T,)} —— F+(T,) —— lm{F"*(T;)}— 0.
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It is commutative by 1.2(ii). Since the left and right vertical arrows are iso-
morphisms, px is an isomorphism. H

For pedantic persons, we remark that T'C, etc. in (i) and 7). in (ii) are not
CW -spaces in general. Nevertheless, all used sequences are exact, cf. I1.3.31 and
111.4.20(a).

We continue the proof of the theorem. Consider the subsets
D} ={ze D" |||l > 1/2}, D" = {z € D" | |l < 1/2}

of the unit disk D" = {z € R™ | [[z[| < 1}. Given an n-dimensional cell
e",n >0, in X with the characteristic map x : D" — X, we set e} = x(D7})
and e” = x(D™). Given n > 0, let A,, (resp. By) be the union of all subsets
ell (resp. e”) where e" runs over all n-cells of X. Let X,, be the n-skeleton
of X. We prove by induction that ¢x, is an isomorphism for every n.

The assertion is trivial for n = 0. Suppose that ¢x, is an isomorphism.
Set Y, = X,, UA,41. Then py;, is an isomorphism since Y, is a deformation
retract of X,,. Now, X,,4+1 = Y,, U By41, and «|Bp41 is Fy-equivalent to a
trivial Fg-object since B,y is a disjoint union of contractible spaces. So, by
1.4(i), ¢r = ¢x, ., is an isomorphism.

Thus, by 1.4(ii), ¢ = ¢x is an isomorphism.

The proof of that ! is an isomorphism is similar, but it is simpler because
we use the direct limit instead of the inverse one. g

1.5. Corollary. Let o be an E-oriented Fq-object over X.
(i) Let A be a CW -subspace of X. Then there are the relative Thom—Dold
isomorphisms

or : F"(X,A) — F""(Ta, T(alA)),
goF By (Ta, T(alA)) — Fr_a(X, A).

(ii) Let B be an F-object over X. Then there are the Thom—Dold isomor-
phisms

pp: F(TB) — F"H(T(a @ B)),
o' Fupa(T(a® B)) — Fu(TH)).

Proof. (i) One can prove this, just following the proof of 1.3. Another way:
consider the exact sequences of pairs (X, A) and (T, T(«|A)), map one of
them to the other and use 1.3 and the Five Lemma.

(ii) We consider the cohomological case only. We set A := pj(a). Then
T(a® ) ~T(\)/T(A\s(X)), where s : X — ts 3 is the section. Furthermore,
by 1.2(i), the canonical morphism A — « equips A with an FE-orientation,
and we obtain an isomorphism
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F(TB) = F(t5(8), s(X)) =5 FHUT(A), T(Ns(X))) = F**(T(a ® B))
where ¢ is as in (i). O

1.6. Proposition. Let 7 : D — FE be a ring morphism of ring spectra. Then
for every D-orientation u of a the element T(u) is an E-orientation of «.
Furthermore, let (F,m) be any D-module spectrum, and let (G,n) be any
E-module spectrum. Let p: F — G be a morphism such that the diagram

DAF 2, EAG

al |»

Pt

commutes. Then the diagrams
F*(X) 22— G*(X) F.(X) 22— G.(X)
| [
F*(Ta) —2— G*(Ta) F.(Ta) —2— G.(Ta)

commute. Here of op are given by u and %, ¢ are given by 7(u).

Proof. Decode the definitions. ([l

Clearly, the relative version (with (X, A) instead of X, etc.) of 1.6 holds
as well.

Since every ring spectrum F is an E-module spectrum, we can put F = F
in 1.5 and obtain Thom-Dold isomorphisms

op: E"(X,A) — E"(Ta,T(a|A)),

(1.7)
©F B, (Ta,T(alA) — E,_a(X, A).

Similarly, we can put F' = D, G = E in 1.6 and get the commutative diagrams

D*(X) —— FE*(X) D.(X) —— E.(X)
| e o] Jo
D*(Ta) —=— E*(Ta), D.(Ta) —=— E.(Ta).

Notice a curious consequence of Theorem 1.3.

1.8. Corollary. Let (X,xzg) be a connected pointed space, and let i : {xo} —
X be the inclusion. We set E*(X) := Ker{i* : E*(X) — E*({zo})}. Then
for every a € E°(X) the element 1+ a € E°(X) is invertible in the ring
E°(X).
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Proof. Clearly, 1 + a is an FE-orientation of the 0-dimensional V-object
over X, and the corresponding Thom-Dold isomorphism coincides with the
multiplication by 1 +a: E9(X) — E%(X) = EO(X ). O

Now we compute the number of E-orientations of any E-orientable Fg-
object a. Let S(a) denote the set of all E-orientations of «, and let X be the
base of «.

1.9. Proposition. (i) Suppose that X is a connected space. Choose a point
20 € X, leti: {mg} C X be the inclusion and regard E*(X) := E*(X,x0) as
the subset Ker{i* : E*(X) — E*({zo})} of E*(X). Then every Thom-Dold
isomorphism _

¢: E°(X) — EYX)

establishes a bijection between the subset {1+ E°(X)} U {—1+ E°(X)} of
E°(X) and the set S(c). In other words, S(«) is in a bijective correspondence
with Z/2 x E°(X) where E°(X) := Coker{e* : E°(pt) — E°(X)} and ¢ :
X — pt.

(i) If X is a disjoint union of its connected components Xy, then

S(a) =[] S(alX).
A

Proof. (i) Let j : S¢ — Ta be a root at zo. Choose any E-orientation u
of a such that j*(u) = ¢™ and consider the commutative diagram

e

ENTa) —— E4(S%)
E*(X) —— E*({xo})

where ¢ (resp ¢') is the Thom-Dold isomorphism given by u (resp. by o¢).
Firstly, we prove that ¢ establishes a bijection between the sets {1+ E°(X)}
and {v € E4(X)|j*v = 0¢}. Indeed, let b = 1 + a for some a € E°(X). Then

J* () = j*e(1+a) = ¢'i*(1 4+ a) = ¢'i*(1) = 0.

Conversely, let v be an E-orientation of o with j*v = o%. We set b := ¢~ (v).
Then

0=0"—0%=j"v—j"u=j"b) —j (1) = j*p(b— 1) = ¢i*(b— 1).

So, i*(b—1) =0, i.e., b =1 + a for some a € E9(X).
Now we prove that ¢ establishes a bijective correspondence between the
sets {—1+ E%(X)} and {v € E4(X)|j*v = —o?}. Indeed,
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{be {-1+E°X)}} <= {-be {1+ E%(X)}} = {j*p(~b) = 0%}
= {j*o(b) = —0}.

Finally, since X is connected, we conclude that S(a) = {v[j*(v) = £o?}.
(ii) This is obvious. O

1.10. Proposition. (i) If « is an E-orientable F-object over Y then f*« is
FE-orientable for every map f: X — Y.

(ii) If any two of three F-objects o, 3, A" 3 are E-orientable, then so is
the third one.

(iii) If any two of three F-objects v, B, a0 ® B over the same base X are
E-orientable, then so is the third one.

(iv) The standard trivial F,-object 6™ over any space X is E-orientable
for every ring spectrum E.

Proof. (i) This holds by 1.2(i), since there is a morphism J; : f*a — a.
(ii) Let uq € E™(Ta),ug € E™(T() be E-orientations of «, [ respec-
tively. Then the image of the class u, ® ug under the pairing

E™(Ta) @ EM(TB) — E™™(Ta ATS)

is an E-orientation of a A" B. Conversely, let a AP 3 and o be E-oriented
F-objects. Set v = ¢¥ (1) € E*(T). Then the image of u,nng @ v under the
homomorphism

pys®  E(Ta A" TB) @ E.(Ta) — E*(TB)

(see I1.(3.40)) is an E-orientation of . Indeed, one can check it by simple
verification on fibers, i.e., for the case when the bases are points.

(iii) The E-orientability of a @ § follows from (i) and (ii). Suppose now
that a @ § and « are E-oriented. Then the isomorphism

E*(T(a® B)) = E*(TB).

(as in 1.5(ii)) maps the E-orientation of a @ 8 to an E-orientation of 5. One
can check it by a verification of fibers, i.e., for the case when X is a point.

(iv) Without loss of generality we can assume that X is connected. Choose
a point zp € X and consider the maps i : {xo} C X and € : X — {z¢}. Then
the composition

5" ({ao}t) S snxt T, 5 ({1

is the identity map, and so (S™it)* : E*(S"XT) — E*(S"({zo}T)) is an
epimorphism for every spectrum E. By IV.5.5(iii), 76" ~ S"X T, and S™i*
is a root j at xg. In other words, j* : E*(T6™) — E*(S™) is an epimorphism.
Thus, 6™ is E-orientable for every ring spectrum FE. O
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Note that if F is an Q-spectrum and if Y = F,, and A = {£1}, then an
(A,Y)-marking is just an E-orientation. Thus, we can apply IV.5.11 to the
classification of E-oriented V-objects and prove the following fact.

1.11. Theorem. There exists a space B(V,, E) which classifies E-oriented
Vi -objects. Thus, for every X the set of all equivalence classes of E-oriented
Vi -objects over X is in a natural bijective correspondence with the set
[X,B(Vy, E)]. The construction B(V,, E) is natural with respect to mor-
phisms E — F preserving the elements +1 of the coefficient rings. The homo-
topy fiber of the forgetful map p: B(Vy, E) — BV, is QX E, i.e., the union
of the components of Q°°E which correspond to {£1} C mo(Q*°E) = mo(FE).

|

Now we consider orientation theory for stable objects.

1.12. Definition. Let T'a be the Thom spectrum of a stable F-object a over
X. (Recall that, according to IV.5.12, X is assumed to be a CW-complex.)
If X is connected, define an E-orientation of a to be an element u € E°(Tq)
such that j*(u) = +1 € mo(E), where j : S — T« is a root of Ta.

If X = UX, with connected X, then an F-orientation of « is a family
{ux}, where uy is an E-orientation of «|Xy. Furthermore, an E-orientation
of a stable V-object £ is defined to be an E-orientation of £°.

For every F,-object a the isomorphism e : T'(ay) — X 7"X*®Ta in
IV.5.16 induces an isomorphism ¢* : E"(Ta) = E*(X7"S*Ta) — E°(Tag).

1.13. Proposition. The isomorphism ¢* yields a bijective correspondence
between E-orientations of a and ast. Hence, a is E-orientable iff ast is.

Proof. 1t suffices to consider a over a connected base. Choose roots 7 :
S — T(as) and ja : S™ — Ta. Then ej; and X773 js are homotopic (up
to sign), and the result holds because ¢* is an isomorphism. 0

Let a be a stable F-object over X. Consider the morphism A : Ta —
Ta A XT asin IV.5.36. Let (F,m) be any E-module spectrum. Define

) ~. a,xt )
o1 E)(Ta) ® FI(X) = E*(Ta) @ F/(X+) ™2 piTa A X)

2% Fi(Ta),
¢ B%Ta) ® Fy(Ta) ~225 E9(Ta) ® Fi(Ta A X )
m?,i(-l-

—E0 Fy(XY) = Fi(X).

Now suppose that « is equipped with an E-orientation u € E°(T«). Define



§1. Orientations of Bundles and Fibrations 309

or : F'(X) — F'(Ta), op(z) = p(u® ),
o' Fy(Ta) — Fi(X), ¢"(z) = p(u® ).

1.14. Theorem-Definition. The homomorphisms ¢ and ©* are isomor-
phisms for every CW -space X. These isomorphisms are called stable Thom—
Dold isomorphisms.

Proof. We consider only the cohomology case. Let o™ be as in IV.5.19.
Step 1. Let X be finite dimensional. Then one has the commutative dia-
gram

. Fi(X(n—Q)) Fi(X(n—l)) — ...

= |=

C—_— Fern(Tan) — ﬁi+n+1(Tan+1) —_— ..

which stabilizes as n — oo and gives the desired isomorphism.
Step 2. Let X be a disjoint union of finite dimensional spaces, X = LIX.
Then Ta = VT'(a|Xy), and so (cf. I11.3.16(c))

HFZ (alXy) = [ F/(X)) = F/(UX)) = F/(X).
A

The second isomorphism is given by Step 1.
Step 3. Consider the telescope T = T, U Tyq of the skeletal filtration of
X. We have

o0
T~ X, Ty ~ \/ X0 T~ \/ XC ) T N Toa ~ \/ X™
n=0 =
Let h : T — X be the canonical homotopy equivalence. Set a = h*q, aiey =
| Ty, oa = a|Toa. It is easy to see that T'aeyNT aoq ~ T (v/( evﬂTod)). Con-
sider the following commutative diagram of Mayer—Vietoris exact sequences:

co— FF Y (Tae, N Taeq) — F¥(Ta) — FF*(Tae) ® F¥(Tao) —

Jor for Jor el
o FFUTL,NTo) — FHT) — FF(To) ® FF(T,q) — -,

Now, by Step 2, ¢’ and ¢” are isomorphisms, so, by the Five Lemma, @ is
also an isomorphism. O

The Thom-Dold isomorphism ¢! can be lifted to a geometric level.

1.15. Theorem (Mahowald-Ray [1]). Let « be a stable F-object over X
equipped with an E-orientation u : Tao — E. Then the morphism

TAL 1AuAnl 1Am

TanF 225 TaaXtAF 224 XHATaAF 229 X+ ABAF 2™ X+ AR

18 an equivalence.
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Proof. This morphism induces a homomorphism of homotopy groups
which coincides (up to sign) with the isomorphism . O

Let p: E — E be a connective covering of a spectrum E.

1.16. Proposition. An F-object o is E-orientable iff it is E-orientable.
Furthermore, for every F-object o the morphism p induces a bijection between
E-orientations of a and E-orientations of it.

Proof. Firstly, let « be a stable F-object. By IV.5.8(ii), T« is connected.
Hence, by I1.4.16, every E-orientation u : Tao — E can be lifted to E, and this
lifting is an E-orientation because p, : mo(E) — mo(E) is an isomorphism.
Furthermore, again by 11.4.16, the morphism p yields the desired bijection.
So, the proposition holds for stable F-objects. Finally, it holds for F,-objects
because of 1.13. |

Considering A = {£1} C mo(F), we conclude that an (A, F)-marking of
a stable V-object (or F-object) £ is just an E-orientation of £. Let ¢y gy (X)
be the set of all equivalence classes of E-oriented (i.e., (A4, E)-marked) stable
V-objects over X. Now, IV.5.29 yields the following theorem.

1.17. Theorem. There exist a CW-space B(V, E) and an E-oriented sta-
ble V-object n = ny,g over BV, E) such that the map [X,B(V,E)] —
tov,5)(X), f = f*n is bijective for every finite dimensional CW -space X . In
other words, B(V, E) classifies E-oriented stable V-objects over finite dimen-
sional CW -spaces. The homotopy fiber of the forgetful map p : B(V, E) — BV
is QX E. Furthermore, for every CW-space X the map [X,B(V,E)] —
tov,g)(X) is surjective. O

We set M (V, E) := Tn. The E-orientation u,, of 1) is called a universal E-
orientation for stable V-objects, and 7 is called a universal E-oriented stable
V-object.

1.18. Theorem (naturality with respect to E). Given a ring morphism
7: D — E of ring spectra, there are maps B(V,7): B(V,D) — BV, E) and
MW, 7): M(V,D) — M(V, E) such that B(V,T)*ng ~ np and the following

diagrams commute up to homotopy:

0ED —— ORE  M(©V,D) “7 M(V,E)
B, D) 2¥7, B, E) p —/— E

! l

BY BY
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Proof. The composition M (V, D) ~2, D 5 E is an F-orientation of
np, and hence, by 1.17, it yields a map B(V,7) : B(V,D) — B(V, E) with
B(V,7)*ng ~np. So, we get the map

MWV, r):= TIBw,m)me M(V,D)— M(V,E).

Now, the right diagram commutes because M (V, 7)*(ug) is the E-orientation
Tup of np.

Now we prove that the left diagram commutes. It suffices to prove
that the maps [X,Q%% D] — [X,Q%E] — [X,B(V,E)] and [X,Q% D] —
[X,B(V,D)] — [X,B(V, E)] coincide for every X. But each of these maps
treats a trivial E-oriented V-object as a certain E-oriented V-object. [

1.19. Remarks. (a) Dold [1] proved Theorem 1.3.

(b) As we remarked in Ch. IV, the classifying spaces B(V,, E) were in-
troduced by May [2].

(c) Sometimes one defines an E-orientation by the condition j*(u) = o™,
where ¢ is an invertible element of the ring m(E), see May [3] or Switzer [1].
Certainly, the class of E-orientable V-objects in this case is just the same as
in our case. Furthermore, this situation is in some sense a direct sum of ours.
For example, in this case the classifying space B(V, E) is just the disjoint
union of copies of ours.

(d) There are some reasons to write simply ab instead of ¢(a ® b), a €
E*(Ta),b € F*(X), cf. 11.3.43. Then we can write ¢p(z) = ugz, and, for
instance, the commutativity of the left diagram after (1.7) can be expressed
as 7(ux) = 7(u)7(x).

(e) We have seen above that one can consider an E-orientation as a struc-
ture on V-objects. Moreover, we say that a structure map ¢ : B — BV is
E-orientable if there exists a map (B, @) — B(V, E) over BV, i.e., if ¢*vyy
is F-oriented. In this case we have a morphism T'(B, ) — M (V, E), which
induces an E-orientation u € E°(T(B,¢)) of ¢*yy. So, in this case every
(B, p)-structured V-object gets a certain E-orientation.

(f) Similarly to 1.15, the cohomological Thom-Dold isomorphism can
also be lifted to the spectra level. This “geometric lifting” has the form
p: F(XT,E)— F(Ta, E) where F(—, —) is the functional spectrum. More-
over, an analogous “geometric lifting” also exists for Thom-Dold isomor-
phisms as in 1.5 (see Lewis—-May—Steinberger [1], p. 436).

Now we consider the relations between E- and F[p]-orientability, where p
runs over all primes and Elp] is the Z[p]-localization of E.

Let g be the order of the element 1 € my(F) in the additive group
7T()(Ev)a 0 < q < 0.

1.20. Proposition. An F-object o is E-orientable iff it is E[pl]-orientable
for all primes p such that pl|q.
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Proof. By 1.13, we can concentrate our attention on stable F-objects
only, and we can assume that bs« is connected. By 1.6 and 11.5.15(i), E-
orientability implies E[p|-orientability. We prove the converse. Let j; :=

Elp](y) : Elp)"(Ta) — E[p]™(S™) be the homomorphism induced by the
root j: 8™ — Ta.

Firstly, suppose that ¢ = 0. Then for every p there exists an element
Up € E[p]™(T«) such that Jpvp =0"®1 € E"(S")@Z[p] = E[p]™(S™). Hence,
for every p there exists an element v, € E‘"(Toz) such that j*v, = apo™ + yp,
where a, € Z, (ap,p) =1, and y, € E”(Ta) is such that m,y, = 0 for some
my, € Z with (mp,p) = 1. Set up := mypv,. Then j*u, = apymyo™ = bpo”
with (bp,p) = 1. Since (bp,p) = 1, there exists a finite set {p1,...,px} of
primes such that (b, , ..., bp, ) = 1. Hence, there exists a finite set {x1, ...,z }
of integers such that Y x;b,, = 1. Now, j*u = o™ if u = Y zuy,, ie., ais
FE-orientable.

The case g # 0 is similar; the only difference is that we have the equality
> aib,, = t, where (¢,q) = 1. Let s € Z be such that st = 1 mod ¢. Then
Jru=o"ifu=s) zup,. O

1.21. Proposition. Let E be a ring spectrum, and let | : E — FE\ be the
localization with respect to a subring A of Q. Let u=ug : M(V,E) — E be
the universal E-orientation, and let ug, : M(V, Epr) — Ej be the universal
Ej-orientation. Set 4 = (ug,)a, and let 1y := M(V,1) be as in 1.18. Then
the diagram

M(V,E)y, —2— E\

(l#)Al :l
MV, Ep\)a —%— By

commutes up to homotopy, i.e., Uly >~ uy.

Proof. By 1.18, the following diagram commutes up to homotopy:

M(WV,E) —“—~ E

o
M(V,Ey) —22 By,

The A-localization of this diagram is the desired diagram since Iy = 1g,.
O

1.22. Definition. Let o be an Fy-object over a CW-space X, and let u €
H4(T;7Z/2) be the Thom class of a. We define the i-th Stiefel-Whitney class
of a by setting

wi(a) == @;Ilz/Qquu € H' (X;Z/2).
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Similarly, given a stable F-object o, we set w;(a) := ¢~ 1Sq'u where u is the
stable Thom class and ¢ is the Thom isomorphism as in IV.5.23(ii). Finally,
given a V-object &, we set w; (§) := w; (£*).

1.23. Examples. (a) Every F-object is HZ/2-orientable, see § IV.2. Vice
versa, if a ring spectrum F is such that every F-object is E-orientable, then
there exists a morphism MO — E and hence, by IV.6.2, a morphism HZ/2 —
FE compatible with the units. Hence, by 11.7.7, E is a graded Eilenberg—Mac
Lane spectrum and 2, (E) = 0.

(b) By IV.5.8(ii), orientability as defined in IV.5.6 is just HZ-orientability.
It is easy to see that B(V,, HZ) is just the two-sheeted (universal) covering
BSV,, over BV,,. In particular, a vector bundle is HZ-orientable iff its struc-
ture group can be reduced to SO. Observe that B(SV,,, HZ) is just the
disjoint union of two copies of BSV,,. Besides, HZ-orientability of any F-
object £ is equivalent to the equality w;(€) = 0. This holds because BSY can
be obtained from BV just by killing the class w;. Alternatively, this follows
from IV.6.3 since wq(€) = ¢ 1 Sq ue.

(¢) Atiyah-Bott—Shapiro [1] proved that a vector bundle ¢ is KO-
orientable iff it admits a Spin-structure. This holds, in turn, iff wy(§) =
0 = wz(&). This condition is purely homotopic and can be formulated for
every F-object. It is necessary for K O-orientability of any F-object, but it is
not sufficient for K O-orientability of PL-bundles, see Ch. VI. One the other
hand, Sullivan proved that every ST OP-bundle is KO[1/2]-orientable, see
Madsen—Milgram [1] for a good proof.

(d) The complexification C : BO — BU induces a ring morphism
KO — K, see VI.3.3 below. So, every K Q-orientable F-object is K-
orientable. Atiyah—-Bott—Shapiro [1] proved that a vector bundle £ is K-
orientable iff it admits a Spinc—structure. The last condition is equivalent
to the purely homotopic conditions wi(§) = 0 = Jwa(§), where 0 is the
connecting homomorphism in the Bockstein exact sequence

mod 2
—_

C— HY(X) 2 HY(X) HY(X;Z/2) > H*(X) — - .

As in the KO-case, this condition is necessary for K-orientability of any
JF-object, but it is not sufficient for K-orientability of PL-bundles, see Ch.
VI. One the other hand, every ST OP-bundle is K[1/2]-orientable in view of
Sullivan’s result mentioned in example (c).

(e) An Fy-object a over a finite CW-space is orientable with respect to
the sphere spectrum S iff it has trivial stable fiber homotopy type, i.e., iff
there exists N such that a @ 6" is equivalent to # <. The simple proof (for
vector bundles, but this does not matter) can be found in Husemoller [1], Ch.
XV, Th. 7.7.

By 1.6, an S-orientable « is F-orientable for every ring spectrum E, cf.
also 1.10(iv). So, (a) and (e) appear as two extremal cases.
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1.24. Definition. Let (£, u) be an E-oriented V,-object over X. The Euler
class of & is

X(€) = xP(&,u) == e"3"u € B"(XY) = B"(X),

where 3 : X — T€ is the zero section as in IV.5.4, and ¢ : X — X is a map
such that ¢|X = 1x.

1.25. Theorem (The Gysin exact sequence). Let & = {p : ¥ — X} be
any E-oriented S"~1-fibration (i.e., Gn-object). Then there exists an exact
sequence

o BRX) X R X)) 2 BRI (YY) o BRL(X) o

where x denotes the multiplication by the Euler class x = x(§).

Proof. Since T¢ ~ C(p), we have a long cofiber sequence ¥ % X ER
T¢ — --- . It yields a long cofiber sequence

v+ 2L xt e

where 3 = 3¢. This sequence induces an exact sequence
. - s
o BRTe) D BN X) S BRY) —

Now, the composition EF¥~"(X) 2 EF(T¢) =, E*(X) coincides with y,
because
3 (p(x) = 3" (uz) = 5" (u)z = xx,
the second equality holding because of commutativity of the diagram

Te 2. TenXt

TR
X+ d—+> XtAXT*

with A™ as in V.5.36.
If we replace E*(T¢) by E¥~"(X), we get the desired exact sequence. [

1.26. Proposition. (i) Let f : Z — X be a map, and let £ be any E-oriented
Vp-object over X. Then x(f*€) = f*(x(&)) provided f*£ is equipped with the
induced orientation.

(ii) Let & be an E-oriented Vp,-object over X, and let n be an E-oriented
Vn-object over Y. Assume that £ xn (or Exn for V = G) is equipped with the
product E-orientation (see 1.10(ii)). Then x(§ x n) = p(x(z), x(n)), where
w: E*(X)@ E*(Y) —» E*(X xY) is given by the multiplication in E.
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(iil) Let &,m be two E-oriented V-objects over X. Assume that £ ® 1 is
equipped with the sum E-orientation as in 1.10(iii). Then x(E®n) = x(§)x(n).

(iv) Let € = {p : Y — X} be an HZ-oriented S"~'-fibration over a
connected base X. If E = HZ, then x(£) coincides up to sign with the char-
acteristic class of €, i.e., x(&§) = +711, where 7 : H" Y(F) — H"(X) is the
transgression, . € H" Y(F) = Z is a generator and F = F, ~ S™1 is the
fiber of &; here x is an arbitrary point of X.

Proof. The properties (i)—(iii) are clear. We prove (iv). We denote x(¢)
just by x. Put s = 7¢. Consider the following diagram, where the bottom
line is the exact sequence of the pair (Y, F):

H™(X) H™(X)

ﬁ*l lp*
HY(F) —— H™(Y,F) —— H"(Y).
We have 7 = (p*) 716, i.e » = (p*)~1de. By 1.25, the group Kerp* is cyclic
(because H°(X) = Z), and x generates this cyclic group. Since p*s = 0,
» = my for some m € Z.
On the other hand, p*s generates a cyclic group ImJ. Since k*p*y =
p*x =0, p*x € ImJ, and so y = m’s for some m’ € Z. Thus, x = £2». O

1.27. Proposition. Let (§,u) be an E-oriented V,-object over X, and let
3: X > T¢ande: XT — X be as in 1.24. Then £*3*(o(x)) = x(&)z for
every © € E*(X) where ¢ : B*(X) — E*(T€) is a Thom-Dold isomorphism
with respect to u.

Proof. Let d : X — X x X be the diagonal, and let A™ : T¢ — TEA XT
be as in IV.5.36. Let 31 : X x X — T¢ A X1 be the zero section for & x 6°
(i.e., for pi¢, see IV.5.36), and let i : X — X T be the inclusion. Consider the
commutative diagram

E*(T€) @ E*(X*+) —*— E~Tenxt) L0 F

a*@i*l lﬁ lz*
E*(X)® E*(X) —— BE*(XxX) —% E*(X)
where p := ugg,x* and p = Mg,x. Given z € E*(X) = E*(X*‘), we have
3p(r) =" A p(u@a) =d*u3" @) (u®r) =d'uEru i) = (37u) ().

Hence, e3%p(x) = (73" u) (%" (z)) = x(§)= U
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1.28. Exercises. (a) Prove the following stable version of 1.5(ii). Let «, 3
be two stable F-objects over X, and let o be equipped with an E-orientation
u. Then there are the Thom—Dold isomorphisms

Fi(T8) 5 Fi(Ta ATB) 2> Fi(T(a® ), u(z) = mTTh(u x),
Fi(T(a & B)) = Fy(Ta ATB) % Fy(TH), uy(z) = m¥ Gopry(u ® ),

where 7 = T3y apnp : T(a® ) = TaANTB and d : X — X x X is the
diagonal.

(b) Let a be a stable F-object over X equipped with an E-orientation
u: Ta — F where F is a commutative ring spectrum, and let f : X — BF
classify a. Let X be equipped with a homotopy associative multiplication
v: X xX — X, and let f: X — BF respect the multiplications. Clearly,
the pairing F.(X) ® E.(X) — E.(X x X) 25 E, (X) turns E,(X) into a
ring. Furthermore, v*a ~ a A" o, and so, by IV.5.21(i), v yields a pairing
(possibly non-associative) Ta A Ta — Ta. So, similarly to above, E,(T«)
turns out to be a “non-associative ring”. Nevertheless, prove that

o E.(Ta) — E.(X)

is a ring isomorphism. In particular, E.(T«a) is actually a ring. (Hint: consider
the morphism in 1.15 and prove that it respects pairings.)

§2. Orientations of Manifolds

Let M be a topological n-dimensional manifold. Consider a point m € M\OM
and a disk neighborhood U of m. Let ¢ = ¢™V : M — S™ be the map
which collapses the complement of U. Let E be a ring spectrum, and let
$n € E,(S™, %) be the image of 1 € 7p(F) under the homomorphism

To(E) = Eg(S°) = E,(S™) = En(S™, ).

2.1. Definition. Let M be a compact topological manifold. An element
[M,0M] = [M,0M|g € E,(M,0M) is called an orientation of M with re-
spect to E, or, briefly, an E-orientation of M, if ET’U[M, OM| = +s, for
every m and every disk neighborhood U of m.

A manifold with a fixed E-orientation is called E-oriented, and a mani-
fold which admits an E-orientation is called E-orientable. So, an E-oriented
manifold is in fact a pair (M, [M]g).

Clearly, a connected manifold M is HZ-orientable iff H, (M,0M) = Z,
i.e., iff M is orientable in the classical sense.

Note that s, is a canonical E-orientation of the sphere S™.
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2.2. Proposition. Let M be a connected manifold, and let Uy be a disk
neighborhood of a point mg € M. If an element [M,0M] € E, (M) is such
that €7V [M,0M)] = =+s,,, then [M,0M)] is an E-orientation of M.

Proof. If a disk neighborhood V of mq satisfies V' C Uy, then ¢™mo:Vo ~
gm0,V Hence, e™V ~ emU’ for every m € M and every pair of disk neighbor-
hoods U, U’ of m. Connect an arbitrary point m € M with mg by some arc
(homeomorphic to I) and consider a neighborhood W of this arc such that
W is homeomorphic to a disk. Let Vi, C W,V C W be disk neighborhoods of
mo and m, respectively. Then ™% ~ ¢™V  and hence eV ~ ¢™U for
every pair (m,U). O

Consider an embedding of a closed manifold M™ in R¥*™ and a tubular
neighborhood (U, ¢, v™V) of this embedding. The diagonal d : M — M x M
induces the map AN : TvN — TvN A M7, see IV.5.36. Let v : SN+7 —
Tv™N A MT be the composition

N AN
v SNt SN 2 N A Mt

where ¢V is the Browder-Novikov map as in IV.7.15(a). As in IV.7.12, set
v = (vN)g. Then, by IV.5.16, Tv = L~VE*°TyN. For simplicity, denote
YN MT by M. The map v induces a morphism

v:=X Ny g Ny (TN A M)
— NNy N AN TSR Mt = TuA M

of spectra. Furthermore, the root j : SN — TvV yields a stable root J :=
Y~N¥>j: S — Tv. Finally, the collapse € : M — S™ yields a pointed map
e: Mt — S" elM = ¢, and we set & := XY % : M — S.

2.3. Theorem. (i) For every closed manifold M, the map v : SNT" —
TvN A MY is an (N + n)-duality map between Tv and M™*. In other words,
v:S—TvAMisa duality morphism.

(ii) Let M™ be a connected closed manifold. Then the root J : S — Tv is
dual (up to sign) to the morphism &.

Proof. (i) By IV.7.5, TvN ~ RN+ /(RN+7\ 7). Thus, by 11.2.8(b), v is
an (N + n)-duality.

(ii) Let DJ M — S be the morphism which is dual to J, see
I1.2.3(c). Since [M,S"] = H™(M), we have [M,S™] = Z for HZ-orientable
M and [M,S™ = Z/2 for HZ-non-orientable M, and [M,S™] is gener-
ated by e in both these cases. Thus, it suffices to prove that (DJ),

Ho(M) = H,(M) — 7Z is an isomorphism for HZ-orientable M and
(DJ)w : Hy(M;7Z/2) = H,(M;Z/2) — Z/2 is an isomorphism for arbitrary
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M. Firstly, (DJ)s : H,(M;Z/2) — Z/2 is an isomorphism for every M be-
cause, by IV.5.9(i), J* : H*(Tv;Z/2) — H°(S;Z/2) is an isomorphism. Fur-
thermore, if M is HZ-orientable, then Z = H, (M) = H,(M™*) = HN(Tv).
Hence, v is HZ-orientable, and hence, by 1V.5.9(ii), J* : H*(Tv) — H°(S)
is an isomorphism. Thus, (DJ). must be an isomorphism. |

2.4. Theorem. A closed manifold M is E-orientable iff its stable normal
bundle is E-orientable.

Notice that, by 1.13, the stable normal bundle v is E-orientable iff vV is.

Proof. Without loss of generality, we can assume that M is connected.
Given a root j : SV — TvN set J := ¥~N¥>j: S — Tv. The homeomor-
phism w : SN*" — SN A S" is an (N + n)-duality map between SV and
S and w = X~V ""Y > is just the identification S A S = S. By 2.3(i) and
I1.2.4(i), we have the commutative diagram

~ o~

E%(Tv) [Tv, E] —2— [S,E A M] E,(M)
(2-5) J*l l(lADJ)*
[S,E] —2— [S,EAS]

where all horizontal maps are isomorphisms.

We prove that vg gives a bijective correspondence between E-orientations
of v and FE-orientations of M. (In particular, v is E-orientable iff M is.)
Indeed, E-orientations u € E‘"(TV) are defined by the equality J*(u) = %1,
while E-orientations [M] € E, (M) = EO(M\ ) of M are characterized by the
equality (&).[M] = £1 € mo(E). But, by 2.3(i), DJ is homotopic (up to sign)

P

to & : M — S, and the result follows. a

2.6. Corollary (of the proof). Every duality v : S — Tv A M yields a
bijective correspondence (given by vg) between E-orientations of M and E-
orientations of v. O

2.7. Remarks. (a) Milnor—Spanier [1] established an (/N +n)-duality between
Tv and M.

(b) Note that, in fact, we do not need to know a concrete form of the
duality morphism v : S — Tv A M in order to prove 2.4: it suffices just to
know that such a duality exists.

The bijective correspondence noted in 2.6 admits another description. Let
[Tv]g € E,(Tv) be the image of the unit 1 € Ey(S) under the homomorphism

o

Eo(S) — En(S™) =5 E,(Tv).
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Note that [Tv]g is completely determined by the Browder—Novikov morphism
¢ : 8™ — Tv. Moreover, we have 7. ([Tv]g) = [Tv]F for every ring morphism
7 : E — F of ring spectra. Now, the following proposition holds.

2.8. Proposition. Let u € E°(Tv) be an E-orientation of the stable bundle
v of M, and let ¢ : E,(M) — E,(Tv) be the Thom-Dold isomorphism
associated with w. Then ve(u) = ¢~ ([Tv]g) (here we identify E, (M) with
Eo(M)), ie., [M]g = ¢~ ([TV]E).

Proof. The class vg(u), as well as the class ¢~ ([Tv]g), is given by the
mapS—>Tl//\M AL BEAM. O

Note that u is not a canonical element, but since ¢, as well as [M]g,
depends on w, this indeterminacy vanishes for p([M]g) = [Tv]g

Let F' be an EF-module spectrum. Given a closed E-oriented manifold
(M, [M]Eg), consider the isomorphism

P = Py, : F{(M) % F{(Tv) = F,(M) = Fif(MT) = F_i(M).

Here ¢ is the Thom—Dold isomorphism given by an FE-orientation u of v,
which, in turn, is given by the E-orientation [M]g of M according to 2.4.

The isomorphism P is called Poincaré duality and admits the following
alternative description.

2.9. Theorem. The homomorphism
A[M)p : F{(M) — Fo_i(M)
coincides with P.

Proof. Let d : M — M x M be the diagonal, and let A : Tv — Tv AMT
be the morphism as in IV.5.36. We define

T :Tv S TuAMY ~TuAS®MT =Tv AS"M
and
VS = soMt ZT w00t A M) = SPM A MY~ SPM A S
Since the maps
M %M ox M2 M x M x M, M-S Mx M5 MxMx M
coincide, we conclude that the morphisms

N N
TN 25 TN A Mt 222N TN A M A MY

(a*)

TN —>TN/\MJr " TvNAMYAMT



320 Chapter V. Orientability and Orientations

are homotopic. Hence, the morphisms

TVLTVAEHM%TV/\EHM/\ETLM

and
Tv L T AX"M 5 Tu AS"M AS"M
are homotopic. In particular, in the diagram

o~

[S,Tv AX™M]
l(T/\l)*

—~.  (1AV),
—_—

[S, Tv A X" M] [S,Tv AS"M A S M]

we have
(2.10) (LAV)L(Z"0) = (T A1) (X™),

where $"v : S — STy A M) = Tv A X" M.

Let w € E°(Tv) be the E-orientation of v which is dual to [M]g, cf.
2.6. Given o € Fi(M) = Fi(S"M) = [S"M,SF), consider the following
commutative diagram:

—

S €[S, Tv A $"M)]

(’T/\l)*l

v €[S, Tv AS"M] 20 (S Ty ASPM A S M
sy e (8. T ASM] 2V 18 Ty A SnAT A SR

l(u/\l)* l(u/\l)*

M)z e[S, EAztM] Y (s, B A sr A S M)

l(le/\l)*

o~

[S,EASIF AX"M)|

lm/\l)*

o~

[S™, SIF A X M].
Now (the second equality follows from (2.10))

Plz)=(mALAA2ALD)(uA1)(T AL)(E"0)
=(MmALDIAZALD(uAL)(1TAV)(E"0)
=(MmALAIAZAL(IAV)(uA)(E") =2N[M]g.

This completes the proof. O
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2.11. Definition. Let F' be a module spectrum over a ring spectrum E. Let
f:M™ — N" be a map of closed manifolds.

(a) Suppose that both M, N are E-oriented. We define transfers (other
names: Umkehrs, Gysin homomorphisms)

f'o F{(M) — F" =" (N), fri Fi(N) = Fponsi(M)
to be the compositions

: i o~ fx ~ n—m-4i : ! —
JFH (M) 2 Foyi(M) =5 Froey(N) 2 F*7 (M), L, = Py fePoy
~ m—1 I n—u ~ . * >—
fi:Fy(N) 2 F'"{(N) = F""'(M) 2 Fyynti(N), Le., fi = Panf* Py

The reader can find many good properties of transfers in Dold [5], Dyer [1].

(b) More generally, we do not assume that M and/or N is E-oriented,
but we suppose that there is a morphism w : vpr & € — vy, bsw = f where &
is an E-oriented stable bundle. (In other words, the difference vy — f*vps is
E-orientable.) We define transfers

W' FY(M) — F""™Y(N),  wi: Fi(N) = Fypyi(M)
to be the compositions

W FI (M) = F="™(M) = Fpy_i(Tvar) 5 Fp_i(T(var @ €))

TN, o (Tuy) = F-m(N) = Fr=m+i(N),

w: F(N) = Fi_y(N) = F*=(Tvy) 725 P =T @ var))

L " (Twpg) 2 Fion(M) = i (M)
where the ¢’s are the Thom—-Dold isomorphisms as in 1.28(a).
If f: M™ — N" is a map of closed HZ-oriented manifolds then

fefi(x) = (deg f)z

for every € H,(N) (prove this!). In particular, if degf = 1 then f. :
H.(M) — H,.(N) is epic. Similarly, f* : H*(N) — H*(M) is a monomor-
phism if deg f = 1. Theorem 2.13 below generalizes this fact.

2.12. Lemma. Let E be a ring spectrum. Let f : M™ — N™ be a map of
degree +1 of closed HZ-orientable manifolds. If [M] is an E-orientation of
M then f.[M] is an E-orientation of N. In particular, N is E-orientable if
M is.

Proof. The map M LN Z 87 has degree £1, and so e.(f«[M])
(ef)«[M] = £s,. Thus, f.[M] is an E-orientation of N.

Ol
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2.13. Theorem. Let E be a ring spectrum. Let f : M™ — N™ be a map
of degree £1 of closed HZ-orientable manifolds. If M is E-orientable then
f* i F*(N) — F*(M) is monic and f,. : Fx(M) — F.(N) is epic for every
E-module spectrum F'.

Proof. Let [M] be an E-orientation of M. Given x € F*(N), we have
fe(f*(z) N [M]) = N f[M]. But f.[M] is an E-orientation of N, and so
x N fo[M] # 0if x # 0, and thus f*(x) # 0 if  # 0. Furthermore, since
f«[M] is an E-orientation of N, every a € F,(N) has the form

a=un £IM] = £.(f(u) 0 [M)). =

2.14. Remarks-Exercises. (a) The results of this section can be generalized
for compact manifolds with boundary. Namely, Atiyah [3] generalized 2.3 and
proved that M/OM is (N +n)-dual to Tv, where vV is a normal bundle of
(M,0M) in (Rf"'”, GR_?_H'"). In this way one can generalize 2.4 and 2.6, i.e.,
the word “closed” can be replaced by the word “compact” there. Moreover,
there is an isomorphism P of the form

P:F/(M) % FHN(TUN) > F,_(M/OM) = F,_;(M,dM),
and it coincides with the isomorphism
N[M,0M]g : F{(M) — F,_;(M,0M).

(b) We note the following generalization of 2.5 and 2.6. Consider a spec-
trum E and a subset A C mo(E) with £A = A. We regard A as a subset of
E,.(S™ %) = E'n(S") = EO(SO). We define an (A, E)-marking of a manifold
M™ to be an element V € E,(M,0M) such that (V) € A C E,(S™, %),
where € is as in 2.1. Based on 2.3, one can prove that M is (A, E)-markable
iff its normal bundle is (see Definition 1V.5.25). Moreover, (A, E)-markings
of M are in a bijective correspondence with (A, E')-markings of v.

(c) Interpret 2.11(a) as a special case of 2.11(b).

(d) Let N™ be a closed E-oriented manifold, and let V=% be a closed
submanifold of N. Assume that the normal bundle v of N is E-oriented
and let u € E*(Tv) be the E-orientaion of v. Then v @ vys|V = vy, and so,
because of 1.10(iii) and 2.4, V' gets an E-orientation [V]g. Now, the inclusion
V C E yields an element y € E,,_,(M). Let ¢ : N — Tv be the collapsing
map. Prove that ¢*(u) is Poincaré dual to y.

(e) Let N,V and y be as in the previous exercise. Let M™ be an E-
oriented manifold and f : M — N be a map transverse to V. Then f=1(V)
gets a certain F orientation and hence yields an element = € E,,_p(M).
Prove that fi(y) = x.
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§3. Orientability and Integrality

Here we establish some interconnections between orientability and some inte-
grality theorems. Let 7 : D — FE be a ring morphism of ring spectra. Let & be
any D-orientable (and hence E-orientable) V-object over X, and let up (resp.
ug) be a D- (resp. E-) orientation of £&. We do not say that 7(up) = ug. On
the contrary, integrality phenomena arise precisely because of incompatibility
of the orientations.

The orientation ug gives rise to the Thom-Dold isomorphism ¢g :
E*(X) — E*(T¢). Set

(3.1) R(&) = Rupup(€) = pp'7(up) € E°(X).

Now, let M™ be any D-orientable manifold, and let [M|p,[M]g be D-, E-
orientations of it respectively. Consider a stable normal bundle v of M and
fix a Browder—Novikov morphism ¢ : S™ — Twv, Then, according to 2.6,
the orientations [M|p, [M]g determine certain orientations up(v),ug(v) in
a canonical manner, and so the class R(v) is defined.

3.2. Theorem. For every x € D¥(M) we have

(r(x)R(v), [M]g) = (z,[M]p)

(where (—, =) is the Kronecker pairing).

Proof. Let [Tv]p, [Tv]g be as in 2.8. We have

(r(@)R(v), [M]E) = (r(2)¢5"T(up), [M]E) = (¢5" (T(z)7(up)), [M] )
= (T(zup), ¢u[M]E) = ((zup), [TV]E)
= (t(zup), 7[TV]p) = 7{(zup), [TV|D)
= 7((zup), ¢p[M]p) = 7{¢p' (zup), [M]p)
= 7(z, [M]p). O

3.3. Corollary (the “Integrality” Theorem). The element (7(x)R(v),[M|g)
of the group m,_(E) belongs to the subgroup Im{r, : mp—i(D) — mp—k(E)}.
]

Now we give some examples, but to understand them the reader should
know something about characteristic classes and vector bundles. However, in
future we do not use these examples, they just give a nice illustration of 3.3.

3.4. Examples. (a) Given a complex vector bundle £, we define a class

7 =] "

eti — 1



324 Chapter V. Orientability and Orientations

where t; are the Wu generators, i.e., the Chern class ¢;(§) is the i-th elemen-
tary symmetric polynomial of ¢;, see Milnor—Stasheff [1]. We also define the

Todd class .
T(&) = H 1— Ze—ti

Let ch : K%(X) — H*(X;Q) :=[],, H"(X; Q) be the classical Chern char-
acter.

3.5. Theorem (see Hirzebruch [1], Palais [1]). Let n be an arbitrary complex
vector bundle over an almost complex closed manifold M?™. Then

{ch(n) 7 (TM),[M]) and (ch(n)T (M), [M])

are integers for every HQ-orientation [M] of M (here TM is the tangent
bundle of M).

Proof. Clearly, it suffices to prove the theorem for some single HQ-
orientation [M]. Put D = K, E = [[ 5*"HQ = \/ ¥*"HQ, see TI1.3.26,
ne”Z nez
Le., BY(X) =[],z H?"(X;Q). Based on 11.7.13, define 7 : D — E to be
the composition

K k(0] 2 H(r(K) 2 Q) = \/ S HQ.
nez

The inclusion HQ C E equips the HQ-oriented manifold M with an FE-
orientation, and every complex bundle £ admits a canonical K-orientation ue
such that @El chig ue = T(=E), see e.g. Stong [3], p.294. (Stong considers
a family of isomorphisms g, but really this family is an isomorphism ¢g.)
By Bott periodicity, we have mo; (K) = Z, w241 (K) = 0. Interpreting 7 as an
element of K°(M), we conclude that

(ch(n)7 (rM),[M]g) = (ch(n)R(vM), [M]g) € Im{7, : w3 (K) — m2n (E)}.
Now, considering the projection £ — HQ, we conclude that
(ch(n) T (tM), [M]) € Im{mo,(K) — man(E) — ma2n(HQ)} = Z.

Similarly, there exists a K-orientation v with gagl chvg = T(=€). So, we
obtain integrality of the second number!?. O

12\We indicate a construction of such ve. Let v = ’y(l: be the universal complex line
bundle over BU; = CP*, and let t := c1(y) € H?(CP>). We require that

e tchvy, = | ', ie,choy = | ! ,;here ¢ = pp. Since chy = e’ and

1— 1—
TRy = 9([1:, we have chy = e™", i.e., we can put v, = 1fﬁ =0(1+75+
Y2 4+ -++) € K*(CP>), where 1 € K°(CP) represents 6% and § € K?(pt)
is the Bott element. Every complex line bundle £ has the form & = f*v for some
f:bs& — CP, and we put v¢ = f*v,. Now, using the splitting principle, we

t

can construct vg with (,0;51 chve = T(=£) for every complex vector bundle &, cf.
§VIIL.2 and Conner—Floyd [1].
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(b) Given a real vector bundle &, we define the class

A Yi
A(E) =
© H 2sinh(y;/2)
where the Pontrjagin class p;(€) is the i-th elementary symmetric polynomial
of y2.

3.6. Theorem (see Hirzebruch [1], Palais [1]). Let M*" be a smooth closed
manifold with wi(M) = 0 and wa(M) = p(c) for some ¢ € H*(M), where
p: H?(M) — H?*(M;Z/2) is the mod 2 reduction. Then

(e°/® ch(n) A(TM), [M])

is an integer for every complex vector bundle n over M and every HQ-
orientation [M] of M.

Proof. This theorem also can be deduced from 3.3 with D, E, 7 just the
same as in Example (a). Namely, M is K-orientable, and the element ¢
(in fact, the Spin®-structure on M) enables us to construct a canonical K-
orientation of M, see Stong [3], Ch. XI. (In fact, every K-orientation of a
V-object £ yields some ¢ with ws(€) = p(c), see Ch. VI. It can happen that
different K-orientations yield the same class ¢, but there exists a canonical
“lifting”, i.e., a canonical K-orientation, for every class c.) By 2.4, we get a
certain K-orientation u of a normal bundle v, and @' ru = e/2 ch(n) A(T M),
see loc. cit. Now the proof can be finished as in Example (a). O

(c) There is a stronger version of 3.6.

3.7. Theorem (see Hirzebruch [1], Palais [1]). Let M8+ be a smooth closed
manifold with wi (M) = 0,wa(M) = 0. Then for every real vector bundle 1
and for every HQ-orientation [M] of M the number

[
(Ph(m)A(rM), [M]zz)

is even. Here ph is the Pontrjagin character, phn = ch(n®gC).
Proof. This theorem can be deduced from 3.3 if we put EY(X) =

@D,c, HT*"(X;Q), 7 = ph : KO(X) — E*(X). The complexification
C': BO — BU induces the homomorphism

Cy: Z = mgn44(BO) — mgpa(BU) =7

which is multiplication by 2, see IV.4.27(iii), and so the image Im{ph :
Tgnt+a(KO) — mgna(F)} consists of even numbers, and the theorem holds.
O

(d) Considering the morphisms Sqi : HZ)2 — EiHZ/2 we get, by
I11.3.27, a morphism Sq : HZ/2 — H Y"HZ/2 where Sq(z HSq

n=-—oo >0
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By the Cartan formula, Sq : D — F is a ring morphism. Let M™ be a closed
connected topological manifold, and let [[M]] € H,(M;Z/2) be its fundamen-
tal class mod 2, i.e., the non-zero element of the group H,(M;Z/2) = Z/2.
Let W (€) = S wi(€). Since w;(§) = ¢ 15¢*(u) where u € H(TE;Z/2) is a
Thom class of £, we deduce from 3.2 that

(z, [[M]]) = (Sq(x)W (v), [[M]]).
Indeed, put D = HZ/2,E = [[ £"HZ/2= \/ ¥"HZ/2 and r = Sq:
D — E. Then put [M]p = [[]\Z]] and define [M];; to be the image of [M]p
under the inclusion HZ/2 — V, X" HZ/2 of the summand.

This formula is well-known and can also be deduced from the Wu formula
(Sq(x),[M]) = ((V Uz),[M]), where V is the so-called Wu class of M (see
the definition of V' e.g. in Stong [3], pp. 98—-100).

In particular, if dim z # n then

(3-8) (Sq(x)W (v), [[M]]) = 0.

This implies, for example, that w,(v) = 0 (put z = 1 € H°(M;Z/2)). Be-
sides, it follows from (3.8) that every HZ-orientable 3-dimensional manifold
M is parallelizable. Indeed, it suffices to prove that w;(v) =0 for ¢ = 1,2, 3.
We have wy (v) = 0, w3(v) = 0. If wa(v) # 0, then there exists (by duality) a
class | € HY(M;7Z/2) with (I, wa(v)) # 0. But then (Sq(1)W (v),[M]) # 0.

