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Abstract. The relationship between free groups and graphs is one of the

many examples of the interaction between seemingly foreign branches of math-
ematics. After defining and proving elementary relations between graphs and

groups, this paper will present a result of Hanna Neumann on the intersection

of free subgroups. Although Neumann’s orginal upper bound on the rank of
the intersection has been improved upon, her conjecture, that the upper bound

is half of the one she originally proved, remains an open question.
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1. Groups

Definition 1.1. Recall that a group G is a set S and a binary operation · with the
properties that G is closed under ·, · is associative, there exists an identity e such
that for all g ∈ (G), g · e = e · g = g, and there exist inverses such that for each
g ∈ G, there exists g−1 ∈ G such that g · g−1 = g−1 · g = e.

When working with groups, it is helpful to review the definitions of homomor-
phism, an operation perserving map. For groups G1 = (S1, ·), G2 = (S2, ?), the
homomorphism φ : G1 → G2 has the property that φ(x · y) = φ(x) ? φ(y). An
isomorphism is a bijective homomorphism.

Definition 1.2. This paper will focus on a particular kind of group, those which
have the least possible amount of restriction: free groups. Let i : S → F . A group
F is free on a set S if for all groups G and for all f : S → G, there exists a unique
homomorphism ψ : F → G so that i◦ψ = f . In other words, the following diagram
commutes:

S
f //

i

��

G

F

ψ

??~~~~~~~
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2 LAUREN COTE

The simpliest way to understand free groups is to think about elements in the
free group as reduced words on a set S.

Definitions 1.3. A word is a string of elements s ∈ S and their inverses s−1. The
identity is the empty word with no symbols. A reduced word is one that contains
no adjacent pairs ss−1, since by definition ss−1 is the identity. Reduction is simply
replacing ss−1 with the empty word, or equivalently removing these pairs. A free
group F on the set {a, b} with two elements is the set of all possible words using{
a, a−1, b, b−1

}
.

When writing words, exponents are used for ease: the word aaaaababb−1abb−1b−1

is written as a4(ab)2b−1abb−2, which then reduces to a5ba2b−1. Any set with the
operation concatenate and reduce words generates a free group.

Definition 1.4. A minimal generating set for a free group is a set of elements
with the property that no generator is a word that can be made from the other
generators. The minimal generating set is unique up to bijection since the sole
property necessary in the construction of a free group is the number of symbols
used. Minimal generating sets will be written inside 〈〉 brackets. The notation Fn
will denote a free group on n minimal generators.

The sets 〈a, b〉 , 〈c, d〉 , 〈xy, yx〉 , 〈pumpkinpie, cherrypie〉 all generate free groups
which are isomorphic to each other since they all have two generators.

Definition 1.5. The rank of a free group is the cardinality of any minimal set of
generators needed to create the free group.

Determining minimal generators and the rank for a free group on a set S in-
volves determining whether any element in S is a word in the other elements of S.
Evaluating the rank of Fn is trivial, so we focus on finding ranks of subgroups of a
free group. However, finding the rank of a subgroup involves tedious computation.

Example 1.6. Take S =
{
a, a3, b

}
. Since it only uses the symbols a, b, the free

group on S will be a subgroup of the free group on two generators F2 = 〈a, b〉. The
minimal generating set for the free group on S is 〈a, b〉 since a3 is a word made by
a. Hence this subgroup is equal to F2.

Example 1.7. Although the above example is straightforward, determining the
rank and minimal generators of given subset is extremely difficult combinatori-
ally. Let S =

{
ab2a−1, ab, ab3ab−1

}
. The free subgroup of F2 on S must have

rank greater than or equal to two since there must be at least the symbols a
and b. However, it cannot rank greater than three since there are three words
in S. Although free groups and their subgroups are non-abelian, the inverse of
the word (ab) is b−1a−1 since abb−1a−1 is the identity. The free group on S has
rank 2 because ab3ab−1 = (ab2a−1)(ab)(ab2a−1)−1(ab) = ab2a−1abab−2a−1ab =
ab2bab−2b = ab3ab−1.

