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gohomology of whose classifying spaces is wholly inaccessible

¢ classical technigues and invariants of homotopy theory.
The appropriate framework for the study of these classifying spaces is

Inite loop space theory and, in particular, its multiplicative elaboration




which is the theme of this book. This is also the appropriate framework for
the most structured development of algebraic K-theory, by which we understand
the homotopy theory of discrete categories, and one of the main goals of this
volume is a complete analysis of the relationship betweén the classifying spaces
of geometric topology and the infinite loop spaces of algebraic K-theoz;y. " The
results obtained have powerful calculational consequences, which are presented
in [26]. For example, they make it possible to pass quite directly from
representation theoretical computations of the homologies of appropriate finite
groups to d_et#iled analysis of characteristic classes for topological bundles
(away from 2)’and spherical fibrations.

From the point of view of classical algebraic topology, infinite loop space
theory may be thought of as the use of unstable methods for the study of stable
homotopy fheory. Its starting point is a recognition principle for infinite loop
spaces that allows one to pass back and forth between spectra and spaces with
appropriate internal structure, namely Em spaces. We shall enrich this
additive theory with a muitiplicative structure which allows one to pass back

and forth between Eoo ring spectra and Eco ring spaces.

Conceptually, the new theory is different in kind from the old: the
appropriate multiplicative ‘structur‘e on spectra is itself unstablé in that it
appears not to admit an equivalent formulation expressible solely in terms of
structure visible to the stable homotopy category. This is because the rele~
vant structure requires very precise a.}.gebraic data on the point-set level on
the spaces which together comprise the spectrum. The applications that
concern us here center around space level explqitation of this algebraic data.
It has very recently become possible to express a significant portion of the
structure in terms of maps in the stable category. This reformulation leads
to applications in stable homotopy theory and will be the subject of a future

volume.

The prototype of an Eoo ring spectrum is the sphere spectrum QOOSO.

‘ th 0.
lh;lvzcro space QS is the prototype of an Eoo ring space. For purposes of
ioth theory and calculation, the essential feature of QSO is the interrelation-

#hip between its additive infinite loop space structure and the multiplicative

ffinite loop space structure on the component SF of its identity element, It is

such interrelationships which will be codified in our basic definitions.

It : 0

we ignore RS and concentrate on SF, then the interest focuses on
emetric topology and, in particular, on the relationships among F, Top, PL,
he classical groups, and their homogeneous and classifying spaces. We give

nuiatent infinite loop space structures to these spaces in chapter I by use of

lie theory of E, spaces developed in [45] (and recapitulated later in this

lume). The basic results here were originally due to Boardman and Vogt

Our construction of an infinite loop space structure‘oﬁ SF de~
fAds on use not just of the SF(n) but of the SF(V) for all finite~-
ngional real inner product spaces V& R®. If we are to see this
rieture in the spectrum Qwso, then spectra too must be indexed
~guch vV rather than just on the non-negative integers. We define
?h spectra in chapter II,which is mainly an extract and summary
om [48] of that slight amount of information about coordinate-~
spectra and the stable homotopy category needed in this book.
We reach the definition of E, ring spectra in chapter IV, which
oint work with Frank Quinn and Nigel Ray. The fundamental idea
mitting an E_ space structure on a specﬁrum in order to obtéin
richest possible notion of a ring spectrum is ehtirely due to
k Quinn. A manageable and techniéally correct way of doing thié
8d us for some time. The essential insight leading to the correct
nition came from Nigel Ray, who pointed out that good concrete

tructions of Thom spectra gave naturally occuring examples of




spectra with the right kind of structure and that these examples
could be taken as models on which to pattern the general definition.
One key family of classifying spaces in geometric topology is
missing from chapter I, namely the classifying spaces for sphere
bundles of a given type oriented with respect to a specified cohomo-
logy theory. In fact, no concrete constructions of such classifying
spaces exist in the literature. We remedy this in chapter III by
use of the general classification theory for fibrations and bundles
developed in [47]. 1In 53 of chapter IV, we give fhese classifying

spaces infinite loop space structures when the specified cohomology

theory is represented by an E_ ring spectrum.

vIn chapter V, we demonstrate that formal analysis on the class-
ifying space level allows one to deduce sharpened versions of the
results of Adams [4,5] on J(X) and of Sullivan [72] on topological
pundle theory (away from the prime 2) from the kO-orientation of
spin-bundles and the kO[l/2]-orientation of STop-bundles together
with the Adams operations, the cannibalistic classes derived.from
them by use of the specified orientations, and the Adams conjecturé.
In the last section, we combine various results from throughout this
volumé with results of Adams and Priddy [8], Madsen, Snaith, and
Tornehave [42], and Ligaard [38] to analyze the infinite loop space
structure oﬁ'BTop‘(away from 2) and of various other classifying
spaces utilized in earlier parts of the chapter. This material
completes most/éf the program envisioned in a preprint version of
this chapter.

Aside from its last section, chapter V is largely independent
of infinite loop space theory and is reasonably self-contained.
However, its earlier sections do make essential use of the fact
that real coﬁnective K-theory is represented by an E, ring spectrum

the component of

kO. ' This fact implies in particular that qu f

the identity element of the zero h space of kO, is an infinite loop

paco. Much more significantly, it encodes the interrelationship
@tween kO and the spectrum determinea by BO It is one easy
onsaquence of this interrelationship which is exploited in chapter
»  In contrast to thebcase of Thom spectra, kO does not seem to

Our in nature as an E_ ring spectrum and must therefore be man-

This brings us to the last four chapters which, aside from

of definitions contained in EheAfirst sections of chapters I,
‘andvIV,are largely independent of the first five. 1In chapter

1, we define E, ring spaces and show that the classifying spaces
ontegories with appropriate internal structure, namely bipermuta-
& categories, are examples of such spaces. In chapter VII, we
;001 the machine constructed in [45 and 46] for the manufacture
:8poctra from E_ spaces so as to make it turn out coordinate-free
¢tra. We then show that if the machine is fed the additive

cture of an E_ ring space, then it turns out an E, ring spectrum.
immediate application is a multiplicatively enriched version

: ho Barratt-Quillen theorem [16,68,46] to the effect that'QSo,

; thus the stable homotopy groups of spheres, can be constructed

: of symmetric groups. Our version shows. that the infinite loop
o SF, and thus the classifying space BSF for stable spherical
ations, can also be constructed out of symmetric groups.

In the last section of chapter VII, we study the spectra turned
whon the machine is fed the multiplicative structure of an E,
apace. In particular, we obtain a purely multiplicative version
he relationship between SF and symmetric groups. In chapter VIII,
48 of geometric topology and the infinite loop spaces of algébraic
sory. This basic material is a mosaic of Tesults due to Jprgen Tornehave

wyself and includes new proofs and generalizations of the results

lnally given in his thesis [75] and in his unpublished preprints

ive the promised analysis of the relationship between the classifying



it is presented here under joint authorship. The

[76] and [77]);
connection between algebraic and topological K-theory was established
in the work of Quillen ([58,59], and we show that the maps givern by

Brauer lifting which he used to prove the Adams conjecture are

infinite loop maps, both additively and multiplicatively. Via the
Frobenius automorphism, this information vields a good understanding
of the infinite loop space BCokerJ, which is the basic building block
for BSF and. for BTop (away from 2) and turns out to be the classifying
space for j-oriented stable spherical fibrations for a suitable

B We also show that BSF splits as BImJ X BCokerd

. ring spectrum j.
as an infinite loop space when localized at an odd prime p,and that,
at 2,there is a (non-splittable) infinite loop fibration B Coker J—BSF ~BImJ.
Chapter IX contains a theory of pairings in infinite loop space tneory.
This is used to compare our machine—b;lilt spectra of algebraic K-theory
to the spectra constructed by Gersten and Wagoner [30,79].
Logically, this book is a sequel to [45 and 46]. However, I
have tried to make it self-contained modulo proofs. Thus the de-
finitions of operads and E_ spaces are recalled in VI§ 1, and the
main results of the cited papers are stated without_proof in VII §
1-3. Nevertheless, the reader may find a preliminary reading of
the first three sections of [45] helpful, as they contain a leisurely
explanation of the motivation behind the basic definitions. While
a full understanding of the constructions used in VII requires pre-
liminary reading of [45,59 and §111, the pragmatic (and trusting)
reader may regard the results of that chapter as existence statements
derived by means of a black box, the internal intricacies of whieh
can safely be ignored in the applicatiors of the remaining chapters.

Tt is to be stressed, however, that all of our applications

which go beyond the mere assertion that a given space is an 1nf1n1te

loop space depend on special features -~ the new multiplicative structure

various consistency statements, f£lexibility in the choice of raw

materials ~~ of our black box which allow us to fit together different

parts of the theory.

We illustrate this point with a discussion of how BO appears in our
theory. BAs explained in chapter I, the ordinary classifying space

of the infinite orthogonal group is an E_ space and thus an infinite

loop space. BAs explained in chapter VI, || BO(n) is an E_ ring
o J

n
space (and the relevant E, operad is different from that used in

chapter I): the zeroth

space of the resulting E_ ring spectrum is
equivalent to BO X %. We thus have two infinite loop space structures
on BO corresponding to two machine-built connective spectra. If we

are to take these structures seriously, then we must prove that the
machine~built spectra are equivalent to that obtained from the periodic
Bott spectrum by killing its Homotopy groups in negative degrees.
(Other manufacturers of black boxes have not yet studied such con~
sistency problems.) ¥For our first model, the required proof follows
from a commutation relation between looping and delooping. For our
second model, the recuired proof follows directly from the ring
structure. In both cases, we rely on a characterization of the
connective spectrum associated to a perlodlc space which only makes
sense because of special features of our new construction of the
stable homotopy category. That both models are necessary can be
seen most clearly in the orientation sequence for kO-oriented stable
spherical fibrations. ‘This is a fibration sequence of infinite loop

spaces

SF = BO® + B(SF;k0) -+ BSF
which is derived by use of the E, structure on SF coming from chapter
I together with the E, ring structure on kO given byvthe second model.
The first model is essentiel to relate this seguence to the natural

mip j:80 +8F on the infinite loop level. Many of our applications

of chapters V and VIII center around this sequence, and its deriva-

tion really seems to require every bit of our general abstract mach-



inery. That even the much simpler consistency question about Bott
periodicity is not altogether trivial is indicated by the fact that
our easier second proof will apply equally well to proveuthe result
about (additive) Brauer lifting cited above.

Beyond its new results, this book is intended to give a coherent
account of the most importént descriptive (as opposed to computa-
tional) applications of infinite loop space theory. A thorough study
of the homology of E_ spaces and of E_ ring space appears in [261,
where the theory and reéults of the present volume are applied to
the study of characteristic classes. An informal summary of the
material in both that volume and this one is given in [48), which
gives an extended intuitive introduction to this general area of
topology.

It is a pleasure to acknowledge my debt to the very many people
who have helped me with this work. I owe details to Don Aﬁderson,
Zig Fiedérowicz, Dick Lashof, Arunas Liulevicius, Stewart Priddy,

Vic Snaith, Mark Steinberger, Dick Swan, and Larry Taylor. I-am
particularly indebted to my coauthors Frank Quinn, Nigel Ray, and
J¢rqen Tornehave for their ideas and insights, to Ib Madsen for -

key discussions of 2-primary phenomena and correspondence about
various aspects of this work, and to Frank Adams for proofs of a
number. of technical lemmas.and muchf_othef help. I owe a special
debt to Jim Stasheff for his careful reading of the entire manuscript

and his many suggestions for its improvement.

Finally, my thanks to Maija May for preparing the index.

I. J functors

In [19], Boardman and Vogt introduced the concept of Qg-iunctor.
Their purpose was to show how certain collections of spaces, such as BFV
or BTopV, indexed on inner product spaces V produce Eoo spaces and
therefore .infinite loop spaces by passage to.limits over VC R®, In section 1,
we give a detailed exposition of this part of their theory, reformulated in terms
of operads and operad actions as defined in [45,§1]. In particular, we give a
systematic discusssion of the classical groups and their homogenéous spacés
as ..g-functors and display the Bott maps as morphisms obf J —functorsb.
In section 2, we relate the two-gided geometric bar construction to
Jd ~-functors and rederive the theorems of Bga‘rdman and Vogt to the effect that
F, Top, PL and the related classifying spaces and homogeneous spaces are
infinite loop spaces. (We shall use brief ad hoc arguments based on the
triangulation theorem to handle PL.) Most of the m‘aterial of these sections
dates from 1974 and has been circulating in preprint form since 1972,
Boardman and Vogt's own account of their theory has since appeared [20].
Their language and choice of details are quite differeﬁt from ours, and there

is very little overlap. The present language and results will be needed in

the rest of this book .

i. Linear isometries and classical groups

Let 7T denote the category of compactly generated and nondegenerately
based weak Hausdorff spaces. For an operad (f, let E[J] denote the
category of (S-spaces [45,§1] (or VI,§1).

To obtain an action of an operad on the infinite classical groups and



A

related spaces, it is conceptually and notationally simplest to pass from a
functor defined on a certain category J. to an action by a related operad £.

The definition arld propertics of .,9» and X’,fare due to Boardman and Vogt [19, 20].

Definition1 .1, Define the category J of linear isometries as
follows. The objécts of J are finite or countably infinite dimensional
real inner product spaces, tobologized as the limits of their finite dimen-
sional subspaces. The morphisms J(V, W) from V to W are linear
isometries V = W, and ,ﬂ (V, W) is given the (compactly generated)
compact-open topology. Note that the direct sum @: N d is a

continuous functor and is commutative, associative, and unital (with unit

{0}) up to coherent natural isomorphism.

Definition 1.2. Define the linear isoinetries operad X by
TG = j((Rm)] R, where (RT) is the direct sum of j copies of rR”

with its standard inner product; the requisite data are specified by

(a) y(f;gi....,gk) = fc(g1 ®...0 gk), fe L(k) and g ¢ f(ji).
(b) 1 e J(t) is the identity map.

(©) ()ly) = £{oy) for £ X(j), o e 3y and ye (R¥Y.

In other words, & is required to be a sub-operad of the endomorphism

operad of R® (where R® has basepoint zero).

It is trivial to verify that Zj acts freely on X(j). The following
lemma therefore implies that ,{" is an Eco operad. Recall that isometries

need not be isomorphisms.

Lemma {.3. J (v, Roo) is contractible for all inner product spac‘es V.
Proof, Let {ei[ iz 1}, {e%, ei‘l i1}, {fj}, and {fJ‘.,f'J!} be ortho-

normal bases for Rm, ROOGB Rm, V, and V@ V respectively, Define

a:R® ~R™ by ale) = e, anddefine B R® - 8% 0 R by Ble,y ()= e}

2i

and ﬁ(eZi) = ef'L . Then B is an isomorphism such that P = i', the injection

of the first surmmand. Define a path H, :I > Jd (ROO,ROO) from the identity

i
to @ and define a path HZ:I *.ﬁ (V,V ® V) from i' to i" by normalizing

the obvious linear paths

Gi(t)(ei) = (1-1:)&3i +te and '

21 Gz(t)(fj) = (1-t)f31 + tf'J! .

Fix ve 4 (V,R®) and define H:I1x 3 (v,R®) ~ J(v,R®) by

H1(2t)o k if 0t/

Ht, k) =

-1

B O(k@y)nHZ(Zt—l) if to<tgt

Then H(0,k) =k and H(i,k) = }3‘11"y, which is independent of k.

We now define 3 ~functors and a functor from ‘& -functors to
X’—séaces.
Definition 1.4. An vq ~functor (T,w) is a continuous functor
.7 '
T: -J together with a commutative, associative, and continuous
. J T
natural transformation w: TX T —~ T ® (of functors xJ -7 } such
that
(a) if xe TV andif 1 ¢ T{0} is the basepoint, then
wix, 1) = xe T(V® {0})=TV
(b) if V=V'@ V", dim V' < o, and if i: V'~V is the inclusion,
then TitTV!' =~ TV (which, by (a), is given by Ti(x)= w(x, 1),
where 1 is the basepoint of TV") is a homeomorphism onto a
closed subset, and
(¢} TV = lim TV' as a space, where V' runs over the finite

-

dimensional sub inner product spaces of V.

We call w the Whitney sum; for x; € TVi, 1 <igj, we write

w(xl,...,xj) = x, @ ... @xj. A morphism &:(T,w) ~ (T',w') of

i

S -functors is a continuous natural transformation ®:T - T'! which com-~




mutes with the Whitney sums. Q[T ] denotes the category of J -functors.

Remarks 1.5. (i) The category 3[ 5] has finite products; if

t: T!X T -~ T X T' is the interchange natural transformation, then

(T, ) X (T o) = {(TXT,(oX o)t XtX1)).

Similarly, the category J [7] has fibred products.

(ii) For Ce 7 andan &~functor (T,w), define the function space £ ~functor

F(C,T) by F(C,T)}V) = F(C, TV), with Whitney sum the composite .
"F(C, TV) X F(C, TW) ~ F(C x C, TV x TW) =229, (¢, (v ® W)).

(iii) If U is the universal covering space functor and if (T, w) is an

A -functor, then (UT, Uw) is an 2 -functor, where Uw is induced from

Pw on PT = F(I, T) by passage to quotient spaces (compare [26, I 4 8]).

Definition 1.6, Define a functor ®: d {j] ~ X [T ] vy letting
B(T, w). = (TRCO,Q) on objects and’ ®(®) = 2: TR~ T'R® on morphisms,

where Gj: 25 % (TROD)J - TR® is defined by

Qj(f’xi’ .

..,xj) = (T)(x, @ ... © xj), fe X(j) and x, Tr®.
Gj is continuous by the continuity of T and w. Observe that ® commutes
with the various constructions specified in the prgvious remarks, where
these constructions are defined on & [J ] by [45,4.5-1.7 and 26,1 4. 8].

As is customary, we shall often write T both for J ~functors and for

the derived f—spaees TRY .

Remark 1.7, Let o R®+ R® be a linear isometric isomorphism. Then
a determines an automorphism Lo of the operad £ by

(L a)(f) = af(a“i)j:tRw)j +R® for fe X(3). If (T,w) is an J -functor,
then Ta: TR® TROO is an fa-equivariant homeomorphism, in the sense

that Tas0, = 00 (Fax (Ta)).

13
To construct f—spaces, we need only construct & -functors., We

next show that to construct ﬁ- -functors we need only study finite-dimensional

inner product spaces and their linear isometric isomorphisms.

Definition 1.8, lLet .9 <o, be the full subcategory of j whose
objects are n-dimensional, and let j* ‘be the graded subcategory of =9 con-
sisting of the union of the A o' Note that the functors @: i mX ‘9. a2 ”o'm-&'n
together define a graded functor @:A*XJ* - A* . An 09* -functor (T, w)
is a continuous functor T:J* - -T together with a commutative, associative,
and continuous natural transformation w:T X T = Te® such that

(a) if xe TV andif 1 e T{0} isthe basepoint, then

wix,1)=xc¢ T(V‘EB {o})y=TVv.
(b) if V=V'® V", dim V < o, then the map TV' > TV given by
x =~ wlx, 1) is a homeomorphism onto a closed subset.

Morphisms of eoﬁ ~-functors are defined in the evident way, and J_, [j]

denctes the category of \9* ~functors.

Proposition 1.9. The forgetful functor _9[ g1~ J,ﬂ[ J] isan
isomorphism of categories. ‘

Proof. We must verify that an J* -functor (T,w) admits a unique
extension to an .,9 ~-functor., I dim V = o, we can and must define TV
by Definition 1.4(c)’; we shall write x'® 1 for the image in TV of x'e TV!
(since V=V'@® (v)+ when dim V' < o). Similarly, we can and must
define W TVXTW ~T(VO W) by x@y=(x'®y) @1 if x=x'® 1 and
y=y'® 1 with x' e TV' amd y' ¢ TW' for finite dimensional subspaces
V' of V and W' of W. Finally, if £:6V ~ W is a linear isometry and if

=x'® 1 ¢ TV, with x' e TV' where dim V' < o, we define

(1) (TD) = (TE)x') @ 1, where f'= VIV = £V,




This definition is forced since the image of f" = fl(V')J- is contained in

£(V')}:, hence f=f® {", and we therefore must have
(THE) = T(E © f)(x' © 1) = (T2)(x') @ (TE)(1) = (T)(x) @ 1,

the last equality holding since Tf" must preserve basepoints. It is straight-
forward to verify that (T, w), so constructed, is indeed a well-defined
c’ -functor. Similarly, morphisms of J*-functors extend uniqgely to
morphisms of J -functors by passage to limits.

Henceforward, we shall identify the categories .)*[ J1 and ) [T

We shall speak of J ~functors but shall only construct the underlying

J*-functors. The following remarks will be basic to the applications,

Remarks {.10. For many of the J, -functors (T, w) of interest, the points
x e TV will be (or will be’ derived from) maps tV —~ tV, for some space
tV depending functorially on V; the basepoint of TV will be the identity

map of tV. Moreover, when dim V = dim W < o, a point fe J (v, w)

will determine a homeomorphism tf: tV - tW and we will have

(2) (TE)(x) = tfnxo(tf)'i for xe TV.

Henceforward, we shall generally replace formulas (1) and (2) by the notat-

ionally simpler expression

(TH() = fxf™0  for xe TV and fe J(V,W).

We thus suppress from the notation both the passage from { to tf and the

required restriction to finite dimensional subspaces. It will often be the

case that TV is a sub topological monoid of the monoid (under composition)
of maps tV — tV. It will follow that the composition product c: TV X TV -~ TV

defines a morphism of J -functors. Indeed, the commutativity of the dia-

grams

C
TV X TV > TV TV X TV X TW X TW XS 5 7v x TW

T X Tf TE and w ©

c
TW X TW ———> TW T(V & W) X T(V @ W) —=—>T(V & W)

simply amounts to the validity of the formulas
-l TS |
fgg't = (fgf ")(fg'f ') and gg'® hh'= (g @ h)(g' ® h')

for fe J (V,W), g,g'e TV, and h,h'e TW. On TROO, the composition
product will be homotopic to the (internal) Whitney sum induced from the

action of X (see [45,8.7 or 46, 3.4 ]). When, further, TV isa

sub topological group of the group of homeomorphisms tV - tV, the inverse
map i1 TV -~ TV will define a morphism of & ~-functors by virtue of the

formulas

i-1

(fgf-l)_i =fg f and !

(ge)h)~i =g'1 ®hn .

We now define the classical groups and their homogeneous spaces
systematically as j -functors, Let K denote one of the normeddivision
rings R,C, or H (real numbers, complex numbers, or quaternions). For

X

inner product space over K and, for J (¢ K, let VIJ<

a real inner product space V, let V__ denote K@RV regarded as a (lefé)

) denote ‘VK regarded

as an inner product space over J. By a classical group G, we understand
any one of the following functors from J to the category of topological

groups:

e ¢ so(v) C ofv)

M M .
su(v)C u(v) C so(vg) C o(vé‘)
M M M

se(Vyy) C su(vg) C UV C so(viy C ofvE)

(The vertical inclusions are all of the form g~ 1®g.) If G is a classical
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group and if Gi' i< i< n, are classical subgrqugis of G (in the sense of i ] B: H/Hix HZ - Q(G/Glx GZ)'

n
ic : X, G, is defined to be the
the lattice above), then the homogeneous space G/i=1 ; is defined to be In fact, each P is induced by passage to orbit spaces from a map.

a .
functor j -~ J  which is given on objects by B H(VZ) ”‘QG(VZ) of the form

GV - » B(@)t) = galt)g e (t),  ge H(VP) and 0<t<1.

HxXg

(6/,%, G)V) = V™,

2

. n
i = di < is induced b .
For fe <9' (Vo W), dim V = dim W < o, (G/iz—fi Gi)(f) i§ induced by paSSége X is a linear isometric isomorphism of the general form

Here a(t):V; -V

to orbit spaces from g fng(fmi)n for ge G(Vn), where £:V© = W' is

a{t)(v,v') = (val(t),v‘az(t)) for v,v'e V.
the direct sum of f with itself n times. With Whitney sum induced by )

passage to orbit spaces from the composite where the ai(t) are elements of norm one in the relevant ground field K.

G(v™) x G(w™) 2> avPew™) 2 s (v @ w)P), For example,

B:BU=U/UXU - Q(SU/eXe) = QSU

it

it and a,(t)= e . Explicit definitions of

X 4
where Vv is the evident shuffle isometry, each (G/i>=<1 Gi’ w) is an ~functor. is 50 determined by @) ) = T

If HC G and Hi.C Gi’ then the evident maps of orbit spaces define a morph- the ai(t) required in the real case may be found in [2] and 25]. The

n n
ism of j ~functors H/i:f1 Hi - G/i):iGi ; when H= G, the inclusion of the verification that each '[3 is a morphism of ‘g ~functors is an easy calculation from

n n P .
fibre ‘xiGi/Hi in G/'X1 Hi is also a morphism of d —functors. By the the form of the maps (and explicit expressions for the ai(t) are not needed).
i= i=

, . . F) .
universal bundle of a classical group G, we understand the morphism of The point is that if fe ‘3 (V, W), then fK commutes with "i(t)-

In order to iterate the Bott maps, it is necessary to use the natural
‘Q -functors

+EG = XG —~ G/GXG = BG :

T EG = G/e / maps {:G -~ QBG for G= 0O,U, and Sp. Propositions 2.3 and 2.4 below

ined b tti =2, G,=e or G, and G, =G in the framework
obtaine y setiing n i ¥ 2 show that, after passage to X—spaces, these maps become composites of

. t th duct and i s ap on each :
above. Remarks 1.10 show tha © procuct andinverse map f—maps and of homotopy inverses of ,}\"—maps which are homotopy equival-

ical G are morphisms of uQ -functors.
classical group r P ences. As our definition of the stable category and our arguments in I1§3

defi Spin by letti S-'m V) be the universal cover of SO(V).
We can define Spin by letting Spin(V) V) will make clear, these inverses will not complicate the following discussion,

c c
i £ bly, i d al Spi Pin, and Pin~ can be o . )
Alternatively, and preferably, Spin and also Spin, Pin Definition 1.6 yields a natural structure of of—space on the homo-

ici ib . =f t b f their standard descriptions n n

explicitly described as .j_ unctors by means o eir cripti geneous spaces G/ X Gi -(c/ & Gi)(Rm), on Spin, etc. Each of these
i=1. i=m1

i Cli lgeb fi duct spaces [12]. The product . .

in terms of the Clifford algebras of innex product spac [ ] P spaces is grouplike (1r0 is a group) and is thus an infinite loop space by

i d th 1 between the ups
and inverse maps on these groups and the usual maps between these group [46,2.3] (or VIL, 3.2 below), Certain of these spaces are also infinite loop

and classical groups are then morphisms of J -functors.

spaces by Bott periodicity. To show the consistency of these structures,

TR

b ded
We observe next that each of the Bott maps may be regarded as a let X be one of the spaces entering into Bott periodicity of period d, d= 2

morphism of ‘,0— ~-functors of the form 8

or d=8, such as QZBUEBUXZ or

BO = BOX Z. The &£-space
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structure on X determines a connective coordinatized spectrum (or infinite

loop sequence) B X= {BiX} such that B X is naturally equivalent to X.

The iterated Bott map p: X - QdX induces a weak homotopy equivalence
B B:B X - BdeX of spectra. As will be explained in VIL 3.4, [46,3.1]
R dX d : th

gives a map BOOQ - BOOX in the stable category, the zero  level of
which is equivalent to the identity map of QdX By composition, we there-
fore have a map BooX - QdBmX, the zeroth level of which is equivalent to
B:X —~ QdX It is intuitively obvious, and will be rigorously proven in II §3,
that the connective spectrum associated to the periodic spectrum with zeroth

space X determined by P is characterized, up to isomorphism in the stable

category, by precisely these conditions,

2. The bar construction; F', Top, and PL.,

The two-sided geometric bar construction will play a central role in
our theory, and the following notations will be used throughout the later
chapters, Let G be a topological monoid the identity element of which is a
nondegenerate basepoint and let X and Y be left and right G-spaces. Then
there is a simplicial topological space B*(Y, G,X), the n-th space of which
is ¥YX G"x X [45,§10]. Its geometric realization [45,11.1] will be denoted
B(Y,G,X). We shall always write

p:B(Y,G, %)~ B(Y,G,%) and q:B(Y,G,X) > B(x G,X)
for the maps induced from the trivial G-maps X - % and Y - *, where *
is the one point G-space. p and q are quasi-fibrations with fibres X and Y
when G is grouplike and are G-bundles when G is a topological group
[47,7. 6 and 8. 2]. We shall write
v=4(p):Z ~B(Y,G,X) and €= €(1\):B(Y,G,X)~2Z

for the maps induced by a map p:Z > Y XX andbyamap M:¥Y XX > 2
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such that  Myg,x) = My, gx) [45,9.2]; the intended choice of p and X\

should be clear from the context. By [45,9.8,9.9,and 11,10], the G-maps

£ :B{Y,G,G)~Y and ¢£:B(GGX)+X
are deformation retractions with right inverses the evident maps +. We
agree to abbreviate B(x,vy,B) = Ba if y and B are identity maps, and

similarly in the other variables.

BG = B(%, G, %) is the standard classifying space of G, If G is

group-like, the natural inclusion {rG - 2B G is a weak homotopy equivalence.

If, further, p': E' = B! is a principal quasi G-fibration with E' aspherical,

then the maps 0
B «£B) gE, G, 4) -1 BG

display a weak homotopy equivalence between B! and BG [47,8.7 and 7, 7].
For a morphism j: H-+ G of grouplike topological monoids, define
the left and right "homogeneous spaces" by
G/H = B(G,H, %) and H\G = B(x, H,G).
There is a weak homotopy equivalence 6: G/H -~ FBj, where ¥FBj denotes the
homotopy theoretic fibre, and a quasifibration sequence
Bj

T q

H ] G BH BG

G/H
{47, 8.8]. By symmetry, the same statements hold for H\G.

Now let ¢ be any operad. As explained in[46,§3], B(Y,G,X) is a
£ -space when Y,G, and X are (£ -spaces and the product and unit of G
and its action on Y and oﬁ X are morphisms of C"-spaces. Such a G is
said to b.eamor.mid in C{j]; its monoid product is homotopié to the product
given by the action of Z: [463.4]. When all given maps in any of the con-
structions of the previous paragraphs are morphisms of { -spaces, then

so are all derived maps (where homotopies X X I+ Y are interpreted as

maps X - F(I+,Y) and where the fibre of a C—map is a C-space via

OGO . ( OO PO OC O



[45,1.8]). For most of the maps above, this statement follows from the fact

that geometric realization defines a functor from simplicial - C—-spaces

to (“-spaces [4512.2]. For the remaining maps, easy direct calculations
as in [46,3.6], where {:G - QBG is handled, are required,

We next show that precisely similar statements apply to J ~-functors.

Definition 2,1. A monoid-valued ‘9 -functor, or monoid in ,,Q\ [71
is an vQ ~functor G such that each GV is a topological monoid, the identity
element of GV is its basepoint, and the products GV X GV — GV define a
ﬁxorphism of J)-functors. G is said to be group-valued if each GV is a
topologicalv group and the inverse maps GV ~' GV idefine a morphism of
J- ~-functors. G is said to be grouplike if each 'rrOGV is a group, A left
action of a monoid-valued J‘—f\mctor G on an ,Q ~functor X is a m.orphism
of &—functors GX X -+ X such that the map GV X XV - XV is an action

of GV on XV for each V.

Definition 2.2, Let G be a monoid-valued vQ -functor which acfs
from the left and right on Jz -functors X and Y. Define an é’)-functor
B(Y,G,X) as follows. For Ve \,Q and for a morphism £V -+ V! in J ,
define

B(Y,G,X)(V) = B(YV,GV,XV) and. B(Y,G,X)(f) = B(Yf, Gf, X{).
The Whitney sum on B(Y, G,X) is defined by the composite maps

B(YV, GV,XV) X B(YW,GW,XW),

£
B(YV X YW, GV X GW, XV X XW)
lB(w, ©, w)

BY(VeO W), G(Va@ W), X(Ve W)

where £ is the commutative and associative natural homeomorphism given

by [45,10.1and 11,5},

z1

It is easily verified that B(Y,G,X) is well-defined. The only point
worth mentioning is that tile funt.:tor B(Y,G,X) is continuous because
geometric realization is continuous if the set of maps of simplicial' si)aces
from C to D is topologized as a subspace of the product over n of the
spaces of maps from C_to D . Clearly the Y -space obtained by first
applying the functor B to (Y, G,X) and then applying the functor ® of
Definition 1, 6 coincides with the f~space obtained by first applying @ to
Y,G, and X and then applying B.

In view of Remarks 1'. 5, all of the material of the first few paragraphs
of this section can be rephrased in terms of .,Q ~-functors (where a homotopy
between maps T —+ T' of .0 ~functors.means a rnorphisfn of J—functo'rs
T - F(I+, T') and where; just as for spaces, the fibre of a map of wQ-functors
is defined as the evident fibred product). It is again straightforward to verify
that all constructed maps are morphisms of 9- -functors when all given maps

are so. We summarize results in the following statements.,

Proposition 2.3, ¥ jtH—~G isa rriorphism of grouplike monoid-
valued uo -functors, then the following is a quasi-fibration sequence of

‘& -functors
Bj

H-—+ G ~+G/H —L> BH - BG .

t:G ~QBG and 0:G/H ~ FBj are weak equivalences of J -functors,
The classical groups define group-valued :& ~-functors by Remarks 1.10.
Proposition 2.4. When G is a classical group V -functor, the maps
G/Gxc ~ET B(G/exG,G,¥ —2— BG

of ‘.9 ~functors determine a weak equivalence of x—spaces between the

two natural classifying spaces of G.
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Henceforward, we shall work relative to a fixed continuous
T
sphere-valued functor t: ,Q* - J  such that tVatW = t(V @ W). By the
continuity, commutativity, and associativity of the smash product, t is itself
an .&ﬂ;f\mctor with the natural projection tV X tW —~ t(V ® W) as Whitney
sum. We have the following list of monoid-valued &*—functors which act

from the left on t.

~
Examples 2.5. Let F denote the &_,;ftmctor specified by

~ ~ -1

FV =F({V,tV) and Fi=F(tf ,tf) for £V -V,

o nt Pd

with the Whitney sum wiFVXEFW - F(V @ W) given by the smash product
of maps. Define sub J*—functors F,S8F, Top, and STop of F by restricting
attention to based homotopy equivalences, degree one homotopy equivalences,
homeomorphisms, and degree one homeomorphisms of tV. Define e to be
the trivial sub J*—functor of F,eV = {1}. When tV is the one-point com-
pactification V¥ of V, O and SO become sub .94,—fu.nctors of Top and
STop via one~point compactification of maps . Moreover, the twisted adjoint
representation of [12,p, 7] defines morphisms of \sQ*—f\mcto_rs from Pin,

ES
Spin, T, PinC,Spinc, and I‘c to O. WhentV = VC , U and SU become

sub .,V*—functors of STop via one-point compactification, and similarly
for Sp when tV = V;; . By Remarks 1,10, and [17, all of these j*-functors
are monoid-valued and all buf SF,F, and ’ﬁ are group-valued.

We pass from .,‘?*—functors to ‘:i -functors by Proposition 1.9.

Write FR® = %(n), FR® = %“, and similarly for other =9 ~functors.
It is usual to define G(n) to be the space of all homotopy equivalences of
Sn"l and to regard F(n-1) as the subspace of based homotopy equivalences.
1t is clear that G = lim G(n) is then homotopy equivalent to ¥. G is the

more natural space to consider in some geometric situations, but we shall

work with F since it is this space which occurs naturally in our theory.
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We pass from J ~-functors to f-—spaces via Definition 1, 6 and from
A -spaces to infinite loop spaces via [ 45and 46 | (or VII§3). Thus F, SF, Top,
STop, the classical groups, Spin, Spinc, and related groups and all of their
classifying spaces and homogeneous spaces are infinite loop spaces, and all
of the natural maps between these spaces are infinite loop maps.

It remains to consider PIL. and related spaces. One could perhaps
develop a complete geometric theory by introducing categories with the same
objects as ﬁ but with simplicial sets of morphisms from V to W, the k-
simplices of which would be appropriate piecewise linear and piecewise

differential fibrewise homeomoxrphisms Ak XV —~A XW; here PD would

k
be required in order to relate PL to O. Ihave not attempted to go through

the details.

Avsecond approach would be to consider the J) -functor "PL" such
that "PLV" is the subspace of FV consisting of the based piecewise
linear homeomorphisms of V*. Unfortunately, "PL" has the wrong homo-~
topy type; according to Rourke (private communication), the inclusion of
"PL" in Top is a weak homotopy equivalence. It is at least conceivable
that a larger topology on “PL"‘ exists which aoes have the right homotopy
Ltype.

Qur approach is to ignore these difficulties, to recall that PL was
largely introduced in order to study the triangulation problem, and to observe
that the homotopy types of PL, BPL, PL/O, etc. are completely determined
4s infinite loop spaces by the solution to this problem and by the infinite loop
space structures already derived on Top, BTop, Top/O, etc.

In detail, we note that Top/PL = K(ZZ’ 3), Top/O is a 2~connected
space, 'rr3('I’op/O) = ZZ’ and the natural map Top/O - Top/PL induces an

isomorphism on T Recall that there is only one (n-1)-connected spectrum

3°



'K_(Zz,n) with zerot-h space a K(Zz,n) (up to isomorphism in any good

stable category) and there is only one non-trivial map from an (n-1)-connected
spectrum with vnE = ZZ into X(Zz, n), Thus Top/PL, _howeve.r it is com~-
structed geometrically, is just K(ZZ’ 3) as an infinite loop space, and the
unique non-trivial map Top/O -+ Top/PL is an infinite loop map in precisely

one way,

Now define the following spaces (or rather homotopy types, since that
is all our data determine). In eachvcase,‘ it is clear that any permissible
géometric construction of the space named must yield the specified homo;
topy type. R
{(a) - PL/O is the fibre of the unique non-trivial map Top/O — K(ZZ’ 3).

(b) PL is the fibre of the composite Top - Top/O —~ K(ZZ,B) and SPL
is the fibre of the restriétion of this composite to STop. ‘

(c) BPL is the fibre of the composite BTop - Bl(Top/O) - K(ZZ, 3) and
BSPL is the fibre of the restriction of this composite to BSTop. '

(Here BTop is equivalent to the delooping B, Top by VIL 3.5.)

1
(@) F/PL is the fibre of the composite BPL - BTop - BF.

Clearly the fibre of an infinite loop map is an infinite loop space, and
it follows that each space we have constructed Has a well-defined infinite
loop space structure vsuch that all of the natural maps between these spaces

are infinite loop maps. Similar constructions handle PL/G and related

maps for other classical groups G.

