REPRINTED FROM
NUMBER THEORY AND ALGEBRA
@ 1977
ACADEMIC PRESS, INC,
NEW YORK SAN FRANCISCO LONDON

On Extremal Density
Theorems for Linear Forms

R. L. GRAHAM H.S. WITSENHAUSEN

BELL LABORATORIES
MURRAY HILL, NEW JERSEY

J. H SPENCERfYt

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTSI

A typical question in extremal number theory is one which asks how large a subset R may be
selected from a given set of integers so that R possesses some desired property. For example, it is
not difficult to see that if R is a subset of the integers[1,2,...,2N] and R has more than N elements
then there are integers x and y in R so that x + y is also in R. The sets {1, 3, 5,...,2N — 1} or
{N+ 1, N+2,..., 2N} show that this bound cannot be improved.

In this note we prove several general results of this type. In particular, we show that if R < {1,
2,..., N} and R has more than N — [N/n] elements, then for some integers x and y, the integers x,
x+ ¥ x+2y...,x+ (n— 1)y and y all belong to R. Furthermore the bound N — [N/n] is best
possible.

t The work done by this author was done while he was a consultant at Bell Laboratories.
1 Present address: SUNY at Stony Brook, Stony Brook, New York.
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1. Introduction

Suppose & = {Li(xy, ..., X,) = D 7oy a;;x;: 1 <i<n}is a set of linear
forms in the variables x; with integer coefficients q; ;- The question we con-
sider is the following:

How large may a subset R of {1, 2, ..., N} be so that for every choice of
positive integers t;, 1 <j <m, at least one of the values Lyt,, ..., t,),
1<i<n, isnotin R.

Unfortunately, this question appears to be rather difficult and very few
general results are currently available. In this paper we study this problem
for several important special sets #. It will be seen that even in these simple
cases, the problem is not without interest.

2. Preliminaries

Let [1, N] denote the set {1,2,..., NL. If & = {Li(xy, ..., x,): 1 <i<n}
is a set of linear forms, we say that a set R < [1, N]is #-free if for any choice
of positive integers ¢, ..., t,, at least one of the values Ly(t,, ..., t,,) does not
belong to R. If R is not #-free, we say that & hits R. Define

S 4(N) =max |R|
R
where the max is taken over all R < [1, N] that are #-free and |R| denotes
the cardinality of R. Also, define 6(%), called the critical density of &, by
0(&£) = lim inf S ,(N)/N.
N

As an example, consider the system &, = {x, + kx,: 0 <k < n}. The
condition that R is .#,-free means exactly that R contains no arithmetic
progression of n terms.

For this example, a recent result of Szemerédi [2], however, asserts that

any infinite set of integers of positive upper density contains arbitrarily long
arithmetic progressions. From this it follows at once that §(.#,) = 0.

3. Augmented Arithmetic Progressions

We now consider a system closely related to %, which we denote by #*.
It is defined by

Ex=1{x; +kx,: 0 <k <n} U {x,}.

In this case, #¥ hits R if and only if R contains an arithmetic progression of
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n terms together with the common- difference of the progression. However,
the critical density of #¥ differs sharply from that of %, as the following
examples indicate.

Example 1 Let R, < [1, N] be defined by
R; ={x €[1, N]: x > [N/n]}.
Clearly R, is £ *-free since
ty+(n—Dt; >n(1+[N/n))>N  for t,t, €R;.
Thus
HL¥)=1—-n"t. 1)
Example 2 Suppose n is prime and let R, € [1, N] be defined by
R, ={x €[1, N]: x £ 0 (mod n)}.

Then #¥ cannot hit R, since for any integers t; and t,, either
t, =0 (mod n) or t, + kt,, 0 <k < n, runs through a complete residue
system modulo n and therefore represents 0 ¢ R,. Note that

|R2|=N_[N/"]= |R1|~ 2)

The following result shows that equality holds in (1) and, in fact, (2) is best
possible.

Theorem 1 Suppose R < [1, N] with |R| > N — [N/n]. Then £¥ hits
R.

Proof Let R satisfy the hypothesis of the theorem and suppose R is
ZL¥-free. Let A denote the least element of R. Then we may assume

A <[N/n] 3)

since otherwise |R| <N —[N/n]. Define the arithmetic progressions
T, < [1, N] by

T={i+kA:0<k<n}, 1<i<N-—(n—1A
Also, define 4;, A; < [1, N] for 1 <j < n as follows:

A_{[(j——l)A+1,jA] for 1<j<n,

i [(n—1)A+ 1, N] for j=n;

4 [N—-jA+1L,N—-(j—1A] for 1<j<n,
TTILN= (n—1A] for j=n

By (3), we see that
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Also, it is easily checked that if x € 4; n A then j + j = n + t for some ¢,
1<t<n and

Hi:xeT}| =t 4
We claim the following equation holds:
N-(n—-1DA n—1
nRI=" 3T AR+ X0=i)4, A RI + |4, 0 R]) ()
i= j=

To prove (5), let x € R. Then for some k and k', x € A, N A},. Since the A j
are disjoint, as are the 4}, then the contribution x makes to the second sum
on the right-hand side of (4) is just (n — k) + (n — k'). Let k + k' = n +t.
Hence, by (4), x contributes exactly ¢ to the first sum in (5). Therefore, each
x € R contributes exactly

m—ky+(n—k)+k+k—n)=n

to the right-hand side of (5) so that Eq. (5) is indeed valid. But by hypothesis,
since A € R, then |T; n R| <n—1 for all i. Thus, since |4, n R| =1,
then by (5)

