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1. Introduction

The heart of Mathematics is its problems. Paul Halmos

1. Introduction Number Theory is a beautiful branch of Mathematics.
The purpose of this book is to present a collection of interesting questions
in Number Theory. Many of the problems are mathematical competition
problems all over the world including IMO, APMO, APMC, Putnam, etc.
I have given sources of the problems at the end of the book. The book is
available at

http://my.netian.com/∼ideahitme/eng.html

2. How You Can Help This is an unfinished manuscript. I would
greatly appreciate hearing about any errors in the book, even minor ones. I
also would like to hear about

a) challenging problems in Elementary Number Theory,
b) interesting problems concerned with the History of Num-
ber Theory,
c) beautiful results that are easily stated,
d) remarks on the problems in the book.

You can send all comments to the author at hojoolee@korea.com .

3. Acknowledgments The author would like to thank the following peo-
ple for sending me suggestions and corrections, etc. : Alexander A. Zenkin,
Arne Smeets, Curt A. Monash, Don Coppersmith, Edward F. Schaefer, Ed-
win Clark, George Baloglou, Ha Duy Hung, Keith Matthews, Leonid G. Fel,
Orlando Doehring
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2. Notations and Abbreviations

Notations

Z is the set of integers
N is the set of positive integers
N0 is the set of nonnegative integers
m|n n is a multiple of m.∑

d|n f(d) =
∑

d∈D(n) f(d) (D(n) = {d ∈ N : d|n})
[x] the greatest integer less than or equal to x
{x} the fractional part of x ({x} = x− [x])
φ(n) the number of positive integers less than n that are
relatively prime to n
π(x) the number of primes p with p ≤ x

Abbreviations

AIME American Invitational Mathematics Examination
APMO Asian Pacific Mathemats Olympiads
IMO International Mathematical Olympiads
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3. Divisibility Theory I

Why are numbers beautiful? It’s like asking why is Beethoven’s Ninth
Symphony beautiful. If you don’t see why, someone can’t tell you. I know
numbers are beautiful. If they aren’t beautiful, nothing is. Paul Erdös

A 1. (Kiran S. Kedlaya) Show that if x, y, z are positive integers, then
(xy + 1)(yz + 1)(zx + 1) is a perfect square if and only if xy + 1, yz + 1,
zx + 1 are all perfect squares.

A 2. The integers a and b have the property that for every nonnegative
integer n the number of 2na+b is the square of an integer. Show that a = 0.

A 3. Let n be a positive integer such that 2 + 2
√

28n2 + 1 is an integer.
Show that 2 + 2

√
28n2 + 1 is the square of an integer.

A 4. Let a and b be positive integers such that ab + 1 divides a2 + b2. Show
that

a2 + b2

ab + 1
is the square of an integer. 1

A 5. Let x and y be positive integers such that xy divides x2 +y2 +1. Show
that 2

x2 + y2 + 1
xy

= 3.

A 6. Prove that among any ten consecutive positive integers at least one is
relatively prime to the product of the others.

A 7. Show that 1994 divides 10900 − 21000.

A 8. Let n be a positive integer with n ≥ 3. Show that

nnnn

− nnn

is divisible by 1989.

A 9. Let n be an integer with n ≥ 2. Show that n does not divide 2n − 1.

A 10. Let k ≥ 2 and n1, n2, · · · , nk ≥ 1 be natural numbers having the
property n2|2n1 − 1, n3|2n2 − 1, · · · , nk|2nk−1 − 1, n1|2nk − 1. Show that
n1 = n2 = · · · = nk = 1.

A 11. Determine if there exists a positive integer n such that n has exactly
2000 prime divisors and 2n + 1 is divisible by n.

1See I6
2See B15 and I34
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A 12. Let m and n be natural numbers such that

A =
(m + 3)n + 1

3m
.

is an integer. Prove that A is odd.

A 13. Let m and n be natural numbers and let mn + 1 be divisible by 24.
Show that m + n is divisible by 24, too.

A 14. Let f(x) = x3 + 17. Prove that for each natural number n ≥ 2, there
is a natural number x for which f(x) is divisible by 3n but not 3n+1.

A 15. Determine all positive integers n for which there exists an integer m
so that 2n − 1 divides m2 + 9.

A 16. Let n be a positive integer. Show that the product of n consecutive
integers is divisible by n!

A 17. Prove that the number
n∑

k=0

(
2n + 1
2k + 1

)
23k

is not divisible by 5 for any integer n ≥ 0.

A 18. (Wolstenholme’s Theorem) Prove that if

1 +
1
2

+
1
3

+ · · ·+ 1
p− 1

is expressed as a fraction, where p ≥ 5 is a prime, then p2 divides the
numerator.

A 19. If p is a prime number greater than 3 and k = [2p
3 ]. Prove that the

sum (
p

1

)
+

(
p

2

)
+ · · ·+

(
p

k

)

is divisible by p2.

A 20. Show that
(
2n
n

)|LCM [1, 2, · · · , 2n] for all positive integers n.

A 21. Let m and n be arbitrary non-negative integers. Prove that

(2m)!(2n)!
m!n!(m + n)!

is an integer. (0! = 1).

A 22. Show that the coefficients of a binomial expansion (a + b)n where n
is a positive integer, are odd, if and only if n is of the form 2k − 1 for some
positive integer k.
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A 23. Prove that the expression

gcd(m,n)
n

(
n

m

)

is an integer for all pairs of positive integers n ≥ m ≥ 1.

A 24. For which positive integers k, is it true that there are infinitely many
pairs of positive integers (m, n) such that

(m + n− k)!
m!n!

is an integer ?

A 25. Show that if n ≥ 6 is composite, then n divides (n− 1)!.

A 26. Show that there exist infinitely many positive integers n such that
n2 + 1 divides n!.

A 27. Let p and q be natural numbers such that
p

q
= 1− 1

2
+

1
3
− 1

4
+ · · · − 1

1318
+

1
1319

.

Prove that p is divisible by 1979.

A 28. Let b > 1, a and n be positive integers such that bn − 1 divides a.
Show that in base b, the number a has at least n non-zero digits.

A 29. Let p1, p2, · · · , pn be distinct primes greater than 3. Show that 2p1p2···pn+
1 has at least 4n divisors.

A 30. Let p ≥ 5 be a prime number. Prove that there exists an integer a
with 1 ≤ a ≤ p− 2 such that neither ap−1 − 1 nor (a + 1)p−1 − 1 is divisible
by p2.

A 31. An integer n > 1 and a prime p are such that n divides p− 1, and p
divides n3 − 1. Show that 4p + 3 is the square of an integer.

A 32. Let n and q be integers with n ≥ 5, 2 ≤ q ≤ n. Prove that q − 1
divides

[
(n−1)!

q

]
.

A 33. If n is a natural number, prove that the number (n+1)(n+2) · · · (n+
10) is not a perfect square.

A 34. Let p be a prime with p > 5, and let S = {p − n2|n ∈ N, n2 < p}.
Prove that S contains two elements a, b such that 1 < a < b and a divides
b.

A 35. Let n be a positive integer. Prove that the following two statements
are equivalent.

◦ n is not divisible by 4
◦ There exist a, b ∈ Z such that a2 + b2 + 1 is divisible by n.
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A 36. Determine the greatest common divisor of the elements of the set

{n13 − n|n ∈ Z}.
A 37. Show that there are infinitely many composite n such that 3n−1−2n−1

is divisible by n

A 38. Suppose that 2n+1 is an odd prime for some positive integer n. Show
that n must be a power of 2.

A 39. Suppose that p is a prime number and is greater than 3. Prove that
7p − 6p − 1 is divisible by 43.

A 40. Suppose that 4n + 2n + 1 is prime for some positive integer n. Show
that n must be a power of 3.

A 41. Let b, m, n be positive integers b > 1 and m and n are different.
Suppose that bm − 1 and bn − 1 have the same prime divisors. Show that
b + 1 must be a power of 2.

A 42. Show that a and b have the same parity if and only if there exist
integers c and d such that a2 + b2 + c2 + 1 = d2.

A 43. Let n be a positive integer with n > 1. Prove that
1
2

+ · · ·+ 1
n

is not an integer.

A 44. Let n be a positive integer. Prove that
1
3

+ · · ·+ 1
2n + 1

is not an integer.

A 45. Prove that there is no positive integer n such that, for k = 1, 2, · · · , 9,
the leftmost digit (in decimal notation) of (n + k)! equals k.

A 46. Show that every integer k > 1 has a multiple less than k4 whose
decimal expansion has at most four distinct digits.

A 47. Let a, b, c and d be odd integers such that 0 < a < b < c < d and
ad = bc. Prove that if a + d = 2k and b + c = 2m for some integers k and
m, then a = 1.

A 48. Let d be any positive integer not equal to 2, 5, or 13. Show that one
can find distinct a, b in the set {2, 5, 13, d} such that ab− 1 is not a perfect
square.

A 49. Suppose that x, y, z are positive integers with xy = z2 +1. Prove that
there exist integers a, b, c, d such that x = a2 + b2, y = c2 + d2, z = ac + bd.

A 50. A natural number n is said to have the property P , if whenever n
divides an − 1 for some integer a, n2 also necessarily divides an − 1.
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(a) Show that every prime number n has propery P .
(b) Show that there are infinitely many composite numbers n
that possess property P .

A 51. Show that for every natural number n the product(
4− 2

1

)(
4− 2

2

)(
4− 2

3

)
· · ·

(
4− 2

n

)

is an integer.