The difficulty of the combinatorial calculation of rank gets even worse when
considering intersections of free groups. The intersection L of two subgroups N,M
of a free group F is defined as the set containing all the elements l such that l ∈ N
and l ∈M .

Lemma 1.8. L = N ∩M is a (free) subgroup of N,M .
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Proof. To show L is closed under concatenation: for l, l′ ∈ L, the words ll′, l′l are
also in L since ll′, l′l ∈ N,M by the closure under concatenation for N and M .
The identity of F , the empty word, must be in both N and M and hence in L. For
any l ∈ N,M , there exists l−1 ∈ N,M , so l−1 ∈ L. Lastly, since associativity is
inherited from F , L is a subgroup of N,M . The freeness of a subgroup of a free
group will be proved later. �

Example 1.9. Let’s take a very easy example: N =
〈
a2, b

〉
and M =

〈
a2, ab

〉
both

subgroups of F2. Then N ∩M should include all words with even powers of a and
no powers of b. Hence, L is the free group generated by

〈
a2
〉
. Even though this is

a simple example, determining how many generators are needed is not intuitive.

To help gather information about the rank of an intersection of free groups, we
need Hanna Neumann’s theorem. In 1955, she proved for N,M subgroups of a free
group F that

(1.10) 0 ≤ rank(N ∩M)− 1 ≤ 2(rankN − 1)(rankM − 1)

She conjectured that the 2 in her upper bound could be dropped, and this conjecture
remains an open question. In order to prove her original theorem, knowledge of
graphs and fundamental groups will be imperative.

2. Graphs

Definitions 2.1. A graph G is a set of vertices V (G) together with a set E(G)
of edges. An oriented edge e = (v, w) begins at the vertex v and ends at vertex
w. The edge in the reverse direction is e−1 = (w, v), and is called the inverse of
e. All graphs in this paper will have oriented edges unless otherwise noted. The
valency of a vertex v is the total number of edges starting and ending at v. A
loop is an edge with the same starting and ending vertex: l = (v, v). A one loop
contributes twice when determining valency at a vertex. A path p is a finite list
of edges e1, e2, ..., en where the ending vertex of ei for i < n is the same as the
beginning vertex for ei+1. The formalized definition is that a path is a continuous
map p : [0, 1] → G where p(0) is the starting vertex of the path, and p(1) is the
ending vertex of the path. Paths are continuous movements along sequential edges
in the time interval [0, 1]. Paths can be concatenated if the ending vertex of p1 is
the same vertex as the starting point of p2. A closed path begins and ends at the
same vertex. A spur is a subpath of p consisting of ei followed by the inverse of
ei (a closed path that includes only one other vertex). A tree is a graph that has
no closed paths in it. A graph is connected whenever given any two vertices, there
exists a path between them. A maximal tree T is the longest non-closed path in
a graph G. In a connected graph, it contains all vertices because given any tree
we can lengthen it by adding the path from vn to vn+1 and still never get a closed
path. Examples of graphs are given in Figure 1.

Definitions 2.2. A homotopy is a path of paths or a deformation of one map to
another map that is continuous with respect to t ∈ [0, 1]. More precisely, for maps
m1 : G1 → G2 and m2 : G1 → G2 to be homotopic, there is a continuous map
h : [0, 1] × G1 → G2 such that h(0, x) = m1(x) and h (1, x) = m2(x) . Two spaces
X,Y are homotopy equivalent spaces if there exist continuous maps f : X → Y
and g : Y → X such that g ◦ f is homotopic to the identity map in X and f ◦ g is
homotopic to the identity map in Y . If a space is homotopy equivalent to a point,
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Figure 1. a) a disconnected, unoriented graph with a loop ei at
vertex v, which has valency 2.
b) graph with closed path e1e2e3e4 and spur e4e−1

4

c) infinite tree of valency 3 with unoriented edges
d) infinite graph of valency 4

that space is called contractible.
Another topological notion of equivalence is homeomorphism. A function f : X →
Y is a homeomorphism if f is bijective, continuous, and has a continuous inverse
f−1 : Y → X.

