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Abstract

Starting with a number n and a base b you can collapse it to a smaller number by writing
the number in base b and then writing plus signs between the digits (i.e., splitting the expansion
of n into pieces and adding them up). By strategically placing the plus signs then in base 2 we
can always collapse n to a single digit using at most 2 steps, in base 3 this can also be done in
at most two steps with the exception of 11 numbers which require 3 steps, and in base 4 and
above 3 steps always suffice.

1 Introduction

Starting with a number n and a base b we will repeatedly apply the following procedure which
collapses n to a smaller number until we get down to a single digit.

1. Write n in base b and insert, as desired, plus signs in between the digits. (This couples digits
into groups which become new numbers in base b.)

2. Do the indicated addition operations in base b and add up the result to get n'.
3. If n/ is a single digit then we are done; otherwise return to step 1 replacing n with n’.

Given any number and base this procedure can always be done in finitely many steps, for
instance we can break the string up into substrings of length one and add up the resulting entries.
In this case the new value is smaller and on average we would expect n’ &~ clogn so we would expect
to take approximately log* n steps (where log* n is the number of logs that need to be applied to
n to get to 1). For example if we start with the number 10211914 (Martin Gardner’s birthdate) in
base 10 we would have the following:

10211914 — 1+0+24+1+1+9+14+4=19
— 1+9=10
— 1+0=1
A number can only be done in one step if the sum of the digits of the number written in base

b is less than b, so 10211914 cannot be done in one step in base 10. There is a unique way to get
this number to a single digit in two steps; we leave this as a challenge to the reader.
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In general we are interested in the fewest number of steps that it takes to get down to a single
digit. The case for base 2 was a problem of Gregory Galperin featured in the Puzzles Column of
Emissary [1].

The amazing thing is that no matter the size of n of the choice of our base, it can always be
done very efficiently. In this note we will outline what is known about this problem for bases 2, 3,
and 4 and greater.

Theorem 1. Any number n using base 2 can be collapsed to a single digit in at most two steps.
Equivalently, any number can be collapsed to a power of 2 in just one step.

Theorem 2. Any number n using base 3 can be collapsed to a single digit in at most two steps
except for the eleven numbers listed below.

1781 =2102222 3 41065 = 2002022221 3,

3239 = 111022223 43981 = 2020022221 3,

3887 = 120222223, 98657 = 120000222223
11177 = 1200222223, 131461 = 20200022221 3,
14821 = 2020222213, 393901 = 202000022221 3,

33047 = 12000222223

Theorem 3. Any number n using base 4 or higher can be collapsed to a single digit in at most
three steps. Further, there are infinitely many numbers which require three steps.

2 Collapsing numbers in base 2

We start with the simpler case of base 2 to establish Theorem The main approach is to split
the work into two parts. First we will show that if the the number of ones is large then we can
easily find a way to couple our digits to get to the nearest larger power of 2 (we initially break our
number into singletons and then rejoin, or couple, consecutive digits back together to increase the
sum to the desired value). Second we show that the result still holds if the number of ones is small.

We let m denote the number of ones in the base 2 representation of n (i.e., what we would get
from breaking the number up into singletons and adding as we did above). If m is a power of 2 we
are done; otherwise suppose that 2 is the smallest power of 2 greater than m. Then our goal will
be to find a way to couple numbers so that we can make up the difference D = 28 — m.

To start we will look at what happens when we couple some small number of singletons together.
In the table below the “x” represents a digit which can be either 0 or 1 (the digit in the last position
of a coupled number does not contribute to the change in the difference caused by the coupling).

replace | with | change
1+0+040+ = | 1000% | +15
1+40+04+1+*|1001% | +16
1+404+14+04+%| 1010 | +18
1+0+14+1+x*|1011% | +19
1+1+04+0+| 1100% | +22
1414041+ |1101% | +23
1+14+14+0+x%|1110% | +25
1+1+14+1+=|1111% | +26

replace | with | change
1+ % 1% | +1
14+0+%| 10« | +3
1+1+%| 11x| +4
14+0+04%| 100 | +7
1+0+1+4=|101% | +8
1+1404=|110% | +10
1+14+14+=|111x | +11




We can of course continue filling in this table, but this will suffice for our needs and the moral
here is that by coupling numbers together we can reduce the difference D to be made up. Our
basic strategy then, at least for large m, will be to start at the left hand side of a number and
couple together the largest number we can without making the net change go over D, then repeat
the process with our new difference with the remaining singletons as often as needed. This is an
efficient strategy as the following theorem shows.