II. Coordinate-~free spectra

A speétrum T is usually defined to be a sequence of spaces 'I'i

and maps O‘i: Z'I’i - T Let {en} be the standard basis for R® énd

i+1”
think of the 1-sphere as the one-point compactification tRen of the sub-
space Ren' of R®. Thena change of notation allows us to describe T

as a sequence of spaces T(Ri) and maps G'i:T(Ri) A tRei_‘_1 - T(Rﬁi).
Thus the usual notion of spectrum implicitly refers to a fixed chosen basis
for ‘Roo- Many very real difficulties in the homotopy theory of spectra, in
particular the problems as sociated with the construction of well-behaved
smash products, arise from permutations of suspension coordinates. Such
permutations can be thought of as resulting from changes of basis for Roo,
and we shall see in [48] that the coordinate~free definition of spectra to be
given here leads to a relatively simple developrneni{ of the properties of the
stable homotopy category.

However, our present concern is with more than just stable homotopy
theory. In order to define Eoo ring spectra, it is essential to w;)rk in a
catego?y of (omega) spectra which enjoys good properties even before passage
to homotopy. The point is that these spectra have very rich internal
structure, much of Which is lostv upon passage to the homotopy category.

The spectra used in the best previous constructions of stable homotopy

categories are (or are derived from) CW-spectra, namely those spectra T

such that T; is a CW-complex and each o, isa cellular inclusion,

Obviously such rigid structures cannot possibly be related to infinite loop

.spaces before passage to homotopy, and our spectra will be cell-free as

well as coordinate-free. Restriction to CW-spectra is in any case unde-
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sirable since CW-spectra seldom occur in nature and are not closed under
such simple and useful constructions as formation of product and loop
spectra. In our stable category, desuspension will be given by the loop

spectrum functor.

We define coordinate-free prespectra and spectra, show how to pass back

and forth between spaces, prespectra, and spectra, and relate coordinate-free to
coordinatized spectra in section 1. We define the stable homotopy category
and discuss ring spectra, connective spectra, and localizations and com-
pletions ofispectra in section 2. We shall omit most proofs in these sections;
the missing details may be found in [48] and are largely irrelevant to our
later work in this book . In section 3, we consider cohomology theories and
give a rather pedantic analysis of the precise relationships between periodic
spaces, periodic spectra, and "periodic connective spectra®.

Although exploited”in a wholly éifferent way, the idea of using linear
isometries to study the sfable category is due to Boardman [18], Puppe [56]

independently came to the idea of coordinate-free prespectra.

i. Spaces, prespectra, and spectra

Recall the definitiop of J* from I.1.8 and, as in 1§2, fix a con~
tinuous sphere-valued functor t: J* -» J such that t{0} = S0 and -
tVa tW = ¢(VOW). Inpractice, tV will be the one-point compactification
of vV for some functor v :é& - j\ , and we shall see in Remarks 1.9 that
restriction to the identity functor + would result in no real loss of
generality, Recall that F(X,Y) denotes the space of based maps X = ¥
and define the suspension and loop functo;ts based on V to be_

'K = XAtV and 9'X = FEV,X).

oo ocoeeecoooeeeeeaeaaed
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It will be impoxrtant to keep in mind the old-fashioned distinction be-
tween external and internal direct sums; we write @ for the formezj and +
for the latter, We write V 3 W to indicate that two sub inner product
spaces of a given inner product space are orthogonal; the notation + will
only be used between orthogonal subspaces and will thus carry orthogonality
as an implied hypothesis.

Let j: *(Roo) denote the full subcategory of J* the objects of which
are the finite~diménsional sub inner product spaces of R® and let .}4‘7
denote the category of based spaces and based homeomorphisms. Let h(OL
denote the homotopy category associated to a topological category (1 . Since
Jn( vV, W) is homeo;norphic to Ofn), (h,()n)(V, W) has precisely two elements
if n> 0. Remarks 1,10 below indicate a possible simplification of the

of the following definition.

Definition 1.1. A prespectrum (T,¢) is a function T: &*(Rm) -~ K7

(on objects and morphisms) which induces a functor T: h,ﬁ.*(Rm) - nJ

together with based maps ¢: VTV .- T(V + W) for V]| W which satisfy

the following conditions.,

(1) Each adjoint map ¥:TV = Q" T(V + W) is an inclusion with
closed image.

(ii) The following diagrams commute in J , where VIW 1 Z] V:

v = =0y and VTV = =¥y

ll lo— =% ] T

v = T(V+{0}) STV +W) L T(V+W +2)

(iii) The following diagrams commute in bJ , where f eJ-*(V,V‘),

ged (W, W), VLW and v'iW':
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o
TVAtW = 2TV ———> T(V+ W)
Tintg T(f + g)
1
TVIAtW! = Y TV ——> T(V'+W7)

(T, v) is said to be a spectrum if each 5:TV -2 T(V +W) is a homeo-
morphism. A morphism 8:(T,s) = (T%, o') of prespectra consists of maps
8: TV - T'V such that 8:T - T' is a natural transformation of functors
h&*(Rw) -hf  and such thai; the following diagrams commute in J for
vl w:
| 29Ty s T(V + W)

=Ve 8

Vv L s Y+ W)

Let 6’ denote the category of prespectra and let /j denote its full sub~-
category of spectra. Let v: 4 -+ @ denote the inclusion functor.

The category xf is of primary interest, and (P is to be regarded as
a convenient auxiliary category. The pair of terms (prespectrum, spectrum),
which was introduced by Kan, is distinctly preferable to the older pair
(spectrum,-spectrum) since spectra are the fundamental objects of study
and since prespectra naturally give rise to spectra. The use of homeo-
morphisms, rather than homotopy equivalences, in the definition of spectra
is both essential tothe theory and con;/enient in the applications, We have
little use for the classical notion of an Q-spectrum.

Granted the desirability of a coordinate-free theory of spectra, it
is clearly sensible to think of the finite-dimensional subspaces of R® as
an iﬁdexing set, | Thus a prespectrum ought, at least, to consist of spaces
TV and maps t%: =¥ TV - T(V + W), and it is obviously reasonable to insist

that TV be homeomorphic to TW if dim V = dim W. Our definition
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merely codifies these specifications in a coherent way. The use of the homo-

topy category hﬁ*(Rm) can be thought of as a systematic device for letting

linear isometries keep track of signs, changes of coordinates, and such like
complications in the usual theory of spectra. One might be tempted to define
prespectra by requiring T to be a functor «\) *(Rw) +MHJ and ¢ to be

natural, without use of homotopy categories, but such a definition would not

" allow.the construction of spectra from prespectra or of coordinate-free

spectra from coordinatized spectra.

We next make precise the categorical interrelationships among J,
®, and 4 (as was done in [43] for ordinary spectra). Observe that we

h

have forgetful, or zerol space, functors @ - 7 and 4{ -~ J  defined

on objects by (T, ) —~ T(') = T{0}.
Definition 1. 2. Define the suspension prespectrum functor
227 - by letting
[eo) V. (c+] fX
(Z7XNV) = X and (B X)f) = T X = 1Atf
on objects V and morphisms f of &*(ROO) and by letfting
o= 1:292%% - =% for viw.
Forf:X =X, let 2Pg=x"g:2'x ~z'x",
Lemma 1.3. Z7X is the free prespectrurm generated by the
space X;'that is, for Te & and g:X > T, there is a unique map

Jﬁ:EOOX - T of presi)ectra with ze]:c>th map f.

Definition 1.4, Define the associated spectrum functor 2P~ 4

as follows, Let (T,¢) e @ . We have identifications

®  "rwviw+z) = QV0iT(V +W + 2)
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for VI WL Z 1LV andwe define

@°T)(v) = Um Q"T(v + W)
wlv

where the limit is taken with respect to the inclusions
Wer o z
QF, BT(V+W) - QT(V+W+3Z),
For VLW, the required homeomorphisms
F:@PT)V) -~ @V @FT)(V + W)
are obtained by passage to limits over Z from the identifications (*). To
i © * CT)(V :V = V', ch Z which
define (@ T)f): (@ THV) = @ TNV for £:V , choose w
contains both V and V!, let W and W' be the orthogonal complements
of V and V' in Z, and observe that there is one and, up to homotopy,
only one linear isometry giW — W' such that f+g is homotopic (through
. 0
isometries) to the identity of Z. The required homeomorphism (2 T)(f)
is obtained by passage to limits over Z'j Z from the maps
H ! 1
Q"' rz 1z~ @Y Pz + 2Y)
given by composition with t(g'1+ 1). For a map 6:T - T' of prespectra,
define @%8: (@ T)(V) ~ (@°T')(V) by passage to limits from the maps
2Ve: @V T(V + W) - QO THV + W),
0 PN 4
Lemma 1.5. The inclusions TV = @ T(V +{0}) ~ imQ T(V+ W)
define a map :T =~ voPT of prespectra, and 2°T is the free spectrum

generated by the prespectrum T; that'is, for E e i and 8: T —~ vE, there

is a unigue map E:QmT - E of spectra such that B =0,

Definition 1.6, Define Q_ ="z :J = 4 and define QX = (Q_X);.

Observe that QX is then homeomorphic to lim "="x. QooX is the free

spectrum generated by X, and we thus have an adjunction

e coccee oo e

J&E) = J(me,E), XeJ and Ec.d .

Finally, we define coordinatized prespectra and spectra and relate
them to the coordinate~free variety.
Definition 1,7, Let A = {Ai}, {0} = A, CACL..C AiC ..., be

an increasing sequence of subspaces of Roo’ with ROO = U A,. Let Bi
i>0

denote the orthogonal complement of A, in A A prespectrum {Ti' vi}

i+1”
indexed by A is a sequence of based spaces Ti and maps

b

. b.
L2 o= T.A tB, -~ T, such that the adjoints o.: T. > Q T, are inclusions
i i i i it i it

1 1

with closed images. {Ti’ U‘i} is a spectrum if each o, is 2 homeomorphism.
A map {Gi}: {Ti’ (ri} - {T%, (ri} of prespectra is a sequence of based maps

b,
H.l: Ti—v- T:{ such that Qi <ri= u-ioz lei. Let @A and /{A denote the

+1°
vategory of prespectra indexed by A and its full subcategory of spectra.
Define a forgetful functor #: P~ PA by letting #(T, o) = {Ti, a—i}, where
b, .
T = TA, and o,=0:Z TA, ~TA_ ..
i i i i i+l
With trivial modifications, the previous definitions and lemmas

pply to coordinatized prespectra and spectra. The following result would

be false on the prespectrum level.

Theorem 1.8. The forgetful functor #: L - fa is an equivalence
of categories; that is, there is a functor ¢ : Aa -~ X/ and there are

natural isomorphisms

PAUE, 0} = {E, 0} and (H(E,0) =(E,0).

Remark 1.9, Suppose that tV = *V uo for some nontrivial additive
tunctor Tid >~ . Then vR~ has countably infinite dimension and we
nay choose an isometric isomorphism g: +R™~ -~ R . Visibly g .deter-
mines an isomorphism between the category ZA defined by use of t and

the category ,d",gA defined by use of the one-point compactification of inner

CC (i C



product spaces. Therefore, up to equivalence, the category A is i_ndep‘endent

of the choice of t (of the specified form).

Remark 1.10. Theorem 1.8 implies that explicit use of linear is‘ometries in

our definition of a spectrum is quite unnecessary, and the details in Definition
1.4 show why this is the case. I find the introduction of isometries conceptually *
helpful, particularly on the prespectrum level (compare n}. 1.3), but the

reader is free to ignore them throughout.

2. The stable homotopy cétegory

We require small smash products and f@ction spectra, "small"
meaning between spaces and spectra rather than between spectra and
spectra.

Definition 2.1, For Xe¢J and T e , define TaAX ¢ P by

letting
(TaX)(V) = TVAX .and (TaX)(f) = Tfal

on objects V and morphisms { of J*(Rm) and by letting the structural
maps ¢ be the composites

Al v W)X .

=2¥(rvax) 2 BV TV)aX
For Ecd , define EaX e d by EnX = 2P (VEAX).
Observe that @ and v can be used similarly to transport to

spectra any functor on prespectra which does not preserve spectra. The

functors T and QOD preserve smash products with spaces.

Lemma 2.2. ForXed and YeJ , ZT(YAX) is isomorphic to
EPT)nK. For XeJ and T e , 2714 1):07(TAX) = (@ T)AX is an

isomorphism.

Definition 2.3. ForXes and T c¢@ , define F(X,T)e® by

letting
F(X, THV) = F(X, TV) and P(X, T){) = F(1, Tf)

on objects V and morphisms { of J*(Rm) and by letting the structural

" maps o be the adjoints of the composites

F(x, Tv) L8, FX, 20 T(V+W))

14

QVF (X, T(V+W)) .

If T is a spectrum, then so is F(X,T).
Lemma 2.4, For Xe¢J and Ec¢f , vF(X,E)=F(X,vE). For

Xed and Te® | F(X,T), = F(X, ).

Lemma 2.5. For X ¢ZJ , there are natural (adjunction) isomorphisms

@(TAX, TY)

14

@(T)F(X!T‘)): T,T' G@

and LEAX,E) = dE,FE;E)), E,Ecd.

13

Explicitly, the adjoint ’éJ:E +~FX,E') of 0:EaX ~ E' has yth map
EV = F(X,E'V) the adjoint in J of the composite
EVAX = (vVEAX)(V) —— v@R(VEAX)(V) = (EAX)(V) = E'WV.
Let K+ denote the union of a space K and a disjoint basepoint.
Definition 2.6. For Y and Z bothin J or @ or 4, definea

homotopy, h: fo o f.l between maps fi:Y - Z to be a map h:Y/\I+ - Z

(in the relevant category) such that h|Ya {i}+ = f,. Note that h could

- equally well be considered as a map Y F(I+, Z). Let w(Y,Z) denote the

set of homotopy classes of maps Y —~ Z.

The basic machinery of elementary homotopy theofy, such as the
dual Barratt-Puppe sequences and dual Milnor l_i'_rpl‘ exact sequences,
applies equally well in . andin A{, [48,1 ]. Lemmas 2.2 and 2. 4 imply

t y
that Em, Qoo’ Qoo’ v, and the zero h space functors @P>d anda LT
. o
are all homotopy preserving., Clearly Z  ,2 , and Qoo are still free

functors after passage to homotopy categories. In particular, we have a
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natural isomorphism

w(X,EO)E'v(QOOX,E), Xe¢J and Ec d.

Definitions 2,7. For Ec¢ i , define ZTE = E /\S;l and QE = F(SI,E).

0
Abbreviate S = QOOS and define the homotopy groups of E by
w E = 7(27S,E) and v_E = (a5, E) for > 0.

for r 20. A map 6:E~E’

Since =52 Q 57, by Lemma 2.2, 7. E =1 _E
2] T r 0

in 4 is said to be a weak equivalence if wre is an isomorphism for all

integers r.

The adjunction between Z and Q gives natural maps
Nn:E—>QZE and €:ZQE - E.

The following result is a version of the Puppe aesuspension theorem [55]

Theorem 2.8. For all spectra E, n and € are weak equivalences.

There is a category H4{ anda functor L: h/g -~ H4 suchthat L
is the identity function 6n objects, L. carries weak equivalences to isomorph~
isms, and L is universal with respect to the latter property [48,1I and XI].
We call HJ the stable homotopy category. Its morphisms are composites
of morphisms in h 4 and formal inverses of weak equivalences in h L.

In Hf , the functors £ and 2 become inverse equivalences of categories,
and we therefore write Q' = X for all integers r. It will be shown in [48]
that HZ has all the good properties one could hope for and, despite its
wholly different definition, is in fact equivalent to the stable categories of
Boardman [18] and Adams [7].

Let HJ denote the category obtained from hJ by formally invert-
ing the weak equivalences and let [Y¥, Z]‘ denote the set of morphisms in HI
or HJ Dbetween spaces or spectra Y and Z. Again, we have

[X,EO] = [QmX,E] , XeJ and Ecd .

35

Qoo should be regarded as the stabilization functor frém spaces to spectra.
Let (V denote the category of spaces in J of the (based) homotopy type of
CW-complexes. ForX eV and YeJ , [X,Y]= w(X, Y); the categories hrV
and HY are equivalent [48,III ], Analogous statements are valid for ud
[48, x1].

H4 admits a coherently associative, commutative, and unital smash
product with unit S [48,XI]. Define a (commutative) ring spectrum to be a
spectrum E together with an associative (and commutative) product
§:EAE =E witha th—sided unit e:S -~ E., The following lemma
will play a vital role in our study of Bott periodicity ‘and Brauer lifting in
VIII §2.

Lemma 2.9. The product § of a ring spectrum E induces a map
(again denoted §) from E a E, to E.

Proof. For spaces X, E~nX is coherently naturally isomorphic to
E A Qoox [48,X1]; indeed, such a relationship between small and iarge smash
products is a standard property of any good stable category. Via Definition
1.6, the identity map of E, determines a rnép [UH QooEO -+ E of spectra.

The required map is the composite

E~E = EAQ E R R

0
A spectrum E is said to be n-connected if TrrE =0 for r<n and
to be connective if it is {~1)~connected, Infinite loop space theory is con-

cerned with connective spectra, and we require the following observations.

Leroma 2.10. If C and D are (g-1)-connected and 8:D = E is
amapin HS such that nie is an isomorphism for all i> q, then
8,:[C,D] ~[C,E] is an isomorphism.

Proof. Let F denote the cofibre of 8. Up to sign, cofiberings

and fiberings coincide in HJ{ [48,XI], hence 1riF =0 for i> 4. Byre-
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. : 0
placing C by a CW-spectrum, applying induction over its skeleta, and Proof. Hom(TroE, WOE) = H (E; NOE) = [E, HwOE] (see Definition 3,1},
using the 1‘5,_1311 exact sequence, we find easily that [C’ Q]’F] =0 hence d is well-defined. d is a ring map because
for i 0. The conclusion follows by the Barratt-Puppe sequence . : Hom(w0E®1r0E, TFOE) = [EAE, H‘WOE]. Note that d can be explicitly con~

00
structed by application of the functor £ T to the discretizati
Lemma 2.11. For a spectrum E, there exists one and, up to yapp * ination

E »rE =1 E,

equivalence, only one connective spectrum D and map 8:D = E in H4 ; - 7o 0o 0
such that w,0 is an isomorphism for i> 0. If E is a ring spectrum, ' Localizations and completions will often be needed in our work., Let

i
then D admits a unigue structure of ring spectrum such that © is a map T be a set of primes. Recall that an Abelian group A is said to be T-local
of ring spectra. ’ if it is a module over the localization Z'I‘ of Z at T and to be T-complete

' - -1 . ,

Proof. While the existence and uniqueness could be proven by if Hom(Z[T™")/Z,A)=0 and the natural (connecting) homomorphism
stable techniques, we simply note that the map Z;:QOOTEO -+ E in 4 con- A+ Ext(z[T"1)/z, 4) is an isomorphism (where z[T"] is the localization
structed in VII.3.2 has the properties required of 6 and that, given of Z away from T). A (connected) simple space Y is said to be T-local
8:D ~E and 6':D' - E'as specified, the naturality of o yields the f or T-complete if each TriY is T-local or T-complete. A localization
! - . D s .
following commutative diagram in H4& , in which all arrows with targets AiX =~ X, or completion  y:X ~ X ofasimple space X at T is a map
other tha;n E are isomorphisms: into a T~local or T-complete space such that
2°To) - o 9®To; o VX, Y] [X, Y] o vMIX, Y] [X, Y]
o® 1D |~ 2P TE; +—— @ TD} T T _
- - - is an isomorphism for all T-local or T~-complete spaces Y or, equivalently,
@ A @
such that (with Z_ = Z/pZ
o o ( o = 2/pZ)
D E D

A
- ) )\*:H*(X; Z'I’) - I—I*(XT, ZT) or each Y*:H*(X; Zp) - H*(XT; Zp)' pe T,
Since D A D is connective, the assertion about ring structures follows

: A
. is an isomorphism. M\ and Vv exist (and are unique), and X_  is equivalent
directly from the previous lemma. T

. A A
to thé completion of X _, at T andto X X _, where X and X_ denote
Note that our proof not only gives an associated connective spectrum T peT P P

the localization and cbmpletion of X at p. Localizations and completions
functor on H . , it already gives such a functor on 4 .

. . . commute with products, fibrations, and loops and localizations but not
For a (commutative) ring R, the Eilenberg-MaclLane spectrum

. . . completions commute with wedges, cofibrations, suspensions, and smash
HR = X (R,0) is a (commutative) ring spectrum,

) A
products. However, the completion at T of yay:XaAX!' -’f(TA X'II‘ is

Lemma 2.12. If E is a connective ring spectrum, then the unique :
et an equivalence.
map di E - Hv . E in HJ4 which realizes the identity map of w E is a map

0 0 The completions just described are those due to Bousfield and Kan

of ring spectra,
[23]; the completions of Sullivan [73] are not adequate for our applications
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in VIII. A new topological treatment of localizations and completions will
be gi;ren in [48], and it will be seen there that completions are not appreciably
more difficult to analyze than localizations. Incidentally, the category HY
(and not its equivalent nY )} is the appropriate one in which to study locaiiza;-
tions and completions since Postnikov towers with infinitely many non-zero
homotopy groups never have the homotopy type of CW-complexes.

We also need localizations and completions of connective spectra.
This subject is nowhere treated in the literature, a situation that will be
rectified in [48]. In HJ , the summary above applies verbatim with spaces
replaced by connective spectra, the only twist being that the commutation of
completions with products, fibrations, and loops implies their commutation
with finite wedges, cofibrations, and suspensions, but still not with smash

A

products. Again, the completions at T of yAvyIEA E' - %TAE'T and,

AA L
for a simple space X, of ya yiEAX = ET/\ XT are isomorphisms in H4 .
In particular, the completion at T ofa fing spectrum E is a ring spectrum

A
with unit § —> E —Y» E_ and product

A “ /\/\I\ AT SLEVAN 7oA
EpA ET—;{—-» (E~ ET)TJL—YL»" (EAE), £ B

The ze:r:oth space functor commutes with completions in the sense that the
th o, ; .
zero space of ET is equivalent to the product of the completion at T of

the component of the basepoint of E_ and the discrete group

0

-1
Ext(Z[T ")/2, -n-oEo). When nOEO = Z, the latter group is the T-adic integers
A

Ze, = X Z .
T peT (p)

Finally, we shall need the following pair of results from [48]. Taken
together, they assert that, under minimal technical hypotheses, a map be-
tween T-local infinite loop spaces which completes to an infinite loop map at

each prime p e T is itself an infinite loop map.

O G O O G G G O G G G e G G G G G G

of Y by
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Theorem 2.13. Let D and E be O-connected spectra such that
w D and w E are of finite type over Z. andlet £:D,~E, be a map (in

th

H'T) whose localization at p is the zero"” map of a map ﬁfp: Dp - Epv (in

H4) for each prime pe T. Assume either that D  and ]E)0 have no T-torsion

0

and f is an H-map or that D0 o Tel(Doq)T where each Doq is a finite

CW -complex and lim1 = Doq, E )= 0. Then f is the ze:roth map of a map

o
ﬁ;D -+ E. Moreover, if D=~ Tel D,CII, where each Dq is a finite CW-~

spectrum and £i£_nl (ZDq,E) = 0, then there is exactly one such map § which
localizes to the given map ﬁp at each prime pe T.
Theorem 2.14. Let D and E be 0-connected spectra such that 1r*D and
w, E are of finite type over Z(p) and let f: Dy ~ Eg be a map (in HT") whose
rationalization is an H-map and whose completion; at p is the zeroth map of a
A

A A ,
map ﬁp: Dp ~E, (in H4). Assume either that D
q

and f is an H-map or that Dy = Tel(DOq)p where each Dy~ is a finite CW-

0 and EO have no p-torsion

complex and l*i_r_ni(ZDoq,EO) = 0. Then f is the zeroth map of a map f:D ~E.

q

Moreover, if D =Tel Dp where each D% is a finite CW- spectrum and

l‘irpi(Z}Dq, E) = 0, then there is exactly one such map # which completes at p

LY
to the given map g

P
One pleasant feature of these results is the complete irrelevance of

I‘i'in1 terms associated to the spaces Dnand En for n >0, As will be dis-

1
cussed in [48], results of Anderson [9 and 11] show that the stable lim" terms

‘vanish in the cases relevant to this book.

3. Cohomology; periodic spaces and spectra

Definition 3.1, For spectra Y and E, define the E-cohomology

% = [o"Y,E] = [Y,= EL
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For a space X, define E™ = g QOOX; this is what is usually called the

reduced E~cohomology of X. Interms of HJ , E™X can be described by
E™X = [X,EV] if dimtV=n20 and E "X = [x,sano] if n20.

This description of E'X will be essential to our treatment of
orientation theory in'the next chapter. A complete analysis of homology
and cohomology theories within the framework given by HJd will be pre~
sented in [48]. Suffice it to say that all of the familiar machine Ty is available,

We shall shortly need the following result, which is proven in [48],
Observe that, with the standard coordinatization Yi = YR:.L and tV =V U o,
the :;éstriction of 8¢ [Y,E] to maps 8, ¢ [¥; Ei] specifies a homomorphism
E%Y ~lim EiYi .

Proposition 3. 2. For all spectra Y and E, the map EOY - lim EiYi

B “«—

i-1
is an epimorphism with kernel isomorphic to 1im1 B Yi'

This result is closely related to Whitehead'vs analysis of cohomology
theories on spaces in terms of less stringent notions of spectra and their
maps th-a_n we have been using. Define (coordinatized) weak prespectra by
deleting the inclusion condition on the ’&'i in Definition 1.7, define weak
Q~prespectra by requiring the _'u"'i to be weak equivalences, anddefine weak

maps of weak prespectra by requiring only that BH_ o, 8 u'],'.v ‘z’)(—)i (and

1
retain the term map for the case wheﬁ equality hqlds). Weak Q-prespectra
and weak maps determine (additive) cohomology theories on spaces and
morphisms thereof. Two weak maps determine the same morphism if

Qi = 9; in HY '; we then say that 0 and 8' are weakly homotopic. Similarly,
we say that two n;xaps 8,8'¢ [Y,E] are weakly homotopic if 8V = @'V in HY
for each indexing space V. In view of Theorem 1.8, we see that 0 and 0' are

1 _i-
weakly homotopic if and only if 8 - 8' is in the kernel lim E* 1Yi of the
-

epimorphism EOY - ]j._rx_l ElY:.L .

Let WHA denote the category of spectra and weak homotopy classes
of maps in HS .

Inductive mapping cylinder arguments [43, Theorem 4] allow one to
replace a weak prespectrum T by a weakly equivalent (coordinatized) pre-
spectrum, functorially up to weak homotopy. One can then use the functor %
of Definition 1.4 (on the coordinatized level) and the functor ¢ of Theorem 1.8
to obtain an actual spectrum in £, Alternatively, one can use Qoo and a
direct telescope construction on the spectrum level to pass from weak ;;re-
spectra to spectra [48,X;‘I]. Either way, one obtains the following result.

For a spectrum E, we may of course regard the underlying coordinatized

prespectrum v@E as a weak Q-prespectrum.

Theorem 3.3. There is a functor L from the category of weak pre-
spectra and weak homoiopy classes of maps to the category WHJA and there
is amap k:T = vfLT of weak prespectra, natural up to weak homotopy,
which is a weak equivalence if T is a weak Q-prespectrum. Further, for
E ed , there is a natural weak equivalence p: LvgE -~ E of spectra s.uch

that the following composite is the identity map:

viE DR £ vfLviE —E—L—#V vgE.

Finally, there is a natural weak equivalence w:QLT ~ LQT such that the

following diagrams commute:

Q
QT ———> QuvgLT and LvoE « LQvgE

b Iw
Qp

OE «——— QLv@E

K

vgLOT e vgQLT

Together with standard représ'entability arguments, this result implies
that a cohomology theor‘y on spaces extends uniquely to a cohomology theory

on spectra and that a morphism of cohomology theories on spaces extends to a
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morphism of cchomology theories on spectra but not, however, uniquely since
there are non-trivial maps in HA which are weakly null homotopic and thus
induce the trivial morphism of cohomology theories on spaces. Formally,
WHJ4  is equivalent to the category of cohomology theories on spaces and
Hl -~ WHA corresponds to the forgetful functor from cohomology theories
on spectra to cohomology theories on spaces.

We also require the analogous result for products. Recall the notion
of a pairing (T',T") - T of weak prespectra from IX.‘Z. 5 below. (Our signs
differ from Whitehead's [80] since we write suspension coordinates on the right,)
It is easy to see that a map 8: E'AE"—~ E of spectra determines a pairing
(8): (vgE', v§E") = vfE of weak prespectra {compare IV,1.3 below). Via
either of the two lines of proof of the previous theorem, one can verify the

following addendum [48,XII].

Proposition 3.4. A pairing f: {T', T") = T of weak prespectra

determines a map @{f): LT'A LT" - LT of spectra, unique up to weak homo-

‘topy, such that kof and w(f{f))e (x, k) are weakly homotopic pairings

(T*, T") =+ LT. If 6:E'AE" -~ E is a map of spectra, then pof#(n(8)) is

weakly homotopic to 8o(pap).

The notion of pairing gives rise to a notion of weak ring prespectrum,
and this notion is adequate for the study of products in cohomology theories
on spaces [80]. Define a weak ring spectrum in ud by only requiring the

associativity and unit laws to hold up to weak homotopy. The proposition and

.theorem imply that a weak ring prespectrum T determines a weak ring

spectrum LT.
The distinction between maps in HJd and moxrphisms of cohomology
theories on spaces and the concomitant distinction between weak ring spectra

and ring spectra are folklore. The Eoo ring spectra to be introduced in

CCCCo e
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chapter IV are always honest ring spectra, and we shall construct Eoo ring
spectra from. Eoo ring spaces in chapter VII. Thus, where it applies, our
work will circumvent any need for analysis of iiEl terms. For the periodic
K-theo;ries, the relevant l‘i_w.:_nl terms vanish-because KU*I(BG) =0 and

-1

KO " {BG) is a finite dimensional vector space over Z, for any compact

2
Lie group G [14]. For the connective K-theories, the relevant l‘i_rixl terms
vanish by results of Anderson [11]. We shall keep track of these distinctions
in this section but, because of the arguments just given, shall generally
ignore them in the rest of the book .

We now turn to the study of periodic spaces and spectra, and we fix
an even positive integer d throughout the discuésion. As a harmless simpli-

fication, we assume henceforward that the zerot—h"spaces of all spectra lie in

the category V of spaces of the based homotopy type of CW-~complexes.

Definition 3.5. For C = bV or { =WHA, define 1T , the category
of periodic objects in & , to be the category of pairs (X,x) where X I
and x:X —’SZdX is an isomorphism in &." . The morphisms L:{X,x) - (X', x")

are the maps {:X -~ X' such that Qdéox =ylof .

Proposition 3. 6. The zey:c:th space functor from periodic spectra to
periodic spaces is an equivalence of categories.

Proof. We shall work Qith coordinatized prespectra (as in
Definition 1.7) takgn with each Bi of dimension d and with tV the one-point

d .
compactification of V, so that o, maps z ’I‘i to Ti+ for all i> 0. Let

1
(X,x) ¢ MY . Let Xi =X, let X = )(:Xi -’Qd}(i, and let @ EdXi »xi+1
be the adjoint of x. Then {Xi, czi} is a weak prespectrum and

{Xi}: {Xi} *Qd{Xi} is a weak map of weak prespectra (because, since d is

d
ecven, the interchange of coordinates self homeomorphism of & QdX is homo-~

d
topic to the identity), Define KX = L{X;} ¢ and define §:KX ~Q KX to

CCee
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be the composite of L{xi} and the natural isomorphism

-1 d d
w 1L9 {Xi} -0 L{Xi} of Theorem 3.3. With the evident maps, we thus

obtain a functor K: Hhv +IOWHE . By the naturality of k and the first

diagram of Theorem 3.3, the zeroth map of K:{Xi} - v@L{X.} specifies
: i

an equivalence of periodic spaces (X, x) ~ (KX,X). Conversely, given

(E,8) e nTWHL , write (X,x) = (EO’ E,O), define y, = 1:E  +X and define

di
v, Ei =ERV - X inductively as the composite

-1
£, ¥, A
E. i QdE, i-1 . E. i-1 X .
i i i-1

Then {Yi J:vgE - {Xi} is a weak map and Qd{’yi} °‘{§i} = {xi}o {yi} as
weak maps. Define v!E - KX to be the composite of p-l: E = LvgE and.
L{ Yi} . By the naturality of p and the second diagram of Theorem 3.3,
v: (E, £) ~ (KX,X ) is a weak equivalence of periodic spectra (and of course,
as we have used several times, weak equivalences are isomorphisms in

wH A ).
We are really interested not in periodic spectra but in "periodic con-

nective spectra®, and we write '&c for the category of connective spectra.

Definition 3.7. Define IWH (K,C, the category of periodic connective
spectra, to be the category of pairs (D, 5), where D is a connective spectrum
a
and &:D -+ Q D is a map in WH4 such that BO:DO *QdDO is an equivalence

of spaces. The morphisms {:(D,8) ~ (D',5') are the maps {:D - D' such

that gdgoa =g f in WHS .

Proposition 3. 8. The associated connective spectrum functor from

periodic spectra to periodic connective spectra is an equivalence of categories.

Proof. Given a periodic spectrum (E,£), let 8:D =+ E be its
associated connective spectrum of Lemma 2.11 and note that Lemma 2.10

. : d
gives a unique map §:D +~Q D such that Qdea 6= £-8 (since these results

for HJ clearly remain valid for WHS ). Clearly 8,:{Dgs 8,) ~ (B, £0)
is an equivalence of periodic spaces. Given a periodic connective spectrum
(D, 8), the last part of the previous proof applies verbatim to yield a map

: - th
y:D - KD _ such that Qdy o§ = 600 vy in WHS . By inspection of the zero

0
space level, ™Y is an isomorphism for 12 0. Therefore vy induces a

natural isomorphism between the identity functor of IIWH ‘fc and the composite

NWH - mnV 2, nwud ~WH 4 _ .

The conclusion follows formally from Proposition 3. 6.

The following consequence has already been used in chapter I and will

be used more deeply in chapter VIIL.

Corollary 3.9, Let (D,8) and (D',§') be periodic connective spectra
and let \: (DO' 60) - (D('), 56) be a map of éeriodic spaces. Then there is a
unique map A: (D, 8) = {D', 5') of periodic connective spectra with ze;rc.\t‘}l
map A . I A is an equivalence, then A is a weak equivalence of spectra.

Proof. A is given by Lemma 2.10 as the unique map (up to weak
homotopy) such that the following diagram commutes in wHA :

/

D.__...L.._).Dl

Y |s

KDO————K)\——»KDE)

Note that, when \ is an equivalence, only one of 50 and 66 need be
assumed to be an equivalence. The corollary characterizes the periodic

connective spectrum associated to a periodic space. We also need a multi-

plicative elaboration applicable to periodic ring spaces.

Definition 3.10. A ring space is a space X together with a basepoint
0 and unit point 1, products ® and @ , and an additive inverse map such

that the ring axioms hold up to homotopy and 0 is a strict zero for ® (so
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that @ factors through XA X); X is said to be commutative if & is homotopy
commutative. By [26,1.4.6], X is equivalent to Xo XTrOX as an H-space

under @, where X  denotes the O-component. Define nrnY , the category

0
of periodic ring spaces, to be the subcategory of hV  whose objects are
pairs (X,x) suchthat X is a commutative ring space and y:X - QdX is
adjoint to the composite

xasd Lok g o B o

for some [b] ¢ 'rrdX = ‘n’d(XO, 0); the morphisms {:(X,x) - (X',x!) are the
maps L:X X' of ring spaces such that { [b]=[b']. Note that x is auto-
matically an H-map with respect to @ and is determined by its restriction

X; since

d
X -Q X  to basepoint components and by -rrox:'rrOX - -nOQdX =y

0 0" 0
(vox)[a] =[a][b] for [a]e wXs K must be the free T,X-module generated
by [bl.

Definition 3.11. For & = WHE or & = WH&C, define NMR{, the
category of periodic ring objects in C , to be the subcategory of I1& whose
objects are the pairs (E,£) suchthat E is a weak commutative ring spectrum
and £:E -~ QdE is adjoint to the composite

Eas? 1AP L p E, £, s

for some [b] e EO' where ﬁf is as constructed in Lemma 2.9; the morphisms

d
L:(E, £) = (E', £') are the maps {:E -~ E' of weak ring spectra such that
L*[b] = [b']. By Lemmas 2.4 and 2.5, the zeJ:oth space functor { - hV

induces a functor NRE - NRLY .
We have the following complement to Proposition 3. 6.

ips th
Proposition 3.12. The zero™ space functor from periodic ring spectra to

periodic ring spaces is an equivalence of categories.
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Proof. Given (X,x)e ﬂRh‘V, the following diagram is homotopy

commutative (where b determines X and T denotes the transposition):

1 Al
XASdAX—-—l—'-\—k—’L\—-—-XAXAX ®

- XaX )
lA'rl IATl w &‘
®
xaxasd L0IAR o vy 0@ T six X
a

\®\A1 /{'
1ab .
XaXaS d -———A-—--—" XaX

Therefore ®:XiAXj = XaAX »X = Xi+j defines a pairing ({Xi}’ {Xi}) - {Xi}

®Rn1

KAS

and thus determines a weak ring spectrum structure on XX by Proposition

3.4. That result also implies that « .1 X -~ KOX is a map of ring spaces.

o]

Conversely, given (E,£)e NRWHJ, it is straightforward to verify that the

map {V,}; v#E - {Xi}’ Xi =E,, in the proof of Proposition 3.6 carries
i

the pairing induced by the product on E to that just comstructed. Therefore

yiE - IGEO is a map of weak ring spectra.

The analogous complement to Proposition 3.8 is a direct conse~
quence of Lemma 2,11 {which clearly remains valid for weak ring spectra)

and application of the last part of the argument just givento (D,8) e NRWH Xc'

Proposition 3,13. The associated connective spectrum functor from
periodic ring spectra to periodic connective ring spectra is an equi\}alence
of categories.

Corollary 3.14. Let (D,8) and (D',6') be periodic connective
ring spectra and let \: (DO’ 50) - (Db, 6(‘)) be a map of periodic ring
spaces. Then there is a unique map A:(D,8) - (D', §') of periodic con~

nective ring spectra with zero™ map .




Proof. The maps KN and y inthe proof of Corollary 3.9 are
maps of weak ring spectra, and it follows from Lemma 2. 10 that A is

so as well,

Remarks 3.15. Let the periodic connective ring spectrum (D, §) be

determined by [b]e « Suppose that \p:bo - D_ is a map of ring

dDO' [3}

spaces such that q;*[b] = n[b], where n is a unit of the ring 73Dy Then
the adjoint 5(') of
i
a » (n )b ®

—— —2
DO AS - DOADO DO
is an equivalence. Since -i-l- [b]) = [b], the corollary yields a map

¥: (D, 5') - (D,8) of periodic connective ring spectra with zero ™ map Y.