A 52. Let a, b, c be integers such that a + b + c divides a2 + b2 + c2. Prove
that there are infinitely many positive integers n such that a + b + c divides
an + bn + cn.

A 53. Prove that for every positive integer n the following proposition holds
: The number 7 is a divisor of 3n+n3 if and olny if 7 is a divisor of 3nn3+1.

A 54. Let k ≥ 14 be an integer, and let pk be the largest prime number
which is strictly less than k. You may assume that pk ≥ 3k/4. Let n be a
composite integer. Prove :

(a) if n = 2pk, then n does not divide (n− k)!
(b) if n > 2pk, then n divides (n− k)!.

A 55. Suppose that n has (at least) two essentially distinct representations
as a sum of two squares. Specifically, let n = s2 + t2 = u2 + v2, where
s ≥ t ≥ 0, u ≥ v ≥ 0, and s > u. If d = gcd(su − tv, n), show that d is a
propor divisor of n.

A 56. Prove that there exist an infinite number of ordered pairs (a, b) of
integers such that for every positive integer t, the number at+b is a triangular
number if and only if t is a triangular number. (The triangular numbers are
the tn = n(n + 1)/2 with n in {0, 1, 2, . . . }.)
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4. Divisibility Theory II

Number theorists are like lotus-eaters - having tasted this food they can
never give it up. Leopold Kronecker

B 1. Determine all integers n > 1 such that
2n + 1

n2

is an integer.

B 2. Determine all pairs (n, p) of nonnegative integers such that
◦ p is a prime,
◦ n < 2p, and
◦ (p− 1)n + 1 is divisible by np−1.

B 3. Determine all pairs (n, p) of positive integers such that
◦ p is a prime, n > 1,
◦ (p− 1)n + 1 is divisible by np−1. 3

B 4. Find an integer n, where 100 ≤ n ≤ 1997, such that
2n + 2

n
is also an integer.

B 5. Find all triples (a, b, c) such that 2c − 1 divides 2a + 2b + 1.

B 6. Find all integers a, b, c with 1 < a < b < c such that

(a− 1)(b− 1)(c− 1) is a divisor of abc− 1.

B 7. Find all positive integers, representable uniquely as

x2 + y

xy + 1
,

where x, y are positive integers.

B 8. Determine all ordered pairs (m, n) of positive integers such that

n3 + 1
mn− 1

is an integer.

B 9. Determine all pairs of integers (a, b) such that

a2

2a2b− b3 + 1
is a positive integer.

3The anwser is (n, p) = (2, 2), (3, 3). Note that this problem is a very nice generalization
of the above two IMO problems B1 and B2 !
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B 10. Find all pairs of positive integers m,n ≥ 3 for which there exist
infinitely many positive integers a such that

am + a− 1
an + a2 − 1

is itself an integer.

B 11. Determine all triples of positive integers (a,m, n) such that am + 1
divides (a + 1)n.

B 12. Find all n ∈ N such that [
√

n]|n.

B 13. Find all n ∈ N such that 2n−1|n!.

B 14. Find all positive integers (x, n) such that xn + 2n + 1 is a divisor of
xn+1 + 2n+1 + 1.

B 15. Find all positive integers n such that 3n − 1 is divisible by 2n.

B 16. Find all positive integers n such that 9n − 1 is divisible by 7n.

B 17. Determine all pairs (a, b) of integers for which a2 + b2 +3 is divisible
by ab.4

B 18. Determine all pairs (x, y) of positive integers with y|x2+1 and x|y3+1.

B 19. Determine all pairs (a, b) of positive integers such that ab2 + b + 7
divides a2b + a + b.

B 20. Let a and b be positive integers. When a2 + b2 is divided by a + b,
the quotient is q and the remainder is r. Find all pairs (a, b) such that
q2 + r = 1977.

B 21. Find the largest positive integer n such that n is divisible by all the
positive integers less than n1/3.

B 22. Find all n ∈ N such that 3n − n is divisible by 17.

B 23. Suppose that a, b are natural numbers such that

p =
4
b

√
2a− b

2a + b

is a prime number. What is the maximum possible value of p?

B 24. Find all positive integer N which have the following properties
◦ N has exactly 16 positive divisors 1 = d1 < d2 < · · · <
d15 < d16 = N ,
◦ The divisor with d2 is equal to (d2 + d4)d6.

B 25. Find all positive integers n that have exactly 16 positive integral
divisors d1, d2 · · · , d16 such that 1 = d1 < d2 < · · · < d16 = n, d6 = 18, and
d9 − d8 = 17.

4See B15 and I34
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B 26. Suppose that n is a positive integer and let

d1 < d2 < d3 < d4

be the four smallest positive integer divisors of n. Find all integers n such
that

n = d1
2 + d2

2 + d3
2 + d4

2.

B 27. Let 1 = d1 < d2 < · · · < dk = n be all different divisors of positive
integer n written in ascending order. Determine all n such that d7

2 +d10
2 =(

n
d22

)2
.

B 28. Let n ≥ 2 be a positive integer, with divisors

1 = d1 < d2 < · · · < dk = n .

Prove that
d1d2 + d2d3 + · · ·+ dk−1dk

is always less than n2, and determine when it is a divisor of n2.

B 29. Find all positive integers n such that
(a) n has exactly 6 positive divisors 1 < d1 < d2 < d3 < d4 <
n,
(b) 1 + n = 5(d1 + d2 + d3 + d4).

B 30. Find all composite numbers n, having the property : each divisor d
of n (d 6= 1, n) satisfies inequalties n− 20 ≤ d ≤ n− 12.

B 31. Determine all three-digit numbers N having the property that N is
divisible by 11, and N

11 is equal to the sum of the squares of the digits of N.

B 32. When 44444444 is written in decimal notation, the sum of its digits
is A. Let B be the sum of the digits of A. Find the sum of the digits of B.
(A and B are written in decimal notation.)

B 33. A wobbly number is a positive integer whose digits in base 10 are
alternatively non-zero and zero the units digit being non-zero. Determine
all positive integers which do not divide any wobbly number.

B 34. Let n be a composite natural number and p be a proper divisor of n.
Find the binary representatoin of the smallest natural number N such that

(1 + 2p + 2n−p)N − 1
2

is an integer.

B 35. Find the smallest positive integer n such that
(i) n has exactly 144 distinct positive divisors, and
(ii) there are ten consecutive integers among the positive di-
visors of n.
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B 36. Determine the least possible value of the natural number n such that
n! ends in exactly 1987 zeros.

B 37. Find four positive integers, each not exceeding 70000 and each having
more than 100 divisors.

B 38. For each integer n > 1, let p(n) denote the largest prime factor of n.
Determine all triples (x, y, z) of distinct positive integers satisfying

(i) x, y, z are in arithmetic progression, and
(ii) p(xyz) ≤ 3.

B 39. Find all positive integers a and b such that

a2 + b

b2 − a
and

b2 + a

a2 − b

are both integers.

B 40. For each positive integer n, write the sum
∑n

m=1 1/m in the form
pn/qn, where pn and qn are relatively prime positive integers. Determine all
n such that 5 does not divide qn.
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5. Arithmetic in Zn

Mathematics is the queen of the sciences and number theory is the queen
of Mathematics. Johann Carl Friedrich Gauss

5.1. Primitive Roots.

C 1. Let n be a positive integer. Show that there are infinitely many primes
p such that the smallest positive primitive root of p is greater than n.

C 2. Let p be a prime with p > 4
(

p−1
φ(p−1)

)2
22k, where k denotes the number

of distinct prime divisors of p−1, and let M be an intger. Prove that the set
of integers M +1, M +2, · · · , M +2

[
p−1

φ(p−1)2
k√p

]
− 1 contains a primitive

root to modulus p.

C 3. Show that for each odd prime p, there is an integer g such that 1 <
g < p and g is a primitive root modulo pn for every positive integer n.

C 4. Let g be a Fibonacci primitive root (mod p). i.e. g is a primitive root
(mod p) satisfying g2 ≡ g + 1(mod p). Prove that

(a) g − 1 is also a primitive root (mod p).
(b) if p = 4k+3, then (g−1)2k+3 ≡ g−2(mod p) and deduce
that g − 2 is also a primitive root (mod p).

C 5. If g1, · · · , gφ(p−1) are the primitive roots mod p in the range 1 < g ≤
p− 1, prove that

φ(p−1)∑

i=1

gi ≡ µ(p− 1)(mod p).

C 6. Suppose that m does not have a primitive root. Show that

a
φ(m)

2 ≡ −1 (mod m)

for every a relatively prime m.

C 7. Suppose that p > 3 is prime. Prove that the products of the primitive
roots of p between 1 and p− 1 is congruent to 1 modulo p.

5.2. Qudratic Residues.

C 8. The positive integers a and b are such that the numbers 15a + 16b and
16a − 15b are both squares of positive integers. What is the least possible
value that can be taken on by the smaller of these two squares?

C 9. Let p be an odd prime number. Show that the smallest positive qua-
dratic nonresidue of p is smaller than

√
p + 1.
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C 10. Let M be an integer, and let p be a prime with p > 25. Show that
the sequence M , M +1, · · · , M +3[

√
p]− 1 contains a qudratic non-residue

to modulus p.

C 11. Let p be an odd prime and let Zp denote (the field of) integers modulo
p. How many elements are in the set

{x2 : x ∈ Zp} ∩ {y2 + 1 : y ∈ Zp}?
5.3. Congruences.

