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Abstract

Let a1 < a2 < . . . < as be gives integers and let [n] denote the set {1, 2, . . . , n}. In this note
we investigate the size of minimum subsets of [n] which intersect every set in [n] of the form
{a1x,a2x, . . . , asx} for some x ∈ [n]. For the most part, we can only estimate this extremal
density although there is an interesting class of ai’s for which we can find the exact answer.

1 Introduction

This paper had its genesis in some work begun by the latter two authors some 25 years ago concerning

the size and structure of the smallest subsets of [n] := {1, 2, . . . , n} which hit every set in some

specified family of subsets of [n]. Unfortunately, although we came back to these questions from

time to time, we never got around to writing up what we knew (and didn’t know) when Paul was

still alive. However, this meeting provided an ideal stimulus for pushing forward our knowledge

boundaries even further, and summarizing in print the current state of affairs for what we feel is an

attractive set of questions in combinatorial number theory.

2 Preliminaries

For a fixed r × s integer matrix A = (aij), 1 ≤ i ≤ r, 1 ≤ j ≤ s, let us call a subset S = SA(n) ⊆

[n] := {1, 2, . . . , n} A-hitting if for every (non-trivial) vector x̄ = (x1, x2, . . . , xs)∗ with xi ∈ [n] for

all i, and satisfying Ax = 0̄, we always have xj ∈ S for some j. (Here, non-trivial means all xi

are distinct, and y∗ denotes the transpose of y). Further, define s(n) = sA(n) to be the minimize

possible size of an A-hitting set SA(n). A classical problem in combinatorics is that of determining
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(or estimating) sA(n) for various choices of A. We mention several of these now, as an introduction

to the cases we will be considering.

To begin with, take A to be the 1×3 matrix A = (1 1 −1). Thus, Ax̄ = 0̄ implies x1+x2−x3 = 0,

i.e., x1 + x2 = x3. In this case it is not hard to see that

sA(n) = bn
2
c,

with two somewhat different sets sA(n) achieving this bound. Namely, we can choose all even

numbers in [n], or we can choose all numbers ≤ n/2 in [n].

Next, consider the (even smaller) 1 × 2 matrix A = (2 − 1). In this case, Ax̄ = 0̄ implies that

x2 = 2x1, so that any A-hitting set must intersect every set of the form {x, 2x} ⊆ [n]. What is

sA(n) in this case? Motivated by the preceding example, there are two natural guesses one might

make. One of these is S1 = {x ∈ [n] : x = 22k+1t, k ≥ 0, t odd}. For this set we have

|S1| ∼ (1
4

+ 1
16

+ 1
64

+ . . . )n = n
3
. The other is S2 = {x ∈ [n] : n

22k+2 < x ≤ n
22k+1 , k ≥ 0} which

also turns out to have |S2| ∼ n
3 . In fact, as we shall see later, it is not hard to show that sA(n) ∼ n

3

for this A.

For our next example, we mention the (very classical) case A = (1 1 − 2). Here, Ax̄ = 0̄ implies

x1 + x2 = 2x3, so the sets {x1, x2, x3} ⊆ [n] which any A-hitting set must intersect are just the

3-term arithmetic progressions (since x3 = x1+x2
2

). It is because of examples like this that we require

solution vectors to be non-trivial, since (x, x, x) is a solution to Ax̄ = 0̄ for any x. Erdős and Turán

already conjectured in 1936 [7], that in this case sA(n) = (1 + o(1))n, or phrased in another way,

any set of integers with positive upper density must contain a 3-term arithmetic progression. This

was finally first proved by Roth [16] in 1954, with subsequent striking extensions to this result by

Szemerédi [19], Gowers [9], and others (we will discuss these further at the end of the paper). In

general, all matrices A for which A 1̄ = 0 (where 1̄ is the all 1’s vector) have the special property

that sA(n) = (1 + o(1))n.

Finally, consider the somewhat larger example[
2 −1 0
4 0 −1

]
.

Here, Ax̄ = 0̄ implies x2 = 2x1, x3 = 4x1, so an A-hitting set SA(n) is one which intersects every

subset of the form {x, 2x, 4x} ⊆ [n].
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As usual (it seems), there are two natural candidates for achieving the minimum size sA(n).

They are

S3 = {x ∈ [n] : x = 23k+2t, k ≥ 0, t odd}

and

S4 = {x ∈ [n] :
n

23k+3
< x ≤ n

23k+2
, k ≥ 0}.