III. Orientation theory

Th‘e notion of orientability with respect to an extraordinary coho-
mology theory is cenfral to bundle theory. We shall here use the coordinate-
free spectra of chapter II to relate orientation theory to the geometric
classifying spaces of chapter I, We shall think of 2 monoid-valued *Q*—
functor G which maps to F as specifying a theory of sphere bundles
{orthogonal, topologicé.l, etc.). In sectionl, we shali use the general
theory of fibrations developed in [47] to make rigorous a folklore treatment
of orientation theory for GV-bundles oriented with respect to a commutative
ring spectrum E., In section 2, we shal:l use the two-sided bar constru.ction
discussed in I1§2 to give a precise geometric description of a classifying
space B(GV;E) for E-oriented GV-bundles, That it does indeed classify
will be deduced from the much more géneral classification theorems for
fibrations and bundles with additional structure established in [47], and
several oher consequences of the general theorems there will also be

discussed,

1. Elementary orientation theory.

It is folklore that the theory of Thom complexes and orientations
works particularly smoothly if one starts with spherical fibrations
£:D +X with a given cross-section o¢:X - D suchthat o is a cofibration.
One then defines the Thom complex T£ to be the quotient space D/X. For

an n-plane bundle, the idea is to think of the n-sphere bundle obtained by

applying one-point compactification to each fibre. The Thom complex ob-

tained in this way will usually agree with that obtained by one-point compacti~
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fication of the total space and will always agree with that obtained by taking
the quotient of the unit disc bundle by its boundary (n-1)-sphere bundle,

Clearly, if the homotopy type of T£ is to be an invariant of the
fibre homotopy equivalence class of £, then the latter notion must be defined
in terms of section preserving fibrewise maps (and homotopies). In turn, if
hofnotopic maps X'--X are to induce fibre homotopy equivalent fibrations
irom £, then the covering homotopy property must also be formulated in terms
of section preserving fibrewise maps. It is then not immediately obvious how
much of the standard theory of fibrations goes through; for example, the usual
procedure for replacing a spherical quasifibration by a spherical fibration
clearly fails. .

In [47,§1-3], the basic theory of fibrations is redeveloped with fibres
and maps of fibres constrained to lie in any prea\lssigned category of spaces 9- .
Let V be a finite dimensional real inner product space and take F to be the

subcategory of J which consists of the spaces of the (based) homotopy type of

tV and their (based) homotopy equivalences. The basepoints of fibres are
required to define cross-sections which are fibrewise cofibrations (see [47,
5.2]). This condition both allows our proposed construction of Thom com-
plexes and is necessary to circumvent the problem with quasifibrations
mentioned above [47,§5]. We shall call spherical fibrations of the sort just
specified "FV-bundles™®,

Now assume given a grouplike monoid-valued &*-functor G together
with a morphism G -~ F of monoid-valued J-*-functors, as in I1.2.5.
Define a GV-bundle to be an FV-bundle together with a reduction of its
structural monoid to GV. The precise meaning of a "reduction" in this
generality is specified in [47,10. 4], and the cited definition showsv that GV -
bundles are naturally equivalent to Steenrod fibre bundles with group GV

and fibre tV when G is group-valued and GV acts effectively on tV,
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In this context, fibrewise joins are replaced by fibrewise smash pro-
ducts. Explicitly, if £ and ¢ are GV and GW bundles over X and ¥ with
total spaces DE and Dy, define £ay to be the G(V @ W)-bundle over XX Y
with total space D(&a ) = (DE X Dy)/{~), where the equivalence identifies
the wedge (ox, 41—1y)v(§_lx, oy) to the point (ox,oy) for each (x,y)e X X Y.
The projection £A § isinduced from EX ¢ and the section is induced from
e X o. Eaf isinfact a G(V@®W)-bundle because it is an F(V & W)-bundle by
[47, 5.6v] and because it inherits a reduction from those of £ and § by [47,
5.6 and 10.4] and use of the Whitney sums given in I. 2. 2 on the bar ;:onstruc—
tions which appear in [47,10.4]. We have an evident homeomorphism

TEATY ——>T(EAY) .

When X = Y, define the Whitney sum £ @ ¢ to be the G(V® W)-bundle
over X induced from £ay by the diagonal map A:X ™ X XX, We then
have a homeomorphism

T(E @ ) ——— T¢ (W)/T,
where £¥() is the GW-bundle over DE induced from ¢ by £:Df ~ X;
of course, Y is the GW-bundle over X induced from £*(W) by 01X ™ DE
(since £ = 1), and the GW -bundle map over ¢ induces the inclusion used
to define the quotient onthe right.

Let Ec§ bea commutative ring spectrum and recall the definition
of E*X from IL3.1.

Definition 1.1. A GV-bundle £ is E-orientable if there exists a class
woe EnTﬁ , n= dim tV, such that p restricts to a generator of the free
-rr*E~modu1e E*Tx for each fibre x of £ (where fibres are thought of as
GV-bundles over points of the base space).

Remarks 1.2. Let 8:D—E be a map of commutative ring spectra. Clearly

t is E-orientable if it is D-orientable. Conversely, if D is connective and




'n'ie is an isomorphism for 120, then £ is D-orientable if it is E-—orientable
(because B4: D TE ~ EnTg is an isomorphism si;nce TE is (n-1)-connected).
By 11, 2.44 and 2,12, it follows that orientation theory depends onisr on con-
nective spectra and that a bundle £ is H-rroE-orientable if itis E-—orienpable.

*
Henceforward, write R for w,E = v E_. Recall that (HR) (X) is the

0 0o
ordinary reduced cohomology ﬁ*.(X,R) . By an R-orientation (or orientation
if R=2Z) of a GV-bundle &, we understand a class ¢ ﬁn(Tg ;R) such
that p restricts to a generator of the free R-module I (TX; R) for each
fibre X ; the pair (£,p) is then said to be an R-oriented GV-bundle. Since

we can identify ?In('I‘x;w*E) with E*Tx, p restricts to a definite fundamental

class in EnTx for each fibre x..

Definition 4.3. An E-orientation of an R-oriented GV-bundle £ is a
class pe EnTg , n=dim tV, such that p restricts to the fundamental class
of EnTx for each fibre ¥; the pair (£,p) is then said to be an E-oriented

GV -bundle,

Thus E-orientations are required to be consistent with preassigned
R-orientations., The following proof of the Thom isomorphism theorem
should help motivate this precise definition., Let X+ denote the union of X
and a disjoint basepoint.

Theoremi .4, Let (£,u) be an E-oriented GV-bundle over a finite
dimensional CW-complex X. Then the cup product with p defines an iso-

X *_ 4 * % % 4
morphism E X = E TE. Therefore E T is the free E X -module
generated by p.

Proof. The cup product is determined by the reduced diagonal
TE =~ X+/\ Tt (which is induced via §A1 from the ordinary diagonal

+ + + . .
Dt - DE ADE " of the total space), Now uUp induces a morphism of

Atiyah-Hirzebruch spectral sequences which, on the E2~leve1, is the iso-

morphism
P N T * .
yu:H (X ;7.E) ~ (Tt m, E)
determined by the preassigned R-orientation of £.
Of course, the finite-dimensionality of X serves only to ensure

convergence of the spectral sequences.

The following remarks summarize other basic facts about orientations;
the proofs are immediate from the definitions, the previous theorem, and

the facts about Thom complexes recorded above.

Remarks 14.5. Let X and Y be (finite-dimensional) CW-complexes.

« es +
(i) The trivial GV-bundle € = gV:X XtV —X satisfies Te =X atV.
The image under suspension of 1 ¢ EOX+ is an E-orientation of g it is

called the canonical orientation and is denoted Bor.

(ii) 1f (P, v) is an E-oriented GV-bundle over ¥ and £1X— Y is a map,
. % )

then (Tf) (v) is an E-orientation of f*(q,.), where Tf: Tf*lp ~ T¢ is the

induced map of Thom complexes. If, further, f is a cofibration, then the

cup product with v induces an isomorphism

E'(v/%) < B (T4 /T |%)
(by the long exact cohomology sequences and the five ‘lemma).
(iii) If (E,p) and (4, v) are E-oriented GV and GW-bundles over X and Y,
then (Ead,pav) is an E-oriented G(V ® W)-bundle over X X Y, where

pAa v is the image of p® v under the external product [48,XII]
L # & #
ETE@E Ty —> E (TEATY) = E T(EA ).

« .
When X =7Y, p ® v denotes the induced E-orientation (TA) {(pa v)

of £ @ .

(iv) If (y,v)and (£ ® ¥, w ) are E-oriented GW and G(V ® W) -bundles

over X, where £ is a GV-bundle over X, then the image p of 4 under
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the composite isomorphism

*

~1
2%t 22w oy = £ (1 *@/me) LB (pe /%) = e

is the unique E-orientation of £ such that p® v = w .

(v) If £ and ¢ are stably equivalent GV and GW-bundles over X, so
that £ ® e (W® Z) is equivalentto @ €(V® Z) for some Z, then £ is

E-~orientable if and only if ¢ is E-orientable.

2. Classification of E-oriented GV -bundles

We retain the notations of the previous section and assume that all
spaces in sight are in the category .W of spaces of the homotopy type of
CW-complexes, By [46A.6], B(Y,G, X) isin W if Y,G, and X ave in X,

Liet SGV denote the component of the identity element of GV,
Let FR denote the group of units of the ring R = w_ E_ and let

00

FEC EO denote the union of the corresponding components. Define

G FE -~ wOFE = FR to be the discretization map, Let SFEC FE denote

the component corresponding to the ;dentity element of R. When E is the
sphere spectrum QOOSO, the space Eo = QSO coincides with f‘; in par-
ticular, FE=F and SFE = SF. In the general case, we may take the
unit e: QOOSO - E to be an honest map in &4 rather than just a map in HA4
(by I1.2.7), and we also write e for the composite
GV ~FVc F 2+ FE, Vc R™.

By the definition, II.1.1, of a spectrum, we have a homeomorphism
T EO - F(tV,EV) for each finite~-dimensional sub inner product spacé A\
of R®. We restrict attention to such V, and we identify FE with a sub-

space of F{tV,EV)via ¥ We are given a morphism of monoids

GV - FV C F(tV,tV), and composition of maps defines a right action of GV
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on FE and of SGV on SFE. Define

B(GV: E) = B(FE, GV, %) and B(SGV;E) = B(SFE, SGV, *).

We then have the following commutative "orientation diagram”, in which
the maps i are the evident inclusions and B(GV;R) is defined to be

B(FR, GV, #):

SGV  —— SFE i B(SGV; E) —————3> BSGV
Gv ° FE T > B(GV;E) ————— BGV
ld Bd
a
GV ° FR i B(GV:R) ~———5———————> BGV

The rows bare quasifibration sequences by [ 47,7.9], and the maps g can be
thought of as universal determinant bundles.

We shall interpret geomet:.;icaily the functors and natural transforma-
tions represented on the homotopy category hJ/ by the spaces and maps o£ the
orientation diagram by quoting appropriate results of [47]. Recall that brackets
denoted unbased homotopy claésés in that papef but denote based homotopy
classes here.

We note first that, by [47, 9.8], [X+, BFV] is naturally isomorphic
to the set of equivalence classes of FV-bundles over X. Next, by [47,11.1
and 10, 4], [X+, B(GV\FV,FV,*)] is naturally isomorphic to the set of
equivalence classes of FV-bundles over X with a reduction of the structural
monoid to GV. Here, by [47,8.9], B(GV\FV,FV, %) is homotopy equivalent
to BGV and the maps

q: B(GV\FV,FV,*) - BFV and Bj:BGV —~ BFV

can be used interchangeably, j:G —~ F. Of course, if G is group-valued

OGO C OO0

\




and GV acts effectively on tV, then BGV also classifies Steenrod fibre‘
bundles over X with group GV and fibre tV [47,9,10]; here the map Bj
induces the transformation obtained by sending a fibre bundle to ifés under-
lying spherical fibration, whereas gq induéés the transformation from GV-
bundles to FV-bundles obtaingd by forgetting the reduction of the structural
monoid. Given i:H - G, BHV can be regarded as classifying either FV-

bundles or GV-bundles with a reduction of their structural monoid to HV,

Theorem 2.1, For X e, {X+, B(GV; E)] is naturally isomorphic
to the set of equivalence classes of E-oriented GV-bundles over X under
the relation of orientation preserving GV-bundle eéuivalence.

f’_rgo_f. First, let G=F. An orientation p of an FV-bundle £:D—~X
can t;e described as a homotopy class of maps D — EV such that, for any map
Y:tV =+ D which is a based homotopy equivalence into some fibre, the com-
posite ugstV — EV lies in FE. Here the basepoints of fibres determine the
cross-section of £, and p factors through TE because py is a based map
for each inclusion  x: g-i(x) C D. The condition pyx ¢ FE also ensures that
the restriction of p e Ean, to EnTx is a generator of E*TX over TT*E. In
the language of [47;10.4,40.2, and 40, 6], 1 is an FE-structure defined with
respect to the admissible pair (FE,EV). Therefore the result for G=F is
a special case of [47, 11. 1j. For general G, an orientation of a GV-bundle
depends only on the underlying FV-bun&le (ané not on the reduction), hence
the result for F implies the result for G by [47,11.3]. Alternatively,
when G is group-valued and GV acts effectively on tV, we could appeal
to the bundle-theoretic result [47, 1‘1. 4] rather than to the quoted fibration-
theoretic results,

The probfs of [47,14.1 and 14, 4] give explicit universal E-oriented

GV-bundles (w, 8) with base B(GV;E) and with = classified by

q: B(GV; E) - BGV [47,14. 2], Therefore q induces the obvious forgetful
transformation from E-oriented GV-bundles to GV -bundles.

If FE happens to admit a structure of topological monoid such that
¢:GV =~ FE is 2 map of monoids, so that B(GV;E)= FE/GV is homotopy
equivalent £o the fibre of Be:BGV — BFE, then ar*(Be) € [X+, BFE] is the
only obstruction to the E-orientability of the GV -bundle clas siﬁed by
a:X -~ BGV., As far as I know, the only examples are E=zHR and E=38
(both discussed below). Nevertheless, a similar obstruction will be con-

structed much more generally in the next chapter. .

Example 2.2, Let E = HR. It is not hard to construct a model for HR
suchthat e: GV -FHR is a morphism of monoids. Rather than give the

details, we note that Bd:B(GV;HR) - B(GV;R) is a homotopy equivalence,
since d:FHR - FR is, and wé can thus use ithe middle and Sottom rows of

the orientation diagram interchangeably. Clearly de: GV = FR is a morphism
of monoids, B(GV;R) is equivalent to the iibre of B(de), and B(de) factors
through Bd: BGV -~ Br GV. BSGV is contzﬁned in B(GV;R), and we have

the following commutative diagram:

BSGV - BGV —22 > K(m GV, 1)
B(GV; R) —~ Bov —208) o x(rr, 1)

The GV-bundle classified by a:X - BGV is R-orientable if and only if
u{*B(de) ='O, and this holds if TrOGV = {4} orif TroGV = Z2 and either
char R = 2 or the fi:;-st Stiefel-Whitney class w, =>af*Bd € I—Ii(X; ZZ) is
zero, By the diagram, BSGV = B(GV; R) is a homotopy equivalence if

=FR.
TrOGV .
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Let (170, 90) be the (integrally) oriented GV-bundle classified by
the inclusion of BSGV in B{GV;Z). Via a — a*(vo,eo), [X+,BSGV] is
naturally isomorphic to the set of equivalence classes of SGV-bundies, by
which we understand GV-bundles with a canonical orientation. In other
words, Theorem 2,4 allows us to choose compatible preferred orientations
simultaneously on ail GV-bundles with a reduction of their structural monoid
to SGV. .

Definition 2.3. An E-oriented SGV-bundle is an E-oriented GV -
bundle and an 8GV-bundle such that the preassigned R-orientation is that

induced from the canonical orientation.

The map Bd: B(GV3;E) -~ B(GV;R) induces the evident forgetful
transformation from E-oriented to R~oriented GV~bundles and is an isomorph-
ism on components, Our original definition of ar; E-orientation takes cogni-
zance of the fact that the set of equivalence classes of E-~oriented dV—bundles
over X is the union of the inverse images under (Bd)* of the elements of the
set of R-oriented GV-bundles over X. The image of B(SGV;E) under Bd.i

is precisely BSGV < B(GV;R)., This implies the following corollary.

+
Corollary 2.4, For X eW , [X',B(SGV;E)] is naturally iso-

morphic to the set of equivalence classes of E-oriented SGV -bundles over X.

We complete the analysis of the upper two rows of the orientation
diagram in the following remarks (compare [47, 11, 2]).
Remarks 2.5. (i) [X+,FE] is isomorphic to the set of E-orientations of the
trivial GV~bundle £V over X. Indeed, given a:X - FE, its adjoint XXtV -~+EV
gives the corresponding E-orientation Byt @ has image in SFE if and only if
le Testricts to the canonical fundamental class of each fibre of &V,

(i1) The maps T of the orientation diagram induce the transformations

which send an E-orientation p of ¢V to the equivalence class of the pair ( &V, p).
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(iii) [X+,GV} is isomorphic to the set of homotopy classes of GV-bundle
equivalences £V -+€V. Indeed, given a: X = GV, its adjoint XXtV -tV gives
the second coordinate of the correspondin}g GV -bundle map Vo @ has irhage in
SéV if and only if Tva preserves the canonical orientation of £V,

(iv) The mapé e of the orientation diagram induce the transformations
which send a GV-bundle map Vv to the E-orientation (Tv)*(p.o), where p is the

canonical E-orientation of eV,

There is an analogy between orientations and trivializations that
plays an important role in the applications. Suppose given morphisms
H-~G-TF of monoid-valued L *-functors, where H is group-valued,

By [47,10.3 and 41.4] (and, for cases such as H = Spin where HV fails
to act effectively on tV, [47,10.4 and 14.3]), {X+, GV/HV] is naturally iso-

morphic to the set of equivalence classes of GV-trivialized HV-bundles over X,
Remarks 2.6. Be: GV/HV = B(GV,HV,*) —~ B(FE, HV, %) = B(HV; E) induces

* .
the transformation which sends (£,1) to (£, (TL) (}LQ)), where p, is the

canonical E-orientation of the trivial GV-bundle. The following diagram

commutes:
T q
HV GV GV/HV ~——3—3> BHV
” e Be “
e T q
HV FE B(HV; E} ~———3> BHV

In the upper row, T induces the transformation which sends v: gV ~ &V

to (eV,v) and g induces the evident forgetful transformation.

Example2.7. Let E=85, sothat ¥FE=F and B(GV;E)= F/GV. Since
Be: BGV ~~ BF induces the transformation which sends 2 GV-bundle £ to
its stable fibre homotopy equivalence ¢lass, this class is the obstruction to

the S-orientability of £, This fact can also be seen directly since, if




V=R" and tv= Sm, an S-orientation u:TE -~ 5™ has adjoint a map

m

DE X g% - g7t for n suitably large (if the base of £ is compact), and

the latter map is the second coordinate of a stable trivialization of £ .

Finally, we relate Theorem 2.1 to fibrewise smash products and

discuss its naturality in E,

Remarks 2.8, Let V and W be orthogonal finite dimensional sub inner
product spaces of R®. Hisan easy consequence of the definition of the
smash product on ud given in [4§ that fhe product on E determines maps
f:FEXFE - FE and §:EVAEW -~ E(V + W) (depending on an appropriate

. . 2] e} © ‘ : : :

linear {sometry R~ & R~ = R} such that the following diagram is
commutative:

FE X FE ———3 F(tV, EV) X F(tW, EW) —2—5 F(tVa tW, EVAEW)

/. | F(1,6)

FE FE(V + W), E(V +W))

(at least if the product on E is given by an honest map in pe ; possible required
formal inverses of weak equivalences would mildly complicate the argument
to follow). If {Vl} and {Wi} are expanding sequences such that Vi-l- w,

and R® = (UVi) + (UWi), then there'is a sequence of maps
i i

¢i: EV,AEW, > E(V, + W,) so compatible with fiFEXFE ~FE. The dia-
gram and the definitions of » on F and of the right actions y by the GV

on FE imply that the following diagram also commutes:

FEXGVXFEXGWMFEXFEXGVXGW——B—@—»FEXG(V+W)
yXy Y
FEXFE g F

Therefore, since the bar construction commutes with products, § and w

induce

Bluw; ¢):B(GV.;E) X B(GW;E) - B(G(V + W) E) .

Let (£,p) and (§,v) be E-oriented GV and GW-bundles over X and Y

" classified by @ and B. Then (£a(,pav) is classified by Blw ;@)@ X B).

The proof is based on the observation that [47;5.6,7.4, and 141,1] imply

that B{w ;ff) can be covered by a map of E-oriented G(V + W)-bundles from

the fibrewise smash product of the universal bundles over B(GV;E) and

B(GW; E) to the universal bundle over B(G(V + W); E).

Remarks 2.9, Let L !E - E' be a map of commutative ring spectra. By
the definition of a map of spectra ,iL 1.4, and of the actions v, the following

diagrams are comrmutative:

FE ————> F(tV, EV) and  FExGV—21 5 pEixGv
Ll F(1,0 Y v
¥ L

FE! el s ¥ (tV, E'V) FE — 22— FE'

Therefore ! induces a map B{:B(GV;E) - B(GV;E'), and the following
diagram is obviously commutative:

FE ~—t B(GV; E) ——2~—3 BGV

-
|

FE' —I— 5 B(GV; E') ——> BGV

) 14

The construction of the universal E and E' oriented GV -bundles (w,8) and
(w*,0%) in [47,44.1] shows that the map of Thom complexes
TL: Tw -~ Tw' induced by Bl is such that the diagram

T -——E—L-—-—> Tr!

s

EV —2—35 EV
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is homotopy commutative, We conclude that Bl induces the transformation . E ring spectra*
which sends an E-oriented GV-bundle (£,p) to the E'-oriented GV -bundle

(£,tp), where we have also written { for the cohomology operation it

determines. In the previous chapter, the basics of orientation the‘ory were
developed for a cohomology theory represented by a commutative ring
spectrum E. In order to analyze the obstruction to orientability, and
for many other purposes, it is desirable to have a more structured
notion 6f a ring spectrum.

To see what is wanted, consider the unit space FE C EO and the
component SFE of the identity element of -n-OE. The product §:EAE~ E
and unit e:S -~ E determine H-space structures on FE and SFE. Recall
that, when E =8, FE=F and SFE = SF, When E = kO, Adams pointed
out in [4, §7]'that the group of kO-oriented spherical fibrations over X
ought to play a key role in the analysis of J(X) and that the obstruction to
kO-orientability ought to be direc;tly rela.téd to the d-invariant. Now the
d-invariant can be thought of as induced from the H-map e:SF - BO®= SFkO,
and Sullivan pointed out in [72,§6] that if e were to admit a delooping

Be: BSF ~ BBOQ, then the fibre of Be oughf: to be equivalent to B(SF;kO)

R’
and Be therefore ought to be the universal obstruction to kO-—oi‘ientability.
Thus one wants at least suffiaient structure on E to ensure that
FE admits a classifying space (or delooping). One's first thought is to
insist that FE admit a structure of topological monoid. One camnot re-
quire ¢ to be associative and unital, without passage to homotopy, since
the smash product of spectra is itself only associative and unital after
passage to homotopy. However, one can ignore the smash product, re-

vert to Whitehead's notion of a ring spectrum defined in terms of a pair-

¥ (by J.P. May, F. Quinn, and N, Ray)




ing of spectra [80], and assume that the given pairing is strictly associative
and unital. This is perfectly satisfactory in theory, and has been used by
Paﬁerson and Stong in an investigation of the orientability of bundles [52],
but is at present of little use in practice since the only known strictly
associative ring spectra are 5 (under the composition pairing) and the
Eilenberg-Mac Lane spectra HR, where R is a ring.

We shall define the notion of an Eoo ring spectrum in section 1.

When E is such a spectrum, FE and SFE wﬂl not only have deloopings,

- they will actually be infinite loop spaces. Paradoxically, although the
implications of an Eoo ring structure are thus mﬁch stronger than the im-
plications of strict associativity, it is not hard to construct Eoo ring
spectfa. Indeed, among other examples, we shall see in section 2 that the
various Thom spectra MG, including such exotic ones as MTop and MF,
are Eoo ring spectra as they occur in nature. InVII, the first author will
give a machine for the construction of Eoo ring spectra from spaces
with appropriate internal structure. This machine will construct Eoo
ring spectra which represent the various connective K-theories (geo-
metric and algebraic) and the ordinary cohomology theories.

In section 3, we study E-orientation theory when E is an ‘Eoo ring
spectrum. Here the obstruction to E-orientability takes on a conceptual
form: it is a degree one "Stiefel-Whitney" class inthe cohomology theory
determined by the infinite loop space FE. We shall give a number of
examples to show how this obstruction can be calculated in favorable cases,
Moreover, the cvlassifying space B(G;E) for E-oriented stable G-bundles
(G =0,U,F, Top, etc.) is itself an infinite loop space, and the Thom
spectrum M(G; E) associated to the universal E-oriented GV -bundles,

vcC Rw, is again an Eoo ring spectrum. Thus we have new cohomology

65

theories of E~oriented G-bundles and corresponding new cobordism theories.
Qur work raises many unanswered questions., Can these new

theories be calculated in interesting cases ? What is the relationship

"betweenthe coliomology theory determined by an Eoo ring spectrum E and

‘that determined by FE? What are the implications for w*E of the

existence of an Eoo ring structure on E? All that we show here is that
the representing spectra of most of the interesting cohomology theories
have an enormously richer internal structure than 'has yet been studied
and that this structure gives rise to a collection of potentially powerful

new theoyries.,

1, Eoo ring prespectra and spectra

On’e way to prove that a space is an infinite loop space is to display
an action of an Eoo operad on it [VI,§ 1], We think of spectra as already
carrying additive structures, and we shall superimpése multiplicative
structures by means of actions by operads. Since spectra, as defined in
II,1.1, are indexed on the finite-dimensim al sub i;mér product spaces
of ROD, it is natural to give the linear isometries operad J of I, 1.2
a privileged role in our theory. For the examples in this chapter, it wouid
suffice to use only X, but it is essential for later chapters to allow
more general operads. Thus we assume given an Eoo operad {4 anda
morphism of operads /3 - \Z’ . By abuse, we shall think of elements
of )31 (j) as linear isometries via the given map to [ (j).

Actions by operads refer to chosen basepoints. We think of actions
by /3 on spaces as multiplicative, and the relevant basepoint is denoted
by 1. We do not want to impose additive structures on spaces, but we

do want to impose zeroes, Thus let denote the category of spaces
P e gory P
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X together with cofibz.-ations e:8% + X where 80 = {0,1}. Bya M _space
with zero, or [ g §pace, we understand a /J ~-space (X,£) such that
X ¢ je and gj(g,xl, ...,xj) = 0 if any x, = 0; in other words,
E,j: /J () x Xj -+ X is required to factor through the equivariant half-smash
ﬁ(j)XZ.XA . .AX/H (j)xz.* defined with respect to the basepoint 0. Let

J

J
4 [_']e] denote the category of 1 -spaces with zero.

The spaces TV of a prespectrum have given basepoints, which we de-
note by 0; all wedges and smash products used below are to be taken with
respect to these basepoints. By a unif; for TelP or for E e.d we understand
a map e: Z}mSO—‘* T in ¥ or e: QmSO ~E in 4 such that the resulting (and,

0
by II. 1.3 and II. 1.7, determining) map S = T  or SO - E_ is a cofibration.

0 0
Let 'zpe and ée denote the categories of prespectra with units and spectra
with units (and morphisms which preserve units). The constructions and re-
sults of Il §1 extend immediately to the categories ge PP and Xe .
The reader is advised to review the definitions of operads (VI.1.2), of

actions by operads (VI.1.3), of the linear isometries operad (I.1.2), and of

prespectra and spectra (II.1.1) before proceeding to the following definition.

Definition1.1. A M -prespectrum (T, o, £) is a unital prespectrum
(T, 0) together with maps
E(€): TV A ATV, = Tg(v; ©...@YV)
for j20, ge H(j), and A eg*(Rm), where ij,o(*) is to be interpreted as the
inclusion e:S0 - T0 y such that the following conditions are satisfied.

(@) If ge M), b e BG,) for 1<r<k, and j =j + ... +j, then the

K’

following diagram is commutative.

(b)
(e)

@

{e)

TVlA thA e A TVjAth

TVA.. .Aij,\t(wlaa. ] .@Wj)
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. (WEsh seers )
TVA... ATY, J 1 TY(gs By, BV, © oo @ V),

£ (y) oo £ () | “

g (g

TgW,® ... 6 W)

TWIA .. .I\TWk

= ves . 0}if j_ = 0).
where W_ hr(vj oot @ ev ) (or {0}if i, =0)

1 J1+. .e +Jr

1
gl(x): TV - TV. is the identity map.

If ge A (i) and T ¢ Zj, then the following diagram is commutative:

&.j(gf)
TV, A oot ATV, o> Tgr(V, @ ... @ V)
1 j 1 j
.
§j(g)-
TV | A...RIV ———Tgv | ®...0V . )
1) 1) (1) ==1(3)

For fixed Vi and W, §j is continuous in g as g ranges through the

subspace of }j (j) which consists of those elements such that

g(V1 ... 0 Vj) =W,
¥ ge H(j) and ViJ.Wi, then the following diagram is commutatives

TA. e AU
e T(V1 +W1) L AT(V}+ Wj)

I £,(e)
Tg(('V1 +w1) D ... 9 (vj+wj))

§;(e)nte H

Tg(V, .. .eavj)A tg(W, ®. . .eawj) B T(g(V, .. .evj) +g(W,®...0 wj))

(where t is a sphere-valued functor on &* as in IT §1).

C ¢ CCC
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(£) If ge H (1), then &l(g): TV = TgV is a homeomorphism in the homotopy

class T(g|V), and every morphism f ¢ J *(Rm) is obtainable by restric-

tion from some ge K (1). ({f) could be deleted; see Remarks IL 1.40.)

(T,0,£) is a H -spectrum if (T, ¢) is a spectrum. A morphism
$:(T, 0, 8) = (T', ¢!, £') of Y -prespectra is a morphism (T, o) =~ (T!, o!) of

unital prespectra such that the following diagrams are commutative:

Ej(g)
TV[A «ee ATV, —— Tg(V, @ ... eavj) .
WYAsoon ) g
ég(g)
TV nees ATV, ———l———>Tig(V) @...evj)

Let A [’(Pe] denote the category of )3‘-pre'sp'ectra andlet 4| Je] denote its
full subcategory of H-spectra. Let v} P4 e] -4 [ﬂ’e} denote the inclusion'
functor, .

Definition 1.2. An E_, Ting prespectrum (or spectrum) is a M -pre-
spectrum {or A ~-spectrum) over any Em operad K with a given moréhism of
operads ¥~ -J\a .

We have not defined and do not need any notion of a morphism between
Eoo ring spectra over different operads.

Think of a prespectrum (T, v) as deter¥nining an underlying space, the
wedge over all Ve J *(Rm) of the spaces TV. Then conditions (a), (b), and "
(c) are precisely the algebraic identities required for the E,j to give this space
a structure of bo-—space. Condition (d) describes how to weave in the topo-
logy of H » but we should add that we only know how to make effective use of
the topology when the Vi and W are all {0}, The last two conditions relate
the gj to the internal structure of (T,¢). In practice, (f) is used to define

the maps T{g|V), and the force of the definition lies in condition (e).

In [48,X1], a smash product functor Ag: 4dx 8 - 4 is defined for
each element ge X (2); all such functors become equivalent in the stable

homotopy cagegory HE . . Our definition ensures that, for each pai ~spectrum

£ E and each ge }3 (2), there is a well-defined map E /\gE -+ E in 4,? which

gives E a structure of commutative ring spectrum in H 4.

Although irrelevant to our theory, a comparison with Whitehead's

notion of a i:’mg spectrum may be illuminating,

Refarks 1.3. Let (T,0,t) bea Y -prespectrum andlet ge H(2). Let R®
and R ® R® have orthonormal bases {ei} and {e;:, e;}. Assume that tV
is the one-point compactification of . V and let ’.[‘i = TRi and

o, = o ETi = TiA tRei_*.1 - Ti-!-l' Consider the following diagram for any

p>0 and q> 0, where d: Rge' - Rge::ﬂ_l is the obvious linear isometry

p+l

and f:g(RP @ Rq+1) - gPtatl is any linear isometry:

ZT AT

P o Al
\ :
AT
T stRe , rT at{0}-TIs> T AT
1 +1
pm ptl g P q gz(g)
£ (g)rte ‘ +
T AT atRe! .. —2—> Tg(RP® RYatRge! " ~Z 5> TgRPT @ RY)
’ a  ptl ‘ P TEH1@d)
' -1 1atd T{(1@ d)
IALIAL dg) n (
(g Tp+q+1
£ ,(e) T
ghrtg
2= Py pd v P g+l
' > Tg(RP® RYatRge! | . —> Tg(R' O R

TpA TqA tReq_H g( AtRg g+ g(R" 6 )

lle

oo
e 5> AT
'I‘pl\ t{0} ATq/\ tRe g 'I‘p g1

T AZT
P q

,{e)

The left rectangle commutes trivially, the two trapezoids commute by (e ) in
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the definition of a /i;prespectrum, and the two left triangles commute while
the remaining rectangle and triangle homotopy commute by the very definition
of a prespectrum, This looks just like Whitehead's diagram (seeIX.2.5), ex-
cept that we haven't mentioned signs. The point is that, to get a pairing in
Whitehead's sense, we must use fixed chosen isometries qu: g(RP®Rq) - Rp—l—q.
£= £p, qt+l ptl,'q
from fp, g+l (1©4d) in the space of linear isometries g(Rp+16 Rq) - RP+Q+1.

If may lie in the opposite component

in our diagram, then f
Of course, our theory requires no such choices, and the linear isometries

in the definition of a prespectrum efficiently keep track of all such changes
of coordinates.

The interest lies in Eco ring spectra, but it is an spaces and ring
prespectra which occur in nature, We next show that the relationships be-
tween the categories je’ G)e , and 'Ke derived in II,§ 1 restrict to give
similar relationships between the categories ;1[7 e]’ Hio e], and H [/{e}'
Clearly we have forgetful functors b (@ 1~ 4 [je] and M /{e] -4 Je]
defined on objects by (T,c,£) (TO, gITO).

Lemma 1,4, The functor =% je - (Pe restricts to a functor

=%, fj [je] -4 [G’e], and there is a natural isomorphism

LT ) = HIQI=)X,T), Xe H[T ] and T R[]
Proof. For (X,£) ¢ fi[je], ge fj(j), x.¢ X, and v,e tV,, define
gj(g)(xlt\vll\. ..ij/\vj)z gj(g)(xlA.. .'\xj)A(tg)(le.. .Avj).

Then £ gives X a structure of %—prespectrum, and the remaining

verifications are trivial. (For (f}, each gi(g):X ~+X must be a homeomorphism.)

0
Lemma 1,5, =®s" is a b -prespectrum, and e:EwSO-* T is

a morphism of }j -prespectra tor every /j ~prespectrum T,
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Proof, With gj(g) =1 on Sol\ e A SO = S0

for each ge /j G),
0 . h N 0 R R
S isa -space with zero such that e:S -~ X is a morphism of /id -spaces

with zero for all X e H ['Je]. The conclusion follows by taking X = T,

and applying the previous lemma,

Lemma 1.6. The functor 2%: @e - Je restricts to a functor

o®: K {(?e] -4 [;{e], and there is a natural isomorphisin

Wio o, ve) = B4 1@PT,8), T<H(P] and Ee AL

WiV, Let

Proof. By IL1.4, @OT)(V)= lim VTV + W),
Wi—’
(T, 0, &) ¢ H @ g« HG), and fe @ T(V, + W) and define a map
gj(g)(flf\ ceoA fj) by commutativity of the diagram

gj(g)(fll\ v Afj)

tg(W,@...0W)
(tg)"! [ "

t((W, e...0W,) Tg((V, tw)e...e (vj+wj)')

n £1hun £ Igj(g)

i
A e ALh .
EW) AL AEW, T(V, + W) ! T(VJ-!- wj)

T(g(Vle. . .(BVJ.) + g(Wl@. . .@Wj))

gj(g): (Q°°T)(v1) PN (QOOT)(Vj) - (an)g(vlqa. .+@V) is obtained by
passage to limits, and these maps are easily verified to make 9Pt a
}i -spectrum, With Wi ={0} ‘ in our diagram, we see that the map
LT - v T of IL 1.5 is ;morphism of l‘]-—prespectra, and the rest

is clear.
The previous two lemmas imply the following result.

Lemma 1,7, S= QOOEOOSO is a ?j -spectrum, and e:S—+E

is a morphism of H -spectra for evefy H—spectrum E.

Q000

Q = %, and Lemmas 1,4 and 1,6 can be composed,

[s0]

Lemma 1,8. The functor Qoo: j e Xe restricts to a functor




S T

IR

R

A

AT

e,

DSy

TR
e

&

e

Q.co: B je] - H ["{e]’ and there is a patural isomorphism
MU JeoE) = BL4NR XE), X HIT ] ana Ee B[ 4L

The following immediate consequence of this lemma will be needed

in VII. Recallthat X = (Q X) .
) w ‘0

Lemma 1,9, The monad (R u,7n) in ﬂe restricts to a monad
in 71 [ﬂe]; for Ee b [Je], the natural map RE, ~ EO ‘gives E; 2
structure of Q-algebra in H [ je}'

As we shall see in VI, the lemma implies that EO is an "Eoo ring
space"', which is a space with two Eco space structures so interrelated
that the underlying H-space structures satisfy the distributivity laws up to
all possible higher coherencé homotopies. Moreover, we shall see that
a connective /{1 -spectrum E can be reconstructéd (up to homotopy) from
the Eoo ring space EO'

Lemma 1.8 gives the following class of examples. Recall thatvany
infinite loop space is an Eoo space (VII.2.l)and any grouplike Eoo space is an
infinite loop space (VIL 3.2).

Example 1,10, For any # ~space (X,£), without zero, construct a

;1 -space (X+, £) with zero by adjoining :;. disjoint basepoint 0 to X and
extending £ in the evident way. QOOX+ is then a h-spectrum, and the
inclusion of X in QX+ is a morphism of /ﬂ—spaces. ¥ H' is any Em
operad and H = Hix f . then any Hi-space is a ¥ -space via the
projection )3 -~ K1, while the projection A X allows A to be used in

the present theory. Therefore QooX+ is an Eoo ring spectrum for any Eoo

space X,
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2. J*—-prefunctors and Thom spectra’

As explained in I§1, to construct an J\p-space it is often
simplest to first construct an J*-functor. Analogously, to construct
an f—prespectrum, it is often simplest to first construct an J*—pre—
functor'.

Definition 2.1. An ‘,Q*-prefunctor (T,w,e) is a continuous
functor T: J Wi j together with a comrhutativga, associative, and con-
tinuous natural transformation w T X T - T-® (of functors J*xj* -7 )
and a continuous natural ;:ransformation est »~ T such that
(2) w:TVXTW= T(V® W) factors through TV ATW.