One can deduce from (3.8) the following theorem of Massey [1]. Let a(n)
be the number of ones in the dyadic expansion of n. Then w;(v) = 0 for
i > n — a(n). In fact, all the relations between the Stiefel-Whitney classes
follow from (3.8), see Brown—Peterson [2].

(e) Similarly to Example (d) one can consider the operation P = Y. P*
for an odd prime p.

Analogs of Examples (d), (e) hold also in some other cohomology theories.

(f) Let MU be the complex (co)bordism theory (see Ch. VII), and let
5w 1 MU — SI°I MU be the Novikov cohomology operation associated with a
partition w = (i1, ...,44), where |w| = Y i;. Put D = MU, E = \/_ Sl MU.
Given a finite CW-space X and z € MU*(X), set S(x) = Dus,(z) €
©o MUl (z) = EF(X). Then, by IT1.3.23(ii), S is induced by a morphism
S : D — FE of spectra, and we put 7 := S. Furthermore, we note that
the inclusion MU — E of the summand equips every MU-oriented V-object
with an E-orientation. Let & be a complex vector bundle with the canonical
MU-orientation u. Then ¢y,5.(u) = c,(£), where ¢, (&) € MU«(bs¢)
is the Conner-Floyd-Chern class of £. So, 9" S(u) = C(¢) where C(€);=
Y Cw(§). Let M be a closed almost complex manifold with the canonical
MU-orientation [M]. By 3.3,
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(S@)CW),[M)) € €D man(MU)

k<n—i

for every x € MU*(M?>") (the point of this formula is the inequality k <
n—1).

More generally, one can consider an arbitrary set A of partitions such that
w1, wo € A iff (w1,ws) € A and introduce the spectrum E = Veea X!l MUY,
etc.

(g) The Adams power operation " : K°(X) — K°(X) can be extended
to a stable operation, but this requires the expense of localization. More
precisely, there exists a ring morphism ¥" : K*(X) — K*(X)[1/n] which co-
incides with ¢™ on K°(X). Adams [6] defined a “cannibalistic” characteristic
class pn(€) == ¢ 1" (u) € K*(X)[1/n] for every K-oriented (for example,
complex) vector bundle (£, u) over X. Thus, if M is any K-oriented (for ex-
ample, stably almost complex) manifold, then, by 3.2, for every x € K*(M)
we have

(W™ (@)pn(v), [M]) € Z C Z[1/n].

Theorem 3.2 is a partial case of the following result. Let M, N be two
closed D-orientable manifolds, and let 7 : D — E be a ring morphism of ring
spectra. Choose orientations [M]p, [M]g, [N]p, [N]Eg.

3.9. Theorem (Dyer [1]). For every f : M — N and every x € D*(M) we
have

fe(r(@)R(var)) = 7(fp (2) R(vw)).
Here f' denotes the transfers defined in (2.11).

Proof. This can be easily deduced from 3.2, see Dyer [2]. O
Note that 3.2 follows from 3.9, if we take IV to be a point.

§4. Obstructions to Orientability

In this and the next section we give an obstruction theory for orientability
with respect to spectra of finite type. By 1.16, it suffices to consider connected
spectra only. Furthermore, by 1.20, an F-object is E-orientable iff it is E[p]-
orientable for all primes p which divide the order of 1 € my(FE). Thus, up
to the end of this chapter we fix any prime p and consider a connected p-
local ring spectrum F of finite Z[p]-type. As usual, Z[p]* denotes the set of
invertible elements of the ring Z[p].

In this and the next section the Postnikov n-stage of a spectrum E is
denoted simply by E,. This is not compatible with the notation of Ch. II,
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where E,, was just the n-th term of E, and the Postnikov n-stage of a spec-
trum £ was denoted by F(,), but this will not confuse us because we shall
not consider (nor even mention) terms of spectra in this chapter.

By 1.13, without loss of generality we may and shall restrict our attention
to stable V-objects only. So, up to the end of the chapter the term “V-object”
means “stable V-object over a connected CW-base”, and similarly for F-
objects.

4.1. Recollection (See Fomenko—Fuchs—Gutenmacher [1], Hu [1], Mosher—
Tangora [1], Spanier [1]).

(a) Recall that an F-fibration p : Y — X is called simple if the m (B)-
action on 7, (F) is trivial for every n.

(b) Let F be a CW-space with 7;(F) = 0 for ¢ < n where n > 1. Then,
by the Hurewicz Theorem, H;(F) = 0 for ¢ < n, and so, by 11.4.9, there
is a canonical isomorphism a : H"(F; 7, (F)) = Hom(H, (F),n,(F)). Let
g : Hy(X) — m,(X) be the inverse isomorphism to the Hurewicz isomorphism
h:m,(F) — Hy(F). The element

(4.2) tni=a"(g) € H(F;7,(F))
is called the fundamental class of a space F.

(¢) Now, let
(4.3) p:Y =X

be a simple F-fibration with F as in (b), let F), be a fiber over a point z € X,
and let 7 : H"(Fy;m,(Fy)) — H"WY(X;mn(F,)) be the transgression. We
define the characteristic class x of the fibration (4.3) by setting

(4.4) X =Ty € H"H X7, (F))

(d) In particular, if F'is an Eilenberg—Mac Lane space K (m,n) then there
is the fundamental class

tn € HY(K(m,n);mn(K(m,n))) = H*"(K(m,n); 7).

However, we must be careful with the last (traditionally used) equality.
Namely, this equality means that there is a standard group 7, and we some-
how identify 7, (K(m,n)) with 7. A similar problem arises when we con-
sider characteristic classes. In other words, when we say, for instance, “Let
X € H""1(X; ) be a characteristic class of the K (m, n)-fibration over X” it
means that y is an element of the corresponding Aut 7-orbit in H"*1(X;7),
cf. Spanier [1], Ch.8, §1. (By the way, cf. 11.4.19.)

(e) Recall that a K (m, n)-fibration has trivial (i.e., =0) characteristic class
iff it admits a section, see loc. cit.
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4.5. Lemma. Let p be a prime, and let m1 = Zlp] or © be a cyclic group
of order p*. Let q : Y — B be a simple fibration with fiber K(m,n),n > 1,
and with non-trivial characteristic class x € H" 1 (B;7). Furthermore, let
Y, B be homotopy equivalent to CW -spaces, and let H"*(B;m) be a finitely
generated Z[p|-module. Finally, let

y -2 . vy

| s
B —— B
!

be a commutative diagram such that f is a homotopy equivalence. Then g is
a homotopy equivalence.

Proof. Let f(by) = ba,b; € B, i =1,2, and let F; := ¢ 1(b;), i = 1,2. Let
g : F1 — F5 be the restriction of g. In order to prove that g is a homotopy
equivalence, it suffices to prove that g is a homotopy equivalence. Let ¢; €
H"™(F;;7) = 7 be the fundamental class of F;, i = 1,2. It suffices to prove
that ¢g*(t2) = Av; with A € Z[p]*, where

g H*(Fy;m) — H*(Fy;m)
is the induced homomorphism. We have y # 0. Furthermore, H"™1(B; ) is a
finitely generated Z[p]-module, and so there exists  such that p”|x,p" 1 t x.
Set x; = Tt;, where 7 is the transgression in the Leray—Serre spectral sequence

of q. Since f is a homotopy equivalence, p"|f*(x2),p" ™ 1 f*x2 . Now, if
g*(t2) = p* A1 with s > 0, A € Z[p], then

(4.6) [r(x2) = [H(112) = 797 (12) = 7(p° A1) = p*Axa.
In particular, p" ™| f*(x2). This is a contradiction. O

We denote m;(E) by m; and consider the Postnikov tower of E

E
(47) -+ —— En B, —- Enoy —-— Ep
S H (7)) H (o)

Here &, is the n-th Postnikov invariant of E (and also the corresponding
higher cohomology operation).
By 11.4.30(i), every E, is a ring spectrum.



330 Chapter V. Orientability and Orientations

4.8. Proposition. Fvery E-orientable F-object o is E,,-orientable for every
n. In particular, it is H(mg)-orientable.

Proof. This holds by 1.6 since, by 11.4.30(i), 7, is a ring morphism. O

So, as a first step, we must clarify when « is H (g )-orientable.

4.9. Proposition. Let R be a ring (non-graded), and let HR be the corre-
sponding Eilenberg—Mac Lane spectrum.

(i) If « is HZ-orientable then « is H R-orientable for every R.

(i) If v is not HZ-orientable, then it is HR-orientable iff 2R = 0.

Proof. (i) The (unique) ring homomorphism Z — R induces a ring mor-
phism HZ — HR of spectra. Thus, by 1.6, « is H R-orientable.

(ii) Since every F-object is HZ/2-orientable, we conclude that o is HR-
orientable if 2R = 0. Namely, the ring homomorphism Z/2 — R induces a
ring morphism HZ/2 — HR, and we can apply 1.6.

Now, if o is not HZ-orientable then, by IV.5.23(i) and 11.4.7(i), Ho(Ta) =
Z/2, and so, by 11.4.9,

H°(To; R) = Hom(Ho(Ta), R) = Hom(Z/2, R).

On the other hand, if o is H R-orientable then H(To; R) = H%(bsa; R) =
Thus, 2R = 2Hom(Z/2, R) = 0.

=

O

Going further, consider any H (mg)-oriented F-object « with an H (g
orientation v : Taw — H (o).

~—

4.10. Proposition. Every lifting v : Tao — E of v is an E-orientation of c.

Proof. Let j : S — Ta be a root of the spectrum T'«. The composition
S L Ta % E yields exactly the same element of mo(E) as the composition
S L Ta 2 H(m) does. O

4.11. Proposition. A V-object o over a finite dimensional CW -base is E-
orientable iff 0 € kyn(v) for all n.

Proof. T explain here why the base should be finite dimensional. Because of
obstruction theory, if 0 € k,(v) for every n then « is E,-orientable for every
n, and vice versa. However, if bs« is not finite dimensional then we can’t
guarantee that « is E-orientable, since F,,-orientations can be incompatible.
In other words, we have a phenomenon of “phantomic orientability”. On the
other hand, if bs« is finite dimensional then E-orientability is equivalent to
En-orientability with N >> dim X (prove this!), and the result follows. O

Since FE is a ring spectrum, 7, is a module over the ring 7o, and so H(7,,)
is a module spectrum over the ring spectrum H (7). Hence, for every k, n we
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have a Thom isomorphism ¢ : H¥(X;m,) — H*(Ta;m,). We introduce the
higher characteristic classes e, (o) C H" (X ;m,) by setting

(4.12) en(@) = o, (v).

Of course, ey (a) is defined iff 0 € e;(a) for all ¢ < n. Now, 4.11 can be
reformulated as follows.

4.13. Proposition. An F-object « over a finite dimensional base is E-
orientable iff 0 € ey () for all n. O

As usual, we set

(4.14) en(§) = en(€")

for any V-object £&. We say that the characteristic class e, can be realized by
V-objects if there exists a V-object £ such that e, (§) is defined and 0 ¢ e, (&).
The realizability problem for characteristic classes seems to be of great in-
terest. We shall see below that for fixed E' and different V this problem has
different solutions.

Let 7, = 7)Y be the universal stable E-oriented V-object over B(V, E,,) (in
other words, 7/ is ny, g, in the notation of 1.17). (Do not confuse v with the
n-dimensional V-object 7{} from IV.4.2.) Let u,, € EX(Tv,) = ES(M(V, E,))
be the universal E,-orientation of ~,. Set
(4.15) el = o ka1 € H"YBW, Ep_1); 7).

4.16. Proposition (universality of e¥). Let & be any E,-oriented V-object
over X, and let a € e, (€). Then a = f*e¥ for some f: X — B(V,E,_1).

Proof. The element ¢(a) is given by the composition
T¢ 2 B,y 5% £ H(ry,)

where, by 4.10, h must be an FE,,_j-orientation of £. Hence, h yields a map
f:+ X — BWV,E,_1) such that (Tf)*up—1 = h, where T'f := T3, , :
T¢ — Try,—1. Thus,

f*ex = f*(go_lnnun,l) = ga_lnn(Tf)*un,l = ga_lnnh = <p_1g0a =q. O

Of course, it makes sense to realize classes e, by the universal objects
vY_,. Since €Y € e,(vY_;), the condition e¥ # 0 is necessary for the real-
izability of e,. We shall see below that this condition is not sufficient for
the realizability of e,. So, it would be useful to find some condition of non-
triviality of € and to find when this non-triviality implies that 0 ¢ e, (vY_;).
The first of these will be done in 4.19, and the second one will be done in
5.1, 5.6.
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By 1.18, B(V, E) is a functor of E (on the category of ring spectra and
ring morphisms). By 11.4.30, each spectrum E,, is a ring spectrum and all the
morphisms 7,,, p,, are ring morphisms for every n > 0. Thus, we can apply
the functor B(V, —) to the tower (4.7) and obtain the tower (4.17), where
pn =BV, 1n),qn := BV, pp).

(4.17)
B(V,E)

[

...— BV, E,) _an BW,E,_1) —---— B(V, Ey) % , By

Because of IV.1.35, we can and shall assume that every map g, is a fibration.

4.18. Theorem. (i) The fiber of qn is K(mp,n). Thus, the tower (4.17) is
the Postnikov—Moore tower'® of the forgetful map q : B(V, E) — BV.
(ii) The K (m,,n)-fibration g, has a section iff e =

Proof. (i) This is obvious because the fiber of g, is just the fiber of
0% (pn), and hence it is the Eilenberg—Mac Lane space K (m,,n).

(ii) Note that Y = 0 iff the universal E,,_;-orientation of 7Y _; can be
extended to an E,-orientation of v/, i.e., iff ¢, admits a section. O

4.19. Corollary. If Q®k,, # 0, then e # 0.

Proof. The restriction of the tower (4.17) to a point b € BV gives us the
Postnikov tower of Q5% E. One has the pull-back diagram

O E, —— BWV,E,)

prnl lQn

Q:OtolEn,1 —_— B(V, Enfl).

If Ok, # 0, then Q*°p,, does not admit a section. So, g, does not admit a
section. Thus, by 4.18(ii), e¥ # 0. |

4.20. Definition. We say that a connected ring spectrum E of finite Z[p]-
type is simple if the fibration g,41 - g¢m : BV, E,) — B(V, E,) is simple
for every m,n, m > n and every V.

4.21. Lemma. (i) The spectrum E is simple iff every fibration ¢,
BV, E,) — B(V,E,_1) is simple for every n and every V.

(i) If the space B(V, Ey) is simply connected (i.e., B(V, Ey) ~ BSV),
then E is simple.

(iii) If 2m.(E) # 0 then E is simple.

13Gee e.g. Spanier [2] about Postnikov-Moore towers.
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(iv) Let A be a finitely generated Z[p]-module. If a spectrum E is simple
then the group H'(B(V, E,); A) is a finitely generated Z[p|-module for every
i,m.

Proof. (i) Let I be a fiber of gu11---@m. It follows from 4.18(i) that
m(F) = m for n4+1 < ¢ < m and m(F) = 0 otherwise. Now, the
m1(B(V, E,))-action on m;(F),n 4+ 1 < i < m, coincides the m (B(V,i — 1))-
action on ;(fiber of ¢;) = m;(F).

(ii) The action of m (B(V, Ep—1)) = m1 on m,(fiber of ¢,,) = m, coincides
with the action of 71 (Q*°FE) = 71 on m, = m,(Q*°E); but the last action is
trivial because Q>°F is an H-space. Now the result follows from (i).

(iii) If 2m.(E) # 0 then the fiber of ¢y is homotopy equivalent to Z/2.
Since [pt, B(V, H(m))] is the one-point set, B(V, Ey) = B(V, H(m)) is a
connected space. Considering the homotopy exact sequence of the fibration
qo, we conclude that B(V, Ep) is simply connected, and the claim follows
from (ii).

(iv) Firstly, we prove that every group H'(B(V, Ep); A) is a finitely gen-
erated Z[p]-module. There are two possibilities: ¢o is the identity map or ¢g
is homotopy equivalent to the universal covering (cf. the proof of (iii)). If
qo is the identity map then, by IV.4.27(ix), every group H;(BV) is finitely
generated, and so H'(BV; A) = H'(B(V, Ep); A) is a finitely generated Z|p]-
module. Furthermore, if ¢y is homotopy equivalent to the universal covering
then B(V, Ey) is simply connected and m;(B(V, Ep)) = m;(BV) for every
i > 1. So, m;(B(V, Ey)) are finitely generated abelian groups by IV.4.27(ix).
Hence, H;(B(V, Ey)) are finitely generated abelian groups by the mod €
Hurewicz Theorem for spaces, where € is the Serre class of the finitely gen-
erated abelian groups, see e.g. Mosher-Tangora [1]. Thus, H'(B(V, Ey); A) is
a finitely generated Z[p]-module for every i.

Suppose inductively that H*(B(V, E,—1); Z[p]) is a finitely generated Z[p]-
module for every i. It is well known (or one can prove this as above) that
HY(K(m,n); A) is a finitely generated Z[p]-module for every finitely gener-
ated Z[p]-module 7 and every i, n. Considering the Leray—Serre spectral se-
quence of the fibration K (m,,n) — B(V,E,_1) — B(V,E,), one can see
that HY(B(V, E,,); A) is a finitely generated Z[p]-module for every i. The in-
duction is confirmed. O

4.22. Theorem. Suppose that E is a simple spectrum and that the group
Tn 48 cyclic or isomorphic to Z[p]. Then €Y is a characteristic class of the
K (m,n)-fibration q,. (In other words, if xn is a characteristic class of the
K (m,n)-fibration g, then x, = e for some ¢ € Z[p|*.)

Proof. Let x = xn be a characteristic class of ¢,. If e = 0 then, by 4.18(ii),
¢n admits a section, and so x = 0. Similarly, the converse holds. So, we can
assume that e # 0 # x. Let 7 : B — B(V, E,_1) be a simple K(m,,n)-
fibration with characteristic class ). (For example, take the fibration induced

n-
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from the standard K(m,,n)-fibration PK (m,,n + 1) — K(m,,n + 1) (see
IV.1.39(a)) by the map €Y : B(V, E,_1) — K(m,,n + 1).) We have

(€)= ¢ o  hnun_1 = 0 N(Tqn)*Kntin_1 where Tq, := PR
But T(gn)*kntn—1 is given by the composition

Tqn Un —1

MW, E,) — M(V,E,—1) — E,_1 =% %" H(m,),
and, by 1.18,
Hnun—qun = finun—lM(Vapn) = KnPnUn—1-

So, ¢ (eY) = 0 since k,p, = 0. Hence, there exists a map o : B(V, E,,) — B
over B(V, E,_1). Similarly, since r*(e}) = 0, the E,_j-oriented V-object
r*yY_, admits an E,-orientation, and hence there exists a map 3 : B —
BV, E,) over B(V,FEp_1).

BWV,E,) —%— B B 2 . BW,E,)
.| | | .l
B(V,En_1) B(V,En_1) B(V,En 1) B(V,En_1)

Since characteristic classes of the fibrations ¢, and r are non-zero, a3 and
Ba are homotopy equivalences by 4.5. Hence, « is a homotopy equivalence.
Let K'(m,n) (resp. K”(m,n)) be the fiber of r (resp. of ¢,), and let
V€ H"(K'(w,n);m) (resp. " € H"(K"(m,n);m)) be a fundamental class
(we can’t say “the fundamental class”, see 4.1). Furthermore, the homotopy
equivalence « induces a homotopy equivalence « : K" (w,n) — K'(m,n).
Since H™(K (w,n);7) = m, we conclude that o™/ = e/’ for some e € Z[p|*.
Thus, y = ee). O

4.23. Remarks. (a) Resuming the above, we have two ways to E-orient a V-
object £ = {f : X — BV}. The first way is to lift a morphism v : T¢ — H (mg)
to E along the tower (4.7), and in this way we meet the obstructions given
by the x,,’s. The second way is to lift the map f : X — BV to B(V, E) along
the tower (4.17), and in this way we meet the obstructions given by the e,,’s.
So, the transfer from tower (4.7) to tower (4.17) can be considered as a form
of the Thom isomorphism.

(b) Theorems 4.18(ii) and 4.22 show that it makes sense to introduce a
class e € H*(BV;{£l} C m) as the characteristic class of the covering
B(V,Ey) — BV. In fact, e = 0 if 2m9(E) = 0 and e} = w; otherwise.
Clearly, e} (£) is the obstruction to Ep-orientability of ¢, i.e., it is the first
obstruction to E-orientability of .

(¢) Knapp—Ossa [1] defined the E-codegree of an Fp-object a to be the
minimal natural number k such that ko™ € Im{j* : E*(Ta) — E™(S™)}.
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Clearly, the codegree of « is equal to 1 iff « is E-orientable. Knapp—Ossa [1]
considered just K- and K O-codegree of vector bundles; however, I think, the
general concept of E-codegree is interesting and is able to be considered in
some general context related to the results of this and the next section.

§5. Realizability of Obstructions to Orientability

Now we are ready to attack the problem of realizability of the classes e,.
Let {m;,.},0 = ip < i1 < --- be the set of all non-trivial homotopy groups
of E. In other words, m; # 0 iff ¢ = 4, for some r. Note that E; |, = E; _;
and fy;f_l = %—Kfl. Of course, it makes sense to realize the classes e;, only,
because each class e; with j # i, belongs to the trivial group. For simplicity,
denote e;,. by s, and ;. by o,.

Let X|n — X be the (n — 1)-connective covering of X (see IV.1.39(b)).
Let (2°°0;)|n be the corresponding Postnikov invariants of (2°° E)|n. (Recall
that Q°° transforms the Postnikov tower of a spectrum to that of the space.)

5.1. Theorem. Let E be a simple spectrum, and let the group m; be cyclic
(possibly trivial) or Z[p] for every j. Suppose that there exists n such that

() 0 (0 _,),

(i) (2%0,)|in # 0 for all v > n.

Then 0 & »,(vY _y) for v > n. In other words, all characteristic classes
»r, 7 > n can be realized by a V-object.

Proof. Firstly, we prove the following lemma.

5.2. Lemma. Letr > n , and let w: QFE; |, — Q¥E; | be a map such
that wy @ m;,, — m;, s an isomorphism. Then w cannot be lifted to Q> E;
(with respect to the projection Q¥ E; — Q®FE; ).

Proof. Because of naturality, w gives a self-map of the Postnikov—Moore
tower

QOOEiT71 — QOOEiT72 QOOEM

I+ ! l

QOOEiT7 — Q%F; QOOE“L

Tr—2

1

Let X, — QF;_ be an (i, — 1)-connective covering of Q> F; . Because
of naturality of connective coverings, this diagram induces the diagram

Xr—l — X7'—2 o Xn

ar | = |

Xr—l - X7'—2 e Xn
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Note that X,, = K(m;,,i,). Hence, w, induces an isomorphism of homo-
topy groups, and so it is a homotopy equivalence. Suppose inductively that
ws,n < s < r—1,1is a homotopy equivalence. In the commutative diagram

Ws1
Xop1 =2 X

| !

X, —= X,

the vertical arrows are K (m;, 11, is + 1)-fibrations with the characteristic class
0°°0441]in, which is non-trivial in view of the condition (ii) of the theorem.
Furthermore, w, is a homotopy equivalence. Now, 7;(X,) are finitely gen-
erated Z[p]-modules, and hence H®(X,;m;_ 1) are finitely generated Z[p]-
modules. So, by 4.5, wsy1 is a homotopy equivalence. Thus, inductively,
wyr—1 is a homotopy equivalence. But the characteristic class of the fibra-
tion X, — X, _; is non-trivial according to the condition (ii) of the theorem,
and hence w,_; cannot be lifted to X,.. This implies that w cannot be lifted
to QOOEzT H

We continue the proof of the theorem. For simplicity, we denote B(V, E;,)
by By. The assertion 0 € s¢,.(7;,—1) is equivalent to the following one: there
is no map B,_1 — B,_1 over BY which can be lifted to B,, i.e., that the
diagram (5.3) below cannot be completed:

B,_, B,
| I

(5.3) B, 1 —— B,
| I

BY BY .

We prove the last assertion. Consider any map ¢ : B,, — B, over BY. By
naturality of Postnikov—Moore towers, we have a commutative diagram

K(m,,in) Ba By —— BV
5| o| | |
K(mi, . in) B Bn_1 —— BV.

Here K (m;, ,iy) is the fiber of the fibration B, — B, _1, and g is the map of
fibers induced by g. Let « € Hin (K (m;, ,i,);m:, ) be a fundamental class.

5.4. Lemma. The fibration B, — B,_1 is simple, and its characteristic
class Tv has finite order.
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Proof. The fibration is simple because F is a simple spectrum. Now, let
u:TyY _y — E,_1 be the universal E,_j-orientation of v’ _;. By (4.15),
0(5¢) = opu = u*o,, where o,, € H»TY(E; _1;m; ) is the Postnikov invari-
ant of E. By 11.7.12(i), o, has finite order, and so ¢(5/) has finite order,

and so ) has finite order. But, by 4.22, ¢ = e3¢} with ¢ € Z[p]*. B

5.5. Lemma. The map g is a homotopy equivalence, i.e., g v = \v for some

X € Z[p)*.

Proof. By the condition (i) of the theorem, 0 ¢ s, (7} _,), and so s, # 0.
Hence, by 4.22, 7v # 0. By 5.4, pN 71 = 0 for some N. Suppose that ¢*1 =
p*A, s > 0,\ € Z[p]. Consider the commutative diagram (where fV denotes

fo-+-of)

N

l !

Bn—1 —— Bp-1.
fN
Note that 7Y _; is not E;, _j-orientable because 0 & , (v} _;). Since f is a
map over BV, this non-orientability implies that fV cannot be lifted to B,,.
Hence, (fN)*7. # 0. But

()7 =r((6™)"0) = 7" A1) = YAV =0,
This is a contradiction. H

Now we finish the proof of the theorem. Let r > n. We must prove that
0 ¢ sn(vY _1), Le., that any h : B,_; — B,._1 over BY cannot be lifted to
B,, see (5.3). Suppose that there exists h which can be lifted to B,. Then
it induces a map of the Postnikov—Moore towers, and, in particular, a map
g : B, — B, over BV. We have the two diagrams below, where the bottom
vertical maps are the forgetful fibrations from 1.17 and the top vertical maps
are inclusions of fibers:

0P Ei, 1 —— QX E;, QP Ei, — QX E;,
Br—l L) Br—l Bn L’ Bn
BY BY, BY BY

By 5.5, ¥s : m, (Q°E;,) — m, (Q°F; ) is an isomorphism. So, since
¥ is the “Postnikov i,-stage” of w, we conclude that w, : m;, (Q®FE; _|) —
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7, (Q°E; ) is an isomorphism. Now, by 5.2, w cannot be lifted to Q*°E;_,
and hence h cannot be lifted to B,. O

Note that in Theorem 5.1 the class V appears in condition (i) only: condi-
tion (ii) is related purely to the spectrum E. It is possible to weaken condition
(ii) with simultaneous strengthening of condition (i) to obtain the following
theorem.

5.6. Theorem. Let E be a simple spectrum, and let the group m; be cyclic
or isomorphic to Z[p] for every j. Suppose that

(i) () #0,

(ii) 3¢Y # 0 for every r > 1.

Then 0 ¢ s (vY _1),r=1,2,....

Proof. This is similar to the proof of 5.1, but simpler. It suffices to prove
that there is no map B,_1 — B, over BY. By 4.18(ii), non-triviality of the
class %).} implies the the fibration B, — B,_; does not admit a section,
r = 2,3,.... Hence, it suffices to prove that every map B,_1 — B,_1 over
BV is a homotopy equivalence for every r > 0. For r = 1 this follows from
the equality B(V, Ey) = BSV. Consider any r and suppose inductively that
every map B,_1 — B,_1 over BV is a homotopy equivalence. Given any map
g : B, — B, over BV, we have, by naturality, a diagram

BTL,BT

l l

B, 1 —— B,

where f is an equivalence. Thus, by 4.21 (iv) and 4.5, g is a homotopy equiv-
alence. g

5.7. Remark. In Section 4 we discussed V-objects over finite dimensional
spaces. The spaces B(V, E,,) are not finite dimensional, but it is easy to see
that the classes s, from 5.1, 5.6 can be realized by V-objects over certain
skeletons of B(V, E,,).

5.8. Remark. The results of this and previous sections were obtained by
Rudyak [6,8].
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In this chapter we apply the results of the previous one to the orientability
of V-objects with respect to K and K. The case ¥V = O was considered
by Atiyah—-Bott—Shapiro [1], the other cases were considered mainly by the
author, see Rudyak [6,8,9]. To be convenient, we collect the results as a
résumé, see the ends of §§ 3.4. Here K, resp. KO, means complex, resp. real
K-theory, see Atiyah [4], Husemoller [1], Karoubi [1], etc.

Set k := K10, kO := KO|0. In view of V.1.17 K-, resp. KO -orientability
is equivalent to k-, resp. kO -orientabilty. So, it suffices to consider the k- and
kO -orientability problems.

As usual, given a space X and an abelian group m, we do not distinguish
elements of H™(X;7) and maps (homotopy classes) X — K (mw,n). For exam-
ple, we can and shall speak about the map Sq¢* : K(Z/2,n) — K(Z/2,n+k);
this map corresponds to the element Sq*i,, where ¢, € H"(K(Z/2,n);Z/2)
is the fundamental class.

Let G be one of the groups Z or Z[2]. In this chapter p : HG — HZ/2
(as well as p : K(Z,n) — K(Z/2,n)) denotes the reduction mod 2, and
0 : HZ/2 — Y HG denotes the integral Bockstein morphism. We use the same
symbols p : H"(X;G) — H"(X;Z/2) and § : H"(X;Z/2) — H""(X;G)
for the corresponding homomorphisms. Thus, there is the Bockstein exact
sequence, where 2 over the arrow means multiplication by 2,

c— HY(X;G) > H™(X;G) & HY(X;Z/2) > H" N X;G) — - .

Finally, as usual, Z[2]* denotes the set of invertible elements of Z[2].

§1. Some Secondary Operations on Thom Classes

The results of this section were obtained by Hegenbarth [1]. In this section H
denotes HZ /2, H,.(A) denotes H,(A;Z/2) and H*(A) denotes H*(A;Z/2).
The information that we shall need on secondary cohomology operations
can be found in Mosher—Tangora [1]. One says that a secondary operation ®
can be realized by V-objects if there exists a V-object & such that ® is defined
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on the Thom class ue € H*(T€) and 0 ¢ ®(ue) (recall that usually @ is a
multivalued map).

Consider an Adem relation

[a/2] bee—1
Sanqb: Z ( o )Sanrchqc
c=0

with a < 2b. Let ®(a,b) be the secondary operation associated with this
relation. The goal of this section is to prove that ®(2,2) and ®(3,3) can be
realized by spherical fibrations.

We need some preliminaries about Kudo—Araki—-Dyer—Lashof operations.
We just give a brief description of their properties: more detailed information
can be found in Cohen-Lada—May [1], Madsen—-Milgram [1]. These operations
were introduced by Kudo—Araki [1] for p = 2, while Dyer—Lashof [1] have
given the construction for p > 2.

Let X be an n-fold loop space. The product on H,(X) we denote by x.

There are operations Q° : Hy(X) — Hy1;(X) with the following properties:

(1) Qs defined for i —k <n —1;

(2) Q! is natural with respect to n-fold loop maps (i.e., Q*(f) is defined

for f = Qng);

(3) Qi (z) =0 for i < dimz;
) Q(x) =z *x for i = dimuz;
(5) Let o: SQX — X be the adjoint map to 1ox, and let

Hi(QX) = Hiy1 (SQX) — Hip1(X)

be the homological suspension. Then Q' (o.x) = 0.(Q'x);
(6) (Cartan formula) Given x € H,(X),y € H.(Y), one has
Qrey) =Y Qz)Q"y),
J+k=i

where t®y € H.(X xY) and X X Y is equipped with the product
loop structure. By naturality,

@xy)= > Q= (v)
Jtk=i
for every z,y € H.(X), and
v)= > Q)+ Q "),
j+k=i

where d : X — X x X is the diagonal and d,(z) =Y 2’ ® 2”;
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(7) (Adem relations) If » > 2s, then

S 2i—r r+s—i,i.
QQ —}j(rsiJQ* Q'

K2

(8) (Nishida relations) Let Sq’ : Hy(X) — Hy—;(X) be the dual oper-
ation to S¢', i.e., (Sq'(x),a) = (x, Sqi(a)), cf. 11.6.36. Then
$q.Q'(a) = > Q7" Sq (a);

2k<i

(9) If a € H.(QpS™), then Q'(a) € H.(Q5,.5™), where Q7S™ is the
component of Q2"S™ consisting of all maps of degree k.
Let 0 # ar € Ho(QpS™) = Z/2, and let [k] be the image of aj in
Hy(Q"S™). Note that [k] * [I] = [k +1].
Given a connected space A, let ¢ be the non-trivial element of Hy(A).
Let K, denote K(Z/2,n), and let x, € Hp(Ky), yn € Hn(K(Z,n)) be the

generators.

Consider the two-stage Postnikov system (n is large, in fact n > k)
Kk — . E
|»
k
K(Z,n) 2 Ko,

ie,p: E— K(Z,n) is a fibration with fiber K,,y,_1 and characteristic class
Sq*p, i.e., E is the homotopy fiber of S¢¥p. Here j is the inclusion of a fiber.
Let ¢ : S™ — E yield the generator 1 € m,(F) = Z. The element (Q™)[l] €
Hy(Q"E) we denote also by [l]. The image (Q"j)(zr—1) € Hp_1(Q"E) of
Tr_1 we denote also by xx_1.

1.1. Lemma. Qk_l[l] = [2] *x x—1 in H(Q"E).

Proof. Tt is clear that Q*~1[1] = 0 or Q*~![1] = [I] * 2_1. Moreover, in
the latter case [ = 2 because of the naturality of Q% and (9). Hence, we must
prove that Q*~1[1] # 0. Let

oF 1 Hy(O"E) — Hy_1 (2" FTE)

be the iterated homological suspension. Under the homotopy equivalence (not
as loop spaces)
Q"B ~ K(Z,k —1) x Kog_o

we have 0¥ ~1[1] = yr_1 ® e. Now
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ol HQF ] = Q¥ Hei T 1] = Q¥ k-1 ®€) = (-1 ®€)?,

2

(where a? means a * a). Hence, we must prove that (yx_1 ® €)? # 0.

Let v € H*72(Ky;_o) and v' € H*"1(K(Z,k — 1)) be the generators.
Let
= H2k72(ank+1E), vE kal(ankJrlE)

be the images of v’ and v’ under the equivalence Q" *T1E ~ K(Z, k — 1) x
ng_g. Let
’l/) . H*(ankJrlE) N H*(ankJrlE) ® H*(ankJrlE)

be induced by the product on the loop space. It is clear that the inequality
(y—1 ®¢€)? # 0 follows from the following fact.

1.2. Sublemma (Milgram [2]). ¥(u) =u®1+vQv+1Q®u.

Proof. Put X = Q" *E and consider the Z/2-cohomology Leray—Serre
spectral sequence of the QX-fibration PX — X. This spectral sequence is
a spectral sequence of Hopf algebras because of the loop product on X. In
particular, there is a family of comultiplications ¢, : ES* — EX* @ EX*
commuting with the differentials.

Let ® be the multiplication in this spectral sequence. Since Sq*(rv) = 0
(7 is the transgression), Tv®u is killed by an element of the fiber. Hence,
TRV = dipu. Now
di(Yru) = Yt (diu) = Yrgr (Todw) = Y(Tv)@Y(v)
=(R1+1mM)Rve1+11v)
=TRUVRXI+vRTV+Tv RV + 1 QR TRV =
dk(u®l+vuv+1®u).
Hence, ¥(u) =u®1+v®v+1®u. Hence, 1.2, and thus 1.1, is proved. O
1.3. Lemma. (i) If k—1>7r >0, then Q" "E ~ K(Z,r) X Kp1r—1 (not as
loop spaces), and Q¥ (y, @ €) = e @ Tpyr_1.
(ii) Consider the Postnikov tower

Ktk 1 . FE
l"
K, =S K
Ifk—1>1r>0, then Q" "E ~ K, X Kpyr_1, and Q¥ (2, ®¢) = €@ jppr_1.

Proof. (i) The equivalence Q" "E ~ K(Z,r) X Kj4,—1 is clear. Now, we
have the equality o, ([j] * Tx—1) = € ® x, where
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Oy : kal(QnE) — Hk(QnilE) = Ho(K(Z, 1)) ® Hk(Kk)

is the homological suspension. Furthermore, o, (y, ®€) = yp+1 Q¢ and 0. (e ®
Tq) = € @ Tgy1, Where

0w Ho(K(Z,p) x Kq) = Ho(K(Z,p+1) X Kq11).
Thus, by 1.1,
Q" (g, @ £) = Q1 (7 [1]) = o7 (Q 1)) = oL ([2] * mh 1) = 07 @ )
= €®Ik+r71-

(ii) This follows from (i), because there is a morphism of Postnikov towers

E —— E
k
K(Zn) —2— K, 2% K.
O
1.4. Lemma. Given a Postnikov tower
Kn+2 ;) E
lp
Sq®p

K(Z,n) ——— Knys,

there is a map ® : E — K, 5 such that ®j = Sq>.

Proof. There is the Adem relation Sq¢35¢> + Sq°Sq! = 0. Since Sq'p = 0,
we have the relation Sq3Sq3p = 0 which holds on integral cohomology classes.
Let tni2 € H" ?(K,12) be the fundamental class, and let 7 denote the
transgression in the Leray—Serre spectral sequence of the K, ;o-fibration p.
We have

(5S¢ tn12) = S¢* (Tint2) = S¢°S¢’p = 0.

Hence,
S@Pinte € Im{j* : H*(E) — H?(K,12)}.
Thus, there is ® € H?(E) with j*® = Sq¢31,42, i.e., ®j = Sq>. O
Consider now the 3-stage Postnikov tower
Ell El
p//J/ J/p/
Knio —2— B —2 0 Knus

lp
Sqp

K(Z,n) —— Kpqs,
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where ®j = S¢3, p’ : B/ — E is the K, 4-fibration with characteristic class
@, and p” is induced from p’ by j. Of course, E” is the homotopy fiber of pp’.
Moreover,

O"E' ~ K(Z,0) x Q"E".

Furthermore, Q"E" ~ Ko x Ky.
1.5. Lemma. In the group

H.(Q"E') = H.(K(Z,0)) ® H.(K2) ® H.(K4)
we have Q?Q?[1] = [4] * (¢ ® z4).

Proof. Firstly, we note that Q%[2] = 0 for i = 1,2. Indeed, by the Adem
relations,

Q21 =QQ°1] =) arQQ°[1]

with 0 < s < i < 2. But Hy(Q"E’) =0 for s < 2, and so Q°[1] = 0.
Now, Q"E’' ~ K(Z,0) x Ky x K4, and the map

O Q"E — Q"E ~ K(Z,0) x K

is the projection onto the first two factors. By 1.1, (Q"p'). : H (Q"E') —
H.(Q"E) maps Q?[1] to Q?[1] = 2 * xo. It is clear that

(Q7p)+([2] (22 ®€)) = [2]  22.

But (2"p’). is monic in dimension 2, and so Q?[1] = [2] ¥ z2 in H.(Q"E"). It
follows from the Cartan formula (6) that

Q*Q* ] = Q*([2] * (z2 ® ) = [4] * Q*(z2 ® ),

because Q°[2] = [4] and Q[2] = 0 for i > 0. In order to compute Q*(z2 ® ¢)
we can compute it in H.(Q"E"). By 1.3(ii), Q*(z2®¢) = e®x4 in H,(Q"E").
Thus, this holds in H,(Q2"E") also. O

Consider now any Adem relation
SqSqb + ZSqliqui =0, a<?2b.

This relation implies the relation Sq®Sq’p+>" Sq'Sq* p = 0, which holds on
integral cohomology classes. Moreover, it will hold if we exclude terms with
k; =1 (since Sq'p = 0.) Thus, we get the relation

Sq*Sqtp + Z Sq¢liSqtip =0,k > 1

and the (partially defined, multivalued) operation ®(a,b) : HZ — HZ/2
associated with this relation.
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Recall that
® = ®(a,b) : H(X;Z) — HFT=1(X)

is defined on the subgroup Ker(Sq’p N (N; Ker S¢*p)), and for i large ®(x)
is a coset with respect to the indeterminacy subgroup

®(0) = Im(Sq* @ (®; Im Sq")) c HTeHo=1(X).

1.6. Theorem. There exists an oriented stable spherical fibration & such
that:

(i) wa(§) =0,

(ii) ®(3,3) is defined on the Thom class ue € HY(TE;Z),
(iil) ®(3,3) has zero indeterminacy on ue,

(iv) ®(3,3)(ue) £0.

Proof. Let p : E — K(Z,n) be a K, o-fibration with characteristic class
Sq¢®p: K(Z,n) — K,+3. Consider the diagram

v

Kppa —— F

I

J P
Kypo —— E — Npys

lp
Sq®p
K(Z, n) —— K43

where ®j = Sq? and p' is a K,, 14-fibration with characteristic class ®, cf. 1.4.
Here j and j' are the inclusions of fibers. Clearly, this diagram is a defining
diagram for the operation ®(3,3), i.e., ®(3,3) = ®. (As usual, we use the
same symbol for a Postnikov invariant and the corresponding cohomology
operation.)

Let ¢ be an SF,-object over X with wy(§) = 0. Then ® is defined on u¢
because

Sq*p(uc) = wz(Que = Sqtwa(Q)ue = 0.
Furthermore, ® has the indeterminacy
Im(Sq® : H"(T¢) — H"(TY)).
Every z € H""2(T() has the form z = yu, for some y € H?(X). Thus,
S¢*(z) = Sa*(yuc) = Y S¢'(y)S¢’ (uc).
i+j=3

But S¢7(u¢) = w;(Q)ue = 0 for 0 < j < 3, while S¢3(y) = 0. Hence, ® has
zero indeterminacy on uc.
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Let D be the homotopy fiber of
Sq2p : K(Zvn) — Bny2.
Since Sq'Sq? = Sq¢3, there exists a map e : D — E such that the diagram

2
D — K(Z,n) M’ n+2

| H [

3
B —— K(Zn) 2 Ko

commutes. Here every row is a fibration, where Sq¢’p,i = 2, 3 is the projection
and the left arrow is the inclusion of a fiber. Consider the diagram

Kniq ., p <, g

/| |»

Kpso —— D —°> E
ql lp
K(Z,n) K(Z,n),

where the top square is a pull-back diagram. Here ef = j, e’ f’ = j'. It follows
from 1.5 that

(L7) Q* Q1] [—4] = (@")').(ws) # 0 € H(2"D').

Let ]?be a fibrational substitute of f’. Consider the pull-back diagram

M b Knia

Lo

s —— D —— D,
where ¢ gives 1 € mo(D’) = Z. (So, the fibration t : M — S™ is induced

from fby t.) Clearly, the fibration ¢ : M — S™ is induced from the standard
QD-fibration PD — D by ¢'t, and so there arises the Ks-fibration

Q' Q"M — QfS™.
Let 7 be the transgression in the homology Leray—Serre spectral sequence of

this fibration. One has Sqi (Q2Q?[1] * [—4]) = 0 by the Nishida relations (8)
and property (3), and so

0= 75qs (Q*Q?[1] * [4]) = SqaT(Q*Q*[1] * [-4]).

Since Sqi : H3(K2) — Ha(K>) is an isomorphism, 7(Q?Q?[1] x [—4]) = 0.
Hence
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(1.8) Q°Q*1] * [~4] € Im(Hy (2" M) — Hy(Q7S™)).

Let a : S"Q"M — M be the map adjoint to 1gnps, and let C'g be the cone
of g := ta. By IV.5.35, Cg is the Thom space of a certain SF,-object o over
SQ"M. Let u € H"(Cg;7Z) be the Thom class of a. Consider the following
diagram where the left vertical sequence is a long cofiber sequence:

shorM —% s M —Y s K
d | s
gn sno— s p <. F
| | v |
Cy cCg —— D — E LN n+5
d Js |
K(Z,n) K(Z,n) K(Z,n)
lsqu lstfp
Koo Kovs.

Since ¢’tt is inessential, there exists v : Cg — D with ¢’« = vr. Furthermore,
qur = ur, and r* : H"(Cg;Z) — H™(S™;Z) is an isomorphism. Hence,
qu = u. So, ¥ is defined on u.

We prove that it has zero indeterminacy on u. By the above, it suffices to
prove that wa(a) = 0. But wa(a)pu = Sq?pu = Sq?pqv = 0.

We prove that ®(u) # 0. If ®(u) = 0, then Pev is inessential. (Indeed,
dev is one of the values of ®(u), but ® has zero indeterminacy on w.) But
then there exists h : C'g — D’ with ¢’h = v. Since ¢'h = v, one has ¢ = hr.
Since rg is inessential, hrg is. Hence tg = tta is. But «ta is adjoint to

orm L or 2L grgn L onpy

Thus, if ®(u) =0, then (2™¢)(2"t) is inessential. Consider the diagram

H QM) 0 g (k)
(Q"t)*l l(ﬂ"f’)*
g smy g nph.

y (1.7), Q*Q?[1] * [-4] # 0 € H.(Q"D'), while
Q*Q?[1] * [~4] € Im((Q"1) ("),
by (1.8). Hence, (£2"¢)(2™t) is essential, and hence ®(u) # 0.
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Recall that BF ~ BG. Now, the stabilization of « is the desired stable
spherical fibration &. O

1.9. Theorem. There exists an oriented stable spherical fibration £ such
that:

(i) wa(§) =
(il) ®(2,2) is deﬁned on the Thom class uw € H"(T&;Z),
(iii) ®(2,2) has zero indeterminacy on u,
(iv) ®(2,2

iv) ®(2,2)(u) #

Proof. This can be proved as was 1.6, but we show another way. For n
large we have m,(S™) = Z,mn4+1(S™) = Z/2 = mp12(S™). Furthermore, the
first Postnikov invariant of S™ is Sq¢?p, and the second one is ®(2,2), see e.g.
Mosher—Tangora [1]. In other words, the defining tower for ®(2, 2) is just the
(n + 2)-coskeleton of S™.

Regarding wy : BSG — Ks as a fibration (passing to a fibrational
substitute if necessary), let i : B — BSG be an inclusion of a fiber. We
set 1 := i*ysg and & := 5|B®) (replacing B by a cellular substitute). If
®(ug) = 0, then € must be S-orientable and so trivial, cf. V.1.23(e). But & is
non-trivial because the homomorphism i* : H3(BSG) — H3(B) is non-zero.
Indeed,

HB(BSQ) = Z/2 S5 Z/2 = {U}g, 63},

where eg is the Gitler—Stasheff class, see e.g. Madsen—Milgram [1]. Consider-

ing the Leray-Serre spectral sequence of the fibration B — BSG —2 K,, we
conclude that i*es # 0. O

1.10. Remark. Hegenbarth [1] proved that every operation ®(a,b),1 < b <
a < 2b, can be realized by spherical fibrations. In fact, we followed this proof
in 1.6. It is based on ideas of Peterson [2] and Ravenel [1].

Here we considered the operations ®(a,b) with @ > b. What about a < b?
In Rudyak-Khokhlov [1] it was asserted that every such an operation can be
realized by vector bundles. Unfortunately, there is a gap in that paper, and
now I can only prove that some such operations can be realized. Namely, let
B(i1, ... ,ix) be the homotopy fiber of the map

k k
Hwii : BO — HKZ]
j=1 j=1

We say that the sequence {i1,...,is},ir < dpg1 s apt if 0 # w; €
H*(B(i1,... ,ij-1)) forevery j =1,...,s.

1.11. Theorem. Consider the Adem relation
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Sq"Sq" = Sq"SqM, 1 > 2k,
i=1
where a < b and k; < kiy1. If 1 < k1 and the sequence {ki,... ,ks,b} is apt,
then ®(a,b) can be realized by vector bundles.

Proof. Tt is based on the ideas from Ch.V, §5. Set ls41 = a, ks41 ==

b7 q = kz + lz Let
s+1

0:H— \/ShH
i=1
be the morphism which corresponds to {Sq¢*t,---,S¢F+1} € @©[H,xr H)
under the isomorphism

s+1
[H,\/ ©¥H] = o[H, £* H].
=1

Consider the diagram
E/

’
|»
s+1

\/ =g 2 F % xolg
i=1

|7

s+1
H % \/skH,
1=1
where ) 0
VWHHLELHﬂVWﬂ
and

EFrE sy
are long cofiber sequences and
oj|oFi T H = Sqb.
This diagram is just the defining diagram for the secondary operation @, see
e.g. Mosher—Tangora [1]. The Postnikov tower of E has the form
E

:l7'5+1

Ps+1 Pn Pn—1 p1
ES+1 —_ ES En71 H

7o | 4l |

sk H Sk H sk H
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where o 25 o 7% o is a cofiber sequence and
(1.12) (0:). (@) = SqTH (pro- - opi).(a)) € H™(X)

for every x € (E;)%(X), where E; denotes the coskeleton Bk, 4..yr;—iy of E.
Since k1 > 1, we conclude that Fg) = H and o = Sqhr.

We prove that the map Qp’ : Q°FE’ — Q> F does not admit a section.
Indeed,
OFE =7/2 x [[ K1,

and Q°° F’ is the homotopy fiber of the map
020 7/2 x [[ Knio1 — Kqa.

Furthermore, Q®°® (1, 1) = S¢'" (1, 1), where ¢, € H"(K,) is the funda-
mental class. Since ly < ko, 5¢" (t,—1) # 0. Hence Q°® is an essential map.
Hence Q°°p’ does not admit a section.

Since k; > 1, mo(E) ~ Z/2. Let £ be the universal stable (1, F)-marked
vector bundle (see IV.5.25)1 | and let u € H°(T¢) be the Thom class. Let
B(O,1, E) be the classifying space for (1, E)-marked stable vector bundles,
see IV.5.32(i). For simplicity, we denote B(O,1,FE) by B(O, E). Suppose
that 0 € ®(u). Then there exists a map M (O, FE) — E’ such that the left
hand diagram of (1.13) below commutes. Hence ¢ admits a (1, E')-marking,
and hence there exists a map f such that the right hand diagram of (1.13)
commutes, cf. IV.5.32.

M(O,E) —— E' B(0,B) —— B(O,E)
| | | K

(1.13) M(O,E) E B(O, E) B(O,E)
| | | |-
M(O,E) —“— H B(O,E) ——  BO.

Here 7 is the forgetful map and ¢ := B(O, p’). Furthermore, g does not admit
a section because 2°°p’ does not admit a section, cf. V.4.19. Hence, it suffices
to prove that ¢f is a homotopy equivalence for every map f : B(O,E) —
B(O, E') over BO. (Indeed, if ¢f is a homotopy equivalence, then ¢ admits
a section. This is a contradiction.)

We prove that every map g : B(O, E) — B(O, E) over BO is a homotopy
equivalence. Consider any such a map g. It induces the following self-map of
the Postnikov—Moore tower, where ¢, := B(O,p,) is a Kj, —1-fibration and

gs+1 = G-

We do not want to speak about F-orientations because F is not a ring spectrum.
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B(O,E) -~ B(0,E)

QS+1J/ J/QEH»I

B(O7ES) L) B(O7ES)

%| o
qn+1J/ J/qn+1

B(0,E,) —— B(0,E,)

o | [

B(O7En71) & (OaEnfl)

ql lq
N .