And, as we might expect (by now),

|S3| ∼
n

7
∼ |S4|

which is the correct asymptotic value of sA(n).

The reason we have mentioned the two candidates in many of the preceding examples is that

while they both gave the same asymptotic values for sA(n), one of the two makes perfect sense if

we are considering subsets of [0, 1] (say), which hit all real solution vectors x̄ to Ax̄ = 0̄ (S2 and S4)

whereas S1 and S3 don’t. It is this difference which results in the rather different and very interesting

behavior for matrices like A =
[

2 −1 0
3 0 −1

]
. We shall investigate this particular matrix in some

detail in Section 4.

3 Asymptotic values

In general, we will be interested in the asymptotic behavior of sA(n). So, define

σ(A) := lim inf
n→∞

sA(n)
n

Thus, we have seen
A σ(A)

(1 1 − 1) 1/2

(2 − 1) 1/3

(1 1 − 2) 1(
2 −1 0
4 0 −1

)
1/7
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We could also ask the same questions for real solutions x̄ to Ax̄ = 0̄: How small can the measure

of a set R ⊆ [0, 1] be which hits every (non-trivial) solutions x̄ to Ax̄ = 0̄?

Denote this value by ρ(A). It is not hard to see that in general, σ(A) ≤ ρ(A).

For example, for A = (2 − 1),

ρ(A) = inf{µ(R) : R ⊆ [0, 1] hits every set {x, 2x} ⊆ [0, 1]}

= 1/3 where µ denotes Lebesgue measure

with the set R = {x ∈ [0, 1] : 1
22k+2 < x ≤ 1

22k+1 , k ≥ 0} being the only set (up to measure

0) achieving this value (as we will see shortly). As mentioned before, we can think of R as a

“continuous” version of the set S2 in the preceding section for the integer problem for A.

4 {x, 2x, 3x}

Much of the initial interest in the class of problems involved around a bet 1 that the second author

made with the other two concerning hitting sets for solutions to Ax̄ = 0̄ for the matrix A = A1,2,3 =(
2 −1 0
3 0 −1

)
. In this case, solution set to Ax̄ = 0̄ are just sets of the form {x, 2x, 3x} ⊆ [n]

for some integer x. For the real case, Paul constructed the following candidate for a minimal set R

hitting every set {x, 2x, 3x} ⊆ [0, 1]:

R = {x ∈ [0, 1] : 6−k ≤ x < 2 · 6−k, k ≥ 1}

Thus R consists of all x ∈ [0, 1] which when expressed base 6 as x = 0.x1x2x3 . . . has its first nonzero

“digit” xi equal to 1.

An easy calculation gives µ(R) = 1/5, and so ρ(1, 2, 3) := ρ(A1,2,3) ≤ 1/5. In fact, this is the

correct value of ρ(1, 2, 3) as we now show.

Theorem 1

ρ(1, 2, 3) = 1/5 (1)

Proof: Denote by Y the subinterval (1/6, 1/3] ⊆ [0, 1] and let X be any measurable set in (1/6, 1]

1Unfortunately, for just $ 20.
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which hits every set {y, 2y, 3y} for some y ∈ Y . Define

X1 := X ∪ (1/6, 1/3],

X2 := X ∪ (1/3, 1/2],

X3 := X ∪ (1/2, 2/3],

X4 := X ∪ (2/3, 1]

Note that

2y ∈ X ∩ 2Y = X2 ∪X3

=⇒ y ∈ 1
2
(X ∩ 2Y ) =

1
2
X2 ∪

1
2
X3

Similarly,

3y ∈ X ∩ 3Y = X3 ∪X4

=⇒ y ∈ 1
3
(X ∩ 3Y ) =

1
3
X2 ∪

1
3
X3

Thus,

Y ⊆ X1 ∪
1
2
(X ∩ 2Y ) ∪ 1

3
(X ∩ 3Y )

= X1 ∪
1
2
X2 ∪

1
2
X3

1
3
X3 ∪

1
3
X4

and so

1
6

= µ(Y ) ≤ µ(X1) +
1
2
µ(X2) + (

1
2

+
1
3
)µ(X3) +

1
3
µ(X4)

≤ µ(X1) + µ(X2) + µ(X3) + µ(X4)

= µ(X)

with equality only if

µ(X1) =
1
6
, µ(X2) = µ(X3) = µ(X4) = 0.

