
Chapter 36

The Power of a Prime That Divides a

Generalized Binomial Coefficient

[Written with Herbert S. Wilf. Originally published in Journal für die
reine und angewandte Mathematik 396 (1989), 212–219.]

The purpose of this note is to generalize the following result of Kummer
[8, page 116]:

Theorem. The highest power of a prime p that divides the binomial
coefficient

(

m+n
m

)

is equal to the number of “carries” that occur when
the integers m and n are added in p-ary notation.

For example,
(

88
50

)

is divisible by exactly the 3rd power of 3, because
exactly 3 carries occur during the ternary addition

(38)10 + (50)10 = (1102)3 + (1212)3 = (10021)3 = (88)10.

The main idea is to consider generalized binomial coefficients that
are formed from an arbitrary sequence C, as shown in (3) below. We will
isolate a property of the sequence C that guarantees the existence of a
theorem like Kummer’s, relating divisibility by prime powers to carries
in addition.

A special case of the theorem we shall prove describes the prime
power divisibility of Gauss’s generalized binomial coefficients [5, §5],

(m + n

m

)

q
=

(1 − qm+n)(1 − qm+n−1) . . . (1 − qm+1)

(1 − qn)(1 − qn−1) . . . (1 − q)
, (1)

a result that was found first by Fray [4].
Another special case gives a characterization of the highest power

to which a given prime divides the “Fibonomial coefficients” of Lucas
[9, §9],

(m + n

m

)

F
=

Fm+nFm+n−1 . . . Fm+1

FnFn−1 . . . F1
, (2)

515



516 Selected Papers on Discrete Mathematics

where 〈F1, F2, . . . 〉 = 〈1, 1, 2, 3, 5, 8, . . . 〉 is the Fibonacci sequence.
These coefficients are integers that satisfy the recurrence

(m + n

m

)

F
= Fm+1

(m + n − 1

m

)

F
+ Fn−1

(m + n − 1

n

)

F
.

Generalized Binomial Coefficients

Let C = 〈C1, C2, . . . 〉 be a sequence of positive integers. We define
C-nomial coefficients by the rule

(m + n

m

)

C
=

Cm+nCm+n−1 . . . Cm+1

CnCn−1 . . . C1
(3)

for all nonnegative integers m and n.

Generalized coefficients of this kind have been studied by several
authors. Bachmann [1, page 81], Carmichael [2, page 40], and Jarden
and Motzkin [6] have given proofs that if the sequence C is formed from
a three term recurrence

Cj+1 = aCj + bCj−1,

with starting values C1 = C2 = 1, and with integer a, b, then the
C-nomial coefficients are integers.

We are interested in the following questions: For a fixed prime p,
what is the highest power of p that divides

(

m+n
m

)

C? And under what
conditions on the sequence C is there an analog of Kummer’s theorem?

Given integers m and n, let dm(n) be the number of positive indices
j ≤ n such that Cj is divisible by m. If p is prime and x 6= 0 is rational,
let εp(x) be the power by which p enters x, that is, the highest power by
which p divides the numerator of x minus the highest power by which p
divides the denominator. (Thus, x is an integer if and only if εp(x) ≥ 0
for all p.)

Proposition 1. The maximum power of a prime p that divides the
C-nomial coefficient

(

m+n
m

)

C is

εp

(

(m + n

m

)

C

)

=
∑

k≥1

(

dpk(m + n) − dpk(m) − dpk(n)
)

. (4)
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Proof. We can write
(

m+n
m

)

C = Π(m + n)/(Π(m)Π(n)), where Π(n) =
C1C2 . . . Cn. Now

εp

(

Π(n)
)

=
n

∑

j=1

εp(Cj)

=
n

∑

j=1

∞
∑

k=1

[pk\Cj ]

=

∞
∑

k=1

n
∑

j=1

[pk\Cj ] =
∑

k≥1

dpk(n),

where [pk\Cj ] denotes 1 if pk divides Cj , otherwise 0. The result follows
since

εp

(

(m + n

m

)

C

)

= εp

(

Π(m + n)
)

− εp

(

Π(m)
)

− εp

(

Π(n)
)

.

Corollary 1. If dk(m+n) ≥ dk(m)+dk(n) for all positive k, m, and n,
the C-nomial coefficients are all integers.