BO BO.
Set &, = (qno---°q1)*vo. Let u, € H°(M(O,E,)) be the Thom class of
&n, and let v € (E,)°(M (O, E,)) be the universal (1, E,,)-marking of £. Let
Xn be the characteristic class of ¢,. Following V.4.22, one can prove that

Xn = ¢ to,v,. Hence,

Xn = (P_lgnvn = So_lsqknun = wkn(Eﬂ)

(the second equality follows from (1.12)). So, B(O, E;,) = B(k1,... ;kn—1).
By setting go = 1po, suppose inductively that g,_1 is a homotopy equiv-

alence. Since the sequence {ki,...,ks} is apt, we have x, = wg, (§&,) # 0.
Hence, by 4.5, g,, is a homotopy equivalence. Thus, g is a homotopy equiva-
lence. O

§2. Some Calculations with Classifying Spaces

Recall that K and KO are ring spectra. Hence, by 11.4.28, k and kO are ring
spectra. Furthermore,

QK ~BU X Z ~Q%k; QKO ~ BO x 7 ~ Q*kO.

Finally, by Bott periodicity, IV.4.27(ii), ¥?K ~ K, ¥ KO ~ KO.
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2.1. Lemma (cf. Adams [2]). If n > 2, then the first non-trivial Post-
nikov invariant of BU|(2n) is §Sq*pian, € H?"T3(K(Z,2n)). Here ia, €
H?"(K(Z,2n)) is a fundamental class.

Proof. By 1V.4.27(ii), Q? BU ~ BU x Z. So,
QO*"~4(BU|(2n)) ~ BU|4 ~ BSU.

Since H*""3(K(Z,2n)) = Z/2 = {65¢*ptan}, it suffices to prove the non-
triviality of the Postnikov invariant ¢ € H?(K(Z,4)) of BSU. The Postnikov
tower of BSU has the form

J

BSU —— X

K(Z,4) —— K(z,7).
It is clear that 7. : H;(BSU) — H;(X) is an isomorphism for ¢ < 6. In
particular, Hg(X) is torsion free, see IV.4.32. If ¢ = 0, then X = K(Z,4) x
K(Z,6), i.e., Hs(X) = Z/2. This is a contradiction. O
By Bott periodicity, 7.(K) = Z[t,t7!], dimt = 2. Thus, m.(k) =
Z[t], dimt = 2.
The multiplication by ¢ in k*(X) is given by a morphism

tp k=SAk 2L S 2k Ak L B2

For simplicity, we also denote the suspension ¥ty : X"k — "2k n € Z,
of this morphism by t..
Consider the morphism t;jl : 2272k — k and denote its cone by k". We
have the exact sequence
= mi(k) = Tigoria(k) — Tiporpa (K) — mima (k) — -

and hence 7, (k") = Z[t]/(t"*1). Moreover, k® = HZ.
2.2. Proposition. If r > 0, then (X72k")|0 ~ k"~ 1.

Proof. There exists f such that the diagram

r

t
N2r] # k k1

| | s

r+1

nrp 2 y2% n2gr
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commutes. It is clear that f.(t*) = ¢ for s < r, where f. : m.(k""1) —
T (N72k"). Let ¢ $—2k" — 22k" be a connective covering of ¥ 72k". Since
k™1 is connected, there is a (-lifting f Skl o D2k of f. Clearly, f isa
homotopy equivalence. ([

2.3. Proposition. There exists a commutative diagram

41

n2r+2p ty k kT
| | &
s g =1

such that (pr)«(t?) = t° for s <r and (py)«(t") = 0, where (py)« : (k") —
7. (k"~1). Furthermore, the cone of p, is X" *LHZ, and so there is the long
cofiber sequence

(2.4) SRS e /g Ly L I YL - /A
Moreover, ¥%(0,jr—1) = Opi17r-

Proof. The existence of p, follows from the commutativity of the left
square of the diagram. The properties of p, follow from the commutativity
of the right square of the diagram. The equality 2(0;.j,—1) = 0,417, follows

from 2.2. O
Consider the diagram
(2.5)
k HZ
Tar H
L+l kT pr Lr—1 . JAY
Yr+lg7, Y3HZ

2.6. Theorem (cf. Adams-Priddy [1]). The diagram (2.5) is the Postnikov
tower of k, and for the Postnikov invariants o, we have:

(i) If i > n > 1, then ((2%0;)|2n)[2] # 0.

(if) Q%01 =0 = Q%09, (2%°0;)[2] # 0 for every i > 3.

(iii) The morphism o,j,_1 : ¥?"2HZ — Y?"*1HZ is 6Sq¢*p. In particu-
lar, o1 = 65¢%p. Furthermore, (§Sq?p)o, = 0 for every n > 1, and the higher
operation on41 1S associated with this relation.

Proof. The tower (2.5) is the Postnikov tower of k because of 2.3. Now we
prove the properties (i)—(iii).
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(i) Since Q*°k = BU x Z, we deduce from 2.1 that (Q®c,41)[2n =
5Sq?ptan # 0. Now, (Q%°0,41)2n[2] # 0 since the element §Sq¢%pta, has
order 2.

(ii) We have Q®°k? = Q®°HZ = Z,Q*k! = CP*> x Z. Hence Q®0; =
0 = Q%05. Moreover, (2%°0;)[2] # 0 for every i > 3 by (i).

(iii) Consider the diagram

y2r—=2pg7z Jr—1 Lr—1 Ir s2r+lpgyz

j{prfl
»

k/,r72 Ir—1 EQT*lHZ 22r+2HZ

where 1) = ¥(0,j,_1). Note that o,j.,_1 € H?*TY X 2HZ) = Z/2 =
{0S4%p}.

It follows from 2.1 that Q> (0,.j,_1) = 6S¢*ptar. So 0,jr—1 # 0, and hence
Orjr—1 = 65¢%p. Hence, ¥ = §Sq?p. Furthermore, the equality ¥ = Yo, j,_1
means that o, is associated with the relation ¥o,_; = 0.1° But, by the above,
1 = 8Sq%p. d

2.7. Lemma. We have H%(K (Z/2,2);Z[2]) = Z/4. Furthermore, the element
§Sq? € H5(K(Z/)2,2); Z[2]) has order 2; here . € H*(K(Z/2,2);Z/2) is the
fundamental class.

Proof (Sketch). Firstly, because of the Serre class theory, every group
HYK(Z/2,n);Z[2]) is a finite 2-primary group. Now, using information
about the ring H*(K(Z/2,2);Z/2) (see e.g. Mosher-Tangora[l]), and ap-
plying the Universal Coefficient Theorem, one can prove that the group
H5(K(Z/2,2);Z[2]) is cyclic. Finally, considering the Z[2]-cohomology Leray—
Serre spectral sequence of the fibration

K(Z/2,1) — PK(Z/2,2) — K(Z/2,2),

one can conclude that H°(K(Z/2,2)) has order 4. Thus, it is Z/4.

Let a € HY(RP®;Z/2),a # 0. Since §Sq?a® = da* # 0, we conclude that
§S¢%. # 0. Furthermore, pdSq?. = Sq¢'Sq*. = Sq® = 0. Thus, §S¢?: has
order 2. g

Let Y be the homotopy fiber of the map §Sq? : K(Z/2,2) — K(Z[2],5).
So, we have a fibration

(2.8) K(z[2,4) LY 2 K(2/2,2).
with characteristic class 65>

I5This relation holds because jr_l(E_lar_l) = 0. Actually, this is a general
argument in the theory of higher order cohomology operations.
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2.9. Lemma. (i) H*(Y;Z[2]) = Z[2].

(ii) The homomorphism j* : Z[2] = H*(Y;Z[2]) — H*(K(Z[2],4); Z[2]) =
Z[2] is multiplication by 2¢ for some e € Z[2]*.

(iii) A map h : Y — K(Z[2],4) yields a generator (i.e., an element of
Z[2]*) of HX(Y;Z[2]) iff hs : Z[2) = 7a(Y) — ma(K(Z]2],4)) = Z[2] is multi-
plication by 2e for some € € Z[2]*.

Proof. By 2.7, §Sq?. has order 2. Now the assertions (i) and (ii) can
be proved by routine calculations with the spectral sequence of the fi-
bration (2.8). Furthermore, (ii) implies that A : Y — K(Z[2],4) yields
a generator iff (hj)*(u) = 2u where u € H*(K(Z[2],4);Z[2]) = Z[2] is
a generator (fundamental class). Thus, the assertion (iii) follows because
Je : Ta(K(Z[2],4)) — m4(Y) is an isomorphism. O

Since BSU = Q°k|4, the 8-stage of the Postnikov tower of BSU[2] has
the form (2.10) below, where we write o; instead of (Q2°0;|4)[2]. Moreover,
by 2.6(iii), o3i = §Sq¢>p.

BSU[2)s)
(2.10) K(Z[2],6) —— BSU[2le) —2— K(Z[2],9)

K(Z[2].4) = K (2]2).7)
2.11. Lemma. Let h : Y — K(Z[2],4) be a map such that ooh = 0. (In

fact this is true for all h, but we do not use it.) Then for every two w-liftings
91,92 : Y — BSU[2](s) of h we have 0391 = 03g>.

Proof. The difference g1 — g2 : Y — BSU[2| s is homotopic to i : Y —
BSU[2]6) for some ¢ : Y — K(Z[2],6). Hence, o3(g1 — g2) = o3ip = 6S¢*pep.
But H(Y;Z[2]) = Z/2 = {p*(6¢)?} where p is as in (2.8). So, it suffices to
prove that §Sq¢?p(p*(6¢)?) = 0. But S¢?p((6¢)?) = Sq*(Sq'e)? = 0. O

2.12. Theorem (cf. Adams—Priddy [1]). The 8-stage of the Postnikov tower
of BSO[2] has the form

BSO[2]s)

l

BSO[2)y) —— K(Z[2],9)

!

BSO[Q](Q) K(Z/Q’Q) — K(Z[2]75)7



356 Chapter VI. K- and KO -Orientability

where the class ¢ € H(BSO|2] (4); Z[2]) is non-zero. Furthermore, o = 5S¢,
and hence BSO[2]4y =Y.

Proof. For simplicity, denote BSO[2],,) by By,. The groups 7;(BSO) are
well known in view of Bott periodicity, see 1V.4.27(ii). In order to prove
the non-triviality of ¢ and i we must prove that B, is not equivalent to
B,—1 x K(Z]2],n), where n = 4 (for o) and n = 8 (for ¢). We prove this for
both values of n simultaneously.

Let @*(X) be the indecomposable quotient of H*(X;Z/2). Suppose that
By~ By_1 x K(Z[2],n). Then Q"(By) = Q"(By_1)& Q" (K (Z[2],n)) by the
Kiinneth formula. Since Q™(B,,) = Z/2, we have Q" (B,—1) = 0. Thus, for
every x € H"(By,;Z/2) we have (under the Kiinneth isomorphism) z = at,, +
d, where d is decomposable in H"(B,,) and ¢, € H"(K(Z[2],n);Z/2) = Z/2
is a generator. Since Sq't, = 0, S¢*x is decomposable in H"*1(B,,) for every
x € H™"(By).

Since H'(B,;Z/2) = H(BSO|2];7Z/2) for i < n, the image of the homo-
morphism Sq' : H*(BSO|[2];Z/2) — H"TY(BSO[2];Z/2) consists of decom-
posables. But this contradicts the equality Sq'w, = w,41. Thus, o and ¥
are non-trivial.

By 2.7, H5(K(Z/2,2);Z[2]) = Z/4 = {z} with 2z = §S¢*.. Hence, o
must be equal to one of the elements x, 3z or §Sq%.. We have

H°(BSO2)(1); Z/2) = H?(BSO[2](7); Z/2) = Z./2 ® 7,/2 = {ws, waws}.

If 0 = 2 or 0 = 3z, then H?(BSO[2](4);Z/2) would be Z/2. (To see this,
consider the spectral sequence of the fibration K(Z[2],4) — E — K(Z/2,2)

with characteristic class o and use the fact that p(c) is non-zero.) Hence,
o = 6S¢*t, and thus BSO[2]4) =Y. O

2.13. Lemma. Consider the following diagram.:

Y " K(Z[2),4) 22050 k(7] 7).

Let the map h give a generator of H* (Y;Z[2]) = Z[2]. Then for every lifting
g:Y — BSU[2]) of h we have a3g # 0. In particular, h cannot be lifted to
BSU[2]s).

Proof. In view of 2.11, it suffices to prove the lemma for only one such a
lifting g. Let C' : BO — BU be the complexification. Since H?(BSO) = 0,

there is a commutative diagram
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BSO —%— BSU

| |

BO —Y ., Bu

where k (resp. l) is a 1-connected (resp. 3-connected) covering. Then, passing
to Postnikov towers, we have the commutative diagram

BSO[2]s) —— BSU[2]s)

) |

BSO[2](ry —— BSU[2)) —— K(Z[2],9)

H X

Yy s Kz[2,4)

)

where, by 2.12, BSO[2](7) =Y. By IV.4.27(iii), h. : m4(Y) — ma(K(Z[2],4))
is multiplication by 2, and so, by 2.9(iii), h is a generator of H* (Y;Z[2]).
Hence, the last diagram with ¢; = g coincides with the diagram of the lemma.
Thus, by 2.11, it suffices to prove that o3¢y # 0.

Let K; = K;(Z[2],8) be the fiber of p;, i = 1,2, and let u; € H®(K;; Z[2))
be a fundamental class. By IV.4.27(iii), (cs)« : ms(BSO) — ms(BSU) is
an isomorphism, and so the map ¢g : K1 — Koy of fibers is a homotopy
equivalence. In particular, (¢s)*(uz) = au; for some a € Z[2]*. Let 7; be the
transgressions in the Z[2]-cohomological spectral sequences of the fibrations
piyi =1,2. By 2.12, 71 (u1) = ¢ # 0, and so

0 # 1 (aur) = 11 ((Cs) uz) = (c7)*(T2u2) = c5(03). O
Sullivan [1] established the homotopy equivalence

(2.14) G/PLE2 ~Y x [[ K(Z[2],4i) x K(Z/2,4i - 2)

i>1

(for a good proof see Madsen-Milgram [1]). Basing on this and using
IV.4.27(v), one can prove (see loc. cit.) that

(2.15) G/TOP (2] ~ [ [ K(Z[2],4i) x K(Z/2,4i - 2).

i>1

We define jp. : K(Z[2],4) 2 Y % G/PL[2], where a is the inclusion
of the factor in (2.14). Similarly, let jrop : K(Z[2],4) — G/T OP [2] be the
inclusion of the factor in (2.15). Lemma 2.9 yields the following proposition.
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2.16. Proposition. (i) H*(G/PL[2];Z[2]) = Z[2] = H*(G/T OP [2]; Z[2)]).
(i) jpp : H*(G/PL2]; Z[2]) — HY(K(Z[2],4); Z[2]) is multiplication by
2e for some € € Z[2]*.
h.(iii) Jrop + HYG/TOP [2};Z[2]) — HY(K(Z[2],4); Z[2]) is an isomog
phism.

Let p : X — X be a 3-connective covering of X for X = G/PL[2] or
X =G/TOP[2].
2.17. Proposition. (i) The map
p* i Z[2) = HY(G/PLI};2[2]) — H (G/PLI22[2]) = Z[2)

is multiplication by 2e for some e € Z[2]*.
(ii) The map

P Z2) = HYG/TOP[2);Z[2) — H* (g/fovp 2]; Z[z]) — 72
s an tsomorphism.
Proof. This follows immediately from (2.14), (2.15) and 2.16. O

Consider the diagram
G/PL[2] —— BSPL[2] —— BSG[2]
d |6 H
G/TOP[2] —— BSTOP[2] —— BSG[2]

with any ¢ such that the diagram commutes. Such a map ¢ exists, but it
is not unique. It follows from (2.14) and (2.15) that ¢, : m (G/PL[2]) —
m;(G/TOP [2]) is an isomorphism for ¢ # 4 and that

s Z[2) = 14 (G)PL2]) — 74 (G/TOP2)) = Z[2).

is multiplication by 2¢ for some € € Z[2]*. Fix one such map . It is easy to see
that ¢ admits a 3-connective covering (unique up to homotopy equivalence)

7:0/PL[2] - G/TOP2).
2.18. Proposition. (i) The map
" Z[2] = HY(G/TOP 2], Z[2]) — H*(G/PL [2}; Z[2)) = Z[2]

is an isomorphism.
(ii) The map

7 - 22 = o' (G/TOP 2} 2(2]) — H* (6/PL[2):2[2)) = 7[2]

is multiplication by 2¢ for some e € Z[2]*.
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Proof. (i) Consider the composition (where @ is the inclusion of the factor,
see (2.14))

b:Y % G/PL[2 2 G/TOP[2] 22 K (2[2),4).

Since the map ¢, : w4 (G/PL[2]) — ma(G/TOP [2]) is multiplication by 2e,
so is the map b, : my(Y) — 74 (K(Z]2],4)). By 2.9,

3t HY (Y5 2[2) = Z[2] — Z[2] = H"(K(Z[2], 4); 2[2])

is also multiplication by 2e. Hence b* : H4(K(Z[2],4); Z[2]) — H*(Y;Z[2]) is
an isomorphism, and hence ¢* is an isomorphism.
(ii) By 2.17, in the diagram

HYG/TOP[2}:Z2]) —%— H*(G/PL[2];Z[2))

H*(G/TOP[2];Z[2]) —2— H*(G/PL2];Z[2])

pf is an isomorphism, while p} is multiplication by 2¢, and (ii) follows. O

§3. k-Orientability

Let 0, : k"~ — X2"+*1HZ be just the same as in §2. Following V.4.23(b) and
the beginning of section V.5, we set 3 (§) = eo(§) = wy(§) for every stable
V-object £. Furthermore, following V.(4.6) and the beginning of section V.5,
for every stable HZ-oriented V-object (&,ug¢) we set »,.(£) = ¢ loue C
H?"T1(bs £) where ¢ is the Thom isomorphism. By V.4.13, a V-object & over
a finite dimensional space X is k-orientable (and therefore K-orientable) iff
0€s.(§) Cc HY(X),r=0,1,....

Throughout this section vy, = Y, 41 means the universal k"-oriented
V-object over B(V, k™).

Notice that k, as well as k[2], is a simple spectrum by V.4.21.

In order to use the Realizability Theorems V.5.1, V.5.6, we set 7, = 0,[2]
and consider also the classes 3, = ¢ 1(G,u¢) C H?"t1(X;Z[2]), ie., the
higher characteristic classes corresponding to k[2]; here e € H(TE;Z[2]) is
the Z[2]-localization of we.

3.1. Proposition. (i) (&) =0 iff X is HZ-orientable.
(ii) 51 (&) = dwa () provided that s¢1(§) is defined, i.e., if »(€) = 0.

Proof. (i) See V.1.23(Db).
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(ii) Let v be an HZ-orientation of £. Then

() = o tow =168 pv = 5ot SPpv = dwa(§). O

Atiyah—Bott—Shapiro [1] proved that a stable wector bundle & is k-
orientable iff it admits a Spin®-structure. This holds, in turn, iff w;(¢) = 0
and wy(§) is the reduction mod 2 of some integral class, i.e., Jwa(£) = 0, see
e.g. Stong [3], Ch XI. In other words, we have the following fact:

3.2. Theorem. If (&) = 0,51(§) = 0 for some vector bundle &, then
0 € 5,.(&) for all r. In other words, none of the classes s, > 1, can be
realized by vector bundles. (|

One should clarify the situation. Note that we cannot apply V.5.1 (for
n = 1) because Q09 = 0 by 2.6(ii), and hence (2*°03)|4 = 0. Furthermore,
we cannot apply V.5.6 because »§ =
3.3. Lemma. The complezification C : BO — BU can be lifted to a mor-
phism of spectra C': KO — K.

Proof. In view of Bott periodicity it suffices to prove that the diagram

08O 2., o8By

ﬁl lﬁ'
c
BO —— BU
commutes up to homotopy (where 3, 5" are the homotopy equivalences given
by Bott periodicity). But this follows immediately from the commutativity
of the diagram

KO (X) 22 K0°(55X)

c| le

4
Kox) %, goggsx)

where A € KO°(S®) = Z and pu € K°(S?) = Z are suitable generators. This

diagram commutes, in turn, because of IV.4.27(iii) (for n = 8). O

Sullivan [1] proved that every SPL-bundle is KO[1/2]-orientable, a good
proof can be found in Madsen—Milgram [1]. Hence, by 1V.4.27(v), every
ST OP-bundle is KOJ[1/2]-orientable. Since the complexification C:KO—
K preserves the units, every S7OP-bundle is K[1/2]-orientable. Hence, ev-
ery 87 OP-bundle is k[1/2]-orientable by V.1.16. Thus, every SPL- and/or
ST OP-bundle is k"[1/2]-orientable for every r, 0 < r < oo (where £ means

k). By V.1.20, we have the following fact:
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3.4. Theorem. Givenr, 0 <r < 00, an ST OP-bundle (as well as an SPL-
bundle) is k"-orientable iff it is k"[2]-orientable. In particular, the class

can be realized by PL- or TOP-bundles iff 3, can. O

Put BRV=B(V, k'), i.e., BRV is the homotopy fiber of jwy : BSY —
K(Z,3). By the way, note that BRO = B Spin. Firstly, we compute the
order of the class % € H®(BRG;Z[2]). Recall that % = ¢~ 'Gou; where
up is the universal k'[2]-orientation. We have 4H*(k'[2];Z[2]) = 0, because
every group H*(HZ[2];Z[2]),i > 0 has exponent 2. Hence, the order of 75 €
H®(k'[2];Z[2]) is 2 or 4. Hence, the order of % is 2 or 4.

3.5. Lemma. p.% # 0 € H*(BRG;7/2).

Proof. Let E be the homotopy fiber of S¢3p : HZ[2] — Y3 HZ/2. 1t is easy
to see that there is a morphism a such that the diagram below commutes.

k2] —— FE
g |
HZ[?2] HZ[?2]

5Sq29l Sqapl

Y3HZ[2] —— Y3HZ/2
P

./

Consider the cofiber sequences Y2HZ[2] L kl[2] & HZ[2],x2HZ/2 L
E L HZ[2] and $2HZ[2] 5 k'[2] % E. We have the diagram

N2 HZ[2] N2 HZ[2]
><2l ll
(3.6) S2HZR] P K2 % SSHZ[
| | |#

s?H7/2 . E % shHZ/2.

Clearly, the left bottom square commutes. It is easy to see that
Im{i, : Z[2] = m(X2HZ[2]) — ma(k'[2]) = Z[2]} = 2Z[2].

One can prove that k[2]*($2HZ[2]) = Z[2] and that the homotopy class of
any morphism f : $2HZ[2] — k'[2] is determined by the homomorphism

fe 1 Z[2] = mo(22HZ[2]) — mo(k'[2]) = Z[2].
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Hence, without loss of generality we can assume that ¢ = 2j. So, the left top
square commutes. Furthermore,

Hence, there exists ® : E — YX°HZ/2 such that the diagram commutes. It is
clear that

Dj'p = poaj = pdSq’p = Sq’p,
and so ®j' = Sq¢? or @5’ = S¢®+ Sq25¢'. We want to prove that there exists
® with @5/ = S¢5.

3.7. Sublemma. There is b: E — Y5 HZ[2] such that bj' = Sq*>Sq*, ba = 0.

S2HZ2] —— k'[2]
d J!
Y2HZ7)2 —— E —'— S5HZ/2

»

HZ[2]

Proof. Consider an arbitrary morphism b with bj’ = Sq?Sq'. It exists
because (Sq2Sq')(Sq®p) = 0. By 2.6(iii), the cofiber sequence

S2HZ[2) L k2] & HZ[2)
induces an exact sequence

HY(S2HZ[2]: 2)2) & HO (K [2:2/2) &= HO(HZ[2); 72,/2) L5C0°

where

(6S4°p)* : {Sa®p} = H*(HZ[2);Z,/2) — H°(HZ[2]; Z/2) = {Sq’p}.
We have

(0S4°p)* (Sq°p) = Sq*pdSq*p = Sq*>Sq’p = S¢°p + Sq*Sq' p = S¢°p,

and therefore (0Sq¢%p)* : H?(HZ[2];Z/2) — H®(HZ[2];Z/2) is an isomor-
phism. Hence, H®(k'[2];Z/2) = Z/2 = {po2} and j*poas = S¢°p. Now, if
ba # 0 then ba = poy and so baj = S¢3p. Thus, bj’p = S¢3p, which contra-
dicts b5’ = Sq¢?Sq’. ®

Now let ® be any morphism such that (3.6) commutes. If ®j' = S¢3 +
S¢*Sq*, then for every morphism b as in 3.7 we have (® + b);j’ = Sq¢®. But
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the replacement of ® by & = ® + b keeps the commutativity of the diagram
(3.6) because ba = 0. Hence, we may assume that ®j' = Sq> in (3.6).

Since F is the fiber of
Sq¢®p: HZ[2) — L3 HZ/2,

the morphism ® : E — Y5 HZ/2 yields the secondary cohomology operation
related to Sq®(Sqp) = 0, i.e., the operation ® = ®(3,3) in the notation of
§1. Recall that 52§ = ¢~ 'Gou for some k' [2]-orientation u of v§. Let MRG
denote the Thom spectrum of fyg . Consider the diagram

o~

MRG —*— k'[2] —2— X°HZ[2]

H ‘| |
MRG —*— E —2 SSHZ/2

where v := au. Let © € H°(MRG) be the Thom class of 7§. The stable
spherical fibration ¢ as in 1.6 is such that wy () = 0 = wz(€). Thus, £ can be
induced from the universal fibration 'yg over BRG. By 1.6, ®(u¢) # 0, and
s0 0 ¢ ®(x). Since x = (p')«(v), we conclude that Pv # 0, and so poau # 0.
Finally, %5 = ¢~'G2u, and hence p,5§ # 0. O

Madsen [1] computed the Bockstein spectral sequence for the 2-torsion of
BSG, but we only need the following fact.

3.8. Lemma. H*(BSG;Z[2]) =7Z/8 & Z/2.

Proof. Throughout the proof H,(A) means H,(A;Z[2]). Similarly for H*.
Given a finite 2-primary group G, let ¢(G) denote the dimension of the Z/2-
vector space G ® Z/2.

Information about H*(BSG;Z/2) can be found in Madsen—Milgram [1],
Theorem 3.35 or May [4]. By IV.4.27(i), the groups m;(BSG) are finite, and
so the groups H;(BSG) are finite by the Hurewicz—Serre Theorem. Thus,
H;(BSG) = H'TY(BSG) for every i > 0. Let

K(Z/8,4) K(Z/2,3)

l |

- X —— E  —— K(7/2,2)

be the Postnikov tower of BSG[2], so that E = BSG[2]3), X = BSG[2]w).
We have H3(BSG;Z/2) = (Z/2)?. Thus, H3(E;Z/2) = (Z/2)?. Hence in
the Z/2-cohomology spectral sequence of the fibration K(Z/2,3) — E —
K(Z/2,2) the fundamental class ¢« € H?(K(Z/2,2)) transgresses to zero,
and so this fibration is trivial, £ ~ K(Z/2,2) x K(Z/2,3). Thus, Hy(E) =
Hy(K(2/2,2)) = 2/4, H5(E) = (22"



364 Chapter VI. K- and KO -Orientability

The element dwy € H?(BSG) has order 2, and it is not divisible by 2
because ws = pdwy is not divisible by 2. Since Hy(X) = H?(X), we conclude
that Hy4(X) contains Z/2 as a direct summand.

Consider now the Z[2]-homology spectral sequence of the fibration

K(7Z/8,4) — X — E.

We have Eg, = Z/8,Ef, = 7/4,E}, ; = 0 otherwise; EZ, = (Z/2)°,
E?5 ; = 0 otherwise. We prove that d° : (Z/2)° = E3, — Ej, = Z/8
is non-zero. Indeed, suppose d> = 0. Then H4(X) is an extension of Z/4
by Z/8. Since H4(X) contains Z/2 as a direct summand, we conclude that
c(H4(X)) = 2. Furthermore, if d® = 0 then H5(X) = H5(E) = (Z/2)3. On
the other hand, H5(X;Z/2) = H5(BSG;Z/2) = (Z/2)* (the first equality
holds because 75(BSG) = 0). Now we have

4= c(Hs(X;Z/2)) = c(Hy(X)) + c(H5(X)) =2+ 3 = 5.

This is a contradiction. Hence, d® # 0. Thus, Eg% = Z/4, and H4(X) is an
extension of Z/4 by Z/4. Since H4(X) contains Z/2 as a direct summand,
we conclude that Hy(X) =7Z/8 & Z/2. Thus, H*(BSG) = Z/8 & Z/2. O

3.9. Theorem. H>(BRG;Z[2]) = Z/4, and the class %2 generates this group.

Proof. By 3.8, H>(BSG;Z[2]) = Z/8 ® Z/2 = {x,5ws4} where ordz =
8. Let u € H*(K(Z[2],2);Z[2]) be a fundamental class. Consider the Z[2]-
cohomology spectral sequence of the fibration

K(Z[2],2) — BRG[2] — BSG[2).

It is easy to see that 7(u?) = dws + az, where a € 2(Z/8). Thus,
H5(BRG;Z[2])) = 7Z/8 (for a = 0,4) or H°(BRG;Z[2]) = Z/4 (for a = 2,6).
Hence, H?(BRG;Z[2]) is cyclic, and, by 3.5, the element Qg generates this
group. But, as we noted before 3.5, the order of Qg is not more than 4, and
hence H°(BRG;Z[2)) = Z/4 = {5 }. O

3.10. Lemma. m2(BRV[2]) = Z[2].

Proof. By 1V.4.27(i,ii), ma(BSV) = Z/2 and 73(BSV) is finite for V =
O, G. Because of (2.14), (2.15) and IV.4.27(iv,v), the same is valid for V =
PL, TOP also. Hence, the fibration

K(Z[2],2) — BRV[2] — BSV[2]
induces the exact sequence

0 — Z[2] — m2(BRV[2]) — Z/2 — 0.
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Furthermore, H3(BSV;Z[2]) = Z/2 = {dwz} (for V = O see e.g. Milnor—
Stasheff [1], for V = G see e.g. Madsen—Milgram [1], for V = PL, TOP use
(2.14) and (2.15), or IV.4.27(iv,v)), and the Leray—Serre spectral sequence of
the fibration above implies that H3(BRV;Z[2]) = 0. Thus, Ha(BRV;Z[2]) is

torsion free, and hence mo(BRYV) is. Thus, mo(BRV) = Z[2]. O
Let ¢ = ¢¥ : BRY = B(V,k') — B(V,k°) = BSV be the map as in
a[2]

V.(4.17). The map BRV[2] — BSV[2] — BSG[2] turns BRV[2] into a
bundle over BSG[2].

3.11. Lemma. The homotopy fiber of any map gpr : BRPL[2] —
BRG[2] over BSG[2] is G/PL[2]. The homotopy fiber of any map grop :
BRTOP [2] — BRG2] over BS§G[2] is G/TOP [2].

Proof. We consider the PL case only; the TOP case can be considered
similarly. Consider the following diagram, where the rows are fibrations:

F  —— BRPL[]2] —— BRG[?]

hl lqm (2] lqg (2]
G/PL[2] —— BSPL[2] —— BSG[2].
By the Five Lemma, h induces an isomorphism of homotopy groups m;,7 > 3.
Applying 75 to the right hand square of the diagram, we obtain (by 3.10) the
square
Z[2] —L— 7]2]

l !

7)2 —=— 7,/2,

where the vertical arrows are epic. Furthermore, the bottom arrow is an
isomorphism because 71 (G/PL) = 0. Thus, g. is an isomorphism. Hence, by
diagram chasing, h. : m;(F) — m;(G/PL) is an isomorphism for i = 1,2. O

Note that the Z[2]-localization in 3.11 is essential. Namely, there is a
certain map BRPL — BRG over BRG with homotopy fiber X such that
71(X) is an abelian group of odd order.

3.12. Lemma. H°(BRPL;Z[2]) = 0.

Proof. By 1V.4.27(iv),
H°(BRPL;Z/2) = H(BRO;7/2) = H°(B Spin® ; Z/2).
But (see e.g. Stong [3], Ch. XI)
H*(BSpin©;Z/2) = H*(BSO; Z/2) / (tows).
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So, H5(BSpin®;Z/2) = 0 since S¢*ws = wows + ws in H*(BSO;7Z/2).
Hence, H5(BRPL;Z/2) = 0, and thus H®>(BRPL;Z[2]) = 0. O

3.13. Theorem. If s (§) = 0 for some SPL-bundle & then 0 € »»(£) and
0 € 53(&). Thus, the classes s2 and 33 cannot be realized by PL-bundles.

Proof. By IV.4.27(iv), the map a%L : BO — BPL is a 6-equivalence,
i.e, informally speaking, there is no difference between O-bundles and PL-
bundles over 6-dimensional C'W-complexes. Now, the result follows from 3.2
since »3 C H®(bs§). O

3.14. Theorem. 0 ¢ s (7F%). Furthermore, all the classes »,,n > 4, as
well as the classes 3,,n > 4, can be realized by PL-bundles.

Proof. Let ¢' : B(G,k*) — BRG = B(G, k') be a map (fibration) induced
by a projection k* — k! in the Postnikov tower of k, cf. V.4.17. By 3.13,
every k'-orientable PL-bundle is k3-orientable. Hence, if 0 € 34 (yF*), then
every k'-orientable PL-bundle is k*-orientable. In particular, the universal
PL-bundle v}~ over BRPL is k*-orientable, i.e., there exists a map f’ :
BRPL — B(G, k*) over BSG. Thus, we have a commutative diagram

BRPL — . B(G. kY

H ¢

BRPL — . BRG

| I

BSPL —— BSG,

where ¢’ := ¢'f’. Tt induces a commutative diagram
BRPL[2] —L— B(G, k)2

H L

BRPL[2] —.— BRG[2]

! !

BSPL[2] —— BSG[2],

where ¢ = ¢'[2],f = f'[2], and g := ¢f is a map over BSG[2]. Without
loss of generality, we can assume ¢ and f to be fibrations. By 3.11, the
homotopy fiber of g is G/PL[2], and, by V.4.18(i), the homotopy fiber of ¢
is (Q2°°k*)|4 = BSU[2](s). Thus, f induces a map of fibers

f:G/PL2] — BSU2)s).
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Let u € H*(BSU[2](s); Z[2]) = Z[2] and v € H*(G/PL[2]; Z[2]) = Z[2] be
generators, i.e., u,v € Z[2]*. Consider the Z[2] -cohomology spectral se-
quences of the fibrations g and ¢. By V.4.22, we have Tu = 5%5 where
¢ € Z[2]*. Furthermore, by 3.12, H*(BRPL;Z[2]) = 0. Hence, v =
since, by 3.9, %5 generates the group H°(BRG; Z[2]) = Z/4. Thus, f*u = cv
with € € Z[2].

We define the map

hiY < G/PLE L BSUR)s) L BSU2) 4 = K(Z[2),4),

where a is the inclusion of the factor and p is the projection in the Postnikov
tower of BSU[2]. Since f*u = ev, the map h: Y — K(Z[2],4) yields a gener-
ator of H*(Y;Z[2]) = Z[2]. Hence, by 2.11, h cannot be lifted to BSU[2]s).
This is a contradiction. Thus, 0 & s, (72 %)

Hence, by 3.4, 0 ¢ 34(vF*). By V.5.1, all the classes 3,, n > 4, can be
realized by PL-bundles, and so (by 3.4) all the classes s, n > 4, can. O

Now we pass to 7 OP-bundles.

Consider a commutative diagram
G/PL[2] —Z£ BRPL)2] —Z%s BRG[?)
619 s | |
G/TOP 2] 222, BRTOP[2] ZX°2, BRG[2]

where the rows are fibrations, grop is any map as in 3.11, h is a forgetful
map over BSG[2], gpr = groph and h is the induced map of the fibers.

3.16. Lemma. The homomorphism
it Z)2 = mo(G/PL[2]) — m2(G/TOP[2]) = Z/2
s an isomorphism.
Proof. Consider the fibration G/V[2] — BRV[2] — BRG[2]. By 3.10,
ma(BRPL[2]) = Z[2] = mo(BRT OP]2]).
Hence, if V = PL or TOP, then the boundary homomorphism
Z/2 = m3(BRY[2)) — ma(G/VI2)) = Z/2
for the above fibration is an epimorphism, and hence an isomorphism. ([l

We fix maps grop and gp, as in (3.15).

3.17. Proposition. Consider the map i = ipg : G/PL[2] — BRPL[2] in
(3.15). We have
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Im{i* : H*(BRPL [2];Z[2]) — H*(G/PL[2};Z[2))} = 4H* (G/PL[2];Z]2]).

Proof. Consider the fibration
G/PL[2] - BRPL[2] % BRG[2]

as in (3.15).By 3.12, H®(BRPL[2]; Z[2]) = 0. Hence, g* 5§ = 0. So, there ex-
ists . € H*(G/PL[2];Z[2]) = Z[2] such that 7¢ = 3§ in the Z[2]-cohomology
spectral sequence of the fibration. By 3.5, ¢ ¢ 2Z[2]. Furthermore, by 3.9,
7(2t) # 0,7(4¢) = 0, and hence Im j* = 4H* (G/PL[2]; Z[2]) . O

Consider the Postnikov—Moore tower of the fibration
G/PL[2] “25 BRPL[2] 225 BRG[2)
as in (3.15). Its first term gives us a K(Z[2], 2)-fibration
(3.18) K(z[2],2) — B L BRg[2),
and all remaining terms form a G/ PL [2]-fibration

(3.19) G/PL[2] — BRPL[2] — B.

Similarly, consider the Postnikov—Moore tower of the fibration
G/TOP 2] 2222, BRTOP [2] L%, BRG|?]

as in (3.15). Tts first term gives us a K (Z[2],2)-fibration which, by 3.16, is
equivalent to (3.18), and all remaining terms form a G/7 OP [2]-fibration

(3.20) G/TOP[2] — BRTOP 2] 2 B.
3.21. Proposition. H°(B;Z[2]) = Z/8, and
f*« H*(BRG[2}; Z[2]) — H®(B; Z[2))

is a monomorphism (onto the subgroup of index 2 since H°(BRG;Z[2]) =
Z/4).

Proof. Firstly, HY(BRG;Q) = 0 = HY(K(Z[2],2);Q) for i # 0,2.
So, H?(B;Q) = 0, and hence H®(B;Z[2]) is finite. Furthermore, by 3.12,

H3(BRPL [2];Z[2]) = 0. Hence in the Z[2]-cohomology spectral sequence of
the fibration (3.19) the transgression

7. 22] = HY(G/PL[2};2[2]) — H*(B;Z[2])

is epic. Hence H®(B;Z[2]) is cyclic. By 3.17 and 2.17(i),
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Im{H*(BRPL [2];2[2]) — H* (G/PL[2}; 2[2)) — H*(G/PL[2]; Z[2])}

is SHY(G/PL[2];Z[2)). Hence H5(B;Z[2]) = Z/3. Now it is easy to prove
that f* is monic by considering the Leray-Serre spectral sequence of (3.18).
([l

Let e be a generator of H5(B;Z[2]) = Z/8. Let 1p € H4(g/7fjf [2];Z[2]) =
Z[2] and 17 € HY(G/T OP [2]; Z[2]) = Z[2] be generators of the corresponding
groups.

3.22. Lemma. In the Z[2]-cohomology spectral sequence of (3.19) we have
Tip = e, and in that of (3.20) we have Tvp = 2e’e, where T is the transgres-
sion and e,¢’ € Z[2]*.

Proof. By 3.12, H>(BRPL;Z[2]) = 0, and so Ttp = ce. The diagram
(3.15) yields the diagram

G/PL[2] —— BRPL[]2] —— B

7| ! H

G/TOP[2] —— BRTOP[2] —— B,

where the top line is (3.19), the bottom line is (3.20) and & is as in 2.18. By
2.18(ii), @(er) = 2¢”vp. Hence, Top = 2¢’e because Tip = ee. O

The projection k2 — k! in the Postnikov tower of k induces the K (Z[2],4)-
fibration

(3.23) K(Z[2),4) — B(G,k*)[2] % B(G,k")[2] = BRG[2].
3.24. Lemma. There is a map F such that the diagram

G/TOP[2] —— BRTOP[2] —>— B

‘| 7|
K(Z[2],4) —— B(G,k*)[2] —*— BRG|[2]

commutes. (Here the top line is (3.20), the bottom line is (3.23), and f is as
in (3.18).)

Proof. By 3.22, Tup = 2ee, € € Z[2]*. Hence, p*(2¢) = 0. Furthermore,
f*(%zg) = 42¢ because of 3.21 and 3.9. Hence, p*f*(%g) = 0. Finally, by
V.4.22, ?rzg is a characteristic class of (3.23), and hence there exists a g-lifting
F of pf. O

3.25. Lemma. Let F be a map as in 3.24. Then F cannot be lifted to
B(G,k®)[2], i.e., there is no commutative diagram
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BRTOP[2] —— B(G,k)[2]

H J+

BRTOP[2] —~— B(G,k?)[2]

| K

B . BRg[

Proof. Suppose that there is a commutative diagram as above. Passing to
the fibers of p, q, and ¢q’, we have a commutative diagram of fibrations

G/TOP[2] —— E

H I

G/TOP[2] —— (K(Z[2),4))

where F' is the restriction of F', s is the restriction of a hypothetical lifting
of F', E is the homotopy fiber of

8S¢°p : K(Z[2],4) — K(Z[2],7),

and the projection 7 is homotopic to the inclusion of this fiber. In particular,
7 does not admit a section.

Let € HY(K(Z[2],4); Z[2]) be a fundamental class such that 7. = %5 in
the Z[2]-cohomology spectral sequence of ¢g. Hence,

fr(r) = f*(35) = £2e = e'rup, € € L2,
Therefore, F't = eup, e € Z[2]*. Hence,
F":7[2] = HY(K(Z[2],4): Z]2]) = H4(Q/T?9/77 [2);Z[2]) = Z[2]

is an isomorphism. Thus, F' can be considered as the projection in (2.15),
and hence F' admits a section t. Hence 7w admits a section st. This is a
contradiction. O

3.26. Theorem. The canonical bundle v 7 over BRT OP is k*-orientable.
In particular, if 31(§) = 0 for any STOP-bundle £, then 0 € 52(&); in other
words, o cannot be realized by T OP-bundles. On the other hand, for every
r >3 we have 0 ¢ 5.(739T). Thus, all the classes s.,m > 3, as well as the
classes ., > 3, can be realized by ST OP-bundles.

Proof. The canonical bundle 77 ©% is k2-orientable because of 3.24. In-
deed, the map F in 3.24 yields a k2-orientation of 737 OF In order to prove the
realizability of all the classes s, 7 > 3, it suffices to prove that 0 ¢ s3(vZ 7).
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Indeed, this implies that 0 ¢ s3(7Z ©F), because otherwise 0 € »3(¢) for ev-

ery k2-oriented ¢ and in particular for v7 97 see 3.24. Hence 0 ¢ ,.(v.°7)

in view of V.5.1.
Suppose that 0 € %3(73?07’), i.e., that the bundle 7;’073 is k3-orientable,

i.e., that there exists
h': BRTOP — B(G, k)

over BSG. Let F’ be the composition of A’ with the projection B(G,k3) —
B(G, k?). After Z[2]-localization we have the following diagram, where F :=
F'[2],h :=K'[2], and g := ¢F":

BRTOP[2] —"— B(G,k)[2]

/|

BRTOP[2] —— B(G, k)2

g

BRTOP[2] —X— BRG[2]

l

BRTOP[2] —— BSG[2]

In particular, g is a map over BSG[2], i.e., g can be regarded as grop de-
scribed in 3.11.
The Postnikov—Moore tower for g yields the diagram

BRTOP[2] —X— B(G,k?)[2]

H !

BRTOP[2] —X— BRG|?2]

/| H

B S . BRg[]
where p and f are as in 3.24. Thus, F has the lifting h : BRTOP[2] —
B(G, k?)[2]. But this contradicts 3.25. O

3.27. Theorem. All the classes »,.,7 > 1, as well as the classes »,.,7 > 1,
can be realized by spherical fibrations.

Proof. By 3.9, 229 # 0. Furthermore, by V.4.9 and 2.6(ii), 29 # 0 for
every r > 3. Hence, by V.5.6, all the classes 7, can be realized by spherical
fibrations. Finally, the realizability of 75 implies easily the realizability of sz
(by exactly the same fibration). O
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Recall that we have considered above the Z[2]-local case. What about
Z[p]-localization with odd prime p?

In the beginning of the section (see the text before 3.4) we discussed
k[1/2]- and hence k[p]-orientability of ST OP-objects. Thus, it makes sense
to consider the realizability problem for spherical fibrations only.

The following well-known fact was proved by Adams [6], see also IX.4.16
below.

3.28. Theorem. For every odd prime p there exists a ring spectrum L such
that .
Klp] ~ VP22 L.

Furthermore, the inclusion L — K|p| of the direct summand is a ring mor-
phism. O

3.29. Corollary. For every odd prime p there exists a ring spectrum £ such
that _

k[p] ~ VPZ2x2p.
Furthermore, the inclusion ¢ — k[p] of the direct summand is a ring

morphism. Finally, k [p]-orientability of any object is equivalent to its -
orientability.

Proof. Set ¢ = L|0. The existence of the required splitting follows directly
from 3.28 and naturality of connective coverings. Furthermore, since £ — k [p]
is a ring morphism, f-orientability implies k [p]-orientability. Conversely, if
S — k[p] is the unit of k [p], then

S — k] = 0

is the unit of £. Hence, k [p]-orientability implies ¢-orientability. O
The Postnikov tower of ¢ looks similar to that of k. Clearly,

T (0) = Z[p][x],degx = 2(p — 1).

Let " be the cone of
x;jl 32D =1p

and compare this with k7. Similarly to 2.3, there is a cofiber sequence
Vi Pr, Y il RN EQT(p71)+1HZ[p].

Moreover, (3=2(P=1¢m)|0 = ¢7—1,
Let pp, : HZ[p| — HZ/p and 6, : HZ/p — HZ[p] be the reduction mod p
and the Bockstein morphism, respectively.
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3.30. Theorem. The diagram

¢ HZ,

Jeves |

r = 1 - 0
EQr(p71)+1HZ 22p71HZ

is the Postnikov tower of £, and for the Postnikov invariants o, we have:

(i) (2%0,)|(2p —2) # 0 for every n > 2.

(ii) o1 # 0, ie., o1 = MpP'p, € H* Y (HZp|;Zlp])) = Z/p, where
ANEZ/p,A#0.

(iii) dpP1ppon, = 0 for every n > 1, and the higher operation on41 is
associated with this relation.

Proof. (i) Set Y = Q°°¢, and let X be any connected component of Y.
Then 7a,,(p—2)(X) = Z[p] for n > 0 and m;(X) = 0 otherwise. Furthermore,

02X = QP2y ~ Y.

Now, X is a factor of BU[p|, and so H*(X;Z[p]) is torsion free. Consider the
Postnikov invariant x € H*~3(K(Z[p|, 2p — 2); Z[p]) of X. If k = 0, then

H*73(X) = H*73(K(Z[p], 2p — 2) x K(Z[p],4p — 4))

has a non-zero torsion subgroup. This is a contradiction, and so k # 0.
Clearly, « in fact coincides with 209, and so Q2°°gy # 0. This implies that
(Q20,)|(2n(p — 1)) # 0, because

Q20D (@ 0)) | (2n(p — 1)) ~ Q0.

Hence, (2%0,)|(2p — 2) # 0 for n > 2. Thus, we have proved (i).
The remaining part of the proof can be done in just the same way as in

2.6. ]

As above, we introduce higher characteristic classes »,(£) = ¢~ 'o,ue

related to £.

3.31. Theorem. All the characteristic classes 3. can be realized by spherical
fibrations.

Proof. Let u € H°(MSG;Z[p]) be the universal Thom class. By IV.6.10,
8p P pp(u) # 0. Now the theorem follows from V.5.6. and 3.30(ii). O

3.32. Remark. Let v € H°(k;Z/p) = Z/p be a generator. It follows
from 3.30(ii) that Qi(v) = 0. Since every SPL-bundle is k [p]-orientable,
see the text before 3.4, Q1(upg) = 0 for the universal Thom class upy €
HY(MSPL;Z/p), cf. IV.6.12.
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Résumé on k-orientability

The conditions wq(£) = 0, 0wz (§) = 0 are necessary for k-orientability of any
V-object £. In particular, it makes sense to consider only V-objects ¢ with
w1 (§) = 0. We have 31 = dws.

Theorem. (i) The class 1 can be realized by vector bundles (namely, by the
universal oriented vector bundle). If for some HZ-oriented vector bundle &
we have 31(§) = 0, then 0 € 5,.(§) for all r, i.e., £ is k-orientable. In other
words, none of the classes s, > 1, can be realized by vector bundles.

(ii) If for some SPL-bundle & we have 31(§) = 0, then 0 € 52(€) and
0 € 53(8). Thus, the classes 33 and 3 cannot be realized by PL-bundles.
However, all the classes ».,r > 4, (and s, of course) can be realized by
PL-bundles.

(iii) If for some STOP-bundle & we have 31(§) = 0, then 0 € 2(E),
and hence 5 cannot be realized by T OP-bundles. However, all the classes
., > 3, (and s, of course) can be realized by T OP-bundles.

(iv) For every n > 1 we have 0 ¢ 3,(vS, ). In other words, all the
classes »,.,m > 1, can be realized by spherical fibrations.

Thus, we have a remarkable contrast among all the four classes above.

Also, the following observation looks interesting. Every vector bundle over
a 3-connected space is k-orientable, but there is no universal n such that every
PL bundle over an n-connected space is k-orientable. Another interpretation:
a vector bundle £ over a (finitely dimensional) CTW-complex X is k-orientable
iff £|X (3) is. However, there is no universal n such that, for every PL bundle
&, k-orientability of | X (") guarantees k-orientability of £.

84. kO -Orientability

Here we consider the kO -orientability (which is equivalent to the KO-
orientability) problem. In particular, we show that it has mutually different
solutions for all the four classes of V-objects, as the k-orientability problem
does. Since most of the arguments are similar to the arguments of the previous
section, we will not be very detailed in the exposition.

Note that the homotopy groups of kO are well known in view of Bott
periodicity Q¥ BO = BO x Z, see IV.4.27(ii) (recall that Q°kO ~ BO x Z,
and so m;(kO) = m;(BO)).

Let k£O,, denote the Postnikov n-stage of kO.

4.1. Theorem (cf. Adams-Priddy [1], Stong [1]). (i) The Postnikov tower
of kO has the form



§4. kO-Orientability 375

i

SSHZ — s KOy —2 YRH7/2

p |

sigz, % ko, — SOHZ,

g

S2HZ/2 —2 s kO, —Z - YSHZ

.|

SHZ/2 —2 s kO, —2— Y3HZ/2

]

HZ, KOy —7— S2HZ/2.

Here o, are the Postnikov invariants and

Jr Pr ar
o — 06— 06— 0
are long cofiber sequences.
(i) o1 = S¢®p, 0271 = Sq¢?, and so Q01 = 0 = Q®0,.
(iil) ((2%°04,)[2)[2] # 0 for n > 2.

Proof. (i) This follows from IV.4.27(ii).