Theorem 4. Given a number n written in base 2 containing q digits and a difference 1 < D < 24
that we are trying to make up by coupling digits together, take the largest initial string of the
expansion of n for which the total change does not exceed D. With the remaining uncoupled digits
we now have to make up a difference of at most %D.

Proof. Given that D > 1 then we can couple at least the first two terms together making a difference
of 1 and not exceeding D, so coupling can be used to reduce D. On the other hand since D < 24
then we cannot couple all the digits together without going over %D, so we must either stop at
some point or take the whole string and in the latter case the result still holds.

Now suppose that we have coupled the first » + 1 digits, i.e., a,...ag. The contribution A that
this will have to the difference is

A= 2"ar+---+2a1+ag) — (ar + -+ a1+ ap).

On the other hand by assumption if we had coupled the first r + 2 digits, i.e., a,...agx then we
would exceed D, i.e.,

D+1<A =2 a, +- +2%a +2a9 +2) — (ap + -+ a1 + ag + z).

Combining these we can conclude that A’ — 2A = a, + - -+ + a1 + ag. On the other hand we also
have a, + -+ a1 +ag < 2"a, + -+ -+ 2a1 + ag = A. Using that D < A’ — 1 we have

D-A<AN -1-A=2A+a,+-+a—1—A<2A,

So we can conclude that D < 3A or A > %D. Therefore we have the remaining difference that
needs to be made up is D — A < %D. O

In particular, at every stage we can quickly collapse the difference that needs to be made up.
Also note that (%)2 = % < 1, s0 we will never couple ¢ digits more than twice for any £.

Returning to our original goal, we want to couple numbers together to make up a difference of
D = 2¥ —m. Since D < 2F we initially couple at most k terms together, and further, in such a
couple we will use at most k ones. We then continue to couple numbers together and as noted we
quickly reduce the size of the coupling that we need.

Therefore we need to use at most 2k+2(k—1)+2(k—2)+---+2 = k(k+1) ones in reducing our
number (though in practice we will need far fewer). This gives us a simple bound on the number
of ones for which the trivial coupling off the largest initial number works, namely, if the number of
ones in the base 2 expansion of n is at least k(k + 1). On the other hand we have 2¥~1 < m. So if
kE(k + 1) < 27! then we have enough ones to do this strategy. This relationship holds for k > 7,
in particular it holds when m > 26 So that leaves us with the cases when the number of ones in
our base 2 expansion is below 64.



We now come to the second half of our process which is to look at what happens when the sum
of digits is small, in particular below 64. The coupling strategy is still very effective and we can
handle most cases using this technique but being more careful in counting. Also we can employ
some simple tactics for many cases, i.e., if m > 2D then we can couple D pairs of the form 1x in
our number. This handles most of the cases leaving us with the following:

m‘5 9 10 17 18 19 20 21 33 34 35 36 37 38 39 40 41 42
D‘3 7 6 15 14 13 12 11 31 30 29 28 27 26 25 24 23 22

e m = 5: If there is a 10« in the expansion of n then we can couple these terms together giving
a difference of 3 and we are done. If there is no 10% then our number must be of the form
11111 followed by some number of zeros. If there is at least one zero we can form three pairs
of 1% and get a difference of three and we are done. Otherwise there is no zero and we use
the following strategy 111119) — 11119y + 1() = 10000).

e m = 9: If the second digit in the expansion of n is a 0 then we can pair up the first four
digits losing at most three ones and have at most a difference of two to make up, which we
can easily do since there will be at least six ones remaining that we can use to make 1x.

If the second digit is a 1 then we can pair up the first three numbers reducing our difference
by 4 and then couple our next available three digit number. We have then used at most five
ones and reduced it by 7 or at most six ones and reduced it by 8. In either case we can still
finish by forming some 1:xs.

e m = 10: We couple the first three terms together. If we coupled 10% (or 11%) then we have
at least eight (or seven) ones left to make up a difference of 3 (or 2) which can be done by
forming some 1xs.

e m = 17: We couple the first four terms together. There are several sub-cases:

— If we coupled 100% (or 101x) then we have at least 15 (or 14) ones remaining to make
up a difference of 10 (or 9). If the digit immediately following the next available 1 is
a 0 then we can again pair up the next four consecutive terms and then find pairs 1%
to finish the case. Otherwise we pair up the next block of size three and reduce the
remaining difference by 4 using at most three ones. We now have at least 12 (or 11)
ones to make up a difference of 6 (or 5) which we can easily do by coupling pairs 1x.