(b) The composite TVA rw —L0E, TV;\TW £ o7V @ W) has adjoint
an inclusion with closed image and coinci_des with the identity map of
TV when W= {O}

(c) The diagram t(V @ W) — T(V & W) is commutative,

| 2

VAW —Ze TVATW

A morphism &:(T,w,e) = (T', o' e') of J*-prefmctors is a continuous
natural transformation @:T - T' such that w'(®8X &) = 8w and e'= %e.

The J*~functor "t with w3tV X tW -~ t(V @ W) the projection is also an

*»'Q*-prefunctor with e the identity. Condition (c) asserts that e:t—~ T is

a morphism of J*-prefunctors.

Lemma 2.2. An ,&*-—prefunctor (T,w, e) naturally determines
an & -prespectrum (T, v, E).

Proof. The continuity of T ensures that its restriction to sub
inner product spaces of R® induces a functor h.ﬂ*(Rm) -~h{. De-
fine o= w(lAe)i TVAtW - T(V+ W) for orthogonal pairs (V, W) of sub~

spaces of R, Then (a)-{c) and the associativity of w ensure that (T, o)



CCCCCCOCCC OO0

74

. 0
is a prespectrum and that e: 58" -~ T isa morphism of prespectra.
o]
For ViC R and ge f(j), define
Agt TV ALLLATV, = Tg(V. ®...

to be the composite

T(g]Vl@. . .eavj)

TV, A... ATV, L T(V,®...0V)
j

\ Tg(V @. . .aavj).

It is straightforward to verify that (T, ¢, £) is then an .x-prespectrum.

As pointed out to us by Becker, Kochman, and Schultz, there is a
class of S.) *~functcrs which leads via Lemmas 2,2 and 1.6 to certain of

. +
the Eco ring spectra QOOX of Example 1,10.

Example 2.3. Let X be an Abelian topological monoid with product I3

and unit 7. Define an J*~prefunctor (TX, w,e) by

+
(TX)V) = XAtV and  (TX){) = latf  for £V =V,
with wand e given by the maps
+ + +
¢ ALK AEVAX AW = (xxx)+,\ tVAtW ""X+At(v e W)
and

niatitv = {13ty > xtarv .

Note that t is recovered as the special case T{41}.

The x-spectrum determined by t is QmSO. The derived
g,zo -space structure on tmeyze:rot‘h space QSO coincides with the x-space'
. e
structure derived from the j *—functor F defined in 1,2.5. This phe-

nomenon generalizes to arbitrary .,O*-prefunctors.

Definition 2.4. Let (T,w,e) be an ,9 w-prefunctor and write M
for the f—spectrum derived by application of the functor % to the

associated X—prespectrum T. Define an J*-functor Fr by

f—l

N avd ~ .
Frv = @'7v and Frf = @ Tf for £V -V,

with @FTV XFTW ~FT (Ve W) given by the composite

O O (O e O G G G (P G G GO G G G ¢
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vOw vOw

VOV v ATW) s @

'tvx o TW 2> 0 T(Vew).
As explained in 1,1,6 and 1.1.9, FT determines an .f—space (also denoted
by ?EJ‘T) by passage to limits over VC R®. A trivial comparison of
definitions shows that Fr = MO as an f-space. There are evident sub
&*—functors FT and SFT of FT which give rise to the sub x-spaces
FM and SFM of M_.

0

We next display the Thom spectra as j *—prefunctors. Recall

the discussion of the two-sided geometric bar construction as an

\Q*-functor from I1.2.1 and 1.2.2.

Construction 2.5, Let G~ F bea morphism of monoid-valued
J *—functors. Then G acts from the left by evaluation on the J\*-—functor

t and from the left and right on the trivial J 4 functor *, Let Y be any

J*-functor on which G acts from the right. The map

p:B(YV,GV,tV) = B(YV,GV,*%) is a quasi-fibration if G is grouplike
and a GV-bundle if G is group-valued, p admits a cross-section o
induced from the morphism of GV-spaces * -tV and has fibre

T 1tV - B(YV,GV,tV) over the Sasepoint of B(YV,GV,%*). Moreover,
p,o, and Tare all morphisms of J *-fu.nctors. Define an ‘,Q *-prefunctor
(T(G; Y), w, €) by

T(G; Y)(V) = B(YV, GV, tV)/B(YV, GV,%),

with w and e induced from the Whitney sum of B(Y,G,t) and from 7 .
Write T(G;Y) for the associated Z—prespectrum and write’ M(G; Y)
for the deri;red X~spéctrum QOOT(G;Y). In an evident sense, T and M
are functorial on pairs (G,Y). Abbreviate T(G;*)= TG and

M(G; %) = MG. TG and MG are called the Thom prespectrum and

spectrum of G.

st e e A T4 e A AL T o e S T3 o 00 St

-

st T s ey ey e e R b RS T N

P ——

e o Ay e S L L AR SR
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Clearly Me coincides with QOOSO. When G is group-valued,
we could just as well define MG by use of the associated sphere bundles
to the principal bundles

GVe V)/ex GV -~ GV & V)/GV X GV.

However, since these bundles are not universal (because their total spaces
are not contractible), it seems preferable even in the classical case to use

the bar construction.

When G = ‘F, p must be réplace‘d by an appropriate fibration
DFV - BFV in order to obtain a universal FV-bqndle (spherical fibration
with cross-section). Here we could replace TFV by DFV/BFV; the new
TFV would again determine an J*~pr‘efunctor and the old TFV would be
deformation retracts of the new ones via deformations which define
morphisms of ‘9. *-prefunctoz:'s for each parameter value., A similar re-
mark applies to the general case T(G; Y) when G maps to F.

In view of I.2.5, all of the usual cobordism theories except for
PL theory are thus represented by jvcspectra. While it may be possible
to handle MPL and MSPL in an ad hoc manner based on the triangulation
theorem, as BPL and BSPL were handledin I §2, it is certainly pre-
ferable to treat these within a ‘general frémewollk of axiomatic bundle
theory. Such a treatment will be given by the second author in [64].

We note one other important example to which our theory does
not yet apply, namely the Brown-Peterson spectrum. The point is that
our theory requires a good concrete geometric model, not merely a homo-
topy theoretical construction, and no such model is presently known for BP.

For general Y in Construction 2.5, Lashof.'s treatment [36] of the
Pontryagin-Thom construction implies that if G is group-valued and maps

to O, then w*M(G;Y) gives the cobordism groups of G-manifolds with a

'Y -structure" on their stable normal bundles. In full generality, when G
maps to F, define a G-normal space to be a normal space in the sense of

[63,1.1] with a reduction of the structural monoid of its spherical fibration

to G [47‘,10.4]; then W*M(G;Y) gives the cobordism groups of G-normal

spaces with a "Y-structure" on their spherical fibrations. An intrinsic

bundle or fibration theoretic interpretation of a Y-structure requires an

" appropriate classification theorem, and general results of this nature are

given in [47,§11]. When G maps to G', a G'-structure is a G'~triviali-
zation [47,10.3]. When H maps to G, an H\G-structure is a reduction
of the structural monoid to H [47,10.4]. When Y = FM is as in Definition

2.4 and is regarded as @ right J*-funcfor over G via composition of maps,
FMV X GV - F({tV,TV)X F({V,tV) = F{V,TV) = FMV,

a Y-structure is an M~orientation by III§2 and Remarks 3.5 below.

Note that the map of x-prespectra LITG v 2O TG = vMG
defines explicit MG-orientations t ; TGV - MGV of the universal GV-
bundle (via the eq_uivalence of TFV and DFV/BFV when G=F), Thus
any GV-bundle admits an MG-orientation. The £0110\;ving lemma reflects
the fact that a G-normal space (or G-manifold) with an H\G‘—structure
admits an FMH-structure (that is, an MH-orientation).

Lemma 2. 6 Let H+G +~F be morphisms of monoid-valued
J*-functors. Then there is a morphism j:H\G - FMH of right j %
functors over G such that j coincides withthe given morphism G ~ ¥

when H= e and the‘following diagram commutes:

G————+ H\G
ji jj
F s FMH

If G mapsto F or SF then H\G maps to FMH or SFMH.
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Proof. H\G = B(*, H, G) and we have the commutative diagram

B(*, HV, GV) X tV & B(*, HV, GV X tV) —2 s B(, HV,tV) - THV

3

TX1 T

GVXtV tv

where X is the evaluation map. j:HV\ GV - F{tV, THV) =FMH is defined
to be the adjoint of the top composite.

As will be discussed and interpreted geometrically in [66], the
maps j:H\G *.FMH induce the bordism J-homomozrphisms,

We record a number of natural maps of J*-prefmctors in the
following remarks. The same letters will be used for the derived morphisms
of x -prespectra and f—spectra. The cobordism interpretations should

be clear from the discussion above,

Remarks 2.7 (i} For (G?Y) as in Construction 2.5, the morphism of
J*—functors q: B(Y, G,t) -~ B(*, G,t) induces a morphism of J w-prefunctors
‘q: T(G; Y) =~ TG.

(ii) In the notation of the previous proof, the maps B\ induce a morphism
of j*~functors €= EBN):B{H\G,G,t) > B(*, H,t) which in turn induces

a morphism of i*—prefunctors € :7(G; H\G) —~ TH.

(iii) ¥ G mapsto F andif T is an J*—prefunctor, then the evaluation
maps F{tV,TV) XtV - TV induce maps & :B(FMV, GV, tV) >~ TV which

in turn induce 2 morphism €:T(G,FM) - T of wQ*-prefunctors.

The maps of the previous lemma and remarks give considerable

information about the structure of M({G;MG).

Remarks 2.8, Foran X-spectrum M derived from an ,Q 4-prefunctor,

write

M(G; M) = 9OT(G;FM) and  M(SG; M) = 2 T(SG; SEM).

CCCT GO0t CCod
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Let H—> G~ F be morphisms of monoid-valued _Q*—functors. ~ The
following diagrams commute because they already do so on the level of

J *—preﬁmcto T8

M(G; H\G) M(SG; SH\SG)
I3
q E q
Mj
MH MG and MSH Mj MSG
I3 q £ q
M(G; MH) M(SG; MSH)

When H= G, H\G = B(*¥, G, G) is contractible and the upper maps £ and ¢
are isonforphisms in Hl (because the maps & and q on the prespectrum
level are weak homotopy equivalences for each V). We conclude that, in

i , the lower maps g split off a direct factor MG or MSG (via Mj- E“l

)

such that the restriction to this factor of the lower map £ is the identity.

3. Orientation theory for Eoo ring spectra

Let }1 be an Eoo operad with a givén map to x and consider
f—-spaces as }ZJ '-s'paces via thi; map. We shail write BX for the
first de-looping of a grouplike M-space X (VIL§30r [46]). This is a
harmless abuse of notation since BX is equivalent as an infinite loop
space to the usual classifying space of X if X happens to be a topo-
logical monoid in the category of H -spaces (by VII, 3,6),

Let E bea M -spectrum. By Lemma 1.7, etS—E isa
morphism of U—spectra and thus e:¥ -~ FE is a morphism of
,i—spaces. Let R denote the commutative ring TrOE.

Let j*G-~F be a morphism of monoid-valued j* ~functors,

‘and let j also denote the derived map of H-spaces (I.1.9 and I.1.6).
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Write e for any of the composites GV - G -+ F »FE, vc R,
Consider the orientation diagram constructed inIII§2 . It features

the classifying space B(GV;E) = B(FE, GV, *) for E-oriented GV-
bundles. Here FE is identified as a subspace of SszV via the
homeomorphism % :EO - o'rv and is a right GV—spaqe by compo-
sition of maps. By the definition of a s:pectrum, 1,1.1, the foliowing

diagram is commutative if V and W are orthogonal subspaces of rR®:

Eo o QV+WE(V+W) .
7| Ie
2’ v w '
2BV Q'Q E(V+W)
Therefore the identification of FE as a subspace of QEV is con-

sistent as V wvaries, and FE} inherits a right action by G = C‘:RQD from
the right actions by the GV. Moreover, the action FEX G =~ FE is
itself a morphism of h—spaces. Indeed, a comparison of () of
Definition 1.1 with 1,1.10 .shows that this followg from the cancellation
(xg—l)(gy) =xy for gtV—=V', xe QEV , and yeQ'tV=FV. Now
recall the discussion of the two-sided geometric bar construction as a

K -space from I§2 (or[46,§3]). Recall too that an Abelian monoid is a

Qi—space for any H and that the discretization d:X ~ w X ofa M —spacé

0
is always a map of ;j -spaces [45,§3). By passage to limits from the

orientation diagrams for V C Rm, we conclude the following result.

Theorem 3.1. All spaces are grouplike /'i—spaces and all maps
are h—maps in the stable orientation diagram

e

sG SFE B(S8G; E) ——3—» BSG .
il 11 1i li

G = FE T B(G:E) —31—» BG

I 5 [ I

G de T

FR B(G;jR) —>—» BG
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This diagram is therefore equivalent to the diagram obtained by
R th : .
application of the zero space functor to a diagram of connective
spectra in which the rows are fiberings (that is, are equivalent in the
stable category to fibration sequences [48,XI). On the level of spaces,
the stable E-orientation sequence now extends infinitely in both direc-
tions:

cet =~ QB(GIE) - G -2+ FE -T»B(G; E) L BG 22> BFE ~ BB(G;E)~- - -

Given H -+ G, we also have the infinite sequence

- +Q(G/H) »H~ G T~ G/H—2» BH ~ BG ~ B(G/H) - ***

and a map of this sequence into the E-orientation sequencé of H
. )
(because the maps of IIT, 2.6 are il -maps when V=R ).
Since B(G;E) .is equivalent to the fibre of Be:;BG -~ BFE,
an easy diagram chase shows that B(GV;E) is equivalent to the fibre

of the following composite, which we again denocte by DBe:
BGV - BG 2i+ BF -4 BFE.

Definition 3.2, Let £ be a GV-bundle classified by
@:X -~ BGV. Define w{£;E) to be the element w*(Be) of the group
[X+, BFE]. w(g;E)i is called the E~theory Stiefel-Whitney class of £
and is the obstruction to its E-orientability. If FE also denotes the
(reduced) cohomology theory represented by the spectrum determined
by FE, then w(£;E) can be regarded as an element of FEl(X+).

Previously, the obstruction to E-orientability was studied by
analysis of the Atiyah-Hirzebruch spectral sequence., Larry Taylor
[74] has given a number of results so obtainable, and we are indebted
to him for several very helpful conversations. When E is an Eoo ‘ring

spectrum, these results are immediate consequences of the definition
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and ordinary obstruction theory. To see this, assume that X is a
finite dimensional CW-complex. If w(£;E):X -~ BFE is null homotopic

-1
on the (n-1)-skeleton x" , then we have an obstruction set
w_(£:E) CHn(X;vnBFE) = Hn(X;vn_lFE)

to the existence of a null homotopy of w(£;E) on X. Clearly wl(ﬁ,; E)
is the usual Stiefel-Whitney obstruction to the R-orientability of £ of

I1l. 2. 2. F¥or n> 0,

FE = E= o2 =
w FE 'n'nSF 'rrn(EO, 1) = 'trn(EO, 0) 'n‘nE s

where the isomorphism is given by translation from the 1 -component
to the O-component. Let ¢ be a GW-bundle over Y classified by

B:Y - BGW. Then £a{ is classified by the composite of o X B and
w: BGV X BGW +~ BG(V@ W). Take V and W to be orthogonal sub-

spaces of R®. Then the diagram

BGV X BGW ———er BG(V + W)

| |

BG X BG —ts  mg

is homotopy commutative, where ¢ is the product given by the
h—space structure. Since Be:!:BG - BFE is an H-map, we conclude
that wn(g/\q;;E) is defined and contains wn(g;E) + wn(w; E) if

wn(g;E) and Wn(q.-; E) are defined. Clearly w  is naturalin X, in
the sense that if f:X' X is a map and if wn(g;E) is defined, then
wn(f*g;E) is defined and contains f*wn(é'; E). Similarly, if 8:E —~ B'
is a morphism of Eoo ring spectra, then wn(E;E') contains e*wn(g;E).
Of course, the E-orientability of £ implies its E'-orientability under
the much weaker assumption that 8 is a morphism of ring spectré

in H/K

83

Since 'rr*BF is finite in each degree and X is finite
dimensional,. a(Bj-a) = 0 for some positive integer a. Therefore
awn(g;E)C_ wn(aé;E) =0 if wn(ﬁ;E) is defined, Thus, if £ is
R-orientable and if Hn(X;-trn_lE) is torsion free for n> 1, then £
is E~orientable. For .example, if E=MU orif E is a ring spectrum

2n+l (X Z)

into which MU maps (such as MO, MSO, KU, etc.) and if H

is torsion free for nx1, then £ is E-orientable if it is R-orientable,
When X is finite, w(£; E) will be null homotopic if and only

if its localizations at all primes, or at ;.nd away from a set T of

primes, are null homotopic. Let ET and E[Tnl] denote the localiza-~

tion of E at and away from T. Suppose that G = O. Then 4£

admits a symplectic structure, hence is MSp-orientable, If wlg = 0,

it follows that £ is MSp[l/2]-orientable and thus that £ is MSp-
orientable if and only if it is (MSp)Z-orientable. Since the same
statement holds for ring spectra into which MSp maps and these in-
clude most of the i;:teresting Thom spectra MG and KO and KU,
E.orientability of vector bundles is generally only a problem at the
prime 2.

By the definition of w{f;E)} and the third author's result [65]
that (ej)*:'trnO - -n-nMSp is zero for n2 2, any vector bundle over Sn,
n > 3, is E~orientable for any ring spectrum E into which MSp maps.

Clearly applications like this can be multiplied ad infinitum,
and our context gives a conceptually satisfactory and computationally
efficient framework for the analysis of E-ofientability.

Returning to the stable orientation diagram, we note that if
E=M happené to be derived from an J*—prefunctor, then, by I,§2
and use of the J\ g-functor FM of Definition 2,4, this diagram is

derived by passage to X ~spaces from a commutative diagram of J %
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functors. Analogously, although we cannot construct an J*—prefunctor

like T(G;FM) for a general k -spectrum E, we can construct a Thom

prespectrum T(G;E) by direct appeal to Definition 1,1,

Construction 3.3. Define a n-spectrum T(G;E) as follows.

T{G; E)(V) = B{FE, GV, tV)/B(FE, GV, %)
and, for £:V -~ V!, T(G;ENf) is induced from B(l,Gf,tf). e:tV - T(G;E)V)
is induced from T:tV - B(FE, GV,tV). For V orthogonal to W,

o T(G; E)(V)AtW - T(G;E)(V+W) is induced from the composite

B(FE, GV, tV) X tW = B(FE, GV, tV x tW)}-28e 20 mirp o vew), t(v+w)),

where it GV~ G(V+W) is the natural inclusion. With these maps,

T(G;E) is a unital prespectrum. For ge H ), the maps
E,j(g): T(G;E)(Vl) Ao NT(Gs E)(VJ.) - T(G;E)(g(v1 a,. .eavj))
are induced from the composites

B(FE, C'Vl’ tvl) X ... X B(FE, ij, th)

Il

B{(FE), GV] X .ow X GV L8V X, X V)
i

B(ﬁj(g),Gg°m,tg°w)

B(FE,Gg(V,® ... (BVj),tg(Vle . evj)) .

The verification that these maps are well-defined and give T(G;E)
a structure of ?:i~prespectrum is tedious, but quite straightforward.
Write T(SG;E) for the ‘?’j ~prespectrum defined similarly but with
G and FE replaced by SG and SFE. Write M(G;E) and M(SG; E)
for the 'Li—spectra derived by application of the functor Qm.

By [36],[63], and 111§ 2, W*M(G; E) gives the cobordism groups

of {normally) E-oriented G-manifolds when G maps to O and of

E-oriented G-normal spaces in general. In the following remarks we
record certain morphisms of 9‘1 ~-spectra, show the consistency of our
two definitions of M(G;E) when E is derived from an J*—prefunctor,

and discuss the structure of M(G;E) when MG maps to E.

Remarks 3.4(i). The maps qB(FE,GV,tV)—~ B(*,GV,tV) induce

a morphism ¢ T(G;E) ~ TG of M ~-prespectra and thus a morphism
as M(G; E) -~ MG of %—spectra.

(i) I H maps to G, the maps Be:B(GV,HV,tV) '* B(FE, HV,tV)
induce a morphism Te: T(H;G) -~ T(H; E) of K -prespectra and thus
a morphism Me: M(H;G) -~ M(H; E) of H -spectra.

(iii) The evaluation maps FE XtV _’g"_)_(_i’ F{V,EV) XtV - EV
induce maps £:B(FE,GV,tV)~ EV which in turn induce a2 morphism

£:T(G;E) >~ vE of ?ﬂ;»‘prespectra and thus, by Lemma 1.6, a

morphism &:M(G;E)~E of H-spectra.

Remarks 3.5, Let E =M be derived from an J *-pr_efunctor T,

and the natural maps TV -~ M in-

Then M 0

= lim @ TV
0 el

duce maps B(FMV,GV, tV) - B(FM, GV, tV) which in turn induce a
morphism of }J—prespectra from T{G;FM) of Construction 2.5 and
Lemma 2,2 to T(G; M) of Construction 3.3. In view of the limits used
in the definition of Qm., the induced map of ./"J-spectra is an identifica-

tion. The maps € and g on M(G;M) given in Remarks 2.7 and the

previous remarks coincide.
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Remarks 3. 6. Let vy:MG —~E be 2 morphism of }-spectra.

Then the following diagram is commutative: ’ V. On kO-oriented bundle theories

& .

MG S M(G; MG)

\
Y My MG
/ One purpose of this chdpter is to lay the foundations for an analysis of

&

E *——— M(G; E) 4

Adams' study of the groups J(X) and Sullivan's study of topological bundle
» ’ theory from the point of view of infinite loop space theory. For this purpose
We conclude from Remarks 2.8 that, in HJ , q:M(G; E) »~ MG ¥ P p sp Yy purpose,

. . i it is essential to understand which portions of their work depend on the geo-
splits off a direct factor MG (via My°Mje&™") such that

metry (and representation theory) and which portions follow by purely formal
£:M(G;E) ~ E restricts on this factor to the given map vy. We have y ( P ¥) P P y

an analogous result with G replaced by SG. manipulations on the classifying space level. It turns out that substantial
) parts of their results can be obtained by elementary chases of a pair of large
diagrams focusing on the classifying space B(SF;kO) for kO-oriented
spherical f.ibrations and on BTop. The functors and natural transformations
represented on finite-dimensional CW-complexes by the spaces and maps in
these diagrams are easily described, and it is simple to interpret the informa-
tion obtained on the classifying space level in bundle-theoretic terms.

For the construction and analysis of both diagrams, we shall take the
following data as given. (Moré precise formulations of the data will be given
later. )

(1) The Adam’s operations q;r and their values on KO(Sn) [1].
{(2)  The validity of the Adams conjecture [2,17,57,73].
(3)  The splitting of BO when localized at an odd prime [6,53].

For the first diagram, we shall also ta}ce as given
(4) The Atiyah-Bott-Shapiro kO-orientation of Spin bundles and the

values of the derived cannibalistic classes pr on KSpin[i/r](Sn)

l13,3].

Note that these results do not depend on Adams' last two J(X) papers

[4 and 5].




For the second diagram, we shall also take as given In section 6, we construct our second main diagram. It looks just

(5)  The Sullivan kO[1/2]-orientation of STop bundles, the fact that the like the first one, and its analysis is exactly the same; only the interpretation

induced map F/Top[1/2] ~ BO®[1/2] is an equivalence, and the values changes. Chases of its localizations give Sullivan's splittings of BTop and

of the derived cannibalistic classes 8 on KO[4/2,1/r](s™) [71.72] Top/O at odd primes, These splittings, and chases, imply the odd primary

After stabilizing the classification theory for oriented bundles and part of Brumfiel's calculations [15]. Away from the prime 2, Q(SF;kO)(X)

fibrations developed in [47], we explain what we mean by an orientation of a is isomorphic to JTop(X), the & invariant becomes the obstruction to the

stable bundle theory with respect to a cohomology theory in section 1. We ' existence of a Top-structure on a stable spherical fibratign, and the

VST

construct certain general diagrams which relate oriented bundle theories to € -invariant yields Sullivan's analysis of JTop(X).

i
%J
il

|

cohomology operations and to larger bundle theories in section 2. Very little of this theory depends on the use of infinite loop spaces.

We construct our first main diagram in section 3. By chasing its However, the machinery developed in this book shows that all spaces in sight

localizations, we derive splittings at each prime p of various spaces in the are infinite loop spaces. This extra structure is essential tothe applications.

diagram, S!;lch as B(SF;kO), SF/Spin, and SF, in section 4. These splittings,

and chases, imply many of Adams' calculations in [5]. The splittings of SF

and F/O were noted by Sullivan {unpublished), but the recognition of the role

played by B(SF;kO) and, following from this, the recognition that the analysis

at the prime’ 2 is formally ideﬂtica}. to that at the odd.primes appear to be new,
In section 5, we prove a version of the main theorem of [4] and so

recalculate the groups J(X). We also introduce bundle theoretic analogs

5 and & of the d and e invariants studied by Adams in [5]. & gives the

obstruction to kd-orientability of stable sp};erical fibrations (and its férm

depends on application of IV§3 to the Eco ring spectrum kO). & is defined

on the group Q(SF;k0)(X) of kO-orientable stable spherical fibrations over

X and takes values in a certain group . JSpir@(X). Its restriction to JSpin(X)

is an isomorphism, Therefore JSpin(X) is a direct summand of Q{SF;kO0)(X);

the complementary summand is the group of j;oriented stable spherical fibra~

tions for a certain spectrum j. This analysis should be regarded as a generali-

zation of that carried but by Adams [5] for the case when X is an i-sphere with

i> 2,

Characteristic classes for spherical fibrations, kO-oriented spherical fibra-
tions, and topological bundles can only be described, at present, in termé of
homology operations, and these operations are invariants of the infinite loop
space structure, Thus it is important to know which of the splittings
described here are only homotopical and which'are as 6£ infinite loop spaces.
The problem, then, is to determine which of the maps displayed in our dia-
grams are infinite loop maps and which parts of the diagrams commute on
the infinite loop space level. In section 7, by combining results of this
book with recent results of Adams and Priddy [8] and still more recent re-
sults of Madsen, Snaith‘, and Tornebave [42] and Ligaard [38], we shall

nearly complete the infipite loop analysis of our diagrams.

1. E-orientations of stable bundle theories

For the reader's convenience, we quickly summarize those notations
from III to be used in this chapter. We then establish notations for stable
bundle theories and explain what we mean by an orientation of such a theory

with respect to a commutative ring spectrum E.
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Let j:G - F be a morphism of grouplike monoid-valued g*—functors
(1.1.8,2.1, and 2.5) and let V and W be orthogonal finjte~-dimensional sub-
inner product spaces of ROO. BGV and B(GV;E) classify GV-bundles and
E-oriented GV-bundles over CW-complexes, and w: BGV X BGW —~ BG(V +W)
and B(w, §): B(GV; E) X B(GW; E) » B(G(V+W) E) induce the (external) fibre-
wise smash product and (internal) Whitney sum (II §1, 2.1, and 2.8). There is

an explicit quasi-fibration sequence
GV ~2= FE —T— B(GV; E) —2~ BGV ,

the bundle-theoretic interpretation of which is given in I11.2.5. If it H= G
is 2 morphism of grouplike monoid-valued J*—fu_nctors, there is another

explicit quasi-fibration sequence

9, pav-2L . pgv

GV —— GV/HV

and a2 map Be:GV/HV - B(HV;E), interpreted in IIl. 2. 6, such that qBe = q.
The maps 7 and g of the two quasi-fibration sequences above are defined in
‘the same way in terms of the bar construction and have analogous interpretations

in terms of transformations to and from bundles with additional structure,

hence the duplicative notation. If & E -~ E' is a map of ring spectra, there
ié amap BL:B(GV;E)~ B(GV;E'), interpreted in I. 2.9, such that qBL= q.
We write SG instead of G when all bundles are given with a canonical inte~
gral orientation, and then all E-orientations are vrequired to be consistent with
the preassigned integral orientation.

Write G,G/H, BG, and B(G; E) for the spaces obtained by passage to
limits over V& R, The first three are infinite loop spaces (by I) and the

last is at least a grouplike H-space (by IIL 2. 8) and is an infinite loop space if

E is an Eco ‘ring spectrum (by IV.3.1).

CCCCCOOCCOCLCCOLEULE
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Henceforward, restrict attention to connected finite-dimensional cwi

GV and GV' bundles £ and

complexes X as base spaces of GV-bundles.
£1over X are said to be stably equivalent if £ ® eW is eqﬁivalent to g'@ EW!
for some W1V and W!'L V' suchthat V+W = VI+ W', Write {t} for the
stable equivalence class of £ and call {£} a stable G-bundle. Let r:T:é(}(X)
denote the set of stable G-bundles over X, Then KG(X) is classified by BG,
and the image of [X+, BGV] in [X*, BG] depends only on the dimension of V.
The product on‘ BG induces the external and internal operations A and @
on stable G-bundles described in terns of the fibrewise smash product and
Whitney sum by {£}A {4} = {£a ¢} and {£} @ {4} = {£ @ {}, where £
and § are representative GV and GW bundles with V1 W.

Let KG(X) denote the Grothendieck group constructed from the G(n)-
EV = EV' when

bundles for n > 0 (or, with the additional relations

dim V = dim V!, from the GV-bundles for V C RDO). We have identifications
& + + +
KG(x) = [x7,BG] = [x",BG x {0}] c [X', BGX Z] = KG(X).

Let JG(X) denote the image of RG(X) in KF(X) under neglect of
G-reduction (or, equivalently if G is group-valued, passage to fibre homo-
topy equivalence). Thus

76(x) = (8j),Ix*, BGlc [x",BF],  Bj:BG - BF.

Adams writes }(X) for JO(X) and J{X) for JO(X)X Z C KF(X); his
notation is more logical, but less convenient since JO(X)X Z has no geometric
ring structure and is therefore uninteresting. Of course, J= j*: TI’*SO - T\'*SF
= 'n'i is the classical J-homomorphism, where -n'f denotes the stable stems
(i.e., stable homotopy groups of spheres).

E-oriented GV and GV'-bundles {£,p) and (£',p') over X are saidto
be stably equivalent if (£ ® EW,p @ poW) is equivalent to (£'® eW',p’ @}LOW')

for some WLV and WLV' such that V + W=V'+W'. Write {£,p) for the




stable equwalence class of (£,p) and call {£,p} an E-oriented stable
G- bundle Let K(G; E)(X) depote the set of E-oriented stable G-bundles
over X. R(G;E)(X) is classified by B (G;E), the image of [X+, BA(GV; E)]
in [X+, B(G; E)] depends only on the dimensi&n of V, and the product on
B(G;E) induces the external and internal operations A and ® on E-oriented
stable G-bundles given by the fibrewise smash product and Whitney sum.

A Grothendieck group K(G;E)(X) can be defined, but is uninteresting.
Let Q(G;E)(X) denote the image of R(G; E)(X) in KG(X) under neglect of
orientation, ‘Thus

Q(GE)X) = o [x*, B(G:E)] ¢ [x*,BG], q:B(GiE) - BG .

Definition 4,4. An E-orientation of G is an H-map g:BG — B(G;E)

such that qg is homotopic to the identity map.

Given g, its composite with Bj: B(G;E) = B (F;E) will again be denoted

by g and the following diagram will be homotopy commutative:

BG———-————————» BF

NS

B(F:E)
In particular, JG(X) C Q(F; E)(X) if .G admits an E-orientation,

The proof that B(GV;E) classifies E-oriented GV-bundles gives an
explicit universal E-oriented GV»bund_le (w7, 8); in an evident sense, the
(w,8) are compatible as V varies. Let {£} ¢ KGX be classified by
@:X + BG. I gea factors (up to homotopy) through B(GV;E), as necessarily
holds for some V .by the finite dimensionality of X, then the element
{(ga)*.(w), (ga)*(a)} of K(G;E)X) is independent of the choice of V and pro-
jects to {&} in I’EG(X). If we write p(g) for all orientations so determined

by g, then the requirement that g be an H-map ensures the validity of the
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product formula

&, A {b,u@)} = {Ea g ple) aple)} = {Ead 1)

in B(G;E)(X XY) for all {£} ¢ BG(X) and {y} « RKG(Y).
We are particularly interested in the fine structure preserved by
infinite loop maps, by which we understand maps in HJ which are equiva-

th maps of morphisms in H{ (seeII,§2). The reader who

lent to the zero
does not share our interest may skip to the next section. The discussion

there will proceed on two levels, one based on E-orientations and the other

based on the following notion.

Definition 1.2, Let E be an Eoo ring spectrum. An E-orientation
g:BG —~ B(G;E) is said to be perfect if g is an infinite loop map and if

gg = 1 as infinite loop maps.

As will be discussed in §7, there now exist homotopical proofs in
several important cases of the somewhat weaker assertion that the composite
of g and the natural map B(G; E} - B(F;E) is an infinite loop map whose com-
posite with q: B(F; E) -~ BF is equal as an infinite loop map to Bj: BG - BF.
An easy Barratt-Puppe sequence argument in & (justiiiéd by [48, T]) shows
that G admits a perfect E-orientation if and only if e: G -~ FE is the trivial
infinite loop map.

When an E—orientétion g of G is the limit over V C R of maps
gV:BGV - B(GV; E), the gV induce maps TGV - T(GV;E) -5+ EV. In
practice, these maps define a morphism of prespectra TG = vE and there-
fore induce a morphiémv v: MG ~ E of spectra. On the coordinatized level,
appropriate compatibility of the an, which destabilizes the statemént that
g is an H-map, will ensure that y is a morphism of ring spectra in
Whitehead's sense and therefore, as explained in and after I1.3. 4, that yis a

morphism of (weak) ring spectra in ud. The verification that v is
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actually a morphism of Eoo ring spectra lies very much deeper and has not
yet been carried out in the interesting cases.
Conversely, let y:MG — E be a morphism of ring spectra and consider
the following homotopy commutative diagram:
B{(GV\GV, GV, *) B, B(FMGV, GV, *) ————Bﬂ—:;,, B(FE, GV, %)

-

e gV _ - q

BGV = BGV

Here j:GV\GV - FMGV is defined in 1V.2.6. € 1is a homotopy equiva-~
lence (if GV ¢ ¥ ), and we define gV = Bye LBj"EI.1 for some chosen homo-
topy inverse Eui. Comparison of IV. 2.6 with the proof of [47, 14, 1]
shows that gV classifies the E-oriented GV-bundle (m, 1), where

w: DGV -~ BGV is the universal GV-bundle and p is its E-orientation induced
via y from the MG-orientation .:TGV -~ MGV. The gV define an
E—or}entation g of G by passage to limits over V, and IV.3.6 (with
ﬂ-structure ignored) shows how to recover vy from the diagram of Thom
spectra over the displayed diagram of classifying spaces. By IV,2.6,

e:G =~ FE factors through G\G. Since G\G is contractible through maps
of &£ -spaces, b.y [45,9.9 and 12. 2], e is the trivial infinite loop map and

g is a perfect E-orientation of G when y is 2 morphism of ﬁ—spectra.

2. Cannibalistic classes and the comparison diagram

We construct some key commutative diagrams and record a few
(presumably well-known) technical lemmas here.

We write. ¢ for the product on all {multiplicative) H-spaces in sight,
and all H= Qpaces in sight will have a homotopy inverse map x. Of course,

¢ and x induce addition and the additive inverse on homotopy groups.
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Since the stable category is additive, ¢ and ¥ on infinite loop spaces

are infinite loop maps. For an H-space Y and two maps £, g X ~ Y,

define £/g = ¢(f X xg)&. (We shall write f-g instead of £/g when we

choose to think of ¢ as additive.) £/g is an H-map if £ and g are H-maps

and Y is homotopy commutative (as will always be the case). If X and ¥

are infinite loop spaces and fand g are infinite .loop maps, then £/g is an

infinite loop map; in particular, 1/1= #(1Xx) A is the trivial infinite loop map.
We agree to abbreviate weak homotopy equivalence to equivalence.

By an equivalence of infinite loop spaces, we understand the zeroth map of a

weak homotopy equivalence of spectra. The following result is an immediate

consequence of the quasifibration sequence
T
G —%+ FE ——» B(G;E) —— BG.

Lemma 2.1, Let g be an E-orientation of G. Then the composite

FE X BG —2E+ B(G; E) X B(G; E) —2+= B(G;E)
is an equivalence of H-spaces. If g is perfect, then #(vXg) is an equivalence

of infinite loop spaces.

Our main concern in this section is with the cor-nparison of different

E-orientations of the same underlying stable G-bundle. Thus let {£, p}
and {£,v} be E-~oriented stable G-bundles over X classified by o and E
Since g = qE :X -~ BG and since q:B(G;E) ~ BG commutes up to homo-
topy with ¢ and Y,

W7/ B) = ap (FXxB) A = §(aFX XAPA = §(4 X )AGE = *.
Since T:FE = B(G;E) is canonically equiyaient to the fibre of q, this null
homotopy determines a‘map §:X - FE such that +§ = E/E . Clearly
o6 X B)A =~ . Since T8 classifies {80,6} , where the unit § e EO(X+)
is regarded as an orientation of the trivial G(0)-bundle eo:X X SO -+ X (with

Thom complex X+), and since, by the explicit definition of §@&v in IH.1.5,
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{Eo,ﬁ}w{g,v} = {eoeag,aeav} = {£,6wu v},

we conclude that {&,p} = {&, 6wv}.

In our applications of this difference construction, we shall be given a
classifying space Y for some class of bundles with additional structure and
we shall be given maps a,b:Y - B(G;E) such that qae gb. The classifying
maps & and B above will be ay and by for a classifying map y:X =Y
and § willbe dy foramap d:Y -~ FE suchtbat Td = a/b., Note that
the null hom?topy gla/b) =t % | izence also d and the homotopy +d =~a/h,

are explicitly and canonically determined by the homotopies,

qa = qgb, qp=¢(qX q), gy =yxg , and (i Xy)A = *

If a and b are H-maps, thensois d. If E is an Eo: ring spectrum,
a and b are infinite loop maps, and ga = qb as infinite loop maps, then
d is an infinite loop map and +7d = a/b as infinite loop maps.
The theory of cannibalistic classes fits nicely into this framework.
Let Y:!:E—~E be amapof riﬁg spectra., Then qB\;;vz q, By B(G;E) ~ B(G; E),
and there results a canonical H-map c{{): B(G;E) -~ FE such that
ve(y) = By/4; if By is an infinite loop map, then so is c(i). We call c(y)
the universal cannibalistic class determined by b ‘If {€, 1} is an E-oriented

stable G~bundle over X classified by o, \;vrite
_% 0
c@) = e {&,1) = @ o) e EXx .

Define ¢ on K(G;E)(X) by ${€,p} = {£,¢p} and note that ¢{&,p} is

classified by Bye@. The discussion above shows that

W1} = {£ W) U u} e R(GE)(X).