(ii) By Bott periodicity, (X~8k0)|0 ~ kO. Thus, it suffices to prove that
os5js = Sqp, 06js = S¢?, i.e., that o5js and 04j5 are essential morphisms.
To prove this, it suffices to prove that Q*(Q>(o5j4)) : K(Z,4) — K(Z/2,6)
and Q*(Q>°(0gsj5)) : K(Z/2,5) — K(Z/2,7) are essential maps. Let BSp
be the classifying space for the infinite dimensional symplectic group Sp =
lim Sp(n). (Alternatively, BSp is the homotopy direct limit of the sequence

- — BSp, — BSpn.+1 — ---.) We have Q*BO ~ BSp, see e.g. Milnor [6].
Hence, the Postnikov tower for BSp has the form

BSp(G) L) K(Z/Q, 7)

K(Z,4) —2— K(7/2,6),
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where a; = Q*(Q*04_;). Now, H.(BSp) is torsion free, see e.g. Switzer [1],
16.17. This implies easily that a; and as are essential maps.
(ili) We have (2>°k0)|2 = BSO. Hence, by 2.12,

((Q%03)[2)[2] = 65¢%2 #0,  ((Q%04)|2)[2] = ¢ # 0.
Furthermore, by Bott periodicity, kO|8 = ¥8k0, and hence
(Q%05)|8 = S¢?p : K(Z,8) — K(Z/2,10),
(Q%04)|9 = Sq¢* : K(Z/2,9) — K(Z/2,11).

So ((2%°0,)|2)[2] # 0 for r = 5,6. Finally, the inequality ((2*°c,)|2)[2] # 0
for n > 6 follows from the above and Bott periodicity. O

Following our program, now we consider the kO-characteristic classes .
Firstly, we set s(§) := w1(). Furthermore, for every stable HZ-oriented
V-object (&, ug) we set 5.(§) := ¢ 'o,ue. Finally, it will be convenient to
introduce the classes %, := ¢~ 'G,u¢ corresponding to kO[2], i.e., 7, is the
Z[2]-1ocalization of o,.. By 4.1(ii), we have

(42) ] = Wa.
Hence, B(V, kO1) = BV|3.

Atiyah—Bott—Shapiro [1] proved that a stable vector bundle & is kO-
orientable iff it admits a Spin-structure, i.e., iff w;(§) = 0 = w2 (§). Thus, we
have the following fact:

4.3. Theorem. If for some vector bundle & we have »y(€) = 0,3¢(§) = 0,
then 0 € 3,.(§) for all r > 1. Thus, none of the classes »,.,r > 1, can be
realized by vector bundles. O

Because of kO[1/2]-orientability of ST OP-bundles (see the text before
3.4), the following analog of 3.4 holds.

4.4. Theorem. Given r, 0 < r < oo, an STOP-bundle (as well as an SPL-
bundle) is kO,.-orientable iff it is (kO,)[2]-orientable. In particular, the class
2. can be realized by PL- or TOP-bundles iff 7, can. a

As usual, we set »§ = ¢ logu € H3(B(G,kO');7/2) where u €
EOY(M(G,kO)) is the universal kO'-orientation.

4.5. Lemma. H3(B(G,k01);7Z/2) = Z/2, and the class »§ generates this
group.

Proof. Considering the Z/2-cohomology spectral sequence of the fibration
K(Z/2,2) — B(G,k0O,) — BSG,
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one obtains that H3(B(G,k01);Z/2) = Z/2. Let £ be the spherical fibration
in 1.9. By 4.1(ii), the secondary operation o9 is just ®(2,2). Hence, s can
be realized (by £). Thus, 5§ # 0. O

4.6. Remark. By 4.5, the set s (’ylg ) contains just one element %2g , which
in fact coincides with p*esz, where e3 € H3(BG;Z/2) is the Gitler—Stasheff
class and p : B(G,kO,) — BG.

Set BMV := B(V,kO;) = BV|3, i.e., BMYV is the homotopy fiber of
wg : BSY — K(Z/2,2). (Note that BMO = B Spin.) The map BMPL —
BSPL — BSG turns BMPL into a bundle over BSG.

4.7. Lemma. (i) If V < TOP, then BMYV is 3-connected. Furthermore,
n3(BMG) = 7,)2.

(ii) The homotopy fiber of any map BMPL — BMG over BSG is G/PL.
The homotopy fiber of any map BMTOP — BMG over BSG is G/TOP.

Proof. (i) By IV.4.27(ii), m3(BSQO) = 0. So, by IV.4.27(iv), m3(BSPL) =
0, and so, by IV.4.27(v), m3(BSTOP) = 0. Hence, m3(BSV) = 0 for
YV < TOP, and so w3(BMYV) = 0. Furthermore, 73(BG) = Z/2, and so
73(BMG) = Z,/2.

(ii) This is similar to the proof of 3.11. O

4.8. Theorem. If (&) = 0 for some SPL-bundle &, then 0 € 35(§) and
0 € 5e3(€). Furthermore, 0 ¢ s¢4(vF*) € H*(BMPL;Z). Thus, all the classes
2,1 >4, as well as 7., > 4, can be realized by PL-bundles.

Proof. The triviality of 3e5(§), 325(§) follows from 4.3 and IV.4.27(iv), cf.
3.13. As in 3.14, if 0 € s¢4(7]*) then we have the diagram

BMPL[2] —L— B(G,kOy)[2]

H I

BMPL[2] —— BMG[2|
BSPL[2] ——  BSG[2).

Passing to the homotopy fibers of g and p, we have, by 4.7(ii), a map
f: G/PL[2] — BSO[Q](g).

Since in the Z/2-cohomology spectral sequences of the fibrations g and p
the class »§ € H*(BMG[2];7Z/2) does not survive (for g this holds because
H3(BMPL;Z/2) = 0), the map

f:G/PL[2] — BSO[2]s)
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is a 4-equivalence. (In greater detail, it induces an isomorphism of 79’s, and
hence, by V.4.5, it induces an isomorphism of 74’s.) Hence, the map

BSOR)w =Y 5 G/PL2 L BSOR) s

is a 4-equivalence (here a is the inclusion of the factor, see (2.14)). In other
words, the projection
BSO[2](s) — BSO[2](4)

in the Postnikov tower of BSO[2] has a section. But this contradicts 2.12.
Thus, 0 ¢ 54 (75 ©). The realizability of all the classes s, and 3., r > 4, now
follows from V.5.1 and 4.1(iii), cf. 3.14. O

4.9. Theorem. If 51(§) = 0 for some STOP-bundle £, then »2(§) = 0.
Furthermore, 0 ¢ sc3(72 ©F), and hence all the classes s.,m > 3, as well as

32,1 > 3, can be realized by T OP-bundles.

Proof. By 4.7(i), we have H3(BMTOP;Z/2) = 0, and hence sz cannot
be realized by 7OP-bundles. Furthermore, if 77 ©7 is kOs-orientable, then
we have the following commutative diagram over BG:

BMTOP — B(G,kO,)

! !

BMG BMG.

Let us localize this diagram and pass to the homotopy fibers of the vertical
arrows. Then, by 4.7(ii), we get a map G/7T OP [2] — BSO[2]4) of the homo-
topy fibers, and this map is a 2-equivalence. In view of (2.15), this contradicts
the non-triviality of the Postnikov invariant 6Sq¢?. of BSO|2], see 2.12. Thus,
0 ¢ s53(7vZ9P). Again, the realizability of all the classes s, and 3., r > 3,
follows from V.5.1 and 4.1(iii). O

4.10. Theorem. All the classes s»,.,v > 1, as well as »,.,7 > 1, can be
realized by spherical fibrations.

Proof. This follows from (4.2) for r = 1, from 4.5 for r = 2, and from 4.9
for r > 3. O

4.11. Remark. In fact, Adams [4, IV, Theorem 1.2] proved that all the
classes s, of dimensions 8n+2, 8n+3 can be realized by spherical fibrations
over spheres.

Again, one can ask about kO [p]-orientability with odd prime p. We just
remark that complexification induces a ring morphism kO [p] — k [p] onto a
direct summand in view of 3.3 and IV.4.27(iii). Thus, kO [p]-orientability is
equivalent to k [p]-orientability.
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Résumé on kO -orientability

The conditions wy(§) = 0, wz2(§) = 0 are necessary for kO -orientability of
any V-object . As in §3, we consider V-objects with trivial w;. We have
1 = W2.

Theorem. (i) The class 1 can be realized by vector bundles (namely, by
the universal oriented vector bundle). If for some vector bundle & we have
#0(&) = 0 and 3¢1(§) = 0, then 0 € 3.(§) for all r > 1. Thus, none of the
classes ., > 1, can be realized by vector bundles.

(i) If for some SPL-bundle & we have 51 (§) = 0, then 0 € 52(&) and
0 € »3(£). On the other hand, all the classes ».,r > 4, can be realized by
PL-bundles.

(iil) If for some ST OP-bundle & we have s (§) = 0, then s2(€) = 0. On
the other hand, all the classes ., > 3, can be realized by T OP-bundles.

(iv) All the classes ».,r > 1, can be realized by spherical fibrations.

5. A Few Geometric Observations

Here we give some results connected with k- and kO -orientability, but not
situated on the main line of this chapter.

5.1. Theorem. For every n > 23 there exists a simply connected topological
manifold V™ with the following properties:

(i) dwa (V) = 0;

(ii) No odd multiple of a generator [Vlg € H,(V) = Z can be realized
by a PL manifold with dwa(M) = 0. In particular, V does not admit any
PL-structure.

Proof. Treating BRT OP as a CW-complex, take its 7-skeleton A and
embed it in R™,m > 15. Consider a regular neighborhood X of A, and let
p: X — A be the standard deformation retraction. Consider an (R7, 7 OP7)-
bundle ¢ such that £ ® (77 9F)|A is stably trivial, and set ¢ := p*¢. Note that
¢ ® 0! admits a 8-disk subbundle. (Indeed, one can take the cylinder of the
projection of ¢*.) Let Y be the total space of this disk bundle; clearly, it is a
topological manifold with boundary. Consider the embedding j : A - X — Y
(the last map is given by the zero section). One has j*v ~ 77 ©F| A, where v
is the stable normal bundle of Y. Let V' be the double of Y, V :=Y Uyy Y.
Then s (v) = 0,0 € 52(v),0 ¢ 53(v), where 5; are the characteristic classes
with respect to k-theory. We prove that V' has properties (i) and (ii).

(i) Since V is simply connected, w1 (V) = 0. Thus, we(V) = we(v), and
so dwz (V') = 0 because dws(v) = 32(v) = 0.
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(ii) Suppose that there is a map f: M — V of odd degree and such that
M is an HZ-oriented PL manifold with dws(M) = 0. Then dwa(var) = 0,
and so, by 3.2, M is k®-orientable. Let [M] be a k3-orientation of M. Then,
by V.2.12, f.([M]) € k3(V) gives us a k3[2]-orientation of V. Thus, V is
k3[2]-orientable, and so it is k*-orientable by 3.4 (and V.2.4). But s3(v) # 0.
This is a contradiction. g

An analogous theorem holds for £kO. We just formulate it; the proof is
similar.

5.2. Theorem. For every n > 17 there exists a simply connected topological
manifold V™ with the following properties:

(i) wa(V) = 0;

(ii) No odd multiple of a generator [Vg € H,(V) = Z can be realized
by a PL manifold M with we(M) = 0. In particular, V' does not admit any
PL-structure. O

5.3. Remark. For every homology class z there exists an odd number N such
that Nz can be realized by a smooth manifold, see IV.36. That contrasts with
5.1 and 5.2 (recall that every smooth manifold is a PL manifold in a canonical
way).

Let BSPL(8) be the classifying space for PLg-bundles. Let BRPL(8) be
the homotopy fiber of dwy : BSPL(8) — K(Z/2,3), and let j : BRSPL(8) —
BSPL(8) be the inclusion of the homotopy fiber. Set X := BRPL(8)®),
and set 1 := j*(v%,)|X. By setting Y := (B Spin®(8))®), we have the map
f:Y — X, which is induced by the forgetful map B Spin®(8) — BRPL(S).
It is clear that f*(n) is the restriction of the canonical Spin®(8)-bundle. Let
u € K8(T(f*n)) be the K-orientation of the Spin®-bundle f*7 constructed
by Atiyah-Bott—Shapiro [1].

5.4. Theorem. The bundle n is K-orientable, but the orientation u cannot
be extended to X, i.e., u ¢ Im f*.

Proof. We have »r1(n) = 0 by the construction of 7. So, by 3.13, 0 € s2(n),
0 € s3(n). Finally, 0 € 3,(n),n > 3, because dim X = 8. Thus, 7 is k-
orientable and so K-orientable.

Suppose now that u = f*v for some v € K8(Tn). Since f* : H*(X;Q) —
H*(Y;Q) is an isomorphism, we have o~ 'chv = e*/2A(n) for some z €
H2(X), (see V.3.4 (b), V.3.6). This implies easily that A(M) is an integer
for every PL manifold M with wy(M) =0 = we(M) and dim M < 8.

Let M, dimM = 8, be a closed almost parallelizable PL manifold of
signature 8. Such manifolds were constructed by Milnor, see e.g. Kervaire—
Milnor [1] or Browder [3]. The theorem will be proved if we prove that A(M)
is not an integer. Now,
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A(M) = (7p} — 4p2)/ (27 - 45),

where p; is the i-th Pontrjagin class of M, see e.g. Hirzebruch [1]. Here
p1(M) = 0 because M is almost parallelizable. We have 8 = o(M) =
(Tpa — p3)/45, where o is the signature, see e.g. Hirzebruch [1], and so
Tpy = 8- 45. Thus, A(M) = —1/28. 0

5.5. Remarks. (a) Theorem 5.4 means that in the diagram

Y L» X —— BRPL

d Ak |
B(O,K) —— B(PL,K) —— BRPL

there exists a map v such that the right square commutes, but there is no
map v such that the left square commutes.

(b) Milnor constructed certain closed almost parallelizable PL manifolds
M* of signature 8, see e.g. Kervaire-Milnor [1] or Browder [3]. Every such
manifold M** is K-orientable because H**!(M) = 0 for each i. Hence, one
can try to find a K-orientation of Spin®-bundles with the corresponding genus
o such that (M) is integral for every Milnor manifold M.

(c) We leave it to the reader to formulate and prove a K O-analog of 5.4.



Chapter VII. Complex (Co)bordism

In order to work with complex (co)bordism with singularities we need some
preliminaries on complex (co)bordism. Therefore we collect here some facts
which will be used below. A standard reference on complex (co)bordism is
the book of Ravenel [1], see also Stong [3], Ch. VL.

In this chapter “cohomology theory” means “additive cohomology the-

9

ory”.

§1. Homotopy and Homology Properties of the
Spectrum MU

Let MU = T(BU, R) be the ring spectrum defined in IV.7.31(b). The complex
(co)bordism theory is the (co)homology theory given by MU.
Since BU is simply connected, the F-object

R af
BU = BO —L BF

is HZ-orientable, and hence, by 1V.5.23, H*(T(BU, R)) = Z. Therefore,
H°(MU) = Z. Consider a Thom class u € H°(MU) (i.e., either of two
generators of H*(MU) = Z) and the corresponding morphism u : MU — HZ.
By IV.5.26, the induced homomorphism

Uy 7, = WQ(MZ/[) — WQ(HZ) =17

is an isomorphism. We choose the Thom class u € H°(MU) such that u.
maps 1 to 1.

We do not care about any concrete form of the universal bundles 7¢. They
can be canonical bundles, as in Milnor—Stasheff [1], or conjugated to these
ones, etc. Fixing v™’s, we fix certain maps (homotopy classes) BU,, — Bl 11
and BU,, x BU,, — BU,,+n, but in any case MU turns out to be a ring
spectrum. Furthermore, the ring equivalence class of the spectrum MU does
not depend on the choice of y¢’s. However, if you want, we can agree that
¢ is a canonical complex vector bundle.
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According to the Pontrjagin—Thom Theorem IV.7.27, MU,.(—) can be
interpreted as the (BU, R)-bordism theory, i.e., the bordism theory based on
stably almost complex manifold. By the way, every complex analytic manifold
is a stably almost complex manifold.

Throughout this chapter the word “bordant” means “(BU, R)-bordant”.
As usual, given a closed stably almost complex manifold M, the bordism
class of a singular manifold f : M — X will be denoted by [M, f], and the
bordism class of M will be denoted by [M]. Furthermore, [M]an, denotes the
bordism class [M, 1p] € MU,.(M).

It is easy to see that the universal HZ-orientation u yields a certain HZ-
orientation on every complex vector bundle, cf. 2.8 below. (In fact, this orientaion
coincides with the one described in Milnor—Stasheff [1].) Therefore, by V.2.4 and
V.2.14, every stably almost complex manifold M™ gets a certain HZ-orientation
[M]g € Hp(M,0M). Now one can define the Steenrod-Thom homomorphism
MU.(X) — H.(X),[M, f] — f«([M]x) and prove an analog of IV.7.32.

1.1. Proposition. u: MU — HZ is a ring morphism.

Proof. Let H denote HZ. We must prove that the diagram

MUNMU —E— MU

una | |

HANH M., @

commutes (up to homotopy). Let ¢ : S — MU be the unit of MU. The

morphism
LAL

S=8SASL5 MUANMU L MU H
is homotopic to u¢, while the morphism

LAL uNu

S=SAS L5 MUAMU LS HAH 2L H

coincides with the unit ¢z of H. Furthermore, ¢y ~ ut because t*(u) =1 €
H°(S) and u, : mo(MU) — mo(H) maps 1 to 1. Hence,

wopo(t At) =~ ut >~ vpr =~ ppo(u Au)o(L Ad).
Since (¢ A 0)* @ HY(MU A MU) — H(S A S) is an isomorphism, wop =~
prro(u A u). O

The group Uy = {z € C | |z| = 1} acts on C"*! (via the map a
za,a € C"T1 2z € Uy) and hence on its unit sphere S?"T!. The quotient
space S?" 1 /U, is just the complex projective space C'P"™. Considering the
homotopy exact sequence of the locally trivial principal U;-bundle

ul N S2n+1 N Cpn’
we conclude that m (CP") = 0, m2(CP") =Z and m;(CP™) =0 for i < 2n.
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The inclusion C* — C™*! of the hyperspace z,,1 = 0 induces an inclusion
l, : CP™ — CP"*. Set CP* := UCP". By the above, m3(CP>) = Z and
m;(CP>®) =0 for ¢ # 2. Thus, CP* = K(Z,2).

1.2. Lemma. BlU; ~ CP°.

Proof. By IV.3.2(ii), BU; is the base of a principal U;-bundle with a
contractible total space, and so m;(BlU;) = mi_1(U1) = mi_1(ST). Hence,
Bl = K(Z,2) = CP>. O

1.3. Notation. (a) We denote by I : CP™ C CP",m < n < oo, the
inclusion l,, 10+ oly, : CP™ C CP". So, I}, = l,,. We also use the specific
notation j, := 13, : CP" — CP*.

(b) We denote by " : BU,, — BlU,,m < n < oo, the composition
Tmo - orp_1 : BUy — BU, where v, : BU, — BlUy,1 classifies v¢ EB% as in
IV.4.25. So, r;}, | = ry. Also, we recall the map 4 BU,, — BU, see TV.4.25.

(c) Given a complex vector bundle £, dim & denotes its complex dimension.

(d) Given a complex vector bundle ¢, we denote by ¢ the conjugated
complex vector bundle.

(e) In this chapter we denote ¢ by ¥", 4 by v and 6 by 6™.

(f) Let A be the canonical complex line bundle over CP*. (It is well-
known that A is a universal complex line bundle, but, as I said before, I do
not insist that ' = X.) We set n := X. 16

(g) Let e, : (CP>®)" — BU, classify n x --- x n, and let p; : (CP>®)" —
C P be the projection onto the i-th factor.

Let ¢;(§) denote the i-th Chern class of a complex vector bundle €. Recall
that ¢;(§ x ) = >_,, = ¢j(§)cr(n) for every pair of complex vector bundles
&,m (where ¢o(§) =1 = ¢o(n)) and ¢;(§) =0 for i > dim¢&.

1.4. Theorem. (i) H*(CP>) = Z[t] where t = ¢1(n),dimt = 2.

(ii) H*((CP>™)™) = Zlt1, ... ,t,], where t; = pit.

(i) H*(BUy) = Zlcin,--- Cnn),dime; , = 2i, where ¢, is the i-th
Chern class of Y™, ¢in = c;(¥"™). Furthermore, 1% (Ciny1) = Cin for i < n,

and 1} (cpt1n+1) = 0. Finally, e (c;in) is the i-th elementary symmetric
polynomial o;(t1,... ,tn).
Proof. See Milnor—Stasheff [1], §14. a

Let Vect,,(X) denote the set of all equivalence classes of n-dimensional
complex vector bundles over a space X. Note that £ @ ! = ¢ and £ ® & = .
Hence, Vect;(X) is an abelian group with respect to the tensor product.

6Note that this notation differs from that in Milnor-Stasheff [1]. They denoted the
canonical line bundle over C' P*° by 7.
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1.5. Lemma. (i) For every CW-space X, the function ¢; : Vect1(X) —
H?%(X), & c1(€), is a homomorphism of groups.

(ii) The homomorphism c; : Vect1(X) — H?(X) is an isomorphism for
every CW -space X .

Proof. (i) See e.g. Karoubi [1], V.3.10.

(ii) Since t = c¢;1(n) generates the group H*(CP>) = H*(K(Z,2)) = Z,
we conclude that ¢ is a fundamental class of the Eilenberg-Mac Lane space
K(z,2).

We prove that c; is epic. Given z € H?(X), consider f : X — CP> with
f*t =x. Now, c1(f*n) = f*(c1(n)) = =.

We prove that c; is monic. Consider the map e; : CP*® — BU;. We
have t = c¢1(n) = c1(efy!) = ej(c1(y1)). Hence, ¢1(y') generates the group
H?(BU,) = Z, i.e., c1(y!) is a fundamental class of Bly = K(Z,2). Let a
complex line bundle £ be classified by a map f: X — CP*.

We have

€ ~ 0! < fis inessential <= f*c;(y') =0
= c(fY) =0« ci1(&) =0. O
1.6. Corollary. Let m : CP>* x CP* — CP> be the multiplication in the
H-space CP*>® = K(Z,2), and let p; : CP>® x CP*® — CP*>,i=1,2, be the
projection onto the i-th factor. Then
m*(§) = pi€ ® pa¢

for every complex line bundle & over C'P*°.

Proof. Note that m*z = pix + piz for every x € H?(CP>). Now,

c1(m*€) = mc1(§) = piei(§) + prei(§) = c(pié) + c1(p3f) = c1(pi€ ® p5é)
O

Given a partition w = (i1, ... ,ix) (see Milnor—Stasheff [1], §16), set |w| =
> iy, l(w) = k. We define the universal Chern classes

co € H*(BU) = H?*!/(BUy), |w| << N,

via the formula e¥;(c,) = tw € Z[t1, ... ,tn] = H*((CP>)") where t,, is the
smallest symmetric polynomial which contains t? .- 't}'j. (Here “smallest”
means “with minimal number of summands”.) Finally, ¢ := 1.

Given a complex vector bundle £, dim & = n, we define ¢, () by setting

u
cw(&) := g*cw, where g is the composition bs& EN BU, % BU and f

classifies £&. We have ¢, (§) = 0 for I(w) > dim ¢ and
Cw (5 x 77) = Z Cuwy (5)6002 (77)’

(w1,w2)=w

see Milnor—Stasheff [1].
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For every = € my),|(MU) we define its characteristic numbers s, () as
) sula) 1= fple) € B2 (5741) = 2,

where f : S2¢l — MU represents = and ¢ : H*(BU) — H*(MU) is the
Thom isomorphism. Moreover, if = is represented by a stably almost complex
manifold M, then

sw(®) = (cw(var), [M]n),

see e.g. Stong [3] or 2.22 below.
We set

(1.8) N .{p if n = p* — 1 for a prime p,

1 otherwise.

1.9. Theorem. (i) m.(MU) = Z[z1,... ,Zp,...],dimz, = 2n.

(i) H.(MU) = Zy1,--- ,yn,...|,dimy, = 2n. In particular, H.(MU)
and H*(MU) are torsion free.

(iii) The Hurewicz homomorphism h : w.(MU) — H.(MU) is monic.
In particular, the bordism class of every stably almost complex manifold is
completely determined by its Chern numbers.

(iv) A family {x,}, n =1,2,..., of elements of m.(MU) is a system of
free polynomial generators of it iff sy (x,) = £, for every n.

(v) There exists a system {x,} of free polynomial generators of m.(MU)
such that for every prime number p and natural number k all Chern numbers
of xp_y are divisible by p. In particular, h(xye_1) € pH.(MU).

(vi) H*(MU;Z/p) is a free <7,/(Qo)-module.

(vii) The AHSS for MU*(MU) and MU.(MU) are trivial.

(viii) The Hurewicz homomorphism m.(MU) — K.(MU) is a monomor-
phism on a direct summand.

Here in (vi) (Qo) is the two-sided ideal generated by Q. It coincides with
the left ideal #%,(Qo, ... , Qn,--- )

Proof. A proof of (i), (iii)-(vi), (viii) can be found in Stong [3], see also
Ravenel [2]. A proof of (ii) can be found in Switzer [1]. The assertion (vii)
follows from (i), (ii) and IT.7.12(ii). O

1.10. Remark. The assertions (i)—(iv), (vi) were proved by Milnor [4] and
Novikov [1]. The assertion (v) was remarked by Conner and Floyd, see Con-
ner [1]; they proved the existence of generators with all characteristic num-
bers divisible by p (and called them Milnor’s generators); you can see such
a system in 6.14 below. The assertion (viii) is the well-known Stong—Hattory
Theorem, see Stong [2], Hattory [1].
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For every spectrum X the morphism u : MU, (X) — H,(X) induces a
homomorphism

u: MU(X)®: Z — H(X), ulz ® a) = au(x),
where £ = u® : MU, (S) — H,(S) = Z. Note that (z) = 0 if dimz > 0.

1.11. Proposition. The homomorphism
u®1l: MU(X)®:Q — H(X)®Q = H.(X;Q)

is an isomorphism of homology theories on .

Proof. By 11.7.13, there is a natural ring (and hence MU, (S)-module)
isomorphism

MU.(X)® Q= H.(X)® MU.(S)®Q.

Hence, MU.(X) ®: Q = H,(X;Q). So, u ® 1 is a morphism of homology
theories. It is an isomorphism for X = S and thus, by 11.3.19(iii), for every
X. ]

1.12. Definition. A module M over a commutative ring is called coherent
if it is finitely generated and every finitely generated submodule of M is
finitely presented. A commutative ring R is called coherent if the R-module
R is coherent.

1.13. Proposition. (i) The ring k[x1,... ,Zn,...] is coherent for every com-
mutative Noetherian ring k. In particular, m.(MU) is a coherent ring.
(i1) If in an exact triangle

M1 — M2

NS
M;

any two of three modules M;,© = 1,2,3, are coherent, then so is the third.
Proof. Do this as an exercise; or see Bourbaki [3], L. Smith [1]. O

1.14. Theorem (L. Smith [1], cf. also Novikov [4]). Let E be a ring spectrum
such that m.(E) is a coherent ring. Then E.(X) is a coherent (and so finitely
generated) E.(S)-module for every finite spectrum X . In particular, MU.(X)
is a coherent MU, (S)-module for every finite spectrum X .

Similarly, E*(X) is a coherent E*(S)-module.

Proof. We consider only the homological case, the cohomological case
can be proved similarly. Since 7, (F) is coherent, E,(S) is a coherent E,(S)-
module. Now the proposition follows from 1.13(ii) by induction on the number
of cells of X. 0
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1.15. Theorem (cf. Conner—Smith [1]). For every spectrum X bounded below
the following conditions are equivalent:

(i) Hi(X) is a free abelian group;

(il) MU(X) is a free MU, (S)-module.

Furthermore, u : MU, (X) ®: Z — H.(X) is an isomorphism under these
conditions.

Proof. (i) = (ii). Since H.(X) is torsion free, the E?-term of the AHSS

is torsion free. So, by I1.7.12(ii), all its differentials are trivial. Hence, a free
abelian basis of H,(X) yields a free MU, (S)-basis of E2(X). Hence, E29(X)
is a free graded MU, (S)-module. Thus, MU, (X) is a free MU, (S)-module.

(ii) = (i). Firstly, we prove that H,(X) is torsion free. Let x € H,(X)
be a torsion element of minimal dimension. Then the element

@1 € Ep, o(X) = Hiy(X) @ mo(MU)

is a permanent cycle, and so € Imwu. On the other hand, MU, (X) is a free
MU, (S)-module, and hence MU,(X) ®. Z is a free abelian group. Hence, by
1.11, u : MU(X) ®. Z — H,.(X) is monic, and so Imu is torsion free. Thus,
x ¢ Imu. This is a contradiction. Hence, H,(X) is torsion free. In particular,
all differentials in the AHSS for MU, (X) are trivial.

We have already proved that w is monic. On the other hand, u is epic
because all differentials in the AHSS are trivial. So, H,(X) = MU.(X) ®. Z,
i.e., H.(X) is a free abelian group.

The last claim has already been proved. [

1.16. Corollary. For every finite spectrum X the following conditions are
equivalent:

(i) H*(X) is a free abelian group;

(il) MU*(X) is a free MU*(S)-module.

Proof. Let Y be a spectrum dual to X, i.e., Y = X*. Then H*(X)
H.(Y), MU*(X) = MU,.(Y). Now apply 1.15.

Ol

1.17. Theorem (Conner—Smith [1], Landweber [2], Yosimura [1]). Given
a k-connected spectrum X, there exists a morphism f : W — X such that
W is a k-connected spectrum, MU, (W) is a free m.(MU)-module and f, :
MU (W) — MU, (X) is an epimorphism.

Furthermore, if every group H;(X) is finitely generated then there exists
W as above such that every group H;(W) is finitely generated.

Proof. Without loss of generality we assume that k = —1, i.e., that X is
connected. Choose an element x € MUy(X). Then x can be represented by
a morphism
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S MUMN A X c MUNX

for N large enough. Without loss of generality we can assume that H, (MUN))
is a free abelian group. Let Y be a dual spectrum to MUWN) and let
w: S — MUN) AY be a duality morphism. Then there is the duality
isomorphism

WV X] =[S MUN A XD, wX(9) = (L A @),

and hence the isomorphism X% X : [29V, X] — [, MUN) A X]. Let
g : 2% — X be a morphism such that Y%u*X[g] = [h]. Consider the ho-
momorphism g, : MUz (X?Y) — MUs(X). We have g.[S%)] = x since the
morphism

d
(1.18) S 22 Ay N A xdy 209 iy N A X

is homotopic to h. In particular, * € Im{g. : MU.(X?Y) — MU.(X)}.
Furthermore, H,(Y) is a free abelian group, and hence, by 1.15, MU, (21Y)
is a free m.(MU)-module.

Now, let {z4} be a family of m,(MU)-generators of MU, (X). We use the
above arguments and construct maps g, : **1Y, — X such that

To € Im{(ga)s : MUL(Z%Y,) — MU (X)}.
We set W := \/Z‘w“‘Ya and define f : W — X by requiring f|2l%elY, ~ g,.

Clearly, the spectrum W is connected, the homomorphism f, : MU, (W) —
MU, (X) is epic, and MU, (W) = @o MU, (X1221Y,) is a free 7, (MU)-module.

Furthermore, suppose every group H;(X) is finitely generated. Given n,
consider the AHSS

El, = MU.(X™), E2(X)=H/(X;m.(MU)).

Without loss of generality we can assume that every group H;(X (™) is finitely
generated. Then E2, turns out to be a coherent 7,(MU)-module. Hence, by
1.13(ii), B2 is a coherent . (MU)-module, and thus MU, (X ™) is.

Now, MU, (X) = lim, MU.(X™). Hence, MU, (X ) admits a family {z,}
of m.(MU)-generators such that, for every n, the set {zo | dimzq < n} is
finite. Thus, constructing W as above, we conclude that the group H;(W) is
finite for every i. O

1.19. Lemma. Let E be any MU-module spectrum with the pairing m :
MUNE — E. Let A be a finite spectrum such that H*(A) 1is torsion free.
Then the homomorphism m™P : MU*(A) ®@ - sy E*(B) — E*(A A B) is
an isomorphism for every finite spectrum B.

Proof. Because of 1.16, MU*(A) is a free MU*(S)-module. So, fixing A,

we can consider m?® as a morphism of cohomology theories on .%. Since
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it is an isomorphism for B = S, it is an isomorphism for every B € %%, see
I1.3.19(iii). O

1.20. Theorem. Let E be as 1.19, and suppose that w;(E) is a finite group
for every i. Let X be a spectrum of finite type such that H*(X) is torsion
free. Then the homomorphism m™Y : MU*(X)®py-(s)E*(Y) — E*(XAY)
is an isomorphism for every spectrum Y. (Here ®Mu*(s) is the profinitely
completed tensor product defined in 111.1.23.)

Proof. Let {X,} (resp. {Y}) be the direct system of all finite subspectra
of X (resp. Y). By II1.4.17, E*(X AY) = lim{ E*(Xx A Yy )}. Furthermore,
the system {X,} of all finite subspectra of X has a cofinal subsystem {X,}
with X, finite and such that H*(X,,) is torsion free for every a. Note that,
by T11.5.7(iii), MU*(X) = im{MU*(X)}. Thus,

EX(X AY) = lm{E"(Xo AYy)} = Em{MU"(Xa) @pu-(s) E*(Ya)}
= MU*(X)@nu-(5)E* (Y). O
1.21. Corollary. Let E be as in 1.20. Then the homomorphism
m : MU (MU)® -5y E*(X) — E*(MU A X)
s an isomorphism for every spectrum X. [

1.22. Remark. Lemma 1.19 enables us to construct a spectral sequence
*(S * * *
TorX™ ) (MU (X), E*(Y)) = E*(X AY)
for every pair of finite spectra X, Y, see Novikov [4], Conner—Smith [1].

In order to proceed, we need more information about complex vector
bundles over C'P™. Note that e; : CP*>° — BU; classifies 7.

1.23. Proposition. The map e; : CP>* — BlU; is a homotopy equivalence.
So, 1 is a unwersal complez line bundle.

Proof. Because of 1.2 and 1.4(i), it suffices to prove that e} (ci(y')) gen-
erates the group H?(C'P>) = Z. But

ei(c(vh)) = a(n) =t. O
We denote the bundle n|CP"™ = j*n by n,.

1.24. Lemma. Let 7(CP™) be the tangent bundle of CP™. Then there is an
equivalence T(CP™) @ 0! ~ (n + 1)n, of complex vector bundles.

Proof. See Milnor—Stasheff [1]. O



392 Chapter VII. Complex (Co)bordism

Let &, be a normal bundle of the inclusion I, : CP" — CP"t!. By
IV.7.11, 7(CP") & &, 2 I 7(CP" 1), Since both 7(CP™) and 7(CP"*!) are
complex vector bundles, we conclude that £, gets a canonical structure of a
complex vector bundle.

1.25. Lemma. The complex normal bundle &, of the inclusion l,, is isomor-
phic to ny,.

Proof. By 1.5(ii), it suffices to prove that c¢1(&,) = c1(n,). Notice that
Iint1 = Nn. We have IX7(CP") = 7(CP") @ &,, and hence, by 1.24,
(n+2)n, ® 0L = (n+ 1)n, ® &, @ 0L Since c1(€ D C) = c1(€) + c1(C), we
conclude that ¢1(&,) = ¢1(nn). O

1.26. Proposition. The zero section 3 : BUy — MU; as in IV.5.4 is a
homotopy equivalence.

Proof. Let D(y') (resp. S(v')) be the unit disk (resp. unit sphere) bundle
associated with y!. Then S(v!) is just the locally trivial principal U;-bundle
associated with 71 i.e., S(v') is the universal principal U;-bundle. Hence, by
IV.3.2(ii), ts S(y!) is a contractible space. Now, 3 has the form

3:BUy S tsD(yY) B (ts DY)/ ts S(vY) = MUy

where the section s and the projection p are homotopy equivalences. O

We define a map
(1.27) h:CP>® =L By 2 M.

By 1.23 and 1.26, h is a homotopy equivalence. Since 7,, is a normal bundle
of the inclusion CP™ C CP"*!, there is a collapsing map ¢ : CP"t! — Tn,;
it collapses the complement of a tubular neighborhood of CP". (In fact,
CP"*! ~ Twn,, but we do not use it here.) Let g := e1j, : CP™ — BU;.

We define a map f : CP™! — MU, to be the composition

CP™ S Ty, 22 My

where T'g := T3, 1. Let h be as in (1.27), and let h : MU; — BlU; be a
homotopy equivalence inverse to 3.

1.28. Lemma. The map CP"t! ER M LA BU; classifies np41. In other
words, f is homotopic to CP" ! dn, ope b, MU, .

Proof. By 1.5(ii), it suffices to prove that f*h*t = ¢1(nn+1), i-e., that
% f*h*t = c1(n,). But this follows immediately from the commutativity of
the diagram
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cpr U, By, BU,

| | |

cprtt L nuy, BU,.

O

1.29. Proposition. The zero section 3 : CP>* — Tn is a homotopy equiva-
lence.

Proof. This follows from 1.26 and 1.23. (]

§2. C-oriented Spectra

Recall the inclusion j; : §? = CP! C CP>.

2.1. Definition (Adams [8]). Let E = (E, u,¢) be a commutative ring spec-
trum. An clement t = t£ € E2(CP™) is called a C-orientation of E if
jit = s2(1) € E%(S?). (Here 2 : E°(S%) = E2(S?) is the twofold sus-
pension.) A C -oriented spectrum is a spectrum with a fixed C-orientation,
ie., a pair (E,t) (or, if you want, a quadruple (E,pu,t,t)). A morphism
f:(Et) = (E',t) of C-oriented spectra is a ring morphism E — E’ which
maps t to t'. B

The image of ¢ under the inclusion E*(CP>) C E*(CP>) we also denote
by t.

2.2. Theorem. Let (E,t) be any C -oriented spectrum. Then

() B*(CP™) = B* (pt)[1]/ (™).

(i) B*(CP~) = B*(po)[[1].

(iii) E*((CP>=)") = E*(pt)[[t1,-- - ,tn]], where t; = pi(t).

(iv) E*(BU,) = E*(pt)[[cin,---sCnnll,dime;, = 2i. Furthermore,
el (Ckn) 1s the elementary symmetric polynomial oy, (t1,... ,tn). So, €l is a
monomorphism, and its image just consists of the invariants of the ¥, -action.
(Here ¥,, is the symmetric group of degree n and the action is given by per-
mutation of t;’s.) Finally, v} (¢;nt1) = cipn fori <n and r}(cpt1,n+1) = 0.

(v) E*(BU) = E*(pt)[[c1, .- s cn, ... ]] where (j4)*c; = cip fori <n and
(¥)*cr, = 0 for k > n.

Proof. See Adams [8], Ch. II, Dold [4], Switzer [1]. O

2.3. Construction-Definition. (a) The classes ¢, = ¢Z! as in 2.2(v) are
called the universal Chern—Conner—Floyd classes.

(b) We introduce universal characteristic classes ¢, = ¢&t € E?*l(BUY),
as we did for the ordinary cohomology. Given w = {i1,... i}, &k < N, let
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tw € m(E)[[t1,- .. ,tn]] = E*((CP>)Y) be the smallest symmetric polyno-
mial which contains tzf _ t;j Let ¢, v € E2lel (BUN) be the unique element
such that ei(cw,N) = tw. Since 75 ¢y nt1 = Cw,n for |w| < n + 1, there is a
unique element ¢, € E*(BU) such that (j4)*c, = ¢y, for every n > |w|.
Finally, we set c(g) := 1. Clearly, ¢, = c(1,... 1)

Given a complex vector bundle ¢ classified by f : X — BU,,, we define its
characterictic class ¢, (&) as ¢, (€) := (J¥ f)*c., € E?“I(X). It is clear that

wlEx )= D cu(©ew(0).

(w1,w2)=w

In other words, (u¥)*(c,) = €u,Cw, Where p¥ is as in IV.(4.26).
Note that ¢; ,, = ¢;(v™) and ¢1(n) = ¢.

Let
(2.4) ion 2 XN MU, — MU
be the morphism as in I1.(1.4). Define T € 1\71?12(01300) via the composition
—2500 o'} £72E>y —2y00 i2
YTEER(CP®) ————= X7 MU, — MU

with § as in (1.27). Clearly, T is a C-orientation of MU. So, by V.1.18, every
ring morphism 7 : MU — F yields a C-orientation 7.(T) of E. Hence, we
have a correspondence

{ring morphisms MU — E} —— {C-orientations of E}.

2.5. Theorem. This correspondence is bijective. Thus, (MU, T) is the uni-
versal C -oriented spectrum.

Proof. See Adams [8], I1.4.6, or Stong [3], Ch. V. O

2.6. Corollary. Let E be a C-orientable spectrum. Then ring morphisms
MU — E are in a bijective correspondence with formal power series o(t) =

t+ ZaitiJrl, a; € 7T2i_2(E).
>0

Proof. By 2.2(ii), every C-orientation of E has the form

t+ Z aitiJrl, a; € 7T2i_2(E). O
>0

By 2.5, every C-orientation t of F yields a ring morphism
(2.7) u=u"": MU~ E
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with u.(T) = ¢, and this morphism is unique up to homotopy. We denote
uMUT by U, and it is clear that U = 1.

2.8. Proposition-Definition. Let iz, : ¥ 72"S° MU,, — MU be as in (2.4).
Let (E,t) be a C-oriented spectrum, and let & be a complex vector bundle
classified by f : bs& — BU,,. We set g =TT f~n and define ug € EQ”(TE) to
be the composition

(2.9) p-2nyeope X ETI soamyoo gy By M R,

Then ug is an E-orientation of £&. We call ug the (E,t)-orientation of .

Proof. Since u = u®' : MU — E is a ring morphism, u € E°(MU) is an
E-orientation of the universal stable complex vector bundle . Considering
the isomorphism e : T(&s) — L 72mE°TE as in IV.5.16, we conclude that
ignoZ_Q”Z‘X’goe preserves roots, and so uOigncZ_Q"Z"ogoe is an F-orientation
of &. Hence, by V.1.13, u¢ is an E-orientation of &. O

2.10. Corollary. Let E be a commutative ring spectrum. The following three
conditions are equivalent:

(i) The vector bundle n is E-orientable;

(ii) E is a C-orientable spectrum;

(iil) Every complex vector bundle is E-orientable.

Proof. We prove that (i) = (ii) = (iii). By 1.29, the zero section 3 :
CP> — T is a homotopy equivalence. Since S2 2% CP> KR Tn yields a
generator of mo(T'n) = Z, we conclude that 3j1 can be considered as a root of
Tn. Hence, ji3*v = +s2(1) € E?(S?) for every E-orientation v of 7, and so
3*v or —3*v is a C-orientation of E. Thus, (i) = (ii). Finally, by 2.8, (ii) =
(ii). O

We denote the (MU, T)-orientation of £ by U, and we set
(2.11) Up = Uyn € B> (MU,), Uy, := Uyn € MU (MU,).

Let ap,n : BUp, X BU,, — BlUp, 1y classify v™ x v". We have the map

Tamn :=T3q,, , ym+n : MUm A MUy — MUy 40,

and the morphism

Tt D728 MUy, A S8 MU, ~ £72m205%° (MU, A MUL,)

Zi2m72n2xT@m,,n

Z—Q(m-{-n) ZOOMZ/[m+n

such that the diagram
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R2mE N, A STEC MY, —ts no2mEn) ooy

i2m/\i2nl liz(mﬁl)

MU AN MU SLLIEEN MU

commutes. Since v : MU — F as in (2.7) is a ring morphism, we conclude
that

(2.12) (Tam,n)(Um @ Up) = Umign.

2.13. Corollary. Let &, ¢ be two complex vector bundles. Then the (E,t)-
orientation of & x ( coincides with the product E-orientation (i.e., the one

defined in the proof of V.1.10(ii)) of the (E,t)-orientations of £ and . O

2.14. Proposition. Let t be a C -orientation of E. Let £ be an n-dimensional
(E,t)-oriented complex vector bundle. Then xF (&) = cZt(€), where x is the
Euler class.

Proof. Firstly, we prove that x(n) = ci1(n). Because of the equality
E*(CP*>) = lim{E*(CP™)}, it suffices to prove that x(n,) = ci(n,) for
every n. We define

g:CP™ % op> 2L By,
and set T'g := TJ, ;1. Because of 1.28 and since j,y1l, = jn, there is the
commutative diagram

cpr I op>* %, Bu,

| I

oprtl < Tny L MU,

where c is the collapsing map. Since T € MU? (CP>) is given by the mor-
phism

—2500 0oy E72E%e1 n—2v00 2757 e —2wo0 is

L7 (0CP>) ———— Y7°¥°BlU; ——> E7EC MU, = MU,
we conclude that T' = e73*U;. Hence, t = e]3%u; € EQ(CPOO). Now
It = Jpe1s ur = L™ (Tg) ur = (cln)™(Tg) ur = (cln) un, -

But cl,, : CP™ — T, is the zero section of Ty, and so x(1,) = €*(cln)*u,,

where € : (CP™")* — CP™ is as in V.1.24. On the other hand, ci(n,) =

e*jit € E2(CP*>). So, x(nn) = c1(ny,) for every n, and thus x(n) = c1(n).
Now, by 2.13 and V.1.26(ii),

(X ...oxn)=t1--t, =x(nXx...xn) €E*(CP)").
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By 2.2(iv), e : E*(BU,) — E*((CP*>)™) is monic. Hence, the proposition
holds for 4™. Hence, it holds for every &. ([l

2.15. Examples. (a) Since j; : H>(CP>~) — H?(CP?) is an isomorphism,
there is a unique element t € H?(C'P*) such that j; (t) = s%(1). So, (HZ, ) is
a C-oriented spectrum. Moreover, the classes cf’t coincide with the classical
Chern classes, and the element ! coincides with the Thom class v defined
in §1.

(b) Let (E,t) be a C-oriented spectrum, and let 7 : E — F be a ring
morphism of commutative ring spectra. Then (F, 7(¢)) is a C-oriented spec-
trum.

(c) Let R be a graded commutative ring. Then HR is a C-orientable
spectrum since there is a ring morphism HZ — HR.

(d) Consider complex K-theory. We have K*(pt) = Z[s, s !],degs = 2.
(We wrote K*(pt) = Z[t,t~!] in Ch. VI, but here the letter ¢ is reserved for
C -orientations.) Let 1 € K9(C'P>) represent 1. Then s(n — 1) € K2(CP>)
is a C-orientation of K.

(e) The spectrum KO is not C-orientable. Indeed, w2 (n) # 0, and hence
7 is not K O-orientable.

(f) The sphere spectrum S is not C-orientable because otherwise every
commutative ring spectrum would be C-orientable.

(g) There is the universal C-oriented spectrum (MU, T).

Let Tn®™,i=1,... ,n be a copy of T, and let d; € EQ(Tn(i)) be a copy
of u,. Similarly, D; is a copy of U,,. The map e,, induces a map

Tep :=TTe, A : (T)" := TyW A ATH™ =T (M x - x ™) = MU,

of Thom spaces. Let dy - --d,, € E>"((T)"") be the image of dy ® --- ® dy,
under the homomorphism EF*(Tn) @ --- ® E*(Tn) — E*((Tn)"")). Clearly,
it is an FE-orientation of np x -+ x .

2.16. Proposition. We have (Te,)*(uy,) = dy - - - dy,. Furthermore, the map
(Ten)* : EX(MU,) — E*((Tn)"") is monic, and its image just consists of
the invariants of the ¥, -action.

Proof. The first assertion follows from (2.12) inductively. To prove the
second one, consider the commutative diagram

E*(MUy) 5 Br(T)™)
B (BUh,) ~“ EX(CP>)),
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where ¢ and ¢ are the Thom-Dold isomorphisms given by u,, and d; ---d,.
Since dj - - - d,, is X, -invariant, the isomorphism ¢ is ¥,,-equivariant. Thus,
by 2.2(iv), Im(T'e,,)* just consists of the invariants of the X,-action. O

The element v € E°(MU) in (2.7) yields a Thom-Dold isomorphism
¢ E*(BU) = E*(MU). We set

50 = sEt = p(c,) € B2¥I(MU).

So, we have a morphism s, : MU — X2“IE of spectra, which yields a
morphism s, : MU*(—) — E*(—) of cohomology theories.

Let U, € MU?"(MUs,) be the Thom-Dold classes as in (2.11). We have
(in Notation V.1.19(d)) su,(U) = cuu, and so s,(Up) = cu(y™)uy. This
implies that s,(Ug) = cw(§)ue for every complex vector bundle &, where
Ue € MU*(TE) (resp. ue € E*(T€)) is the (MU, T')-orientation (resp. (E,t)-
orientation) of &.

2.17. Lemma. Let £ be a complex line bundle over X, and let u¢ be the
(E,t)-orientation of . Then the following hold:

0 «©={3""" e

(ii) Let ¢ be the Thom—Dold isomorphism given by the orientation ue.

Then
pe1(§)F) = ug™
for every k. In other words, ugci(€)F = u]g'H.
{ ungl if w=(n)

0 otherwise.

(iif) sw(Ue) =

In particular,

t" Tl ifw = (n)
0 otherwise.

50(T) = {

Proof. (i) Clearly, this holds for ¢ = 7. Furthermore, this holds for ~!
since, by 1.23, e; : CP*° — BU is a homotopy equivalence. Thus, this holds
for every &.

(ii) It suffices to consider £ = 5 (cf. (i)). Let 3 : CP* — T be the zero
section as in IV.5.4. By 2.14 and V.1.27,

e ul T = (%3 un) T = el = x(Mea () = 3" (e(er (m)")).

But, by 1.29, £*3* is a monomorphism.
(ili) Since s, (Ue) = ¢, (€)ue, the result follows from (i). O

Let pay (resp. pug) be the multiplication on MU (resp. on E).
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2.18. Proposition. Set
= oMU Myt (MUY © MU (MU) — MU*(MU A MU)

and p' = M%u,Mu B (MU)® E*(MU) — E*(MUANMU) and consider the
the diagram

E*(MU) © E*(MU) X5 E*(MU A MU) &2 B* (M),

Then ph(sw) = Z W (Swy @ Suy)-

(w1,w2)=w

Proof. Let ¥ : BU x BU — BU be as in IV.(4.26). It is easy to see that
there is a commutative diagram (a stable analog of V.1.2)

EX(MU) M4, B (MU A MU
gl [«
("
E*(BY) . B*(BU x BU)

where ¢ is the Thom isomorphism given by u and ¢’ is the one given by
i (u® u). Now,

Hanu(sw) = pan(p(c) = @' (W) () =& | D] ot

(w1,w2)=w

= Z Cury Cop ' (U @ 1) = Z 1 (Conu @ Copur)

(w1,w2)=w (w1,w2)=w
= Z Nl(sw (U) ® Swz(U)) = Z Nl(sm ® Swz)' U
(w1,w2)=w (w1,w2)=w

Because of the universality of the class U, we have the following corollary.

2.19. Corollary. (i) For every space X and every x,y € MU*(X) we have
sw(Ty) = Z Sen (@) Sw, (Y).-
(w1,w2)=w
(ii) For every space X and every v € MU*(X), y € MU, (X) we have
sw(TNy) = Z S (%) N 80, (Y),

(w1,w2)=w

Sw(-rvy) = Z <Sw1 (x)7sw2(y)>'

(w1,w2)=w
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Here Sy = (Swy)s : MUL(X) — E(X).
(iii) For every a,b € E.(MU) and every s, € E*(MU) we have

(8w, ab)y = Z (Swys @) (Sws, b)- O

(w1,w2)=w

2.20. Lemma. Let E be a C-oriented spectrum, and let h : m.(MU) —
E.(MU) be the Hurewicz homomorphism (with respect to v : S — E). Then
Sw(x) = (Sw, h(x)) for every x € m.(MU).