C 12. If p is an odd prime, prove that
(

k

p

)
≡

[
k

p

]
(mod p).

C 13. Suppose p is an odd prime. Prove that
p∑

j=0

(
p

j

)(
p + j

j

)
≡ 2p + 1 (mod p2).

C 14. (Morley) Show that

(−1)
p−1
2

(
p− 1
p−1
2

)
≡ 4p−1(mod p3)

for all prime numbers p with p ≥ 5.

C 15. Let n be a positive integer. Prove that n is prime if and only if
(

n− 1
k

)
≡ (−1)k(mod n)

for all k ∈ {0, 1, · · · , n− 1}.
C 16. Prove that for n ≥ 2,

n terms︷︸︸︷
22···

2

≡
n− 1 terms︷︸︸︷

22···
2

(mod n).

C 17. Show that, for any fixed integer n ≥ 1, the sequence

2, 22, 222
, 2222

, . . . (mod n)

is eventually constant.

C 18. Show that there exists a composite number n such that an ≡ a (mod n)
for all a ∈ Z.

C 19. Let p be a prime number of the form 4k + 1. Suppose that 2p + 1 is
prime. Show that there is no k ∈ N with k < 2p and 2k ≡ 1 (mod 2p + 1)



PROBLEMS IN ELEMENTARY NUMBER THEORY 15

C 20. During a break, n children at school sit in a circle around their teacher
to play a game. The teacher walks clockwise close to the children and hands
out candies to some of them according to the following rule. He selects one
child and gives him a candy, then he skips the next child and gives a candy
to the next one, then he skips 2 and gives a candy to the next one, then he
skips 3, and so on. Determine the values of n for which eventually, perhaps
after many rounds, all children will have at least one candy each.

C 21. Suppose that m > 2, and let P be the product of the positive integers
less than m that are relatively prime to m. Show that P ≡ −1(mod m) if
m = 4, pn, or 2pn, where p is an odd prime, and P ≡ 1(mod m) otherwise.

C 22. Let Γ consist of all polynomials in x with integer coefficienst. For f
and g in Γ and m a positive integer, let f ≡ g (mod m) mean that every
coefficient of f − g is an integral multiple of m. Let n and p be positive
integers with p prime. Given that f, g, h, r and s are in Γ with rf + sg ≡ 1
(mod p) and fg ≡ h (mod p), prove that there exist F and G in Γ with
F ≡ f (mod p), G ≡ g (mod p), and FG ≡ h (mod pn).

C 23. Determine the number of integers n ≥ 2 for which the congruence

x25 ≡ x (mod n)

is true for all integers x.

C 24. Let n1, · · · , nk and a be positive integers which satify the following
condtions :

i) for any i 6= j, (ni, nj) = 1,
ii) for any i, ani ≡ 1(mod ni),
iii) for any i, ni 6 |a− 1.

Show that there exist at least 2k+1 − 2 integers x > 1 with ax ≡ 1(mod x).

C 25. Determine all positive integers n ≥ 2 that satisfy the following con-
dition ; For all integers a, b relatively prime to n,

a ≡ b (mod n) ⇐⇒ ab ≡ 1 (mod n).

C 26. Determine all positive integers n such that xy+1 ≡ 0(mod n) implies
that x + y ≡ 0(mod n).

C 27. Let p be a prime number. Determine the maximal degree of a polyno-
mial T (x) whose coefficients belong to {0, 1, · · · , p− 1} whose degree is less
than p, and which satisfies

T (n) = T (m) (mod p) =⇒ n = m (mod p)

for all integers n,m.
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6. Primes and Composite Numbers

Wherever there is number, there is beauty. Proclus Diadochus

D 1. Prove that the number 5123 + 6753 + 7203 is composite. 5

D 2. Show that there are infinitely many primes.

D 3. Find all natural numbers n for which every natural number whose
decimal representation has n− 1 digits 1 and one digit 7 is prime.

D 4. Prove that there do not exist polynomials P and Q such that

π(x) =
P (x)
Q(x)

for all x ∈ N.

D 5. Show that there exist two consecutive integer squares such that there
are at least 1000 primes between them.

D 6. Let a, b, c, d be integers with a > b > c > d > 0. Suppose that
ac + bd = (b + d + a− c)(b + d− a + c). Prove that ab + cd is not prime.

D 7. Prove that there is no noncontant polynomial f(x) with integral coef-
ficients such that f(n) is prime for all n ∈ N.

D 8. A prime p has decimal digits pnpn−1 · · · p0 with pn > 1. Show that
the polynomial pnxn + pn−1x

n−1 + · · ·+ p1x + p0 cannot be represented as a
product of two nonconstant polynomials with integer coefficients

D 9. Let n ≥ 2 be an integer. Prove that if k2 + k + n is prime for all
integers k such that 0 ≤ k ≤ √

n
3 , then k2 + k + n is prime for all integers

k such that 0 ≤ k ≤ n− 2.

D 10. Prove that for any prime p in the interval
(
n, 4n

3

]
, p divides

n∑

j=0

(
n

j

)4

D 11. Let a, b, and n be positive integers with gcd(a, b) = 1. Without using
the Dirichlet’s theorem6, show that there are infinitely many k ∈ N such
that gcd(ak + b, n) = 1.

D 12. Without using the Dirichlet’s theorem, show that there are infintely
many primes ending in the digit 9.

D 13. Let p be an odd prime. Without using the Dirichlet’s theorem, show
that there are infintely many primes of the form 2pk + 1.

5Note that there is a hint at chapter 15.
6For any a, b ∈ N with gcd(a, b) = 1, there are infinitely many primes of the form

ak + b.
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D 14. Show that, for each r ≥ 1, there are infintely many primes p ≡
1 (mod 2r).

D 15. Prove that if p is a prime, then pp − 1 has a prime factor that is
congruent to 1 modulo p.

D 16. Let p be a prime number. Prove that there exists a prime number q
such that for every integer n, np − p is not divisible by q.

D 17. Let p1 = 2, p2 = 3, p3 = 5, · · · , pn be the first n prime numbers, where
n ≥ 3. Prove that

1
p1

2
+

1
p2

2
+ · · ·+ 1

pn
2

+
1

p1p2 · · · pn
<

1
2
.

D 18. Let pn be the nth prime : p1 = 2, p2 = 3, p3 = 5, · · · . Show that the
infinite series

∞∑

n=1

1
pn

diverges.

D 19. Prove that log n ≥ k log 2, where n is a natural number and k is the
number of distinct primes that divide n.

D 20. Find the smallest prime which is not the difference (in some order)
of a power of 2 and a power of 3.

D 21. Find the sum of all distinct positive divisors of the number 104060401.

D 22. Prove that 1280000401 is composite.

D 23. Prove that 5125−1
525−1

is a composite number.

D 24. Find the factor of 233−219−217−1 that lies between 1000 and 5000.

D 25. Prove that for each positive integer n there exist n consecutive positive
integers none of which is an integral power of a prime number.

D 26. Show that there exists a positive integer k such that k · 2n + 1 is
composite for all n ∈ N0.

D 27. Show that nπ(2n)−π(n) < 4n for all positive integer n.

D 28. Four integers are marked on a circle. On each step we simultaneously
replace each number by the difference between this number and next number
on the circle in a given direction (that is, the numbers a, b, c, d are replaced
by a − b, b − c, c − d, d − a). Is it possible after 1996 such steps to have
numbers a, b, c, d such that the numbers |bc − ad|, |ac − bd|, |ab − cd| are
primes ?

D 29. Let sn denote the sum of the first n primes. Prove that for each n
there exists an integer whose square lies between sn and sn+1.
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D 30. Given an odd integer n > 3, let k and t be the smallest positive
integers such that both kn + 1 and tn are squares. Prove that n is prime if
and only if both k and t are greater than n

4

D 31. Represent the number 989 ·1001 ·1007+320 as the product of primes.
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7. Rational and Irrational Numbers

God made the integers, all else is the work of man. Leopold Kronecker

E 1. Suppose that a rectangle with sides a and b is arbitrily cut into squares
with sides x1, · · · , xn. Show that xi

a ∈ Q and xi
b ∈ Q for all i ∈ {1, · · · , n}.

E 2. (K. Mahler, 1953) Prove that for any p, q ∈ N with q > 1 the following
inequality holds. 7 ∣∣∣∣π −

p

q

∣∣∣∣ ≥ q−42

E 3. (K. Alladi, M. Robinson, 1979) Suppose that p, q ∈ N satisfy the
inequality e(

√
p + q −√q)2 < 1.8 Show that the number ln

(
1 + p

q

)
is irra-

tional.

E 4. Find the smallest positive integer n such that

0 < n
1
4 − [n

1
4 ] < 0.00001.

E 5. Prove that for any positive integers a and b
∣∣∣a
√

2− b
∣∣∣ >

1
2(a + b)

.

E 6. Prove that there exist positive integers m and n such that∣∣∣∣
m2

n3
−
√

2001
∣∣∣∣ <

1
108

.

E 7. Let a, b, c be integers, not all zero and each of absolute value less than
one million. Prove that ∣∣∣a + b

√
2 + c

√
3
∣∣∣ >

1
1021

.

E 8. (Hurwitz) Prove that for any irrational number ξ, there are infinitely
many rational numbers m

n ((m, n) ∈ Z×N) such that
∣∣∣ξ − n

m

∣∣∣ <
1√
5m2

.

E 9. Show that π is irrational.