— If we coupled 110% (or 111x) then we have at least 14 (or 13) ones remaining to make
up a difference of 7 (or 6), and this can easily be accomplished by coupling pairs 1x.

e m = 18,19,20,21: We split the expansion into two parts, one involving the first 9 ones and the
rest which will have 9,10, 11, 12 ones respectively. From the first part we can use the strategy
above for m = 9 to achieve a difference of 7, and we use the strategies for m = 9,10,11,12
respectively on the second parts to achieve differences of 7,6, 5,4 giving us precisely what we
need.

e m = 33: We couple the first five terms together. There are several sub-cases:

— If we coupled 1000% (or 1001x) then we have at least 31 (or 30) ones remaining to make
up a difference of 18 (or 17). We then take the next block of 9 ones and use the strategy



for m = 9 to get a difference of 7 leaving us with at least 22 (or 21) ones to make up a
difference of 11 (or 10), and this can easily be accomplished by coupling pairs 1x.

— If we coupled 1010% (or 1011%, 1100%, 1101%, 1110%, 1111x*) then we have at least 30 (or
29, 30, 29, 29, 28) ones remaining to make up a difference of 15 (or 14, 11, 10, 8, 7), and
this can easily be accomplished by coupling pairs 1:x.

e m = 34,35,36,37,38,39,40,41,42: We split the expansion into two parts, one involving the
first 17 ones and the rest which will have 17,18, 19, 20, 21, 22, 23, 24, 25 ones respectively. From
the first part we can use the strategy above for m = 17 to achieve a difference of 15, and we
use the strategies for m = 17,18, 19, 20, 21, 22, 23, 24, 25 respectively on the second parts to
achieve differences of 15,14,13,12,11, 10,9, 8,7 giving us precisely what we need.

This finishes the small cases and we have shown that every number in base 2 can be done in
two steps, and in fact, we have shown something stronger.

Theorem 5. Given a number n let m be the number of ones in the base 2 expansion of n and let
2% be the smallest power of 2 greater than or equal to m. Then except for n = 31 = 111119), n

one step we can take n to 2k

There are other ways to establish the above result. In particular, if we choose to generalize
what was done for the cases 18-21 and 34-42 then it suffices to show that it holds for m = 10 and
m = 2F + 1 for all k. Our choice of method is to introduce techniques that can be used for base 3.

3 Collapsing numbers in base 3

We now turn to the more interesting base 3 case and outline a proof of Theorem [2l While in the
base 2 case we always would finish the process with a single 1, now there are two possibilities, either
we finish with 1 or 2. We can always tell at the very beginning which one of the two will occur.
This is because when we couple the digits together we do not change the value modulo b— 1. (This
works by the same principle which states a number is divisible by 9 if and only if the sum of its
digits is divisible by 9.)

In particular, if m is the sum of the digits in our base 3 expansion, then if m is odd we will
finish with 1 and if m is even we will finish with 2. This tells us if m is odd then our first step is
to get to a power of 3 while if m is even then our first step is to get to a sum of two powers of 3.
This makes the even case much easier in general because there are more targets for us to shoot for.

We want to take the same basic coupling of the largest initial run we can. We have the following
result which tells us that again coupling is efficient. The proof is nearly identical to the base 2 case
and so we omit the proof here.

Theorem 6. Given a number n written in base 3 containing q digits and a difference 4 < D < 34
that we are trying to make up by coupling digits together, take the largest initial string of the
expansion of n for which the total change does not exceed D. With the remaining uncoupled digits
we now have to make up a difference of at most %D.

In particular, at every stage we can quickly collapse the difference that needs to be made up.
Also note that (%)4 = % < %, so we will never couple ¢ digits more than four times for any /.

Let m be the sum of digits of the base 3 expansion of n. We now look at some cases depending
on the parity of m and the nature of the expansion.



m 1S even

In this case we want to get to a sum of two powers of three. So choose k as small as possible so
that m < 3 + 3. Our goal is to make up the difference between these, i.e., D = 3¥ + 3 — m. Since
D < 3% then we initially couple at most k terms together, further in such a couple we will lose at
most k non-zero terms. We then continue to couple numbers together until we either reach our
goal, or we can no longer couple terms. If we reached our goal we are done. On the other hand if
we stopped coupling because D < 4 then we are also done because that means we have made up
the difference to get us to 3% + 1 which can be done in one step.