Figure 2. a) A tree is homotopy equivalent to a point
b) A circle is homeomorphic to a square
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Now that the vocabulary of graphs has been spelled out, how do lines and dots
relate to groups?

There is a group hidden within a graph called the fundamental group of the graph
G and is denoted π1(G). To find this group, we take equivalence classes of closed
paths. Two paths p and p′ are considered equivalent if p′ can be made from p via a
finite number of insertions or removals of spurs in the middle or at the endpoints.
Let [p] be the equivalence class of closed paths p beginning (and ending) at a vertex
v. Defining the operation [p1] · [p2] = [p1p2] to be the equivalence class of con-
catenations of p1 and p2. This product is well-defined because adding or removing
of spurs preserves the equality. The identity is the constant path at vertex v and[
p−1
]

= [p]−1 since adding or subtracting spurs preserves the equality. Hence the
fundamental group is a group. Note that paths which are homotopy equivalent are
in the same equivalence class.

Theorem 2.3. The fundamental group of a countable connected graph is free.

Proof. To find the generators of the fundamental group, we pick a base point v0
and find all closed paths from v0. For each vertex vi in the graph, choose a path
wi = (v0, vi) called the approach path. For any edge e = (vi, vj), let e′ = wiew

−1
j be

a closed path from v0 that includes e as a subpath. Any closed path p = e1e2e3 . . . en
starting and ending at v0 is equivalent to p′ = e′1e

′
2e
′
3 . . . e

′
n since w1 = wn = (v0, v0)

and the approach paths cancel between successive edges.
Choose a maximal tree T . Since trees are homotopy equivalent to a point, we
collapse the tree T to v0 and consider the remaining loops attached to v0. This is
called the bouquet of circles B of [e1] , [e2] , . . . attached at v0:

Figure 3. A bouquet of circles B attached at v0.

If ei is part of the maximal tree, then e′i is a closed path and thus part of the
equivalence class of constant paths (v0, v0). Hence the generators of π1(G) are all
[e′i] where ei /∈ T or equivalently, ei ∈ B. Note that the path eiejek . . . is equal to
the constant path at v0 (the identity) only if the word eiejek . . . is the identity in
the free group on the minimal generators 〈e1, e2, . . . , ei, . . .〉. Thus, the equivalence
classes [e1] , [e2] , . . . are the free generators for π1(B). Since [ei] = [e′i] for ei ∈ B
since they are equivalent closed paths, the generators for π1(G) are also free. An
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intuitive way to think about this is that paths of loops in B and their inverses form
words. �

Now that we have constructed a group from a graph, we will constuct a graph
from a given group, mainly focusing on how to construct a covering graph from a
subgroup. From this construction, we will see that subgroups of free groups are
free (a combinatorial migraine otherwise).

Definition 2.4. A covering graph G̃ of G is a graph locally homeomorphic at each
vertex to G. More formally, there exists a map φ : G → G called the projection
with the following properties:
(a) φ preserves endpoints of each edge so that for ẽ = (ṽ, w̃), φ(ẽ) = (φ(ṽ), φ(w̃)).
(b) (φ(ẽ))−1 = φ(ẽ−1).
(c) φ preserves valency: There is a one-to-one mapping from the collection of

oriented edges in G̃ which begin at v to the collection of oriented edges in G
that begin at φ(v).

Going from a path p in G to p̃ in G̃ is called lifting. Given an edge e in G and
a vertex v in G̃, there is exactly one edge ẽ beginning or ending at v that covers
e. Note that there is exactly one edge covering e for every vertex in G̃, but there
are multiple edges in all of G̃. To find a path p̃ in G̃ which covers p, we use this
lifting property recursively. Given a base point, the starting vertex v0, there is a
unique path p̃ formed when the vertex used for covering ei+1 is the ending vertex
of ẽi. The total number of vertices in G̃ which cover a given vertex in G is called
the sheet number of the covering.

Figure 4. An example of covering maps:
a) A graph with two loops
b) Infinite sheeted covering map
c) Eight sheeted covering map
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Theorem 2.5. When we have a covering map of a graph, π1(G̃) is isomorphic to
a subgroup of π1(G). Classifying the set of closed paths in G which lift to nonclosed
paths emanating from a chosen base point ṽ0 in G̃ by the end point ṽf of the lift
path p̃ is in fact the right coset decomposition of π1(G) modulo π1(G̃). In other
words, a covering graph is identified with a subgroup of the fundamental group.