E 10. Show that e =
∑∞

n=0
1
n! is irrational.

E 11. Show that cos π
7 is irrational.

7This is a deep theorem in transcendental number theory. Note that it follows from this
result that π is irrational ! In fact, it’s known that for sufficiently large q, the exponent
42 can be replaced by 30. Here is a similar result due to A. Baker : For any rationals p

q
,

one has |ln 2− p
q
| ≥ 10−100000q−12.5. [AI, pp. 106]

8Here, e =
P

n≥0
1
n!

.
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E 12. Show that 1
π arccos

(
1√
2003

)
is irrational.

E 13. Show that cos 1◦ is irrational.

E 14. Prove that there cannot exist a positive rational number x such that

x[x] =
9
2

holds.

E 15. Let x, y, z non-zero real numbers such that xy, yz, zx are rational.
(a) Show that the number x2 + y2 + z2 is rational.
(b) If the number x3 + y3 + z3 is also rational, show that x,
y, z are rational.

E 16. Show that the cube roots of three distinct primes cannot be terms in
an arithmetic progression.

E 17. Let n be an integer greater than or equal to 3. Prove that there is a
set of n points in the plane such that the distance between any two points is
irrational and each set of three points determines a non-degenerate triangle
with rational area.

E 18. Let a be a rational number with 0 < a < 1 and suppose that cos(3πα)+
2cos(2πα) = 0. (Angle meauserments are in radians.) Prove that a = 2

3 .

E 19. Suppose tanα = p
q , where p and q are integers and q 6= 0. Prove the

number tanβ for which tan 2β = tan 3α is rational only when p2 + q2 is the
square of an integer.

E 20. If x is a positive rational number show that x can be uniquely expressed
in the form

x = a1 +
a2

2!
+

a3

3!
+ · · · ,

where a1, a2, · · · are integers, 0 ≤ an ≤ n − 1, for n > 1, and the series
terminates. Show also that x can be expressed as the sum of reciprocals of
different integers, each of which is greater than 106.

E 21. Find all polynomials W with real coefficients possessing the following
property : if x + y is a rational number, then W (x) + W (y) is rational as
well.

E 22. Show that any positive rational number can be represented as the sum
of three positive rational cubes.

E 23. Prove that every positive rational number can be represented in the
form

a3 + b3

c3 + d3

for some positive integers a, b, c, d.
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E 24. The set S is a finite subset of [0, 1] with the following property : for
all s ∈ S, there exist a, b ∈ S

⋃{0, 1} with a, b 6= x such that x = a+b
2 . Prove

that all the numbers in S are rational.

E 25. Let S = {x0, x1, · · · , xn} ⊂ [0, 1] be a finite set of real numbers with
x0 = 0 and x1 = 1, such that every distance between pairs of elements occurs
at least twice, except for the distance 1. Prove that all of the xi are rational.

E 26. You are given three lists A, B, and C. List A contains the numbers of
the form 10k in base 10, with k any integer greater than or equal to 1. Lists
B and C contain the same numbers translated into base 2 and 5 respectively:

A B C
10 1010 20
100 1100100 400
1000 1111101000 13000
...

...
...

Prove that for every integer n > 1, there is exactly one number in exactly
one of the lists B or C that has exactly n digits.

E 27. (Beatty) Prove that if α and β are positive irrational numbers satis-
fying 1

α + 1
β = 1, then the sequences

[α], [2α], [3α], · · ·
and

[β], [2β], [3β], · · ·
together include every positive integer exactly once.

E 28. For a positive real number α, define

S(α) = {[nα]|n = 1, 2, 3, · · · }.
Prove that N cannot be expressed as the disjoint union of three sets S(α),
S(β), and S(γ).
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8. Diophantine Equations I

In the margin of his copy of Diophantus’ Arithmetica, Pierre de Fermat
wrote : To divide a cube into two other cubes, a fourth power or in general
any power whatever into two powers of the same denomination above the
second is impossible, and I have assuredly found an admirable proof of this,
but the margin is too narrow to contain it.

F 1. One of Euler’s conjecture9 was disproved in the 1980s by three American
Mathematicians10 when they showed that there is a positive integer n such
that

n5 = 1335 + 1105 + 845 + 275.

Find the value of n.

F 2. The number 21982145917308330487013369 is the thirteenth power of a
positive integer. Which positive integer?

F 3. Does there exist a solution to the equation

x2 + y2 + z2 + u2 + v2 = xyzuv − 65

in integers x, y, z, u, v greater than 1998?

F 4. Find all pairs (x, y) of positive rational numbers such that x2+3y2 = 1.

F 5. Find all pairs (x, y) of rational numbers such that y2 = x3 − 3x + 2.

F 6. Show that there are infinitely many pairs (x, y) of rational numbers
such that x3 + y3 = 9.

F 7. Determine all pairs (x, y) of positive integers satisfying the equation

(x + y)2 − 2(xy)2 = 1.

F 8. Show that the equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integral solutions. 11

F 9. Determine all integers a for which the equation

x2 + axy + y2 = 1

has infinitely many distinct integer solutions x, y.

9In 1769, Euler, by generalising Fermat’s Last Theorem, conjectured that “it is im-
possible to exhibit three fourth powers whose sum is a fourth power”, “four fifth powers
whose sum is a fifth power, and similarly for higher powers” [Rs]

10L. J. Lander, T. R. Parkin, J. L. Selfridge
11More generally, the following result is known : let n be an integer, then the equation

x3 + y3 + z3 + w3 = n has infinitely many integral solutions (x, y, z, w) if there can be
found one solution (x, y, z, w) = (a, b, c, d) with (a + b)(c + d) negative and with either
a 6= b and c 6= d. [Eb2, pp.90]
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F 10. Prove that there are unique positive integers a and n such that

an+1 − (a + 1)n = 2001.

F 11. Find all (x, y, n) ∈ N3 such that gcd(x, n + 1) = 1and xn + 1 = yn+1.

F 12. Find all (x, y, z) ∈ N3 such that x4 − y4 = z2.

F 13. Find all pairs (x, y) of positive integers that satisfy the equation 12

y2 = x3 + 16.

F 14. Show that the equation x2 + y5 = z3 has infinitely many solutions in
integers x, y, z for which xyz 6= 0.

F 15. Prove that there are no integers x, y satisfying x2 = y5 − 4.

F 16. Find all pairs (a, b) of different positive integers that satisfy the equa-
tion W (a) = W (b), where W (x) = x4 − 3x3 + 5x2 − 9x.

F 17. Find all positive integers n for which the equation

a + b + c + d = n
√

abcd

has a solution in positive integers.

F 18. Determine all positive integer solutions (x, y, z, t) of the equation

(x + y)(y + z)(z + x) = xyzt

for which gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.

F 19. Find all (x, y, z, n) ∈ N4 such that x3 + y3 + z3 = nx2y2z2.

F 20. Determine all positive integers n for which the equation

xn + (2 + x)n + (2− x)n = 0

has an integer as a solution.

F 21. Prove that the equation

6(6a2 + 3b2 + c2) = 5n2

has no solutions in integers except a = b = c = n = 0.

F 22. Find all integers (a, b, c, x, y, z) such that

a + b + c = xyz, x + y + z = abc, a ≥ b ≥ c ≥ 1, x ≥ y ≥ z ≥ 1.

F 23. Find all (x, y, z) ∈ N3 such that x3 + y3 + z3 = x + y + z = 3.

12It’s known that there are infinitely many integers k so that the equation y2 = x3 + k
has no integral solutions. For example, if k has the form k = (4n − 1)3 − 4m2, where
m and n are integers such that no prime p ≡ −1 (mod 4) divides m, then the equation
y2 = x3 + k has no integral solutions. For a proof, see [Tma, pp. 191].
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F 24. Prove that if n is a positive integer such that the equation

x3 − 3xy2 + y3 = n.

has a solution in integers (x, y), then it has at least three such solutions.
Show that the equation has no solutions in integers when n = 2891.

F 25. What is the smallest positive integer t such that there exist integers
x1, x2, · · · , xt with

x1
3 + x2

3 + · · ·+ xt
3 = 20022002 ?

F 26. Solve in integers the following equation

n2002 = m(m + n)(m + 2n) · · · (m + 2001n).

F 27. Prove that there exist infinitely many positive integers n such that
p = nr, where p and r are respectively the semiperimeter and the inradius
of a triangle with integer side lengths.

F 28. Let a, b, c be positive integers such that a and b are relatively prime
and c is relatively prime either to a and b. Prove that there exist infinitely
many triples (x, y, z) of distinct positive integers x, y, z such that

xa + yb = zc.

F 29. Find all pairs of integers (x, y) satisfying the equality

y(x2 + 36) + x(y2 − 36) + y2(y − 12) = 0

F 30. Let a, b, c be given integers a > 0, ac− b2 = P = P1P2 · · ·Pn, where
P1, · · · , Pn are (distinct) prime numbers. Let M(n) denote the number of
pairs of integers (x, y) for which ax2 + bxy + cy2 = n. Prove that M(n) is
finite and M(n) = M(pk · n) for every inegers k ≥ 0.

F 31. Determine integer solutions of the system

2uv − xy = 16,

xv − yu = 12.

F 32. Let n be a natural number. Solve in whole numbers the equation
xn + yn = (x− y)n+1.

F 33. Does there exist an integer such that its cube is equal to 3n2 +3n+7,
where n is integer?

F 34. Are there integers m and n such that 5m2 − 6mn + 7n2 = 1985?