Now repeat the same argument for Y ′ = (1/36, 1/6], concluding that µ(X′) ≤ 1/36, etc. (No

point in X can hit {y′, 2y′, 3y′} for y′ ∈ Y ′). Thus, if R hits every set {x, 2x, 3x} ⊆ [0, 1] then

µ(R) ≥
∑∞
n=1 6−n = 1/5 with equality (up to a set of measure 0) only if

R = ∪∞k=1(1/6k, 2/6k]
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Now, what about the integer case for A1,2,3 =
(

2 −1 0
3 0 −1

)
. In light of all of the examples

mentioned up to this point, it is natural conjecture that σ(A) = 1/5 as well (which is what Paul

did. More precisely, he bet that we couldn’t find sets S(n) ⊆ [n] with s(n) < (1/5− ε)n for ε > 0

fixed and n→∞, which hit every integer set {x, 2x, 3x} ⊆ [n]).

Theorem 2

σ(1, 2, 3) := σ(A1,2,3) < 0.1997

Proof: Define

D := {2i3j : i, j ≥ 0} = {d1 < d2 < d3 . . .}

= {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, . . .}

and

Dk := {d1 < d2 < . . . < dk}

Write

[n] = ∪1≤t≤n,(t,6)=1 C(t)

where C(t) := {2i3jt : i, j ≥ 0} ∩ [n].

Fact:

{x, 2x, 3x} ⊆ [n]

⇐⇒ {x, 2x, 3x} ⊆ C(t) = {d1t, d2t, . . . , dkt} for some t

⇐⇒ {y, 2y, 3y} ⊆ D(k)

where y = 2i3j for some i, j ≥ 0.

Question: How many t ∈ [n], (t, 6) = 1, have |C(t)| = k?

Answer: We need tdk ≤ n < tdk+1, i.e.,

n

dk+1
< t ≤ n

dk
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Thus, there are n( 1
dk
− 1
dk+1

) · 1
3 +O(1) such t, the factor of 1/3 coming from the fact that φ(6) = 2,

i.e., we are requiring (t, 6) = 1.

Let f(k) denote the size of the smallest set hitting all {x, 2x, 3x} ⊆ D(k). Then it is clear that

we have

σ(1, 2, 3) =
1
3

∑
k≥1

f(k)(
1
dk
− 1

dk+1
) (2)

We point out that this derivation already appears in the earlier paper [11] of one of the authors. Of

course, this leads to the next (non-obvious) question:

Question: What is f(k)?

Let us now identify the integers in D = {2i3j : i, j ≥ 0} = {d1 < d2 < d3 < . . .} with lattice

points in the non-negative quadrant so that the integer dk = 2i3j corresponds to the lattice point

(i, j). With this representation, a set {y, 2y, 3y} in D with y = 2i3j corresponds to the three lattice

points (i, j), (i + 1, j), (i, j + 1) which we will call an “L” ( see Figure 1). In order to avoid possible

i

j
2  3  i   j

2  3  i   j + i

2      3  i + 1   j

Figure 1: An L

confusion, we will let ∆(k) denote the lattice points corresponding to the integers in D(k). In Table

1, we show two versions of ∆(25)–the first with points labeled by the value of the integers in D(25),

and the second with points labeled by the indices of the corresponding integers in D(25).

Note that ∆(k) in general consists exactly of those lattice points in the triangle bounded by the x

and y axes (or in this case, the i and j axes), and the line L(c) : i log 2+j log 3 = c for an appropriate

value c (actually, an interval of values). As c increases, the line L(c) passes over one more lattice
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81 162
27 54 108
9 18 36 72 144
3 6 12 24 48 96 192
1 2 4 8 16 32 64 128

(a) ∆(25) labelled by values

19 24
12 16 21
7 10 14 18 23
3 5 8 11 15 20 25
1 2 4 6 9 13 17 22

(b) ∆(25) labelled by indices

Table 1: Two labellings of ∆(25)

point which is dk+1, which is now also inside the growing triangle. The apparently chaotic behavior

by which ∆(k) grows as k → ∞ seems to us to be a major source of the difficulty in determining

the exact value of ρ(1, 2, 3). In fact, it would seem to us to be a minor miracle if ρ(1, 2, 3) were to

turn out to be rational.

So we have converted our question about f(k) to a geometrical (but equivalent) one:

What is the smallest set which hits all the “L’s” in ∆(k)?

Let us consider a possible candidate, which we call G0. These are all the points (i, j) in ∆(k)

with i− j ≡ 0 (mod 3). In other words, G0 consists of all the lattice points in ∆(k) which lie on a

family of 45◦ parallel lines spaced 3 apart. It is easy to see that every “L” in ∆(k) must be hit by G0.