Of course, given an E-orientation g of G, we can define cannibalistic
classes p= p{f} for stable G-bundles {£} by p{€} = c(¥){&,n(g)}. The

fact that these classes are represented by the composite c{¥)g on the uni-

) } ) ) ' i I ! g } } ! } ¥ ) ) } }
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versal level will play an essentizl role in our theory. We note next that Y/
also factors through c(y).

Proposition 2.2. The following diagram is homotopy commutative:

FE ———— B(GE)
$/1 e (¥) By/1

FE o B(G; E)

If E is an Eoo ring spectrum and ¢ on FE and B{ on B(G;E) are infinite
loop maps, then the diagram determines a corresponding diagram on the level
of spectra.

Proof. By/1 = vec(y) by the definition of c(}), and (By/1)r = v(p/1)
since ByeT = tol, By construction, c(§) is naturalin G. When G=e is
trivial, T=1 and 0= By on FE = Ble;E), hence /1 ~c(4). Now
c(b)o v = /1 follows by an obvious diagram chase. The last statement holds

by the general observations above.

The main interest often lies not in an E-oriented bundle theory but in
its relationship to a larger bundle theory, Thus assume given morphisms
H i. G <. F of monoid-valued J*—-functors and a.ssprr;e given an
E-orientation g of H. We also write g for its composite with
Bi: B(H; E) ~ B(G; E). There are now two natural E-orientations of G-trivialized

stable H-bundles in sight, namely those given by the maps
G/H —3» BH B B(H; E) and G/H22—> B(H;E).
Their quotient H-map ggq/Be factors as +f, where f:vG/H -+ FE is an

H-map by virtue of Lemma 2.1 and is an infinite loop map if g is perfect,

With these notations, we have the following result.

Proposition 2.3. The first three squares of the following "comparison

diagram" are homotopy commutative:
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T Bi
G G/ —3 BH L. e B BG/H) —> ...
|
1| |¢ J [ E
e T . q Be v ;
G FE ~ B(G; E) BG BFE .

¥
i%

If g is perfect, the diagram extends infinitely to the right and determines a
corresponding diagram on the level of spectra,
Proof., By IIL 2.6 and the fact that gr = *, we have

Tir = ¢lggX xBe)ar =~ x(Be)r 2 yTe = Tye ~ ey ,

where the first map r takes FE to B(H;E) and is thus the injection of a

factor by Lemma 2.4, Therefore fr= ex. We have the commutative

diagram
B
G/H ———=P8 e s B(H;E)
T
Bi FE Bi
T

G/G—25 . B(aiE)

in which G/G is contractible through infinite loop maps. Thus BiBe is the

trivial infinite loop map and (since Bi commutes with ¢ andx) we have
Tf= (Bi)vf = (Bi) p(gg X xBe)A =~ (Bi)gq = gq.
The third square homotopy commutes by the definition of an orientation.

The reader familiar‘witlbl Barratt-Puppe sequences will wonder why
the sign given by yx appears. If one writes down explicit equivalences of
the two rows with honest fibration sequences, starting from BG and work-
ing left, one produces two homotopy equivalences G — QBG. These turn out
to differ by Y. Of course, given g, Barratt-Puppe sequence arguments
{e.g. [48, 18§2])
two left squares homotopy commute. Conversely, given Bf such that the

right square homotopy commutes, there exists g such that the rest of the

produce a map £, not uniquely determined, such that the

CCCCC OO
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diagram homotopy commautes, These statements remain valid with Hand G
replaced by HV and GV, V finite dimensional, in which case the explicit
construction of f fails for lack of an H-space structure on B(GV;E). '

We shall need some observations concerning localizations of the com-
parison diagram at a set of primes T. We restrict to the integrally oriented
case in order to deal with connected spaces.

The localization E_, is again a commutative ring spectrum, and

T

SF(E,,) = (SFE)T. I do not know if localizations of E_ ring spectra are

T)
Eoo ring spectra, but any infinite loop space information derived from the

E structure is preserved under localization, We write A generically

for localixation at T.

Lemma 2.4. For any G, the following composite is a localization

at T: Bl A
B(SG;E) ———> B(SG;ET) E—— B(SG;ET)T .

When G=F, BSF = (BSF),, X BSF[T'l] and the map

-1
n,q): B(SF,ET) - B(SF;E)TX BSF[T 7T
is an equivalence (of infinite loop spaces if E is an Eoo ring spectrum).
Proof. In view of the following homotopy commutative diagram, this
is immediate from the fact that localization preserves fibrations of connected

H-spaces:

SG ——w SFE — B(SG; E) —— BSG —Be . BsFE
l N lm x
G ——— § E, — B(SG; E) —9  psg —=— piFE
* A |
e " (Be)
5G, SFE, B(SG3 E.p) ;. —— BSG,, ——= BSFE,,

-

C

C




When G=F inthe comparison diagram (in which case we rename

H= G), f can sometimes be intrinsically characterized in terms of g.

Lemma 2.5. Let g be an ET-orientation of G and assume that the
following two conditions hold.
(i) H*(SF/SG), H*(SFE), and w*(SFE) have no T~torsion.
(i1) H*(SF/SG) and H_(SFE; Q) are of finite type {over Z and D, respectively),
Then £:SF/SG -+ SFET is the unique H-map such that the second square of the
comparison diagram homotopy comm\.ltes. '

Proof. Given another such H-map f',f/f' factors through SF and
therefore induces the zero map on homotopy. Thus f.= f;k on homotopy.

As pointed out to me by Frank Adams, the following pair of lemrﬁas complete

the proof,

~Lemma 2,6, Let X and‘ Y be connected homotopy associative
H-spaces, with H*(X; Q) of finite type, If two H-maps X - Y induce
" the same homomoxrphism 'H‘*X® Q- 'n'*Y® Q, then they induce the same .
homomorphism I—I*(X; Q) ~ H*(Y; Q).
Proof. By Milnor and Moore [50, Appendix], the Hurewicz homo-
morphism h: 'n'*X - H*X induces a monomorphism upon tensoring with

and the image of this monomorphism generates H,(X; Q as an algebra.

Lemma 2.7. Let X be a connnected CW-complex ‘andvlet Y bea
connected homotopy associative T-local H-space. Assume that the follow-
ing two conditions hold,

(i) HX, H.Y, and 7, Y have no T-torsion.
(i) HX and H(Y; Q) are of finite type (over Z and Q, respectively).
Thentwomaps £,f:X = Y are homotopic if they indw.;ce the same homo-

morphism H(X; Q) ~ H(Y: 0.

\ ) } } ) i j ; ) ) } i i ) i
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Proof. The hypotheses imply that f and f' induce the same homo-
morphism on integral homology. Suppose that f and f' are homotopic
onthe (n-1)-skeleton of X, If ke H (X -rrnY) is the obstruction to the

extension of the restriction to the (n-2)-skeleton of a given homotopy, then
h<k,x> = f*(x) - f_[*(x) =0 for xe¢ HX,

where <, >:Hn(X;1rnY)®HnX - wnY is the Kronecker product (the first
equality holding by explicit chain level calculation from the definitions).
Since hi -rr*Y - H*Y is a monomorphism, <k,x$ = 0, Since
Ext(Hn_IX,vnY) =0 (pecaise H/X is of finite type, H,X and w,Y have no
T-torsion, and 'n"*Y is a ZT—module), k=0 by the universal coefficient

theorem. (See VIIL 1.1 for a simpler proof when Y =RZ.)

The following analog of Lemma 2.7 was also pointed out to me by
Frank Adams.

Lemma 2.8. Let X and Y be spaces of the homotopy type of BSOT y
where T is any set of primes. Then two maps £, X > Y are homotopig
if they induce the same homomorphism H*(X; Q) - H*(Y; o).

Proof. Let A=lim BT(n), where T{n) is a m:;tximal torus in SO(n),

and let i:A - BSO be the evident inclusion. Consider the diagram

£33
*% i ok
HO(BSO; Q) ——> H (A3 Q)
ch ch
. v
~ c ~ i ~ .
KO(BSO) ———> KU(BSO) ———> KU(A)

ok S~ .
Clearly i , and ch on KU(A), are monomorphisms. By Atiyah and Segal
*
[14] and an inverse limit argument, i is a monomorphism. Thus ch on
ZE,E{I(BSO) is a monomozrphism. By Anderson [9,p.38] or [14], ¢ is alsoa’

monomorphism (in fact an isomorphism). These statements remain true
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after localization of BSO and the representing spaces BO and BU at T.
It follows that £ and f' induce the same map of localized real K-theory and
therefore, since BO & BSO X BO(1), that = (f')*:[Y,Y} - [X, Y]

In VIII, we shall use the fact that this result remains valid, by the same
proof, for completions at T. The following observation explains why rational
information determines the behavior with respect to self-maps of the

2-torsion in W*BSOT .

Lemma 2.9. Let f: BSOT - BSO,, be a map, where 2 ¢ T. Let

T

a.j ¢ Z,., be such that f*(x) = ajx forall xe w ,BSOT ®2Z .

T 4j

(B ¥ O0Fye m,B50,, then £0y) = ay -

T

(@) ¥ 0fyemw BSOT, j=21 and k=1 or k=2, then f*(yj)=az.y.

8jtk j
In both statements, the coefficients are understood to be reduced mod 2.
Proof. For (i), let P, € Hn(BSO; Zz) be the unique non-zero primi-
tive element and recall that
1 2 1
8 = = =
9P, =P, 84 Py =p,, and 5S¢, p, =p, .
Clearly f*(y) = 0 if and only if f*(pz) = 0, and the displayed equations show
that f.*(pz) = 0 if and only if f*(p4) = 0. By an obvious argument with the

cover BSpi_nT—'- BSpin,, of a, f*(p4) =0 if and only if a, =0 mod 2. For

T 1
(ii), simply recall that if x: 583 - BSOT generates 1

2 s .
or y=xo7 , where nk:583+k 8

BjBSOT, then y = xoq

- 87" is the non-trivial map.
Finally, the following result, which I learned from Anderson and Snaith,

implies that Lemma 2.8 remains true when X o BSpi_nT and Y =2 BSO, '
T

Lemma 2.10. The natural map w:BSpin—» BSO induces isomorphisms
*
on real and complex K-theory., Therefore w :[BSO, BSO] -~ [BSpin, BSO] is

an isomorphism.
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Proof. There are no phantom maps here (since KU-I(BG) =0 and
~1
KO " (BG) is finite for a compact Lie group G), and it suffices to consider
the inverse systems of completed (real and complex) repres'entation riﬁgs

of Spin(n) and SO(n). We may as well consider only odd =, where
RO(SO(2m +1)) = R(SO(2m+l)) = P{xl, ves ,xm}

maps surjectively to R(SO(2m-1})) and injectively to
RO(Spin(2m+1)) C R(Spin(2m+l)) = P{)\l, e Am} .

Since A restricts to ZAm—l in R(Spin{2m-1)) by a check of characters,

the exceptional spinor representations make no contribution to the inverse

limit.

3. The kO-orientation of Spin and the J-theory diagram

The main examples involve K-theory. I do not know if there exist

* *
Eoo ring spectra which represent KO and KU , but explicit Eoo ring
spectra kO and kU which represent the associated connective theories
Write BU®= SFkU and BO®= SFkO; informally,

these infinite loop spaces are the 1-components of BUX Z and BOX Z.

are constructed in VII,

Lemma 3.4. For G=0 and G=1, BG® is equivalent as an

infinite loop space to BG(1) X BSG® .
Proof. BO(1) = K(ZZ, 1) and BU(1) = K(Z, 2) admit unique infinite
loop space structures, the natural map BC'®* BG(4) obtained by killing

™, or W, (i.e. », W, OT Ci) is automatically an infinite loop map, and we

define BSG® and e BSC‘@* BC® , as an infinite loop space and map, to be

its fibre. By VI.4.5, the natural inclusion 7:BG(1) = BG® (which classifies

the canonical line bundle) is an infinite loop map. The composite

C

C

3¢
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nXT

BG{1) X BSG BG, X BGo, 2= B
® ®* 2% %
is the desired equivalence.
Atiyah, Bott, and Shapiro[13] have constructed a kO-orientation of Spin

. . . C
and a kU-orientation of Spin . Thus, if Spin maps to G, we have well-defined

H-maps

g:BSpin - B(G; kO) and f:G/Spin - BO®.

The fibre of the quasi-fibration B(SO, Spin, *) - B(SO, SO, *) is precisely
BZ2 = BO(1), and this gives an explicit equivalence i: BO(1) - SO/Spin.

Similarly, if Spinc maps to G, we have H-maps
g: BSpin® ~ B(G;kO) and £:G/Spin® ~ BQ,, ,
and we have an explicit equivalence i:BU{1) —~ SO/Sp'mC.
Proposition 3.2. The foHQWing composites are equivalences:

BSQg X BSpin TXE, B(SO; kO) X B(SO;k0) —> B(S0; kO)
and
BSUg X BSpin®~X8- B(50; kU) X B(S0;kU) —2+ B(S0;kU).

Proof. The result is proven by easy chases of the relevant compari-
son diagram of Proposition 2.3. In the real cése, the salient facts are that
BSpin is equivalent to the fibre of Wi BSO - K(Z», 2) and that
e &r1so - -n'iBO® is an isomorphism (because the.obstruction wz(g‘;ko)
of IV, §3 can be non-zero or by direct calculation on mod 2 homology). In
the complex case, the salient facts are that BSpinC is equivalent to the
fibre of Wit B50 = K(Z,3) or (equivalently by a comparison ;:f fibrations)

to the fibre of w2® 1+1®.,:BSOXK(Z,2) ~ K(ZZ’ 2) and that w_BSpin® = Z,

2
Corollary 3.3. The composite fi:BO(1) -~ SO/Spin — BQg, is homo-
topic to thenatural inclusion 7:BO(1) ~ BQ_ .

®

Proof. Consider the following diagram, where { :BO(1) - SO is any

map which is non-trivial on W

//r'SO/Spin
BO(H) b 53 1f

T

T, =~ i and exl{e=n because both composites induce isomorphisms on Ty

B O®

and because the component of e in BSO® is null homotopic by the splitting
of B(SO;k0). fr = ey by the comparison di.agram'

The argument fails in the (less interesting) complex case, and I have
not verified whether or not fi =2 7 in that case.

We turn to the study §£ kO-oriented spherical fibrations. The rest of
the section will be concerned with the construction and analysis of the
"J-theory diagram®, which is obtained by superimposing diagrams involving
cannibalistic classes and the A‘da.m# conjecture on an elaboration of the
comparison diagram for

g:BSpin —~ B(SF;kO) and £;SF/Spin —~ BO® .

Of course, this rna.pk f restricts on SO/Spin to that jﬁst discussed, and we
have the following observation,

Lemma 3.4. The natural map SF/Spin - F/O ;Ild the composite of
f and w,:BQ, - BO(4) are the components of an equivalence

177
SF/Spin - F/O X BO(1) of infinite loop spaces.

Define Qg = @BQg and (SF;kO) = QB(SF; kO). By abuse, write G
and QBG interchangeably when G = Spin,SF, etc, For a map :X ~ Y,

write a;ld + generically for the projection F9 -~ X from the (homotopy
theoretic) fibre and for the inclusion QY — FB8. Define (SF;k0)/Spin to be
the fibre of { (which is equivalent to the fibre of g). This space classifies

stable Spin-bundles with trivializations as kO-oriented stable spherical

fibrations. Just as if Qg: Spin = (SF;k0) were derived from a morphism
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of monoid-valued J*-—functors, write

P4

q: (SF; kO)/Spin ~ BSpin and :(SF;kOQ) - (SF; kO)/Spin

-3 BSpin®

BSF

for gmr and for a map T (obtained by Barratt-Puppe sequence arguments)

such that wr = g and QT =~ in the diagram on the following page.

o)

With these notations, the solid arrow portion of this diagram exists and is

homotopy commutative by Proposition 2. 3.

B(SF; kO)

At the right of the diagram, BSpixb is defined (as an infinite loop

space) to be the fibre of w,: BSO®—> K(ZZ’ 2).

™

-

We claim that, with dotted arrows inserted, this J-theory diagram

BGT

exists and is homotopy commutative when r2> 2 and all spaces in sight
are localized away from r. To see this, first recall the following calcula~

tions of Adams [1,5.1 and 5.2]. (See also Lemma 2.9.)

Theorem 3. 5. 411. is a matural ring homomozrphism on KO(X) such

that ¢ £ =£" on line bundles £. Let x e RO(S) = ™BO, i> 0. I i=4j,

Lprx = rz‘]x; if i= 1l or2mod8 and r is odd, LIJrX = X.

BO ~---w SF/Spin

It follows by II.3.15 that Lpr determines a morphism of ring spectra
kO[1/x] = kO[1/7] and thus that c(y”): B(SF;k0) - BQg, is defined away

from: r. Since eg: -rriSF - wiBO® is an isomorphism for i= 1 (by Corollary

3.3) and for i= 2 (by translation from -QOSO - BO, where the ~n-2's are

generated by the smash and tensor product squares of the generators of the

T
- (SF; kO)/Spin ~— = *- - = >
A Y
+Spin

-n-l‘s), B(SF; kO) is 2-connected. Therefore c(¢”) lifts uniquely to a map,

Qc(w’)

still denoted c(npr), into BSpin® . BCT is defined to be the fibre of this map,

and C* is defined to be QBCT., For r even, BO = BSO = BSpin localized

‘ M -8

away from r. For r odd, Theorem 3.5 implies that q;r/lx BO®-> LBO® is

trivial on BO(1) (because the square of a line bundle is trivial) and annihi-

T3 s (SF; kO)

lates 1r2B80®. The splitting SO = Spin X RP® determined by the fibration

Spin - SO — 50/Spin and any map 4: RP™ = 50 which is non-trivial on’ L



shows that q:S50/Spin —~ BSpin is null homotopic. Therefore \pr-lz BO ~ BO

lifts uniquely to a map 4}r~1: BO -~ BSpin., Similarly, Lpr/l: BO,, =~ BQ,, lifts

® ®
uniquely toa map §'/1: BO®-‘* BSp'm®, and §/1 e ¢(W*)r by Proposition 2.2.

Define p" = c(y)g; thus p° is the Adams-Bott cannibalistic class.

Recall the following calculations of Adams [3,p.166]. (See also Lemma 2.9.)

Theorem 3.6, Let x¢ viBSpin[l/r], i>0. I i= 4],
pFx =1 +-}é—(rZJ-1)afzjx jif i=lor2 mod8, p'x=1 for r= 1 mod8

and prx‘—'l +x for r=+3 mod8.

Here x -~ 1+x denotes the translation isomorphism frotn T, BSpin to
w*BSpin® (and similarly for BO and BSO below).

The numbers @y = (-1)j+1Bj/2j ¢ Z[1/r] are analyzed in [3, §2].

The composite BO-—EE——I*- BSpin——Bj—-—- BSF is null homotopic away
from r, by Quillen [58], Sullivan. [73], or Becker and Gottlieb [17], since
this statement is‘just a reformulation of the Adams conjecture. Therefore
fhere exists \(r:BO - SF/Spin such that qyrm q;r-l. ' yr is not uniquely .
determined, In particular, we can and do insist that its restriction tothe
translate of BO(l) be the trivial map when r = 1 1 mod 8 and the non-trivial
map to S5O/Spin C SF/Spin when r = % 3 mod 8.

Define ¢ =fy :BO ~ Boé. By Remarks 3.7 below, the fibres of o
and of pr: BSpin BSpir® are equivalent; by abuse, we denote both by M.

Define J* and J. to be the fibres of ljJr-l: BO ~ BSpin and of

(Y
¢I/I:BO®-> BSpin®. Standard Barratt-Puppe sequence arguments then give
maps a, ﬁr, 5", and € such that (1, &, yr), (1, ﬁr, yr), (Qc(¢r), Gr, 1) and
(ﬂc(\pr), g, 1) are maps of fibrations. This completes the construction of
the diagram.

Remarks 3,7. Localize all spaces in sight at any set of primes T and con-

sider the following diagram, where 8 is an H-map and £ is any map:

s Qe

) ) ) } } ) } ) b j | } ) ) y i
: 109 . -

Tl
Bso—Ll 5 mso
¢ 8

yr/1
BSQp———— BSQg

If £ =6, the diagram is homotopy commutative by Lemma 2.8 (oz, if

2¢ T, Lemma 2.7) since, regardlessv of what 8 does, e(qf-l) and

(q,r/l)e igduce the same map on rational homology by Lemma 2.6 and

Theorem 3.5, In particular, away from s, ps(xpr—l) o~ (\pr/l)ps. Con-

verself, if the diagram is homotopy commutative, then g* =8, on

rational homology ( by the known behavior of Lpr—i and upr/i on

rational homology) and thus £ = @ by the cited lemmas, In particular,

away from 2 and r, the maps o andv Pr of the J-theory diagram are

homotopic. Away from r, Adams [3] has constructed an H-map

pr: BSO = BSO® Whicil has the cannibalistic class pr as 2-connective

cover , and the existence of such a map also follows directly from

Lemma 2.10. Clearly Adams ’bmap and the simply connected cover of ¢ in-

duce the samd homomorphism on rationalihomology and are thus homdtopic.
For clarity, we shall retain the now duplicative notations + and

pr, since what is most important about o is not its homotopy class but

its location in the J-theory diagram. That diagram and the remarks above

give the following result, which should be compared with Proposition 2. 2.

Proposition 3.8. Away from r, the following diagram is homotopy commutative:

g

BSpin B(SF;k0)
p¥ ‘ e(u™)
BO . BSpin®
R
qlrd \ 1 Blpr/l
BO®
T
\ ,

BSpin B(SF; kO)
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Corollary 3.9. Let xe viBO[l/r}-, i>0. I i=4j,
2j e s o r
—l)azjx; ifiz= lor2mod8, o x=1 for r 41 mod 8
and o x=1+x for r = +3 mod 8,
Proof.' For i2> 4, this is iramediate from Theorem 3.6. For i= 2

it follows from Lemma 2.9. For i= 1, it holds by our choice of yr and

Corollary 3.3,

4. Local analysis of the J~theory diagram

We shall analyze the localization of the J-theory diagram at each
prime p, with r chosen so as to yield maximum information. Let r(2)= 3.
For p odd, let r(p) be any chosen prime power the image of which in the

ring sz generates its group of units. This choice of z{p) is motivated

by the following facts [3,§ 2]. Let Z(P) denote the localization of the integers

at p.
Lemma 4,1, Let r=z(p). In Z, |, L (rzj-l).a . isaunitif p=2
i () 2 2j
X - 2j
orif p >2 and 2j = 0 mod (p-1), while -1 is a unit ¥ p> 2 and

2j # 0 mod {p-1).

Throu‘ghout this section, unless otherwise speciﬁed,l all spaces in
sight are assumed to be localized at p and ' denotes r(p). We write
BO, BSO, and BSpin interchangeably when p is odd. Recall from Adams
[6, Lecture 4] or Peterson [53] that, at odd p, BOi splits as an infinite loop
space as WXW'L , where 'n'iW =0 unless i= 2j(p-1) when 'n'iW = Z(p)'
The letter W is chosen as a reminder that W carries the Wu classes
wj = Q"le@(l) in H*(BO; ZP), where @ is the canonical mod p Thom

isomorphism, Write v and vt for splitting maps from W and W~L to

BO and write v and ml for projections from BO to W and. W“L.

G O G G G G G O O O O A (A O G G G G GO O O O
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Adams and Priddy [8], using Adams spectral sequence techniques,

have recently proven thefollowing characterization of BSO as an infinite

loop space.
Theorem 4.2. There exists one and, up to isomorphism in the stable

: th A :
category, only one connective spectrum the zero  space of which is equivalent

to the localization {or completion) of BSO {or of BSU) at any given prime.

For p odd, we again write v,v‘L, w, and w‘L for infinite loop maps
j which split X as WX WJ~ for any (p-local) infinite loop space X equivalent
to BSO. (Examples include BO® and F/Top.) The requisite splitting
exists by the theorem and the éplitting of BSO. We shall need the following

immediate consequence of Lemmas 2.6 and 2.7.

Lemma 4.3. Let p > 2 andlet 8:X ~ Y be an H-map between
H-spaces of the same homotopy type as BO. Then

v~ vwhv: W~ Y and 6wk = v-Lm-L'GV‘L:V‘vf‘l'-> Y.

The following basic result summarizes information contained in
Theorems 3.5 and 3. 6, Corollary 3.9, and Le.mma 4,1,

i ' 3 . :
Theorem 4.4, At p= 2, u~3:BO - B(‘)® and p” :BSpin = BSpm@ are

cquivalences. At p> 2, the following composites are equivalences:

r 1 T 4
W~ BO —T BO —2 »w, wi-¥ podl,po 2wl
®
r L T L
‘ ¢ w A v U/l w A
W —X-> BO BO W, W BO - BO w
® ' ® ®

T r o L
(¢ -1) X 1
BO—-—------"-A BO X BO c X L BO®X BO wre WX W,
and

1 T T
L vXwy p X(Q{D, 8 .
W= B0 X BO BO_X BO BO .
WX ® ®  ® ®




It is unusual to encounter pullbacks (as opposed to weak pullbacks,
for which the uniqueness clause in the universal property is deleted) in the
homotopy category. However, the equivalences of the theorem imply the

following result.

Corollary 4.5, At p, the following diagram is a pullback in the homo-~

topy category:

Bo —% 2t . Bspin
o . pT
r
1
BO® Y/ ZBSpin®

{p)

which appears

(P

Write Xp for the localization at p of any space x*
in the J-theory diagram and write fp for the localization at p of £ when

f is one of the first five Greek letters. We thus have J_, Mp’ Cp' and 'BCP

Coxollary 4,6, At p, the following composites are equivalences:

a

£ ) B: . & ’
7, —P o sF—EBsJ_ and M —E » (s7;k0)/Spin —E> M, -

®p

Proof. According to the J-theory diagram, these composites are maps
of fibres induced from the pullback diagram of the previous corollary. It follows
trivially that these composites induce monomorphisms, and therefore (by finite-
ness) isomorpﬁisms, on homotopy groups.

Now elementary chases of the J~ti1eory &iagram yield the following in-
terpretations of Adams' work, which are based on ideas and results of Sullivan
[72; unpublished].

Theorem 4. 7. At p= 2, the féllowing composites are equivalences:

i)  BC. X BSpin —2B~ B(SF;k0) X B(SF;k0) —L~ B(SF;kO
2 P

(1) C,X Spin SmX8e, (SFi1k0) X (SF;k0) —L> (SF;kO)

13
(i) G, — 8T, (sF;k0)/ Spin
W Xy
(v) C,XxBO _—Z SF /Spin X SF /Spin - . SF /Spin

QgmiX a
{v) czx;rz—-——~———2—- SF X SF —2s sF

Theorem 4. 8. At p > 2, the following composites are equivalences:

L
) Bcpxwxw‘“—l—><—"3<—‘i» BCpXBSpinXB%M B(sF; k0)° ~&>B(SF; kO)

L 3
() cxew ww HLX2Y X2 G X Spinx so®9—’w (sF;%0)° —E+ (sF;k0)

KB
(1) G XM £ (sF;x0)/Spin X (SF; kO)/Spin —L— (SF;k0)/Spin
TTRWXY
(iv) cpx BO —EB, SF/Spin X SF /Spin —f 5 sF /Spin
Q{gqw) % o

W) cx Jp—-—-—--—-———&» SF X 5F —%+ SF

The behavior of T BO®-’ B(SF; kO). and g:BSpin - B(SF;k0) on
those parts of their domains which do not enter into the splitting of _B(SF;kO)

is analyzed in the following immediate consequences of Lemma 4.3, Theorem
4.4, and the J-theory diagram. We agree to write L—l for any chosen homo-~

topy inverse to a homotopy equivalence L.

Corollary 4,9. At 2, 7! BO®* B(SF;k0) is homotopic to the composite

(0_3)~1

BQ Bo —¥ -1 BSpin —E&— B(SF;kO).

®

Corollary 4.10. At p >2, the composite TviW ~ BO®—> B(SF;k0) is

homotopic to both of the composites in the following diagram:

r -1 r .
-1
w —terv) w Y Bo Y BO —E&—+ B(SF; kO) .
v v
I
Bo —¥ -1 BO —2 w
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Corollary 4,11, At p > 2, the composite g v'L: W“L-‘- BO - B(SF;kO) is

homotopic to both of the composites in the following diagram:

I L1 L
w0 L v BO —% = BO ——+ B(SF; kO)
V'L V-L
T L
BO = BO —* w
®

Here the lower routes are relevant to the splitting of B(SF;k0O), while

the upper routes are more readily interpreted bundle theoretically.

Define global spaces C= X Cp, J= X JP, etc. The spaces J and
P P
C are often called Im J and Coker J. J, is usually defined as the fibre

2

of 413-1: BSO - BSO localized at 2; this gives the same homotopy type as
our .]'2, but with a different H-space structure. In view of the key role played
by g in the results above and in the study of the groups JO(X), the present
definition is preferable. It is also preferable on categorical grounds, as was
noted by Tornehave [unpublished] and will be explained in VIII §3. In terms of
stable stems, we choose to ignore the anomalous fact that 7 is in the image
of I (enomalous because 7 z is not in the image of J), preferring instead to
regard m as the first element of the periodic family not in the image of J in
the (8j+l)-stems (see Remarks 5.3). Sullivan first defined the spaces Cp'
Actually, his (unpublished) CZ2 is the fibre of f1F/0O ~ BSO® localized at 2.

This definition is equivalent to ours by Theorem 4.7 and Lemma 3.4. The

definition of BCZ given here is new,

5, JSpin(X) and the § and € invariants

In this section and the next, the base spaces X of bundles are to

be connected finite CW-complexes. To derive global bundle theoretic conse-

- -
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quences from the local results of the previous section, we shall rely on the
following basic fact in the theory of localization [23,V §6,7 or 48,VII], Let

YO denote the localization of a connected H-space ¥ at Q.

Theorem 5.1. For any set of primes T, the natural map

[X, Y] = pullback ([X, Yp] ~[x, %)
peT

is an injection and is a bijection if v'*Y is of finite type.

We shall generally be concerned with simply connected Y, when the
brackets may be taken in the sense of unbased maps. When T is the set of
all primes, Y = YT. The fact that (B}S‘)0 o~ * will allow us to ignore rational

voherence below. We shall write fp for the localization of a classifying map f at p

“.nd we shall use the same letter for an element of KG(X) and for its classi-

fying map; we drop the curly brackets used earlier to distinguish stable from
unstable bundles or oriented bundles.

We use Corollazy 4.5 as a substitute for the main technical result of
[4] in the following mixed local and global version of Adams' analysis [2,3, 4]
of the groups JO(X). Note that an F-trivial stable O-bundle admits a reduc-

tion to Spin (compare Lemma 3. 4).

Theorem 5.2. The following are equivalent for a stable Spin-

hundle § over X.

(1) ﬁ‘ is trivial as a stable spherical fibration.

(1i) There exists a unit { ¢ KO(X) such that p’g = qug/; in KSpin[1/r](X)
for every integer r2> 2. .

(iii) For each prime p, thereexists a unit Lpe KOP(X) such that

o't o™ lPrép/lép in KSpin (X), r = x(p).

C

CC
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(iv) For each prime p, there exists an element 7 pe KOP(X) such that

€, =¥ o n, i Kpin (X), = x(p).

Proof. Regard £ as amap X~ BSpin. If Bje £ o= *%, there exists
£':X ~ SF/Spin such that gf'= &, Define (= ff', f: SF /Spin —~ BO®.
Then (ii) holds by the J-theory diagram.  (ii) trivially implies (iii) and
(iii) implies (iv) by Corollary 4.5. If (iv) holds, Bje£ is null homotopic
because its localixation at each érime is null homotopic.

Atiyah and Tall [15] gave a purely algebraic analog of the local
equivalence (iii) <=> (iv). Key points in their approach were the extension
by continuity of the Adams operations q;r on p—adic y-rings to p-adic
integers r and use of the fact that r{p) generates the topological group of
units of the p-adic integers (if p > 2). These algebraic considerations
gained geometric content with Sullivan's introduction of the p-adic cémple-

tions of spaces [72,73 ]. In particular, he pointed out that the p~adic com-~ -

pletion of BO can be split by use of the obvious algebraic splitting [15, p. 284]

of the functor to p-adic y- rings obtained by p-adically completing RO(X)
for X finte. Nevertheless, it does not seem to me that passage to p~adic
completion would yield substantive additional information in the stable parts
of Adams' and Sullivan's work discussed in this chapter.

We also prefer not to use the cocycle copdition emphasized by Bott
and Sullivan [22,72] or the periodicity condition emphasized by Adams [4].
These conditions make sense only when one considers the cannibalistic
classes p’ for general values of r, rather than just for the x(p). These
classes give no new information, and the cocycle and periodicity conditions
can be viewed as formalizations of why they give no new information.

The following three results analyze the kernels of the natural trans-

formations represented by the maps q:B(SF;kO) - BSF, giBSpin~ B(SF;kO0),

and T BO® -+ B(SF;k0). Recall that q,’ was defined on the Abelian group
T((SF;kO)[l/r](X) by its action on orientations. The difference \br— 1 is

represented by the map By’ /1 on the classifying space B(SF;kO)[1/x].

The;:rém 5.3, Let {(£,p) be a kO-oriented stable spherical fibration
over X and consider the following statements.
(i) The underlying stable spherical fibration £ is trivial.
(ii)p For. the prime p, there exists an element (n o’ vp) € I?(SF;kO)P(X)

suchthat (§ ,p ) = o prVp) T v T = x(e)
Statement (i) implies statement (ii)p for each odd prime p and, provided
that (4°- 1)KsPin2(X) = (- 1)%02(}{) c ﬁspinz(X), for the prime 2. Gon-
versely, statements (ii)P f;)r all prim.esbp imply statement (i).

Proof. Assume (i). Then (£,p) is classified by 'r*( t ) for some
3 map 01X - BQ®. At. p=2, Im7,CIm (BLIJ3/1)* under the stated
proviso by Corollary 4.9 and Proposition 3.8; note that the proviso cer-
tainly holds if HZ(X; ZZ) = 0. At p>2, Im(-r V), C Im(BL}Jr/i)* by Corollary

. ,
4.10 and Proposition 3.8 while Im{r v'L)* C Im(By /1), by Lemma 4.3,

. r .
Theorem 4.4 and Proposition 2.2. For the converse, g(B¢ /1) =~ * since

qoBd;r = g and therefore (ii)p for all p implies (i) by Theorem 5.14.

Proposition 5.4. Let § be a stable Spin-bundle over X. Then
(£,pn(g)) is trivial as a kO-oriented stable spherical fibration if and only if
pr(p)gp =1e KSpinp(X) for each prime p.

f_’ig_o_{. This is immediate from Theorems 4.4 and 5.1, Corollary 4.11,

and a chase of the J-theory diagram.

Proposition 5.5. Let y be a (special) unit in KO(X). Then (e, 1)
is trivial as a kO-oriented stable spherical fibration if and only if

\pr(p)p.p = p.p for all primes p.
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Proof. This is immediate from Theorems 4. 4 and 5.1, Corollaries

4.9 and 4.10, and a chase of the J-theory diagram.

The analysis in the rest of this section elaborates and makes rigorous
a speculative program proposed by Adams [4, § 7] and amplified by Sullivan

72, §6].

It will emerge that the theoretical framework envisioned by Adams

leads to new bundle theoretic analogs & and © of the d and e invariants
used in his computations of stable stems in [5]. Of course, the results of

these computations are visible in the J-theory diagram.

v J

Remarks 5.6. 7o can be read off from Theorem 3.5 and the homotopy

(p)
exact sequence of the p-local fibration .]'p - BOP i——ir BSpinp. For

i> 2, the image of J: 'rriSO = 1'riSpin - -rriSF can then be read off from the

splitting of SF at p. The map e :-rr*SF *-rr*BO® detects elements

%
B € wiSF of order 2, where i= 41 or 2 mod8 and i >0, such that By
comes from an element of 'n-iJZ which is not in the image of 'n'iSpin.

Clearly e, corresponds via adjunction to Adams' d-invariant (which

*
" assigns the induced homomorphism of reduced real K-theory to a map

Sn+k - Sn) .

Delooping the map e (which is an infinite loop map) and
generalizing to arbitrary X, we can reinterpret this invariant as follows

(compare IV.3.2 ).

Definition 5.7. For & ¢ KSF(X), define 5(£) = w(£;kO) ¢ BOé(X+)
to be the obstruction to the kO-orientability of £; equivalently, for

£ e [x+, BSF], 6(£) = Beot ¢ [x+, BBO®].

Adams' e-invariant is defined on (a subgroup of) the kernel of 4,
and our E-invariant will be defined on the kernel of §. Of course, the
latter kernel is just the group Q(SF;kO)(X) of kO-orientable stable SF-
bundles. Before defining €, we note that Theorems 5.1 and 5.2, .together

with Lemmas 3.1 and 3.4, imply the following result.

O O O G O G G G G G G O G O G G G G ¢
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Corollary 5.8, For G = Spin, 80, or O, JG(X) is naturally

isomorphic to
+ (p) +
X (X, BG 1/ | -1),[X", BO.]) .

This suggests the following definition.

Definition 5.9. For G = Spin, SO, or O, define JG,(X) to be the

group

+ z(p) +
>;([X ,(Bczg)p]/(q; /1) X ,(BO®)pD .

Of course, the groups JG(X) and JC@(X) are abstractly isomorphic.
In the case of Spin, the J~theory diagram yields a geometrically significant

choice of isomorphism .

Definition 5.40. Define €:Q(SF;kO)(X) —~ JSpit@(X) as follows.
Given a kO-orientable stable SF-bundle £, choose a kO-orientation u,
localize at p, and apply the cannjbalistic class c(\pr(p)). The image of
this class in the p-component of JSpin®(X) is independent of the choice of p,
and  g(E) = >é c(qf(P))(g ,1). Equivalently, for £ :X - BSF such that
Beof o *, choose E :X — B(SF;kO) suchthat g ~£. Ifalso gf'~ £,

then E‘/E_ o rf, for some L[:X IBO® and thus,

el )f;;/c(nv VE, =l )(&P/ep) =~ /i)z;p,

at each prime p,

= z(p).

Therefore E{£)= X c(qu(p))Ep is a well-defined element of JSpirzg(X) .
14

We need one more definition.

Definition 5.44. Let C(X) denote the set of stable kO-oriented
SF-bundles (£,p) over X with local cannibalistic classes
c(x];r(p)) =1e KSpinp(X) for each prime p. Equivalently, if (£,p) is
classified by @, it is reguired that c(QJr(P)) o 'Ez'p:X - (BSpi:@)p be null

homotopic for each prime. p.
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It is immediate from the form of the splittings of the B(SF;kO)p that

C{X) is classified by the space BC,

Theorem 5.412. The composite I5pin(X) C QSF; kO}X) £, JSpin®(X)
is an isomorphism, C(X) maps monomorphically onto the kernel of £ under ‘
neglect of orientation, and therefore

Q(SF; kO}X) = ISpin(X) ® CG(X).