Proof. Given z : S¥ — MU, consider s, (z) : S* % MU > S22l E. Now
the commutativity of the diagram

T /AL

SkAS s MUANE

H SW/\1J«

Skpg 2O solvip A HE L, R
implies that
(Swy h(2)) = pE(su A1) (@ A L) = pr(sy(z) At) = su(x). O

By 1.9(i,ii), m«(MU) = Z[z;| dim z; = 2i], H.(MU) = Z[y;| dim y; = 24].

2.21. Corollary. Let h : m.(MU) — H,.(MU) be the Hurewicz homomor-
phism. Then h(x;) = £\;y; mod Dec (H.(MU)) where \; is the number de-
fined in (1.8).

Proof. Here s,, denotes sf’Z. Let h(x;) = a;y; + d, where d € Dec. Since
{sw} is a free basis of the abelian group H*(MU), we conclude that (s, yi) =
+1 or (s3;),yi) = 0. Furthermore, by 2.19(ii), (s¢;),d) = 0. Now, by 1.9(iv),

i = sy (i) = (50), h(xi)) = (503, aswi) + (8(y, d) = ai(5(3), vi)-

Hence, (s@;),yi) # 0, and so (s(;y,¥i) = £1, and thus \; = +a;. a

2.22. Lemma. Let V be a stably almost complex closed manifold of dimension
n. Let (E,t) be a C-oriented spectrum, and let [V]g be the image of [V]nu
under the homomorphism ut'' : MU,(V) — E.(V). Then

5o Vimu = 2 () N [V]g € B (V),
where v is a normal complex bundle of V. Furthermore,

55 V1= (' (V). [V]E) € Es(pt).
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Proof. Let N = dimv, let U, € mQN(TV) be the (MU, T)-orientation
of v, and let [Tv] = [TV]pu be as in V.2.8. If w # (0), then s,(1) = 0
for 1 € mo(MU) and so s,[S*N 2"y = 0. So, s,[Tv] = 0 for w # (0),
5(0)[Tv] = [Tv]g. Considering the pairing

m: B*(Tv) ® E.(Tv) 2> E(Tv) 2= E,(V),
we conclude that
Vi = S 5 (U) @50 (T0)
(w1,w2)=w
= s5,(U,) M [Tv]p = co(v) N (Wl A [TV]E) =co(v) N [V]E.

The last assertion holds since (z, [V]) is the image of zN[V]g under the map
V — pt. (]

The elements (morphisms) s, can be considered as the universal charac-
teristic numbers. Namely, the homomorphism s, : MU*(S) — E*(S) assigns
an element of the coefficient ring to a stably almost complex manifold. In par-
ticular, for E = HZ this element (some integer) coincides with the classical
characteristic number described in (1.7).

What happens if one changes the C-orientation of E? Given a C-
orientation t of F, let z = t—l—z a;t""! be another C -orientation of E, and let
i>0
u®? be as in (2.7). Then u?*(T) = 2z = t+Zaiti+1. Let 3 : CP>* — Tn be
the zero section as in 1.29, and let h : Tp — C'P* be a homotopy equivalence
inverse to 3. Then 3*U, =T (e.g., by 2.14), and so h*T = U,,. Now,

(2.23) uE’Z(Un) _ ’U,E’Z(h*T) = B* (t + Zaiti+1> =, + Z aiui]-i-l_

>0 i>0

Considering the element D - -- Dy € MU 2((Tn)N) defined before 2.16, and
using 2.17(iii), we conclude that

Sf’t(Dl"'DN): Z Sg’t(Dal)"'SE7t(Dak)

ik
(a1, k)

— i1+1 ik +1
— E dozll A dak

(a1, o)

where w = (i1, ... ,ix). By (2.23), u®*(D;) = Z(dj + aid;-H), and so
i>0

N
u®*(Dy---Dy) =[] <Z(dj + aﬂ;“)) =dy---dy
j=1 \i>0

+ Z awsL'(Dy -+ Dy) = Zawsf’t(Dl ---Dn),

|w|>0 w
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where a,, = a;, - - a;,, aig) = 1. Hence, because of 2.16,

(2.24) uPH(Un) = aust'(Un).

By 1.9(vii) and TIL.5.7(iii), we have lim' { MU *(MU/)(™} = 0. This implies
easily that lim"{ MU *(MU,,)} = 0. Hence, by T11.4.18, the homomorphism

p: MU (MU) — lﬂl{m*(MUn)}

is an isomorphism. Furthermore, p maps the element U to the string {U,}.
So, we can pass to lim in (2.24) and replace Uy by U. Hence,

w2 (U) = Zawsf’t((]), Ay = iy *+* gy, Ay = 1.

Thus, because of the universality of U,

2.25 uP*(z) = awsPt(x), aw=a;, ---a;,, ag =1
w 1 Ky @(0)

for every spectrum X and every x € MU*(X), cf. Buhstaber [3].

We finish this section with the remark that cZ+* and sZ+ are natural with
respect to morphisms of C -oriented spectra.

§3. Operations on MU. Idempotents.
The Brown—Peterson Spectrum

MU, T
w

HZ,t

)
w .

From here to the end of the chapter, S, means s

Similarly, C,, means cM%T and ¢, means cZ%:*.

Let MU*(MU) be the ring of MU-operations, see I11.3.47. It is easy to see
that the MU*(S)-module structure on MU*(MU) turns MU*(MU) into an
MU*(S)-algebra.

and s, means s

Now we describe this algebra. Firstly, every scalar a € MU*(S) is an
operation. Furthermore, S, € MU?“/(MU) can also be considered as an
operation. Similarly, every finite homogeneous sum »  a,,S,, can be considered
as an operation, where a,,S,, is the composition of operations a,, and S,,,.

3.1. Theorem (Novikov [4], cf. also Landweber [1]). Let 8 C MU*(MU) be
the subalgebra generated by {S,}.

(i) Sen)(T) =T, and S,(T) =0 if l(w) > 1.

(ii) For every space X and every x,y € MU*(X) we have
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Su(ry) = Z Seon (%) Sy (y)-

(w1,w2)=w

Thus, the diagonal A: 8§ — 8§ ® 8 turns 8 into a Hopf algebra over Z, and
this Hopf algebra structure is compatible with the ring strucure on MU.

(iii) For every pair of partitions w',w”, the composition S,0S, is an
integral linear combination of elements S,,. Thus, {S.} is an additive basis
of 8.

(iv) For every a € MU*(S) C MU*(MU) we have

Spea= > Sy (a)S.,.

(w1,w2)=w

(v) MU*(MU) = MU*(S)2e248. (Here 224 is a completed graded ten-
sor product, defined in 111.1.23.)

Proof. (i) This is proved in 2.17(iii).
(ii) See 2.19(i).
(iii) Similarly to 2.19(i), we have

(S’w/oS’wu)(U) = Sw’(Cw”U)
— Z Sy (Corr) Sy (U) = stl(cw,,)ch_

(w1,w2)=w’

So, it remains to prove that S, (C,~) is an integral linear combination of
classes C,,. Because of 2.2(iv) and 2.3, it suffices to prove that S, (T,) is
an integral linear combination of elements T,,. But this follows from (i) and
(ii).

(iv) We have (Syeoa)(x) = Su(ax) = 3, wp)mw Swr (@) Sws, (@)

(v) By 1.9(vii), the AHSS for MU,.(MU) collapses. Hence, by 11.3.45,

MU (MU) = Hom,, vy (MU (MUY, 7. (MU)).

This implies that one can also consider homogeneous infinite sums (series)
Ya,,S,,. In particular, MU*(S)®8248 C MU*(MU).

By 1.2, the AHSS for MU*(MU) collapses. The morphism u : MU — HZ
maps S, to s,. Since the elements s, generate the abelian group H*(MU),
the elements S, generate the MU*(S)-module EZY of this spectral sequence.
By II1.5.7(iii), MU*(MU) does not contain phantoms. Thus, every element
of MU*(MU) can be represented as a series Y a, S, O

3.2. Lemma. Let A be a subring of Q, and let E, F' be two spectra of finite
A-type. Suppose that H.(E) and 7. (F) are torsion free abelian groups. Then
the homomorphism

(3.3) F*(E) —» Hom™ (7. (E), 7. (F))
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is monic. In particular, the homomorphism MUY (MUy) — End m, (MUy) is
monic.

Proof. Let jx : X — X[0] be the Q-localization. By II.7.12(ii), the AHSS
for F*(E) is trivial, and so F*(E) is a torsion free abelian group. So, (jr)« :
F*(E) — F[0]*(FE) is monic. Furthermore, by 11.5.8(ii), j3, : F[0]*(E[0]) —
F[0]*(E) is an isomorphism. Thus, the homomorphism

h:=jg(ir)s : F*(E) — F[0]"(E[0])
is monic. Now, the diagram

F<(E) —— Hom™ (7, (E), 7. (F))

| ']
F[o]*(E[0]) —— Hom™(m.(E) ® Q, m.(F) ® Q),

where ¢(f) = f ® lg, commutes since h(f) = f A 1p(q). Furthermore, by

homomorphism is monic as well. 0

3.4. Lemma. Let E, F' be two spectra as in 3.2.

(i) Let f : E — F be a morphism such that the homomorphism fy :
mi(E) — m(F) is zero for every i < n. Then for every CW -space (connected
spectrum) X the homomorphism f. : F;(X) — F;(X) is zero for every i < n.

(i) Let f,g : E — F be two morphisms such that f. = g. : m;(E) — m;(F)
fori < mn. Then f. = g« : E;(X) — F;(X) for every CW -space (connected
spectrum) X and for every i < n.

In particular, this holds if E = F = MU, for some subring A of Q.

Proof. (i) Let G = F(,) be the Postnikov n-stage of F, and let 7 =
7o F'— G be the canonical morphism as in 11.4.12. By 3.2, the morphism
E-L F I G is trivial. Thus, the composition F;(X) — F;(X) — G;(X) is
trivial for every . But, by I1.4.5(ii), 7 : F;(X) — G;(X) is an isomorphism
for every i < n.

(ii) This follows from (i), if we consider a morphism ¢ : E — F with
s =[x — g U

Now we want to describe the action of MU*(MU) on the coefficient ring
T (MU). We have c(,,)(CP") = —(n + 1), see e.g. Stong [3], and therefore

7 (MU) ® Q = Q[[CPY,...,[CP"],...].

Since 7. (MU) is torsion free, it suffices to compute S,[CP"], |w| < n. By
the way, S, (a) = s, (a) € Z for every a € my),|(MU).
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3.5. Lemma. C,(—n) = b, T“! for some b, € Z.
Proof. We prove this by induction on [(w). If I(w) =1, i.e., w = (k), then

0= Ciy(n) + Ciiy(—n), ie., Cgy(—n) = —=T*. Assume that the lemma holds
for every w with I[(w) < n. Given any w with l(w) = n, by 2.17(i) we have

Col=m+ > Cuul=n)Cli(n) = Cu(—nan) =0,
(W yig)=w
Since Cy,, (—1) = bu, T*! and C;,(n) = T, the lemma is proved. O

Let {CP%} € MUsq(CP>) be the bordism class of jq : CPY C CP>.
3.6. Lemma. T N{CP"} = {CP"1}.
Proof. Remark 1. Consider the map
a : (CP™)T S cpr 2 op~ 2 pMu,

where e(z) = x for every € CP™. Then o is homotopic to a map a :
(CP™)* — MU, such that a is transverse to y! and a~!(BU; ) is the subspace
CP"1 of (CP™)". This follows from 1.28.

Remark 2. Let v = v be a complex normal bundle of an embedding
i: CP" — R2N+2n c §2N+2n_ Note that, by 1.25, v @ 1,1 is a normal
bundle of the embedding CP"*~' ¢ CP™ = S?N+2n TLet ¢ : §2N+2n . Ty
be the Browder—Novikov map. We leave it to the reader to check that c is
transverse to v @ n and ¢ (CP" 1) = CP"~1 where CP"! at the left is
Cilp,—1(CP" 1) and CP™1 at the right is il,_;(CP"1).

Let [CP™] s be the bordism class of (CP™,1¢pn), and let [[CP"71]] €
MUy, —2(CP™) be the bordism class of (CP"~!,1,,_1). It suffices to prove
that (j2T) N [CP"py = [[CP™ ). Indeed, then

{CP"™ 1} = (ju-1):[[CP" ) = (jn-1)+ (55 T) N [CP | naus)
=TN ()« [CP =T N{CP"}.
According to the Pontrjagin—Thom Theorem IV.7.27, [CP™]pqy is given
by the composition

+ TkAL

£oseNeen ey, AT n(oPryt BN vy A (CPY

where ¢ is the Browder-Novikov map in Remark 2, k : v — 4" is the clas-
sifying morphism for v, and A%V is a map as in IV.5.36. Furthermore, the
diagonal d : CP™ — CP™ x C'P"™ yields the map

. (oPYt - (CcPY)t A (CPYT,
and the map : N X 1 — ~v1 (described betore 1V.(4. ylelds
d th p4 |+ BUy x BUy — Bl 41 (described before IV.(4.26)) yield

a map
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=T73 N1 MUy N MU — MUN 1.

N,1,Y

m
Now, the element (j:T) N [CP™]py is given by the map

52N v AP D My A (CPPYE A (CPY

1Aa' A1

RAL My A MU A (CP™YY 2N MUy A (CP™Y,

where the map a’ is described in Remark 1. So, it suffices to prove that h’ is
homotopic to a map

h: SN2 MUy, A (CP™)T =T (N % 9%)

transverse to 7V 1 x §° and such that h=(BUyy1 x CP") =il,_1(CP" 1),
where i : CP" — S?N+2" is the embedding from Remark 2.
Step 1. v A 1 is transverse to YN +1 x 99,

(v A1)"HBUy11 x CP™) = By x BU; x CP™,

and (v A 1)* (YN x 0°) = 4NV x 41 x 6°.
Step 2. By Remark 1, the map 1 A a’ A 1 is homotopic to a map

LAaAL: MUy A (CP™YF A (CP™) — Midy A MUy A (CP™Y
such that 1 A a A1 is transverse to vV x y1 x 6°,
(1Aa A1) (BUy x BUy x CP™) = By x CP"* x CP",

and (1 AaAD)*(vN x4t x 09) = 4N x 5,1 x 6°.

Step 3. We have d=}(CP"~! x CP") = CP""!, and d is transverse to
the normal bundle of the inclusion CP™*~! x CP™ ¢ CP™ x CP™. Hence, the
map 1 A d¥ is transverse to 7V x n,_1 x 6°,

(1AdT)"Y(BUy x CP"' x CP™) = BUy x CP"™*,

and, obviously, (1 A dT)*(YN x n,_1 x 0°) =N x n,_1.
Step 4. Clearly, f is transverse to ¥V x 7,_1, and, by Remark 2,
f~Y(Buy x CP* Y =il,_ ,CP" L.
Now, set h:= (v A1)(1AaAL)(1AdY)f.
O

3.7. Lemma. T* N {CP"} = {CP"*} and (T*,{CP"}) = [CP"*].
Proof. The first equality follows from 3.6 inductively. The second equality

holds because (T*, {CP"}) is the image of the element T% N {C'P"} under

the map CP™ — pt. g

3.8. Theorem. For every w and n, we have S,[CP"] = A\, [CP"~ Il for
some A\, € Z.
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Proof. By 1.24, 7(CP")&®0' = (n+1)n,. Let v be a normal bundle (stable
or not) of CP™. By 2.22,

SwlCP"] = (Cou(v), [CP™"|pu) = (Co(=1m — -+ — 1), [CP" | mua).-
By 3.5, Co(=np — -+ — ) = AT1¥! for some A\, € Z. Now the theorem
follows from 3.7. ([l

We need some lemmas about binomial coefficients. Given an integer a and
a prime p, let v,(a) be the exponent of p in the primary decomposition of a,
i.e., a = p»(@b with (b, p) = 1. The invariant v, makes sense for a € Q also:
we can write a as m/n with m,n € Z and set v,(a) := v,(m) — vp(n).

3.9. Lemma. If m > n, then v, (p ) =m—n.

n

Proof. This follows from the formula

vnt) =37 m

k>0 p

where [m] means the “integer part” of m (i.e., [—] is the entire function). O

m
3.10. Lemma. Ifr < p" < p™, then v, (pr ) >m—n.

(7)=" (7

m mo_ 1
But v, <p >>mn7 while <p 1 > €. ([l
r r—

Proof. We have

3.11. Notation. Fix a prime p. Given natural numbers m,n with m > n,
let w(m,n) be the partition (p™~ " — 1,...,p™ " — 1) with {(w) = p". So,
|w| =p™ —p".

3.12. Proposition. Let w = (p* — 1,...,pF — 1) with k; > m —n and
lw| = p™ — p"™. Then S,[CPP" 1] = ap™ "[CPP" '], where o # 0 mod p
for w=w(m,n) and « = 0 mod p for all other w.

Proof. Let 7 (resp. v) denote the tangent (resp. the normal) bundle of
CPP" 1. Firstly, let w = w(m,n). Set

wr(myn)=E™" " =1,...,p" " =1), lw:(m,n))=r,
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and set C" = Cy, (;m,n)- Consider the characteristic class C' := 1+ Cl+.. +
C" + ---. Then for every pair of complex vector bundles &, & over the same

base we have C*(¢ @ ¢') ZCZ )CETiH(EN), de., CE@E) = C(E)C(E).

n__ m

By 2.17(1), C(n) = 1+ Tpmin_l. Hence, C(7) = (1 + 77" "~1)P" and

therefore .
Ci(r) = (p. )T“”m"‘l).

7

Moreover, C*(v) + Z C'(v)C*~(1) + C*(r) = 0. Hence, by induction, we

conclude that Ck(u) = apTF®E™ "= for some ap € Z. In particular, for
k = p™ we have

p'—1 m m
n P m_ n P m__ n
C* (v)+ ai( _)Tp P +< )Tp P =0.

By 3.9 and 3.10, l/p(p;n) >m—nforl<i<p®—1and Vp(’;:) =m —n. So,
vp(apn) = m —n. Thus, by 2.22 and 3.7,

Su(mm [CPP 71 = (CP" (1), {CPP" ~'}) = (apnTP" 7" {CPP"~'})
= apr [CP;Dn—l]’

where vp(apn) =m — n.
Now, let w # w(m,n). Since l(w) < p™, Vp(p:') >m —n for s <l(w). By
3.5,

Co(v) = Cu(—n — l(f:)b < )Tp’"p"’

for some b, € Z, ie., C,(v) = xp™ " T1TP"~P" for some = € Z. Thus,
S,[CPP" 1] = gpm—H[C PP 1, as asserted. O

Let {z,} be a family of free polynomial generators of m,(MU), cf. 1. 9( ).
By 1.9(iv), we can assume that s(,n_1)(xpn 1) = p. Since sn _ 1)[C’Pp 1=
p", we conclude that

[CPP" Y] = p" 2, 1 mod Dec (m.(MU)).
Based on 3.12, this implies the following fact.
3.13. Corollary. Let w be as in 3.12. Then
Sw(xpm_1) = axpn_1 mod Dec (m,.(MU)),

where a Z 0 mod p for w =w(m,n) and « =0 mod p for w # w(m,n). O
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Now, let Z = ¢o(T) = T +>_ ¢;T*! be any C -orientation of MU. By 2.5,
it yields a multiplicative operation v = u™“%Z . MU — MU. By (2.25),

(3.14) v(z) = Z PuwSu(z) =2+ Z P Sw(T)

|w|>0 |w|>0

for every Y and every x € MU*(Y').

3.15 Theorem. Choose a system {x;} of polynomial generators of m,(MU) =
Zlx;) = MU*(S). Fiz any n and set © = xp, A = A, (see (1.8)). There exists
an operation ® : MUN"'] — MU[NY] with the following properties:

(i) For every spectrum X and every a € MU* (X)X, ®(a) = a+xb for
some b € MU*(X)[A\71];

(i) ©(r) =0;

(iil) @2 = @, i.e., D is an idempotent;

(iv) ®(x;) = = for i <mn, and ®(x;) = x; mod Dec for i > n;

(v) Im(® : MU*(X )[)\7 | = MU*(X)[A\7Y]) is a cohomology theory with
the coefficient ring ZIN"Y[x;|j # n,dimz; = 2j], and this theory is a direct
summand of MU*(X)[A71].

Proof. Consider a formal power series ¢(z) = z + x Z dp 2" over the
k>n
ring m.(MU)[A71] with d,, = —A\—1 and dj, € mar_o(MU)[A\"!]. Take the C-
orientation ¢(T) of MU[A™!]. Tt yields a ring morphism p : MU — MU[NT?]
and hence a ring operation ® = u[A7!] : MU[N"'] — MU[ATY]. By (3.14),

Pa) =a+ Z '@ d, S, (a)

|w|>0

for every a € MU*(X)[A~!], and so (i) is proved.
Observe that d,, = 0 for w = (i1, ... ,4) with 43 < -+ <4 < n. Further-
more, Sy, (z) =0 for |w| > n. Thus,

O(x)=a+ Z xl(w)dew(z) =x— /\_11}5(”) (z) =0.
Now,

(D(a) =2(a+ Y 2'“d,S.(a))

|w|>0
a)+ Y B )(d,) (S (a)) = (),

i.e., ®? = ®. Thus, we have proved that ® satisfies (ii) and (iii). Furthermore,
by (i), ®(z;) = x; mod Dec. Moreover, if i < n then b in (i) must be 0, and
so ®(x;) = z; for i < n. Thus, (iv) is proved.
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Now we prove (v). Since ® : MU*(X)[A7!] — MU*(X)[A7}] is an idem-
potent, Im ® is a direct summand of MU*(X)[A7!]. So, Im & is a cohomology
theory. The claim about its coefficient ring follows from (iii) and (iv). O

3.16. Corollary. If n # p* — 1 for any p (i.e., A\, = 1), then there exists
a multiplicative idempotent ® : MU — MU with ®(z,) = 0, &(z;) = z; for
i <n and ®(x;) = x; mod Dec for i > n. Moreover, for every a € MU*(X)
we have ®(a) = a + bz, b € MU*(X). O

3.17. Corollary. Given a prime p, let n # p* — 1. Then there exists a
multiplicative idempotent ® : MU[p] — MU[p] with ®(z,) = 0, ®(z;) = z;
for i < n and ®(x;) = x; mod Dec for i > n. Moreover, for every a €

MU*(X)[p] we have ®(a) = a + bx,, b € MU*(X)[p)]. O

3.18. Theorem. Given a prime p, there exists a multiplicative idempotent
® : MU[p| — MUI[p|] such that ®(z;) = x; mod Dec fori = pk — 1,k =
1,2,..., and ®(z;) = 0 otherwise.

Proof. Consider the generators x; of 7, (MU) with i # pF—1, k =1,2,.. .,
and order them with increasing indices: {x,,... ,®i,,... }. Let

Oy, : MU[p) — MU[p]
be an idempotent as in 3.17 related to z;, . Given k, define
P := Py, OF := ®F  0;0F | for 1 <i < k—1, and set Py := Of. It is

easy to see that @y (2, ) = 0 for r < k. Furthermore, since ®y (z,,) = zp+bx;,
with b € MU*(S)[p], we conclude that

Py (n) = o0 + Zbrxiw b, € MU*(S)[p] for every n.
r<k

Clearly, @ is a multiplicative operation. We prove that ®,®) = ®). By
3.2, it suffices to prove that @, P (2n) = Py (2n) for every n. But

Opy iy (@n) = P (n) + Py | D brwi, | = Byglan),
r<k

since @y (2i,) = 0. So, Py is a multiplicative idempotent, and it is clear
that By i
z; if i =p® —1 for some s,
Py (i) = e o
0 ifi#p°—1andi <iy,
where Z; = z; mod Dec. Moreover, @, (x;) does not depend on k for k > i.
By 3.4, for every a € MU.(X)[p] there exists k such that ®(a) =
@4, (a) for every r > 0. Hence, one can define

@ = lim (Byg) - MU(X)[p] — MU (X)[p)
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By II1.3.23(ii), this morphism of homology theories is induced by a morphism
® . MU[p] — MU|p] of spectra. Clearly,

(1) z; if i = p* — 1 for some s,
xi) =
‘ 0  otherwise.

This morphism ® is uniquely determined because of 3.2, and ®2 = ®, also by
3.2. Furthermore, ® is a ring morphism (multlphcatlve operation). Indeed,
one needs to check commutativity (up to homotopy) of the diagram

MUlp) A MUlp) —222 MUlp) A MU(p]

l l

Mulp]  —2—  Mulp|

By 3.2, it suffices to prove that the diagram of the homotopy groups com-
mutes. But this holds because it holds for ®(). ([l

3.19. Theorem. For every prime p there exists a spectrum BP = BP(p)
with the following properties:

(i) BP is a commutative ring spectrum, and there are morphisms s :
BP — MUI[p] and p : MU[p] — BP with p» = 1gp. In particular, BP is a
direct summand of MU|p).

(ii) m(BP) = Z[p][v1,s ... ,n,...], dimov, = 2(p"™ — 1).

(iil) H«(BP) = Z[p][ma,... ,mp,...], dimm, = 2(p" — 1).

(iv) H*(BP;Z,/p) = 4/(Qo).

(v) Let h : m.(BP) — H.(BP) be the Hurewicz homomorphism. Then
plh(x) whenever dimz > 0.

Proof. Let ® : MU[p]*(X) — MU[p|*(X) be an idempotent as in 3.18.
Since ®2 = ®, Im ® is a direct summand of MU[p]*(X). So, Im® is a co-
homology theory, which we denote by BP*(X). Let BP be the spectrum of
this cohomology theory. Now we prove that it has properties (i)—(v).

(i) Since the cohomology theory BP*(X) is a direct summand of the
cohomology theory MU*[p](X), BP is a direct summand of MU|[p|. Hence,
we have morphisms » : BP — MU[p] and p : MU[p| — BP with p»x = 1pp
and »p = .

Let p : MU[p) AN MU[p] — MUIp] be the multiplication in MU[p]. We
define

i - BP A BP 222 Mut[p] A MU[p) £ Mup] 2 BP.

We prove that p is a multiplicative morphism, i.e., that the diagram

MU[p] A MU[p] 222~ BP A BP

| I

MU([p) LN BP
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commutes (up to homotopy). Decoding the definition of p’, we see that it
suffices to prove that the diagram

Mulp] A MU[p] —222— BP A BP 2225 Mulp) A MUlp] —2— Mu[p]

ul lp
MU(p) MU(p) MU(p) -2 . BP

commutes. Since p® = p(3p) = (ps)p = p, the commutativity of the above
diagram follows from the commutativity of the diagram

MUlp) A MUlp] —222— BP A BP 227 Mu[p] A MUJp] —2— MU(p]

ul lu lp
MU[p] —* . Mulpl MU[p] —2— BP
But this holds because @ is a ring morphism.
Similarly, one can prove that s is a multiplicative morphism, i.e., that
w(se A s) = st
Now we prove that u' is associative. Since BP is a direct summand of

MU|p], we conclude that the groups m.(BP) and H,.(BP;Z[p]) are torsion
free. So, by 3.2, it suffices to prove that the diagram

7 (BP ABP ABP) YV & (BP A BP)

(M;/)*l ull
m(BPABP) .  7.(BP)

commutes. Consider the following diagram:

@) )

N —

@) ®)

Here the inner rectangle is just the diagram above, the outer rectangle
is the similar diagram for MU([p] instead of BP, and the skew arrows are
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induced by the morphism p. The outer rectangle is commutative because
MU|p] is a ring spectrum, and all trapezoids are commutative since p is a
multiplicative morphism. Hence, the inner rectangle is commutative because
all the skew arrows are epimorphisms. Thus, we have proved the associativity
of .

The commutativity of 1/ can be proved similarly.

We define ¢/ : § % MU[p] > BP where ¢ is the unit of MU[p]. Then
(BP,1/,!) is a commutative ring spectrum, and both p, s are ring mor-
phisms.

(ii) Set vy := py(xpi_1), where p, : m,(MU[p]) — 7. (BP) is the induced
homomorphism. Then 7,(BP) = Z[p|[vi,... ,Un,...],dimv, = 2(p" — 1).
Indeed, the elements v; generate the ring w.(BP) because p. is epic, and
they are algebraically independent because s(v;) = 2, _; mod Dec.

(iii) Let {y;} be a family of free polynomial generators of H.(MU) as in
1.9(ii). Define a ring homomorphism

a:Zpllmi,... ,mp,...] = H(BP),dimm; = 2(p" — 1)

by setting a(m;) = pr(ypi—1), where pg = H.(p) : H.(MU[p]) — H.(BP).
We prove that a is an isomorphism.

Firstly, we prove that a is epic. Since the family {py(y;)} generates
H,(BP), it suffices to prove that pr(y;) € Dec(H.(BP)) for j # p° — 1.
By 2.21, h(x;) = +£A;y; mod Dec (H.(MU)). If j # p* — 1 then

®(z;) = 0 mod Dec (7. (MU[p])).

Note that p = psep = p®. Hence, p.(z;) € Dec (7, (BP)), and hence \jpry; €
Dec (H.(BP)), and so px(y;) € Dec (H.(BP)) because (A;,p) = 1.

We prove that a is monic. The elements ®(z,r_;) are algebraically in-
dependent in 7. (MU) ® Q. By IL.7.11(i), the Hurewicz homomorphism h :
T« (MU)®Q — H,.(MU)®Q is an isomorphism. Since h(z;) = A\;y; mod Dec,
the elements ®(y,._;) are algebraically independent in H,(MU) ® Q. Hence,
these elements are algebraically independent in H,(MU|[p]). Since ® = »p,
the elements m; are algebraically independent in H,(BP). Thus, a is a
monomorphism.

(iv) Choose uw € H°(BP;Z/p) = Z/p,u # 0. Since H*(BP;Z/p)
is a direct summand of the free «7,/(Qo)-module H*(MU;Z/p), we have
an isomorphism @u = ,/(Qo). Computing the dimensions of the Z/p-
vector spaces ,/(Qo) and H*(BP;Z/p), we conclude that the inclusion
<,/ (Qo) = etpyu C H*(BP;Z/p) is an isomorphism.

(v) Choose a system {xp} as in 1.9(v) and construct BP with re-
spect to this system. Then p|h(vg) for every k = 1,2,.... But every
x € m(BP),dimx > 0, is a polynomial in the v;. O

Below (in 3.22) we prove that the conditions from 3.19 determine BP
uniquely up to equivalence.
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3.20. Definition. The spectrum BP is called the Brown—Peterson spectrum
(with respect to a given p).

3.21. Theorem (Boardman [2]). Let F' be a p-local spectrum of finite Z[p]-
type and such that m.(F) and H.(F) are torsion free groups. Then F is
homotopy equivalent to a wedge of suspensions of BP, F' >~ V,ca2X*BP.

Proof. We can assume that F is connected and that mo(F) # 0. Let
w € HO(F;mo(F)) be the fundamental class, i.e., the homotopy class of
the morphism 7o : F' — Fg) = H(m(F)). Consider any projection ¢ :
7o(F) = Zlp| ® --- ® Zlp] — Z[p] and put z = e (1) € m(F). Let
u € H°(BP;Z[p]) = Z[p] be an invertible element of Z[p]. Consider the
AHSS E* = F*(BP),E3* = H*(BP;m.(F)). Note that E5* is torsion free,
and so, by I1.7.12(ii), all its differentials are trivial. Furthermore, by II1.5.6,
this spectral sequence converges. Thus, there exists a morphism o : BP — F
such that o (w) = u® z € E%° = ES°, where

o H*(F;m.(F)) — H*(BP;7.(F)) = H*(BP; Z[p]) ® m«(F).
In the commutative diagram

HO(F;mo(F)) —*— HO(BP;m(F))

HO(F;Z[p]) —%— H(BP;Z[p))

we have e, (u® z) = u, and so u = a*v for some v € H(F;Z[p]) (in fact, for
V= E,w).

Similarly, there is the AHSS E* = BP*(F), E5* = H*(F;7.(BP)). It
collapses also, and so we have a morphism § : FF — BP with g*x = v for
some z € HY(BP;Z[p)), where 3* : H*(BP;Z[p]) — H*(F;Z[p)).

We have the composition BP % F LR BP, where
(Ba)*(z) =u € H*(BP;Zp)).

Let u € H(BP;Z/p) = Z/p be the reduction of u. Since (Ba)* # 0, we con-
clude that (Ba)*(u) = Au, A # 0 € Z/p, and so (Ba)*(au) = a(fa)*(u) = Aau
for every a € o7,. Hence, (Ba)* : H*(BP;Z/p) — H*(BP;Z/p) is an iso-
morphism since H*(BP;Z/p) = @u. So, by I1.5.18(ii), fa is an equivalence.
Thus, BP splits off F, i.e., F ~ BPV E, and FE satisfies the conditions for F'
in the theorem. Iterating the above arguments, and using that F' has finite
Z[pl]-type, one can prove that F ~ V,caX*BP, cf. the proof of I1.7.16. O

3.22. Corollary. Let F be a spectrum such that . (F) = Z[p][v1, ... ,Un,-..],
dimwv,, = 2(p™ — 2), and H.(F) is torsion free. Then F ~ BP. O
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By 3.21, MU[p] splits in a wedge of suspensions of BP. This claim can
be refined as follows. Set

A = Z[p|[z;| dim x; = 2i],

where i runs over all natural numbers different from p* — 1, k=1,2,....

3.23. Proposition. There is an isomorphism of homology theories on &
f:A® BP.(X) —» MU.(X)®Z[p], fla®z)=asx(zr),a € A,z e BP.(X).

Proof. Clearly, f is natural with respect to X. Furthermore, A ® BP,(X)
is a homology theory because A is a free abelian group. Finally, f is an
isomorphism for X = S and therefore, by 11.3.19(iii), for every X. (]

The homomorphism m,(MU) — m.(MU[p]) £> 7.(BP) turns w,(BP)
into a m.(MU)-module.

3.24. Corollary. There is an isomorphism MU.(X) @, vy T=(BP) =
BP.(X) of homology theories.

Proof. We have

MU(X) @r, (muy T (BP) = (A® BP(X)) @x, (mu) 7 (BP)
= (A & BP*(X)) ®A®7r*(BP) ﬂ'*(BP)
~ BP,(X) ®y. (pp) m(BP) = BP,(X). [

The unit ¢ : S — BP yields the morphisms
t, =1Nt: BP = BPAS — BPABP, . =tA\1: BP = SABP — BPABP .
Let u € H°(BP;Z[p]) be such that u*(:) =1 € H°(S;Z[p]) = Z[p].

3.25. Proposition. Let hy : 7.(BP) — H.(BP) and hgp : m.(BP) —
BP,(BP) be the Hurewicz homomorphisms.
(i) There is an isomorphism of m.(BP)-modules

BP.(BP) 2 m.(BP)y1,--- sYn,- .., dimy, = 2(p" — 1).

Furthermore, {y;} can be chosen so that the elements u.(y;) generate the ring
H.(BP;Z[p]).

(ii) The homomorphism (Lr)« : m«(BP) — BP,(BP) coincides with the
Hurewicz homomorphism hpp.

(iii) The homomorphism u.(tr)« : 7 (BP) — BP,(BP) — H,(BP) is

zero for n > 0 and an isomorphism for n = 0.
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(iv) The homomorphism u.(tr)« : m«(BP) — BP.(BP) — H.(BP) co-
incides with the Hurewicz homomorphism hy.
(v) hgp(vn) = v, mod (p,v1,... ,vp—1) in BP.(BP).

Proof. (i) The AHSS for BP,(BP) is trivial for dimensional reasons, and
the result follows.

(ii) This is obvious.

(iii) The morphism BP A S > BP A BP 22 HZ, A BP coincides with

uAl 1AL

the morphism BPAS — HZAS — BP ANHZ. But mi(HZ A S) =0 for
1> 0.

(iv) This is obvious.

(v) By (i), we have hpp(v,) = ay, + bu, + ¢, where a,b € Z[p|, ¢ €
(v1,...,0n—1) C BP(BP). By (ii)—(iv), hg(vn) = au.(yn), and so, by
3.19(v), pla. So, hpp(vy,) = bu, + ¢ with ¢ € (p,v1,... ,vp—1) C BP.(BP).
Let o : BP N BP — BP be the multiplication on BP, and let pu. :
BP,(BP) — m.(BP) be the induced homomorphism. Since utg = 1, we
have

Vn = phpp(Uy) = s (bun + &) = buy, + pad,

where p1..(c') € (p,v1,...,0p-1) C T(BP). Thus, b = 1. O

For future references, we consider the AHSS E7, for BP.(HZ/p), i.e.,
(3.26) Er, = BP,(HZ/p), E? = H.(HZ/p;m.(BP)).
Firstly, let p > 2. By 11.6.25,

H.(HZ/p;Z[p) = o =Z[p[&1,--- &ns- - ] @ M(T0, -+ s Ty - - ),
dim¢; = 2p' — 2,dimr; = 2p" — 1,
and so
H.(HZ/p; Zlp]) = H.(HZ[pl; Z/p)
=7Z/pl&1, - Eny ] QAT o Ty ).
Thus,

Ef* :Z/p[gl’ 7§n;~~~]®A(7'1,.~- 7Tm;~..)®Z[p][vla... 7Ul7...]7
bideg &; = (2p" — 2,0), bideg 7; = (2p* — 1,0), bidegv; = (0,2p" — 2).

3.27. Theorem (cf. J. Cohen [1]). There are elements & and 7; with the
following properties: R

(i) 7 = 7 mod Dec (EZ ), & = & mod Dec (E2 );

(ii) Every element E" = 2‘1“ e Af;", a; > 0, is a permanent cycle in the
spectral sequence (3.26);

(iii) d2pi_1ﬁ-\i = \v;, 0 75 A\ € Z/p.
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Proof. Throughout the proof = means = mod Dec (EZ ).
It is easy to see that we can assume that G7; = & where

B:H.(HZ;Z/p) — H._1(HZ;Z/p)

is the Bockstein homomorphism.
We have an isomorphism of Z/p-vector spaces

EX = BP.(HZ/p) = H.(BP; Z/p) = Z/p[m1,... ,mn, ...}, [mp| = 2p" —2.

The elements 7; are odd-dimensional, and so they cannot survive. Hence,
d2p717‘1 = Al’Ul,O 7é Al S Z/p

Let dgpflTQ = )\Ulff, A E Z/p Then d2p71(7‘2 — )\Tlgf) = 0,

and we set 7o 1= To — AT1&}, £y = B72. Then dop_172 =0 = dop_1&,, and
To = T2, €5 = &. Suppose inductively that we find 7; = 7 and §; = §; with
d2p717_i =0= dgpflfi and /BTZ' = fi for i = 17. .. ,]{3. Let dgpflT]H,l = N1
for some © € Z/p[&,... &) @ A(T1,...,7k). Then we set 741 = T
and ;¢ := BTr41. Clearly, dop_17x41 = 0 = dap_1§, ;. The induction is
confirmed.

Furthermore, dgp_1(7'1.’17) = \viz for every x € EE* In particular, E?}ZI =
0 whenever r < 2p? — 2 and ¢ > 0.

Now, 72 does not survive, and so dop2_172 = Avz, 0 # A € Z/p. Asserting
as above, we find 7;, &, such that 7; = 7,§;, = & and dyp2_17; = 0 = dop2 1
for © > 2. Moreover ETQZQ =0ifr <2p®—2andq>0.

Now, we can proceed by induction and find the required 7; and 57 ([l

By the way, we get another proof of 3.19(v) here. Indeed, EX, =0 for

g > 0, and so the Hurewicz homomorphism h : 7 (BP) — Hy(BP) is zero
for k > 0.

The case p = 2 can be considered similarly. Here

E2, =7/2[3,C, e 1 Cny e ] @Z[2)[V1, - s Uy,
dim¢, = 2" — 1,dimwv, = 2"t —2.

Moreover, (1-2 plays the role of §;, and (; plays the role of 7;_1. Similarly to
3.27, we have the following theorem.

3.28. Theorem. There are elements ’C\l € E027* such that d2¢+1,1§-+1 = v

and EZ = (; mod Dec. Furthermore, all elements 61-2 and their products are
permanent cycles. (I

3.29. Theorem. (i) If X is a finite spectrum, then BP.(X) is a coherent
and hence finitely generated m,(BP)-module.

(ii) Let X be a spectrum bounded below. Then H.(X;Z[p]) is a free
Z[p]-module iff BP.(X) is a free m.(BP)-module. Furthermore, given u €
H°(BP;Z[p]) as in 3.25, the homomorphism u. : BP.(X) — H.(X;Z[p)) is
epic if Ho(X;Z[p]) is a free Z[p]-module.
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(iii) Given a spectrum X bounded below, there exists a morphism f:W— X
such that W is a spectrum bounded below, BP.(W) is a free m.(BP)-module,
and f. : BP.(W) — BP.(X) is epic. Furthermore, if every Z[p]-module
H;(X;Z]p)) is finitely generated then there exists W as above such that every
Z[p]-module H;(W;Z[p]) is finitely generated.

(iv) Let E be a BP-module spectrum. Let X be a finite spectrum such
that H*(X;Z[p]) is a free Zlp]-module. Then for every finite spectrum Y the
pairing BP AN E — E induces an isomorphism

E*(X NY) = BP*(X)®pp«s)E*(Y).

(v) Let E be a BP-module spectrum such that every group m;(E) is finite.
Let X be a spectrum of finite Z[p]-type such that H*(X;Z[p]) is a free Z[p]-
module. Then for every spectrum Y the pairing BP N E — E induces an
isomorphism

E*(X NY) = BP*(X)®pgp-5E*(Y).

Proof. Since BP is a direct summand of MU([p], this can be deduced from
1.14, 1.15, 1.17, 1.19 and 1.20. O

3.30. Remarks. (a) The algebra MU*(MU) was described by Novikov [4]
and Landweber [1].

(b) Theorem 1.9(vi) stimulated a search of spectra having Z/p-cohomology
7,/ (Qo). Brown—Peterson [1] constructed such a spectrum using Postnikov
towers. Novikov [4] proved Theorem 3.15 and its Corollaries 3.16-3.19. This
gave a new proof of the Brown—Peterson result. Quillen [1] gave another proof
of 3.18. In the proof of 3.15 we followed Buhstaber [3].

(c) There is an integral version of 3.23. Let

I={neN } n = p¥ for some prime p and integer k}.

Basing on 3.15 and following the proof of 3.19, one can construct a spectrum
V' with the following properties:

(V) =Z[z;,i € I, dimz; =21, H.(V)=Zy;,i € I,dimy; = 2i].
Furthermore, V is a direct summand of MU/, and
MU(X) =V(X) @ Z[xi|i ¢ I].

It is remarkable that V' does not split multiplicatively but splits additively,
Boardman [2].
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§4. Invariant Prime Ideals. The Filtration Theorem

In this section we fix a prime p and denote the ring
7.(BP) = Z[p|[v1,... ,0pn,...], dimv; =2(p' - 1),

by Q. We set vg := p and consider the ideals I, := (vo,v1,... ,0n—1) of Q.
In particular, Iy = (0),I; = (p). Finally, we set Ic := (v0,V1,... ,Uny...).
Clearly, I,, does not depend on the choice of the system {v,, }.

Every operation § € MUY (MU) yields an operation BP — X¢BP of the
form

d
(4.1) BP 2 Mulp) 2 sdvup) =2 siBp.

On the other hand, every operation ¢ € BP4(BP) yields an operation

Mulp) & BP £ $4BP 22 sy,

Furthermore, by I1.5.8 and I1.5.3, (MU[p])* (MU[p]) = MU*(MU) @ Z[p).
Finally, similarly to 3.1(v) one can prove that

(4.2) BP*(BP) = BP*(S) @& H*(BP;Z[p])

as abelian groups.

Now, p(3epp)s = ¢, i.e., every operation on BP is induced (as in (4.1))
by some (non-unique) operation on MU|[p|. Below we write just 6 instead of
pOs. In particular, every operation on BP can be expanded (non-uniquely)
as a series Y a,S,, aw € m (MU[p)]).

This information about BP*(BP) is sufficient for us. Additional informa-
tion about BP*(BP) can be found in Adams [8] or Ravenel [1].

4.3. Definition. We say that a graded ideal I C Q,I # Q is BP*(BP)-
invariant, or simply invariant, if 6(I) C I for every operation § € BP*(BP).

4.4. Proposition. The ideal I,,,0 < n < oo, is invariant.

Proof. Since every operation on BP has the form Y a,S., it suffices
to prove that S, (vy) € I, for every k < n. The only non-trivial case is
lw| = p* — 1, i.e., S, (vk) € mo(BP). Consider the commutative diagram

Sw
7T2|w|(BP) —_— 7T0(BP)
hl %lh

Hy, (BP) —22— Hy(BP).
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By 3.19(v), p|h(vk). Hence, p|hS, (vx), and so p|S, (vk), i.e., Su(vg) € In.
O

Fix integers m,n with m > n > 0. Let w(m,n) be as in 3.11.

4.5. Lemma. Letw = (p*1—1,... ,pF—1) with k; > m—n and |w| = p™—p".
Then

Su(vm) = avy, mod I,, a ZOmod p if w=w(m,n),
wibm ) = 0 mod I, otherwise.
Proof. This follows from 3.13 because v,, = p(xpm_1). O

4.6. Lemma. If |w| > p™ — p", then S, (vym) =0 mod I,,.

Proof. This holds because S, (v,) € I, and dim S, (vy,) < dimv,,. O

Consider a sequence E = (ey, ... ,€e,...) of non-negative integers, where
all but finitely many e;’s are 0. We order the set of these sequences lexico-
graphically, by setting E < F' if there is some k > 1 with e; = f; for i < k
and ej < fr. Set vF = vty vk oo Let kw be the partition (w, ..., w)
(k times); set

w(E):=(aawn+1,n),... exw(n+k,n),...).

4.7. Lemma. Let E = (e1,... ,ex,...) and F = (f1,..., fk,...) be such
that dimv? = dimv" and E < F. Sett=e; +---+ep +---. Then

S (0F) = avt mod I,,, « Z0mod p if E=F,
“EW =1 0 mod I, ifE<F.

Proof. We have
(4.8)

Sw(E) (UF) = Z Sy (Vnt1) -+ Swfl (Un+1)5wfl+1 (Vn2) -+ Sy (Vngr) - - -

where the summation index runs all the sequences

{wl,... y Wiy W41, .- ,w7,...}

with (wi,... ,wp, W41, w2, L) =W,

Firstly, let £ = F'. Consider any summand. If the operation on every vy,
is Sy (n+k,k) i this summand, then, by 4.5, this summand is avt mod I, a #
0 mod p. We prove that every other summand belongs to I,,. Indeed, consider
any summand which is not in I,,. Then, by 4.6, for every k every factor
S.(vntk) must be such that |w| < p"tk — pn. Moreover, |w| = p"tF — p»
(because if |w| < p"** — p® somewhere, then |w'| > p"*t! — p" for some
Sw(Un41)). Hence, by 4.5, w1 = w(n + 1,n) and in this way we exhaust all
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ey partitions w(n + 1,n). Now, considering the factor S, (vp+2), we have w =
(pFr—1,... ,pF —1) with ks > 2,5 =1,...,r. Hence, by 4.5, w = w(n+2,n),
etc. Thus, Sw(E)(’UE) = av!, mod I,,, a # 0 mod p.

Now, let E < F'. Firstly, suppose that e; < fi. Consider in (4.8) any
summand which is not in I,,. Reasoning as above, we conclude that w =
w(n+1,n) for every factor S, (v,+1). But this is impossible because e; < fi.
Thus, Sw(E)(UF) € I,. If e; = f1, but ey < fo, then all factors v, of v¥
find their partners (i.e., partitions w(n + 1,n)), but it is impossible to serve
all factors v, 42 of of | ete. O

4.9. Lemma. For every y ¢ I, there exists an operation § € BP*(BP) such
that 0(y) = aw?, mod I,, with ac # 0 mod p.

Proof. Let y = Z apv’, ap € Zlp),ar # 0 mod p for every F €

Fe{F}
{F}. Choose the minimal sequence E in {F}. Then, by 4.7, S,g(y) =
> apS.e) (vF) = avl, mod I,,. O

4.10. Corollary. Let J be an invariant ideal such that I, C J. If I, # J,
then v, € J for some t. O

4.11. Theorem. If I is an invariant prime ideal, then I = I,,, 0 < n < co.

Proof. If I # I, then there is n > 0 such that I,, C [ and I,41 ¢ I.
Suppose I # I,,. Then, by 4.10, v!, € I for some ¢, and ¢t > 0 because I # (.
Hence, v, € I because [ is prime. Thus, I,,;; C I. This is a contradiction.

a

Let .# be the following category. Its objects are coherent graded -
modules M equipped with a BP*(BP)-action BP*(BP) ® M — M such
that:

1. dim#(m) = dimm — dim @ for every § € BP*(BP),m € M.

2.5,(dm) = > 8u,(N)Su,(m), A€ Qm e M.

(w1,w2)=w

Morphisms of .# are BP*(BP)-equivariant Q-module homomorphisms.

Note that BP,(X) is an object of .# for every finite spectrum X. In-
deed, BP,(X) is a coherent Q-module by 3.29(i), and BP*(BP) operates on
BP,(X) for general reasons. Now, given A € ) and = € BP,(X), we have

S (M) = pSus(Az) = pSu((eX)(522)) = p (3 S (3N (3a) )
= Z p(Swl (%/\))p(swz (%I)) - Z Sey (A)Swz (I),

where the third equality follows from 2.18 or 2.19(i). We also used that p and
» are the ring morphisms.
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4.12. Definition and Notation. (a) Let R be a graded ring (e.g., R = ).
If two graded R-modules M, N are isomorphic up to dimension shift, we say
that M and N are stably isomorphic and write M ~ N. Clearly, we are also
able to say that two objects M, N of .# are stably isomorphic in .Z.

(b) Given an R-module M and an ideal J C R, we set

M(O:J):={zeM|Jx=0}

Furthermore, given © € M, the annihilator of x is the subset (ideal) Annz :=
{a € R|ax = 0}.

(c) Given M € # and an Q-submodule N of M, we say that N is
invariant if the inclusion N C M is an inclusion in .#. In other words,
sy () € N for every € N and all w. So, N appears to be an object of ..

(d) Similarly to I1.6.12(b), we say that an element € M € .# is simple
if s,(z) = 0 for every w # (0). Clearly, every non-zero element of least
dimension is simple.

4.13. Lemma. Let M € 4 .

(i) Let N C M be an inclusion in A , and let N C P C M be inclusions of
O-modules. If P/N is an invariant submodule of M/N then P is an invariant
submodule of M .

(ii) Let J be an invariant ideal of Q. Then M(0 : J) is an invariant
submodule of M.

Proof. (i) This is obvious.