-1

n|R| < (n— 1N = (1= DA)+ 24, (n— ) — (n— 1)(A — 1)

=m—DN+A(-(r—1)+nn—1)—-(n—-1)+n~1
=(n— DN +1), (6)

which implies

IR| < [_‘("— 1)£N+ 1)] —N— [I—VJ (7)

n
This proves Theorem 1. |
Of course, it follows from (1) and (7) that
S¢a(N)= N — [N/n] (8)
and consequently
ZF)=1—n"1

4. Forms in One Variable—A Special Case

As a prelude to a discussion in the next section of the general case of
linear forms in one variable (i.e., with m = 1), we consider first the special



ON EXTREMAL DENSITY THEOREMS FOR LINEAR FORMS 107

case ¥ = {x, 2x, 3x}. This example in fact has all the essential features of the
general case.

To begin, we let D = {d, < d, < ---} denote the set of all integers of the
form 2°3%, a, b > 0.

Let N be a fixed positive integer. For 1 <t < N with (t, 6) = 1, let C(¢)
denote the set

CO)=[LN]n{td:k=12..}.

Note that a set R < [1, N] is #-free if and only if R(t) = R n C(t) is L-free
for all ¢ with (¢, 6)= 1. For indeed, ¥ can hit R only if for some x,
{x, 2x, 3x} 2 R. However, this implies that .# hits R(t) for some ¢ relatively
prime to 6. Thus, a maximal #-free set R is formed by taking the union of
maximal #-free subsets from C(t) for each ¢, (¢, 6) = 1. However, it is clear
that

X, ={td:k=1,...,r} < C(t)

is #-freeifand only if X, ={d,: k =1,...,r} = C(1) is #-free. Thus, if f(r)
denotes the cardinality of the largest #-free subset of {d,, ..., d,} and h(r)
denotes the number of ¢ € [1, N, (¢, 6) = 1, with |C(t)| = r, then for any
Z-free set R < [1, N],

IR| < 3 7)) 0)

For fixed r, |C(t)| = r if and only if

td, <N <td,,,
ie,
N/d,,y <t < Nj/d,.
Thus,

oYl e

and, therefore, for maximal #-free sets Ry < [1, NJ,

Ry _1 & ( 1 )
lim . 11
N-ow N rgl dr dr+l ( )

But
fr+)~fn<i,
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so that letting K(.%#) denote the set {k: f (k) > f (k — 1)}, the telescoping sum
in (11) becomes

1 1

2

6($) - 3 keK(.’f)d-k.

(12)

Unfortunately, there does not seem to be any simple way to determine the
elements of K(&). The first few values are given in Table 1.

TABLE 1

koK) ko Sk ko fk)

1 1 13 9 25 17
2 2 14 10 26 18
3 2 15 11 27 18
4 3 16 11 28 19
5 4 17 12 29 20
6 5 18 13 30 20
7 5 19 13 31 21
8 6 20 14 32 22
9 7 21 14 33 22
10 7 22 15 34 23
11 8 23 16 35 24
12 8 24 17 36 25

Thus,
K(#)={1,2,4,5,6,8,9, 11, 13, 14, 15, 17, 18, 20,

22, 23, 24, 26, 28, 29, 31, 32, 34, 35, 36, ...}. (13)

It may be that f(k) = 1+ [2k/3] if k # 0 (mod 3) and, perhaps, for all &,
there is always a maximal -free set

Ry={2%%:i=1,... ()} <{dy, ..., d)

in which all a; — b, are congruent modulo 3.
It would also be interesting to know if §(.#) is irrational.

5. Forms in One Variable—The General Case

Let & denote the set of linear forms {a;x, ..., a,x} where
A={a, < <a,). Let P(A) = {q,, ..., q,} be the set of primes dividing the
a; and let D' = (d; < d, < -*-) denote the set of all integers of the form
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qi - g7, a; > 0. For each k let f(k) denote the cardinality of a maximal
-free subset of {d,, ..., d;}. Finally, let K(%) be defined by

K(Z) = {k: f(k) > f(k - 1)}.

By using essentially the same arguments as in the previous section, the
following theorem can be proved.

Theorem 2

5(2) = Hl—q Y a4t (14)

ke K(¥)

6. Concluding Remarks

One problem with a representation such as (14) is that it is not clear how
to describe K(£) so as to be able to evaluate Y, . k) di |- Several systems
¥ =Zay, ..., a)={a,x, ..., a,x} of forms in one variable are known,
however, for which such a description can be given. We list a sample of these
below. The arguments needed to determine the sets K(.%) are not difficult
and are omitted.

1. 5(2(1, ps p% .y D" ) =(p" — p)/(p" — 1) for p prime. Thus,
3(#(1, 2)) = % as expected.

2. ¥ (1 n)) = n/(n + 1).

s oz )<

4. 8(#(1,2,78))

here.

I Blw

2%. Some recent results of Harlambis [1] are relevant

It seems quite likely that almost all systems % have §(%) irrational
although not even one such & is known at present!
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