Proof. The first clause holds by comparison of Corollary 5.8 and
Definition 5.9 with the equivalences of Theorem 4.4. The second clause
holds since {(qm),:[X,BC] ~ [X,BSF] is a monomorphism by the splitting
of B(S}?;ko)p and Corollaries 4,9 and 4.10 (which show that -rr*[X, BCP]A
intersects T*[X, (BO®)p] triﬁally) and since G(X) clearly maps onto the
kernél of €.

Comparison of Theorems 5.3 and 5. 412 may be illuminating, particularly
at the prime 2,

We discuss the relationship between Adams' e~invariant and our

g-invariant in the following remarks.

Remarks 5.13. Let €= X E :1SF ~J_ =X J . A straightforward
R —— P P ® 7 ®p

chase of the J-theory diagram allows us to identify the g-invariant on

Kv?,:r:(Be);{= C 'n'*BSF with the induced homomorphism

w

e
#* *
E*:Ker(-rr*SF——-——> W*BO®)-> Ker(-rr*.)'®* —_— ’!T*BOZ)

TI'*J®Z
(the kernels being taken to avoid the elements By of Remarks 5.6 and their
images in the Z2-component of TF*J®). On the other hand, an inspection of

[5.’ §7 and §9] will convince the reader that Adams' real e-invariant (denoted
e;R or ep in [5]) admits precisely the same description. Indeed, it can be

seen in retrospect that Adams' calculation of the e-invariant on the image of

J in [5,§10] amounts to a direct geometric comparison between the two invariants.,
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We complete this section withthe development of a more conceptual
description of the functor C(X) than that given by Definition 5.11. We re-

quire some preliminaries.,

Notations 5.14. Define bo, bso, and bspin to be the o~connected, l-connected,

and 2-connected covers of the spectrum kO; similarly, define bu and bsu to be
th

the O0-connected and 2-connected covers of kU. In each case, the zero space

is the one suggested by the notation. (Warning: bo and bu are usually taken

as our kO and kU, this being a pointless waste of a useful notation. )

Lemma 5.15. Fix r>2 and localize all spectra away from r.
Then (7-1:kO =kO lifts uniquely to " -1:kO ~ bspin.

Bﬁé?i’ wr—-l obviously lifts uniquely to a map into bo. Recall
that Bott periodicity implies that if =2 QmSl - QmSO is the unique non-

trivial map, then
1 1 [V
Iam: ZTKO = KOAS =KOAQCDS nd KOAQCOS = KO

is equivalent to the fibre of c: KO — ;KU (where KO and KU denote the
periodic Bott spectra). Passage to associated connective spectra (II §2)
yields a map 7:ZkO ~ kO with the same behavior on homotopy groups in
non-negative degrees as 1am, and 7 obviously lifts uniquely to a map
H:ZkO =~ bo, Its adjoint T:kO =~ 2bo clearly maps -rroko onto

voﬂbo = ZZ . Write H* for»éohomology with coefficients in Z.2 and re-~
call that H¥kO = A/AS.q1 + ASqZ, where A denotes the mod 2 Steenrod

algebra (e.g., by [7,p.336]). In particular, HOkO = ZZ and HlkO = 0 = HPkO.

The fibration bso - bo - ‘k(ZZ, 1) gives an exact sequence

[kO, 2bo] =~ HkO =~ [KO, bso] = [kO, bo] = 0

in which the first map is surjective by the properfies of . The fibration
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bepin = bso - K (£.,2) gives an isomorphism [0, bspin] - [kO, bso] and

2
the conclusion follows.
Definition 5.16. Define jpe H4  to be the completion at p of the
fibre of ‘Pr{p)_l: kO ~ bspin and define j= X jp . Also, for use in VIIIL,
P
define jOz to be the completion at 2 of the fibre of 4;3-1: kRO =~ bse  and

define JOZ to be the fibre of 413—1: BO - BSO at 2.

The use of completions is innccucus here (since the homotopy groups

are finite in positive degrees} and serves to ensure that § is a ring spectrum.

Indeed, we shall prove in VIIL 3. 2 that jp is a ring spectrum such that the

natural map w ;;%p ~+ kO {completed at p} is a map of ring spectra.

Theorem 5.17, The spaces BGC and B(SF;}) are equivalent,

Therefore -
G{X) = K{SF; §)(X)

is the greoup of j-oriented stable spherical fibrations,

A

Proof, By I§2, the zeroth space of jp is equivalent to .Tp>< A

(p) *

its 1-component is J®p , as an H-space, by VIII §3. The 1 ~component of the

zeroth space of § is Jo=x X J

®  ®r

and the prejections give a homotepy ¢om~

mutative diagram

I T B(SF;j)] ——2 > BSF
[ .
. J®p—w‘?»-mm~> x B(sr;jp)pwm&_—«- X {BSF)
P P P

We conciude that B{SF;j} is equivalent to X B{S'E‘;jp)p § compare

B
Lemma 2.4. Fix 1= x(p} and complete all spaces at p. A jp-oriented
stable spherical fibration cleariy lies in C(X) when regarded via

:c:g'P - kO as a2 kO~oriented stable spherical fibration. Since the homotopy

0000000000000 000000000000009200800090¢000000
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groups of B(SF;jp) are obviously finite, there are no liml problems and

we conclude that the composite

B(SF; jp) —B% . B{sF;kO) M’BSpin ®

is null homotopic. There results a lift Q:B(SF;jp} - BCP . Consider the

following diagram, in which (SF,'jp) = ﬂB(SF;}'p):

T
Cp Q—"T‘;. (sy; kO) M._)__)spm® R
2 I B 4
QT X g e
2, ~———— (5F; SF J
R ¢ Jp} ®p

We have that e, SF - 11-*3'®p is 2 split epimorphism by Corollary 4.6,

By Theorems 4.7 and 4.8, Qg2 ), maps -n'*Cp monomorphically onto
Her e . In the bottom row, (Qq)* maps 'w*(SF;jp) monomorphically onto
Kere . Therefore {S?.Q)* is a monomorphism and thus an isomorphism.

Delooping, we conclude that §.: -rr*B(SF;jp) - v*acg is an izomorphism.

6. Sullivan's analysis of topological bundie theoxy

The following basic theorem is due to Sullivan.

Theorem b.4. There exists a kO[4/2]-orientation g of STep. The
lucalization away from 2 of the H-map f :F/Top ~ BO@[i/Z.] associated to

41 BSTop — B(SF; kO[4/2]} is an equivalence.

The first statement is proven in [72, §6]. Actually, the proof that z
is an H-map is omitted there.‘l It is easy to see that g is multiplicative

module torsion, however, and this suffices for the discussionof f as an

!, A proof will be given in Theorem 7.16 below.



H-map. Noté that, by Lemma: 2, 5, I, is the unique H-map such that the s;'qg;az'

-thm e.a.rher theory of Sulhva.n to'the constructwn of g. :.

Propos:.tx n 2 3 and Lemma 2 4 yxeld Sullwan‘s character:.zatmn of

-

o stable topologma,l bundle theory away from 2 as kO-oriented spherical
f:.bratzon theory.
Corollary 6.2, g:BSTopll/z] ~ B(SF; kO)[1/2] is an equivalence.
In the analog of the Jwthgory diagram on the following page, the solid
arrow diagram exists globally and the entire diagram exists and is homatopy
| commutative away from 2 and r. 8" is defined to be c{@r}EBi, and Sullivan

[72,6.81-6.82] obtained the following calculation by comparing the canni-

it balistic classes 8 and pr-, explicitly, Sr(x) =p{ 412{2:() - 4:4(::)).

Theorem 6.3, Let xe 11'4?330[1/2, 1/v], j» 0. Then

6 % = 14+ 290 ~22J—1)a2}_x.

27 is defined to be Binyr. By Remarks 3.8, T s homotopic to 6"

and the fibres of »° zndof & are thus aquivalent; by abuse, we denote both
o, P o

by M.  The maps B and & are obtained by Parratt~-Puppe sequence argu~

ments, and the remaining maps already appear in the J-theory diagram.

Proposition 2.3 and the diagram imply the following analog of Proposition 3.8.
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Proposition 6.4, Away from 2 and r, the following diagram is homo-~

topy commutative:

BO——D3t s BTop — LB . B (SF;kO)
97:
)\ T
v F/Top = Bo@‘% By /1
N‘ \
Bi

Bo — B . . BTop ——E—————-——> B(SF; kO)
since 1-220"1 is a unit in z(p) if 2j = 0 mod (p-1), the following
local theorems and corollaries, in which r = r(p), result from exactly
the same, calculations and diagram chases that were used to prove their
analogs in section 4.

Theorem 6.5. At p > 2, the following composites are equivalences:

v Gr w v )\r
w BO BO® v, W BO

T, 41T 1 \
BO -2, BOXBOM—ﬂi——i)—F/TopX BOLXY L wxw

F/Top ~— W,

Lowxat BrXft[Jr{i)? )
a WX W - BO X BQ BO, X BO BO,, .
an ® R 7® ®

Corollary 6. 6. At p > 2, the following diagram is a pullback in the

homotopy category:

T
-1
Bo—Y -1 . o
A 5

F/Top —M’f——r BO®

Define N_ to be the localization of Nr(p) at p and define Ep and -E)-p

to be the localizations of B—-r(p) and gr(p) at p.
Corollary 6.7. At p > 2, the following composite is an equivalence: ’

B 5

N, —-Efs rop/0—E—s N
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Theorem 6.8. At p > 2, the following composites are equivalences,

J.'inXv'L
PR SE Y

ot i
(i) BC XWX W BCPXBOXF/Top-E——‘-’-)i——-—m» (BTop)® 2= BTop.

L -1
(ii) c x aw xowmgl’»cpx SOX9(F/Top) (g mxixeq, (sTop)® —2» Stop.

-1 -
(iii) cprp—ﬂg——ﬁfﬂ» Top/O X Top/O —L— Top/0.

The odd primary parts of Brumfiel's calculations [24] of w BTop and

vszop/O can be read off from the theorem and the diagram.

Corollary 6.9. At p>2, the composite qv:W - F/Top = BTop is

homotopic to both of the composites in the following diagram:

r -1 r s
-1
w v oy v Bo ¥ » Bo 2% BTop
v v
r
Bo —¥ =l . 8o Q w

L
Corollary 6.10. At p > 2, the composite Bie v‘L:W - BO -~ BTop is

homotopic to both of the composites in the following diagram:

1,,r l_l . 1 . T
w‘L(m (p-1)v) gl __» BO —2 ¥/Top 9 . BTop
V‘L V—L
)\r ml 1

F/Top ——> W

The bundlie theoretic interpretations of the results above are evident from
the diagram and the arguments of the previous section. Cons?’.der all bundle
theories in sight as localized away from 2. Corollary 6.2 asserts that every
1O[4/2]-oriented stable F-bundle has the form (£,u(g)) for some Top-bundle
i, and that two stable Top-bundles £ and £' are equal if (£,p(%)) and
{£',1(g)) are equal as kO[4/2]-oriented stable F-bundles.

(Here, away from

2, we may write F and Top but think in terms of the integrally oriented case. )
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The Adams operation lpr acts on KTop(X) via its action on the Sullivan
orientation (away from 2 and r). More precisely, the action of qf on
o ~ ' -
K(SF;k0){X) is to be transported to KTop(X) along the equivalence By
Similarly, the action of Lpr on the group of (special) units [X+, BO®] in KO{X)
may be transported to [X+,F/Top] along _f—*. Then, with 4" acting trivially
on i{F(X), the trandormations induced by the maps Bj: BTop — BF,
Bi: BO = BTop, and q:F/’I‘oé -+ BTop commute with the ler (by Propositions

6.4, 2.2, and 2.3 in the last two cases). The following three results analyze

" the kernels of these transformations. Again, the proofs are the same as for-

the analogous results of Section 5.

Theorem 6,14, Away from 2, the following are equivalent for a sta;.ble
Top-bundle £ over X, ‘
i) £ is trivial as a stable spherical fibration.
(ii) For each odd prime p, there exists an element m P ETopp(X) such

r
that = - s = r(p)
3 p =¥y -y (p)

Proposition 6. 42, Let £ be a stable O-bundle over X. Then, away from
2, & is trivial as a stable Top-bundle if and only if er(P)gp = 1¢ KO (X) for

each odd prime p.

Proposition 6.43. Let (£,7) be an F-trivialized stable Top-bundle
over X. Then, away from 2, £ is t.r'wial as a stable Top-bundle if and only
if np’(p)(g »7) = (E,7) for each odd prime p (or, eguivalently, lbr(p)ép = ép for
each odd prime p, where { is that unit of KO[4/2](X) such that the Sullivan

orientation of £ is the cup product of { and the orientation induced by + from

the canonical orientation of the trivial stable F-bundle).

Away from 2, the 06-invariant may be interpreted as the obstruction to

the existence of a topological structure (that is, a reduction of the structural

129

. monoid to Top) on a stable F-bundle. Q(SF;k0)(X) may be interpreted as

JTop(X), and the € ~invariant may thus be regarded as defined on JTop(X).
C(X) may be interpreted as the set of stable Top-bundles over X all of whose

r(p))_g.p are trivial. Theorem 5.12 may then

local cannibalistic classes c(§

be interpreted as follows.

Theorem 6,44, Away from 2, the composite JO(X) C JTop(X) -+ JO®(X)
is an isomorphism, C(X) maps monomorphica.lly onto the kernel of E under

passage to fibre homotopy equivalence, and therefore

JTop(X) = JO(X)® GX).

Remark 6.15, For what itis worth, we note that there is a precise analog

to Theorem 6.44 in which B(Top/O) plays the role of BF, The proof is slightly
more complicated, because rational coherence must be taken into account, but

the conclusion is again that, away from 2, the image of
+ ¥
(By L [X ", F/Top] ~[X", B(Top/0)]
ls a direct summand of the image of
R +
(B), : [x", BTop] ~ [x*, B(Top/0)]
with complementary summand C{X). This remark also has an analog in the

J-theory case since the results of the next section imply that the J-theory

diagram admits a lower right-hand corner.

Remark 6.16, We have used Top and F instead of PL and G since the former
theories fit naturally into our general context. Stably and away from 2, there is
no distinction. Unstably, Sullivan's § is the limit of kO[4/2]-orientations of
SPL(n)-block bundles g(n): BSPL{n) ~ B(SG(n); kO[4/2]), where the classifying
space on the right can be constructed either by the methods of [47] or by use of

Brown's theorem. Haefliger and Wall's result [32] that G(n)/PL(n) -~ G/PL



CCCCC OO CCe ot e

130

is an equivalence for n 2 3, together with an unstable comparison diagram
obtained by Barratt-Puppe sequence arguments and use of L.emmas 2,6 and 2.7,
show that E(n)[12] is an equivalence for every n> 3. Note, bowever, that

the block bundle version of PL(n) used in this remark is not the one most

relevant to geometric work in piecewise-linear topology.

§7. Infinite loop analysis of the main diagrams

In order to determine which of the various splittings we have ob-
tained are actually splittings of infinite loop spaces, we must determine
which maps in our main diagrams are infinite loop maps. It turns out that
homotopy theoretic arguments, which can be thought of as ultimately based
on how tightly Bott periodicity ties together the p~local k~invariants of BO
and BU, coupled with representation theoretical calculations, yield a great
deal of information about this question. The relevant arguments are due to
Madsen, Snaith, and Tornehave [42] and will be outlined here. To begin
with, these authors have proven the following analog for maps of the Adams-
Priddy unique deloopability of spaces result, Theorem 4.2. Their proof is
based onthe fact that [K(é.\p, n), B/?JP] =0 for n23. An alternative proof
based on the techniques of Adams and Priddy [8] is possible. Let T be any
set of primes. In all of tﬁe results of this section , our Theorems II.2.13
and II.2.14 show that the result for localizations at T follows immediately
from the result for completions at p for pe T.

‘ Theorem 7.1. Let D and E be T-local or T-complete connective
spectra the zeroth spaces of which have completions at each peT equivalent to

those of either BU or BSO. Then the natural homomorphism [D,E]*[DO,EO] is

a monomorphism.

AN
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P
2N
-
/
N
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The proof of Madsen, Snaith, and Tornehave (MST henceforward)
~qually well yields the following complement except in the real case at p= 2

where the result is due to Ligaard [38].

Theorem 7.2. Let D and E be T-local or T-complete connective
spectra the zerc:a)Ch spaces of which have completions at each pe T equivalent,

respectively, to those of U and BU or SO and BO or Spin and BSO. Then

[b,B]= 0.

A N
MST then proceed to an analysis of which H-maps f: BUp - BUp or

P A
f: BSO = BSO
P P

are in fact infinite loop maps. ) Such a map can be uniquely
written in the form £= f1+ fzz[/p,» where fl and fZ are H-maps and fl' is
prime to 419 (in a suitable semse), and their basic observation is that f is
an infigite loop map if and only if fz = 0 (since f is then essentially a

linear combination of the lpr with r prime to p). This assertion has the

following consequence.

Theorem 7.3. Let X,¥Y, and Z be T-local or T-complete infinite
luop spaces whose completions at each p ¢ T are eguivalent to those of BSO.
let £1X =Y and g2 ¥ = Z be H-maps such that gf is an infinite loop map
and either f or g is both an infinite loop map and a rational equivalence.
Then the remaining map g or f is an infinite loop map.

Proof. By Il.2.13,II.2.14, and Theorem 4.2, it suffices to show

AN
this when X,Y, and Z are BSOP as infinite loop spaces. For definiteness,

Then f=1_,

let f be an infinite loop map and a rational equivalence. 1

W gy + gzzpp, and fg = fgl + fgqup = fgl. But fgz = 0 implies g, = 0 by
lemma 2.8, '
o )
The criterion above for determining whether an H-map BSOP—" BSOP
in an infinite loop map will be interpreted representation theoretically at

the end of VIII §1. MST prove the following pair of results by representation
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: . r r r, 2" 4
theoretical calculations based on [3] for p ; the result for 8 &t p (y o2+¢ )
follows.

Lemma 7. 4. pr: BSO[Y/x] - BSOél/r] ig an infinite loop map.
Lemma 7.5. 6 :BO[1/2,1/x] - BO®[1/2, i/r] is an infinite loop map.

The following analog is simpler, requiring only Theorerﬁ 4.2.
Lemma 7. 6. q;r: BSO®[1/1-] - BSO®{1/r] is an infinite loop map.
Proof. At p primeto r, Theorem 4.2 gives an equivalence

£: BSO ~ BSO® of infinite loop spaces. By the argument in Remarks 3 1,

kpr is homotopic to the infinite loop map §~.}Jr§-1.

At this point, it is convenient to insert a remark relevant only at the
prime 2.
Remark 7.7. Recall from Anderson and Hodgkin [12] that I%*(K(ﬂ', n)j =0
for n> 2 and all finite Abelian groups w. By use of II.3.2,IL 2,10, and the
non-splittable fibrations -

bso ~ bo ~ K(Zz,l) and bspin + bso k(zz, 2),
it is easy to deduce that

[)((zz, n), k0] =0 for n>0, [‘K_(Zz,n),bo] =0 for nx0,

[X(Zz, n),bso} =0 for n>1{, [){_(Zz,n),bspin] =0 for n22,

[){(zz, 0),bso] = z,

and [}((zz, 1), bspin] = z, .
In the last two cases, both maps of spectra induce the trivial map
K(ZZ’ 0) =~ BSO and K(ZZ’ 1) - BSpin on zeroth spaces.

In VIII §3, we shall prove that c(\pr): B(SF; kO) -~ BSpin® is an infinite
loop map at p, where r = r(p). Thus the fibre BGP of c(q;r) and its loop
space CP are infinite loop spaces. Define (/1 = c(xpr) T BO®-’ .'BSpin®

as an infinite loop map at p. On BSO®, this delooping is the one coming

from Lemma 7.6 in view of Theorem 7.1, When p = 2, this definition fixes

;33

choice of delooping of the trivial map BO(1) - BSpin®, and in fact gives
the non-trivial delooping. Define J@p as an infinite loop space to §e the
{ibre of lpr/l. We shall construct an infinite loop fibration Cp -+ SF - J@P
In VIII § 3 and will show that it splits when p>2 in VII §4. By the following
basic result of Hodgkin and Snaith [33;70,§9], this shows that, to the eyés of
K-theory, SF is equivalent to J ®p"

Theorem 7.8. 'ﬁ*(Cp) =0 and %*(Cp) = 0; there are no non-trivial

maps Cp - BSO on either the space or the spectrum level.

We can now prove the folloWing analog of Theorems 7.1 and 7.2, which
is due to MST at p> 2 and to Ligaard at p = 2, Their proofs are somewhat
more difficult, but give more precise inforrnation.

Theorem 7.9. Let X be a T-local or T-complete infinite loop space

whose completion at each p € T is equivalent to that of BO®. Then an

h
H-map £:J_ X or g:SF =X is the zerot map of at most one map of spectra.

®
Proof. We may work at p, with X replaced by BSO, in view of 1i. 2. 13,

11.2.14, Lemma 3.1, and Theorem 4. 2. Clearly the result for g will follow
immediately from the result for f. With r = zr(p), consider the following

diagram, the rows of which are infinite loop fibrations:

o~ " 411'__'1 N
Spin J’p BSO -~ BSpin
o f b b
i ¥ il 50 V', sy
S?m J®p B ® pm®
I S
) ‘ w Vo .
Spm® J@p B:O® :BSpm®
N i B
SO
BSO € - = = == = 1':’:80®

The maps £ are infinite loop equivalences coming from Theorem 4. 2, a, B,
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and the w are the natural infinite loop maps, and £' and o' are infinite loop
maps coming from Barratt-Puppe sequence arguments {e.g., [48,1I]). Clearly
£' is an equivalence. By Hodgkin and Snaith [33, 4. 7], the top fibration yields
an exact sequence
T oK *

0 - PKQ(BSpm)ML» PKO(BSO) ~Z Pxo(';?p) -0
of primitive elements in p-complete K-theory. (They deal with KU, but the
result forv KO follows.) Let £: J®p -+ B50 be an infinite loop map which is
trivial asa map of spaces. We must show that f is trivial as an infinite loop
map. By Theorem 7. 2, £=fr as an infinite loop map for some infinite loop
map f: BO®-’ BSO (because [spin,bso]= 0 and fibrations are negatives of
cofibrations in the stable category [48,XI]). By the exact sequence of primitive
elements (i.e., H-maps) and, when p = 2, Lemma 2.10, there is an H-map

gz BSOg~ BSO such that Tpt (4°-1) Fat. By Theorem 7.3, f is an infinite

. loop map. By Theorem 7.1, we conclude that fa'€' = TBE(YT ~ 1)n is the trivial

infinite loop map. Since (af‘)*: [_18 2,bso} - [}'®2, bso] is 2 monomorphism by
Remark 7.7, £ is also the trivial infinite loop map.

These results allow infinite loop analysis of the comparison diagram parts
of the J~theory diagram and of its analog for topological bundle theory., The
following result was noted by Madsen, Snaith, and Tornebave [42].

Proposition 7.10. £: SF/Spin — BSOg is (globally) an infinite loop map.

Proof. By IL2.13 a.nd 11.24.14, it suffices to prove the result with all spaces
completed at p. By Lemmas 3.1 and 3.4, it suffices to consider £: ¥ /O ~ BSO®
(even at p= 2), Let B be the zeroth‘space of the cofibre in H4 of the compo-
site infinite loop map v: Cp - (SF; kO) -~ SF -+ F/O and let Lp: ¥/O = BO be
the natural map. By Theorems 4.7, 4.8, and 4.2, B is equivalent to BSO as an
infinite loop space. Consider the following part of the J—theo;-y diagram

with r = r(p)

GG G G G G A G G G G S G S G G G G
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50.
q//'B O\
7 p
BSQ ~Es o —E 5B -~ 0ol 3 BSOg)
£
\\} m"
BSO,
®

By Theorem 4.2 and Theorem 7.8, prqn, H Cp - BSO® is the trivial infinite loop
map, hence there’is an infinite loop map n: B = IBSO® such that q{.p = prq as

. r r T r
infinite loop maps. By Remarks 3.7, ¢ =2 p . Thus q(épyp) = (4'/1)p".. By
Theorem 7.3 and Lemmas 7.4 and 7.6, prp is an infinite loop map. Clearly

r -1
is ah t equivalence, and fy & t while £ and
LoYp is @ homotopy eq , Y, e (bov) TEoy,
Pr(éi\(i)—il,p both restrict to the trivial map on Cp' It follows from the splitting
of F/O in Theorems 4.7 and 4.8 that f is homotopic to the infinite loop map
T -1

plEY) by
The following is {globally) a commutative diagram of

Theorem 7.11.

infinite loop spaces and maps:

SF —— SF/Spin BSpin

|k

SF ———r BO®~—~—-'T B(SF ; kO ) — 31— BSF

I

Proof, By Theorem 7.9 and the previous proposition, the left square is
a commutative diagram of infinite loop spaces and maps. As pointed out in

section 2, a Barratt-Puppe sequence argument on the spectrum level gives an

. infinite loop map g': BSpin - B(SF; kO) which makes the right two squares com-

mute on the infinite loop space level. On the space level, g~ g' = 7th for some

h: BSpin - BO®. However, commutation of the middle square implies that

By = (g')* on rational homology and thus that h, =0, Therefore h & 0 by Lemmas
2.8,2.10, and 3.1 and Theorem 4.2, Thus g = g',

Corollary 7.12. At p = 2, the following composite is an equivalence of

infinite loop spaces:
BG, X BSpin I X B, B(SF; kO) X B(SF;kO) ——LB(SF; kO).



Corollary 7.43. At p>2, the following composite is an equivalence of

infinite loop spaces:

Loixexyt wXgXT

BC, X WX W™ —="=—»BC X BSpinX BO®———-——-——->B(SF;1<O)3 —LB(SF;kO).

Those parts of the J-theory diagram related to the universal cannibalistic

class c(§’) will be analyzed on the infinite loop level in VIII §3.

All remaining parts of the J-theory diagrarp depend on the Adams
conjecture and thus on yr:Bo -~ S¥/Spin. Madsen [41] has shown
that y3 cannot be so chosen that its localization at 2, or that of
oz3, is even an H-map. (See also [26,11.12.2]). Nevertheless,it seems
likely that, away from 2 and r, yr can be chosen as an infix%ite loop

map. The following conjecture is even a bit stronger.

1
Conjecture 7.44. The comiplex Adams conjecture holds on the

infinite loop space level. That is, for each r, the composite

T .
syt -l gy BSF

Bj
is trivial as an infinite loop map when localized aWay from =

By II. 2.13, it suffices to work one prime at a time. The proof
in VIII §4 that SF splits as JPX Cp as an infinite loop space at each
odd prime p will give explicif.: splitting r'naps pr - SF, but it is not
known whether or not these maps are homotopic to (some choices of)
ap in the J-theory diagram.

Turning to the analysis of BTop away from 2, we have the
following analog of Proposition 7.'1VO, which was also noted by Madsen,

Snaith, and Tornehave [42].

Proposition 7.15. f£:¥/Top[l/2] —~ BO®[1/2] is an infinite

loop map.

1. See the discussion following Remarks VIIL 4, 6.
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Proof. Again, by I1.2.13 and II. 2. 14, we may work on the
p-complete level, p>2. With LP:F/O -+ B as in the proof of
Proposition 7.40, consider the following part of the main diagram in

poction 6, r = r{p):

By Theorem 4.2 and Theorem 7.8, Biot :Cp - F/Top is the trivial
infinite loop map, hence there is an infinite loop map £:B ~ F/Top
#uch that ggp = Bi as infinite loop maps. Now ‘ xp o Eo (Lp\{p)
I8 an infinite loop map, since LPYP is an infinite 1oo.p map by the
proof of Proposition 7,10, and thus F is an infinite loop maé by

Lemma 7.5 and Theorem 7.3.

Theorem 7.16 . Away from 2, the following is 2 commutative

diagram of infinite loop spaces and maps:

Bj

S§F —T——» F/Top ——t———> BSTop BSF
. T T
SF e BOg T~ B{SF;kO) 2 BSF

Therefore f and 'E are equivalences of infinite loop spaces.
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Proof. Apgain, the left square commutes on the infinite loop
level by Theorem 7.9, hence Barratt-Puppe sequence arguments give
amap g': BS5Top ~ B(SF;kO) which makes the right two squares com-
mute on the infinite loop space level. g-g'= vh for some map
h: BSTop ~ BO® , and the rationalization of h is null homotopic. It
follows by use of the splitting of BSTop, t‘he fact that [BCp, BO®] =0,
and Lemma 2.8 that h =0 and g = g'. Note that, despite the
role played by the product on BSTop in its splitting, this argument
does not depend on h being an H-map (again, because fBCp, BO®] = 0)
and therefore more than suffices to prove Sullivan's unpublished asser-
tion that g is an H-map (a result which has nowhere been used in

our work above).

By Corollary 7.13 and Theorem 7.16, BSTop splits at p as
BCPX W X W‘L as an infinite loop space. This fact, together with the
firm grasp on BGP as an infinite loop space given by VIII §3,has been
used to obtain precise information on the characteristic classes

(at p > 2) for stable topological bundles in [26,1I7].

vI. Eoo ring spaces and bipermutative categories

An Eoo space is, essentially, an H-space wi’xich is commutative,
ausociative, and unital up to all possible higher coherence homotopies. An
l'im ring space is, essentially, an Em space with respect to two products,
snd additive and the other multiplicative, such that the distributive laws are
aatisfied up to all possible higher coherence homotopies. The precise defini-
tion will be given in section 1. Some con$equences of the definition, and ele~
mentary examples, will be given in section 2.

A symmetric monoidal category is a category with a product which is
«ommutative, associative, and unital up to coherent natural isomorphism. It
drtermine s an equivalent permutative category, the classifying space d which
tnoan Eoo space. A symmetric bimonoidal category is a symmétric monoidal
. atepory with respect to two products, one additive and the other multiplicative,
such that the distributive laws are satisfied up to coherent natural isomorphism,
it determines an equivalent bipermutative ;ategory, the classifying space of
which is an Eoo ring space. The precise definitions, and proofs, will be given
in sections 3 and 4, and many examples of bipermutative categories will be
dinplayed in section 5.

The relationship ‘between Eoo ring spaces and Eoo ring spectra will be
drete rmined i1;1 chapter VII and applicatidns will be given in chapter VIII. The

munology of E_ ring spaces has been studied in [26,II]..

1. The definition of Eoo ring spaces

As will be made precise below, an operad { is a collection of suit-

ably interrelated spaces (C(j) with actions by the symmetric group Z‘,j.
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¢ is an Eco operad if the Zj actions are free and the spaces £ (j) are con-
tractible, so that the orbit spaces E(j)/zj are K(Zj, 1)'s. An.action 8 of
& ona space X in J (our ground category of based spaces) is a morph-

ism of operads & — <‘.‘x, where EX(J) is the function space F(XJ,X) of

K
based maps and EX is given an operad structure in the evident way [45,1.2]. .

An Eoo space (X,0) is a space X together with a given action @ by some
E_ operad &. With product given by 92'(c):X2 ~X forany ce &(2),

X is indeed an H-space which is commutative, associative, ‘and unital up to
s;]l possible higher coherence homotopies [45, p. 4],

An Eoo ring space will be an Eoo space with respect to actions by two
interrelated Eco operads. These actions will satisfy the distributive laws up
to all possible higher coherence homotopies, although these implied homo-
topies fortunately need not be made explicit. '

Thus assume given two operads £ and Y. Actions by ¢ will be
thought of as additive and will always be denoted by 8, The corresponding
basepoint will be denoted by zero and wedges and smash products will be
taken with respect to this basepoint. Actions by 4 will be thought of as
multiplicative and will always be denoted by £ . The corresponding base-
point will be denoted by one. As in we1, it i_s éonvenient to insist that -

spaces have zeros. Recall that Je denotes the category of spaces X together

with cofibrations ex s% + X and that k<! [J ] denotes the category of

M

-Spaces (X, £). It is important to observe that, for non~-triviality,

zero and one must lie in different components of X, Indeed, in the contrary
case, the left translations gz(g)(o, x) and gz(g)(l,x) by zero and one would
be homotopic (for any fixed ge H(2)). Since the first map is trivial and,

if  H(1) is connected (as is always the case in practice), the second map is

homotopic to the identity [45, p.4], it follows that X would be contractible,
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As explained in [45,§2], an operad C’ determines a monad (C,g,n)
n J such that the notionofa & -space is equivalent to that of a C-algebra

in (] . We shall define a notion of an action of an operad M onan operad £

“in such a way' that C restricts to a monad in the category # [ ﬂe]. Thus

for a }do—Space X, the space CX will inherit a structure of ﬁa-space
such that the unit n:X = CX and product p;CCX - CX will be morphisms
of .’jo-spaces. We shall then define a ( c‘, M )-space to be an algebra over
the monad C in } g e]' The requirement that the additive action
8:CX - X be a morphism of f#o—spaces will succinctly encode the distri-
butive laws. An E_ ring space will be a (¥, § )-space where - { and P
are Eco operads. .

It is useful to think of the passage frqm En-spaces to (é‘, H )‘-spaces

as resulting from a change of ground category from TJw H [Je].

The details of the definitions are necessary for rigor and useful in
the study of homology operations [26] and homotopy operations (work 1n
progress), For our present theoretical purposes, it is the conceptual out-
line above that is crucial. We firz;t recall the definitions of operads; and

actions by operads.

For ge I

Notations 1,4, Let jr_>_0, 1<r<k, a.nd}et j=j1+"' +j

k° x’

define u(ji, ves jk) € Ej to be that permutation of j letters which permutes

the k blocks of letters determined by the given partition of j as ¢ permutes

k letters, For =T_e Z. , define +,®... @ 1_e Z. to be the image of
T Jp 1 k7]
(t,5+++,7,) under the evident inclusionof Z, X... XZ., in Z,.
1 .k J
i k
FG) fox

Definition 1.2, An operad ¢ is a collection of spaces

j2 0, with @(0) a single point * , together with maps

ve ERXEG) X X LG = COyp e +3)
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for all k> 0 and jr 2 0, a unit element 1 e (1), and right actions of I,
J
on {(j), all subject to the following formulas.
(a) If ce Qf(k),de{:(j)'for1§_r5k,andeeC(i)for
T r s s

1<s<j +... +j , then

vir(esdg,en.,ddie . e,

s )=Y(C;f x---af ) ]
31+"'+Jk i k!

where £ = y(dr; eJ1

* 4 i =
(or if i 0).

SRR T AR +...+j1_)

1 i

(b) I ce {£(k), then y(c;lk) =c; if de ($(j), then vy(i;d) = d.

(c) If ce E(k), dr € ef(jr), ce Z, , and T € er , then

v(eosdsenn,d) = y(esd
e k o1 ’

()" et 70 W

and

Y(c;di'ri,...,d ) = y(c;di,...,dk)('ri@...@-r

K'k o

Definition 1.3. An action 6 of an operad Cona space X con-
sists of Z)j-equivariant maps Gj: EG) x X} + X such that 90(*) is the
basepoint * ¢ X, 61(1;x) =x, and, if ce {(k), dr € ﬁ(jr) for 1<r<k,

and xseX for 155531+.,, +Jk=‘]’

Oj(y(c;di,...,dk);xi,...,xj) = ek(C;yi""'yk)’
where

v, = 8 (4%,

) {or * if j_=0).
T Jy r

L #107rer®y

1 31+.‘..+Jr

We require the multiplicative analog of Notations 1.1, and distri-
butivity permuations, to define actions of operads on operads and of operad

pairs on spaces.

Notations 1,4, For jr 21, let S(ji, e jk) denote the set of all sequences

= {3 3 <i < S : .
1 _{11,.. ,1k} such that 1"11""]1" and order S(Ji, ,_]k) .lexwograplu

CCCOCae (

Notations 1, 5.

SO (COCCCOCOOCCC T CeCCC
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cally., This fixes an action of Ej on S(ji’ . ,jk), where j=j;++j,. For

T E Z‘k, define

| :

O <gysee s dy >80 d) > S(in(i) ’“"J«“i(k)
by
¢r<31,...,3k>{11,...,1k} = {16_1(1),...,10._1&)}
Via the given isomorphisms of S(ji""'jk) and S(j _1(1),...,j 'i(k)
o o

with {1,2,...,]}» u'<ji,...,jk> may be regarded as an element of Zj.

For Te€ er, define T1®"'®Tke Z}j by .

('ri®... ®-rk){i1,...,ik} = {Tili""’Tklk .

Given non-negative integers k, jr for 1<r<k, and hri
for 1<r<k and 114 sj_r , define v = V{k’jr’hri} to be that permuta~
tion of the set of

Ix

hrir) = -ﬁ. (Z hri)

r=i1 Mi=1

> (W

s . r=1
Ie 5(31,....31{)

letters which corresponds to the comparison of the two ordered sets (where

|l denotes the ordered disjoint union)
1 jk
11 S(hy; 1eeesly, ) and 5(23 hii,...,z__ihki)
TeS(,seeesi) t k i=1 i=
1’ Tk
. th
obtained by sending an element {ai, cearay) with 1< a <h . ofthe I
T

summand of the first set to that element {bi' wees bk} of the second set

suchthat b =h _+... +h_, +a_ .
T ri ri T
-1
Definition 1.6, An action \ of an operad M on an operad { con-

sists of maps

MG X CGY X X EGY = £

for all k20 and jr 2 0 subject to the following formulas:



§ K ! i } i ; : ! ) : ! . i ; [

144

(a) I ge H(x), g, € #4(5,) for 1<r<k, and cge £,) for

1555j1+... +jk’ then

My(gsggseersgdicgpenescy o o) = Mesdyseonnd)s
gTees Jk
where )
= . *3if § =
d, )‘(gr’cjih..+jr_1+1""'°j1+...+jr) (ox * if j_=0).

(a¥) If ge }d(k), c e C(jr) for 1<r<k, and drie {:(hri) for

1Sis_jr, then

YMgepene X
Ies(ji’ .o !jk)

where d_[:;\(33 d“-', N dk,'x)

dI- diii,...,d]dk) and er=y(cr;dri,...,drjr). .

ay = Mesepaeniey)

(b) I ce (i) and 1e B(1) is the unit of 4, then A(ijc)=c.
(') ¥ ge H{k) amd 1e E(1) isthe unit of (¢ , then k(g;ik)= 1‘.

(c) I ge ﬁ(k),_cre {:(jr), and e I, , then

H seey = H ;-n-;‘ .;-..,‘>-
Meose,s ck) Mgz e c Jo<i, S

0'-1(1) v"i(k)

(c') ¥ ge Hx), c e C’(jr), and T € Ejr , then

Mg;ciTi’”"cka) = )\(g;ci, ---,Ck)("‘1®-.. ®Tk)-

Formulas (a), (b), and (c) relate the M\ to the internal structure of

A4 and formulas (a'),(b'), and (c') relate the M\ to the internmal structure
of C .