So we only need to make sure that we do not run out of non-zero terms before we stop coupling.
Counting we will have used at most 4k +4(k— 1)+ ---+4 = 2k(k + 1) non-zero terms in coupling.
On the other hand we have that 3*~! + 3 < m and the number of non-zero digits is at least
m/2 > (3871 4 3)/2. Therefore if

k-1
(k1)< O
then we have enough non-zero terms to finish the coupling. This inequality holds for £ = 6 and
therefore we have that if m > 3° 43 = 246 then we can use the coupling strategy to get the result.
We point out that we have trivial strategies available for m = 244 and m = 246.

m is odd with a 1 not at the last entry

Part of the advantage of the even case is we had two numbers to shoot for that were close to one
another so failure to reach one target corresponded to successfully hitting the other. For the odd
case our targets are so far apart that failure to hit our goal is catastrophic. So we need to have
some insurance so that if coupling stops and we are 2 short then we can make up the difference.
To help do that we will look for a 1x and “protect” this small block. We do this by finding the first
1 in the expansion and by our assumption this 1 is not at the end and we protect this number and
the digit immediately following it.

Now we couple as before, but if our coupling were to ever contain part of the protected block
then we skip past the block and continue, but at the soonest opportunity we will finish coupling
what comes before the block. In particular this means that keeping the 1x block safe will cost us at
most 4 non-zero terms (i.e., the possible two non-zero digits of 1x and since we used up everything
before the block at the earliest opportunity at most two more non-zero digits went unused). So we
continue until we can no longer couple. If we are at our goal we are finished, otherwise we have a
difference of 2 to make up and we use the 1x to bridge the gap.

So let k be the smallest value so m < 3% and that we are trying to make up the difference
D = 3% —m. Then as in the above case we will need at most 2k(k + 1) + 4 non-zero terms to use in
coupling. On the other hand we have that 3*~1 < m and the number of non-zero digits is at least

m/2 > 3¥=1/2. Therefore if
k—1
2k(k+1)+4< 3?

then we have enough non-zero terms to finish the coupling. Again this inequality holds for k = 6
and therefore we have that if m > 3% = 243 then we can implement the coupling strategy to get
the result. We point out that we have a trivial strategy available for m = 243.



m is odd with a single 1 at the last entry

This is a worst case scenario. The problem is we must go up by multiples of 4 when we couple and
so we have to shoot for a power of 3 that differs from m by a multiple of 4. Let k£ be the smallest
power of 3 so that m < 3% and 4 divides 3* —m. Then we have that 3*~2 < m (i.e., powers of 3
alternate between +1 modulo 4).

This is one of the reasons why m = 13 is an unusually hard case (as indicated by having 9 of
the 11 exceptional numbers for base 3). When we have a single 1 at the last entry then we have to
get to 81 or 729 and with relatively few non-zero digits this is difficult.

As before we will never couple ¢ digits more than four times for any £. Therefore in our coupling
we will never use more than 2k(k + 1) non-zero digits. Therefore if

3k72 4 1
2

then we have enough non-zero terms to finish the coupling. This inequality holds for k = 7, and
therefore we have that if m > 3% = 243 then we can implement the coupling strategy to get the
result.

2k(k+1) <

Medium sized m

We now have established the result for sufficiently large m, in particular we know the result holds
if the sum of digits is at least 243. We can do better if we keep track of how much coupling will be
involved as we go through the process. Note that at each stage we go down by at least % and the
remaining difference to make up must always be even. Suppose for example we have m = 90, in
the worst case scenario as given by Theorem [6] we have the following situation where the row for
D and non-zeroes corresponds to upper bounds for these quantities:

step 1 2 3 4 5 6 7 &8 9 10 11 12
D || 156 116 8 64 48 36 26 18 12 8 6 4
non-zeroes to use 5 5 5 4 4 4 4 3 3 3 2 2

In particular the coupling will use at most 44 non-zero terms, but we have at least 45 and so we can
handle this case. The only even case with m > 81 that we cannot easily handle by this moderately
improved bookkeeping is m = 86. But this is a trivial case because 90 = 3° + 33 so we only have
to make up a difference of 4 which we can do by either a single 2% or two 1xs and one of these two
must occur.

Similarly we can keep track of how much coupling will be involved in the case when m is odd and
we have a 1x protected block. Modestly improved record keeping allows us to handle everything
except for m = 83, 85,87,89,91, 93.