More generally, we could use either of the two translates G1 = {(i, j) ∈ ∆(k) : i− j ≡ 1(mod3)}
or G2 = {(i, j) ∈ ∆(k) : i− j ≡ 2(mod3)} as well, and computation shows that occasionally, the

sizes of these sets differ by 2 or more.

Note that it can happen that (i, 0) ∈ ∆(r) but (i− 1, 1) 6∈ ∆(r) for some i and r (since the angle

between the i-axis and the line i log 2 + j log 3 = c is less than 45◦). When this happens then even

though (i, 0) ∈ Gimod3, this point is not needed for Gimod3 to hit all “L’s” in ∆(r). Hence, it should

not be counted when computing the sizes of the minimum sets hitting all the “L’s” in ∆(r). So, let
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us define g(k) to be the size of the smallest of the three sets G0, G1 and G2, where the size of Gj is

decreased by 1 if the preceding situation applies. Then we have:

f(k) ≤ g(k) ≤ bk
3
c (3)

We should mention at this point that as far as we can tell, it is always true that f(k) = g(k).

However, we are unable to show that this is always the case. Now, for our estimate:

σ(1, 2, 3) =
1
3

∑
k≥1

f(k)(
1
dk
− 1

dk+1
)

≤ 1
3

∑
k≥1

g(k)(
1
dk
− 1

dk+1
)

≤ 1
3

∑
k<M

g(k)(
1
dk
− 1

dk+1
) +

1
3

∑
k≥M

k

3
(

1
dk
− 1

dk+1
)

=
1
3

∑
k<M

g(k)(
1
dk
− 1

dk+1
) +

1
9
(

M

dM
+
∑
k>M

k

3
1
dk

) (4)

For M = 2000, this gives

σ(1, 2, 3) < 0.1996805162

and the theorem is proved. �

The fact that M has to be rather large before we break the 1/5 = 0.2000 barrier helps explain

why it is difficult to actually display sets that are better than what the ρ(1, 2, 3) = 1/5 construction

gives when converted to integers.

To establish a lower bound, we have

Theorem 3

σ(1, 2, 3) > 0.1990389

Proof: Since

σ(1, 2, 3) ≥ 1
3

∑
k<M

f(k)(
1
dk
− 1

dk+1
) +

1
3

∑
k≥M

f(M)(
1
dk
− 1

dk+1
)

≥ 1
3

∑
k<M

f(k)(
1
dk
− 1

dk+1
) +

1
3
f(M)

1
dk

(5)
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
f(k) 0 0 1 1 1 1 2 2 2 3 3 4 4 4 4 5 5 5 6 6 7 7 7 8 8

Table 2: Values of f(k) for k ≤ 25

then it is simply a matter of (patiently) determining f(k) for some small values of k (we did this for

k ≤ 50; see Table 2 for values of f(k), k ≤ 25).

Thus, taking M = 50 in (5) we find

σ(1, 2, 3) > 0.1990389

as claimed.

If f(k) = g(k) for all k, as we believe, then in fact we would have

σ(1, 2, 3) = 0.199680516197 . . .

In any case, as one of the authors likes to say, every right-thinking person knows that σ(1, 2, 3) is

irrational.

We point out the quite similar arguments apply to more general sets like {x, ax, bx} for example.

However, when log a
log b is irrational then the order in which lattice points enter the triangle (as ∆(k)

grows) varies unpredictably, making it difficult to know when f(k) increases, and preventing us from

being able to evaluate the corresponding sum for σ(1, a, b) exactly.

5 Other sets

Given the increase in difficulty involved in determining σ(1, 2, 3), one might wonder if there is much

hope in dealing with even larger examples. In particular, let us focus on matrices A of the form
a1 −1 0 0 . . . 0
a2 0 −1 0 . . . 0

as 0 0 0 . . . −1

 .