Definition 1.7. By an operad pair {{, H), we understand operads

[ and M together with a given action of # on (& . (¢.4) is said to
be an E_ pair if £ and Y are E, operads, A morphism (£ ,%) - (g, #4")

of operad pairs is a pair of morphisms of operads G~ ' and K-

which commute with the given actions.

Henceforward, assume given an operad pair (g, H4).

Definition 1.8, Let (X,£)e¢ H[J.J. For k20 and j, 20 define

maps 4 ji"'jk

j i
£ BIOXEG)XE X X CEIXE S = By 5 ) XX

. j
by the following formuia for ge A(K), c_e C(jr), and y_eX T

Elec sy = (Meses ooy X £ (eiv)) s

IeS(ji,...,jk)
' k

kik)e X .‘

where, if v, = (xrl’ ...,er ), then ¥ = (xii senesX
T i

Recall the construction of the monad C in J from [45,2.4].

W For (X,£)e H [ﬂ'e], the maps '{:',k induce an action
of M on CX suchthat p:CCX =~ CX and n:X - CX are morphisms of
ﬂo-spaces. Therefore the monad C in J restricts to a monad in the
category JL[J e]'

Proof. By (c') 2nd (a') (applied to the degeneracies o, of [45, 2.3]), v
the &k respect thé equivalence relation used to define GX. The resulting
maps gk: Hx) x (CX)k ~ CX satisfy the associativity, unit, and equi~
variance conditions required of an action by (a), (b), and (c). The map
e:S0 - CX is the composite of e:8°~ X ana X - CX. Now CCXe H [7,]
by iterétion, and the maps p and 7 commute with the actions £ by

(a') and (b").

Definition 1,40. A (¢, A)-space (X,0,£) isa & -space (X,6)
and a f:’.lo—space (X,€) suchtbat 8:CX -~ X is a morphism of -Zjo-spaces.

Equivalently, it is required that the diagrams

j‘.l : N j 41X6; X...X8; ]
AR X 6, X% XL XC(jk)XXk 1 Ty R x xS
14
k fx
s 8. ...,
J1 e Jk Ji Jk x

Eliyrrqy) XX
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commute. A map of (C » 4 )-spaces is a map which is both a map of

C’ ~-spaces and a map of ﬁo-spaces.

Since the notions of ~-space and of C-algebra in .7 are equivalent
[45, 2.8], it follows immediately that the notions of (¢, 4 )-space and of

G-algebrain H[7] 0] are equivalent,

Definition 1.44.. An Eoo ring space is a ({, 5 )-space where

(£, H) is some Eoo operad pair.

We have not defined and do not need any notion of a morphism between

Eoo ring spaces over different EOD operad pairs.

2, Units; examples of operad pairs

We here point out a few consequences of the definitions and display
some examples of actions by one operad on another; these should help to
motivate our general theory.

For a space X, CX is the free [ -space generated by X. For
the same categorical reason [45,2.9], if X is a .ho-space, then CX is
the free (&, 4 )-space generated by X. In other words, if (¢, H) ﬂe]

denotes the category of ({, # )-spaces, then the function

Homh [ ge]((X,é): (v, £) -~ Hom( (cx, s E), (x,8,8)

E. N )[ﬂe](

obtained by sending f:X - Y to the composite

CcX Cf. cY 8 Y

is a natural isomorphism with inverse g -+ gon for gi:CX — Y,

Definition 2,4. As observed in IV,1.,5, (So, £) isa M _-space with

0

Ei' . £

6 @)(Epreens &) = J

OO
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for ge K(3) and €,=0ort (where the product is the ordinary one), and
[¢]
e¢:5 - X is a morphism of ?:lo~spaces for any H g~ space X. Fora

(&, H)-space X, let e also denote the induced map
0 .
(Cs ,il, g) - (X’Q’ g)

of (¢, h )-spaces; e is called the unit of X,

Of course, e is analogous to the unit Z ~ R of a ring R.

If G denotes the monad associated to ¥ , then GX is the free
k -space generated by a space X. When C and H are Eoo operads,
the homology isomorphisms CX <«— (C X GHX) -~ GX of [45,3.10 and 46,
A.2} showthat G and G can be used interchangeably and can thus both

he thought of as additive. The R -actionon a (&, 4 )-space gives rise

to curious and useful exponential units.

Definition 2,2. Let (X,£) bea H-space. For any given element
re -n-OX, define a map et So - X by sending 0 to 41 and 1 to any chosen
point in the component r, With S0 regarded as a based space with base-
point 0, form GSO and let e also denote the induced map

(Gs% ) ~ (%, 8)
is called an exponential unit of X. Up to homotopy

of K -spaces; e,

through H -maps, e is independent of the choice of the point in the com-

ponent T,

Think of the set Z + of non-negative integers as the free monoid

(under addition) generated by the element 1, The maps e for a (&, 8)

+ . N
space are analogous to the maps of monoids from Z into the underlying
multiplicative monoid of a ring R,

There are several algebraic examples of operad pairs, for which

£() and H(j) are discrete, Let N and N de-

the component spaces
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note the operads of [45, 3.1] such that an I -space is a topological monoid

and an 'n-space is a commutative topological monoid. Recall that

™maG) = Zj with idéntity element ej and that 71(j) = {fj}.

Lemma 2.3. (N ,?N ) is an operad pair with respect to the maps

A XEjX... Xz, =2 determined by

k Jk 31...Jk

Ae

1€, ;o008 ) = e, .
Ky Ik PR N

and the equivariance formulas (c) and (c') of Definition 1.3,

Indeed, the equivariance formulas are dictated by this lemma, which
asserts that these formulas are compatible with the distributivity and unit
formulas of Definition 1.6. An (0 ,?%1 )-space is a topological "pseudo
semi-ring", "pseudo" meaning that the addition need not be commutative

and "semi" meaning that there need not be additive inverses,

Lemma 2.4. For any operad be! , {(N.,H4) is an operad pair with
respect to the only possible maps \, namely

x(g;fj,...,fj) = for all ge H (k).

£,
1 N FUE N
An (M, )-space is a topological semi-ring and an (11 , 71 )-space
is a commutative t;pological semi-ring., - The unique maps ( - I and
H -7 define 2 morphism ({7, 4) - (11 ,7) of operad pairs for any
operad pair (¢ , # ). Thus any commutative topological semi-ring R is
a (C . H )-space. As soon as we verify that Eoo operad pairs exist, it will
follow that any such R is an Eco ring space. Conversely, the set “ﬂ'OX

of components of an Em ring space X will be a commutative semi-~ring

and the discretization map X ~ 7 X will be a map of Eoo ring spaces.

0

Evidently, an semi-ring space would be a technically more accurate

term than Eoo ring space.

Recall that, algebraically, a commutative semi-ring can be com-~
pleted to a commutative ring by formation of the Grothendieck group with

respect to addition, the multiplication being carried along automatically,

- Analogously, we shall see in chapter VII that an Eoo ring space can be

" completed to an Eoo ring space which is grouplike with respect to addition,

the multiplicative Eoo structure being carried along automatically. Indeed,
this topological completion will induce the algebraic completion on Ty

The definition of an Eoo ring space implies the existence of consi&er-
able structure on the higher homotopy groups of such a space. The follow~

ing lemma displays the most obvious bit of structure,

Lemma 2.5. Let (X,8,£) be ai (C, H)-space, where & and A
are locally connected operads., Then the homotopy groups 'n'*X defined
with respect to the baseéoint zero form a commutative graded semi-ring;
if -rrOX is a group under additiox;, then ‘n'*X is a ring.

Proof. Addition in m X is induced by the additive product Gz(c)
for any c ¢ £ (2). Since the multiplicative product gz(g) for any ge /;J(Z)
factors through the smash product XaX, it induces pairings
wiX ®1rjX - 1ri+jX for all i,j= 0 by letting the product of az:Si -~ X and
p: Sj - X be the composite

. .. £ ,(g)
st o oglagl —@rB L xax —2 X.

The axioms for a commutative semi-ring follow directly from Definitions
1.6 and 1.8 and the assumption that the ((j) and H(j) are connected

(compare [45, p. 4]).

The simplest Eoo operad pair, and the one suited to categorical
applications, is derived from {J.§n) by application of the product-
preserving functor ]D*('?)] from spaces to contractible spaces given by

[45,10, 2 and 14,1]. Recall from [45,45.4 and 10, 3] that application of this
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functor to N gives an E00 operad Q such that @,(3) is just the normalized

version of Milnor's universal Z_-bundle,
J

Lemma 2. 6. (Q,Q) is an Eoo operad pair; the action A of @,on
itself is obtained by application of the functor |D4(?)] to the action of T\ on
itself,

Proof, The formulas of Definition 1. 6 can be written out as com-
mutative diagrams, hence, by functoriality, these formulas hold for ®_,

since they do so for M.

A categorical description of (Q,@) will be given in section 4. The

following remarks will be needed in VII §3.

Remarks 2.7. (i) Zj =D
mcQ

O(zj)’ and there results an inclusion of operads
and an inclusion of operad pairs (ff} ,')?7) C (Q, @) Th;s a
Q»space is also a topological monoid (with product ®) and a (@), Q)-space
is also a topological pseudo semi-ring (with second product ®). The pro-
ducts @ and B coincide with those given in terms of the actions as

‘Gz(ez) and Ez(ez).

(ii) Ligaard and Madsen [39, 2. 2] have verified that any -space Y

is a strongly homotopy commutative H-space with respect to the pro-

duct @®@. Therefore the classifying space BY is an H-space and the

natural map { :Y = QBY is a group completion in the sense of [ 46,

2.1} (e.g., by [47,15.1]).

(iii) It is sometimes convenient to replace general Eco spaces by
equivalent Q -spaces. This can be done as follows. Given the
C -space (X,8), where {5 is an Eoo operad, comstruct the maps

E(G-n'l) B(-rrz, 1,1)

X < B(CXD, CXD, X) i B(D, CXD, X).

O COC
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Here the bar constructions are specified by [45,9.6 and 11.1 (see p.126)],
B{D,C XD,X) is a Q-space and both maps are morphisms of

[ x Q-spaces by [45,12.2], E(S-n'l) is a strong deformation retraction
with right inverse +(n) by [45,9.8 and 11.10], and B(-rrz, 1,1) is a

homotopy equivalence by [46,A.2 (ii) and A, 4(ii)].

(iv)] For X as in (iii), let GX = @BB(D,C X D, X) and let
K= §°B(1r2, 1,1)e 7(m): X » GX. By (ii), g is a natural group com-~
pletion of the C’-space X. The existence of such a construction was

asserted in [46,2.1], but the argument given there was incomplete.

(v} Inthe second result labelled Theorem 3.7 in [46], I claimed that
® on DX was a morphism of @_-Bpaces. That assertion is clearly
false, as it would imply that @ is actually commutative. The mistake

occurs in the formula for v [46, p. 76], from which a factor

"Gi’ vee ’jk) was omitted (compare section 4),

(vi) Aside from use of (iv) in the proof of VIL. 3.4, we shall ignore the
classifying spaces which result from the monoid structures on Q_ -spaces
and (@), Q))-spaces in favor of the deloopings constructed by application
of the machinery of chapter VII. The latter have numerous special
properties essential to our theory, and I have not proven thaf the two are

¥
esquivalent,

§3. Symmetric bimonoidal and bipermutative categories

Categories with appropriate internal structure provide a very
rich source of Eoo spaces and Eoo ring spaces. Here all categories
with internal structure are to be small and topological, and all functors

and natural transformations are to be continuous. For a category (L,



O A and MQ dencte the spaces of objects and morphisms of Q. and
S,T,1, and C denote the source, target, identity, and composition func-
tions, all of which are required to be continuous. If no topoloéy is in
sight, we can always impose the discre;ce topology.

Recall that a symmetric monoidal category is a category @ to-
gether with a functor O : X -~ (. and an object. * such that O is
associative, (right) unital, and comrmutative up to coherent natural iso-

morphisms a,b, and ¢ 40, VI, §1 and §71. a, is permutative if U is

strictly associative and unital, with no isomorphisms required. Coherence

with the remaining piece of structure, the commutativity isomorphism c,

is then guaranteed by commutativity of the following diagrams for

A,B,C e :
AQBRB , A= *v A | and AEJBDC———-—>CUAUB
\ / 11 : IG\ /
Bu A A = Ao ¥ . Ao(CnB

Symmetric monoidal categories can be replaced functorially by
naturally equivalent permutative categories, but the relevant notions of
morphism require explanation, This is partigularly so since the usual
categorical definition of a coherent fun"ctor between symmetric
monoidal categories would allow examples like the forgetful functor from

modules over a commutative ring R under @

®

R to Abelian groups under

7 and is too lax for our purposes.
Definition 3.1. A morphism o~ (' of symrmetric monoidal
categories is a functor F: L+ (' suchthat F#* = * together with a

natural isomérphism §:FAUFB - F(ApB) such that the following dia-

grams are commutative:

} \ i s : o P H ! ) ' ! }
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iu
(FAu FB)OFG ——i—> FAB(FBEFC)———L’ FAuF(BuC)

fol ¢

' b
F(avB)aFG —P+ F((anB)ac) 2 —F(An(BEC))
FA FAg F* and FAoFB —° FBoFA
I 4 o A $
Fb : Fc .
FA F(A o %) F{Au B) F(Ba A)

A morphism (L~ (' of permutative categories is a functor F: a -t
such that Fx = %, f‘A gFB=F(A0oB), and ¢c=Fc on FARFB=F(AuB).
Note that a z‘norphism of symmetric monoidal categories between per-
mutative categories need not be a morphism of permutative categories.’

A slight elaboration of the proof of [46, 4. 2] gives the following

more precise result.

Proposition 3. 2. There is a functor & from the category of
nYmmetric monoidal categories to the category of permutative categories
and a natural equivalence w:®Q - (L of symmetric monoidal categories.

1t (L is permutative, then 7 is a morphism of permutative categories.

Oné often encounters categories with two symmetric monoidal
structures, one additive and one multiplicative, which satisfy the (right)
distributive and nullity of zero laws up to coherent natural isomorphisms
d and n. We shall say that such a category is symmetric bimonoidal.
Laplaza [35] has made a careful study of such categories. In particular,
he has given a list of diagrams the commutativity of which ensures that
all further coherence diagrams which can reasonably be expected to
commute do in fact commute, Comparison of his list with the notion of

an E  ring space leads to the following definition.
<]



R O A O O O O L S N G O O G 1 O S G G G O G G I S S O S I O G G

VRN
~
N

154 155

Definition 3.3. A bipermutative category ( &, 9,0,¢,8,1, 'cv) is Definition 3.4, A morphism O, -~ a‘ of symmetric bimonoidal

a pair of permutative categories ((1,®,0,c) and ((1,®,1, &) such categories is a functor F: (L - (' suchthat F0=0 and Fi =1 to~

that the following three conditions are satisfied, gether with natural isomorphisms §:FA@FB ~F(A@® B) and
(i) 0®A=0=AQ®0 for Ae O and 1(0)®f = I{0) = t®I(0) for } :FAQFB -~ F(A®B) such that (F,f) and (¥,¢ ) are morphisms of

feM( ; that is, 0 is a strict two-sided zero object for ®. symmetric monoidal categories and the following diagrams are commutative:

(ii) The right distributive law is strictly satisfied by objects and morph-

K0 ——> FA®FO0 and (FA®FB)®FC

S Y

ro 2 F(A®O0) F(A®B)RFC FARC)®oF(B®C)

(FAQFC)® (FBRFC)

isms, and the following diagram commutes for A,B,C ¢ (f(L :

-—

(A®@B)RC = (ARC)® (BRC)
¥ l : [ﬂf
[ c Fd
F{(A® B)®C) F((a®C)® (BRC))
(B®C)RC = (BRC)® (AQG)

. A morphism - of bipermutative categories is a functor FI -’
(iii} Define a natural left distributivity isomorphism { as the following

which is a morphism of permutative categories with respect to both the
composite

- additive and multiplicative structures. Again, a morphism of symmetric
Cc EX¢&E .
A®(BBC) =~ (BOC)RA= (BRA) S (CRA)—~(AQB)® (ARC);

bimonoidal categories between bipermutative categories need not be a

then the following diagram commutes for A,B,C,De 0d. : morphism of bipermutative categories.

(A®B)®(C®D) ==wmwe——— (AQ (CO®D))® (B (C & D)) Proposition 3.5. There is a functor 2 from the category of
Il JIGBI symmetric bimonoidal categoriés to the category of bipermutative cate~
((a®B)®C)® ((A® B)®D) (ARC)® (A®D)® (B® C) @ (B ®D) pories and 2 natural equivalence w; (L~ (L of symmetric bimonoidal

\ ) /IEB c®I categories., If o is bipermutative, then = is a morphism of bipermu-
(AQRC)® (B@C)@ (A®D)e (BRD) tative categories.

Proof. To avoid technical topological difficulties, assume either
Laplaza's work [35, p. 40] implies that a bipermutative category is’ - :
what (L is discrete (which is the case in practice) or that 0 and 1 are
symmetric bimonoidal. In the absence of strict commutativity, it is clearly
non-degenerate basepoints such that 0 is a strict unit for ® and 1 is 2
unreasonable to demand that both distributive laws hold strictly. The '
atrict unit for ® . The latter condition can always be arranged by growing
choice of which law to make strict is logically arbitrary, but our choice
. . whiskers on the given 0 md 1 (by adjoining copies of the category & with
is dictated by comnsistency with the lexicographic ordering used in
two objects and one non-identity morphism) so as to obtain a new 0 and 1
Notations 1.4,
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as required., We construct 33 = 8L  as follows. Let (GQL)' be the free
topological monoid, with product denoted by & , generated by (L

modulo the relations e=1 and 0 B A =0=AK 0 forall A¢CQL . Let

% be the free topological monoid, with product denoted by B , generated

by (L)' modulo the relation e = 0. Extend the product & from

(CL)' to all of (U@} by the formula

(4,8 ... E—]Am) X (8, B... H B_)
= RB)H... B(ARB)B...B(a_KB,) ... ®(a_KlB )

for Ai'Bj ¢ (L)', Both products on U are associative, 0 is a
strict unit for H and zero for [ , 1 is a strict unit for ¥,

and the right distributive law holds, Let z: G(L = (UH denote the evident

inclusion. Define w: (B ~CUQ by =(0) =0, w(1) = 1,

(s, K...®A ) =A1®(A2®(A3®... (A, ®A)... )

n-1 < %p
for Aie@'(l . Ai;éO and Ai;éi, and
-rr(A'iEl... EIAI'I) = vrA'i@ (m&@(mg@... (wA;M@wA;l)...))
for Al (G, Ai;é 0. Define NB by
7(8,B) = {B} x A (xB,vB) x {B'} .

The singleton sets determine S and T for ) , and I and C are induced
from the corresponding functions for (L . Jn 3 is topologized as a sub~
space of ("BXMAXOR . The éroducts Al and X on @ and the sym-

metries ¢ and ¢ of 73 are determined by the fdllowing arrows of (. :

T(BEC) ——> 7B @ C —g—g-g—*wB'G?-n'C’ w(B'FHC)

w(BXKC) —“E—"WB ®=C —f—gﬁ—’ TB'®wC!

w(B'IXICT)

for morphisms (B,f,B') and (C,g,C') of 43 and

#(BEC) ——> 7B ® C 7C @ 7B ~— w(CE B)

~r

C

=(BXIC) —-?—PWZE’)@WC wC @nB “%—>W(C[X]B)

or objects B and C of U3 ; the unlabelled isomorphisms are uniquely
tormined by the monoidal structures of (L . Define n:MA~M3.
b 1(f) = (A, £ A7) for £:A ~ A' and define m:MB ~ A by
#(B,g,B') = g for g wB -~ wB'. Then n and v are functors,

@n is the identity functor, and the morphisms (B,IwB, nwB) of 5
flefine a natural isomorphism between mw and the identity functor of 73 .

o remaining verifications are equally straightforward,

{4, Bipermutative categories and Eoo ring spaces

We here describe the Eco operad pair (Q ,Q_) categorically,
foview the passage from permutative categories to Q -spaces obtained
n [46,§4], and construct a functor from the category of bipermutative
tegories to the category of (@), Q)—spaceé.

Recall that the translation category E;’ of a monoid G has objects
the elements of G and morphisms from g'to g" those elements ge G
such that g'g = g". When G is a group, g is unique and a functor with
range 5 is therefore v!miquely determined by its object function. Note

~

that G acts from the right on G via the product of G.

Let 7'5‘3 xF x...xF -Z . be the functor defined
' k iy e J1+.-.+Jk

o objects by the formula

. BT )u'(ji,...,jk).

{1) ?{’(o';'ri,...,'rk) = (T,'i(”@“ 1

{The factor rr(ji, .. ) was inadvertently omitted from the definition

.
of ¥ given in [46, p.82].)
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Let A{'E X E X... XE. - g be thé functor defined on
ko j Jyeved
i k i k
objects by the formula
(2) K(U"T e, )= (7 ...+ Yo <3, sas035d >
R & S -1(1) o-’i(k) 1’ Tk

Let Ba;. denote the classifying space of a {small, topological)

f

category (. and recall that B is a product-preserving functor from

categories to spaces (e.g. [46,4.6]). As observed in [46,4.7], BG coin-
cides with ]D*G] for any topological group G. By comparison of (1) to
the equivariance formulas in Definition 1.2, the structural maps vy of the

Eoo operad L. coincide with the maps

~ ~ ~ o~
By:BZ, XBZ, X...XBZ, -BZ .

k 1 ok ket
By comparison of (2) to the equivariance formulas in Definition 1.6, the

maps A which give the action of €. on itself coincide with the maps

BK:B%’kXBS X...XBE ~BZ, . .
’ ! T I

Alternatively, this description can be used to define the Eoo opérad pair
(@, @)

Let (a_, J,% ,c) be a permutative category. As pointed out in
[46,p.81], ¢ determines Ej-equivariant functors

Cj:%j X aj -

such that e restricts to the j-fold iterate of E on {ej} ped @j = OJ
The coherence diagrams of the previous sectioﬁ imply the following result.
Indeed, by the very meaning of coherence, we need only observe that the

diagram of the lemma makes sense on objects,

Lemma 4.1. The following diagram is commutative for all j > 0,

k> 0, and jiZO such that j1+... +jk=j:

COCCOCECOCCTE GO CCOCCCCEr e GO oue oot
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~ - i X1 -
FoxE ox...xE, ox @] » = x @’
1§ Ji . Jk CJ

O‘l
}L
i . iXe, x...ij “x

- ~ j -
FoxE ox Blx... x5 x QK ! k.3 xak
3 iy e k

where p is the evident shuffle isomorphism of categories.

Comparison of the lemma to Definition 1,3 gives the following

fongequence,

Proposition 4.2. Define 9, = Bey: G x (BAY = B(ijx ady - sa .
Then the Qj define an action 0 of m, on BOL, ‘and B restricts to a

functor from permutative categories to (') -spaces.

Now let (O, @,0,¢c,®,1,8) bea bipermutative category. Then

coherence implies the following analog of Lemma 4, 1.

Lemma 4.3. The following diagram is commutative for all j 2 0,

o0, d j,>0 1:9 (I M H
an Jl__ such that 3y Jk i

.~ i ~ e 77T o
§FxE xAlx... x¥ xa* ! kK, ¥ xak
ko e

where w is defined on objects and morphisms by the formula

N(U,Ti,yi:---,Tk:Yk) = (U':Tir---"rka . X . (U':YI))'
IES(Ji”"’Jk)




-

Comparison of the lemma to Definitions 1,5 and 1.7 gives the

following consequence.

Proposition 4,4, The actions 8 and § of L on BO specified
by Qj = Bcj and E,j = B'E'j give an action of the E __ operad pair (3 , 2 )
on BQ. , and B restricts to a functor from bipermutative categories to

(@, 8)-spaces.
The following addendum is sometimes useful.

Remarks 4.5. For ie00 , let Cl.i denote the subcategory of (L

which contains the unique object i and all morphisms from i to i; HCLi
is the ordinary classifying space of this monoid of morphisms. Clearly

(B CLO,Q) is a sub [) -space of {B@G.,8) and (B Ry, €) isa sub (‘D»»space

of (BQ.,E).

There is a more general way of looking at the constructions above,
One can think of {D*Zj,“ > 0‘} as specifying an operad Q* in the
category of simplicial spaces {or sets, since the Dqu are discrete). The
actions of T) on BO- result by passage to geometric realization [45, §11]
from actions of (D* on the simplicial spaces B*Q, [46, 4.6]. Although
no such examples will be studied in this volume, there exist simplicial
spaces with actions by ‘Q* or by the;, pair ([, @,) which are not of
the form B*& for any (L ; cle;n:ly our theory will apply to their

realizations,

§5. Examples of bipermutative categories

The seminal example, which will map into all others, is the

following one,

omorphisms. Think of .n as {1,2,...,n} andidentify &(n,n) with
o symmetric group En. Then (E , 8,0,¢,8,1, E) is a bipermutative

tategory, where @ and @ are defined are defined on objects and morph-

e(i) if 1g<i<m
m@n=m+n and (0@ 7)i) = .
m+7(i-m) i m<i<m+n

m®n =mn and (e® Mi-1)n+3) = ((c{i)-1)n+ +{§), 1lgigm

and 1< j<n,

and where ¢ = c{m,n) e = and €= &(m,n) e z . are defined by

min

nti if 1€i<m
cfi) =

i-m i m<i<min

S((E-1)n+j) = (G-l)m+i , l<igm and 1<j<n.

or ®,mn should be thought of as {(1,1),..., (1,‘n)v, veoy(m,1), ..., (m,n)}
and it is this choice of order (required for consistency with Notations 1. 4)
which leads to the strict right, rather than left, distributive law. The

space ps’ is the disjoint union of the orbit spaces ) (j)/Zj [45,8.11],

and the unit e: DSO—* B of Definition 2.1 coincides with the disjoint

union of the homeomorphisms

D.Z I/, - EZ/Z, = BZ,

D, Jl/ j J/ J j

specified ih [45,10.3]. (Alternatively, use EEJ. = ng.) We therefore

is the free (Q), @)~

rogard e as an identification and conclude that BE

space generated by SO.
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For a topological ring A, the groups KiA for 1> 0 can be defined

in terms of permutative categories ®A or FA of finitely generated
projective or free left A-modules (as will be discussed in VIII §1). When A
is commutative, A and FA can be taken as bipermutative categories.

In the case of JA, we can be more explicit,

Define HJLA as follows. The objects of YXA are the

Example 5,2,

n
non-negative integers, each thought of as A" together with its standard

ordered basis {el, ey en} . The morphisms of UJ‘A are the iso-

morphisms A7 ~ A", Thus HA(m,n) is empty if m #n and
Y XA(n,n) = GL(n, A). Define a functor e: £ - XA by en)=n on

objects and e(cr)(ei) =8 on morphisms o e En. Then

o)
( A LA, ®,0,c) is a permutative category and, if A is commutative,
(HL4,8,0,c,0,1,T) is a bipermutative cateéory, where ©,8, ¢, and ¢
are specified by the requirements that ® and & have their usual meanings
(with respect to the isomorphisms AP e A" - Am+n and Am®An -
defined as usual on ordered bases) and that e: £ - HALA be a morphism of
permutative and, if A is commautative, bipermutative categories, Note that
e factors through HXz for any A. By the naturality of the unit of

(@, ®)-spaces, Be: Bf = BHULA coincides (under the identification

ps? = B¢ ) with the unit of BH ¥A. We identify morphisms of N4 A
with their matrices with respect to the standard bases. For a morphism of
rings a: A=A, define ii.)fa: HIA - Y xa by applying o to all entries of
matrices. Then Bx is a functor from irings to permutative categories and

from commutative rings to bipermutative categories.

Example 5. 3.

category of HfA whose morphisms are the orthogonal matrices

(MMt = I}, Then Q is also a functor from commtt ative rings to bipermuta-

If A is commutative, define (TA to be the sub bipermutative
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tive categories, Although we cannot simply restrict morphisms to matrices
W1 determinant one, since the permutation matrices required to define ¢ and
¢ would no longer be present, we can obtain a sub permutative category
-"5‘1 of /M’ under @ by restricting objects to the even numbers and restrict-

ing morphisms to the elements of SGL(2n, A).

FIANNG P 9 5

Similarly, define

In the examples above, the set of n X n-matrices with entries in A
ta to be _giﬁen the obvious product topology and GL{(n,A) and O(n,A) are
to he given the subspace topologies. We have insisted that rings be
tupologized in order to treat algebraic and topological K-theory simul-

! unm)usly.

hxample 5.4, Let IR,C, and H be the (topologized) real numbers,
innplex nutﬁbers, and quaternions. Define subcategories =6r, U
atscl (X‘a of HIR, Y f¢, and YXH by restricting to orthogonal, unitary
and symplectic linear transformations, respectively. Then ¢ and, W are
bipermutative categories, and complexification o .U is a morphism of
wipermutative categories. 319 is an (additive) permutative category and
symplectification U - A’.{r» is a mbrphism of permutative categories.
Whan appropriately specified on bases, the forgetful functors /ﬁ,a - W
and W = U are morphisms of (additive) permutative categories, with
#hjcct functions which send n to 2n.

The following three examples, whose significance was first under-
stood by Quillen [58,59] and Tornehave [75,77], ar.e central to the interplay

wotwceen algebraic and topological K-theory to be discussed in chapter VIIL,

Example 5.5, For a perfect field k of characteristic q# 0, let

g9 Lk —~ MLk ana g% Gr-Ox

denote the morphisms of bipermutative categories derived from the Frobenius



automorphism x+x% of k. For r= qa, let }dr be the a-fold ite:;‘ate of
ﬁfq. This example is most interesting when k is the algebraic closure of
the field of q elements.

E:lcamgle 5.6, Let r= qa where gq i‘s a prime and a > 1, Let kr be

a field with r elements. Define a forgetful functor f:bf:kr-’ E by
letting f(n) =  on objects and letting f(v) be T regarded as a permuta-
tion of the set kI; of lef;ters on morphisms T ¢ GL{n, k'r)' Of course,
f depends on the chosen isomorphism of sets from k? to 1,2,..., 1;n

With the obvious lexicographic choice, £ gives an exponential morphism of

permutative categories
f: (ﬂ-{’kr: @, ch) - ( 6 r®: 17”5).

Moreover, the composite.morphism of @—spaces

(0s,u) = (B6,0) 2= (BAK ,0) 2L+ (Be,¢) = (DS, €)

coincides with the exponential unit e. defined in Definition 2.2 since B(fe)
sends 0 to 4 and 1 to a point in the component Gl(r)/zr of DSO. This

works equally well with ﬂfkr replaced by @'kr.

Example 5.7. Let k be a field of characteristic # 2, O(n,k) consists
of the isometries with respect to the bilinear form B associated to the
standard quadratic map Q: k- =k , Q(:;i, vees xn) = Z}xiz [51,p.84].
Recall from [51, p. 137] that the spinor norm v :0(n, k) - 1-{/( 1;)2 is

defined by

vir) = Qlz,)...0() i I Ofm, k).

Here ’ry(x) =x - [2B{x, y)/Q(y)]ly for x,ye k" with y#£0. Every = is
a product of such symmetries [51,p.402] and, modulo squares, v(v) is
independent of the choice of factorization. If y = e, - ej, then Ty per-

mutes e, and ej and V(Ty) = 2. Now specialize to k = k Then v

3°

values in Z, and v(g)det{oc)=1 for o e T C Ofn, k The

2 3)'

category 71k3 of 0’1(3 whose morphisms n - n are those

Ofn, k 3) such that v(r)det(r) = 1 is a sub bipermutative category

ce v and det are given by formulas of the same form on direct sums
tensor products, Again, Example 5.6 works equally well with fﬁvfk3
laced by n k3.

We fxave only listed examples to which we shall refer in chapter
III. As pointed out by Swan [unpublished], all of our examples, and many
thers, can be subsumed within a general framework of systems of groups
( ) for n> 0 together with homomorphisms z - G(n), G(m) X G(n) —~
‘(m+n), and, for the bipermutative case, G(m) X G(n) ~ G(mn) subject ‘
he appropriate axioms. The following remarks, which apply to any

\ich example, describe the action maps

0, 8 (p) xzp BG@)F - BG(pn) and £ o € (p) -XEP BG@)F -~ BG(xF)

blely in terms of homomorphisms of groups. When -p is a prime, the
duced maps of mod p homology determine operations on
*( i BG(n); Zp) [26, 1 ], and the computation of these operations is thus

n>0
educed to the homological analysis of appropriate representations.

emarks 5.8, Let ({1,®,0,c) be a permutative category with objects
n ] n > 0} and with morphisms from n to n forming a topological group
(n) whif:h contains Zn. Recall that the wreath product Zp S'G(n) is the
emi-direct product. of Ep and G(n)p determined by the evident action of
on G(n)p. If we regard EPJG(n) and G{n) as categories with a single

‘object, then Epr(n) is the orbit category %px G@)F of EPX G(n)®.

=
~ P
The functor cp:EP X G(n)p -~ G(pn) factors through the homomorphism

ZPJG(n) - G(pn) specified by
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(o-;gl,...,gp) - zr(n,...,n)(glﬁl...@gp) = (g

®...0g Yo{n, ..., m)
eH1) ot :

{p)

Application of the classifying space functor B thus gives the commutative

diagram
®<p)5Bc<n>P = B(Z x () e
BG(pn) .
e) x5, BGE@° = B fG(a) /p’

P

If, further, ((1,®,0,¢,®,1,¢) is bipermutative, then the functor
'Ep:ﬂip X G(n)p - G(n)p factors through the homomorphism prG(n) - G(aP)
specified by

(c‘;gl,...,gp) - o-<n,...,n>(gl®... ®gp)

= (g

Jo<n, ..., n>

®... Qg
o (p)

=7')

and application of B gives the commutative diagram

D) X BG@)P = B(ngG(n)p) \GPA
BG(F) .
0) %, BG@)P = BE_[G() e
p) X5, = B(Z,

P

We use these remarks to determine BOZ.. The following observations
are due to Z.Fiedorowicz.
Remarks 5.9. A moment's reflection Qill convince the reader that, for an
integer valued matrix M, MMt =1 if and onl? if each row and column of M
has precisely one non-zero entry and that entry is + 1. Indeed, the natural
homomorphism ZPI o4, 2) -+ O(p, Z) is an isomorphism for all p Abbrevia‘te

= 01, Z) and regard B'1r+, the union of B = RP® and a disjoint basepoint

'
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0, to be the sub '&O-space BO(0, Z)1LBO(1,2) of BCOZ. D(B-rr+) is the free
{Q ,L)-space generated by B1r+, and there results a map D(Bwr+)-> BOZ of
{5 & )-spaces. In fact, this map is just the identification (compare [45, 2.4]
or [26,1.5.7])

U 8, DB = 1L D (o) x5 BO(1, z)P — W BoO(p, 2) = BG-2.
P
the functor e: & — (FZ gives rise under B to the injection ps® - D(B'rr+)

+
dotermined by the points 0 and 1 of Bw .

<




VII. The recognition principle for EOO ring spaces

The zeroth space of a spectrum is an Eco space, and an E
space determines a spectrum and therefore a cohomology theory. If

I'X denotes the zeroth

space of the spectrum associated to an Eoo
space X, then there is a map , :X = I'X which respects the Eco
structure and is a group completion, in the sense that

Lyt H (K f) ~ H*(I‘X; %) is a localization of the (Pontryagin) ring

H*(X;fé) at its submonoid w,X for every commutative coefficient

0
ring % . (See [46,§1] for a discussion of this definition; the letter T
is chosen as a reminder of the group completion property and has
nothing to do with the use of this letter in other theories of infinite
loop spaces.,) Here spectra are to be understood in the coordinate-free
sense introduced in chaptér II, and the results of [45 and 46 ] just sum-
marized will be recast in terms of such spectra in section 3,

In chapter IV, Frank DQuinn, Nigel Ray, and I introduced the
notion of an Eoo ring spectrum. In section 2,. the zero™ space of such a
spectrum will be shown to be an Eoo riﬁg space. The proof requires use
of the little convex bodies operads ‘Kv introduced in section 1; the
essential feature of kv is that the orthogonal group OV acts on it.
In section 4, the spectrum deterx;nined by the additive Eoo structure of
an Eoo ring space will be shown to be an Eoo ring spectrum and it will be
proven that, for an Em ring space X, :X -~ TX respects both Em
space structures. In effect, this means that the multiplicative Eoo
structure is preserved on passage from the additive Eoo structure to its

associated spectrum. As a special case of more general results, we

iall see that if X is the disjoint union 1l X( Z}j, 1), then I'X is equiva-
nt as an Eoo ring space to QSO. This result is a multiplicative qlabora—
on of the B arratt- Quillen theorem [16;68346 §3].

The component I‘1X of the identity element of I'X is a multipli-
ative Eoo space, We prove in section 5 that, under rnild hypotheses, the
calization of 1“1X at any submonoid M of the positive integers is

€ qui-valent as an infinite loop space to the component of the identity element
of the zeroth space of the spectrum derived from‘ the multiplicative EmA
pace structure on a certain subspace XM of X. In other words,

Ithough rl'x is constructed by use of the additive Eoo épace structure

‘on X, its localizations depend only onthe multiplicative EOo space structﬁre.
‘In carlier approaches to multiplicative étructures, only the localized ‘
infinite loop spaces were visible because thére was no way to handle the
additive and multiplicative structures in combination. In particular, the
inain result of Tornehave's paper [76], which describes localizations of

8F in terms of the symmetric grouéé, will drop out as a special case by

une of our version of the Barratt- Quillen theorem.

The essential results of this chapter were obtained in 1972 and
presented in lectures during the winter of 1973. I mention this since
at least one other author has since announced his intention of developing

a similar theory.

§1. The little convex bodies operads

The little cubes operad Cn of [45,§4] played a canonical role in
the passage from Eoo spaces to spectra. Indeed, as explained in [ 45,
p.153-155], the geometry given by the action of any an operad on a space

was automatically transformed into the little cubes geometry on the derived
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infinite loop space. We need a canonical EO; operad pair in order to obtain
the analogous {but considerably more delicate) passage from Eoo ring spaces
to Eoo ring spectra. From the definition of Eoo ring spectra in chapter IV,

it is clear that the linear isometries operad f of I.1.2 must be chosen as

the canonical operad for the multiplicative structure. We require an operad

Koo on which x acts and which can be used interchangeably with C,oo in
the additive, or one operad, theory.

Recall tﬁe definitions of J‘ and J* from I.1.1 and I.1.8. Let J+
and J : denote their respective full subcategories of positive dimensional
real inner product spaces. Ideally, we would like to construct a functor }(
from J * to the category of operads such that application of K to RT

1 £n< oo, vields an operad kn equivalent to tn' In fact, we shall have

to settle for a good deal less. While 7(00 will be (weakly) equivalent to Coo'

the X n for n< oo will not be {or at least will not be proven to be)

equivalent to the En' Moreover, in order to construct the functor )C at all,

we sh-all have to weaken the notion of operad and shall have to carefully
examine the resulting geometric structures in order to make sure that
the machinery of [45 and 46 ] still applies.