F 35. Find all cubic polynomials x3 + ax2 + bx + c admitting the rational
numbers a, b and c as roots.

F 36. Prove that the equation a2 + b2 = c2 + 3 has infinitely many integer
solutions (a, b, c).
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9. Diophantine Equations II

The positive integers stand there, a continual and inevitable challenge to
the curiousity of every healthy mind. Godfrey Harold Hardy

G 1. Given that

34! = 95232799cd96041408476186096435ab000000,

determine the digits a, b, c, d.

G 2. Prove that the equation (x1−x2)(x2−x3)(x3−x4)(x4−x5)(x5−x6)(x6−
x7)(x7−x1) = (x1−x3)(x2−x4)(x3−x5)(x4−x6)(x5−x7)(x6−x1)(x7−x2)
has a solution in natural numbers where all xi are different.

G 3. Solve in positive integers the equation 10a + 2b − 3c = 1997.

G 4. Solve the equation 28x = 19y + 87z, where x, y, z are integers.

G 5. (Erdös) Show that the equation
(
n
k

)
= ml has no integral solution with

l ≥ 2 and 4 ≤ k ≤ n− 4.

G 6. Find all positive integers x, y such that 7x − 3y = 4.

G 7. Show that |12m − 5n| ≥ 7 for all m,n ∈ N.

G 8. Show that there is no positive integer k for which the equation

(n− 1)! + 1 = nk

is true when n is greater than 5.

G 9. Determine all integers a and b such that

(19a + b)18 + (a + b)18 + (19b + a)18

is a positive square.

G 10. Let b be a positive integer. Determine all 200-tuple integers of non-
negative integers (a1, a2, · · · , a2002) satisfying

n∑

j=1

aj
aj = 2002bb.

G 11. Is there a positive integers m such that the equation

1
a

+
1
b

+
1
c

+
1

abc
=

m

a + b + c

has infintely many solutions in positive integers a, b, c ?
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G 12. Consider the system

x + y = z + u

2xy = zu

Find the greatest value of the real constant m such that m ≤ x
y for any

positive integer solution (x, y, z, u) of the system, with x ≥ y.

G 13. Determine all positive rational number r 6= 1 such that r
1

r−1 is ratio-
nal.

G 14. Show that the equation {x3} + {y3} = {z3} has infinitely many ra-
tional non-integer solutions.

G 15. Let n be a positive integer. Prove that the equation

x + y +
1
x

+
1
y

= 3n

does not have solutions in positive rational numbers.

G 16. Find all pairs (x, y) of positive rational numbers such that xy = yx

G 17. Find all pairs (a, b) of positive integers that satisfy the equation

ab2 = ba.

G 18. Find all pairs (a, b) of positive integers that satisfy the equation

aaa
= bb.

G 19. Let x, a, b be positive integers such that xa+b = abb. Prove that a = x
and b = xx.

G 20. Find all pairs (m,n) of integers that satisfy the equation

(m− n)2 =
4mn

m + n− 1
G 21. Find all pairwise relatively prime positive integers l, m, n such that

(l + m + n)
(

1
l

+
1
m

+
1
n

)

is an integer.

G 22. Let x, y, z be integers with z > 1. Show that

(x + 1)2 + (x + 2)2 + · · ·+ (x + 99)2 6= yz.

G 23. Find all values of the positive integers m and n for which

1! + 2! + 3! + · · ·+ n! = m2

G 24. Prove that if a, b, c, d are integers such that d = (a+2
1
3 b+2

2
3 c)2 then

d is a perfect square (i. e. is the square of an integer).

G 25. Find a pair of relatively prime four digit natural numbers A and B
such that for all natural numbers m and n, |Am −Bn| ≥ 400.
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G 26. Find all solutions in positive integers a, b, c to the equation

a!b! = a! + b! + c!.

G 27. Find positive integers a and b such that

(3
√

a + 3
√

b− 1)2 = 49 + 203
√

6.
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10. Functions in Number Theory

Gauss once said ”Mathematics is the queen of the sciences and number
theory is the queen of mathematics.” If this be true we may add that the
Disauistiones is the Magna Charta of number theory. M. Cantor

H 1. Let α be the positive root of the equation x2 = 1991x + 1. For natural
numbers m, n define

m ∗ n = mn + [αm][αn],
where [x] is the greatest integer not exceeding x. Prove that for all natural
numbers p, q, r,

(p ∗ q) ∗ r = p ∗ (q ∗ r).

H 2. Find the total number of different integer values the function

f(x) = [x] + [2x] +
[
5x

3

]
+ [3x] + [4x]

takes for real numbers x with 0 ≤ x ≤ 100.

H 3. Show that [
√

n +
√

n + 1] = [
√

4n + 2] for all positive integer n.

H 4. Let ((x)) = x − [x] − 1
2 if x is not an integer, and let ((x)) = 0

otherwise. If n and k are integers, with n > 0, prove that
((

k

n

))
= − 1

2n

n−1∑

m=1

cot
πm

n
sin

2πkm

n
.

H 5. Let σ(n) denote the sum of the positive divisors of the positive integer
n. and φ(n) the Euler phi-function. Show that φ(n) + σ(n) ≥ 2n for all
positive integers n.

H 6. Let n be an integer with n ≥ 2. Show that φ(2n − 1) is divisible by n.

H 7. Show that if the equation φ(x) = n has one solution it always has a
second solution, n being given and x being the unknown.

H 8. Let d(n) denote the number of positive divisors of the natural number
n. Prove that d(n2 + 1)2 does not become monotonic from any given point
onwards.

H 9. For any n ∈ N, let d(n) denote the number of positive divisors of n.
Determine all positive integers n such that n = d(n)2.

H 10. For any n ∈ N, let d(n) denote the number of positive divisors of n.
Determine all positive integers k such that

d(n2)
d(n)

= k

for some n ∈ N.
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H 11. Show that for all positive integers m and n,

gcd(m,n) = m + n−mn + 2
m−1∑

k=0

[
kn

m

]
.

H 12. Show that for all primes p,
p−1∑

k=1

[
k3

p

]
=

(p + 1)(p− 1)(p− 2)
4

H 13. Let p be a prime number of the form 4k + 1. Show that
p−1∑

k=1

([
2k2

p

]
− 2

[
k2

p

])
=

p− 1
2

H 14. Let p be a prime number of the form 4k + 1. Show that
k∑

i=1

[√
ip

]
=

p2 − 1
12

H 15. Let a, b, n be positive integers with gcd(a, b) = 1. Prove that
∑

k

{
ak + b

n

}
=

n− 1
2

,

where k runs through a complete system of residues modulo m.

H 16. The function µ : N −→ C is defined by

µ(n) =
∑

k∈Rn

(
cos

2kπ

n
+ i sin

2kπ

n

)
,

where Rn = {k ∈ N|1 ≤ k ≤ n, gcd(k, n) = 1}. Show that for all positive
integer n, µ(n) is an integer.

H 17. (Gauss) Show that for all n ∈ N,

n =
∑

d|n
φ(d).

H 18. Let m, n be positive integers. Prove that, for some positive integer
a, each of φ(a), φ(a + 1), · · · , φ(a + n) is a multiple of m.

H 19. For a positive integer n, let d(n) be the number of all positive divisord
of n. Find all positive integers n such that d(n)3 = 4n.

H 20. Let n be a positive integers. Let σ(n) be the sum of the natural divisors
d of n (including 1 and n). We say that an integer m ≥ 1 is superabondant
if

σ(m)
m

>
σ(k)

k
,

for all k ∈ {1, 2, · · · ,m − 1}. Prove that there exists an infinite number of
superabondant numbers.
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H 21. Prove that there is a function f from the set of all natural numbers
into itself such that for any natural number n, f(f(n)) = n2.

H 22. Find all surjective function f : N −→ N satisfying the condition
m|n ⇐⇒ f(m)|f(n) for all m, n ∈ N.

H 23. Let S(n) be the sum of all different natural divisors of an odd natural
number n > 1 (including 1 and n). Prove that S(n)3 < n4.

H 24. If n is composite, prove that φ(n) ≤ n−√n.
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11. Sequences of Integers

A peculiarity of the higher arithmetic is the great difficulty which has
often been experienced in proving simple general theorems which had been
suggested quite naturally by numerical evidence. Harold Davenport

I 1. Let a, b, c, d be integers. Show that the product

(a− b)(a− c)(a− d)(b− c)(b− d)(c− d)

is divisible by 12.

I 2. If a1 < a2 < · · · < an are integers, show that
∏

1≤i<j≤n

ai − aj

i− j

is an integer.13

I 3. Let a, b be odd positive integers. Define the sequence (fn) by putting
f1 = a, f2 = b, and by letting fn for n ≥ 3 be the greatest odd divisor of
fn−1+fn−2. Show that fn is constant for n sufficiently large and determine
the eventual value as a function of a and b.

I 4. Numbers d(n,m) with m,n integers, 0 ≤ m ≤ n, are defined by d(n, 0) =
d(n, n) = 1 for all n ≥ 0, and md(n,m) = md(n − 1,m) + (2n −m)d(n −
1,m− 1) for 0 < m < n. Prove that all the d(n, m) are integers.

I 5. Show that the sequence {an}n≥1 defined by an = [n
√

2] contains an
infinite number of integer powers of 2.

I 6. Let an be the last nonzero digit in the decimal representation of the
number n!. Does the sequence a1, a2, a3, · · · become periodic after a finite
number of terms ?