Regularly Divisible Sequences

We say that the sequence C is regularly divisible if it has the following
property for each integer m > 0: Either there exists an integer r(m)
such that Cj is divisible by m if and only if j is divisible by r(m), or Cj

is never divisible by m for any j > 0. In the latter case we let r(m) = ∞.
Notice that the d functions for a regularly divisible sequence have the
simple form

dm(n) =

⌊

n

r(m)

⌋

, (5)

which satisfies the condition of Corollary 1. Therefore,

Corollary 2. The C-nomial coefficients corresponding to a regularly
divisible sequence are all integers.

Regularly divisible sequences can be characterized in another inter-
esting way:

Proposition 2. The sequence 〈C1, C2, C3, . . . 〉 is regularly divisible if
and only if

gcd(Cm, Cn) = Cgcd(m,n), for all m,n > 0. (6)



518 Selected Papers on Discrete Mathematics

Proof. Assume first that C is regularly divisible, and let m and n be
positive integers. If g = gcd(Cm, Cn), we know that m and n are divisible
by r(g), hence gcd(m,n) is divisible by r(g), hence Cgcd(m,n) is divisible
by g. Also gcd(m,n) is divisible by r(Cgcd(m,n)), hence m and n are
divisible by r(Cgcd(m,n)), hence Cm and Cn are divisible by Cgcd(m,n),
hence g is divisible by Cgcd(m,n). Therefore (6) holds.

Conversely, assume that (6) holds and that m is a positive integer.
If some Cj is divisible by m, let r(m) be the smallest such j. Then
gcd(Cj , Cr(m)) is divisible by m, hence Cgcd(j,r(m)) is divisible by m,
hence gcd(j, r(m)) = r(m) by minimality; we have shown that Cj is a
multiple of m only if j is a multiple of r(m). And if j is a multiple
of r(m) we have gcd(Cj , Cr(m)) = Cr(m), hence Cj is a multiple of m.
Therefore C is regularly divisible.

The number r(m) is traditionally called the rank of apparition of m
in the sequence C. If m′ is a multiple of m, the rank r(m′) must be a
multiple of r(m) in any regularly divisible sequence. Thus, in particular,
every prime p defines a sequence of positive integers

a1(p) = r(p), a2(p) = r(p2)/r(p), a3(p) = r(p3)/r(p2), . . . ,

which either terminates with ak(p) = ∞ for some k or continues indefi-
nitely with ak(p) > 1 for infinitely many k. Conversely, every collection
of such sequences, defined for each prime p, defines a regularly divisible
sequence C.

Ideal Primes

We say that the prime p is ideal for a sequence C if C is regularly divisible
and there is a number s(p) such that the multipliers a2(p), a3(p), . . .
defined in the previous paragraph are

ak(p) =

{

1, if 2 ≤ k ≤ s(p);

p, if k > s(p).
(7)

Thus

r(pk) =

{

r(p), if 1 ≤ k ≤ s(p);

pk−s(p)r(p), if k ≥ s(p).
(8)

Such primes lead to a Kummer-like theorem for generalized binomial
coefficients:
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Proposition 3. Let p be an ideal prime for a sequence C. Then the
exponent of the highest power of p that divides the C-nomial coefficient
(

m+n
m

)

C is equal to the number of carries that occur to the left of the
radix point when the rational numbers m/r(p) and n/r(p) are added in
p-ary notation, plus an extra s(p) if a carry occurs across the radix point
itself.

Proof. We use Proposition 1 and formula (5). If 1 ≤ k ≤ s(p) we have

dpk(m + n) − dpk(m) − dpk(n) =

⌊

m + n

r(p)

⌋

−
⌊

m

r(p)

⌋

−
⌊

n

r(p)

⌋

,

and this is 1 if and only if a carry occurs across the radix point when
m/r(p) is added to n/r(p); otherwise it is 0. Similarly if k > s(p),

dpk(m + n) − dpk(m) − dpk(n)

=

⌊

m + n

pk−s(p)r(p)

⌋

−
⌊

m

pk−s(p)r(p)

⌋

−
⌊

n

pk−s(p)r(p)

⌋

,

which is 1 if and only if a carry occurs k − s(p) positions to the left of
the radix point.

Proposition 3 can be generalized in a straightforward way to multi-
nomial coefficients (see Dickson [3]), in which case we count the carries
that occur when more than two numbers are added.

If p is not ideal, a similar result holds, but we must use a mixed-radix
number system with radices a2(p), a3(p), a4(p), . . . .