For these cases we can simply observe that to this point we have been extremely generous when
we looked at the number of non zeroes used and how much our difference declined. We can be a
little bit more careful about the range of possibilities. In the chart below we have listed the possible
differences that can occur as we pull off a string.

length of string 5 5 5 5 5 4 4 4 4 3 3 3 2 2
number of non zeroes 5 4 3 2 1 4 3 2 1 3 2 1 21
maximum A 232 232 228 212 160 72 72 68 52 20 20 16 4 4
minimum A 116 114 106 80 80 36 28 26 26 10 8 &8 2 2




In addition we have the following facts which give us great freedom when we have at least 18
nonzero terms left.

Fact 1. Given any arrangement of 18 non-zero terms and any arbitrary number of zeroes we have
the following.

o [f there is at least a single 1% in the arrangement then any even difference over the sum of
the singletons from 2 to 44 can be achieved by coupling.

o [f there is no 1x in the arrangement then any difference over the sum of the singletons of the
form a multiple of four from 4 to 176 can be achieved by coupling.

Branching on the various possibilities of how the string starts allows us to quickly reduce our
difference to a manageable range. This also happens for m = 85,87,89,91,93 when there is some
1% in the expansion.

Now let us turn to the case when m > 81 is odd and we have a single 1 at the end. Our modestly
improved bookkeeping does not work for m = 85,89,93,...,133. Let us consider these cases. If we
repeat the above table for n = 85 we have the following situation (because of parity we need to get
at least to 37 = 729):

step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D | 644 480 360 268 200 148 108 80 60 44 32 24 16 12 & 4
non-zeroes to use 6 6 6 6 5 5 5 5 4 4 4 3 3 3 3 2

This would seem to indicate colossal failure because there is no way we have enough zeroes. As in
the last case we can easily handle this with some simple case analysis.

e Suppose the first two digits are 20. Then we can group the first six digits together and we
will reduce the difference by at least 480 which will get us into a range for which we can use
the above fact to finish off the case.

e Suppose the first two digits are 22. Then we can pull off the first five digits together, and
then pull off the next group of five starting with the next available non-zero, at this point
the difference has gone down by at least 372 so have at most a difference of 272 to make up
and we still have at least 31 non-zeroes to do this. We now branch on several possibilities
(depending on the remaining difference and the leading terms) and in each case we can get to
a difference below 176 to make up while we still have at least 18 nonzero digits to work with.

The cases for m = 89,93, ...,133 can be handled in a similar fashion. (In general the hardest cases
are the ones just past a power of three because we have fewer nonzero terms and a larger difference
to make up.)

This finishes off the medium cases.

Small sized m

We now turn to the remaining cases when m < 81. Most of the upper range can easily be handled
using similar analysis as for the medium sized m. As m gets smaller the approach gets more
complicated and we have to look at many more cases. We opted to use brute force computation.
In particular, suppose we put a limit to our coupling size so that we do not couple anything larger



than size 5. Then we can reduce the number of remaining cases to a finite collection of possibilities
because we can take any long run of zeroes and reduce it to a run of size 4. We now run over this
large finite collection and we either find a way to couple to make up our difference in which case we
are done or we cannot find a way to couple to make up our difference and we examine the number
to see if it is either in the case where we need to take three steps or there is a better coupling
strategy available to us that simply requires a larger coupling.

The above computations for m < 81 was carried out on a sage server (where we also used
some efficient pruning to reduce the number of cases) and we were able to determine when m < 81
the only cases that take three steps are the ones given in Theorem A complete output of the
program plus a copy of the sage code is available onlineﬂ

A similar computation was used to establish the preceding fact about the differences that can
be achieved with some arbitrary patterns.

It is interesting to note that things get much more difficult in the base 3 case. For example we
know that there are many cases where we must skip over the next power of 3, whereas in base 2
there was only one number for which this had to happen. The most extreme case of this in base 3
is 387420487 = 222222222222222221 3), the sum of the digits is 35 so in the best case scenario we
would want to try to get to 3° = 243, but in fact there are only two ways to collapse this number
in two steps and both of them start by going to 3'7.

Many of these small cases are easily handled, for example we invite the reader to establish the
fact for m = 7 by hand. For the reader who is more adventurous they can also try to do m = 11
and m = 13 by hand.