I 7. Let m be a positive integer. Define the sequence {an}n≥0 by

a0 = 0, a1 = m, an+1 = m2an − an−1.

Prove that an ordered pair (a, b) of non-negative integers, with a ≤ b, gives
a solution to the equation

a2 + b2

ab + 1
= m2

if and only if (a, b) is of the form (an, an+1) for some n ≥ 0. 14

13The result follows immediately from the theory of Lie groups; the number turns out
to be the dimension of an irreducible representation of SU(n). [Rc]

14See A4
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I 8. Let xn, yn be two sequences defined recursively as follows

x0 = 1, x1 = 4, xn+2 = 3xn+1 − xn

y0 = 1, y1 = 2, yn+2 = 3yn+1 − yn

for all n = 0, 1, 2, · · · .
a) Prove that xn

2−5yn
2+4 = 0 for all non-negative integers.

b) Suppose that a, b are two positive integers such that a2 −
b2 + 4 = 0. Prove that there exists a non-negative integer k
such that a = xk and b = yk.

I 9. Let P (x) be a nonzero polynomial with integral coefficients. Let a0 = 0
and for i ≥ 0 define ai+1 = P (ai). Show that gcd(am, an) = agcd(m,n) for all
m,n ∈ N

I 10. An integer sequence {an}n≥1 is defined by

a0 = 0, a1 = 1, an+2 = 2an+1 + an

Show that 2k divides an if and only if 2k divides n.

I 11. An integer sequence {an}n≥1 is defined by

a1 = 1, an+1 = an + [
√

an]

Show that an is a square if and only if n = 2k + k − 2 for some k ∈ N.

I 12. Let f(n) = n + [
√

n]. Prove that, for every positive integer m, the
sequence

m, f(m), f(f(m)), f(f(f(m))), · · ·
contains at least one square of an integer.

I 13. An integer sequence {an}n≥1 is given such that

2n =
∑

d|n
ad

for all n ∈ N. Show that an is divisible by n.

I 14. Let k,m, n be natural numbers such that m + k + 1 is a prime greater
than n + 1. Let cs = s(s + 1). Prove that the product (cm+1 − ck)(cm+2 −
ck) · · · (cm+n − ck) is divisible by the product c1c2 · · · cn.

I 15. Show that for all prime numbers p

Q(p) =
p−1∏

k=1

k2k−p−1

is an integer.

I 16. The sequence {an}n≥1 is defined by

a1 = 1, a2 = 2, a3 = 24, an+2 =
6an−1

2an−3 − 8an−1an−2
2

an−2an−3
(n ≥ 4)

Show that for all n, an is an integer.
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I 17. Show that there is a unique sequence of integers {an}n≥1 with

a1 = 1, a2 = 2, a4 = 12, an+1an−1 = an
2 + 1 (n ≥ 2).

I 18. The sequence {an}n≥1 is defined by

a1 = 1, an+1 = 2an +
√

3an
2 + 1 (n ≥ 1)

Show that an is an integer for every n.

I 19. Prove that the sequence {yn}n≥1 defined by

y0 = 1, yn+1 =
1
2

(
3yn +

√
5an

2 − 4
)

(n ≥ 0)

consists only of integers.

I 20. (C. von Staudt) The Bernoulli sequence15 {Bn}n≥0 is defined by

B0 = 1, Bn = − 1
n + 1

n∑

k=0

(
n + 1

k

)
Bk (n ≥ 1)

Show that for all n ∈ N,

(−1)nBn −
∑ 1

p
,

is an integer where the summation being extended over the primes p such
that p|2k − 1.

I 21. Let n be a positive integer. Show that
n∑

i=1

tan2 iπ

2n + 1

is an odd integer.

I 22. An integer sequence {an}n≥1 is defined by

a1 = 2, an+1 =
[
3
2
an

]

Show that there are infinitely many even and infinitely many odd integers.

I 23. Prove or disprove that there exists a positive real number u such that
[un]− n is an even integer for all positive integer n.

I 24. Let {an} be a strictly increasing positive integers sequece such that
gcd(ai, aj) = 1 and ai+2 − ai+1 > ai+1 − ai. Show that the infinite series

∞∑

i=1

1
ai

converges.

15B0 = 1, B1 = − 1
2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 = 1

42
, · · ·
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I 25. Let {nk}k≥1 be a sequence of natural numbers such that for i < j,
the decimal representation of ni does not occur as the leftmost digits of the
decimal representation of nj. Prove that

∞∑

k=1

1
nk

≤ 1
1

+
1
2

+ · · ·+ 1
9
.

I 26. An integer sequence satisfies an+1 = an
3 +1999. Show that it contains

at most one square.

I 27. Let n > 6 be an integer and a1, a2, . . . , ak be all the natural numbers
less than n and relatively prime to n. If

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0,

prove that n must be either a prime number or a power of 2.

I 28. Show that if an infinite arithmetic progression of positive integers
contains a square and a cube, it must contain a sixth power.

I 29. Let a1 = 1111, a2 = 1212, a3 = 1313, and

an = |an−1 − an−2|+ |an−2 − an−3|, n ≥ 4.

Determine a1414.

I 30. Prove that there exists two strictly increasing sequences an and bn such
that an(an + 1) divides bn

2 + 1 for every natural n.

I 31. Let k be a fixed positive integer. The infinite sequence an is defined
by the formulae

a1 = k + 1, an+1 = an
2 − kan + k (n ≥ 1).

Show that if m 6= n, then the numbers am and an are relatively prime.

I 32. The Fibonacci sequence {Fn} is defined by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn.

Show that gcd(Fm, Fn) = Fgcd(m,n) for all m,n ∈ N.

I 33. The Fibonacci sequence {Fn} is defined by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn.

Show that Fmn−1 − Fn−1
m is divisible by Fn

2 for all m ≥ 1 and n > 1.

I 34. The Fibonacci sequence {Fn} is defined by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn.

Show that Fmn−Fn+1
m+Fn−1

m is divisible by Fn
3 for all m ≥ 1 and n > 1.

I 35. The Fibonacci sequence {Fn} is defined by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn.

Show that F2n−1
2 + F2n+1

2 + 1 = 3F2n−1F2n+1 for all n ≥ 1. 16

16See A5 and B15
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I 36. Prove that no Fibonacci number can be factored into a product of two
smaller Fibonacci numbers, each greater than 1.

I 37. The sequence {xn} is defined by

x0 ∈ [0, 1], xn+1 = 1− |1− 2xn|.
Prove that the sequence is periodic if and only if x0 is irrational.

I 38. Let x1 and x2 be relatively prime positive integers. For n ≥ 2, define
xn+1 = xnxn−1 + 1.

(a) Prove that for every i > 1, there exists j > i such that xi
i divides xj

j.

(b) Is it true that x1 must divide xj
j for some j > 1 ?

I 39. For a given positive integer k denote the square of the sum of its digits
by f1(k) and let fn+1(k) = f1(fn(k)). Determine the value of f1991(21990).

I 40. Let q0, q1, · · · be a sequence of integers such that
(i) for any m > n, m− n is a factor of qm − qn, and
(ii) |qn| ≤ n10 for all integers n ≥ 0.

Show that there exists a polynomial Q(x) satisfying qn = Q(n) for all n.

I 41. Let a, b be integers greater than 2. Prove that there exists a positive
integer k and a finite sequence n1, n2, . . . , nk of positive integers such that
n1 = a, nk = b, and nini+1 is divisible by ni + ni+1 for each i (1 ≤ i < k).

I 42. Define a sequence {ai} by a1 = 3 and ai+1 = 3ai for i ≥ 1. Which
integers between 00 and 99 inclusive occur as the last two digits in the decimal
expansion of infinitely many ai?

I 43. The infinite sequence of 2’s and 3’s

2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3,

3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, . . .

has the property that, if one forms a second sequence that records the number
of 3’s between successive 2’s, the result is identical to the given sequence.
Show that there exists a real number r such that, for any n, the nth term of
the sequence is 2 if and only if n = 1 + brmc for some nonnegative integer
m. (Note: bxc denotes the largest integer less than or equal to x.)
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12. Combinatorial Number Theory

In great mathematics there is a very high degree of unexpectedness, com-
bined with inevitability and economy. Godfrey Harold Hardy

J 1. Let p be a prime. Find all k such that the set {1, 2, · · · , k} can be
partitioned into p subsets with equal sum of elements.

J 2. Prove that the set of integers of the form 2k − 3(k = 2, 3, ...) contains
an infinite subset in which every two members are relatively prime.

J 3. The set of positive integers is parititioned into finitely many subsets.
Show that some subset S has the following property : for every positive
integer n, S contains infinitely many multiples of n.

J 4. Let M be a positive integer and consider the set

S = {n ∈ N|M2 ≤ n < (M + 1)2}.
Prove that the products of the form ab with a, b ∈ S are distinct.

J 5. Let S be a set of integers such that
◦ there exist a, b ∈ S with gcd(a, b) = gcd(a− 2, b− 2) = 1.
◦ if x and y are elements of S, then x2 − y also belongs to
S. Prove that S is the set of all integers.

J 6. Show that for each n ≥ 2, there is a set S of n integers such that
(a− b)2 divides ab for every distinct a, b ∈ S

J 7. Let a and b be positive integers greater than 2. Prove that there exists
a positive integer k and a finite sequence n1, · · · , nk of positive integers
such that n1 = a, nk = b, and nini+1 is divisible by ni + ni+1 for each i
(1 ≤ i ≤ k).