In this case we denote the asymptotic value ρ(A) by ρ(1, a1, a2, . . . , as) where the sets to be hit

have the form {x, a1x, a2x, . . . , asx}. It turns out that there is an exceptional class of situations

in which σ can be determined exactly. As an example, let us examine the family {x, 2x, 3x, 6x}.
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Using the same methods employed for determining ρ(1, 2, 3) in Theorem 1, it can be shown that

ρ(1, 2, 3, 6) = 1/11. What about σ(1, 2, 3, 6)? This is answered by

Theorem 4

σ(1, 2, 3, 6) = 1/12

Proof: Defining D and D(k) as we did in Theorem 3 (since the only primes dividing
∏
i ai are still

2 and 3), we see that {y, 2y, 3y, 6y} hits D(k) if and only if {(i, j), (i + 1, j), (i, j + 1), (i + 1, j +

1)}. These four points correspond to the vertices of a unit square “S” (as opposed to the “L” in

Theorem 3). Let us identify a special subset T of lattice points in the nonnegative quadrant by

defining T := {(2i + 1, 2j + 1) : i, j ≥ 0}, i.e., points with both coordinates odd. It is easy to

see that every square “S” hits the set T . Furthermore, by considering the family F of the form

{(2i, 2j), (2i+1, 2j), (2i, 2j+1), (2i+1, 2j+1)}, each containing a unique point of T as a Northeast

corner, then we see f(k), the size of the smallest set hitting every “S” in ∆(k), must be as large as

|T ∩∆(k)|. However, it clearly does not have to be any larger than this since we can just use the

set T ∩∆(k) itself. Thus we have

f(k) = |T ∩∆(k)| (6)

This implies that when the line L(c) : i log 2 + j log 3 = c moves as c increases, the value of f(k)

exactly when a new lattice point from T is included in the triangle formed by the i and j axes and

L(c). Consequently, we have

σ(1, 2, 3, 6) =
1
3

∑
k≥1

f(k)(
1
dk
− 1

dk+1
)

=
1
3

∑
k≥1

(f(k) − f(k − 1))
1
dk

=
1
3

∑
f(k)>f(k−1)

1
dk

since f(k) − f(k − 1) ≤ 1

=
1
3

∑
i,j≥0

1
22i+1

· 1
22j+1

since f(k) jumps when dk ∈ T

=
1
12

This proves the theorem. �
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The same argument turns out to work whenever the configuration C = C(1, a1, a2, . . . , as) of

lattice points corresponding to the set of coefficients {1, a1, a2, . . . , as} in A tiles the nonnegative

quadrant (or more generally, the nonnegative orthant when
∏
i ai has more than two prime factors).

For example, for the set {1, 2, 12, 24}, the configuration C is the zigzag set {(i, j), (i + 1, j),(i +

2, j+1), (i+2, j+2)}. This tiles the positive quadrant, and the corresponding argument shows that

σ(1, 2, 12, 24) =
1
39

.

In general, for a set A = {a1 < a2 < . . . < am}, define:

π(A) = set of primes q dividing
∏
i ai,

DA = {d1 < d2 < . . .} = the set of numbers with only qi as prime factors, and

DA(k) = {d1 < d2 < . . . < dk}.

Let f(k) := the size of a minimum set of DA(k) hitting every set of the form {a1x, a2x, . . . , amx},

x an integer, and let K(A) := {k : f(k) > f(k − 1)}.

Theorem (Graham, Spencer, Witsenhausen [11])

σ(A) = σ(1, a1, . . . , am) =
∏

q∈π(A)

(1− q−1)
∑

k∈K(A)

d−1
k

Although we have had this result for some time, it is only recently that we were able to use it to

compute anything interesting.

We have also investigated several other infinite families of sets A. We list some of these results

(without proof) below.

z ρ(A) σ(a)
3 1/5 0.199 . . .
4 1/7 1/7
5 11/90 ?
6 7/66 ?
7 17/182 ?
8 1/12 5/62

Table 3: A = {1, 2, z}, z > 2

The fact that we can evaluate σ(1, 2, 8) arises from the fact that for this case, 2 is the only prime

involved in the factors of the ai, making this a 1-dimensional problem (which typically can be dealt
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with, since f(k) is then essentially periodic).

For real z, 4 ≤ z ≤ 8, we can show

ρ(1, 2, z) =
2
z
− 5

4z − 2

(which probably wasn’t easy to guess by just examining the values in Table 3 ! In general, we have

techniques for evaluating ρ(1, α, β) for any α and β.

Conjecture: σ(A) is rational if and only if C(A) tiles the positive orthant.

We do not have a single example of an irrational σ(A). Of course, σ(1, 2, 3) is certainly irrational;

all we lack is a proof! In this case, does f(k) = g(k) for all k? In general, is there an efficient way

to determine f(k) for large k?

We remark here that in general, σ can be a lot smaller than ρ. For example, a recent result of

Erdős and Spencer (1995) [6] deals with the set of coefficients {1, 2, 3, . . . , s}. They show

σ(1, 2, . . . , s) = Θ(
1

s log s
).