(ii) We must prove that s, (z) € M(0 : J) for every x € M(0 : J) and
all w. We do this by induction on I(w). So, let w = (k) where k > 0. Given
a € J, we have

0 = s (ax) = sy (a)r + asu (z) = aspy(z),
ie., sgy(xz) € M(0 : J). Suppose that s, (z) € M(0 : J) for every w with
l(w) < n. Given a € J and any w with I(w) = n, we have
0 = sy,(ax) = sy(a)x + as,(z) + Z S, (@) Swsy ().
(w1,w2)=w,w; #w
In particular, I(w2) < n. So, sy, (z) € M(0: J), and so
Yo su(@)su(2) =0,
(w1,wo)=w,w; #Zw

and hence as, (z) = 0, and thus s, (x) € M(0: J). O

4.14. Lemma. Let x be a simple element of M € .# . Then:
(i) Annz is an invariant ideal;
(ii) If I, C Annz then vFx is simple for every k;
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(iil) Qz is an invariant submodule of M, and Qx is stably isomorphic in

A to )/ Annx.

Proof. (i) If a € Annz then 0 = s,,(ax) = s, (a)z.

(i) We have s, (vF) € Annz if w # (0). So, s, (vEz) = vEs,(z) = 0 if
w # (0).

(iii) The invariance of Qu follows since s, (ax) = s, (a)z for every a € Q.
Furthermore, the homomorphism f : Q/ Anna — Qz, f(a) = az, establishes
the desired stable isomorphism. O

Let Q(n) be the subring Z[p] [v1, ... ,v,] of Q. So,  is an Q(n)-module.
Conversely, there is a ring homomorphism h : Q — Q(n), h(v;) = v; for i <n
and h(v;) = 0 for ¢ > n, which turns Q(n) into an Q-module.

Given an -module M, we define an Q(n)-module M(n) := M ®q Q(n).
On the other hand, given an Q(n)-module N, we consider N ®¢qy,, {2 and equip
it with an Q-module structure by setting a(n ® b) = n ® ab, a,b € Q,n € N.

Note that we have (V ®qny Q)(n) =V for every Q(n)-module V.

Let {fo} be a family of free generators of a free -module F. We define
a homomorphism

Pn * F(”) a(n) Q- F, Son(fa ®w) = wfa-

Clearly, ¢, is a homomorphism of Q2-modules.

4.15. Lemma. Let M € .# .

(i) There are a finitely generated free Q-module F', an Q-epimorphism f :
F — M, a natural number n and an Q-isomorphism vy, : M{(n) @q ) — M
such that the following diagram commutes:

F(n) ®qqny @ ——

f®1l lf

M (n) ®q(n) 2 o, M.

(ii) Let n be as in (i). Then the homomorphism v, : M — M, z — v,x,
is monic for every r > n.

(iii) There is m such that I, = Annx for some x € M but I,,41 ¢ Anny
for everyy € M,y # 0.

Proof. (i) Since M is coherent and so finitely presented, there is an exact
sequence of 2-modules

R&FLM*)O

where R and F' are free finitely generated Q-modules. Let {r3} be a family
of free generators of R. We define i,, : F(n) — F,i,(z) = pn(x ® 1). Since
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the set {rg} is finite, we can choose n such that a(rg) € i, (F(n)) for every
B. Clearly, there exists a unique homomorphism v, : M(n) ®qmy & — M
such that the above diagram commutes, and this ,, is an isomorphism.

(i) Consider the exact sequence

OHQLQHQ/(’UT)—)O.

If r > n then Tor!'™ (M(n),Q/(v,)) = 0 because Q/(v,) is a free Q(n)-

module. Hence, we get an exact sequence
0 — M(n) ®qmy @ == M(n) Qqmy @ — M(n) @qmy Q/(v) — 0,

i.e, v, : M — M is a monomorphism.

(ili) By (ii), there is a maximal m such that I,,, = Annz for some z € M.
Suppose that there is y such that I,,41 C Anny. Now we shall find some
r > 0 such that I,,, 1, is an annihilator of an element of M, and this will be
a contradiction, and the claim will be proved.

Note that M(0 : Ly1+1) # 0 since y € M (0 : Ipp41). Let w be an element
of least dimension in M (0 : Ip,41). Then w is simple, and so J; := Annw
is invariant. Clearly, J1 D In4+1. If J1 = I,,4+1 then we have the desired
contradiction. If not, then, by 4.10, there is ¢ such that Uan € Ji, and so
Jo = Ann(vfnjlw) D Ipyo. If Jo = I,42 then we are done. If not, then,
by 4.14(ii) and 4.14(i), Jo is invariant, and so v}, , € Jo, and so J3 :=
Ann(v;7j205ﬁlw) D Inas. Iterating this process, we get a sequence J; C

Jo C J3 C -+, where J, D I+, and J, is an annihilator of some element.
By (ii), this process must stop, and so J; = Ip,4+k for some k. This is the
desired contradiction. O

4.16. Lemma. Let M € .# . Fix an isomorphism 1 : M(n) ®qmy Q@ — M
as in 4.15.
(i) Let N be an Q-submodule of M such that the obvious homomorphism

J i N(n) @qmy @ — M(n) @omy @~ M

s an monomorphism with Imj = N. Then there is a unique morphism
(M/N)(n) ®qny @ — M/N such that the diagram

N{n) @am) @ —— M(n) @qmy @ —— ((M/N)(n)) @qm) 2

- - 1
N _— M _— M/N

commutes, and this morphism is an isomorphism.
(ii) For every x € M(n), Anng,) v = Ix(n) iff Anng(z @qey 1) = 1.
(iii) M(0: It) # 0 in M iff M(n)(0 : Iy(n)) # 0 in M(n).
(iv) If = is an element of least dimension in M(n)(0 : Ix(n)) then
Yn(T ®qny 1) is an element of least dimension in M (0 : Ij).
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Proof. (i) This follows since the rows of the diagram are exact.

(ii) This is obvious.

(iii) We treat 1, : M(n) ®qeny @ — M as the identity map 1. Clearly,
if . € M(n)(0: Ix(n)) then x ®q,)y 1 € M(0: Iy). Conversely, suppose that
M0 : I) # 0 and take y € M(0 : It),y # 0. Then y = > ya ®a(n) Wa,
where y, € M(n) and each w, is a polynomial in vy41,...,Un4k,.... We
have v,y = 0 for every r < k, and 80 ), vy @qn) Wa = 0 for every r < k.
Now, using the isomorphism

M(n) @qamy Q= M(n) @z Z[p] [vng1s- - Vnpks -],

we conclude that vy, = 0 for every «, i.e., yo € M{n)(0: I (n)).

(iv) Suppose that there is y € M (0 : I)) such that dimy < dim(z®gq,) 1)
We have y = > Yo ®qm) Wwa = 0 where y, € M(n) and each w, is a
polynomial in vn41,...,Untk,.... Reasoning as in (iii), we conclude that
Yo € M(n)(0 : I:(n)) for every o, i.e., x is not an element of least dimension
in M (n)(0 : I(n)). This is a contradiction. O

4.17. Lemma. Let M € .#, and let m be as in 4.15(iii). Then every element
x of least dimension of M (0 : I,,) is simple, and Annx = I,,,.

Proof. By 4.4 and 4.13(ii), M (0 : I,,) is an invariant submodule, and so
x is simple, and so, by 4.14(i), Annz is an invariant ideal. We prove that
Annz = I,,. Indeed, if not, then, by 4.10, v}, € Annx for some ¢, and so
Ann(vi tx) D I,41. But this contradicts our choice of m. O

4.18. Theorem. Every object M of A admits a filtration in A
0=MyC M, C---C My=M,

such that M; /M;_1 is stably isomorphic in M to Q/1I,, for everyi=1,... k.
In particular, this holds for M = BP,(X), where X is a finite spectrum.

Proof. Choose n as in 4.15(i) and take m as in 4.15(iii). We treat ¢, :
M(n) ®qmy Q@ — M as the identity map 1as. Let x € M(n) be an element of
least dimension in M (n)(0 : I,,(n)). Then, by 4.16(iv), T := z ®qyy 1 is an
element of least dimension in M (0 : I,,), and so, by 4.17, AnnZz = I,,,, and
so, by 4.16(ii), Annx = I, (n). Set My := Q(n)x € M(n) and note that

M = Qn)z ~ Qn)/L,(n).

We set M := M1 ®qn) Q. Since 2 is a flat 2(n)-module, the inclusion M; C
M({n) induces an inclusion My C M(n) ®q,) 2 = M. (More pedantically:
this inclusion is the composition

My 2 M(n) ®qpmy Q@ ~2 M

where a is a monomorphism induced by the inclusion M; C M(n).)
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Note that M; = Qz. By 4.16(iv) and 4.17, T is simple, and so, by 4.14(iii),
M, is an invariant submodule of M. Now, by 4.16(i), we can apply the same
process to M /M, with the same n and to find a submodule V of (M /M;)(n) =
M({n)/Mi(n) such that V =~ Q(n)/I,,(n). We define M5 to be an inverse
image of V under the canonical projection M(n) — M (n)/My(n). So, we get
an Q(n)-module Mo where Mo/M; ~ Q(n)/I.,(n). By induction, we get a
filtration

0O=MoCcM,C---M,.C---

of M(n) such that M;/M;_1 ~ Q(n)/I.,(n) where 11 = m. Since M(n)
is a finitely generated module over a Noetherian ring Q(n), this filtration
stabilizes, i.e., M = M(n) for some k. So, we get a finite filtration

O=MyCcM,C---M,CM,=M

where M; = M; ®a(n) Q.

We have already proved that M; is an invariant submodule in M. Now,
by 4.13(i) and an obvious induction, every M; is an invariant submodule of
M, i.e., this filtration is a filtration in .. Finally, by 4.16(i),

Now we give an integral version of the results above. We say that a graded
ideal I C m.(MU), I # m.(MU), is MU*(MU)-invariant if 6(I) C I for every
0 € MU*(MU). Let {x;},dima; = 2i, be a system of polynomial generators
of m.(MU) as in 1.9(v).

Given a prime p and a natural number n, we set

(4.19) I(p,n) = (p,Tp—1,... ,Tpn-1_1) C T (MU).

Furthermore, I(p,00) 1= (p,Zp—1,... ,Tpn-1_1,...) C m(MU). Let I(p) C
7« (MU) be the ideal such that all Chern numbers of every element of I(p) are
divisible by p. Let A,, denote the subset of 7. (MU) consisting of all elements
of dimension < 2n.

4.20. Proposition. I(p,00) = I(p). Furthermore, I(p,n) coincides with
the ideal generated by I(p) N Apn-1_1, i.e., I(p,n) = (I(p) N Apn-1_1). In
particular, I(p,n) depends only on p,n

Proof. Tt is clear that I(p,00) C I(p). Conversely, given = € I(p), we prove
that « € I(p, 00).

Represent the set of natural numbers N as the disjoint union N = A U
B, where A = {p —1,...,p" —1,...}. Then z can be expanded as z =
' + f(x;]i € B), where 2/ € I(p,00) and f is a polynomial. Then p|s, (x)
and p|s,(z') for every w. We prove that f = 0. Let us order monomials
Ty v Tiy, bk < g1 Dy setting x;, - - x5, < xj, -+ - xj, iff there exists s such
that ¢, = j, for r < s and ¢s < js. Let z;, - - - z;, be the maximal monomial
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in f. Then s,(f) = Sw(®i, -+ x4,) for w = (i1,... ,ix). But sy(zi, - - 2,) =

Siy (Tiy) -+ - 84y, (24,,) 1s not divisible by p in view of 1.9(iv). Thus, f =0, i.e.,
x € I(p, o).

Finally, I(p,n) = (I(p) N Apn-1_4) since I(p,n) = (I(p,00) N Apn-1_4).

(I

4.21. Proposition. I(p,n) is an MU*(MU)-invariant ideal for every (p,n).

Proof. Firstly, we prove that I(p) is MU*(MU)-invariant. In other words,
we must prove that p|s. (S, (x)) for every w’ such that 2(|w|+ |w'|) = dim .
But in this case S/ (S (x)) = Sw (Su(x)) € Z is a Chern number of z, and
thus p|5w/(Sw (1:))

Now we prove that I(p,n) is MU*(MU)-invariant. Because of 2.19(i), it
suffices to prove that S, (x,x_1) € I(p,n) for every k < n. Since I(p,n) C I(p)
and I(p) is invariant, S, (z,x_1) € I(p), i.e., by 4.20, S,(x,x_1) € I(p,0).
But dim S, (2, ) < 2p" — 2, and so Sy (ze_1) = py + Zle Tpi_1y; for
some y,y; € T (MU). Thus, S, (xyx_1) € I(p,n). O

We leave it to the reader to prove the following results, similar to 4.11
and 4.18 above.

4.22. Theorem. If I is an MU*(MU)-invariant prime ideal of m.(MU),
then I = 1(p,n), where p is a prime and 0 < n < co. [

Let A be the following category. Its objects are coherent graded . (MU)-
modules N equipped with an MU*(MU)-action MU*(MU) @ N — N such
that:

1. dimf#(n) = dimn — dim 6 for every § € MU*(MU),n € N.

2. 5,(An) = Z S (W) Sw,(n), A € m(MU),n € N, where S, (X) is

(w1,w2)=w
the result of the MU*(MU)-action on m.(MU).

Morphisms of A~ are MU*(MU)-equivariant .. (MU)-module homomor-
phisms.

Note that MU, (X) is an object of A4 for every finite spectrum X.

4.23. Theorem. Every object N of A admits a filtration in A
N=NyDN; D---DN=0,

where N; /N1 is stably isomorphic in AN to m.(MU)/I(pi,7i),i =1,... k.
In particular, this holds for N = MU.(X), where X is a finite spectrum. O

4.24. Remark. Theorems 4.11, 4.22 were proved by Landweber [3], see also
Morava [2]. In the proof of 4.11 we followed mainly Johnson-Wilson [1].
Landweber [4] proved the Filtration Theorems 4.18, 4.23.
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§5. Formal Groups

Given a formal power series f(z) over a commutative ring R, let f~!(z)

denote a formal power series such that f(f~Hx)) =z = f~Y(f(x)). It is easy

to see that f~!(z) exists iff f(x Zazz with a; € R*, and f~1(z) is
i>1

unique. As usual, we write f(x) = g(z) + o(z"), if f(x) = g(x) + 2" 1p(z)

for some () € R[[z]].

5.1. Definition (a) A formal group (more precisely, a one dimensional com-
mutative formal group law) over a commutative ring R is a formal power
series x +y + Z aijx'y’ € R[[x,y]] with the following properties:
i,j>1

(1) (commutativity) F(x,y) = F(y,x);

(2) (unitarity) F(z,0) =«

(3) (associativity) F(F(z,y),z) = F(x, F(y, 2)).
(b) Given two formal groups F,G over R, a homomorphism f: F — G is

a formal power series f(x Za x* such that f(F(z,y)) = G(f(z), f(y)).

i>1
A homomorphism is called an isomorphism if a; € R*, and it is called an
equivalence if a; = 1. We use the notation F' ~ G for equivalent formal

groups.

Notice that G(f(z),g(z)) is a homomorphism F — G if f and g are. In
particular, the set Hom(F, G) of all homomorphisms F' — G is closed under
the operation +¢ where (f+¢g)(z) := G(f(z), g(z). Moreover, the operation
+¢ converts Hom(F,G) into an abelian group: the inversion is established
by Proposition 5.9 below.

If f : F — G is an isomorphism, then f~! exists, and it is an isomorphism
G — F.

It is clear that in this way we have a category .%(R) of formal groups
over R and their homomorphisms. Furthermore, if ¢ : R — S is a ring
homomorphism and F(z,y) = = + y + Z aijz'y’ is a formal group over

i,j>1
R, then the formal power series (¢, F)(z,y) := x +y + Z olai;)x'y’ is a
i,j>1
formal group over S. So, ¢ yields a functor ¢, : #(R) — F(95).

5.2. Definition. A formal group F(z,y) over a commutative ring L is called
universal if for every formal group F over every ring R there exists a homo-
morphism ¢ : L — R with ¢, (F) = F and this homomorphism is unique. In
this case we say that ¢ classifies F'.

5.3. Proposition. There exists a universal formal group.
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Proof (Adams [8]). Let A = Z|a;;] be the polynomial ring generated by
symbols a;;,4,j > 1. Consider the formal power series h(z,y) =  +y +
Z aijz'y’ over A and set h(h(z,y),2) —h(x, h(y,2)) = 3. bijxa'y’ 2*. Let I
i,j>1
be the ideal in A generated by the elements b;j; and a;; — a;;. Set L =A/I,
and let @;; be the image of a;; in L. It is clear that the formal power series
T+y+ Z dijxiyj over L := A/I is a universal formal group. (]

3,521

Clearly, the universal formal group is unique in the following sense: if
(F,L) and (F', L") are two universal formal groups, then there exists a ring
isomorphism ¢ : L — L' with ¢, F = F'.

The following fact is more complicated. It was proved by Lazard [1].

5.4. Theorem. The underlying ring L of the universal formal group is a
polynomial ring on a countable set of variables, L = Z[x1,... ,&n,...].

Proof. See Adams [8], Buhstaber [1,2], Frohlich [1], Ravenel [1]. O

The universal formal group can be also described as follows. Consider the
polynomial ring A = Z[b1,... ,b,,...] and the formal power series g(z) =
x+ Y bt Set f(z,y) = g7 (g(z) + g(y)). It is clear that f is a formal
group. Let I C A be the subring generated by the coefficients of f. Then (L, f) is
the universal formal group (see Buhstaber [1,2], cf. also 6.17(a) below).

5.5. Examples. (a) The so-called additive formal group A(z,y) = = + y.
(b) The so-called multiplicative formal group M (z,y) = z+y+azxy,a € R.
(¢) The universal formal group.
(d) Let f(z) be a functionally invertible formal power series, i.e., such
that f~1 exists. Then F(z,y) = f~(f(z) + f(y)) is a formal group.

5.6. Definition. Given a formal group F'(z,y) over R, a formal power series
g(x) = x + o(z) € R[[z]] is called a logarithm of F' if

F(z,y) =g "(9(z) + g(y)).

In other words, g is an equivalence between F' and the additive formal group.

5.7. Proposition. Fvery formal group F(z,y) over a Q-algebra R has a
logarithm, and it is unique. In particular, every two formal groups over a
Q-algebra are equivalent.

Proof (Honda [1]). Consider the formal power series w(z) = 02F(x,0).
Because of 5.1(a), we have

w(F(z,y)) = 02F(F(x,y),0) = 0. F(F(,0),y) - 02 F (2,0) = 01 F(x, y)w ().
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de  dF(z,y) ot o(x) :
Hence, w(@) ~ w(F(z,y)) Set g(z) :

and hence

Todt
/O ity Then do(a) = dg(F(.1)

g(F(z,y)) = g(x) + C.

Since F(0,y) =y and g(0) =0, C' = g(y). Thus, g(F(z,y)) = g(z) + 9(y).
We prove the uniqueness of the logarithm. Let

97 (g(@) +9(y)) = h™ (h(x) + h(y)), h(x) ==+ o(x).

Set f(z) = g(h~%(z)). Then f(z+y) = f(z)+ f(y). Since R is a Q-algebra
and f(z) = x + o(x), we conclude that f(z) = x. O

5.8. Examples. (a) The multiplicative formal group m(z,y) = ¢ +y — zy
over Z has no logarithm. Indeed, let ¢ : Z — @ be the inclusion. The logarithm
ofi,misx+a2/24+---+a"/n+--- = —In(1 —x). If m(x,y) has a logarithm
f(x), then f(x) is a logarithm of i.m also, and so f(x) = —In(1 — z). But
In(1 - ) ¢ Z[[]].

(b) Tt is clear that g(x) = x is a logarithm of the additive formal group
A(z,y) over any R. We prove that f(xz) = z + zP is a logarithm of a(z,y)
over Z/p. Indeed, we have x + 2P +y+y? =z +y+ (x + y)P, ie., f(x+y) =
F(@) + F(y), ie., ale,y) = £ (F(2) + £()). (In fact, both f and f~!
automorphisms of a(z,y).) Thus, the uniqueness of the logarithm is false in
general.

5.9. Proposition. Given a formal power series F(x,y) = x+y+ Z aijz'y’,
1,521

there exists a formal power series 0(x) such that F(x,0(x)) = 0, and it is

unique.

Proof. Firstly, we construct a family 6,,(z) such that F(x,0,(z)) = o(z")
and 0,41 (x) = 0, (x)+o(z"*1). Set Oy (x) = —x. Then F(x,0p(z)) = ( ). As-
sume that 6,, is constructed. Let b, 11 be the coefficient of 2" in F(z, 0,,(x)).
Set O,11(z) = 0, () — bpr12™ L. Then

F(2,0p41(z)) = F(2,0,(2)) — bpp12" T + o(z™ ) = o(z™ 1),

Now, set 0(z) = —x — Z biz', where b; is the coefficient of ¥ in 6;(x) —
=2
0;—1(z). Then 0(x) = 0, (x ) o(z™) for every n. Thus, F(x,0(x)) = o(z™) for
every n, i.e., F(z,0(z)) =
We leave it to the reader to prove that 6 is unique. O

5.10. Definition. Given a formal group F' over R and n € Z, define induc-
tively a formal power series [n]p(z) € R[[z]] as follows. Let 6(z) be as in 5.9.
Set [-1]p(z) = 0(z). Furthermore, if n > 0, then [n|p(z) := F(z, [n—1]p(x)).
If n < 0, then [n]p(x) := F([-1]r(x),[n + 1]r(x)).
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Clearly, [0]p(x) =0, [1]r(x) = z, and F([m]r(x), [n]r(z)) = [m+n]r(z).
Furthermore, if F' admits a logarithm g, then [n]r(z) = g~ !(ng(x)). Finally,
[n]F is an endomorphism of F' (i.e., a homomorphism F' — F') for every n € Z
(prove this!).

The formal power series [n]p can also be described as follows. Let End F'
be the set of all endomorphisms of F'. Set

f(@) +r g(x) = F(f(x),9(x)), (9- [)(x) = g(f(z))

for every f,g € End F. Then (End F,+p,-) is a ring. Consider the unique
ring homomorphism Z — End F'. Then [n]p is just the image of n € Z.

Let R be a commutative torsion free ring, and let F' be a formal group
over R. Define i : R — R® Q by setting i(r) = r ® 1. Then i(R) is a subring
of R ® Q. For simplicity, we say that the logarithm of ¢, F is a logarithm of
F over R® Q.

5.11. Proposition. (i) If F' is equivalent to the additive formal group, then
for every n > 0 all coefficients of [n|r(x) are divisible by n. In particular, if
nR =0 then [n|p(z) = 0.

(ii) Let p be a prime, and let R be a torsion free Z[p]-algebra. Let F be
a formal group over R such that all coefficients of [p|r(x) are divisible by p.
Let g(z) € R[[z]] ® Q be the logarithm of F over R® Q. Then g(x) € R][x]],
i.e., g(x) is a logarithm of F. In particular, F is equivalent over R to the
additive formal group.

Proof. (i) Let h : F — A be an equivalence, F( x,y) = h=Y(h(z) + h(y)).
Let h='(z) = = + Y a;z*"l. Then [n]rp(z) = h~'(nh(z)) = nh(z) +
Sonttla;(h(x))L.

(i) Let g(z) =2+ > gzl g: € R®Q. Let g (2) = 2+ > a2t a; €
R®Q. Since x = g(z) + > a;(g(x))"™*, we conclude (equating coefficients of
equal powers of x) that g1 + a1 = 0 and

gn +fn(a/17"' yQn—1,915 - - - 7gn—1) +a’71 =0

for n > 1. Here f, is a polynomial over Z such that every monomial in f,
contains some a;. This implies (by induction) that if g; € R for every i < n,
then a; € R for every ¢ < n and a,, = r, — g, with r, € R.

We prove by induction that g; € R. Since [p]r(z) = ¢~ (pg(z)) then, by

the hypothes1s all coefficients of g~ (p (:z:)) belong to pR. The coefficient of

22 in g~ 1(pg()) is pg1 + p*a1 = pg1 — p*g1 = pg1(1 — p). Since it is divisible

by pin R, g1 € R because 1 — p is invertible in R.

We suppose that g; € R for every ¢ < n and prove that g, € R. The
coefficient of 2" in g~ (pg(x)) is pgn+ fu(P?a1, ... ;P "An-1,91,- - s gn-1)+
p"*tla,. Since g; € R for i < n, we have a; € R for i < n (as we said
above). Furthermore, every monomial in f, contains some a;, and hence
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fa@?a1,... ,p"an_1,91,... ,gn_1) is divisible by p? in R, i.e., it is p?r for
some r € R. Hence, the coefficient of 2" in g~ (pg(z)) is

n+1(7,n

Pgn+0°r+0" a, = pgn+p*r+p —gn) = pgn(1—p™")+p°r+p" 'y,

where r,,7 € R. But this coefficient belongs to pR. Thus, g, € R because
1 —p" is invertible in R. g

For future reference note the following obvious fact.

5.12. Proposition. Let r : R — S be a ring homomorphism, and let F' be a
formal group over R.

() If [n)p(x) = 3 a;xt, then [n]., p(x) = > r(a;)t. _
(ii) If R and S are torsion free and g(x) = v+ g;x'™1 is a logarithm of
F over R®Q, then x+ Y 7(g;)x* ™! is a logarithm of r.(F) over S® Q. [

5.13. Proposition. Let p be a prime, and let R be a commutative ring
with pR = 0. Let f : FF — G be a homomorphism of formal groups over

R. If f(z) # 0, then f(z) = go(acph) for some p(x) € R[[z]] with p(z) =
ax + o(x),a # 0.

Proof (Frohlich [1]). Recall that f(z Z a;z", and so f(0) = 0. We have

f(F(z,y)) = G(f(x), f(y))- By differentiating this equation with respect to
y and putting y = 0, we have

f’(l‘)@gF(l‘, 0) = 62G(f(l'), O)fl(o)
Note that f/(0) = a;. If a3 # 0, then we can put ¢(x) = f(z). If a; = 0 then
f'(z) = 0, because Oy F(,0) = 14>, biaz’. So f(x) = g(a®). Now we want
to proceed by induction, but we must first show that g(z) is a homomorphism
of formal groups over R. If F(z,y) Z ai; T iyl set FP)(x,y) Z a”x yl.

Since a — a? is an endomorphism of R, F®) is a formal group over R. We
prove that g is a homomorphism F®) — G. Indeed

g(FP (@ ") = g(F(z,y)") = f(F(z,y))
= G(f(2), f(y)) = G(g(z"), 9(y")).

Thus, g(F® (z,y)) = G(g(z), 9(y)). -

5.14. Definition. (a) The number % in 5.13 is called height of the homomor-
phism f and denoted by ht(f). If f =0, then ht(f) = oco.

(b) Given a formal group F over a commutative ring R with pR = 0 for
a prime p, define the height of F' as the height of [p]r, ht(F) := ht([p]r).
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Since [p]p(x) = px + o(z) for every formal group F, we have ht(F) > 0.
It is easy to see that isomorphic formal groups have equal heights. For every
natural number n there exists a formal group of height n, see 6.15(iii) below.

5.15. Theorem (Lazard [2]). Let F,G be two formal groups over an alge-
braically closed field of characteristic p > 0. If ht(F) = ht(G), then F and G
are isomorphic.

Proof. See e.g. Frohlich [1]. O

5.16. Example. Consider the formal groups U(z,y) =+ y+ay, V(z,y) =
tan(arctan(x) + arctan(y)) = ffxyy =(@+y)(l+ay+...+2"y"+...) over
Z/3. We have [3|y(z) = 23, [3]v (z) = —2®. We want to show that U and V/
are not isomorphic, while ht(U) = ht(V) = 1.

It suffices to prove that [p]r = [p]¢ whenever F' and G are isomorphic over
Z/p, p prime. Firstly, [p]a(z) = ¢(a?") with h > 0. Furthermore, (u+v)?" =
u?" +oP" for every u,v € Z/p|[z,y]], and a?" = a for every a € Z/p. Hence,
pla(f(x)) = f([pla(x)) for every formal power series f. Now, let f: F — G
be an isomorphism. It is easy to see that f~*([p]c(f())) = [p]r(z), and thus

[p]F(x) = [p]a(x) by the above.

Now we consider the graded version of the notions discussed above. Let
R be a graded commutative ring. We treat R[[z,y,... ,z]] as a graded ring
with degz = degy = --- = degz = 2.

5.17. Definition. A graded formal group over a graded commutative ring R
is a formal group F(z,y) =z +y + Z aija:iyj which at the same time is a
homogeneous element of degree 2, i.e., deg a;; = 2—2i—24. A homomorphism
of graded formal groups is a homomorphism f(z) € R[[z]] of formal groups
such that f(x) is a homogeneous element of degree 2.

The concept of the universal formal group makes sense in the graded case
also, and the following analog of 5.4 holds. The proof is similar to any proof
of 5.4.

5.18. Theorem. There is a universal graded formal group over a graded
commutative ring L where L = Z[x1,... ,Zp,...], degx, = —2n. O

The obvious analog of 5.15 holds in the graded case also.

§6. Formal Groups Input

EX(CP%) = E*(pt)[[t]], EX(CP™ x OP%) = E*(pt)[[z,y]]
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where we introduce the notation x = t1,y = t5. Let
(6.1) m:CP>® x CP* — CP*

be the multiplication in the H-space CP>* = K(Z,2). Considering the in-
duced homomorphism m* : E*(CP*) — E*(CP>* x CP*), we have

m*(t) = F(z,y) € E*(pt)[[z, y]].
6.2. Proposition. F(xz,y) is a graded formal group.

1xincl m

Proof. Since CP>*® = CP*° x pt —— CP* x CP*° — CP is homo-
topic to 1gpe, we have F(z,0) = . The properties (1) and (3) from 5.1(a)
hold because m is commutative and associative up to homotopy. O

Thus, we have associated a graded formal group to any C -oriented spec-
trum.

We can also do it in the following way. Let CP,i = 1,2, be a copy of
CP*, and let 7,7 = 1,2 be a copy of n over CP. Let

pi : CP° x CPy° — CP>™,i=1,2

be the projection. By 1.6, m*(n) = pi(n) ® p5(n). Since ¢'(n) = t, we

conclude that

(6.3) F(z,y) = ¢t (pi(n) @ 3 (n)).

Because of the universality of 7, for every pair of complex line bundles
&, ¢ over X, we have

(6.4) A (E®Q) = Fle™(€), e (0)).

6.5. Lemma. Let ¢ : (E,t) — (E',t') be a morphism of C -oriented spectra,
and let p. : E*(pt) — (E')*(pt) be the induced homomorphism of coeffi-
cients. Let F (resp. F') denote the formal group of (E,t) (resp. (E',t")).
Then (¢.)«(F) = F'. O

6.6. Lemma. Let F be the formal group of a C-oriented spectrum (E,t).
Let z = f(t) =t + Y a;t"™ be another C -orientation of E, and let G be the
formal group of (E,z). Then f(F(x,y)) = G(f(x), f(y)). In particular, F
and G are equivalent formal groups. Furthermore, if H is any graded formal
group equivalent to F', then there exists a C -orientation v of E such that H
is the formal group of (E,v).

Proof. We have

m(2) = m® (t+ Y at ™) = m (1) + Y ailm* () = f(F(,y)).
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On the other hand, if z; = pf(z) for p;, : CP* x CP*>® — CP*, then

m*(2) = G(z1,22) = G(f (1), f(t2)) = G(f(2), f(y))-

Furthermore, let g : F — H be an equivalence, g(z) = x + Y. b;z**!. Set
v =t + Y bit't1. As above, one can prove that H is the formal group of
(E,v). |

Thus, we have correspondences

{C-oriented spectra} —— {graded formal groups},

{C-orientable spectra} —— {equivalence classes of graded formal groups}.

6.7. Examples (cf. 2.15). (a) Let R = {R;} be a graded commutative ring
such that R; = 0 for ¢ > 0. Then the formal group of HR is the additive
formal group over R (because HR!(pt) = 0 for i < 0).

(b) Let R be a graded commutative ring, and let £ = HR. The inclusion
HRy — HR yields a ring morphism HRy — HR. Hence, by (a) and 6.5,
HR admits a C-orientation ¢ such that (E,t) has the additive formal group.
Thus, a formal group of any C-oriented spectrum (HR, s) is equivalent to
the additive formal group.

(c) Let (E,t) be a C-oriented spectrum such that m.(E) is a Q-algebra.
Then, by I11.7.11(ii), E ~ H(w.(E)). Hence, by (b), the formal group of (E, t)
is equivalent to the additive formal group. On the other hand, this follows
from 5.7.

(d) Let E be complex K-theory. We have E*(pt) = Z[s, s !],degs = 2.
Consider the C-orientation t = s(n—1) € K2(CP>), i.e., At n) = s(n—1).
Here 1 € K9(CP>) represents 6. Let F(z,y) be the formal group of (K, ).
Then, by (6.3),

F(z,y) = () @ ny—1) = s(na) @ nea))

=s(nay — 1) +s(ne) — 1) +s(na) — V(e — 1) =z +y+ s 'ay,

where we write 7;) instead of p;(n). Thus, F' is a multiplicative formal group.

(e) Let (E,t) = (MU, T). Observe that MU*(pt) = L, where L is the
underlying ring of the universal graded formal group from 5.18. On the other
hand, by 2.5, (MU, T) is the universal C-oriented spectrum. This hints that
the formal group of (MU, T) coincides with the universal formal group. This
is really true and will be proved below.

Let v;j € MUz;42;(CP>® x CP>) be the bordism class of the inclusion
jinjZV;‘]‘Z:CPiXCPjCCPOOXCPOO.

Let m : CP*xCP>® — CP> beasin (6.1). Consider m*: MU?(CP>) —
MU?(CP*> x CP*>) and set

hij = (m*T, ’Uij> S 7T2i+2j_2(MU) = Mu272i72j(pt).
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The elements h;; admit the following geometrical description. Let
f:CP'xCcP! — PN

be the restriction of m. By 1.25, ny—1 is a normal bundle of [y_1 : cpN-1 ¢
CPYN. Assuming f to be transverse to nn_1, set H;; = f~1(CPN~!). Then
hi; = [Hij).

6.8. Lemma. (i) s(4;—1)(hij) = (it_‘j)for i,j > 1, sy(h1,;) =0 forj > 1.
(ii) hon = [CP" 7Y, by, = [CPY] x [CP™7Y.
(i) The elements h;; generate the ring m.(MU).

Proof. (i) Fix i,j and set V = V;j,v = v;;. Let t € H*(CP>) be a C-
orientation of HZ, and let v = uf%! : M4 — HZ be the Thom class as in
(2.7). We have u,T =t and m*(t) = t1 + t2. Set

V= u*(v) S H2Z_+2j(cpoo X CPOO)
By 2.19(ii) and 2.17(ii),
S(i+j—1) (hig) = S(i4j—1) (M T, v) = (M”54 j-1)(T), v) + (ML, 5(345-1)(v))
= ((t1 +12)"7,0) + (t1 + b2, 83i45-1) (V).

Here the left hand summand is

((t1 + L)1+ v) = Z<<izj>t’ft§”’“,v> = <<itj)tité,v> = (th>

We compute the right hand summand. We can compute s(;4;_1)(v) in CPix
CP7. Let n) (resp. 71(2)) be the canonical complex line bundle over C' P’
(resp. CP7). By 1.24, 7(CP") @ 6* = (i + 1)n;, 7(CP7) @ ' = (j + 1)n;. Set
& == pini, & == pin; where py : CP'x CPJ — CP' py: CP'x CPJ — CP?
are the projections. Then 7(V) @602 = (i +1)&1 @ (5 + 1)€2. We have ¢1(§;) =
ti,i = 1,2, and so ¢ (&) = tF. By 2.22, 5(i+j—1) (V) = c(ipj—1)(vv) Nov. But

Clitj—1) (V) = —C(itj—1)(Tv) = —c(igj—) (I + )& © (§ + 1)&2)
N AIRN T )

If 4,7 > 1, then tzfrj_l =0= t?j_l, and hence s(;1j_1)(v) = 0. Thus,

1+7
S(i+j—1)(hij)< : >

i
Ifi=1,7 > 1, then tzfrj_l = t]i =0, but téﬂ_l # 0, Hence,

(t1 +ta, S(i4j-1) (V) = —(t1 + 12, (j + )5 N0)
= —(t1 +ta, (j + Du{CP'}) = =(j + 1).
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Thus, S(j)(hl,j) = j +1- (] + 1) =0.

(ii) The equality hg,, = [CP" '] follows from 3.7. By 1.9(iii), in order to
prove that hy , = [CP' x CP"~!] = [CP'] x [CP™"!] it suffices to prove that
Sw(h1n) = su([CPY x CP"™]) for every w with |w| = n, i.e, that S, (h1,) =
S,([CP* x CP™) for every w = (i1,... ,im) with > iy = n.

Firstly, if m = 1, i.e.,, w = (n), then, by (i), Sy (h1,,) = 0. Furthermore,
S,[CP! x CP"] = 0. Hence, we can and shall assume that k > 1.

Now suppose that m > 1 and that iy > 1 for every k. It is clear that
S,[CP' x CP"] = 0. Now, by 2.19(ii),

Su(hin) = (Su,(m*T), Su,[CP! x CP™)).

If wy # (0), then S,,[CP! x CP"| = 0 since i, > 1 for every k. If wy =
(0), then w; = w. By 2.17(iii), S,(T) = 0 for k& > 1, and so S,m*T =
m*(5,(T)) =0 .

Finally, let w = (1,w). Then we have S,(vi,) = 2S,{CP" '} and
SL[CP' x CP"1] = 25,[CP"]. Now,

Sw(hin) = Z<Sw1 (m*T), Su, (vin)) = Z (S, (M*T),25,,{CP"})

(w1,w2)=w

= 28,(m*T, {CP"}) = 28, [CP"] = S,[CP* x CP"].

(iii) The GCD of the numbers (”) i=1,...,n—1, is just A, (defined
1
n (1.8)). Using (i) and the equality

i+3\ . e
( 1 ) =i+ j= =51 n)|CP 7 = =551y (hojits),

we conclude that the GCD of {s(,)(hint1-i)}jg is An. Hence,

5(n) (Z aihi,n+1—i> =An
i=0

for suitable a; € Z. Thus, by 1.9(iv), h;; generate m.(MU). O

6.9. Theorem. The formal group f(xz,y) of (MU,T) is

i, 20;(2,5)#(0,0)

Tew="crumory

where CP(u) =1+ Z[C’P”]u".

n=1
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Proof (cf. Adams [8], Buhstaber [2]). Let f(z,y) = m*T = « +y +

Z amz®y! where z = Ty, y = Ty. Then in CP! x CP? we have

hij = (m*T,vij) = (& +y + Zakzzkyl, Vij)

= [CP[CPI] + [CPICPT ]+ Y au[CPH[CPIT.

Hence,

hija'y! = (z[CP" 'z HCP|y?) + (y[CP') 2" [CP ]y 1)

+ Z apxty ([CP=F 2= F[oPI=1 7).

Thus,

Zhijxiyj:x Z[CPi_l]xi_l[CPj]yj +y Z[CPi]xi[CPj_l]yj_l

i,j ]

+ Zaklac y! Z [CP=F ai=k[CPi=l] it

4,J

= z+y+2aklzkyl CP(x)CP(y). O
k.l

6.10. Corollary. The coefficients a;; of the formal group f(x,y) of (MU, T)
generate the ring MU*(pt).

Proof. By 6.9, a;; = h;; mod Dec (m.(MU)) for 4,j > 1. If n > 1 then

ain + [CP"1] = hy, = [CPY[CP" ). Moreover, a;; = —[C'P']. Hence,
a1, = —[CP" '] mod Dec. Now apply 6.8(iii) (and use that m;(MU) =
MU~ (pt))). O

6.11. Corollary (Quillen [1]). The formal group f(x,y) of (MU, T) coincides
with the universal formal group.

Proof. Let ¢ : L — MU*(pt) classify the formal group f(x,y). By 6.10, ¢
is epic. Thus, ¢ is an isomorphism because L,, and MU ~"(pt) are isomorphic
finitely generated free abelian groups. O

6.12. Corollary (Miscenko, an Addendum to Novikov [4]). The logarithm
g(x) of the formal group f(x,y) over MU*(pt) @ Q is

CP"
_$+Z n+1
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dt

w(t)’ where w(x) = 02 f(x,0). Now, because of

Proof. By 5.7, g(z) = /
0
6.9 and 6.8(ii),

Z hiyll’i - Z hi’ol’i[cpl] 1 + Z(hi’l - [Cpl]hz’o) z

() = i>0 i>1 _ i>1
W= CP(x) - CP(x)
1
- COP(x)’
Thus,
_ P n+1 . O
/0 CP(t)dt = Z s 1

Let # = m, : CP* — CP* be a map such that 7*(t) = nt for ¢ €
H2(CP>). So, 7*(T) = [n]#(T). Set Bi(n) := (7*T,{CP*}) € map_o( MU).
Note that £1(n) = n.

Z Br(n)zk

k>0

6.13. Theorem. [n]f(l’) = CP(x)

Proof. Let [n]¢(z) = Y a;z’. By 3.7, we have
Br(n) = (x*T,{CP*}) = <ZaiT’} {CP’“}> =Y alcP).

Hence,

n)x —ZalCPk 9k —Zal ([CPE=1] 2~
Thus,

Zﬁk( n)xr _Za’ CPk i k l :(Zal ) O

6.14. Lemma. For every prime p, the following hold:

(i) plsw(Br(p)) for every k and every w.;

. k

(11) S(pk—l)(ﬂpk (p)) =pl — pk+1 —D;

(iii) Let f(x,y) be the formal group in 6.9. Define a; € m.(MU) via the
equality [p]¢(x) =Y a;z’. Then p|s,(a;) for every i and every w.

Proof. For simplicity, we denote S (p) by SBk.
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(i) We have

50(Br) = su(n*T, {CP*}) = Z (80, T, 5, {CP*})

(w1,w2)=w

= Y (75 (1), 5., {CPHY).

(wy,w2)=w
If wy = (r) for some r > 0, then s, (T) = t"*1. Hence,
(150, (T), 80, {CP*}) = (m(t"+1), 5, {CP*}) = ((pt)*, s, {CP}).

If I(wy) > 1 then sy, (T) = 0, and so (7*sy, (T), 5., {CP*}) = 0.

Thus, p divides each summand (7*s,,, (T), 5, {CP*}) of s, (Bk).

(ii) Let [CP']y € Hy;(CPP") be the homology class given by the inclusion
I+ CP" C CP? | ie., [CPy = (l2x)+ (u[CP'Iau) where u = uf%t
MU — HZ is as in (2.7). Let v be a complex normal bundle of CPP". Then

2.22

o1 (V) N [CP 1y = —(p* + )P " 0 [CPP]
=-(p* +1)[CPn.

S(pk_l){cppk}

Now,

Spt—1) (Bpr) = sy (T, {CPP"})
= (" 501y (T), {CP""}) + (pt, sy {CPP"})
= ((pf)pka {CPpk}> + (pt,—(p" + 1)[CP' ) = ppk —prtt —p.

(ili) We prove this by induction on k. We have
B = <Zam, {cpk}> =Y wlCP* ) = ap+ > alCPH).
i=1 i=1

Hence, s, (ar) = 5u(Br) — . 5w, (ai)5u,[CP*?]. Note that p|s,(a;) since
a1 = p. Assume that p|s,(a;) for every w and every ¢ < k. Then, by (i),
p|sw(ak). The induction is confirmed. O

6.15. Corollary. Let p be a prime. Let I(p,n) be the ideal defined in (4.19).

(1) I(p,?’b) = (paﬁp(p)a aﬁp”;l(p))- .

(ii) Let oy = app € MUPTP" (pt) be the coefficient of aP" in the for-
mal power series [p]f(z). Then sgn_1)(an) = pP" — p. Moreover, I(p,n) =
(p, Aty ... ,Oén_l).

(iii) For every h > 0 there exists a graded formal group of height h over
the ring Z/p [t], dimt = 2(1 — ph).
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Proof. (i) This holds because s(,x_1)(8,x(p)) = p mod p* and pls, (B, (p))
for every w. In detail, let x,x_1 € mopr_o(MU) be such that sk _1)(zpr_1) =
p and p|s,, (z,r_q) for every w. Then I(p,n) = (p, 2p—1,... ,Tpn-1_1). Set

k

Ype—1 = Vs -t _pk)ajpkfl - ﬁpk (p)-
By 6.14(iii), s(pr—1)(ypr—1) = —p and pls,(y) for every w. So, I(p,n) =
(PsYp—1,- -+ Ypn—1-1). But =B,x(p) = ypr_1 mod p. Thus,
I(p,n) = (P, Bp(p); - - » Bpr—1(p))-
(ii) We have oy = p. Furthermore, by 6.13,
Gt = By (p) — pICPP" 1) mod Dec (x. (MU)).

So, sppr—1)(an) = p?" — p. Finally, by 6.14(iii), p|s. () for every w.
Now the equality I(p,n) = (p,a1,...,a,—1) can be proved as the equality

I(p,n) = (p, Bp(p)s- .- , Bpn-1(p)) from (i) was.

(iii) Choose a system {z,} of polynomial generators of MU*(pt) as in
1.9(v). Consider a homomorphism p : MU*(pt) — Z/p[t] such that p(x;) =
0 for i < p" — 1 and p(z,n_1) # 0. Then p(ay) # 0 because otherwise
p(I(p,h+1)) =0. So, ht p. f = h. O

Since there is a commutative diagram
T (MU) —S— 7, (MU) ®Q
| +|-
H,(MU) —S— H,(MU)®Q,

we are able to consider the inclusions m.(MU) C H.(MU) C m.(MU) ® Q.
Moreover, the ungraded formal group f(z,y) over MU*(pt) can be regarded
as a formal group over . (MU).

6.16. Proposition. The formal group h. f(x,y) is equivalent to the additive
formal group over H.(MU). In other words, the logarithm of f(x,y) over
T«(MU) @ Q is a formal power series over H,(MU), i.e.,

[CP"]

H.(MU),
nt1 € (MU

Pn
i.e., (n+1)|h([CP™) in H,(MU). Furthermore, the elements [C+ 1] generate
n
the ring H.(MU).

Proof. Let vy : S — HZ be the unit. Consider the morphism

tg AN1: MU=SANMU— HZN MU.
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Then (tg A1)y : m(MU) — 7 .(HZ N MU) = H,.(MU) coincides with the
Hurewicz homomorphism h. Furthermore, HZ A MU is a commutative ring
spectrum (as the smash product of commutative ring spectra), and so it can
be C-oriented via ¢y A 1. The formal group of this C-oriented spectrum is
h«f(x,y). On the other hand, there is a ring morphism

1INy : HZNS — HZ N MU.

So, HZANMU admits a C -orientation such that the associated formal group is
the additive formal group. Now, by 6.6, h. f(x,y) is equivalent to the additive
formal group over H,(MU).

The characteristic numbers S,,(U) € H2“l/(MU) form a basis of the group
H*(MU). Now,

S, ([CP“] “ o x [CP”]) :{ 1 for w=(i1,...,ix)

i1+1 ik +1 0 for other w with |w| =3 ix.
Hence, the products [ilj:] X oo X [ilj:’f] form a basis of H.(MU). |

6.17. Remarks. (a) By 6.16, we have

[CP"]

H.(MU) =Zby, ... bp,...], bn= ,
(MU) = Z]br ] o1

and g(x) = 2+ b;z**1. This gives us the description of the universal formal
group mentioned after 5.4.

(b) We have [p]f(z) = g~!(pg(x)). Since every coefficient of g(z) belongs
to H.(MU), every coefficient of [p]s(x) belongs to pH.(MU). This yields
another proof (and an explanation) of 6.14(iii).

Let (E,t) be a C-oriented spectrum, let (E[0],t) be its Q-localization,
and let g(z) be the logarithm of the formal group of (E[0],¢). Let

ch=chp: E*(X)®Q — H*(X; E*(pt) ® Q)

be the Chern-Dold character, see 11.7.13. Let t € H?*(CP>) be a C-
orientation of HZ. The ring homomorphism Z — E°(pt) — E°(pt) ® Q
yields a morphism a : H2(CP>®) — H?*(CP>; E*(pt)®Q), and s := a(tf) is
a C-orientation of H(E*(pt) ® Q). Thus, ch(t) is a formal power series ¢(s)
over E*(pt) ® Q.

6.18. Theorem (Buhstaber [3]). We have p(s) = g=1(s). In other words,
ch(g(t)) = s.

Proof. Firstly, we prove that ¢(s) = s+o0(s). Let ¢(s) = > ¢;s*. Consider
the inclusion j; : $2 = CP! C CP* and the suspension isomorphisms
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521 HO(S% E*(pt) ® Q) — H?(S% E*(pt) @ Q),
s2: E°(S)®Q — E*(S?) @ Q.

Then j}(s) = s2(1) where 1 € H°(S%; E*(pt) ® Q), and j;(t) = s°(1) where
1 € E°S) ® Q. Since ch preserves the units and is compatible with sus-
pensions, we have ch(j7t) = j7(s). It is clear that j7¢(s) = p1jf(s). Hence,
1 = 1 because

Ji(s) = ch(ji(t)) = ji(ch(?)) = ji(e(s)) = i (s).
Let p; : CP*® x CP*® — CP*,i = 1,2, be the projections. Set s; =
pi(s),i =1,2. Consider the commutative diagram

E*(CP*)®Q —™—  E*(CP*xCP%)®Q

o o

H*(CP>; B*(pt) ® Q) —™— H*(CP> x CP>; E*(pt) ® Q).
We have m*(t) = F(z,y) =+ y + Zaijxiyj, m*(s) = s1 + s2. Hence,

ch(m*(t)) = ch(x) + ch(y) + Y _ as;(ch(z))* (ch(y))’
= (1) +p(s2) + Y ai(p(s1)) (90(52))j = F(p(s1), ¢(s2))

(we use that ch is a homomorphism of E*(pt) ® Q-algebras). On the other
hand,

m* ch(t) = m*o(s) = m* (D is) = D ilm*(s)) = pls1 + 52)

Thus, (51 + s2) = F(p(51), 0(s2)), i.e., 971 (s) = g(s).
In order to prove that ch(g(t)) = s, set g(t) = >_ g;t*. Then

) =ch (Y git') =3 gilcht) = 3 gi((s)

It is interesting to ask whether the correspondence before 6.7 is surjective
(or injective), i.e., whether every formal group can be realized as the formal
group of a C-oriented spectrum. The answer is negative. Consider the formal
group p.f over MU*(pt) ® Z/2, where p : MU*(pt) — MU*(pt) ® Z/2 is
the modulo 2 reduction. We claim that p.f cannot be realized. Indeed, let
E be a C-oriented spectrum whose formal group is p.f. According to 2.1,
E is a commutative ring spectrum, and 27, (E) = 0. But then F is a graded
Eilenberg-Mac Lane spectrum, see 1X.5.5 below. Hence, p.f is equivalent
to the additive formal group. But this is wrong because ht f = 1. This is a
contradiction.

=9(p(s)) =s. O
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On the other hand, consider the spectrum MU A M(Z/2). It yields a
cohomology theory

MU*(X;Z)2) := (MU A M(Z/2))"(X).

Let a : S — M(Z/2) represent the generator of mo(M(Z/2)) = Z/2. The
morphism 1 A a: MU — MU N M(Z/2) induces the homomorphism

(6.19) (IAa)s : MU*(pt) — MU*(pt) ® Z/2,

and (1 A a), = p. So, we can agree that MU*(X;7Z/2) realizes p,f. This
hints that it makes sense to extend the class of C-oriented spectra in order
to realize formal groups. We suggest such a class below.

6.20. Definition. (a) Let F be an MU-module spectrum, and suppose that
E*(pt) is a commutative ring. An MU-module morphism v : MU — E is
called a C -marking of E if u, : MU*(pt) — E*(pt) is a ring homomorphism.
A C-marked spectrum is a pair (E,u) where u is a C-marking of E.