J 8. Let n be an integer, and let X be a set of n+2 integers each of absolute
value at most n. Show that there exist three distinct numbers a, b, c ∈ X such
that c = a + b.

J 9. Let m ≥ 2 be an integer. Find the smallest integer n > m such that
for any partition of the set {m,m + 1, · · · , n} into two subsets, at least one
subset contains three numbers a, b, c such that c = ab.

J 10. Let S = {1, 2, 3, . . . , 280}. Find the smallest integer n such that each
n-element subset of S contains five numbers which are pairwise relatively
prime.

J 11. Let m and n be positive integers. If x1, x2, · · · , xm are postive
integers whose average is less than n + 1 and if y1, y2, · · · , yn are postive
integers whose average is less than m + 1, prove that some sum of one or
more x’s equals some sum of one or more y’s.
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J 12. For every natural number n, Q(n) denote the sum of the digits in the
decimal representation of n. Prove that there are infinitely many natural
number k with Q(3k) > Q(3k+1).

J 13. Let n and k be given relatively prime natural numbers, k < n. Each
number in the set M = {1, 2, ..., n− 1} is colored either blue or white. It is
given that

◦ for each i ∈ M, both i and n− i have the same color;
◦ for each i ∈ M, i 6= k, both i and |i− k| have the same
color.

Prove that all numbers in M must have the same color.

J 14. Let p be a prime number, p ≥ 5, and k be a digit in the p-adic rep-
resentation of positive integers. Find the maximal length of a non constant
arithmetic progression whose terms do not contain the digit k in their p-adic
representation.

J 15. Is it possible to choose 1983 distinct positive integers, all less than
or equal to 105, no three of which are consecutive terms of an arithmetic
progression?

J 16. Is it possible to find 100 positive integers not exceeding 25000 such
that all pairwise sums of them are different ?

J 17. Find the maximum number of pairwise disjoint sets of the form

Sa,b = {n2 + an + b|n ∈ Z},
with a, b ∈ Z.

J 18. Let p be an odd prime number. How many p-element subsets A of
{1, 2, . . . 2p} are there, the sum of whose elements is divisible by p?

J 19. Let m,n ≥ 2 be positive integers, and let a1, a2, · · · , an be inte-
gers, none of which is a multiple of mn−1. Show that there exist integers
e1, e2, · · · , en, not all zero, with |ei| < m for all i, such that e1a1 + e2a2 +
· · ·+ enan is a multiple of mn.

J 20. Determine the smallest integer n ≥ 4 for which one can choose four
different numbers a, b, c, and d from any n distinct integers such that a +
b− c− d is divisible by 20

J 21. A sequence of integers a1, a2, a3, · · · is defined as follows : a1 = 1, and
for n ≥ 1, an+1 is the smallest integer greater than an such that ai+aj 6= 3ak

for any i, j, and k in {1, 2, 3, · · · , n+1}, not necessarily distinct. Determine
a1998.

J 22. Prove that for each positive integer n, there exists a positive integer
with the following properties :

◦ It has exactly n digits.
◦ None of the digits is 0.
◦ It is divisible by the sum of its digits.
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J 23. Let k, m, n be integers such that 1 < n ≤ m − 1 ≤ k. Determine the
maximum size of a subset S of the set {1, 2, · · · , k} such that no n distinct
elements of S add up to m.

J 24. Find the number of subsets of {1, 2, · · · , 2000}, the sum of whose
elements is divisible by 5.

J 25. Let A be a non-empty set of positive integers. Suppose that there are
positive integers b1, · · · , bn and c1, · · · , cn such that

(i) for each i the set biA + ci = {bia + ci|a ∈ A} is a subset
of A, and
(ii) the sets biA+ci and bjA+cj are disjoint whenever i 6= j.

Prove that
1
b1

+ · · ·+ 1
bn
≤ 1.

J 26. A set of three nonnegative integers {x, y, z} with x < y < z is called
historic if {z−y, y−x} = {1776, 2001}. Show that the set of all nonnegative
integers can be written as the unions of pairwise disjoint historic sets.

J 27. Let p and q be relatively prime positive integers. A subset S of
{0, 1, 2, · · · } is called ideal if 0 ∈ S and, for each element n ∈ S, the in-
tegers n + p and n + q belong to S. Determine the number of ideal subsets
of {0, 1, 2, · · · }.
J 28. Prove that the set of positive integers cannot be partitioned into three
nonempty subsets such that, for any two integers x, y taken from two dif-
ferent subsets, the number x2 − xy + y2 belongs to the third subset.

J 29. Let A be a set of N residues (mod N2). Prove that there exists a set
B of N residues (mod N2) such that the set A + B = {a + b|a ∈ A, b ∈ B}
contains at least half of all the residues (mod N2).

J 30. Determine the largest positive integer n for which there exists a set S
with exactly n numbers such that

(i) each member in S is a positive integer not exceeding 2002,
(ii) if a and b are two (not necessarily different) numbers in
S, then there product ab does not belong to S.

J 31. Prove that, for any integer a1 > 1 there exist an increasing sequence
of positive integers a1, a2, a3, · · · such that

a1 + a2 + · · ·+ an|a1
2 + a2

2 + · · ·+ an
2

for all k ∈ N.

J 32. An odd integer n ≥ 3 is said to be ”nice” if and only if there is at
least one permution a1, · · · , an of 1, · · · , n such that the n sums a1 − a2 +
a3−· · ·−an−1 +an, a2−a3 +a3−· · ·−an +a1, a3−a4 +a5−· · ·−a1 +a2,
· · · , an − a1 + a2 − · · · − an−2 + an−1 are all positive. Determine the set of
all ”nice” integers.
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J 33. Assume that the set of all positive integers is decomposed into r dis-
tinct subsets A1∪A2∪· · ·∪Ar = N. Prove that one of them, say Ai, has the
following property : There exist a positive integer m such that for any k one
can find numbers a1, · · · , ak in Ai with 0 < aj+1 − aj ≤ m (1 ≤ j ≤ k − 1).

J 34. Determine for which positive integers k, the set

X = {1990, 1990 + 1, 1990 + 2, · · · , 1990 + k}
can be partitioned into two disjoint subsets A and B such that the sum of
the elements of A is equal to the sum of the elements of B.

J 35. Prove that n ≥ 3 be a prime number and a1 < a2 < · · · < an be
integers. Prove that a1, · · · , an is an arithmetic progression if and only if
there exists a partition of {0, 1, 2, · · · } into classes A1, A2, · · · , An such that

a1 + A1 = a2 + A2 = · · · = an + An,

where x + A denotes the set {x + a|a ∈ A}.
J 36. Let a and b be non-negative integers such that ab ≥ c2 where c is an
integer. Prove that there is a positive integer n and integers x1, x2, · · · ,
xn, y1, y2, · · · , yn such that

x1
2 + · · ·+ xn

2 = a, y1
2 + · · ·+ yn

2 = b, x1y1 + · · ·+ xnyn = c

J 37. Let n, k be positive integers such that n is not divisible by 3 and k is
greater or equal to n. Prove that there exists a positive integer m which is
divisible by n and the sum of its digits in the decimal representation is k.

J 38. Prove that for every real number M there exists an infinite arithmetical
progression such that

◦ each term is a positive integer and the common difference
is not divisible by 10.
◦ the sum of digits of each term exceeds M .

J 39. Find the smallest positive integer n, for which there exist n different
positive integers a1, a2, · · · , an satifying the conditions :

a) the smallest common multiple of a1, a2, · · · , an is 1985;
b) for each i, j ∈ {1, 2, · · · , n}, the numbers ai and aj have
a common divisor;
c) the product a1a2 · · · an is a perfect square and is divisible
by 243.

Find all n-tuples (a1, · · · , an), satisfying a), b), and c).

J 40. Let X be a non-empty set of positive integers which satisfies the fol-
lowing :

(a) If x ∈ X, then 4x ∈ X.
(b) If x ∈ X, then [

√
x] ∈ X.

Prove that X = N.
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J 41. Prove that for every positive integer n there exists an n-digit number
divisible by 5n all of whose digits are odd.

J 42. Let Nn denote the number of ordered n-tuples of positive integers
(a1, a2, . . . , an) such that 1/a1 + 1/a2 + . . . + 1/an = 1. Determine whether
N10 is even or odd.
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13. Additive Number Theory

On Ramanujan, G. H. Hardy Said : I remember once going to see him
when he was lying ill at Putney. I had ridden in taxi cab number 1729 and
remarked that the number seemed to me rather a dull one, and that I hoped
it was not an unfavorable omen. ”No,” he replied,

”it is a very interesting number; it is the smallest number expressible as
the sum of two cubes in two different ways.”

K 1. Show that any integer can be expressed as a sum of two squares and a
cube.

K 2. Show that every integer greater than 1 can be written as a sum of two
square-free integers.

K 3. Prove that every integer n ≥ 12 is the sum of two composite numbers.

K 4. Prove that any positive integer can be represented as an aggregate of
different powers of 3, the terms in the aggregate being combined by the signs
+ and − appropriately chosen.

K 5. The integer 9 can be written as a sum of two consecutive integers :
9=4+5 ; moreover it can be written as a sum of (more than one) consecutive
positive integers in exactly two ways, namely 9=4+5= 2+3+4. Is there an
integer which can be written as a sum of 1990 consecutive integers and which
can be written as a sum of (more than one) consecutive integers in exactly
1990 ways ?