On the other hand, it can be shown that

ρ(1, 2, . . . , s) =
1

2s− 1
,

which is a lot larger. Perhaps in some sense this is as large as the difference between σ and ρ can

be.

Conjecture If A = {a1, a2, . . . , am}, then ρ(A) is rational whenever all the ai are rational.

We conclude this section with one more class of matrices which have been investigated. These

correspond to the matrices A = (1 1 − α) for various values of α.

For the case A = (1 1 −3), our hitting sets SA(n) must intersect every non-trivial solution vector

x̄ = (x1, x2, x3) to the equation x1 + x2 = 3x3.

The second author had conjectured some years ago that sA(n) = n/2 + O(1). An early result of

Lucht [14] shows that ρ(A3) = σ(A3) = 1/2. Subsequently, Chung and Goldwasser [4] showed that

sA3(n) = bn/2c, n 6= 4, and in fact, for n ≥ 23, the set of even integers in [n] is the unique minimum

A3-hitting set.
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For the case of x1 +x2 = kx3 for integer k ≥ 4, the corresponding value of σ(Ak) was determined

by Lucht [14] who showed that σ(Ak) = 2k−2
k2−2 . For real α ≥ 4, it was shown in [5] that ρ(Aα) ≤ 2α−2

α2−2 .

Presumably, this is the correct value of ρ(Aα).

6 Some final remarks

As promised early, we will mention a few more remarks concerning the case A3 = (1 − 2 1)

(corresponding to 3-term arithmetic progressions), and the more general case

Ak =


1 −2 1 0 . . . 0
0 1 −2 1 0 . . . 0

0 0 . . . 1 −2 1


for k-term arithmetic progressions. Since σAk(n) = (1 + o(1))n for all k (by the classic result of

Szemerédi [19]), people have traditionally focused on the complementary statement of the problem,

defining rk(n) := n − σAk(n) as the size of the largest subset of [n] which contains no k-term

arithmetic progression. The first significant results here were the bounds of Salem/Spencer [17] and

Behrend [1], which were of the form

r3(n) > n exp(−c
√

logn)

for a suitable constant c >. This of course shows that r3(n) > n1−ε for any ε > 0 when n is large.

Roth [16] in 1954 then showed that

r3(n) = O(
n

(log log n)c
) = o(n),

which was followed 15 years later by Szemerédi’s result [18] r4(n) = o(n), and finally by the celebrated

bound in 1974 [19]

rk(n) = o(n) for all k.

(In this paper he also introduced the fundamental “regularity lemma”; see [13]).
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Further improvements were:

r3(n) = O(
n

(log n)1/3
by Heath-Brown (1987) [12]

and Szemerédi (1990) [19]

r3(n) = O(n(
log logn

log n
)1/3) by Bourgain (1999) [3]

r4(n) = O(
n

(log logn)c
) by Gowers (1999)[8]

Very recently (in fact, not yet published at the time of this writing), Gowers has proved the striking

bound

rk(n) = O(
n

(log log n)ck
)

for all k where ck > 0 is a constant depending on k. This may well represent the truth here, although

almost no progress has been made on the lower bounds for the past 50 years.

As an application of Gowers’ result, define W (k) to be the least integer such that any 2-coloring

of the integers {1, 2, . . . , W (k)} must always contain a k-term arithmetic progression in a single

color. The existence of W (k) is guaranteed by a classic result of van der Waerden (1927) [21] (also

see [10]). The original bounds for W (n) grew like the Ackermann function (because of the double

induction used in the proof) an so were not even primitive recursive. In 1988, Shelah [15] found a

different proof which gave the bound

W (n) ≤ T (n)

where T (n) is defined recursively by:

T (1) = 2, T (k + 1) =

T (k)︷ ︸︸ ︷
222·

·...
2

However, Gowers’ bound on rk(n) implies

W (n) < 22222n+9

for all n

(This result earned a reward of $ 1000 offered by the 3rd author, parallel to the $1000 reward given

to Szemerédi by the second author for his estimate rk(n) = o(n). This problem is turning out to be

rather expensive!) Undeterred, however, the 3rd author conjectures (for $1000):

W (n) ≤ 2n
2

for all n.
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The best lower bound currently available is still that of Berlekamp [2] from 1968:

W (n + 1) ≥ n2n, n prime.

Clearly there is still a lot of room for improvement here.
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