(b) A C-marked ring spectrum is a pair (F, u) where F is a ring spectrum
and u : MU — FE is a ring morphism. In this case u is called a ring C -
marking. Clearly, every C-marked ring spectrum is a C-marked spectrum
since u turns E into an MU-module spectrum.

By 2.5, every C-oriented spectrum is a C-marked spectrum. Moreover, a
commutative C-marked ring spectrum is just a C-oriented spectrum.
It is clear that MU*(X;Z/2) = MU*(X) ® Z/2 for every X € 7. So,
the map
aNl:MU=MUNS — MUNDM(Z/2)

as above turns MU A M(Z/2) into a C-marked spectrum. (In fact, the spec-
trum MU A M(Z/2) admits a non-commutative multiplication, but this fact
is non-trivial, see Araki-Toda [1] and/or VIII.2.4 below.)

By 1.19, E*(X) & MU*(X) ®u, E*(pt) for every finite CW-space X with
torsion free cohomology and every C-marked spectrum (E,w). In particu-
lar, E*(CP™) = E*(pt)[t]/(t""1) where t := u.(T). Moreover, the following
analog of 2.2 holds and can be proved as 2.2 (i.e., following Adams [8]).

6.21. Proposition. Let (E,u) be a C-marked spectrum and t := u.(T).
Then the spectrum E satisfies conclusions (1)—(v) of 2.2. O

We define the formal group of a C-marked spectrum (F,u) to be the
formal group . f(T1,T2) € E*(CP*> x CP*) = E*(pt)[[z, y]]. It easy to see
that this formal group coincides with m*(t) where m : CP*° x CP>*° — C P>
is the multiplication 6.1.

6.22. Proposition. Let (E,u) be a C-marked spectrum with a formal group
F. Letv: MU — FE be another C -marking of E, and let G be the formal group
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of (E,v). Then F ~ G. Furthermore, if H is any formal group equivalent to
F, then there exists a C -marking w of E such that the formal group of (E,w)
is H.

Proof. Set t = u.(T) € E*(CP>). Then v,(T) = t + >, a;t"™ = f(t).
Now we have fF(z,y) = G(f(z), f(y)), cf. the proof of 6.6.

Let H ~ F, ie., fF(x,y) = H(f(z), f(y)) for some formal power series
f(z) =+ Y a;z"1. By setting t; = u.(T;) € E*(CP> x --- x CP>), we
can define the characteristic classes c}' and the characteristic numbers s} €
E2“l(MU). Following (2.25), we define w := Zawsw(U). Then w,(T) =

f(u«(T)), and thus the formal group of (E,w) is H. O

6.23. Remark. It is still unknown whether every formal group can be real-
ized by a C-marked spectrum. There are several approaches to attack this
problem. For example, if a graded formal group F is classified by a homo-
morphism p : MU*(S) — R then one can consider the functor MU*(—) @ pR.
Generally speaking, it is not a homology theory (the exactness axiom fails).
However, sometimes (see Ch. IX,§4) it is a cohomology theory (at least, on
%t) which, therefore, realizes F.

Another way is to use (co)bordism with singularities, see Ch. VIII, espe-
sially VIII.4.14.

Also, probably, the following program can partially help to attack the
realizabilty problem. For simplicity, we denote MU*(S) by L. Consider a
graded commutative ring R and define a spectrum M (R) := VXM (R;); so,
7«(M(R)) = R. Set E := MU A M(R); then

E*(S)=L®R=R[z1®1,... ,2,®1,...]

where L = Z[z1,... ,xy,...]. Now, let F be a graded formal group over R,
and let ¢ : L — R classify F. We set y; == z; ® 1 — 1 ® p(x;). Clearly,
L®R = R[y1,.-- ,Yn,-..]. Furthermore, we define a homomorphism ¢ :

L®R — R,¥(a®b) = ¢(a)b. Note that Kert) = (y1,... ,yn,...).

The obvious morphism S — M(R) (given by the unit 1 of R) induces
a morphism MU — FE which turns E in a C-marked spectrum. Clearly,
F = ¢,(G) where G is the formal group of E.

Now, suppose that E is a ring spectrum. We define E(1) to be the cone
of the morphism y; : ¥2E — E. Clearly, E(1) is a C-marked spectrum,
and E(1)*(S) = Rly2,.-- ,Yn,-.-.|. Furthermore, if(!) F(1) is an E-module
spectrum then we define a spectrum E(2) to be the cone of the morphism
Y2 : 24E(1) — E(1). So, we get a C-marked spectrum F(2) with E(2)*(S) =
Rlys,... ,Yn,-..]. Now, if E(2) is an E-module spectrum we can define E(3).
So, if we are able to proceed we get a tower

E—E()— - — En)— -
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of C-marked spectra with E(n)*(S) = R[Yn+1,--+ sYn, - - -|. Thus, passing to
the direct limit, we get a C-marked spectrum F(oo) whose formal group is
F.

So, the problem is whether the spectra E(n) are (turn out to be) E-
module spectra. It seems that it holds if F is an E, ring spectrum, see
Elmendorf-Kriz—-Mandell-May [1]. On the other hand, I do not know any
counterexample where the above program does not work.

6.24. Remark. It was Novikov who discovered the connection between com-
plex cobordism and formal groups. Namely, in Novikov [4], §5, he said ex-
plicitly that f(u,v) is a formal group over MU*(pt). Also, Mis¢enko com-
puted the logarithm of this formal group, see Addendum 1 to Novikov [4].
Two years later Quillen [1] found that this formal group coincides with the
universal formal group constructed by Lazard. Moreover, he gave some im-

portant applications of this fact. For example, he constructed the idempotent
& : MU[p] — MUIp| such that

B[CP"] = { [CP"] ifn=pF—1,

0 otherwise.

After this paper the intensive expansion of formal groups in algebraic
topology started. Furthermore, the excellent surveys of Adams [8], Ch. II
and Buhstaber-Mis¢enko—Novikov [1] contributed to this development.

§7. The Steenrod—tom Dieck Operations

MUT (

Recall that S, (resp. C,,) means s Mu.Ty,

resp. ¢

T. tom Dieck [1] constructed certain operations in cobordism theory. He
called them Steenrod operations. Therefore we use the term Steenrod—tom
Dieck operation. We expose them for the particular case of complex cobor-
dism and p = 2. Here we follow mainly Buhstaber [2], cf. also Quillen [2]. At
the end of the section (starting from 7.17) we discuss results of Mironov [2]
describing Steenrod-tom Dieck operations on m,.(MU). We need some pre-
liminaries.

Given a space X, consider the involution a : S™ x X x X, a(s,z,y) =
(—s,y,x), where —s is the antipode of s. Hence, we have a Z/2-action on
S"x X x X. Set

(7.1) Da(X) = 8" xz/2 X x X := (8" x X x X)/(Z/2).
Similarly, given a pointed space X, set

(72)  TH(X) = (S Ay X AX = ((S")T A X AX)/(Z/2),
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where the Z/2-action interchanges antipodes in (S™)* and switches factors
in X A X.

Given a complex vector bundle ¢ over X, we have a complex vector bundle
p*(Ex &) over S™ x X x X, where p: S x X x X — X x X is the projection.
The free involution a on S™ x X x X yields a free fiberwise involution on
the total space of p*(§ x £). Passing to quotient spaces, we have the map
ts(p*(§ x €)/(Z/2)) — T, (X). This map is a complex vector bundle, which
we denote by £(2), dim£(2) = 2dim¢&. It is easy to see that

(7.3) T(¢(2)) =T} (T¢).

7.4. Definition. Define the external Steenrod—tom Dieck operation
EP?" . MU* (X) — MUY (T} (X))

as follows. Let a € MU?"(X) be represented by a map f : S*X — MUy,
There is the Thom—Dold class U (2) € MU (T} (MU;,)) where v = 4.

Consider the homomorphism

h: MUMH (D (M) 2 MU (8% X) = MU (T (X))
and define EPY"(a) := h(Uy(2)). It is easy to see that EP}" is well-defined
for every r € Z and n > 0.

7.5. Theorem. The operations EP2" have the following properties:

(i) They are natural with respect to X .

(i) Let i : S™1 — S™ be the equatorial inclusion. Then i* EP?"(a) =
EP2" (a) for every a € MU (X).

(iii) Define j: X AN X — (ST A X A X by setting j(x,y) := (eo, z,y),
where ey = (1,0,...,0) € S* C R™L. Then j*EP?(a) = a® a € MU (X)
for every a € mQT(X).

(iv) Define A :TH(X AY) = TH(X)ATS(Y) by setting

A(Sv T1,Y1, T2, y2) = (Sa L1,x2,8,Y1, y2)

where s € (S™)T,x; € X,y; € Y. Then the diagram

MUH(X)o MUP(Y) s MUPH(X AY)
EPS’“@EPlel JEPSHW
MU (T} (X)) @ MUY(T}(Y)) MU*+TH(X AY))
- |
MUMH(DHX)ATE(Y)) 2 MUMH(THX AY))

commutes. (Here 1 is the multiplication in MU.)
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(V) EP,%T(U,YT) = U,YT(Q).

Proof. Decode the definitions. O

The reduced diagonal d : X — X A X yields a Z/2-equivariant map
IAd: (S")TAX — (S™)T A X A X, which induces, in turn, the embedding
of quotients

(7.6) A (RP™)* A X — TFH(X).

7.7. Definition. Define the Steenrod—tom Dieck operation
P . MU* (X) — MU* ((RP™)* A X)
as P27 (x) .= \*EP?" ().

7.8. Theorem. The Steenrod—tom Dieck operations P2" have the following
properties:

(i) They are natural with respect to X.

(ii) Let i, : RP™"™1 — RP™ be the canonical inclusion. Then i}, P2"(a) =
P2 (a) for every a € MU (X).

(iii) P2r+25(zy) = P2 (2) P2 (y) for every & € MU (X), y € MU (X).

(iv) Let f : pt — RP™ be any map. Consider the composition j : X =

+
SOAX L2L (RP™Y* A X. Then j* P2 (z) = 22,

Proof. This follows from 7.5. O

We have [RP", BU;] = [RP",CP>*] = H?*(RP") = Z/2,2 < n < cc.
Hence, there is only one non-trivial complex line bundle over RP™. We denote
it by (,. We have ¢1((,) # 0, and so C1(¢n) # 0. Set z, := C1({) €
MU?*(RP™).

7.9. Theorem. Set z = zo. Let f be the (universal) formal group of
(MU,T).

Then MU*(RP>*) = MU*(pt)[[z]]/([2]5(2)). (Here [2](z) means that we
substitute z in the formal power series [2];.)

Proof. Consider the complex line bundle ¢ := 5% over CP™, and let
A:={h: E — CP} be the principal U;-bundle associated with £. Recall
that U; = S, and so X is a fibration S' — E — CP>. Considering the
homotopy exact sequence of this fibration, we conclude that m;(E) = 0 for
i # 1. Since Y%t (&) = ¢ (&) = 2t, we conclude (e.g., considering the Leray—
Serre spectral sequence of A and using V.1.26(iv)) that 71 (E) = Z/2. Hence,
E ~ RP>. Now, 0 # h*(T) € H*(RP*) = Z/2, and hence h classifies (o,
and so h*T = z.
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By 2.14 and (6.4),

XMUT () = CLe) = C1(°) = [2]4(Cun) = [2]4(T).

Recall that MU*(CP>) = MU*(pt)[[T]]. So, the multiplication by [2];(T)
is a monic endomorphism of MU*(CP>°). Considering the Gysin sequence
V.1.25 of A and using the equality h*T = z, we complete the proof. (I

This theorem can be generalized. Consider any C-oriented spectrum (E,t)
with a formal group F. If [2]p(z) is not a zero divisor in E*(pt)[[2]], then
E*(RP>®) = E*(pt)[[2]]/([2]F(2)), where 2 = zF = h*t € E?(RP>).
Similarly, we can replace RP* = K(Z/2,1) by K(Z/p,1) and prove that
E*(K(Z/p,1)) = E*(pt)[[2]]/([p] r(2)) for suitable z € E?(K(Z/p,1)) provided
that [p]F(2) is not a zero divisor in E*(pt)[[2]]-

It is easy to see that (, is given by the projection
S" xz7/2C— 8" Xz, pt = RP",

where Z/2 acts antipodally on S™ and via multiplication by —1 on C.
Choose a basis (€1,&;) of C2. Let Z/2 = {a} act on C? as a linear map
such that a(€1,€2) = (€2, €1). Consider the complex vector bundle a given by
the projection S™ xz/5 Cc? — g» Xz/2 pt = RP". Since a(f1, fa) = (f1, —f2)
for f1 = e1 + é2, fo = €1 — é3, we conclude that oo =60 @ (.
The diagonal d : X — X x X induces a Z/2-equivariant map 1 x d :
S"x X — S x X x X. Passing to quotients, we get a map

C:RP" x X — 8" Xz/5 X x X =T (X).

Let m; : RP" x X — RP", o : RP™ x X — X be the projections. Let £ be
a complex vector bundle over X.

7.10. Lemma. (*§(2) = m3{ @7 () = m3E @i (00 () = m5 D (7 @ m5E).

Proof. Let p: S" x X x X — X x X, ps : 5" x X — X be the projections.
We have (1 x d)*p*(& x ) = p5¢ ®02. Passing to quotients, we get the desired
formula. 0

Consider the composition
RP" x X £ RP" x X 5 1,,(X),

where k(a,x) = (*, x). Passing to Thom spaces, we get the diagram

T(k*0*6(2) —— T(£°€(2)) —— TE(2)

| H H

(RP™)* ATE —* T(7¢(2)) —“— TH(T¥).
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It is easy to see that the bottom map £k is just the map X in (7.6) for X = T¢.

7.11. Lemma. We have C5(€*£(2)) = C1(€)(2n + C1(&) + 3" ai;25C1(€)7) in
MU*(RP™ x X).

Here a;; are the coefficients of the universal formal group f(z,y), and we
consider the elements z, € MU?(RP™) and C1(¢) € MU?*(X) as elements of
MU?*(RP™ x X).

Proof. We have (omitting 77 and 73)

C2(07¢(2)) = Ca(§ D ((®E)) = Ca(§) + C2(C@ &) + C1(§)Cr(C ®§)
=C1(f(C1(€),C1(8))
:Cl(f) zn—i—Cl —I—Zau nCﬁ O

7.12. Theorem. PZ(T) = T(z, + T + > a;;25T7) € MU*((RP™)* A Th)
where T € MU ?(CP>) is the universal C -orientation.

Proof. Consider a map ¢ : (RP" x CP*)T — RP™ x CP*>,e(x) = x for
every x € RP™ x CP°. Let

31:CP* —1Tn
32: RP" x CP® — (RP™)* ANTn =T(m5n)
33 : RP" x CP*® — T({'n(2))

be the zero sections as in IV.5.4. Note that k32 = 33. We have C1(n) = &*T
and 37U, = T. Furthermore, Pﬁ(Un) = k)*EPﬁ(Un) = k*Upey(2)- So,

e*PHT) =" P2(31Uy) = €*35 P2 (Uy) = €35k Upe(a) = 5*3§Ue* n(2)
= Cy(t'n(2)) = C1(n)(zn + C1(n) + Y _ aij25(C(n
= (T(zn+ T+ a;2,T7)).
Since €* is monic, the theorem is proved. O

7.13. Corollary. Let Uy € MU?N (MUN) be the universal Thom—Dold class.
Then

P2N(Uy) = Z Nl g (22)80(Un) € MUN (RP™)T A MUy)
for some ay,(z,) € MU*(pt)[zn],a() = 1.

Proof. By 1.29, 3 : CP*>* — T is a homotopy equivalence. Furthermore,
3*U, =T, and so, by 7.12,
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PUy) = Uy(zn + Uy + Y aizziy(U)) = D 2y @au(20)S0(Uy).

l(w)<1
Let Dy ---Dy € MUN(TnA--- ATn) be as in 2.16. By 7.8(iii),
P2N(Dy---Dy) =Y 2y "“ay(20)Su(D1 - - D)

in MUN ((RP™)* ATy A--- ATn). Furthermore, by 2.16 and 1.21, the ho-
momorphism

(1(rpmyt ATen)* : MU*((RP™)T A MUy) — MU*(RP™)F ATHA---AT)

is monic, and (Ten)*(Un) = D; - -+ Dn. Thus, the result follows because of
the naturality of the operations. O

7.14. Corollary. Suppose that an element x € ]\/4\5[2‘1()() is represented by
amap f:3?"X — MUy i, Then

NP2 (z) =Y 20t W, 8, () € MU (RP™)F A X).

Proof. Let o2™ € MU?™(S%™) be the image of the unit 1 € M{°(S°)
under the suspension isomorphism. Then f*U,i., = 0*™x. Hence, by 7.13,

Pg(q+m) (J2m$) _ Z ZTqL+mfl(w)awO_2mSw (q:)

because S,,(0>™) = 0 for I[(w) > 0. On the other hand, by 7.13, P?"¢?™ =
2Ma?™ hecause 2™ can be represented by the root S?™ — MU,y,. Hence, by
7.8(ii),

PR (g2g) = P27 (™) P2A(z) = 270*™ P21 (z).
Equating the right hand sides of these equalities, we conclude that
MM P2 (g) = Z 2atm=lWlg 28, ().
But multiplication by o?™ is the (suspension) isomorphism

J\YZ/J*((RP”)JF AX)— ]\72/1*“’”(52’" A (RPn)+ A X). 0

In order to apply 7.14, we need the following technical lemma based on
7.9. Consider the formal power series

o) == D ¢ aue ooy a).

T
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7.15. Lemma. Letb € mq((RP2n)+AX) be such that zopb = 0. Then there
exists X\ € MUY (X) such that kb = A\p(22n—2), where ky, : (RP?""2)TAX —
(RP?™)™ A X is induced by the canonical inclusion RP?*"~% — RP?".

Proof. Firstly, T(a,—2 = RP?"/RP! = RP?>"/S!, cf. Stong [3], Ch. VIII,
Lemma 1. Hence, we have a Thom—Dold isomorphism

. —it2
o MU(RP*2) - MU' (RP*"/SY).
Let ¢ : RP?™ — RP?"/S" be the quotient map. It is easy to see that
q*(P . Mui(RP2n—2) N mH_Q(RPQn)

maps 1 € MU°(RP?"=2) to 2o, € MU?(RP?").
Consider the commutative diagram

MUM(SY) —2 s MUR(RP",SY) U, N12(RP2n)

[ | Js
HY(SY) —2 H2(RP?",SY) _ H2(RP?™)

Z  — Z  — Z]2

Here the rows are the exact sequences of the pair (RP?",S') and u is
given by a Thom class u € H*(MU).

Let . € MU (S') = Z be a generator. Since qy; is epic, dp(ut) = 2« for
some « with ¢j; (o) = uzap. Let Con be a complex line bundle over RP?"/St
with 01(22") = «. Since ¢} (@) = uzay, ¢*Con = Can. Since (3, is trivial,
C1(¢3,) =0 =g}y (C1 (C2.)), and so C1(C3,) = 6(mu) for some m € Z. Now,

2ma = 6 (mut) = uCy(C3,) = ud(me) = mdg (ue).

So, m = 1, and hence 6t = Cy(C2,).

We have (4 (222") = p(x,) for some x, € MU (RP?"~2). Since the map
i = gk, : RP>""2 — RP?" — RP?"/S' coincides with the zero section
of T'¢ap—2, we conclude, by V.1.26(i), that i*p(y) = z2,—2y for every y €
MU*(RP?"~2). Hence,

Z2o9n—2%p = Z*(,D(w) = 2*01(6\22”) = Cl(l*(&;ny) = 01(42271—2) = 0.

In particular, for n = co we have zo,xs = 0. Consider the epimorphism
7w MU*(pt)[[z]] — MU*(RP*>),n(z) = %0, as in 7.9. By 7.9, there is
x € MU*(pt)[[z]] such that m(x) = x, and
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zz = [2]¢(2) <Z aile) ,a; € MU (pt)
=0
in MU*(pt)[[z]]. Hence,

Too = D(200) (ao + Zaizgl) = a0®(20)-

Let b, : RP?" — RP* be the inclusion. Considering the commutative
diagram

MU (SY) —2— MU(RP®/SY) «—%— MU°(RP>)
| E Js-
MU'(S') —— MU2(RP™/S") —%— MU°(RP?"-2)

and using that b’ _, 2. = x,, we conclude that z,, = ag(22n—2),a € MU°(pt)
for every n, i.e.,

(7.16) 7180 = ag(zan—2)

for every n and some a € MU°(pt).
Let € : (RP?™")* — SY collapse RP?". The composition

MUY ((RP?™)" A X) 22 MU™ ((RP?™)T A X) <=5 MUH(X)

is trivial, i.e., zonz € MUTH(RP? A X) C MU ((RP2")* A X). So, we
can consider the homomorphism

Zon : MUY ((RP?) A X) — MUY (RP? A X).

Now we prove the lemma when X = Y+ for some Y. The projection
p: RP?"~2 x Y — RP?"?2 induces a bundle p*(3,_2 over RP?"~2 x Y, and
T (p*Can—2) = RP*/S* ANY . So, we have a Thom-Dold isomorphism

¥ MUY (RP? 2 x Y) — MU (RP*/S") AY )|
= MU (RP>" AYT, ST AYT).

Consider the diagram

=
14

MU =1(y+) ==, MU (S*AY)
dl d
MUTY(RP™2)* AYH) —25, MUHL(RP™ AYH, ST AYH)

k:T vl

MUY (RP?M) T AYH) 2y MUY RP™ AYT)
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Here the right line is the exact sequence of the pair (RP?* AY T, S'AY ™), s
is the suspension isomorphism, and 6= yp~10s. This diagram commutes. In-
deed, it is a diagram of MU*(Y)-modules and homomorphisms, so, it suffices
to check its commutativity for Y = pt. We leave this to the reader. (In fact,
this follows from the equality ¢*¢(1) = z2,, see the very beginning of the
proof.) Furthermore, since this diagram is a diagram of MU~ (Y)-modules,
§(x) = zag(zan_2) for every € MU~ (Y) by (7.16). Now,

zanb = 0 = yk;, (b) = 0 = Yk;b = 6(u)
— ky(b) = 6(s ') = 57 pag(z2n—2) = Ap(22n—2)

for some A € MU= (Y).

Finally, for an arbitrary CW-space X consider the diagram X S xt 5
X with ri = 1x. Given b € MU*((RP?")* A X) with 23,b = 0, we have
Zonr*b = 0. Hence, kXr*b = Ad(22n—2) for some A € MU*(X+). Thus,

kib = kX b = k5 b = i* (Ad(22n2)) = (i*\)é(22n_2). O

7.17. Proposition. Let X be a finite CW -space. If m*(X) has no 2-
torsion, then

Po(x +y) = Py () + Piy (y) + 2ye(z2n)
for every x,y € mQT'(X).
Proof. Note that S, (z +y) = Su(z) + Su(y). Hence, by 7.14,
23 (Por (v +y) — Py (x) — P3i(y)) =0

for every k and suitable m (here we use that X is finite). We set k = m + n.
Therefore, by 7.15,

2L (Po (x4 y) — Pt _o(x) — Pai_5(y)) = Ap(z2k—2).

Let j: X — (RP*1)* A X be as in 7.8(iv). Since j*z9x_2 = 0, we conclude
that j*(A@(zak—2)) = 0, i.e., 7*(N)j*(¢(22—2)) = 0. But j*X = A, while
7 (d(z2—2)) = 2. So, 2A =0, and so A = 0. Therefore,

Zop_ 2(P2k o(z +y) — P _o(x) — Psi_5(y)) = 0.

After iteration, we get zgk_gm(Pfg_Qm(ac—i—y) P2,§ om (T) — PQQ; om(¥)) = 0.
Hence, by 7.15,

P221272m(‘r + y) - P221272m (:E) - P221272m(y) = Al¢(z2k—2m—2)a

ie.,

Pr(z+y) — Pir(x) — Pii(y) = No(z2n).
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By 7.8(iv), j*P2"(a) = a? for every a € MU?'(X). Hence,
2zy = (z+y)* —a® —y* = j* (P (z +y) — Py (2) — Pin(y))
=7 (N d(22n)) = 2N
Thus, X = zy. O
Let I denote the ideal (2, Dec MU*(pt)) of MU*(pt).
7.18. Theorem. Set [2]¢(z) =2z + Y ara®, degay, = 2 — 2k. Then

ng_%(ak) = 29a9; mod 1.

Proof. Let h : CP* — C'P* be the composition
cp> L op® x op>® ™ 0pP>,
i.e., h*(T) = [2]#(T). Hence, by 7.12, P3(T) = T(2n +T +_ a;;2.T7). Now,
by 7.17, (= means =mod I)
PE(W(T)) = P} (27 + 3 axT*) = S~ PF () (PH(T))*

Nk
= Z P2272k(ak) (TZQ + T2 + Z aijZET]-i_l)
=Py M (ar) (T + k2T,

(To be rigorous, we remark that we applied 7.17 to the space CP* and
considered infinite sums; but one can do the same calculations in CPY with
N large enough.)

On the other hand,

h*(PX(T)) = h* (T(z +T+Y aijziTj))
— 1*(T) (z INOESY aijzi(h*(T))j) = (1) =2 an T
So, P27k (ay,) = zpa9, mod I.

22 =0.
O

7.19. Corollary. Let {2,z1,... ,Tk,...},2; € MUQ_QHI(pt) be a se-
quence such that I(2,n) = (2,... ,x,-1) for every n. Then P2272k (xp—1) =
zoxp, mod 1.

Proof. By 6.15(ii), I(2,n) = (2, a1, . .. agn—1_1). Hence, = agr_; mod I,
and the corollary follows. O

7.20. Remark. Using Steenrod-tom Dieck operations (for all primes p),
Quillen [2] proved 6.11. The only necessary information about m,(MU) is
that they are finitely generated! So, in view of 5.4, this yields an alternative
way (without the Adams spectral sequence) of calculating 7.(MU). Lemma
7.15 plays a key role in this calculation.
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(Co)bordism with singularities have many applications. However, in this book
we mainly consider only a few aspects of this theory: namely, we want to
demonstrate that (co)bordism with singularities establishes a big source of
interesting (co)homology theories and, in particular, enables us to construct
cohomology theories with prescribed properties (e.g., realizing certain formal
groups, etc.)

§1. Definitions and Basic Properties

Let ¢ : B — BV be a multiplicative structure map, where V is O or PL,
see IV.4.22. Let # be the class of all compact (B, )-manifolds (smooth
for YV = O and PL for V = PL). For simplicity of notation, we say “.%-
manifold” instead of “compact (B, )-manifold”. Because of the multiplica-
tivity of (B, ¢), the product of two J# -manifolds is a .#-manifold in a canoni-
cal way. We also require that M x N and (—1)3mM dim N 75 M are isomorphic
(B, ¢)-manifolds for every M, N € J¢ .

Let L = L be the (co)bordism theory based on %, i.e., L is the (B, ¢)-
(co)bordism theory.

Fix a closed manifold P € £ ,dim P = d. Consider a manifold M € J¢
with OM = P x Z where Z is a closed J#-manifold, and form a polyhedron

(1.1) K :=Z x C(P)U, M.

Here C(P) is the cone over P and ¢ : Zx P — OM is a J -isomorphism (e.g.
an oriented diffeomorphism if ¢ is the class of oriented smooth manifolds);
also, the inclusion Z x P C Z x C(P) is given by the inclusion of the bottom
P C C(P). Clearly, every closed manifold N € % has this form if we put
Z = () and N = M. On the other hand, K turns out to be a manifold if we
delete the set Z x {x} from it.

1.2. Examples. (a) The wedge S' V S! has the form (1.1) with P =
{4 points} and Z = pt since a neighborhood of the singular point is the cone
over 4 points. More generally, the wedge M{' V...V M} of closed n-manifolds
has the form (1.1) with P =S""1 ... U S"" ! (k times).
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(b) Consider the union of two intersecting circles in R?. It has the form
(1.1) with P = {4 points} and Z = {2 points}. More generally, we can con-
sider the union of two intersected n-spheres in R"*! which has the form (1.1)
with P = {4 points} and Z = S"~1.

(c) If P = {m points} and dim K = n then H,(K;Z/m) = Z/m (pro-
vided that K is connected). So, such polyhedra give us good models for
homology classes mod m, as closed manifolds give us models for integral
homology classes. Novikov and Rochlin (1965, unpublished, mentioned in
Novikov [5]) used such objects when they considered topological invariance
of Pontrjagin classes mod m.

(d) Let W™+ be a smooth manifold such that its boundary OW is a non-
standard homotopy sphere, i.e., 9W is PL isomorphic but not diffeomorphic
to the standard sphere S™, see Kervaire-Milnor [1]. Then W U C(OW) is a
PL manifold, but it turns out to be a smooth manifold with a singularity; it
has the form (1.1) with P = S™ and Z = pt.

Sullivan [1] suggested considering bordism theories based on polyhedra of
the form (1.1) as “closed manifolds”. (The corresponding concept of a “man-
ifold with boundary” can be introduced as well.) Furthermore, this construc-
tion can be iterated: we can consider a family {Py, ... , P, } of J#-manifolds,
not only single P.

Baas [1] formalized these ideas successfully. Now we expose his approach.
Related material is also contained in Botvinnik [1], Vershinin [1].

1.3. Definition. (a) A k-dimensional ¢ -manifold with Sullivan—-Baas P-
singularity is a quintuple (V, 00V, 01V, 6V, @), where
(1) V is a -manifold, dimV = k, with 0V = 9yV U 01V where
0;V,i=1,2is a J# -manifold.
(2) 000V = 0V NOV =00,V.
(3) 6V is a certain S -manifold and ¢ : 6V x P — &V is a -
isomorphism.

For simplicity, below we say just “.# F-manifold” or “Sullivan-Baas .# -
manifold” instead of “manifold with Sullivan-Baas P-singularity” and “# F-
manifold V7 instead of “.#F-manifold (V, 9oV, 0.V, 6V, ¢)".

(b) Define the ¢ F-boundary 0 of a #F-manifold (V,0,V, 0,1V, 8V, ¢)
to be the .# -manifold

Y (V, 00V, 01V, 8V, ) := (0oV, 0,06V N 01V, SV, p|05V).

Note that 979FV = 0 for every V.

A closed P -manifold is a 2 F-manifold M such that 0P M = 0, i.e.,
there is a fixed JZ-isomorphism ¢ : 6M x P — OM, where 6 M is a closed
J¢ -manifold.

Denoting by # T the class of # -manifolds, we have in fact a cobordism
category (T, 0F), see Stong [3].
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It is clear that every #-manifold V' can be considered as a .# F-manifold
V with §V = (. Furthermore, a closed .#P*-manifold is just a #-manifold
with boundary.

1.4. Definition. A k-dimensional singular # ¥ -manifold in a pair (X, A) is
amap f: (V,0FV) — (X, A) of a k-dimensional .# -manifold V such that

there exists a commutative diagram

1% #X

| [

SV xpP 25V,

where the left map 6V x P — V is the embedding 6V x P % 9,V C 9V C V.

In other words, f|01V passes through p; : §V x P — 6V, i.e., fp(b,p) =
fo(b) for every b € §V,p € P. The commutativity of the diagram above
formalizes the gluing of the cone in the Sullivan construction (1.1). Note that
fo is unique if it exists.

Of course, 9V = 0 if A = (). As usual, a singular manifold in (X, 0) is
called a singular manifold in X.

We say that a singular closed .# -manifold f : M — X bounds if there
exists a singular .#T-manifold g : V — X with 0V = M and g|M = f. In
this case we also write 9 (V, g) = (M, f). Now, we can define a # ¥ -bordism
relation on the class of closed singular .#”-manifolds: two closed singular
2 P-manifolds (M, f) and (N, g) are bordant if (M, f)U(—N, —g) = 0F(V, h)
for some (V, h). Here (—g) : (—N) — X coincides with g as a map of spaces,
but N is equipped with the opposite (B, )-structure (cf. IV.7.25). In this
case we say that (V,h) is a # *-membrane (or T -bordism) between (M, f)
and (N, g).

The # P-bordism class of a closed singular manifold f : M — X is
denoted by [M, f], as usual. Similarly to IV.7.26, for every n € Z we have
the n-dimensional # P-bordism group of X: its elements are .# -bordism
classes of n-dimensional .# F-manifolds, and the operation is induced by the
disjoint union of .#*-manifolds. We denote this group by L (X) since we
denote by L,, the n-dimensional .#-bordism group. For example, MUCP "is
the complex bordism theory with C'P!-singularity.

1.5. Remark. Consider the cobordism category .# (X ) generated by singular
¢ -manifolds in X, see Stong [3], Ch. IV, Example 6. There is a functor
P: % (X) — #(X), which transforms a map f : M — X to the map

MxP 2 ML X 1tis easy to see that LT (X) is the relative bordism
group constructed by P, as defined in Stong [3], Ch. 1.
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We have the following homomorphisms (natural with respect to X):

P :Li(X) — Liva(X), {f: M — X} {Mx P2 ML x),
r=r%:L;(X) — LY (X), a manifold M € % is considered as
the 2 T-manifold M with 6M = 0 = &, M,
6 =06% :LP(X) = Li_q_1(X), 0[M, f] := [6M, fo] with fo as in 1.4.

1.6. Theorem—Definition. For ecvery space X the sequence

(L7 = La(X) D Loga(X) 5 LE (X)) 5 Ly (X) — -

is exact. This sequence is called the Bockstein—Sullivan—Baas ezact sequence.
Proof. We prove that rP = 0. Consider a singular manifold

AxP™ a4l x

Set Vi=AxPxI,0,V:=AxPx{i},i=0,1.Set F:V — X, F(a,p,t) =
f(a). Then 0F(V,F) = (A x P, fp1). The equalities r = 0 and P§ = 0 can
be proved similarly.

We prove that the kernels are contained in the images.

1. Kerr C Im P. If 7[M, f] = 0 then (M, f) = 0F(V, g). According to 1.4,
we have g|(6V x P) = gop1. Furthermore, 96V =M = 0, oV = M, O,V =
8V x P. Since )V N,V =0, V gives a membrane between M and §V x P.
Now it is clear that (V] g) is a membrane between (M, f) and (6V x P, gop1).
However, [0V x P, gop1] € Im P.

2. Kerd C Imr. Let §[M, f] = 0. Then (6M, f|§M) = 97 (B, g) for some
g : B — X, and there is an isomorphism ¢ : 6 B x P — OM. It is clear that
U := B x PU, M is a  -manifold. Set (U, h) := (B x P,gp1)U, (M, f). We
prove that 7[U, h] = [M, f]. Consider a manifold V' := BxPU,M x I, where ¢
glues Bx P and M x {0} C M xI. By setting 9oV = M x{0,1},0,V = Bx P,
we get that V is a # F-membrane between M and U. Define F: V — X as
follows: F(m,t) = f(m) for m € M,t € I, and F|U = h. Then (V,F) is a
# P-membrane between (U, h) and (M, f).

3. Ker P C Imé. Let P[M, f] =0, i.e., (M x P, fp1) = 9(V, g) for some
singular J#-manifold g : V' — X. Since 0V = M x P, we can consider V as
a closed # *-manifold. Now we have §[V, g] = [M, f]. O

1.8. Definition. Define the Bockstein homomorphism
87 LT (X) — L 4_1(X)
as A7 :==ré.

1.9. Remark. The Bockstein exact sequence

c— Hy(X) S Hy(X) — Hy(X;Z/m) — H;_1(X) — ---
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looks like (1.7). We shall see below that (1.7) is not only an analog but a
generalization of the Bockstein exact sequence. Because of this, we call (1.7)
the Bockstein-Sullivan-Baas exact sequence. Furthermore, 4 is an analog
(and a generalization) of the classical Bockstein homomorphism 3. Moreover,
based on (1.7), one can construct an analog of the Bockstein exact couple
and spectral sequence (about the latter see Mosher—Tangora [1]).

Now we want to treat LT as a homology theory. To achieve this goal
we have to introduce relative groups LT (X, A) and check axioms I1.3.1. The
groups LT (X, A) can be defined in the usual way, cf. Ch. IV, §7. Namely,
a singular % F-manifold f : (M,0° M) — (X, A) in (X, A) bounds if there
exists a singular # F-manifold g : (V,0FV) — (X, A) such that 9oV = 9V U
oV with 0V = M, g|0yV = f and ¢(9jV) C A. Now, the corresponding
bordism classes form the bordism group L (X, A). Moreover, there is an
analog of 1.6 with (X, A) instead of X (prove it). Define homomorphisms
Ou: LE(X, A) — LT, (A),0,(M, f] := [07 M, 10" M].

1.10. Theorem. The family {LY (X, A),0.} is an additive homology theory.

Proof. The exactness and homotopy axioms (see I1.3.1) can be confirmed
in a routine way, see e.g. Conner [1]. We prove the collapse axiom. The
collapse p : (X, A) — (X/A, x) induces the following commutative diagram,
where the rows are the exact sequences (1.7):

o Lnga(X,A) —— LE (X, A) —— Lya(X,A) — o

= |- |7 = |

o Do L (XA %) —— LP, (X/A %) —2— Ly y(X/A, %) — -

Now the Five Lemma implies that p, : LT(X,A) — LT(X/A,*) is an iso-
morphism.
We leave it to the reader to prove additivity. (I

Thus, by 111.3.23(i), LY can be represented by a spectrum L% and this
spectrum is unique up to equivalence.

The spectrum L yields a cohomology theory (Lp)*. Moreover, if X and
Y are n-dual then E};(X) & Zfﬂ-(Y). In particular, for every finite CW-
space X we have the exact sequence (dual to (1.7))

(1.11) s IMX) B (xS oydx) S Lt (X)) — -
and the Bockstein homomorphism (dual to 1.8)
Bp =7r6: LH(X) — LEFH(X).
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By I11.3.23(ii), the morphisms P : L;(X) — L;ya(X),r: Ly(X) — LF(X)
and § : LY (X) — L;_4_1(X) of the homology theories are induced by mor-
phisms P : XL — L, r: L — L¥ and 6 : LY — 241 of spectra. So, we
have the sequence of spectra

(1.12) oyl Bop LopP oy

Given a space X, we can apply the functor m.(— A X) to this sequence. This
yields the sequence (1.7).

On the other hand, we can apply the functor 7, (— A X) to the long cofiber
sequence

i B L oP) L et
This yields an exact sequence

o Ln(X) D Lya(X) — C(P)pra(X) 5 Ly (X) — -+

which looks like (1.7). Thus, it makes sense to compare L and C(P).

1.13. Theorem. Let L be a spectrum of finite Z-type. Suppose that the
homomorphism P : w.(L) — (L) is monic. Then the following hold:

(i) The spectra LY and C(P) are almost equivalent;

(ii) If the group (L*)°(L) has no phantoms (i.e., lim' (L7)°(L(™) = 0),
then L and C(P) are equivalent.

Proof. Since L has finite Z-type, this follows from 1.6 and II1.6.7. g

1.14. Proposition. If P and Q are bordant ¢ -manifolds then the homology
theories LY and LG are isomorphic.

Proof. Let A be a membrane between £ -manifolds P and Q. Given
a # P-manifold V. = (V,0,V,0,V,6V,¢), define a #“-manifold V' =
(V' 00V, 01V, 6V’ ') as follows:

L.V =6V x AU, V, where 6V x ADJV x P 50,V CV,

2. 0oV == (00V) x AU, OV,

3.0V =4V,
4. V=8V xQ CoVxAcCV',
5. (pl = 16V><Q-

The correspondence V + V' yields a morphism h : LE(X) — LQ(X)
of homology theories. Considering the ladder of the corresponding sequences
(1.7), and using the Five Lemma, we conclude that h is an isomorphism. O

Because of 1.14, sometimes we write L) instead of L¥. For example,

we can consider a spectrum MU®:, where z; is a polynomial generator of
m(MU) = Z[x1,... ,&p,...]. By 1.6, m (MU = m (MU) /().
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As we remarked above, one can iterate singularities. Namely, if P’ is a
closed manifold of .# and V = (V,0,V,0,V, 8V, ¢) is a # F-manifold, then

(1.15) P'xV:=(P'xV,P'x 9V,P' x 01V,P" x 6V,1p: X ¢)

is a . P-manifold also. Hence, we can consider (.#F)F -manifolds and form
a class 7 PP /, etc. This sequential approach is good in order to guess certain
facts about cobordism with singularities. However, from a technical point of
view, it is better to consider all the singularities simultaneously. The defini-
tion below follows Baas [1], with some small modifications; I am grateful to
Haymnes Miller for a useful discussion about it.

1.16. Definition. (a) Let ¥ = {P,;};cs be a finite set of closed manifolds of
J, and let dim P; = d;. A closed k-dimensional J¢ -manifold with Sullivan—
Baas Y-singularity, or briefly a closed # *-manifold, is a tuple (M, §; M, ©1,i)s
where I runs over all subsets of S and i € I, and, moreover, the following
hold:
(1) M is a 2 -manifold, dim M = k.
(2) 0rM is a A -manifold, and ¢r; : ;M x P; — 9(ép (3 M) is a
A -embedding. Furthermore, dim ;M +d; +1 = dim dp\ (3 M, and

(0, M) = U eaugiyi(0auy M x B;).
i¢J

AISO7 (SQM = ]\47 and so OM = LJ2 (p{z}ﬂ((S{l}M X Pl)
(3) For every I and every i,j € I,i # j the diagram

wr,i X1

c
51M X P; x Pj — 6(5]\{1}M) X Pj E— 51\{1}M X Pj
(w,jxl)(le)l lwz\{z‘},j
IO M) x P —S—  SnyM x P S Sp M
is commutative, and

Im oy, NImepn Gy, = Im((on y,5)0(0r: X 1)).

Similarly to the above, we say “.#>-manifold M” instead of “# -
manifold (M, M, ¢r,:)”.

(b) Choose ip € S, put P = P,, and set & = %\ {P}. Given a
H E-manifold M = (M,d; M, @%), define a #*-manifold N = 6pM :=
(N, 5JN, g&f}fj) by setting 5]N = 5JU{iO}M and

M
PIufio}.i

(p]}{j : 6JN X Pj = 6JU{io}M X Pj 8(6Ju{zo}\{]}M) = 6(51\{]}N)
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Note that N = &y;,)M: this fact justifies the notation dp. Furthermore,
dim M =dim N 4+ dim P + 1.

In particular, given a family ¥ = {P;} and a closed J#-manifold P, set
¥ = Y U P. Then we can assign a .# >-manifold 6pM to a % _manifold
M.

(c) Given X = {P,}, set ¥’ = XUpt and define a # =-manifold with bound-
ary to be a closed # = -manifold. Given a . >-manifold V with boundary,
set OV = 6, V. We call 0¥V the #F-boundary of V. It is clear that the
¢ *-boundary of a .#*-manifold with boundary is a closed .# *-manifold.

(d) Given a closed # > -manifold M and a closed ¢ -manifold P, define
a closed > -manifold M x P, where 6;(M x P) = 6;(M) x P and ¢} " =
(p% X 1p.

(e) Again, let ¥ = {P,;}ics. Given a subset T C S, consider the family
Y= {P,|i € T}. Now, every closed .#*-manifold M can be considered as a
closed # *-manifold if we put 6;M = () for every I with I ¢ T.

It is clear that 0*9*V = (). (This equality makes sense because of 1.16(e).)
So, we have a new cobordism category (J#*,0%) where £ is the class of
all J#*-manifolds.

Iterations of the inclusions 0;M x P; C 9(dp iy M) C 6p\ (i3 M yield an
inclusion 67y M X HieI\J P; — 0;M for every J C I. In particular, there is an
inclusion 6; M x [[,c; Pi C 6pM = M.

1.17. Definition. A singular ¢ *-manifold in a pair (X, A) is a map f :
(V,0%V) — (X, A) where V is a #*-manifold with boundary and f is such
that for every I there exists a commutative diagram

14 LX

| [

(S]V X HiGIPi L) (SIV,

where the left map is the inclusion as above and the bottom map is the

projection.

As above, one can define a bordism theory LZ(X,A). Furthermore, if
¥ =X U{P}, dim P = d, then there is an exact sequence

(1.18) -+ — L¥(X, A) D LT 4(X, A) 5 LT (X, A) 5 L7 (X, A) — -~

(an analog of (1.7)). It is not unexpected, because, informally speaking, LY =
(L¥)P, cf. (1.15). Here P is described in 1.16(d), r is described in 1.16(e),
and O[V, f] = [6p(V), flop(V)]. We leave the formal proof to the reader.

As above, one can prove that LT (X, A) is a homology theory. So, it can be
represented by a spectrum L*, and this spectrum is unique up to equivalence.
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1.19. Definition. The homology (resp. cohomology) theory L (—) (resp.
(L*)*(—)) is called a bordism (resp. cobordism) theory with Y-singularities.
For brevity, we just say (co)bordism with X-singularities.

Observe that L* is not determined by the ideal generated by {P,}. For
example, if [P] = 0 € m,(L), then the spectra L¥ and L1PF} have different
coeflicients.

Again, let ¥ = ¥ U {P}, dim P = d. By II1.3.23(ii), the morphism
P:L¥(X,A) — L}, (X, A) of homology theories is induced by a morphism
P :Y4L% — L* of spectra. Let C(P) be the cone of the morphism P. The
following generalization of 1.13 holds.

1.20. Theorem. Let L be a spectrum of finite Z-type. Suppose that the
homomorphism P : m.(L¥) — m.(L*) is monic. Then the following hold:
(i) The spectra L” and C(P) are almost equivalent;
(ii) If the group (L™ )°(L®) has no phantoms then L™ and C(P) are
equivalent. (I

Now,let ¥ = {Py,..., P,,...} be acountable set. Set ¥,, = {Py,..., P}
and define L¥(X, A) := lim L¥ (X, A). Since lim preserves exactness, LT is
a homology theory. Moreover, one can see that L> is a bordism theory based
on manifolds of the class = := U,,. ¢ >".

As above, there is a forgetful morphism 7 : L.(X,A) — LZ(X,A) of
homology theories. By I11.3.23(ii), it is induced by a morphism of spectra

(1.21) r=r>:L— L>

1.22. Definition. Let R be a commutative ring, and let M be an R-module.
A sequence {z1,... ,Zp,..., },x; € R (finite or infinite) is called proper with
respect to M , or just M -proper, if multiplication by 1 : M — M is monic and
multiplication by x; : M/(z1,... ,x;-1)M — M/(x1,... ,2;—1)M is monic
for every i. An R-proper sequence is called just proper.

1.23. Remark. There is a closely related concept of regular sequence, see
e.g. Lang [1]; namely, a proper sequence is called regular if (x1,... ,2;) # R
for every k. For example, the sequence {1,0} is proper but not regular in
Z. Note that if a finite sequence is regular then it remains regular after any
permutation, while this is not true for a proper sequence. So, we preferred to
introduce a new term (proper) and not to talk about “weak regularity”, etc.

1.24. Proposition. Let ¥ = {x1,... ,&p,... } be a proper sequence (finite
or not) in m.(L). Then there is a m.(L)-module isomorphism m.(L¥) =

(L) /(X1 Ty e ).
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Proof. Put %, = {1,... ,2,}. By 1.6, m.(L*1) = m.(L)/(z1). Now, con-
sidering the exact sequence (1.18) and using an obvious induction, we con-

clude that 7, (L") = m.(L)/(x1,...,2,) for every n. So, the proposition
holds for every finite proper X. Thus, it is valid for infinite X also since
(L)) (@1, ... Tny ... ) =lim 7w (L)/(21,. .. s 2n)- O

1.25. Examples. (a) Let ¢ be the class of stably almost complex com-
pact manifolds, i.e., Ly = MU. By VIL1.9(i), m.(MU) = Z]z1,... ,Zp,...].
Hence, by 1.24, if ¥ = {x1,...,2,,...} then m,(MU*) = Z. So, by the
Eilenberg—Steenrod Theorem,

MU* = HZ,

i.e., classical homology can be interpreted as bordism with singularities! Fur-
thermore, the morphism r : MU — MU® = HZ as in (1.21) coincides with
the Thom class, i.e., with the Steenrod—Thom morphism. In particular, every
homology class can be realized by a # >-manifold with this X.

(b) Let m be a natural number, let m be the manifold {m points}, and
let ¥/ = X U {m} with ¥ as in (a). Then MU> = HZ/m, and in this case
sequence (1.18) is just the Bockstein exact sequence.

(c) The sphere spectrum S yields framed bordism theory. Considering
m as in (b), one can prove that S™ is a Moore spectrum M (Z/m). In-
deed, the sequence (1.7) is exact for every spectrum X (because, by 111.4.22,
E;,(X) = lim E;1,,(X,) for all spectra E, X). Hence, S®*(HZ) = 0 for i # 0
and S§'(HZ) = Z/m. Therefore,

H.(S™) = SP(HZ) = H.(M(Z/m)).

Thus, by 11.4.32, S™ = M(Z/m).

§2. Multiplicative Structures

Here we assume that the above spectrum L is a commutative ring spectrum.
We discuss multiplicative structures in L> with ¥ = {P, ..., P,}. From here
to the end of the Chapter we assume that every P; is an even-dimensional
manifold.

The main results of this section were proved by Mironov [1], [2]. This
material is also exposed in Botvinnik [1]. In order to have neater notation, we
shall consider pairings (quasi-multiplications) L¥(X)® LE(Y) — L¥(X x Y)
rather than L¥ (X, A) ® LE¥(Y,B) — LY(X x Y, Ax Y U X x B).

If M is a #-manifold and N is a .#>-manifold, then M x N is a % >-
manifold in the canonical way. Namely, we set 9;(M x N) := M X 9;N, etc.
(cf. (1.15)). Thus, we have pairings
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mr: L(X)QLE(Y) = LE(X xY),mr(f@g)=fxg: Mx N — X xY,
mp: L2(Y)@ Lo (X) - LE(Y x X),mr(g® f)=gx f: Nx M —-Y x X,

where f : M — X is a singular J#-manifold and g : N — Y is a singular
2 ®-manifold. These pairings turn L* into a (left and right) quasi-module
spectrum over L.

2.1. Definition. A quasi-multiplication p in L is called admissible if it is
compatible with the pairings mp,, mg above, i.e., if the diagram

L.(X)® LZ(Y) =~ LZ(X xY)

o] H

L2(X) ® LE(Y) —A— L¥(X xY),
and the similar diagram for mpr commute.

In this case the forgetful morphism 7 : L.(—) — L¥(—) is a quasi-ring
morphism of homology theories.

It is difficult to introduce a quasi-multiplication in Lf(X) because the
product of two #F-manifolds is not a .#"-manifold in general. So, one
must find some bypasses. Firstly, we consider a geometric situation which
makes this difficulty clear.

Fix any closed manifold P € J#, dim P = d. Clearly, r[P] = 0, where
r: L.(pt) — LI (pt) is the forgetful homomorphism. Hence, if L. admits a
quasi-multiplication y then u([M] ® [P]) = 0 for every closed .# F-manifold
M. So, if this quasi-multiplication is admissible then [M x P] = 0 € LL(pt).

Consider a .# P-manifold M™ with OM = §M x P and try to prove that
[M x P]is #F-bordant to zero. We have (M x P) = §M x P’ x P", where
P’ P"” are copies of P, and 6(M x P) = dM x P”. Try to find a membrane
for M x P. The most natural way is (see the proof of 1.6): take M x P x I
and set 9g(M x P x I) = M x P x {0}. Then we must put

O(MxPxI)=0MxP)xITU(-1)"M x Px{1}
=6M x P'x P" x TU(=1)"M x P x {1}.
In order to get M x P x I as a # P-manifold, we must put
SMxPxI)=6MxP xITU(=1)"M x {1}.