K 6. For each positive integer n, S(n) is defined to be the greatest integer
such that, for every positive integer k ≤ S(n), n2 can be written as the sum
of k positive squares.

(a) Prove that S(n) ≤ n2 − 14 for each n ≥ 4.
(b) Find an integer n such that S(n) = n2 − 14.
(c) Prove that there are infintely many integers n such that
S(n) = n2 − 14.

K 7. For each positive integer n , let f(n) denote the number of ways of
representing n as a sum of powers of 2 with nonnegative integer exponents.
Representations which differ only in the ordering of their summands are
considered to be the same. For instance, f(4) = 4, because the number 4 can
be represented in the following four ways:

4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1.

Prove that, for any integer n ≥ 3,

2n2/4 < f(2n) < 2n2/2.
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K 8. The positive function p(n) is defined as the number of ways that the
positive integer n can be written as a sum of positive integers. 17 Show that,
for all n > 1,

2[
√

n] < p(n) < n3[
√

n].

K 9. Let a1 = 1, a2 = 2, be the sequence of positive integers of the form
2α3β, where α and β are nonnegative integers. Prove that every positive
integer is exprssible in the form

ai1 + ai2 + · · ·+ ain ,

where no summand is a multiple of any other.

K 10. Let n be a non-negative integer. Find the non-negative integers a, b,
c, d such that

a2 + b2 + c2 + d2 = 7 · 4n.

K 11. Find all integers m > 1 such that m3 is a sum of m squares of
consecutive integers.

K 12. A positive integer n is a square-free integer if there is no prime p
such that p2|n. Show that every integer greater than 1 can be written as a
sum of two square-free integers.

K 13. Prove that there exist infinitely many integers n such that n, n+1, n+2
are each the sum of the squares of two integers.

K 14. (Jacobsthal) Let p be a prime number of the form 4k + 1. Suppose
that r is a quadratic residue of p and that s is a quadratic nonresidue of p.
Show that p = a2 + b2, where

a =
1
2

p−1∑

i=1

(
i(i2 − r)

p

)
, b =

1
2

p−1∑

i=1

(
i(i2 − s)

p

)
.

Here,
(

k
p

)
denotes the Legendre Symbol.

K 15. Let p be a prime with p ≡ 1(mod 4). Let a be the unique integer such
that

p = a2 + b2, a ≡ −1(mod 4), b ≡ 0(mod 2)
Prove that

p−1∑

i=0

(
i3 + 6i2 + i

p

)
= 2

(
2
p

)
a.

K 16. Let n be an integer of the form a2 + b2, where a and b are relatively
prime integers and such that if p is a prime, p ≤ √

n, then p divides ab.
Determine all such n.

17For example, 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1,
and so p(5) = 7.
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K 17. If an integer n is such that 7n is the form a2 + 3b2, prove that n is
also of that form.

K 18. Let A be the set of positive integers represented by the form a2 +2b2,
where a, b are integers and b 6= 0. Show that p is a prime number and p2 ∈ A,
then p ∈ A.

K 19. Show that an integer can be expressed as the difference of two squares
if and only if it is not of the form 4k + 2(k ∈ Z).

K 20. Show that there are infinitely many positive integers which cannot be
expressed as the sum of squares.

K 21. Show that any integer can be expressed as the form a2+b2−c2, where
a, b, c ∈ Z.

K 22. Let a and b be positive integers with gcd(a, b) = 1. Show that every
integer greater than ab− a− b can be expressed in the form ax + by, where
x, y ∈ N0.

K 23. Let a, b and c be positive integers, no two of which have a common
divisor greater than 1. Show that 2abc − ab − bc − ca is the largest integer
which cannot be expressed in the form xbc + yca + zab, where x, y, z ∈ N0

K 24. Determine, with proof, the largest number which is the product of
positive integers whose sum is 1976.

K 25. (Zeckendorf) Any positive integer can be represented as a sum of
Fibonacci numbers, no two of which are consecutive.

K 26. Show that the set of positive integers which cannot be represented as
a sum of distinct perfect squares is finite.

K 27. Let a1, a2, a3, · · · be an increasing sequence of nonnegative integers
such that every nonnegative integer can be expressed uniquely in the form
ai+2aj +4al, where i, j, and k are not necessarily distinct. Determine a1998.

K 28. A finite sequence of integers a0, a1, · · · , an is called quadratic if for
each i ∈ {1, 2, · · · , n} we have the equality |ai − ai−1| = i2.

(a) Prove that for any two integers b and c, there exists a
natural number n and a quadratic sequence with a0 = b and
an = c.
(b) Find the smallest natural number n for which there exists
a quadratic sequence with a0 = 0 and an = 1996.

K 29. A composite positive integer is a product ab with a and b not necessar-
ily distinct integers in {2, 3, 4, . . . }. Show that every composite is expressible
as xy + xz + yz + 1, with x, y, z positive integers.
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14. The Geometry of Numbers

Srinivasa Aiyangar Ramanujan said ”An equation means nothing to me
unless it expresses a thought of God.”

L 1. Show there do not exist four points in the Euclidean plane such that
the pairwise distances between the points are all odd integers.

L 2. Prove no three lattice points in the plane form an equilateral triangle.

L 3. The sides of a polygon with 1994 sides are ai =
√

i2 + 4 (i =
1, 2, · · · , 1994). Prove that its vertices are not all on lattice points.

L 4. A triangle has lattice points as vertices and contains no other lattice
points. Prove that its area is 1

2 .

L 5. Let R be a convex region18 symmetrical about the origin with area
greater than 4. Then R must contain a lattice point19 different form the
origin.

L 6. Show that the number r(n) of representations of n as a sum of two
squares has average value π, that is

1
n

n∑

m=1

r(m) → π as n →∞.

L 7. Prove that on a coordinate plane it is impossible to draw a closed broken
line such that (i) coordinates of each vertex are ratoinal, (ii) the length of
its every edge is equal to 1, (iii) the line has an odd number of vertices.

18For any two points of R, their midpoint also lies in R.
19A point with integral coordinates
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15. Miscellaneous Problems

Mathematics is not yet ready for such problems. Paul Erdös

M 1. Let
a1,1 a1,2 a1,3 . . .
a2,1 a2,2 a2,3 . . .
a3,1 a3,2 a3,3 . . .
...

...
...

. . .

be a doubly infinite array of positive integers, and suppose each positive
integer appears exactly eight times in the array. Prove that am,n > mn for
some pair of positive integers (m,n).

M 2. The digital sum of a natural number n is denoted by S(n). Prove that
S(8n) ≥ 1

8S(n) for each n.

M 3. Let p be an odd prime. Determine positive integers x and y for which
x ≤ y and

√
2p−√x−√y is nonnegative and as small as possible.

M 4. Let α(n) be the number of digits equal to one in the dyadic represen-
tation of a positive integer n. Prove that

(a) the inequality α(n2) ≤ 1
2α(n)(1 + α(n)) holds,

(b) the above inequality is equality for infinitely many positive
integers, and
(c) there exists a sequence {ni} such that α(ni

2)
α(ni)

→ 0 as i →
∞.

M 5. Show that if a and b are positive integers, then
(

a +
1
2

)n

+
(

b +
1
2

)n

is an integer for only finitely many positive integer n.

M 6. If x is a real number such that x2 − x is an integer, and for some
n ≥ 3, xn − x is also an integer, prove that x is an integer.

M 7. Suppose that x and y are complex numbers such that

xn − yn

x− y

are integers for some four consecutive positive integers n. Prove that it is
an integer for all positive integers n.

M 8. Determine the maximum value of m2 +n2,where m and n are integers
satisfying m,n ∈ {1, 2, ..., 1981} and (n2 −mn−m2)2 = 1.
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M 9. Denote by S the set of all primes p such that the decimal representation
of 1

p has the fundamental period of divisible by 3. For every p ∈ S such that
1
p has the fundamental period 3r one may write

1
p

= 0.a1a2 · · · a3ra1a2 · · · a3r · · · ,

where r = r(p) ; for every p ∈ S and every integer k ≥ 1 define f(k, p) by

f(k, p) = ak + ak+r(p) + ak+2r(p).

a) Prove that S is finite.
b) Find the hightst value of f(k, p) for k ≥ 1 and p ∈ S.

M 10. Determine all pairs (a, b) of real numbers such that a[bn] = b[an] for
all positive integer n. (Note that [x] denotes the greatest integer less than
or equal to x.)

M 11. Let n be a positive integer that is not a perfect cube. Define real
numbers a, b, c by

a = n
1
3 , b =

1
a− [a]

, c =
1

b− [b]
,

where [x] denotes the integer part of x. Prove that there are infinitely many
such integers n with the property that there exist integers r, s, t, not all zero,
such that ra + sb + tc = 0.

M 12. Find, with proof, the number of positive integers whose base-n rep-
resentation consists of distinct digits with the property that, except for the
leftmost digit, every digit differs by ±1 from some digit further to the left.
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Appendix

How Many Problems Are In This Book ?

Divisibility Theory I : 56 problems
Divisibility Theory II : 40 problems
Arithmetic in Zn : 27 problems
Primes and Composite Numbers : 31 problems
Rational and Irrational Numbers : 28 problems
Diophantine Equations I : 36 problems
Diophantine Equations II : 27 problems
Functions in Number Theory : 24 problems
Sequences of Integers : 43 problems
Combinatorial Number Theory : 42 problems
Additive Number Theory : 29 problems
The Geometry of Numbers : 7 problems
Miscellaneous Problems : 12 problems
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