Gaussian Coefficients

Fix an integer q > 1, and let C be the sequence

〈q − 1, q2 − 1, q3 − 1, . . . 〉.

Then the C-nomial coefficients (3) are the Gaussian coefficients (1). It is
well known that this sequence C is regularly divisible; the integer r(m)
is called the order of q modulo m, namely the smallest power j such that
qj ≡ 1 (modulo m). We denote this quantity r(m) by rq(m).

If p is a prime that divides q, we have rq(p) = ∞. On the other hand,
every odd prime p that does not divide q is ideal for the sequence C. (A
proof of this well-known fact can be found, for example, in [7, Lemma
3.2.1.2P].) Therefore Proposition 3 leads to
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Theorem 1. Let q > 1 be an integer, and let p be an odd prime. If
p divides q, it does not divide the Gaussian coefficient

(

m+n
m

)

q for any

nonnegative m and n. Otherwise εp

((

m+n
m

)

q

)

is equal to the number of
carries that occur to the left of the radix point when m/rq(p) is added
to n/rq(p) in p-ary notation, plus an additional sq(p) = εp(q

r(p) − 1) if
there is a carry across the radix point itself.

For example, if q = 2 and p = 7 we have r2(7) = 3 and s2(7) = 1.
If m = 2 and n = 5 we have m/3 = (0.444 . . .)7 and n/3 = (1.444 . . .)7.
The sum is (m + n)/3 = (2.222 . . .)7; a single carry has occurred at the
radix point, and we ignore the (infinitely many) carries that occur to
the right of the point. Sure enough,

(

7
2

)

2 = 2667 is divisible by 7 but
not by 72.

The fractions m/rq(p) and n/rq(p) are always of the repeating form
(α.ddd . . .)p, where 0 ≤ d < p − 1, because rq(p) is a divisor of p − 1.

The case p = 2 is slightly special, but it can be handled by almost
the same methods. Suppose q > 1 is odd. Then there is a unique f > 1
such that

q ≡ 2f ± 1 (modulo 2f+1).

If q ≡ 2f + 1 we have rq(2) = rq(2
2) = · · · = rq(2

f ) = 1, and rq(2
k) =

2k−f for k ≥ f ; but if q ≡ 2f − 1 we have rq(2) = 1, rq(2
2) = · · · =

rq(2
f+1) = 2, and rq(2

k) = 2k−f for k > f .
It follows that the highest power of 2 dividing

(

m+n
m

)

q is the number
of carries when m is added to n in binary notation, plus f − 1 if m and
n are both odd and if q ≡ 2f − 1 (modulo 2f+1).

For example, if q = 23 we have f = 3, so we add m + n in binary
and count the carries, throwing in an extra f − 1 = 2 if there’s a carry
out of the rightmost bit position. If q = 25 again f = 3; but in this case
q ≡ 2f + 1 (modulo 2f+1), so the highest power of 2 dividing

(

m+n
m

)

25

is the same as for the ordinary binomial coefficient
(

m+n
m

)

.

Fibonacci Coefficients

Now let’s turn to the case where the generating sequence C is the se-
quence of Fibonacci numbers. This sequence satisfies (6), by a well-
known theorem of Lucas [9, page 206]; so it is regularly divisible.

Let r(p) be the least positive integer such that p\Fr(p). Then Fj is
divisible by p if and only if j is divisible by r(p); indeed it is well known
[10] that the period of the Fibonacci sequence modulo p is either r(p),
2r(p), or 4r(p). It is also well known (see, for example, exercise 3.2.2–11
in [7]) that every odd prime is ideal for the Fibonacci sequence. Special
consideration of the prime 2 leads to our second main result:
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Theorem 2. The highest power of the odd prime p that divides the
Fibonomial coefficient

(

m+n
m

)

F is the number of carries that occur to
the left of the radix point when m/r(p) is added to n/r(p) in p-ary
notation, plus εp(Fr(p)) if a carry occurs across the radix point. The

highest power of 2 that divides
(

m+n
m

)

F is the number of carries that
occur when m/3 is added to n/3 in binary notation, not counting carries
to the right of the binary point, plus 1 if there is a carry from the 1’s to
the 2’s position.

A Cyclotomic Approach

Let us sketch one more proof of Kummer’s theorem. This one uses a
more powerful apparatus than necessary, but it also sheds additional
light on the problem.