Proof. By the properties of φ listed above and the lifting property, there is a one-to-
one correspondence between the equivalence classes [p] which form the fundamental
group of G and the equivalence classes [p̃] of paths, including non-closed paths, in
G̃. In addition, φ takes products to products and inverses to inverses, which implies
that there exists an injective homomorphism φ∗ : π1(G̃) → π1(G). Hence there is
an isomorphism between π1(G̃) and a subgroup of π1(G).
To show the right coset decomposition part of the therom, first consider when
two equivalence classes of paths, [p1] , [p2] are in the same coset. Then, for some
[q] ∈ π1(G), qp1 = p2. However, p̃2 = q̃p̃2 where q̃ is a loop from ṽ0. Thus, p̃1 and
p̃2 have the same starting point, namely ṽ0, and the same ending point ṽf . Since
p1, p2 have the same ending point in G, ṽf covers that ending point. Hence, the
cosets are contained within the classification.
To go the other direction, assume that p̃1, p̃2 start at ṽ0 and go to the same end-
ing vertex ṽf , which covers a vertex vf in G. Consequently, p1 and p2 have the
same ending point (vf ) and [p1] , [p2] are in the fundamental group of G. Since
the projection of the closed path p̃2p̃1

−1 is [p2]
[
p−1
1

]
, this concatenation of equiv-

alence classes is closed and hence in the fundamental group of the covering graph:
[p2]

[
p−1
1

]
= [q] ∈ π1(G̃). This implies that [p2] = [q] [p1] or that [p1] , [p2] are in the

same coset. �

To finalize the correspondence between subgroups and covering graphs, we look
at an explicit construction of the graph of a subgroup, as well as an example.

Construction 2.6. Given a free group F of rank k, we realize it as the fundamental
group of a bouquet G of k circles.
If H is a subgroup of F , then it will be isomorphic to the fundamental group of a
covering G̃ of G. Each vertex will have one incoming and one outgoing edge for each
loop in G. A connected graph is then uniquely determined since each ei originating
at a vertex corresponding to the coset H [p] must end at the vertex corresponding
to the coset H [pei].
This constructed graph is such that π1(G̃) = H. Take a path p̃ in G̃ that goes
from the base point to some ṽi and covers the path p ∈ G. Then ṽi corresponds
to the coset H [p]. The path p̃ is closed and thus in the fundamental group only if
H [p] = H ⇒ [p] ∈ H. Taken with the above, this shows that π1(G̃) is isomorphic
to H and thus the constructed graph represents the subgroup.

Corollary 2.7. Every subgoup of a free group is free.

[This is actually a theorem of Nielsen and Schreier, but once the graph of the
subgroup is constructed, there is virtually no work.]

Proof. Given a subgroup H of a free group F , realize H as the fundamental group
of a covering G̃. Since the covering is a graph and the fundamental group of graph
is free, π1(G̃) = H is free. �
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Figure 5. An example of covering maps:
a) A graph of F2 = 〈e1, e2〉
b) A covering graph representing the subgroup H = 〈e1〉
c) The spine or minimum deformation retract of b)

Definitions 2.8. A maximal branch of a graph G is the longest contractible sub-
graph of G that meets the rest of G only at one end of one edge. A minimal de-
formation retract R of a graph G is obtained by cutting off all maximal branches.
This subgraph R is also called the spine of G.
The formal definition of a retraction map is as follows: Let the retraction map
r : G → R be a continuous map homotopic to the identity map on R. A defoma-
tion retract is a retraction map r such that there exists h : [0, 1] × G → G which
meets three conditions:
(a) for all vertices w in R, r(w) = w
(b) for all vertices v ∈ G, h(0, v) = v and h(1, v) = r(v)
(c) for all vertices v ∈ R, h(t, v) = v ∀t ∈ [0, 1]

Theorem 2.9. A deformation retract r induces an isomorphism r∗ : π1(G) →
π1(R).

