On N consecutive integers in an arithmetic progression

By RONALD EVANS in Champaign (Illinois, U.S.A.)

Let $B_N(d)$ denote a block $\{c+d, c+2d, ..., c+Nd\}$ of N consecutive integers in an arithmetic progression. It is known [1] that for each $N \ge 17$ there exists a block $B_N(1)$ containing no integer relatively prime to each of the others. One might ask whether a similar result holds for blocks $B_N(2)$ of odd integers, or in general for blocks $B_N(d)$. We shall prove that in fact for any positive integers c and d and for all $N > N_0(d)$, there exists a block $B_N(d)$ whose integers are congruent to $c \pmod{d}$ which contains no integer relatively prime to each of the others. (This is of course trivial if (c, d) > 1.)

As the assertion is known for d=1, assume $d \ge 2$ and let $t_1 < t_2 < \cdots < t_k$ be the prime divisors of d. Let r(N) be the number of integers $b=t_1^{a_1}t_2^{a_2} \ldots t_k^{a_k}$ ($a_i=0,1,2,\ldots$) for which b < N. For a given i, the number of powers $t_i^{a_i}$ for which $t_i^{a_i} < N$ is $\le 1 + \frac{\log N}{\log t_i}$. Hence $r(N) \le \prod_{i=1}^k \left(1 + \frac{\log N}{\log t_i}\right) \le \left(1 + \frac{\log N}{\log 2}\right)^k$. Thus for all sufficiently large N, $r(N) < (\log N)^{k+1}$. By well-known theorems on distribution of primes, we conclude that for large N,

(1)
$$\pi(N/2) - \pi(N/4) > 2r(N),$$

(2)
$$\pi(3N/4) - \pi(N/2) > 4r(N).$$

There exists a prime t such that for all large N,

$$(3) t_k < t < N/4.$$

Choose an integer $N_0(d)$ so large that (1), (2), and (3) hold for all $N > N_0(d)$. Fix $N > N_0(d)$ and let r = r(N).

Let $b_1, ..., b_r$ denote the integers $b = t_1^{q_1} t_2^{q_2} ... t_k^{q_k}$ for which b < N. By (1), we can choose 2r distinct primes q_i such that

(4)
$$N/4 < q_i < [N/2]$$
 $(i=1, 2, ..., 2r)$.

By (2), we can choose 4r distinct primes p_t such that

(5)
$$N/2 < p_i < [3N/4]$$
 $(i=1, 2, ..., 4r)$.

Now let x be a solution of the system

$$(6) x \equiv c \pmod{d}$$

(7) $x \equiv 0 \pmod{p}$ for each prime $p \leq N/2$ such that $p \notin \{t_1, \dots, t_k, q_1, \dots, q_{2r}\}$.

(8)
$$x+db_i \equiv 0 \pmod{q_i}$$
 $(i=1, 2, ..., r)$

(9)
$$x - db_i \equiv 0 \pmod{q_{r+i}}$$
 $(i=1, 2, ..., r)$

(10)
$$x+dq_i \equiv 0 \pmod{p_i}$$
 $(i=1, 2, ..., 2r)$

(11)
$$x - dq_i \equiv 0 \pmod{p_{2r+i}} \quad (i=1, 2, ..., 2r).$$

(A solution exists as the moduli are relatively prime in view of (3), (4), and (5).) We shall now show that the block $B_N(d) = \{x - d(N - \lfloor N/2 \rfloor - 1), ..., x + d \lfloor N/2 \rfloor \}$ has the desired properties. That its integers are congruent to $c \pmod{d}$ follows from (6). To see that $B_N(d)$ contains no integer relatively prime to each of the others, we will produce, for each $u \in B_N(d)$, a corresponding $v \in B_N(d)$ such that $v \neq u$ and (u, v) > 1.

If u=x, we may choose v=x+dt by (3) and (7). If $u=x+db_i$, we may choose $v=x+d(b_i-q_i)$ by (4) and (8). If $u=x-db_i$, we may choose $v=x+d(q_{r+i}-b_i)$ by (4) and (9). If $u=x+dq_i$, we may choose $v=x+d(q_i-p_i)$ by (4), (5) and (10). If $u=x-dq_i$, we may choose $v=x+d(p_{2r+i}-q_i)$ by (4), (5), and (11). Every other $u \in B_N(d)$ has the form $x \pm dm$, where m is divisible by a prime $p \le N/2$ such that $p \notin \{t_1, \ldots, t_k, q_1, \ldots, q_{2r}\}$. Hence by (7), we may choose v=x for each of these u.

References

[1] R. J. Evans, On blocks of N consecutive integers, Amer. Math. Monthly, 76 (1969), 48—49.

UNIVERSITY OF ILLINOIS CHAMPAIGN, ILLINOIS 61820

(Received September 16, 1970)