4 Collapsing numbers in base 4 and higher

Most of the work in the base 3 case was ensuring that we could collapse most of the numbers in
two steps. When we relax and allow ourselves a third step that gives us a lot more breathing room
and a much simpler proof. For example using the consequences of Theorem [4] we know if the sum
of digits m > 243 that two steps suffice. On the other hand if the sum of digits is m < 243 then in
our first step we simply add up the digits (i.e., take n to m) and only need to verify that we can
then finish whatever is left in two steps. This is easy to do since in our second step we will be left
with a number whose sum of digits is at most 10 and these are easy cases when the base is 3.

For bases 4 and above we will use this a similar approach. Namely we will show if the sum of
digits is small then we can easily finish in three steps; and if the sum of digits is large we have a
lot of flexibility in coupling to again allow us to finish in three steps.

Lemma 1. Let b > 4 be our base. Then any n < 3b> —b — 1 can be collapsed to a single digit in
at most two steps.

Proof. First we observe that for n = 1,2,...,2b — 2 that we can always apply the trivial strategy
of adding up the digits and collapse to a single digit. The first nontrivial number for which the
simple sum of digits strategy does not get us down into this range is 1(b —1)(b — 1), but for this
number we use the strategy

1(b — 1)(b — 1)(b) — 1((,) + (b — 1)(b — 1)(b) = 100(b) — 1(5) + O(b) + O(b) = 1(b)‘
The next smallest number is 2(b — 2)(b — 1)) = 3b* — b — 1, establishing the lemma. O

! Available at http://www.math.iastate.edu/butler/base_3.zipl
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This lemma is tight, the number 2(b —2)(b— 1) takes three steps as is easy to check by a few
cases. In fact more is true.

Observation 7. Let b > 4 be our base. Then 20...0(b—2)(b—1)) takes two steps for any number
of zeroes. In particular, there are infinitely many numbers that take three steps.

To see this recall, as noted in the base 3 case, the final digit is completely determined by the
initial sum of digits modulo b — 1. In this case we see that the final digit at the end of this process
will be 1. So if it could be done in two steps we would have to be able to get it to a number of
the form 10...0), i.e., a power of b. In particular the last digit of any coupling strategy would
have to be zero, but for a number of this form the last digit in coupling would come from b — 1,
b—1)+(b-2),(b—1)+2o0r (b—1)+ (b —2) + 2 and none of these are 0 modulo b when b > 4.
(For b =3 we can get a 0 in the last digit and so this number can be done in two steps.)

If the sum of digits is small then we can apply Lemma [I] after doing a simple step of adding all
the digits. We now show that if the sum of digits is large then we can take one step to get us to a
number whose form can be finished in at most two more steps.

Lemma 2. Let b > 4 be our base and let n a number with the sum of its digits m > b2. Then in
one step n can be collapsed to a number of the form c0...0de where ¢ <2 and de@) < b2 — 2b.

Proof. Let n = (...asazazaia0) ;) and let A = max{a; +az+---,a2 +ag +---}. We do not use
the last digit for A and so we have A > (m — (b — 1))/2. We now consider what happens if we
couple in pairs so that the leading digits in the pairs sum to A (i.e., we pair so that all the digits
are even or odd depending on which gave us A). The sum total of this coupling strategy will be

b-—1)(m—-0b+1) = mb+m — (b—1)? >@

- 1A > = .
b—1)A+m > 5 5 5

(The last step is by our assumption that m > b2.) If we now break these pairs one at a time, say
from left to right, then the difference in the total would be at most (b— 1)? at each pair. Therefore
we have a sequence of coupling strategies which go from m to (b — 1)A + m where the difference
between two consecutive strategies is at most (b — 1)2.

Now m is in an interval of the form [b?, 2b%) or [2b%, b'™1) for some ¢t > 2. However we have that
(b—1)A+m > bm/2 can not be in the same interval (here we use that b > 4). Therefore there
will be some smallest coupling strategy which will exceed the top of the given range containing m.
Let M be the resulting total using this coupling. Then we either have 2b' < M < 2b' + (b — 1)?
or bt < M < bt 4 (b —1)2, depending on which case we are in, which gives exactly the sort of
base b representation as given in the statement of the lemma. O

So to establish Theorem [3]if the sum of digits m < b? then sum the singletons and then apply
Lemma [I] to the result and we take at most three steps. On the other hand, if the sum of digits
m > b? then by Lemma in one step we will collapse to a number of the form c0...0de with ¢ < 2
and db+ e < b(b — 2). In particular we have that d+e < (b—3) + (b— 1) = 2b — 4, and so adding
all the singletons gives a number of size at most 2b — 2, which can be finished in one more step.
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