Proof. To show that r∗ is a homomorphism, note that the continuity of r means
that closed paths in G map to closed paths in R. It also maps homotopy equivalent
paths to homotopy equivalent paths since r composed with any homotopy h is again
a continuous map of maps, a homotopy. Since condition (a) implies that r maps
products to products and inverses to inverses, r∗ is a homomorphism. Condition
(a) implies that r∗ is onto, since closed paths in G map exactly to themselves in
R. To show that r∗ one-to-one, consider a closed path p in G based at w which is
in R. Condition (c) implies that r(p) is also based at w and condition (b) implies
that r(p) is homotopic to p. Hence r(p) and p are in the same equivalence class in
π1(R) and π1(G). Hence r∗ is an isomorphism. �
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Corollary 2.10. Note that if π1(G) <∞, then the minimal deformation retract R
is a finite graph.

Proof. If R were infinite, it must have infinite closed paths since all infinite trees
have been cut off. However, this implies that π1(R) is infinite and, by above,
also isomorphic to a finite free group. Since this is a blatant contradiction, R is
finite. �

The Euler characteric of a graph is a powerful tool used to analyze the properties
of a graph. For any graph, it is related to the rank of the fundamental group as
follows:

Theorem 2.11. Let V (G) be set of vertices of G and E(G) be set of edges of G.
Let χ(G) = |V (G)| − |E(G)| , the Euler characteric of a finite graph, and δ(v) be
the valency of vertex v. If G is a finite graph, then

(2.12) 2
(

rank(π1(G))− 1
)

= 2(−χ(G)) =
∑

v∈V (G)

δ(v)− 2

Note that the finite condition is only necessary for the right side of the equation.

Proof. Tackling the left side of the equality, let us begin by assuming that T is
a tree. We begin counting the number of vertices, beginning at an initial vertex.
Every subsequent edge goes to another vertex and the number of edges increases
by one, but the number of vertices also increases by one. Since every edge and
vertex except the initial one cancels, χ(T ) = 1 + (1 − 1) + (1 − 1) + . . . = 1. Now
let the graph G have k closed paths and a maximal tree GT . Each closed path can
be thought of as a tree with one edge added to close the path. Hence

(2.13) χ(G) = |V (G)| − |E(G)| = |V (GT )| − (|E(GT )|+ k) = 1− k
Finally, k = rank(π1(G)) = rank(π1(GT )) since the maximal tree contains no closed
paths. Thus χ(G) = 1− rank(π1(G)) or −χ(G) = rank(π1(G))− 1.

The right side of the equality takes little work:

(2.14)
∑

v∈V (G)

δ(v)− 2 = 2|E(G)| − 2|V (G)| = 2(−χ(G))

when G is finite. If G had infinite vertices, then the sum would be either infinity
or 0, which is not necessarily equivalent to the Euler characteristic: take an infinite
one-dimensional tree, which has Euler characteristic 1 while the sum is

(2.15)
∑

v∈V (G)

δ(v)− 2 =
∑

v∈V (G)

2− 2 = 0 6= 1.

�

3. Hanna Neumann Theorem

Theorem 3.1. To restate the thereom: Let N,M be subgroups of F , and L the
non-trivial intersection of N and M . Let

(3.2) ρ(F ) = min {0, rankF − 1}
Then,

(3.3) ρ(L) ≤ 2ρ(N)ρ(M)

The following proof expands the proof from W. Neumann.
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Proof. Assume rankF = k and G is a graph with π1(G) = F , i.e. G is a bouquet
of k circles. For a subgroup H of F of rank s, let G(H) be a covering of G with a
fundamental group H: π1(G(H)) = H created as above. The vertices of G(H) are
identified with the elements of the set of right H-cosets. Assuming H is non-trivial,
let R(H) be the minimal deformation retract of G(H), creating a finite graph that is
homotopy equivalent to G(H). By Thereom 2.8, π1(R(H)) is isomorphic to π1(H),
so they have the same rank. Thus, we can use the more convenient finite retracted
graph to discover about rank of H. R(H) is a finite graph since rankH < ∞.
Applying the theorem about Euler characteristic yields