But this contradicts the equality §(M x P x {0}) = 6M x P”. This contra-
diction, i.e., the difference between P’ and P”, is the main obstruction to
the existence of a quasi-multiplication. In order to avoid this obstruction we
need to fit M x P’ with §M x P” canonically.

Look at this from another point of view. Consider two closed .# -
manifolds M™, N and try to treat M x N as a # F-manifold. We have
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OM x N)=0M x NU, (-1)"M x ON

(2.2)
=0M xPxNU, (—1)"M x 6N x P.

It would be good to write this as (0M x N Uy (—1)™M x éN) x P. But we
cannot do this because ~ is in fact the identity map of 6M x P’ x §N x P”,
while in the last term of (2.2) the first P is P’ but the second P is P”. So,
again, we need to fit P’ with P”.

Consider a manifold P := P’ x P"” x I, where P’, P"” are copies of P.
Recal that dim P is even. Turn P into a closed .#*-manifold by setting
P =0, WP = 0P = 6P x P, where 6P = P” x {1} U (—P’ x {0}) and
@ : 0P x P — OP has the form

©: 6P x P=P" x {1} x P)U(—P' x {0} x P) — OP.
Let a(P) € LE(pt) be the .# F-bordism class of P.

2.3. Proposition. Let M be an arbitrary closed ¢ ¥ -manifold.
(i) The £ -manifolds M x P and M x P are ¢ -bordant.
(ii) If LY has an admissible quasi-multiplication u, then

Mpt,pt([éM] ® a(P)) =0¢ L*P(pt)a

Proof. (i) We have OM = 6 M x P. Hence (omitting signs),

OMxPxI)=0MxPxPxIUMxPx9I
=0MxPUMxPx{1}UM x P x {0}.

By setting 0p(M x Px I) = 6M x PUM x P x {0}, we obtain the proof. (It
makes sense to remark that the equality do(M x P x I) =6M x P x P x I
forces us to regard P x P x I as the # T -manifold P.)

(ii) Notice that [P] = 0 € LE (pt). Now

tptpt([0M] @ a(P)) = [6M x P] = [M X P] = pipypt([M] @ [P])
= Hpt,pt([M] ®0) = 0;

the first and third equalities hold since p is admissible, the second equality
holds by (i). O

This hints that it is impossible to find an admissible quasi-multiplication
if a(P) # 0.

2.4. Theorem. If a(P) = 0 € LY (pt), then there exists an admissible quasi-
multiplication in LY. Thus, a(P) plays the role of an obstruction to the eis-
tence of an admissible quasi-multiplication.
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Proof. Let P = 07Q, dim Q = 2d + 2. The idea of the proof is that Q
enables us to cohere P’ and P” and so to avoid the difficulty discussed above.
Given two closed # F-manifolds M, N, we have (omitting signs)

(M x N)=0M x N UM x ON.
We put
a()(]\fxzv):ao]\fx]\/VUJ\4><80]\/V7 81(M><N):81M><NUM><81N.

Consider the manifold N = NUN x I, i.e., we attach a collar to N.
Clearly, N = N. Hence,

O(M x N)=2d(M x N) =M x NUOM x N x TUM x ON x {1}.
So,
(M xN)=06MxP x NUSM x P' xdN x P"x IUM x 6N x P" x {1}.
But
SMxP'x6NxP"xI~25MxJNxP C&MxSNxIQ CI6MxSN xQ).
We set
(2.5) M+« N=MxNUydMxON xQ,

where 1) identifies M x P’ x §N x P" x I ¢ M x N with 6M x 6N x P C
O(0M x 6N x Q). Then

(M *N)=86Mx P x NUSM x 6N x 1QU M x N x P".
We turn M * N into a # F-manifold by setting
S(M+«N)=0Mx NUIM x 6N x 6Q UM x §N.

Given two singular .# F-manifolds f : M — X, g: N — Y, we have a
map fxg: M x N — X xY. Let 9N x I be a collar of 9N in N. We can
assume that g|(ON x I) = gp, where p : ON x I — ON is the projection.
Define _

h:6M x 6N x Q 2% sM x 6N 229 X x v,

According to Definition 1.4, h|(6M x 6N x 0¥ Q) = h|(6M x 6N x P) coincides
with f x g|(0M X 6N x P) = f x g|(6M x P’ x 6N x P" x I).
Define fxg: M« N — X XY by setting

frglMxN=fxg, fxgldM xdN xQ =h.

Clearly, (f * g)(0F (M * N)) C X x BUA x Y. We leave it to the reader to
prove that in this way we have a well-defined pairing
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pw=nSy LX) ® LP(Y) = LP(X x V),

(2.6)
w([M, fl® [N, g]) == [M % N, f x g]

and that the family {Ng,y} is a quasi-multiplication in L.
Finally, this quasi-multiplication is admissible. Indeed, if M and/or N is
a J -manifold, then M « N = M x N. O

2.7. Corollary. Suppose that a(P) = 0 € L.(pt) and that every group LE (pt)
is finite. Then the spectrum L¥ admits a ring structure such thatr : L — L¥
s a ring morphism.

Proof. This follows from 2.4 and I11.7.3, IT1.7.5. (|

The quasi-multiplication (2.6) depends on Q. We clarify this dependence.
Let Q1,Q2 be two J# F-manifolds with 07Q, = P = 07Q», and let p, o
be the corresponding quasi-multiplications in L' (—). We set V := Q1 Uy Q2
where

f:00Q1=P— —P=0y(—Q1), f(p)=p foreverype P.

Following IV.7.24, one can prove that V is a (B, ¢)-manifold. Furthermore,
OV = 01Q1 Uy (—01Q2), and we regard V' as a closed % -manifold by setting
OV =0V. Let 8= 3" : L(~) — LT () be the Bockstein homomorphism
from 1.8.

2.8. Theorem. Let b = b(Q1,Q2) be the # ¥ -bordism class of V.. Then

iz ®@y) — p2(r@y) = tmp(B(z) @ mr(B(y) @ b))

for every x € LT (X),y € LL(Y). (Here = means that we do not care about
the sign.)

Proof. Given two closed .# -manifolds M, N, we have (see the proof of
2.4)

(M x N)=2d(M x N)=0M x NUIM x N x UM x ON x {1}.

We set A := M x P' x NU(=1)"M x 6N x P"”. So, 0(M x N) =AUA
where A 22 §M x 6N x P = 6M x 6N x 0P Q. We define

W:=1TxMxXxNUy, (6M x3IN X Q1) Uy, (M XN x (—Q2))

where 91 : {1} x A - M X N x P and 92 : {0} x A — 6M x 0N x P are
the isomorphisms described before (2.5). We have

OIXxMxN)=MxNx{1}U(—=(M x N x{0}))U(£(I x d(M x N))).

Hence,
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(£(I x AUy, (6M x SN x Q1) UT x AUy, (6M x 6N % (—Q2))))

We set W := 1 x A. Thus
OPW =M %; N U (—(M %9 N)) U(£(6M x 6N x (Q1 U (—Q2)))). O

2.9. Remarks. (a) Consider a % -manifold P:=PxPx I/ ~, where
(2,4,0) ~ (y,2,1), i.e P = T1(P). It is easy to see that P and P are ¢ T-
bordant. In particular, a(P) € Im(r : L.(pt) — LT (pt)).

(b) As usual, we shall write ab instead of y(a ® b), where a € LY (X),b €
LE(Y),abe LE(X xY).

(c) We know that L and L2 are isomorphic if P, and P, are bordant.
Moreover, if a(Py) = 0 € L (pt), then LI and L% are isomorphic quasi-
ring homology theories (by choosing suitable quasi-multiplications). We do
not need this fact and leave the proof to the reader.

We discuss commutativity and associativity of the quasi-multiplication
p in LY. Fix a #P-manifold Q with 0FQ = P and consider the quasi-
multiplication y = p® as in (2.6). Set D = D(P) = Q U, Q, where ¥ :
ofQ — 07 Q, x(p1,pa,t) = (p2,p1,1 —t) for (p1,pa,t) € P x P x I. Notice
that x inverts the (B, ¢)-structure on P, and so D is a (B, ¢)-manifold. It
is clear that 9D = 0:Q Uy 0;Q. We turn D into a closed .# ¥'-manifold by
setting 9pD = (). Let b(P) = bg(P) be the # F-bordism class of D.

2.10. Theorem. For every x € LE(X),y € LY(Y) we have
zy — (—D)FWr (y2) = £6(P)(2)8(y) € LE(X x V),
where 7: X XY — Y x X switches factors. In particular, p is commutative

if b(P) = 0.

Proof. Consider two closed .# F-manifolds M™, N™. Following the proof
of 2.8, we have O(M x N) = Ay U A1,0(N x M) = Ay U Ay. Furthermore,
M+«N=MxNUy 0MxINxQand N«M =N x MUy, 6N x0M x Q,
where ¥1 : A1 — IM xXIN x P and 93 : Ay — 0N xdN X @ are identifications
as in (2.5). We set

W=1x M x N Uy, (6M x3IN x Q) Uy, (0N x M x Q)

where ¥ : {1} x A1 — M X 0N x P and vy : {0} x Ay — 6N x 6M x P.
Now, arguing as in 2.8, we set ;W =1 x A, and so

AW =M+« N U (—(—1)""N s M) U (£(6M x 6N x D)). O

Now consider another manifold @’ with 7@’ = P and form a closed
manifold N = Q Up (—Q’). Then bg(P) = bg/(P) + 2[N] € L (pt). In
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particular, the mod 2 reduction »(P) € LT (pt) ® Z/2 of bg(P) does not
depend on Q.

2.11. Corollary. If »(P) = 0, then LY can be equipped with an admissible
commutative quasi-multiplication. In particular, if LT (pt) contains 1/2, then
LY can be equipped with an admissible commutative quasi-multiplication.

Proof. We have bg(P) = 2[N] for some @ with 8”@ = P and some closed
2 F-manifold N. Set Q' = QU (—N). Then 0FQ" = P and b/ (P) =0. O
This corollary shows that s can be considered as an obstruction to com-

mutativity.

Passing to associativity, take @ with ' Q = P and construct a manifold
C(P) = Cq(P) as follows. Consider the arcs

Ak:{zeSl ‘ 2k3_27r§argz§ 2k;1W}, k=1,2,3,

where S' = {z € C| |z| = 1}. We turn the manifold P x P x P x D? into
a  P-manifold by setting 07 (P x P x P x D?) = P x P x P x (UAy,). Let
P’ P" P" be copies of P. We write P x P x P as P’ x P” x P in order to
distinguish the factors in P x P x P. There are inclusions

i 0P(P xQ)=P xPxPxI
=P x P"xP" x A COP x P x P x D?;
§" 0P (P" xQ)=P" xPxPxI
=P'xP" x P' x Ay CO(P x P x P x D?);
7 0P (P xQ)=P" xPxPxI
=P" x P'x P"x A3 C9(P x P x P x D?).
Set A:= PxPxPx D2 Uj/Uj//Uj/N ((Pl X Q)U(P” X Q)U(P”I X Q)) Note
that A is a J# P-manifold, since it is the result of gluing two # F-manifolds.
Consider the isomorphisms (identity maps)
P’in—1>P”><Qi—2>P'”><Qi—3>P’><Q,
and set

i=i UigUiz: PP XxQUP' ' xQUP"xQ —-P'xQUP" xQUP xQ.

Define ¢ : A — A as follows:

2
(' p" 0" p,0) = (p”,p”’,p’,p,WvL 3 > ,

where (p, ) are polar coordinates on D? and (p/,p”,p",p,p) € P' x P" x
P" x D?, and
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Y|(P'x QUP" x QUP" x Q) =i|(P' x QUP" x QU P" x Q).
Set
(2.12) Co(P) = (A x 1)/ ~ where ((x),0) ~ (z,1).
Let ¢(P) = ¢o(P) be the 2#P-bordism class of Co(P).

2.13. Theorem. Suppose that P = 0Q for some Q. Let LT (—) be equipped
with the admissible quasi-multiplication (2.6). Then

(zy)z — 2(yz) = £(c(Q) — [6(Q)]ba(P))B(x)B(y)A(2) € LI (X x Y x Z)
for every x € LE(X),y € LE(Y),z € LE(Z).

Proof. This is similar to proofs above, but tedious, see Mironov [1], [2].
(]

2.14. Corollary. The Moore spectrum M(Z/p), p > 3, p prime, admits the
structure of a commutative ring spectrum.

Proof. For simplicity, denote M(Z/p) by M. By 1.25(c), the homology
theory M, is framed bordism theory with the singularity {p points}. Since
mi(S)®Z/p =0 for 0 < i < 5, we conclude that mo(M) = 0 = mw3(M). So,
by 2.4, 2.10 and 2.13, M can be equipped with a commutative and associa-
tive quasi-multiplication. By II1.7.3, this quasi-multiplication is induced by
a multiplication. Finally, the admissibility means that the map r : S — M
can be treated as the unit. O

2.15. Remark. The spectrum M (Z/3) admits a non-associative commuta-
tive pairing M(Z/3) AN M(Z/3) — M(Z/3) by 2.4 and 2.10. In particular,
M(Z/3).(X) is a Z/3-module. The spectrum M (Z/2) does not admit any
pairing because m3(M(Z/2)) = Z /4, see Araki-Toda [1]. This means that the
obstruction a(P) € w1 (M (Z/2)) for P = {2 points} is non-trivial.

Let {P1,...,P,,...},dim P, = d,,, be a sequence of J#-manifolds. Recall
that every d,, is even. We set X,, = {P1,..., P,}. Hence, there is a tower

(2.16) L— L% — ... [P Doy [Pt L,

)

We have also the Bockstein morphisms 3, : L¥» — S ~17dn [¥n,

2.17. Theorem. Let a(P;) = 0 € LT (pt). Assume that there are chosen Q;
with 0P Q; = P; for everyi=1,... ,n,.... Then the following hold:

(i) Buvery homology theory LT~ admits a quasi-multiplication i, such
that every morphism in (2.16) is a quasi-ring morphism. Furthermore, if the
groups L?" (pt) are finite for some n and every i, then the quasi-multiplication
tn can be induced by a multiplication (which is unique up to homotopy)
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L¥n ANL¥ — L¥n i.e., L¥" becomes a ring spectrum. Moreover, if the groups
LiZ" (pt) and LZ-E"+1 (pt) are finite for some n and every i, then the morphism
rn s L0 — L¥n+1 s a ring morphism.

(ii) Suppose that r;(bg,(P;)) =0 € LY (pt) for every i < n. Then for
every v € L¥(X),y € L= (Y) we have

ay — (=), (y2) = £bg,, (Po) B ()8 (1).

(iii) Suppose that [6Q;] = 0 € LT (pt) and ¢(Q;) = 0 € LT (pt) for every
i <n. Then for every x € L¥*(X),y € L¥(Y),z € L= (Z) we have

(ry)z — x(yz) =0,

i.e., the quasi-multiplication , is associative.

Proof. This can be proved by induction based on 2.4, 2.10 and 2.13. See
Botvinnik [1], Mironov [1], [2]. O

2.18. Remark. The obstructions a, b, ¢ are natural in the following sense.
Consider two classes J#1, #5, where J#5 is an underlying class for J71, e.g.,
1 consists of stably almost complex manifolds and .#5 consists of PL man-
ifolds. Consider the corresponding morphism 7 : (L1)f — (L2)T of bordism
theories. Given a .#;-manifold P, we have the obstruction a;(P) € (L;)F (pt).
Regarding P as a J#-manifold, we have the obstruction as(P) € (Lg)f (pt).
By construction, r(a;) = ag, i.e., the obstruction a is natural with respect to
morphisms of bordism theories. Similarly for b, c.

63. Obstructions and Steenrod—tom Dieck Operations

Mironov [2] found that the obstructions a(P) and b(P) can be expressed
in terms of Steenrod-tom Dieck operations. Below we explain this for the
obstruction b(P), see 3.9. (If L = MU, then a(P) = 0 for dimensional reasons,
while we did not define Steenrod—tom Dieck operations for other L.)

In this section " denotes ~¢.

Firstly, we give a geometric description of Steenrod-tom Dieck operations
for X = 89, i.e., we describe the homomorphism

P2 . MU (pt) = MU (S°) — MUY (RP™)") = MU* (RP™)
in terms of manifolds. Here we follow Quillen [1].

3.1. Definition. Let X™ be a smooth manifold without boundary and let
V¥ be a smooth manifold (possibly with a boundary). (We do not assume X
and V to be compact.) Roughly speaking, a stable almost complex structure
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on a map f:V — X is a complex structure on a stable normal bundle of a
smooth embedding g : V¥ — X x R2N+F+7 with p;g = f. We give a detailed
definition.

(a) A strict almost complex structure on f is a tuple g := (g,U, ¢, v*",w)
where g : V¥ — X x R2N+F+7 i5 a smooth embedding with p1g = f,
(U, q,v*") is a smooth tubular neighborhood of g, and w : 2N — AV is
a morphism of vector bundles.

(b) Given a strict almost complex structure g := (g, U,q,VQN,w), we
define the suspension og = (¢',U’,¢',v*¥ @ 62,w') of g, where ¢’ is the
embedding

VL X x REVHEAR  R2 = X x REVFRHH2 /(1)) = (,0),

U :=UxR% ¢ =qgx1:UxR?— ts(?N @62 = ts(v?V) x R2, and
W 2N @02 — vV looks like & in TV.4.14(b).
(c) We say that two strict structures

go = (90, Uo, g0, g~ ,w0), 81 = (91, U1, q1, v, w1)

are equivalent if there is a family J; : X x R2N*thtn X » R2N+h+n ¢ c T
with the following properties:
(1) p1Jy = f for every t € I;
(2) The map J : X x R2N+k+n 5 [ X x RENHE+1 5 [ J(a,t) =
(Ji(a),t) for every a € X x REV+k+n ¢ ¢ [ s a diffeomorphism;
(3) J1(Uo) = Ux, J1(go(v)) = g1(v) for every v € V;
(4) There is an isomorphism & : vy — v of vector bundles such that
wWo = w1h : VgN — ’)/N.

(d) We say that two strict almost complex structures go and g; are stably
equivalent if there are non-negative integers k,l such that the strict almost
complex structures o¥gy and o'g; are equivalent.

(e) A stable equivalence class of strict stably almost complex structures on
f:V — X is called a stable almost complex structure on f. A stably almost
compler map f : V — X is a map f with a fixed stable almost complex
structure.

Clearly, this definition can be generalized. Namely, given a structure map ¢ :
B — BV, you can define a (B, ¢)-structure on a 7 map f:V — X,0X = (),
of 7 manifolds. Moreover, every (B, ©)-structure on a manifold V' can be regarded
as a (B, ¢)-structure on the map V' — pt.

Consider a stably almost complex map f : V¥ — X" of a closed manifold
V. Let g be as in 3.1(a). Since ts 2N C ts 03 TFH" = X x R2ZN+E+1 there
is a collapsing map

c: SQN+k+n(X+) — T(92N+k+n) N TVQN — 71(@2N-|—I€-‘,—71)/Uv7
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where U is a tubular neighborhood of g(V) in R2N+k+7 G we have a map
Tw: Tv — MUy yy,. The map Twoc : 32N +Hr+n(X+) — MUy, yields an
element m € MY"*(XT), and we set

ax(V, f):==me m”_k(XJr).

It is easy to see that the element gx(V, f) is well-defined, i.e., it does not
depend on g, N for N large. Besides, every © € MU*(X) has the form
qx(V, f) for some f : V — X. Indeed, let * € MU*(X) be represented
by a map a : 2N"*X*T — MUy such that a is transverse to vV. If we
set V := a~1(BUy), we get a stably almost complex map f : V — X with

ax(V, f) = =

3.2. Lemma. Let f; : V; — X, i = 0,1, be two singular closed smooth
manifolds. Let F: W — X X R be a stably almost complexr map with OW =

Vo UV1 and such that each F|V;,i = 0,1 has the form V; J X = X x {i} C
X x R. Let us equip each f; with the stable almost complex structure induced
from F. Then qx(Vo, fo) = qx(V1, f1). (Roughly speaking, qx is invariant
with respect to bordism of stably almost complex maps.) O

For simplicity, we denote qrp» by qy.

3.3. Proposition. Let © € MU (pt) = ma.(MU) be represented by a
manifold M?". Consider a singular manifold f : V"t2" — RP™ of the form

V =28"xz/9 M x M J, gn Xz/2 Pt X pt = RP™,  f(s,m,m) = (s,*,%).

In other words, f = T'a(e), where e : M — pt. Then f:V — RP"™ turns out
to be a stably almost complex map such that

an(V. f) = P, (x) € MUY (RP™)*),

Proof. Routine arguments, based on the Pontrjagin—Thom construction
and the definition of Steenrod—tom Dieck operations. O

3.4. Construction. Let X be a stably almost complex manifold, and let
f:VF — X" be a stably almost complex map. Consider the composition

1xi
v i} R2N+k+n % X X1 R2N+k+n % RQJ\J-{-n

where g is as in 3.1 and i : X — R?M*" be a smooth embedding. Clearly,
the complex structures on v, and v1x; yield a complex structure on v(jy;yg-
Thus, V' gets a canonical stable almost complex structure.

Now, put X = pt in 3.4. Then, by 3.4, every stable almost complex
structure on a map € : V — pt yields a stable almost complex structure
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on the manifold V' (as described in IV.7.13(b)). We leave it to the reader
to check that in this way we get a bijective correspondence between stable
almost complex structures on € and stable almost complex structures on V.

3.5. Proposition—Definition. Let h : X* — Y be a stably almost complex
map such that 0X = (). We define h' : MU' (X) — MUT'=F(Y) by setting
h'ax(V, f) = qv(V,hf) for every stably almost complexr map f : V — X.
This homomorphism is well-defined and called the Gysin homomorphism.!'”

Proof. Routine, based on the Pontrjagin—Thom Theorem. (]

3.6. Lemma. (i) If V¥ is a closed stably almost complex manifold then
q(V,e) = [V] € MU*(pt) where ¢ : V — pt collapses V.

(ii) If X is a stably almost complex manifold and f : V¥ — X" is a
stably almost complex map then 'qu(V, f) = [V] € MU (pt), where [V]
s equipped with the stable almost complex structure in 3.4 and ¢ : X — pt
collapses X .

(iii) Let X be a stably almost complex manifold. If ¢(V, f) = q(V', ') for
some f:V — X and f' : V' — X then [V] = [V'] where V and V' are
equipped with the stable almost complex structures in 3.4.

Proof. (i) This is obvious.
(ii) This follows from (i).
(iii) This follows from (ii). O

Given a pointed C'W-space Y, consider the pointed inclusion ey : ¥ C Y+
and the homomorphism e} : MU*(Y) = MU*(YT) — MU*(Y). Let 0" €
MU™(S™) be the image of 1 € M°(S°) under the suspension isomorphism
MU*(8°%) — My*+t"(S"™). Since this isomorphism is multiplication by o™,
we denote it (as usual) by o™ : MU*(S°) — MU*T(S™).

3.7. Lemma. Let f :J\//k — S™ be a stably almost complex map. Then
e*qsn (V, f) = a™[V] € MU F(S™) where V is equipped with the stable al-
most complex structure as 3.4.

Proof. Let ¢ denote ggn. Let ¢(V, f) be represented by a map h :
SEN=nFk((Sn)t) = §2N+k  §2N=ntk — MUy . Note that

SENTRHR((SM) )\ 22 S7 x REN TR
We can assume that h is transverse to vV and that
h™H(BUy) C SPNTER((S™)F) \ .
Then q(V, f) = q(V', f'), where V' = h=1(BUy) and

17¢f. v.2.11.
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f/ . V/ C SQN—n—i—k((sn)—i—) \ x 2 97 % RQN—n—i—k & Sn

is the map equipped with an obvious stable almost complex structure. Fur-
thermore, e*q(V', f) is represented by h|S2N+F . S2N+k . MUy, and so
e*q(V', ') = o™[V']. But, by 3.6(iii), [V] = [V'] since ¢(V, f) = q(V’, f').

O

Let zp € MU?(RP?) be as defined before VIL7.9, and let 2, = € ps 22.

3.8. Lemma. Let ¢ : RP? — S? be an essential map (unique up to
homotopy). Then c*o? = Z,.

Proof. This is valid since 6? = €5, C1(n1) (in the notation of Ch. VII).
]

Given = € MU (pt), set P2 (z) := elypn P2"(z) € MU (RP™), where
P2 is the Steenrod-tom Dieck operation.

3.9. Theorem. Let P = P% d even, be a closed stably almost complex
manifold. Let r : MU — MUT be the forgetful morphism as in (1.12). Then

rBy U([P]) = Z2bo(P) € (MUP) ~2(RP?)
for some Q. In particular,
prPy 4([P)) = Za(P) € (MUP) "2/(RP?))/(2),

where p is the modulo 2 reduction.

Proof. We construct a stably almost complex map f : M24+2 — 82 such
that r[M] = bo(P) and c*q_, (M, f) = Py %[P] with ¢ as in 3.8. Then the
theorem will be proved. Indeed, by 3.3, 3.7 and 3.8 we have (where e* =
6327 qd={qg )

Py ([P]) = eppacq(M, f) = c'e*q(M, f) = ¢"(o*[M])
= *(c?)[M] = Z[M].
We interpret S? as the Riemannian sphere C = C U {oo}. Consider the

following subsets of S2:
Dy :={z ‘ |z2| <1/2}, Dy ={z ‘ |z| > 2},
Ky :={z ‘ 1/2<|2| €2,0 < |argz| < 7/2},
Ky :={z|1/2< 2| <2,7/2 < |arg2| < 7},

St.= {z ‘ |z| = 1},

J:=(1/2,2) cCRCC,

A={z|1/2 <|z2| <2} =5"xJ

[N~}
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For simplicity, denote I'1(P) (i.e., ST Xz, (P x P)) by T.
Let g = T'y1(e) : T' — T'y(pt) = S* be the map induced by ¢ : P — pt.
Consider the map
gx1:TxJ—-8'xJ=A

andset y = qa(T'x J,gx1) € MU~24(A). Let i : A — AUD; be the inclusion.
Since [['] € MU= (pt) = 0, y = i*(z) for some x € MU 24(AU D;). We
have = gaup, (V, f1), where f1:V — AU Dy is such that

fii(A) =T xJand il x J =g x 1.

(In fact, V' is the result of attaching a membrane to the bottom of ' x J, and
f1 maps this membrane to D;.)
We define an involution w on I x J by setting

W(Z7p17p2,8) = (Z,pg,pl,l/S), z € Sl7(plap2) € P x P75 SA

We have (g x 1)(w(v)) = 1/(g x 1)(v),v € T x J. Define fo : V. — 5% by
setting fa(v) = 1/f1(v) for every v € V. Gluing f; and f2, we get a map

f=hUfa:M:=VU,V -5
We prove that r[M] = bg(P) for some Q. Firstly, I' can be represented

as P x P x I/ ~, where (z,y,0) ~ (y,z,1). We define
@ P'xP"x{0,1} — PxPx{0,1}, p(z,y,0) = (y,x,1), p(x,y, 1) = (y,,0).

Consider a # P-manifold W = P x I U, ', where ¢ glues P x {1} and I'. It
is clear that W is a ¢ F-membrane between I" and P.
Set N := f; '(D1),0N =T. Set Q := P U, N. Then

Dg(P)=NU, P x [-1,0]Uy P x [0,1]U, N,

where x : P x {0} — P x {0} is the involution defined before 2.10. This
manifold Dg(P) is # T-bordant to the #F-manifold

NUT x[-1,0]U, ' x [0,1]UN

which, in turn, is ¢ F-bordant to M. Thus, r[M] = bg(P).

We prove that c*q_, (M, f) = P, %(P). Consider the principal Z/2-bundle
(two-sheeted covering) S' x P x P — S' x5 P x P =T. Let Z/2 act on
I = [0,1] as the linear map ¢ — 1 — ¢, and let X — T be the associated
(I,Z/2)-bundle. So, X is a manifold with 9X = S x P x P. It is easy to see
that

(3.10) [3(P) = 5% Xz/9 P x P=D?x P x PUgiypyp X,

where D? is a disk.
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Considering the inclusion R? € RP?, we have RP? = R2, where bar
means the closure. Consider RP' = R! ¢ R2 = RP? and set

T =R! x [-1,1] € RP?.

So, T is a Mobius band. Let 7w : T — RP?! be the projection in the normal
bundle of RP! in RP%. We have RP? = T U D2.

We choose ¢ : (RP?, RP') — (52,1) such that:

1. ¢ is smooth, ¢|(RP?\ RP') : RP?\ RP* — S?\ {1} C C\ {1} is
bijective.

2. ¢(D?) C Ka, ¢(—t) = 1/c(t) for every t € T C RP?\ RP".

3. The set m~*(a) N ¢~1(Dy) is connected for every a € RP*.

Consider the pull-back diagram

z — 1, Rrp2

l I

M# S2.

(In fact, Z = (M \ (D xT")) Ug1x7 X, where D is a small open disk.) Clearly,
q2(Z7 f) = C*qs2 (Mv f)

Set h = cf : Z — S2. Switching the two copies of V in M, we get a dif-
feomorphism 6 : h=1(D1) — h=1(Dy) such that f(6(m)) = —f(m) for every
m € h=1(Dy) (recall that f(m) e T).

Given s € T\ RP!, s € R x (0,1], let Fy be the unique fiber of 7 : T —
RP' such that s € Fy, and let I, be a unique segment which joins s and —s
in Fs. Let I : I — I, be the linear homeomorphism, [(0) = s.

We have h=1(D;) = f~}(D;) = N. Define a map

Y:Nx{0}Uh " (D1NK))UN x {1} = Z
of the subset of (N x I) as follows:

YIN x {0} = Inxqoy, ¥IN x {1} = 0[(N x {0}), and
Y|(h ™ (a) x I) =1p x 1p X lp-1(q) : PX P X I — P x P X I.-1(y
where a € D1 N Kj.

Define @ : N x I — RP? by setting ®|(n x I) = l.(,) for every n € N. The
stably almost complex map f extends to a stably almost complex map

$ = foprojud: Z = Z x IUy N x I — RP%

Now, 8Z = Z U X UD? x P x P. Thus, by 3.2, and 3.3,
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02(Z, f) = 2(X Usixpxp D* x P x P,®|X Ugiypxp D? x P x P)
= q2(T2(P), D|T2(P)) = q2(T2(P),T2(e)) = Py (P). u

Let {Vo,...,Vpn,...},dimV, = 27Tt — 2 be a family of stably almost
complex manifolds such that ([Vo],...,[Va=1]) = 1(2,n) for every n. Set
Yo = {Vo,...,Vpu}. Let 7, : MU — MU>" be the forgetful morphism.
Since moqq(MU) = 0, the obstructions b(V,,) € 7, (MU>") are defined. (We
use the same symbol for the obstruction b(V;,) € 7. (MUY") and its image
in 7. (MU*).) Furthermore, b(V,,) = 3(V,,) because 2. (MU>") = 0. Let
I = (2,Dec) C m.(MU) be the ideal as in VIL.7.18.

3.11. Corollary. b(V,) = r,[V,41] mod I.
Proof. By 3.9 and VII.7.19,
2b(V) = 1 (P22 Vo)) = Zarn[Viga] mod T

in (MU*)*(RP?). Hence, it suffices to prove that (MAZ/{/ZW) *(RP?) is a free
(MU*~)*(pt)-module. Now, E*(S!) is a free E*(pt)-module with one gener-
ator of dimension 1 for every ring spectrum E. If; in addition, 2m.(E) = 0

then, considering the cofiber sequence S' = S' — RP2, we conclude that
E*(RP?) is a free E*(pt)-module with generators z1, z2,dim z; = i. O

3.12. Remarks. (a) This corollary leads to the following description of
I(2,n). Set Vi = {2 points}. Since a(Vp) = 0, we can construct a Vp-manifold
D(Vp) (described before 2.10). Since m.(MU) — m.(MUY?) is epic, there is
a stably almost complex manifold V; which is Vp-bordant to D(Vp). Now,
a(V1) =0, and we can construct D(V;) and V2 as above, and so on. Because

of 3.11, I(2,n) = ([Vol, .-, [Va=1])-
(b) The following picture looks interesting. Consider MU"°. It contains
[Vi] ;== D(V}) as the obstruction to commutativity. Killing V4, i.e., construct-

ing MU*2, we get [Va] := D(V4) as the obstruction to commutativity. And
so on. So, every Kkilling of the obstruction produces a new obstruction, i.e.,
we have a Hydra here. And we can relax after killing all V,,’s only, obtaining
a commutative spectrum. By the way, in this way we obtain an ordinary
(co)homology theory, see IX.5.5 below.

§4. A Universality Theorem for MU/ with Singularities

This section is an extract from the paper Wiirgler [1].

Let (E,u) be a C-marked spectrum such that every group m;(F) is finite.
Set s, 1= u.s, € E2¢l(MU). By VII.1.20, we have
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E*(MU) = MU* (MU)® (5B (9).
Thus, every element of E*(MU) can be represented as a formal series
> awSw, aw € E*(S).
Define E*(S)-homomorphisms
AP E*(MU) — E*(MU)B (B (MU), AP(sy) = D 50,@50,

(w1,w2)=w
(see TI1.1.22-1.23 concerning the notation s,, ®s,,) and
e: E*(MU) — E*(S), ¢&(sw) =0 forw#D0.

We say that (E*(MU),AF ¢) is an E*(S)-coalgebra, because it satisfies
11.6.7(a) if we replace ® there by ®.

4.1. Definition. (a) A profinite E*(S)-module is any E*(S)-module M of the

form M = lim{M)}, where {M,} is any inverse system of finitely generated

E*(S)-modules. The category of profinite E*(S)-modules is denoted by Mod.
(b) Given two profinite E*(S)-modules M, N, we set

MX N := lLH{M,\ ®E*(S) N/\/}.

(¢) An E*(MU)-comodule is a profinite E*(S)-module M equipped with
a coaction ¢ = ¥pr : M — E*(MU) K M such that the diagrams like I11.6.7
commute. A homomorphism of E*(MU)-comodules is a homomorphism f :
M — N of E*(S)-modules which commutes with the coactions, i.e., ¥ f =
(fX®1)¢ps. The category of E*(MU)-comodules is denoted by Com.

Note that, by 111.4.17, E*(X) is a profinite E*(S)-module for every spec-
trum X . Moreover, E*(X)®p-(5)E*(Y) = E*(X)RE*(Y) for every two spec-
tra X, Y. Furthermore, E*(F) is an E*(MU)-comodule for every E-module
spectrum F'. Indeed, the module structure m : MU — F induces the action
m* : B*(F) — E*(MU A F) 2 MU* (MU)® vy (5) B (F)

= E*(MU)® g (s E*(F) = E*(MU) R E*(F).

Let S : Com — Mod be the forgetful functor, and let F' : Mod — Com

assign to each M € Mod the extended comodule F(M) := E*(MU) X M
with the coaction

Yrony = AP R EY(MU)R M — E*(MU)@g-(5)E*(MU) K M
=E*(MU)XR E*(MU)K M.
4.2. Lemma. There is a natural isomorphism

e:Com(A,F(B)) — Mod(S(A), B)
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for every A € Com, B € Mod. In other words, F' and S are adjoint functors.

Proof. Given f : A — F(B), define e(f) as the composition

AL Bromuyr B 2L B*(S)R B = B.

We leave it to the reader to prove that e is an isomorphism. [

The following lemma is a standard result of relative homological algebra.

4.3. Lemma. Let M € Mod.
(i) (The relative injectivity of F(M).) Consider a diagram

A —=2. B

|7
F(M)

in Com. If s is a split monomorphism in Mod, then there exists a morphism
g: B — F(M) of E*(MU)-comodules with g = f.

(ii) Let 0 - F(M) — B — C — 0 be an ezxact sequence in Com. If it
splits in Mod then it splits in Com.

Proof. (i). Let a: B — A split s in Mod. By 4.2, we have a commutative
diagram, where ¢ is adjoint to f and b = tS(a):

Hence bS () = t. By 4.2, b is adjoint to some g : B — F(M), and g»x = f
because g« is adjoint to t.
(ii) This follows from (i) if we put f = 1pp in (i). |

Every profinite module lim M) has a topology inherited from [ M. This
topology does not depend on the system { M)} (prove it). Let Mod be the cat-
egory of profinite topological modules (topologized as above) and continuous
homomorphisms.

4.4. Proposition. Let f : X — Y be a morphism of spectra. Then f* :
E*(Y) — E*(X) is a morphism of the category Mod. O

4.5. Lemma. E*(MU) is a projective object of Mod.
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Proof. Consider the left diagram of (4.6), where o is epic:
h

B R "B
(4.6) la ml la
B (MU) —— B (Mu) —L— .

Assuming that this is a diagram in Mod, we must find a continuous homo-
morphism g : E*(MU) — B with og = f.

It is easy to see that the topology on every M € Mod is such that (ev-
ery homogeneous component of) M is compact. Hence M admits a unique
uniform structure compatible with this topology, see e.g. Bourbaki [2] or Kel-
ley [1]. Furthermore, M is a complete uniform space because M is compact.

Let R be the (discrete) E*(S)-submodule of E*(MU) generated by finite
sums Y ay,S,. Then R is dense in E*(MU). Since R is a free E*(S)-module,
there exists h : R — B such that the right diagram of (4.6) commutes.
Since R is dense in the complete space E*(MU) and B is complete, there
exists a continuous homomorphism g : E*(MU) — B which extends h. Since

fIR = (0g)|R and R is dense in E*(S), we conclude that f = og. O
4.7. Definition. A sequence (finite or infinite) ¥ = {zg,z1,... ,Zn,... },
x; € ma,(MU), is called invariant if s, (z;) € (xo,... ,x,—1) for every i and
every w # (0). Clearly, the invariance implies that ¢(z;) € (xo,...,x;) for

every i and every operation ¢ € MU*(MU).
Recall that MU™* is a (left) MU-quasi-module spectrum.

4.8. Proposition. Let ¥ = {zg,... ,x,},dimzy = 0, be a proper sequence
in m.(MU). Then the MU-quasi-module structure on MU can be extended
to an MU-module structure on MU, and this extension is unique. Further-
more, MU%' is the cone of multiplication by x; : ©% MU~ — MU -1,

Proof. By 1.24, m.(MU**) = m.(MU)/(xo, ... ,x1). Hence, the groups
7i(MU**) are finite for all 4, k. Thus, MU>* is an MU-module spectrum by
II1.7.8. Since multiplication by z; : . (MU¥-1) — m (MU¥i-1) is monic,
MU®* is the cone of z; by 1.20. g

4.9. Lemma. Let ¥ = {xg,...,z,},dimzg = 0, be a proper invariant
sequence in T (MU). If multiplication by x; : X4 E — E is trivial for every
i, then there is an isomorphism of E*(MU)-comodules

E*(MU*) = E*(MU) @ A(qo, - .- ,qn),dimg; = 1+ d;.
Here the coaction
¥ EY(MU) @ Aqo, - - - qn) — E*(MU)Bp-(5)E* (MU) @ Aqo, .- . . qn)
has the form (a @b) = AF(a) ®b.
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Proof. Firstly, we prove that multiplication by
Tiyq : DO MUT — MU

induces the zero homomorphism E*(MU*') — E*(MU¥). Consider the
commutative diagram

(it1n1)"
-

EX(MU™) ™ E*(MU A MU E*(S A MUT)

GTE ng
~ % @1 ~
MU (MUSE* (MUY 2250 My (9B E* (MU™)

where m* is induced by the module structure and ® means ® B+(s)- Now,
given ¢ € E*(MU*") with m*(¢) = a (3, cpgc@)gog), we have

b((wi A (") = b (@i @) (3 ekBet)) = b (Y vhlai)Bef)

However, ¢} (zit1) € (%o,...,%i+1) because ¥ is an invariant sequence.
Hence, b ((:L"ZH A 1)*( *)) = 0. Now, since b is an isomorphism, we conclude
that (aziH A1)*(m*p) = 0. But the homomorphism E*(MU*¥) — E*(MU>")
in question coincides Wlth (g1 A1)*m

Now we prove the lemma by induction on n. By 4.8, we have a cofiber
sequence L% MU 5 MU 5 MU+, By the above, it yields an exact
sequence of E*(MU)-comodules

(410) 0 — E (SN MUT) — EY(MUPH) — EY(MU™) — 0.

By 4.4, this is also a sequence in Mod. Suppose that we have an isomorphism
of E*(MU)-comodules

E*(MU*") = E*(MU) @ Aqo, - .. ,q;) for i <n.

Then, by 4.5, E*(MU*?) is a projective object of Mod. So, by 4.4, the se-
quence (4.10) splits in Mod, and, therefore, it splits in Mod. Hence, by 4.3(ii),
it splits in Com. Thus, we have an isomorphism of E*(MU)-comodules

B (MUS) = E(MU™) @ A(ga) = B* (MU) @ Ago, - »Gn)-

The induction is confirmed. O

4.11. Definition. Let (M, ) € Com. Similarly to 11.6.12, we call an element
m € M simple if 1»(m) = um, and the submodule of simple elements of M
is denoted by Si(M).

Note that Si(E*(MU)) = E*(S).

4.12. Proposition. Let (F,m) be an MU-module spectrum. Let E*(F') be
the E*(MU)-comodule with the coaction m* : E*(F) — E*(MU)RE*(F)
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described after 4.1. A morphism h : F — E is an MU-module morphism iff
the element h € E*(F) is simple.

Proof. Define mg : MUNE AE BAE — E, where u is the C-marking
on E. Because of VII.1.20, the left diagram below induces the right diagram:

MUNF "2 F E*(MU)® -5y E*(F) «—F— E*(F)
1Mu/\hl lh 1E*(Mu)€85h*T Th*
MUNE 25 E E*(MU)® g (5)E*(B) «2— E*(E).

We prove that the left diagram commutes iff m%(h) = u®h. It is clear that
mi(h) = mih*(1g). Hence, the left diagram commutes iff

mip(h) = (Lg- (@0 )y (1g),
i.e., iff
mp(h) = Aau A mE(1g) = (Lyy A R)* (u®1 ) = u®h. O

4.13. Theorem. Let ¥ = {xq,... , Ty, ... },dimzg = 0, be a proper invariant
sequence (finite or not) in m.(MU). If multiplication by z; : Y4 E — E is
trivial for every i, then there is an MU-module morphism MU* — E such
that hr ~ u where r : MU — MU is the forgetful morphism.

Proof. Put ¥, = {x¢,... ,x,}, and let r,, : MU — MU>" be the forgetful
morphism. By 4.9,

Si(E*(MU™)) = Si(E*(MU)@A(qo, - - - ,4n)) = Si(E*(MU))DA(qos - - - ,qn)-

Now, by 4.12, u ® 1 € Si(E*(MU)) @ A(qo,--- ,¢n) yields an MU-module
morphism h,, : MU — E.

We prove that h,r, ~ u. Following the proof of 4.9, we conclude that
there is a commutative diagram

EX(MU®) —=— E*(MU) @ Mo, .- ,qn)

‘| !
E*(MU) E*(MU)

where 7 is a morphism of E*(MU)-comodules such that 7(¢;) = 0 and r(a ®
1) = a for every a € E*(MU). Thus, r¥(h,) = u, i.e., hpr, >~ u.

If the sequence X is finite then ¥ = X,, and r = r,, for some n, and we
can put h = h,,. Now, suppose that ¥ is infinite. By the definition of h,,, we
have h,, ~ r,hp+1. So, we have the commutative diagram
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D MU (—) —I s Mufn+1(_) .

| [
E.(-) E.(-)

of morphisms of homology theories. Passing to the direct limit of the top row,
we get, by 1.2.5, the morphism h : MU (—) = im{MU>"(—)} — E.(-).
Now, by I11.3.23(ii), h is induced by a morphism h : MU* — E of spectra.
The homotopy hr ~ u can be proved just as the homotopy h,r, >~ u was.

|

4.14. Corollary. Let F be a graded formal group classified by a homo-
morphism p : MU*(S) — R. Suppose that p is an epimorphism such that
Kerp = (20,... ,&n,...), where ¥ :={xg,... ,&n,...} iS a proper sequence.
Then the formal group F' can be realized by a C -marked spectrum. Moreover if
dimxg = 0 and X is invariant then this spectrum s unique up to equivalence.

Proof. Let 61 be the category described before VII.6.19. It is clear that
(MU™)" (S) = R,

and so, by VIL1.20, (MU*)" (X) = MU*(X)®,R for every X € %r. So,
MU* turns out to be a semiring spectrum. Furthermore, the forgetful mor-
phism r : MU — MU turns MU into a C-marked spectrum, and it is clear
that the formal group of (MU*,r) is F. To prove the uniqueness, consider a
C-marked ring spectrum (F, ) having the formal group F. Then, by 4.13,
the C-marking v can be decomposed as

w: MU MU® L E,

and it is clear that h is an equivalence. ([l

65. Realization of Homology Classes by PL Manifolds
with Singularities

We have seen in 1.25(a) that every homology class can be realized by a
smooth manifold with Sullivan-Baas singularities. But this requires smooth
manifolds with a large (in fact, arbitrarily large) number of singularities. It
turns out that the situation looks simpler if one uses not smooth but PL
manifolds. Namely, in this case it suffices to use manifolds with only one
Sullivan—-Baas singularity, see 5.11 below. This fact is compatible with the
following result of Brumfiel [1]: there are many PL manifolds such that their
fundamental classes cannot be realized by smooth manifolds, cf. IV.7.38(i).
The results of this section are proved by Rudyak [5,7].
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In this section £ is the class of all compact HZ-oriented PL. manifolds.
Fix an odd prime p. Below H*(X) denotes H*(X;Z/p).

Let M (p) denote the Moore spectrum M (Z/p), T denote the spectrum
MS’PECPP?I, E denote the spectrum T'A M (p), and D denote the spectrum
MU N M(p).

5.1. Lemma. (i) Fach of the spectra T, E,D is connected and has finite
Z-type. Furthermore, each of the groups m;(E), m;(D) is finite.
(i) m0(T) = 2, m0(E) = Z,/p = mo(D), H(E) = Z/p = HO(D).

Proof. (i) The spectrum MSPL is connected by IV.5.23(i), and it has
finite type by IV.6.4. Now, 1.6 implies that T is connected and has finite
Z-type. Furthermore, since M (p) is the cone of a map S — S of degree p, we
have the exact sequence

- — i (T) LN 7(T) — 7, (E) — 7p—1(T) N

where p denotes multiplication by p. Hence, E is connected, and 7;(E) is a
finite p-group. Similarly for D.

(ii) Since mo(MSPL) = Z, the equality m(T') = Z follows from 1.6. Using
the exact sequence from (i), we conclude that mo(E) = Z/p. Now, the equality
H°(E) = Z/p follows from 11.7.20. Similarly for D. O

5.2. Lemma. (i) The spectrum T is a quasi-ring spectrum, and the spectrum
Tp] is a commutative quasi-ring spectrum.

(ii) If p > 3, then E is a commutative ring spectrum. If p = 3, then E
admits a commutative pairing EANE — E.

Proof. (i) Note that CPP~! is a complex manifold. Hence, in view of 2.18,
the obstructions a(CPP~!) and ¢(CPP~!) belong to

Tm (7, (MUCT"™") = 7.(T)).

Since map_3(MUCT"™") = 0 = 76p_3(MUCT"™"), these obstructions are triv-
ial. Hence T is a quasi-ring spectrum. The obstruction b(C'PP~1) to commuta-
tivity of its pairing belongs to the group Im(7r4p,2(MSOCPp71) — Tap—2(T))
of exponent 4 (because 2m;(MSO) = 0 for i # 4k, see IV.6.5 and 1V.6.9),
and so, by 2.10, 4(zy — (—=1)II¥))7, (y2) = 0 for every z,y € Tu(X). Thus,
T[p] is a commutative quasi-ring spectrum.

(ii) By 2.14, M(p) is a commutative ring spectrum for p > 3. Hence, by
(i), the spectrum E admits a quasi-multiplication. By II1.7.3(i), this quasi-
multiplication can be induced by a multiplication EAE — E. The case p = 3
can be considered similarly. |

5.3. Lemma. Let a € H°(D) = Z/p be a generator. Then Qo(a) # 0 #
Ql(a).
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Proof. By 5.1(ii) and I1.7.20, Qo(a) # 0. The localization j : MUCr™" —
MUCP"" " [p] induces an equivalence

§'=jAl:D=MUP" AM@p) — MUE" " [p] A M(p).

Define a morphism

£ Mup] 2 MuCP p] = MUCT Bl A S
1AL

AL MU [p) A M(p) = D,

where r : MU — MUCP"™" is the forgetful morphism and the last equivalence
is an inverse morphism to j'. Let s : BP — MU|p|, p : MU[p] — BP and
{vi} be as in VIL.3.19. Let s, : 7. (BP) — m.(MU[p]) and p. : m.(MU[p]) —
7« (BP) be the induced homomorphisms. We have

s (vn) € I(p,n+ 1) C m (MUp)).

Indeed, v, = psxpn_1, where I(p,n + 1) = (p,xp—1,...,Tpn—_1). Hence
() = stupe(Tpn_1) = P(xpn_1); but ®(apn_1) € I(p,n + 1) because
I(p,n + 1) is an invariant ideal. Since I(p,2) = (p, [CPP~']), we conclude
that fise.(v1) = 0 € m.(D). Hence there exists a morphism h : C(v1) — D
such that the diagram

»»-2pp — BP —— C(v1)

x| |»

commutes. Here the first row is a cofiber sequence. We have

0 ifi<o0,
mi(C(n))=< Z/p ifi=0,
0 if0<i<2p®—2.

Hence the coskeleton (C(v1))(2p2—2) is HZ[p]. Hence Q1 (z) # 0 for a genera-
torz € HY(C(v1)) = Z/p. Since h* : H°(D) — H°(C(v1)) is an isomorphism,
Q1(a) #0. O

5.4. Lemma. Let u = uc € H°(MU) be the universal Thom class. Then
PRi(u) £ 0 for every j =1,2,....

Proof. Because of the universality of u, it suffices to find a complex vector
bundle ¢ such that 9229 (ug) # 0,5 = 1,2,..., where ug € H*(TE) is the
Thom class of €. Let i be as in VIL.1.3(f). Then, by VII.1.29, we can identify
Tn with CP*, and z = u, € H*(CP>) generates H?(CP>) = Z. We
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prove by induction on j that &% (z) = 2? for every j = 1,2,.... Indeed,
PR (x) = PY(x) = 2P. Suppose that 2% (x) = 2P’ . Then
PR+ (g) =[PP, PP (x) = PP 2D (z) =PY (o) =27 . DO

5.5. Theorem. F is a graded Filenberg—Mac Lane spectrum.

Proof. By 5.1(ii), 5.2(ii) and I1.7.21, H*(E) is a connected 7,-coalgebra
(it is, probably, non-associative for p = 3). Let v € H°(E) be the counit of
this coalgebra. Define v : o, — H*(E) by setting v(a) = a(v). By IV.6.4,
E has finite Z[p]-type. Thus, by I1.7.24(ii) and I1.7.25, is sufficient to prove
that v(Q;) #0 fori =0,1,..., v(P2) £0for j=1,2,....

Let r: MSPL — T be the forgetful morphism. The other forgetful mor-
phism s : MU — MSPL induces a forgetful morphism § : MUCF™ = T.
Consider the morphisms

a:D=MUT"" AMp) LS TAM®p) =E,
B:MSPL=MSPLAS 2L TAS S TAMp) =E