SPOILER B: - - - - - - - - - - - - - - - - - - - - - - - - - - - Torsten Sillke, 7. Apr. 1993 The binary form of Conway's sequence: 1, 11, 101, 111011, 11110101, 100110111011, ... The Rule: binary-run-length-encoding 100110111011 is (1 times 1, 2 times 0, 2 times 1, 1 times 0, 3 times 1, 1 times 0, 2 times 1) and binary (1 times 1, 10 times 0, 10 times 1, 1 times 0, 11 times 1, 1 times 0, 10 times 1) and concatenating all strings gives: 111001011011110101 Question: How many digits has the n-th term? Hint: Find the 'atoms' in this series. This is a very easy problem. The term atom originates from Conway (Eureka 46). Then you can compute the lenght of the n-th iterate. Atom Decay: 10 Atoms are in use for the decay of A1. ( A0 -> A10 ) A1 -> A11 A11 -> A10 A1 ( A111 -> A111 (stable) ) ( A1111 -> A100 A1 ) A10 -> A1110 A110 -> A10 A110 A1110 -> A11110 A11110 -> A100 A110 A100 -> A11100 A1100 -> A10 A1100 A11100 -> A111100 A111100 -> A100 A1100 Writing the series in the atom notation gives: A1 A11 A10 | A1 A1110 | A11 A11110 | A10 | A1 A100 A110 | A1110 | A11 A11100 A10 | A110 A11110 | A10 | A1 A111100 A1110 A10 A110 | A100 A110 | A1110 | A11 A100 A1100 A11110 A1110 A10 A110 | A11100 A10 | A110 A11110 | A10 | A1 The transition-matrix T of the 10 used atoms has the form: [01........] [101.......] [..00100000] [..11000000] [..00010000] [..01001000] = T [..00000010] [..10000100] [..00000001] [..00001100] Note that '.' stands for 0. T is a block triangular matrix. The characteristic polynomial det(xI - T) gives a recurrence relation for the number of atom as well as the number of '0' or '1' or the total number of digits. The largest eigenvalue of this matrix gives the asymtotic length of the n-th term. The first 30 term of the number of digits of the series: 1 2 3 6 8 12 18 27 39 58 85 125 183 269 394 578 847 1242 1820 2668 3910 5731 8399 12310 18041 26441 38751 56793 83234 121986 178779 Asymtotic: c1 * 1.465571232^n The number of atoms of the series beginning with A10: 1 1 1 2 3 4 6 9 13 19 28 41 60 88 129 189 277 406 595 872 1278 1873 2745 4023 5896 8641 12664 18560 27201 39865 58425 85626 125491 recurrence: a = ( 4 a + 2 a + 3 a + 2 a - a + a )/5 n n-1 n-2 n-3 n-4 n-5 n-6 Asymtotic: a_n = c2 * 1.465571232^n Reference: (Conway's sequence) - J. H. Conway, The Weird and Wonderful Chemistry of Audioactive Decay, Eureka 46 (1986) 5-16, reprinted in: Open Problems in Communications and Computations, Springer, 1987, 173-188 Decay Diagram: A loop is indicated by (). 1 ^ | v 11 | v () 1100 ---> 10 ^ | ^ | v \ 111100 1110 110 () ^ | | ^ / v v / 11100 <- 100 <- 11110