If we write qn − 1 in factored form as a product of cyclotomic poly-
nomials,

qn − 1 =
∏

d\n

Ψd(q), (9)

we obtain a factorization of Gaussian coefficients by substituting into
the right side of (1) and cancelling common factors:

(m + n

m

)

q
=

∏

h∈H(m,n)

Ψh(q), (10)

where

H(m,n) = {h ≥ 1 | m mod h + n mod h ≥ h }.

If we now let q → 1, the left side becomes the ordinary binomial co-
efficient. The right side becomes a product of well-known cyclotomic
values,

Ψh(1) =

{

p, if h = pk is a prime power;

1, if h is not a prime power.
(11)

Thus each factor is either 1 or a single prime, and p occurs as often as
there are powers of p in the set H(m,n); this is easily seen to be the
number of carries in the p-ary addition m + n.

A corollary of (10), obtained by matching the degrees, is an identity
for Euler’s function that we can state as follows: Fix integers m,n ≥ 0.
The product mn is the sum of ϕ(h), over all integers h for which a carry
occurs out of the units position when adding m + n in radix h.
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Some Determinants

The special properties of regularly divisible sequences allow us to eval-
uate some striking determinants. The genesis of these ideas was in the
well-known result that

det
(

gcd(i, j)
)n

i,j=1
= ϕ(1)ϕ(2) . . . ϕ(n).

This identity was generalized in [12] to a theorem about determinants
in semi-lattices, which we will quote here in just enough generality to
cover the situation at hand. If f is any function of the positive integers,
we have

det
(

f
(

gcd(i, j)
))n

i,j=1
=

n
∏

m=1

(

∑

d\m

µ
(m

d

)

f(d)

)

.

In view of (6), we find the following evaluation.

Proposition 4. Let 〈C1, C2, . . . 〉 be a regularly divisible sequence.
Then

det
(

gcd(Ci, Cj)
)n

i,j=1
=

n
∏

m=1

(

∑

d\m

µ
(m

d

)

Cd

)

. (12)

If apply this result to the sequence 〈qj −1〉∞j=1, we encounter, on the
right side for m > 1, the quantity

M(m, q) =
∑

d\m

µ
(m

d

)

qd, (13)

which is well known to be the number of nonperiodic words of m letters,
over an alphabet of q letters. Thus we have the remarkable identity

det
(

gcd(qi − 1, qj − 1)
)n

i,j=1
= (q − 1)

n
∏

m=2

M(m, q). (14)

Similarly we can apply (12) to the Fibonacci sequence, to find that

det
(

gcd(Fqi, Fqj)
)n

i,j=1
=

n
∏

m=1

(

∑

d\m

µ
(m

d

)

Fqd

)

. (15)

Is there a “natural” interpretation of the factors of this product?
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Additional Remarks

We have derived our theorems for C-nomial coefficients belonging to
regularly divisible sequences, but similar theorems apply in more general
situations. For example, we obtain a sequence satisfying the condition
of Corollary 1 if we let

dpk(n) = ⌊αpn/pk⌋ (16)

for all primes p and all k ≥ 1, where αp is any real number such that
0 ≤ αp ≤ p. Such sequences C are not regularly divisible, unless each
αp is either zero or p times the reciprocal of an integer. The highest
power of p that divides

(

m+n
m

)

C in such cases is the number of carries
that occur to the left of the radix point when αpm is added to αpn in
p-ary notation.

One special case of this construction occurs when αp = 2 for all p;

then it turns out that Cj = 2j(2j − 1), and
(

m+n
m

)

C =
(

2m+2n
2m

)

.

Another interesting (and remarkable) case occurs when αp = φ−1 =
(
√

5 − 1)/2 for all p; then it turns out that C⌈φn⌉ = n and C⌈φ2n⌉ = 1
for all n ≥ 1.

An ideal prime p is called simple if s(p) = 1; in such cases Proposi-
tion 3 reduces to counting the number of carries to the left of and at the
radix point. Nonsimple primes exist for sequences of the form qj −1; for
example r3(11) = 10, and 310 − 1 = 23 · 112 · 61. Another example [11] is
q = 2, p = 1093, rq(p) = 364, sq(p) = 2. But in the case of the Fibonacci
sequence, calculations by Wall [11] have shown that all primes < 10000
are simple. Does the Fibonacci sequence have any nonsimple primes?
Can one prove that it has infinitely many simple primes?
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ciprocitätsgesetzen,” Journal für die reine und angewandte Mathe-
matik 44 (1852), 93–146.
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