(3.4) 2ρ(H) =
∑

v∈V (R(H))

δ(v)− 2

G(L) is a covering of both G(N) and G(M) because L is a subgroup of both N
and M . The projection maps G(L) → G(N) and G(L) → G(M) send the spine
R(L) into the spines R(N) and R(M) respectively. Hence there are injective maps
λN : V

(
R(L)

)
→ V

(
R(N)

)
and λM : V

(
R(L)

)
→ V

(
R(M)

)
. The injectivity

follows since the L-cosets are also in the set of N -cosets as well as in the set of
M -cosets. The same injectiveness also holds for λ = (λN , λM ) : V

(
R(L)

)
→

V
(
R(N)

)
× V

(
R(M)

)
. For any v ∈ V

(
R(L)

)
, δ
(
λN (v)

)
= δ(v) since covers are

locally homeomorphic around each vertex. Thus, for v ∈ V
(
R(L)

)
we have

(3.5) 0 ≤ δ(v)− 2 ≤ min
(
δ
(
λN (v)

)
, δ
(
λM (v)

))
≤
(
δ
(
λN (v)

))(
δ
(
λM (v)

))
.

Thus, combining the above with the theorem concerning the Euler characteristic,

(3.6)

2ρ(L) =
∑

v∈V
(
R(L)

) δ(v)− 2

≤
∑

v∈V
(
R(L)

)
(
δ
(
λN (v)

)
− 2
)(
δ
(
λM (v)

)
− 2
)

≤
∑

(u,w)∈V
(
R(N)

)
×V
(
R(M)

) (δ(u)− 2
)(
δ(w)− 2

)
=
( ∑
u∈V

(
R(N)

) (δ(u)− 2
))( ∑

w∈V
(
R(M)

) (δ(w)− 2
))

= 2ρ(N)2ρ(M)

Simplifying gives

(3.7) ρ(L) ≤ 2ρ(N)ρ(M).

�

The Hanna Neumann theorem and her conjecture have been intensely studied
and her thereom has been stregthened or reproved several times. One easy im-
provement is to show her conjecture holds true when one subset has finite index:

Theorem 3.8. If either N or M has finite index in F , then ρ(L) ≤ ρ(N)ρ(M).

Proof. Let the subgroup N have finite index n in F , assume rankF > 1. Since the
number of right cosets (the index) is the same as the sheet number of the cover.
Hence R(N) is a n-sheeted covering of R(F ), each of the n vertices has rankR
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outgoing edges. The maximal tree for R(N) has n vertices, and n− 1 edges. Thus
there are n(rankF )− (n− 1) edges not in the maximal tree or equivalently, there
are n(rankF ) − n + 1 generators of π1

(
R(N)

)
. A little rearraging leaves us with

the equation rankN = n(rankF )− n+ 1⇒ ρ(N) = nρ(F ).
Since N ∩M is a subgroup of M,N , the intersection N ∩M has a finite index i ≤ n
in N , so

(3.9) ρ(N ∩M) = iρ(M) ≤ nρ(M) = ρ(N)ρ(M)/ρ(F ) ≤ ρ(N)ρ(M).

�

In the 1980’s, a student of John Stallings, S.M. Gersten, came up with an alter-
native proof of Hanna Neumann’s original theorem using Stallings pullback graphs
and immersions. The proof still relies upon Euler characteristics and the idea of
using a retraction where all trees have been cut off.

One of the improvements upon H. Neumann’s upper bound,

(3.10) 2ρ(N)ρ(M)−max
(
ρ(N), ρ(M)

)
was the result of Burns’ work in 1971. Another upper bound proved using the
methods of Warren Dicks is

(3.11) ρ(N)ρ(M)− ρ(N)− ρ(M) + 1.

Much of the more recent work relies on the idea of a strengthen Hanna Neumann
theorem which considers not only asking about intersections, but also about inter-
sections in the form x−1Nx ∩ y−1My. Even though Hanna Neumann’s conjecture
remains an open question, its power to simplify the question of how many generators
are needed for a given subgroup will continue to spark more research.
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