The difficulties can be explained quite simply. To carry out our
original program, we would have to construct a space EV of embedd-
ings V -V for each finite dimensional real inner product space V
such that the following properties were satisfied:

(1) fcele Ew if ce £V and £e J(v, W), dim V = dim W.

(2) "exde E(VOW) if ce £V and de EW.

(3) cec'e EV if c,cte EV.

(4) The space of j-tuples of elements of &V with pairwise dissoint
images has the Zj~equivariant homotopy type of the configuration

space F(V,j) of j-tuples of distinct points of V.

COC 0Tl CCCCCCri e teaaeacood
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| have been unable to construct such spaces £V, and there is reason to
believe that no such spaces of embeddings exist. We shall be forced to re-

place (4) by the following weaker condition
(1) EV is a contractible space.

ven then, the closure conditions (1), (2), and (3) appear to be incompatible,
and we shall be forced to drop (3) altogether. However, we shall have to
have spaces of composable sequences of embeddings Wﬁich satisfy analogs
wf (1),(2), and (4'). With these considerations in mind, we proceed to

wur basic definitions.

Definition 1.1, Let V be a finite dimensional real inner product
upace. A little convex body in V is a topological embedding c:V =~V

such that the maps ¢, V =V specified by
ct(x) =tx+ (1 -t)e(x) for xeV

are alsp embeddings for all te I. Since c , it follows that

t,s = cs+t-st

nach c, is again a little convex body. A sequence (cl, ey cq) of little
convex bodies is said to be composable if g = 1 or, inductively, if q > 1

ane
L., C 1<i<
(eg pr v 0%1 0 St” Sir,e Syt gt 13i%e

in 1 composable sequence of little convex bodies for all t e I. It follows

that each (c B c:c1 1:) is agé.in composable and, by inductive use of the

Ly
cate t= 0, that all sequences obtained by composing some of the maps
oy (in ordered blocks, with t fixed) are composable.

Although the definition evolved from convexity considerations, the

torm convex body is a misnomer: the image of a little convex body need

aot be convex.




Examples 1.2. (i) If c:R = R is an embedding which is an increasing
function, then so is each c,- Any sequence (cl, ey cr) of increasing
embeddings R -~ R is composable.

(if) I c:V =V is a little convex body and f e J (V,W), dim V= dim W,

then (fc f“l)t = fct f—l. I (Cl' - ,cq) is a composable sequence of

little convex bodies in V, then (fciful

). .,fcqf-i) is a composable
sequence of little convex bodies in W.

(i) I c: V=V and d:W - W are little convex bodiés, then

(e X d)t - e, Xd. I (Cl’ R cq) and (dl’ RN dq) are composable

sequenceé of little convex bodies in V and in W, then (cl X dl’ eay ch dq)

is a composable sequence of little convex bodies in V@ W. -

For rigor, we should at this point define the notion of a "partial
operad". However, to avoid excess verbiage, we prefer to be informal,
We agree to continue to use the term operad for structures specified as in
Definition VI. 1. 2, but with the structural maps vy defined only on
specified subspaces of the spaces & (k) X 'ﬁ(ji) X... X C(jk), with the
two-fold iterates of the y (asin VI.1.2(a)) defined only on specified

subspaces of the spaces

C) x ¢G,) % Y CHI*x Ch)x...x C(ij1+"'+jk),

and so forth. The only examples will be the little convex bodies operads
(and their products with honest operads), where the y will be obtained by
composition and their domains will be specified by allowing only com-

posable sequences (in the sense of Definition 1.1) to be composed.

Definition 1.3. Let V be a finite dimensional real inner pro-
duct space. Define the little convex bodies operad }(v of V as

follows. Let }( v(j) be the set of those j-tuples <c 'y cj> of little

R

convex bodies such that the images of the ¢ are pairwise disjoint.
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t v denote the disjoint union of j copies of V, regard

P ,cj> as a map 'V -V, and topologize X v(j) as a subspace

a® the unique "embedding® of the empty set in V.) The requisite data
are specified by

;d d)=cold, +.. .4 )-Ji+m+3kv~“v+ Sy ey
a) v{c; g med(d b dk =
for those ¢ = <ci’ - ,ck> € g(v(k) and

PIN j h pai d
. _r 'dl‘,jr> € Xv(_)r) such that each pair (cr, r,s)

is a composable sequence;

(b) 1e xv(i) is the identity function; and

= > s .
{c) <c1,...,cj>¢r <c€(1), ,cq(j) for oe EJ

dm V = dim W, define a morphism of operads _?(fl X i ]Cw by

-1 s . . +
¢~ fcf on little convex bodies. Then JU is a functor from .,,Q*
to the category of (partial) opei‘ads. For finite dimensional inner product
apaces V and W, define a morphism of operads o X *K by

v vOw

¢ =+ c X1 onlittle convex bodies. By passage to limits, precisely as in
he proof of 1. 6.9, X extends to a functor from -& * to the category of
operads. For 1< n<ow, define ')(n = )(‘v where V = R,
Recall from [45,§4] that a little n-cube is a map c:J° = J°,
where J = (0,1), which is a linear embedding with parallel axes (i.e.,
s product of n increasing linear embeddings J - J). The little n-cubes
operad {fn is defined in precisely the same way that the }(v were,
Examples 1.2 imply the

but here the y are everywhere defined.

following pair of results.

Lemma 1.4. Let @:J -~ R be an increasing homeomorphism and

let fe :9 (Rn, V), dim V = n. Then the maps C'n(j) -~ Kv(j) specified



CCCCCCCCE e CeCCoCCe oo e eeeeeoot

174

by sending a little n~cube ¢ to the little convex body fec (aai)nf—i
define a morphismn of operads fn -~ X . Thus }(v contains a copy
v

of o for each such pair (e, £).

Lemma 1.5. Fix an increasing homeomorphism
a: T+ R and let int {fn - Xn be the morphism of operads specified by
n -in . . = i .
c-a ca ") onlittle n-cubes. Then i oo =gei: fn* )CnH
and the in induce a morphism of operads im: Coo - Km by passage
to limits.
. - n .,
Assume that a(1/2) = 0 and let g: z‘;n(g) - F(I,j) and
1 X v(j) - F(Rn,j) be the maps specified by sending a little cube ¢
to its center point ¢ {4/2, ...,4/2) and a little convex body c to its
center point c{0). Define a homeomorphism jn:_F(J'n,j) - F(Rn, j) of
configuration spaces by x - an(x) on points X e i Then the following

Z‘j—equivaria.nt diagram is commutative:
E.6 = .
W0 2K g

.gl O

FE"j) ——F(R", )

By [45,4.8], g is a Zj~equiva.ria.nt homotopy equivalence. Thus,i up to
homotopy, ¢n(j) is a Zj—-equivariant retract of Kn(j). I have not
been able to prove that in is actually a Zj—equivariant homotopy equiva-
lence (although this could perhaps be arranged at the price of a more
complicated notion of little convex body).

By the very definition of composable sequences of little convex
bodies in V, the deformation specified byv ht(c) =c contracts the space
of such sequences of length g to the identity sequence (i,...,1). In

particular, it follows that ot xv(j) - xvﬂiw(‘j) is null homotopic for
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all V and W. Indeed, the requisite deformation k is specified by

choosing any point < d,,... ,vdj> € kw(j) and defining
ce.,c. X4, > ,0<t<
<c1Xd1’1_2t, c:J d_},l-Zt t< /2
K Xi,... =
t(ci i, ,ch1)
< . xd,> L <.
°1,2th1' res o d 2t

‘The point is that the disjoint image requirement is satisfied on the first

i
half because <d,,..., dj> e X W(j)‘v Thevefore m, )(Oo(j) =0, (Inthe

half of the deformation because <c,,..., cj >e x v(j) and on the second

cnse of.little cubes, this argument is due to Bogrdma.n and Vogt [20, p. 65].)
By the same argument, the product of o Xv(k) - X v@w(k) and the

@ ‘X'v(jr) - X @w(jr) for 1< r £k restricts to a null homotopic map
{rom the domain of y (for X v) to the domain of v (for Xv@w)’ hence
the domain of vy for 7{_00 has trivial homotopy groups, and similaily for
the domains of all iterates of the maps y.. It would follow that J( oo(j)
was contractible if we knew either that X 00(j) had the homotopy type of

a CW-complex or that each o: xn(j) - X (j) was a cofibration (and

nti
wimilarly for the domains of the maps vy and their jiterates). I have not
vorified either assertion. Howevei', we need not let this difficulty detain
wi since the conclusions we wish té derive from Eoo spage structures can
be phrased homologically, so that it is harmless to require of a partial
Is‘:m operad (f oniy that the 34(3) and the domains of the vy and their

{torates have trivial homology groups. Thus ioo: Looo - 3(00 may

be regarded as a weak equivalence of (partial) Eoo operads.




§2. The canonical E _ operad pair
®

We first show that just as En acts naturally on n-fold loop
spaces [455.11s0 K o Bcts naturally on "V-fold" loop spaces. We
then discuss the "partial monads" Kv to which the partial operads
va give rise. Finally, we show that x acts on ;<co , so that Kco
restricts to a (partial) monad in [Te] (as in VI,1.9), and prove that

the ze roth

space of any Eoo ring spectrum is an Eoo ring space.

We should begin by defining the nétion of an action by a (partiél)
operad ;n a space, but shall instead leave the requisite modification of
Pefinition VI.1.3 to the reader. We continue to u-se the term Ew space
for a space with an action by a {partial) Eoo operad. With »thev appropriate

definition, the following result is trivial to verify. We agree to fix tV as

the one-point compactification of V, so that

Q'K = F(tV,X) and Z'X = Xa tV,
We agree to identify tR™ with I = In/BII'.n via the homeomorphism
t(a'l)n, where o!J =+ R is as in Lemma 1,5.
Theorem 2.1, For Xe¢ J and Ve J: , let
8. ) )% ( 2"xP ~ X be the map specified by
v’j v P )
yr,(a) if cr(a) =beV

e Y =
ev’j(<cl, 15>y ,Vj)(b)

j
* if b{UImcr
r=l

Then the 8 . define an action ev' of KV on 2'X. Under the natural
. -
. s g . W,
identification €' %X = QVQWX, the action Gv coincides with the com-
posite of eveiw ‘and o: K s Kvﬂ?w . For E ¢ /X , the acti?ns SV of
v

X on E 2BV for Ve R® define anaction 8  of X. on E .

v 0 co [>+} 0
Under the identification sz”x = SZVX, V= Rn, the action of c . on 27X

n

coincides with th i i i
incides wi e composite of i {:n - Kn and the action en of ‘Xn

n"x, and similarly for the action of C on E .
) w 0

Define a space KVX for each space X by letting

VX= .U.Xv(j) X .Xj/(m), where

J

z

[T 2. 4

\ 5 1,‘.,,x_j)f=1 (<c1,...,ci“1,ci+1,...,cj>,x1,...,xi_l,xi+1,...,x,)

J
henever x, =¥ (compare [45, 2.4]). Define n:¥X = K X by

{x) = [<1>x]. We would like to define p KK X +KX by

RIS RN CH | I S L PRI B PR
rce Kv(k), d e }(v(jr), and V€ XJr. ‘We cannot do so since y is
ot defined on all of "Kv(k) X }(v(ji) X X‘Xv(jr)' . We should there-
re define the notion of a partial monad C, with structural maps
-)A:C(Z)X -~ CX for a suitable subspace C(Z)X of CCX. The various
-1)-fold iterates of v would have to be defined (and equal) on specified
ubspaces C(n)X of Cnfx. (More precisely, C(n) would be required
to be a subfunctor of Cn.) With the proper formal definitions, a partial
operad C ' gives rise to a partial monad C in such a way that the notions
of an action by & and of an action by C are equivalent. Hére again, we
leave the pedantig details to the reader and continue to use the terms monad
and C-space for the more general concepts. The only exaﬁxples will be the
monads C derived from operads of the form £'xx v (where (' is an
honest operad). Here the subspaces C(n)X of G™X are obvious: all n-fold
sequences of little convex bodies which would be composéd under the iterates
of p are required to be composable in the sense of Definition 1.4.
We have an action ev: KVQVX -9'% fo: any space X.
Theorem 2.2. For X ¢J and Ve ‘,0* , define a (K X =~ Z'X to

be the composite K 7 9

KX —Y KVQVZ‘VX V2%,
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where mX - 2'2"X is the natural inclusion, and define a KooX - QX by.

passage to limits over V C R®. Then @l Kv - 's" and aOo:Koo - Q are
m\orphisms of monads in J and the actions of KV on X and of
Koo on EO for E e 5 are induced by pullback along a, and a., from the
actions of 25" and of Q. Moreover, a is a weak homotopy equivalence
if X is connected and is a group completion in general.

Proof. The monads 92z and 0 are defined as in [45,p.17 and
46], and the first stafement holds by slight elaborations of the purely
formal diagram chases in the proof of [45, 5.2); moreover, with a =a
for V= Rn, anin: C, 2°2® coincides with the morphism of monads de-
rived in the cited result. By [46, A, 2(i)], il CwX ~ X X is a homology
isomorphism for any space X. Now the last statement for X connected
is given by [45, 6.1], while the general case is proven by explicit homo-
logical calculation in [26, 1§5].

We next exploit the fact that '}(m is obtained by use of the functor
?(_ (from &+ to operads) to specify an action of o on QCOO. Yet again,
we can and must first generalize all of the definitions and results VI.1.6-
1.11 so as to allow the additive operad of an operad pair to be a partial
operad. The multiplicative operad will be required to be honest., We omit
the details, and we continue to use the term E(Jo ring space for a space with

an action by a (partial) Eoo operad pair.

Lemma 2.3. (xm,o‘( ) is an Eoo operad pair with respect to

the action maps \ specified on ge J (k) and c € X oo(Jr) by

Megiey,..e)= < ‘ C Kglep> e K Gyt
IeS(Jl,...,Jk)
where, if cr = <cr1, PN crjr> and I= {11, . ’lk} , then CI is the little
convex body ¢y X-erXe in (Rm)k.

1 e

G O O G O Y A S Y G G G O G G S S & S S O G O G S G Y Y G S ST G ST ST G ¢
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Here X g(cI) is geg g—l on finite dimensional subspaces gW
of R® and is the identity on the orthogonal complement of gW whenever
< is the identity on the orthogonal complement of W C (Roo)k. The veri-
fications of the identities specified in VI.1.6 are tedious, but elementary.

Hp:ld — £ is a morphism of Eoo operads, then, by IV.41.9,
Qis 2 monad in M[ j’e]. As explained in VI§1, if H acts on £ » then
G is a (partial) monad in [ j’e]. We have the following consistency

' th .
statement, which implies that the zero  space of any Eoo ring spectrum

in an E_ ring space,
s g sp

Theorem24. Let (w,p):{& ,H)~ (Koo’ Z) be a morphism of
- i i : : - }3
l.00 operad pairs, - Then the morphisms w:C - Koo and a KCD Qo
monads in J restrict to morphisms of monads in 4 [7 e]' If E is a

: th
!} -spectrum, then its zero  space E_ is a {((,§ )-space by pullback

0

ol its Q-action QE_ —~E_ along o .
0 [e+)

4]
Proof. By IV.1.9, the second statement will follow from the

tirst. Clearly H acts on K‘oo via

A (g; cl,...,ck) = )\(pg;cl"".’ck)

and (m,1):(E,8)~ (¥ oo’)d } is a morphism of operad pairs. Let
Xe HI je]. mCX ~ K X is a morphism of %O-spaces in view of
Vi.1l.8. Since Koon :KmX.-* Koon is a morphism of fi0~spaces,
because 1 is so, aoo:KooX - QX will bea morphism of Ho—spaces
provided that Sm: Koo QX - QX is so. Thus we must verify that the

fullowing diagrams commute!

1 xem 5 X X8 3

1 k k
A (k) X (QX)

Ny ke
H(x) x -koo(jl)x(QX) X.X xm(jk)x(Qx)

£ S
R 00,j,+*]
Kol i x syt F — ox

¢
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E’k on the left is specified in VI.1.8., Think of points of QX as maps

§%° «+x A 5”, where 5° = trR®

. For c= <cl,...,cj>e?f09(j) and

y= (yl' vy yj) € (QX)J, L j(c:, y) is then the composite

w joo V1V VY 0 o
s ‘ 15 1, Hxp8®) B xa8®,

where 7Y denotes the wedge of j copies of ¥, € is the pinch map
specified by €(b) = ¥ unless b= cr(a) for some r and a, when T(b)=a

h copy of Sm, and p is the evident folding map. For ge H (k)

in the rt
and z = (zl, vens zk) € (QX)k, §k(g, z) is that map which makes the follow-

ing diagrdm commute

§P BB 5N L as® A E o, %5 L aKAS®
gk(g’ z) "2
£ (g)al 5

KasP < trPE ¥, 6%, . As® e XA...AXASCh...AS®

and which, on the orthogonal complement of (pg)t(Vy@ ... ® V,) where

o

Vr © R® is a finite-dimensional subspace such that z is in the image
Ve Vr

of © "Z "X, has constant coordinate in X and the identity map as

coordinate in 5. Now the desired commutativity is easily verified by

direct computation, the point being that the smash products used in the

definition of E'k distribute over the wedge sums used in the definition

of the 6, .
@)

§3. The one operad recognition principle.

We translate the one operad, additive, recognition principle of
[45,§14 and 46,§2] into the language of coordinate-free spectra. It
simplifies slightly in the process since the construction of a prespectrum

and the passage from a prespectrum to a spectrum were awkwardly com-~

ined in the earlier versions. It also complexifies slightly since we must
ke account of the distinction between partial and honest operads and their
ctions. However, the basic constructions and the bulk of the proois re-
main unchanged and will not be repeated here.

Let C' be a locally contractible (honest) operad, for example

7 oran Eoo operad. Define { = {'X '}{_00 [ 45 3.8] and observe that {5
is a {partial) Eoo operad (that is, Zj acts freely on C (5) and £ (§) and
the domains of the structural maps vy and their iterates have trivial hdmology
groups)., Let m: &~ Koo and {: C *.C” be the projections.

Let (X,8) bea (:-space. For technical reasons, we assume
once and for all that X ‘is of one of the following three tfpes (which
‘certainly include all examples of any interest).

1) The action of C on X is obtained by pullback along ¢ : C -
from an action of ' on X.

(2) X is EO regarded as a C-space by pullback of its Q-space structure

along o where E ¢ /f

{3) X is CY regarded as a C-space via the structural rﬁap y of the

(partial) monad C, where Y e J

In (1) and (2), the domain of 8 is CX; in (3), the domain of @ is the

domain C(Z)Y of p.

For each finite dimensional sub inner product space V of ROO,

. o ' . :

define e:’v = C X¥ v and let Cv be the monad in J associated to Cv

Recall, and generalize to the context of partial monads, the notion of a

{right) action of a monad on a functor [45,9.4]. By [45,9.5], the adjoint
vV . . v v .

of zrv:Kv -+ Q Z gives an action of K onthe functor Z . By pullback

along 71 C_ K , we obtain an action p_ of C_ on =¥
v v v v
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The basic geometric construction of [45] is the two-sided bar con-

struction [45,9.6 and 11.1]
B(F,C,X) = |B,(F,C,X)|,

where C is a2 monad, X is a C-space, and F is a C-functor. Here ] I
denotes the geometric realization functor from simplicial spaces to spaces,
and the space Bq(F,C,X) of g-simplices is FC% where G denotes the
g-fold iterate of C. This construction generalizes readily to the context of
partial monads and their actions. In practice, due to X being of one of the
three types specified above and to the definition of C and the CV in terms
of G" y Kco' and the‘ K o there will always be obvious subspaces

Bq(F, C,X) of rc%k in sight so that the appropriate faces and degeneracies
are defined. Indeed, this will simply amount to the requirement that
precisely the composable sequences of little convex bodies (in the sense

of Definition 1.1) are allowed to be composed.

We may thus define a space (TX)(V) by
4) (Tx)(v) = B(=", C.X) = |B, (=", G.X)| .

By convention, when V = {0}, Zv, Q.V, Kv, and Cv are all the identity

g : . th
functor on and the a, and pv are identity maps. Thus the zero
space T X = (Tx){0} is just X,

For an orthogonal pair of finite dimensional subspaces V and W
of ROO, the morphism of operads ¥ i Kv+w induces a morphism of
operads ¢ cv-!-w . With the first equality given by [45,9.7 and 12.1],
we therefore obtain an inclusion

vt -+
(5) c:z‘”B(z",cv,x)= B(Z “’,cv,x) - Bz’ f“’,cwW,x)

We would like to say that (TX,c¢) gives a prespectrum, as defined

in II.1.1. For this, T must be appropriately defined on isometries
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f:V -~ V! for subspaces V and V' of R® of the same finite dimension.

It is easily verified by separate arguments in the cases (1), (2), and (3) that
4

there are maps E(f):X = X such that if Z‘Jf':ZIV -2V is defined in the

obvious way and if Caf =1X 'K_f: Cv - Cv' , then maps (TX)({f) as re-

quired can be specified by

() (rx)0 = B(=h,C,0 £0):B(",C %) ~ BEY,C %)

We omit the details since the requisite maps £(f) will appear most
naturally in the two operad theory (as use of the letter £ would suggest)
and since, as explained in I1I.1.10, the (TX)(f) in any case play no
essential role.

Thus (TX,o) is a prespectrum. Consider the spectrum a®Trx
and the natural map ¢ :TX ~ 2PTX of prespectra given by II.1.4 and
Io.1.5. Let. I'X, or I’(X,8) when necessary for clarity, denote the
zeroth space of @PTX. The crux of the recognition principle is the

analysis of the ze:t'oth map X~ IX,

Theorem 3.1. Consider the following diagram:

B(o:co w,1,1)
B(C, C,X) ——————— B(RQ,C,X)

e(e)“ (n) lv“‘

X X
(i) €(8) is a strong deformation retraction with right inverse (n);
(ii) B(am'n', 1,1) is a group completion and is therefore a weak homotopy

equivalence if X is grouplike (i.e., if X isa group);
(iii) voa is a weak homotopy equivalence; .
(iv) L= ym;’ B(amwr, 1,1) o1 {n), hence . is a group completion.
Mozeover, E(8), B(amw, 1,1), and ym {but not T(n) and . ) are maps of

o -spaces,




Proof. Formal results from [45] apply equally well in the con-
text of partial monads as in that of monads, and [45,9.2,9.8 and 11.10]
imply (i). Results in [45] which apply to general simplicial spa'cves also
apply equally well here, and [45,12.3 and ‘14. 4 (iii)] iroply (iii). The first
part pf (iv) is a trivial calculation (compare [45, 14.4 (iv)]), and the last
statement is proven by a slight elaboration, necessitated by our partial
structures, of the proofs of [45, 12,2 and 12.4]. It remains to prove (ii).
Here we shall have to use the infinite little cubes operad coo' and we re-\l
‘write C = C!'X Koo and let C' X Coo be the monad associa;ed to

' PR o - .
C x Coo' By useof i : Coo - Koo' we obtain the commutative

oo
diagram
) B(aooioo'rr, 1,1)
e(e) B(C' X Coo’ Gt X COO,X)———-———————————» B(Q,Ct X Cw,X),_
X B(ixiw,lxiw, 1) B(i,ixim,i)
£(e) B(amw,i, 1)

B(C'XK_,C' XK _,X)——>———>B(Q,C'XK_,X)

where X is regardedasa C'X CO;—space by pullback along 1><im. By

the left triangle, B(ixim, 1Xiw, 1) is a homotopy equivalence. By [46, 2.3],
but with VI. 2.7 (iv) substitated for [46,2.1]4n fhe proof given there, the

top arrow B(amiwv, 1,1) is a group completion. It therefore suffices to
prove that B(1,1 Xim, 1) induces an isomorphism on homology. By [46, 4. 4],

it suffices to show that each
i M 1 - 1
Bq(i,iX;Lw,i).Bq(Q,C xcm,x) Bq(Q,C xxw,x)

induces an isomorphism on homology. Bq(Q’ Gt XCOO,X) and
Bq(Q, C'X KOO,X) are obtained by application of the functor Q to
(Crx Goo)q(X) and to (C* X Km)[q](X), where the latter is the appropriate

domain space, namely (C'XKm)(q)(X) in cases (1) and (2) and

"X Km)(q+1)(Y) in case (3). By [26,1§4], it suffices to show that
1 9 - 1 [Q]
(%G _) %) ~ (o1 x k)l V)

duces an isomorphism on homology. Typical points of both sides have
ordinates in various of the spaces of the relevant operads and in X or Y.
e may filter by the number of coordinates in X or Y. The successive
‘quotients may be thought of as genei:alized equivariant half-smash products
5,2.5], and the map induced on such spa;:es by any morphism of

( artial) Eoo operads is a2 homology isomorphism. Indeed, the shuffle

ap shows that the homology of such spaces depends only on the chains

f X or ¥ and the chains of the operad}coordinate. The latter chains are
cyclic and t.'ree over the appropriate configuration of symmetric groups,

ence standard techniques of homoiogical algebra apply to yield the con-

The following pair of results show that o®rx gives the "right!
pectrum in cases (2) and (3).
Proposition 3.2. Let E ¢ 4. Then the maps

e(d,): (TEy)(V) = B(2',G,,Eg) - EV,

[~ ZVQVEV - EV is the evaluation map, define a natural

here f.: z"Eo

ap w:TEy—~ vE of prespectra. The unique map Z;:SZODTEO -+ E of
pectra such that (v ¥)1. = « induces an isomorphism on m for all 1 20.
Proof. e(ﬂv) is defined in [45,9.2 and p. 126], and the first state-
-ment is an easy verification from (4) through (6) and the definition,IL. 1.1,
f prespectra. Since w:Ej = (TEO){O} =~ E, is the identity map and E;

w: TE - EO is a weak homo-

‘{8 grouplike, (iv) of the theorem implies that & 0

topy equivalence. The second statement follows.

The proposition implies that « becomes an isomorphism in the stable

omotopy category H4 if E is connective. In other words, E (and thus
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the cohomology theory it determines) can be recovered from the underlying
C—space EO .

Proposition 3.3.. For Y eJ , the composite map of spectra

(#a]
o Q T(amw) o ~
a2°rcy ——2 . o®7oy —Ls QY = 0% %y

is a strong deformation retraction.

Proof. Recall that (EmY)(V) = =Y. The maps

v V.
e(B,):B(2',C_,C,¥Y) - =Y

are strong deformation retractions by [45,9.9 and 11.106]. With the evi-
dent maps ¢ = B(l, s, ¢) and B(Zf, Cp Cf) as in (5) and (6), the
B(Ev, Cv, CvY) are the spaces of a prespectrum T'CY, and the maps
g(ﬁv) define a strong deformation retraction of prespectra. There is
an obvious inclusion of T!'CY in TCY and, since passage to spectra is
a limit process over V C Rm, this inclusion becomes an isomorphism
upon application of the functor 2®. The resulting deformation retract-
tion @CTCY - QooY is the specified composite since p\} is the
composite

v =Ve

z'c ¥ I 'k ¥ —>z"0"sy — 2'y.

The proposition gives an equivalence of infinite loop spaces between
I'CY and QY and is our preferred version of the Barratt- Quillen
theorem.

[45, §14 and 15] and [46, §2 and 3] contain further discussion and
various additional results about the coordinatized spectrum BmX
specified by BiX = (ﬂmTX)(Ri). Of course, the little cubes operads used
in those papers could be replaced by the little convex bodies operads

introduced here without any change in the results or their proofs. In par-
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ticular, we have the following consistency statement, which was used in
the discussion of Bott periodicity in chapter I. We give some details since

the result needed there was more precise than the result proven in [45 and

16].
Proposition 3.4, Let X bea C’-space. Then there is a map

F,:ﬂmTQdX - ﬂdﬂmTX in H4 such that the following diagram commutes

a%
dl.
Ay

rQ X ————— Q I'X

in HT .

Proof. [46,3.1] gives maps of { -spaces

£ 5
X Y dX B deX

snuch that & and QdE. are weak equivalences. Think of BdeX as the
-d :
serot® space of the coordinatized spectrum Booadx = {BdHQdX} .
d s .
Then application of the functor Q Boo and use of Proposition 3.2 gives

maps of coordinatized spectra

d.
d. Q"B &
a_-d 2 a o’ 4
(%) Bmudx =20°Q Bmudx-v—-—‘i a°B_B dng<__._—-—-n B_Y X
aB ¢

__..__:‘_'L.,QdB X,
©

’ th
the first two of which are weak -equivalences. On the zero space level,

we have the following commutative diagram of weak equivalences:

a a
o
alx —* o%s dsz%{ LI oy & —2e  o%
" d A d
Ll SZdL [ﬂ L lﬂ L
aa d ors  a o%re 4

Inspection of the explicit construction of the intermediate space YdX

in [45,p.148-151 (especially the bottom diagram on p.150)] and use of




d -
[45,14.9] demonstrates that the composite (2 E)(ﬂdé) L is equal in
HT tothe identity map of QdX Now application of the functor ¥
(which commutes with ) to the maps of (¥) and use of the equivalence

q;ﬁ =~ 1 of IL.1,8 gives the required map. { of coordinate-free spectra.

As explained in [46,3.7 (p.75)], the previous result implies the

following further consistency statement.

/
Proposition 3.5, Let G be a monoidin { [T ]. Then BG and

the delooping B.G are equivalent as infinite loop spaces.

1

§4. The two operad recognition principle

Assume given a locally contractible operadpair (&', #'), for
example (], fh" ) where A ois locally contractible or any Eoo operad
pair, and define {(;, {4 ) to be the product (partial) operad pair

i . ’ N " - - I [y )
(C X Koo’ Hx&y. vet (wop) & . 4) ('Km,x) be the projection
and regard elements of 4 (j) as linear isometries via p. Recall the

definition, IV.1.1, of a 4 -prespectrum.

Theorem 4,1, Let (X,8,£) bea (o, #)-space. Then
TX = T(X, 8) admits a natural structure of H -prespectrum, hence
@ N )
Q TX admits a natural structure of /‘J~spectrum.
Proof. By IV, 2.3, the second clause will follow from the first.
Let Vi, 1< i<j, be a finite dimensional sub inner product of R® and

let ge H(5). We must specify appropriate maps

(%) gj(g):(rxj(vl)/\...A(Txxvj) ~ (TX)W), where W = g(V;@...0V,).

#e maps will be induced from composites

Vi
B(Z ",C_ ,X) X...

L ]
1

Vj .
XB(Z °,C_,X)
Y

'Vl Vj
]B*(Z ,CVI,X)X...XB*(Z}‘,Cv.,X)]
J

Vl Vj N
]3*(2 ,Cvl.X)A.‘.AB*(Z ,cv',x)]

]xj (),

BEY, C_.X)

iye the first arrow is the natural homeomorphism of [45,11.5], the

nd arrow is derived by passage to smash products in each simpliéial
ee, and the third arrow is the realization»oi a map xj(g)* of
fhplicial spaces still to be constructed. It is apparent from Lemma 2.3

the maps

NI )X Kl X X K (1) gy )
obtained by passage to adjoints and limits from maps

MOK, ) X X T ) = Ky ei) s W= 2, @ 0V,
J

te L (3). Therefore, in view of VI.1.8 and the product structure on
, #), there are unique dotted arrows (f,j(g) such that the following dia-

ams commute (the solid arrows gj(g) being given by VI.1,8 and 1.9):

CX X... XCX

e
6 (e) (@)

CX

e statement holds for any };j0~space X and in particular for CX,

CX, etc. In view of the role played in VI.1,8 by the original map
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E,j(g):X'] —*X, we see that iterative application of the statement above functors employed in the definition of the E,j(g). An easy diagram chase

yields unique dotted arrows gj(g)q, q >0, such that the following dia- shows that the compatibility condition IV.1.1(e) between the §j(g) and

grams commute: the maps ¢ of formula (3.5) is satisfied. Finally, condition IV.1.1(f)

obviously holds if we define the map £ (f):X = X required for formula
Cl Xx...XxClX = c*x...xc%
1 ! j {1.6) to be gl(g) for any ge¢ B (1) such that g|V =f.
£.(g) | £ '
J ! J(g) Thus Eoo ring spaces determine Eoo ring spectra. We know from
t
C«%X _____C___,_._ c% Theorem 3.1 how the derived additive structure (that is, the spectrum

atructure) is related to the given additive Eoo space structure., We next

The gj(g)q all pass to smash products. If we collect the smash product relate the derived multiplicative structure to the given multiplicative

factors tVI, e ,th together and apply tg to them, then we obtain from structure.

the gj(g)q the further maps Theorem 4.2, Fora ({Z,H )-space (X,8,£), all of the maps

v v,
x.(g) := o2 % Ao Aas Yt ¥ e 2V ¢(9), B(amﬂ,l,l), Yoo, 1(n), and v specified in Theorem 3.4 are maps
e v v, wo
1 .
! of H g~ spaces, hence the first three of these maps are maps of

v . V. Qo . :
B (£,C ,X) is a subspace of Z'C_*X, and these maps restrict to the maps
q( W ) p v P ° 3 ¢, #1)-spaces.

on q~simplices of the required simplicial ma . . The face and degen~
q P a 3 P Xg(g) * g Proof. Inview of [45,9.6 and 9.9], €(8), B(“m"'- 1,1), and 1(n)

eracy operators [45,9.6] are respected because the maps 0,j, and n are maps of
’ ] P P .,p., K P are geometric realizations of maps of simplicial %O—spaces and are

th . v \4
#4 -spaces and, for the zero face (obtained from the g :£°C - = be-
0~ SP ! ce ( ﬁV v ) therefore maps of HO-SPECES by [45,12.2]. The map YOO is the limit

cause o wCX - X is a map of ‘:l ~-spaces (by Theorem 2,4) and the
w© P = o7"P (by ) wver V C R of the maps

action of M on QX is induced by passage to limits from maps
. : v

v, v v, v, vi]B @ =V c ,x)| ~ "B =", ¢ X))
£.(@:92 'z XA a0z X o a¥2%x,
: {ane [45,9.7,12.3, and 14.4]) and is easily verified to be 2 map of
The point is that all requisite compatibility pulls back to the level of finite
i -spaces by explicit calculation (compare [45,12.4]). It would be
dimensional inner product spaces from the compatibility statements (for K 0 )

: @ pointless to give the details since we know independently, by IV.1.6,
and C) codified in VI.1.6~1.9 and in section 2, It is easily verified that
» that ¢ is a2 map of Ho—spaces.

the maps £ j(g) of (%) satisfy the algebraic identities specified in IV.1.1{a)-(c).

- As promised, we have thus "group completed" the additive
Indeed, these identities are inherited from obvious identities for linear iso- P ’ & P

s t £ E i s hile carrying along the multiplicative
metries and the identities given by the assertion that each CqX is a #tructure of an [e) rirg space w FIying g 3

#

i i i beh correctly.
o~ SPace. Condition IV.1.1(d) holds by the continuity of all of the | Mructure. Again, the obvious special cases behave i

N
o~
o

P
TN
/\’
(/‘\
PN
.
,

.
«/\ g
~
~~
N
e
e
ant
~
P
N
s
—

N
P
N
—~




Proposition 4.3. Let E bea }i—spectrum. Then w:TE = E

0
is a morphism of H ~-prespectra, hence & S2OD'I'Eo - E is a morphism
of /i ~-spectra.,
Proof. By IV.1.1(e), we have commutative diagrams
Vl @, . .@Vj vl Vj oA /\6‘ .
~ e
b3 (EOA...AEO) ® ZEAL. AT Eo—-——————-——o-EVIA...I\EV.
=P8t (g) £.(e)
J J
='E . ~ EW
0
for ge M), v, c R®, and W= g(V1 D...d Vj)' In view of the role
played by the E,j(g) on E, in the definition of the {_f,j(g) on TE, it
follows readily that the diagrams
E(ﬂvl) Aouon € (ﬂvj)
(TEQV)) A« o A(TEQV) EV)n .o n BV,
£(e) &5(e
&)
(TE)(W) : EW

are commutative. This proves the first part, and the second part follows

by IV.1.6.
Propositions 4.3 and 3.3 imply the fo‘llowing result.

Corollary 4.4. Fora ?do—space Y, the composite deformation
retraction QOOT(a: )
- o

o®Tcy

e®TQY —>0Q Y
: [+
is a morphism of H, ~spectra,

Indeed, even more is true, The inverse inclusion of QcoY in

@®TCY and each ht of the deformation obtained from [45,9.9 and 11.10]

plication of 2® are also morphisms of }J» ~spectra, This corollary

an usefully be combined with the following consequence of [46, A. 2(i)] .

Corollary 4. 5. For a /jo-space Y, the projection ¢ :CY¥~~ C'Y

s map of (£, H)-spaces and, if ¢ is an E_ operad, ‘the induced map
00 oo : ,

TY:Q TCY -~ Q@ TC'Y of H ~spectra is a weak homotopy equivalence.

Consider, for example, the case (lf: H)= (@ ). The

rollaries and Proposition 3. 3 imply that, ‘fot any (multiplicative)

Qo-space Y, QY is weakly homotopy equivalent as a (Q_X'kw, dlx);’)-

ace to I'DY., When Y = So, DY = .U.K(Ej, 1) as a space, We have
8 obtained a group completion of u K(Ej, 1) which is equivalent as
Eoo ring space to 0S®. This is a ‘greatly strengthened version of the
Harratt- Quillen theorem, Note that we have m'ade no use of the monoid
fructures on DSO and our discussion applies equally well to

s0= 11 K(Ej, 1) for any E_ operad pair (&8 ,). The force of the
jurticular example (D, Q) is the connection it estajblishes, via VL. 5.1,
jotween the category of finite sets and the sphere spectrum and thus,

" a VI. 5.2, between algebraic K~groups and the stable; homotopy groups
i spheres (both with all internal structure in sight). Similarly, VI.5.9
and the corollaries above imply the following result.

Corollary 4.6. The Eoo ring spectrum QP TBOZ determined by the
bipermutative category (OZ is equivalent to Qm(RPm +) and, under the
oquivalencé QmTBE o QOOSO, the morphism of Eoo ring spectra induced

by the functor e: 8 -+ (O Z coincides with the natural split injection
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§5. The multiplicative Eoo structure and localization

Consider a (&, H )-space (X,9,£) where, as in the previous
section, (¢ , §) is a product operad pair (& X Ko H'xX) with e’

and /H/ locally contractible. We have a firm grasp on the M -spectrum

" @®T(X,8) and its relationship to X, Glearly the spectrum QOOT(X, £)

th

is weakly contractible since its zero"" space is a group completion of X

in which the element 0 ¢ 7,.X becomes invertible. Thus we must delete

0

components of X in order to obtain interesting spectra from its multi-

plicative Eoo sfructure.

We make a simplifying assumption. As a commutative semi-ring,
'rroX admits a unit e: zt - -rrOX; indeed this morphism of semi-rings is
obtained by application of Ty to the unit e: CS0 > X. We assume hence-
forward that e: Z+ ine 'n'OX is an inclusion (as is the case in practice).
Let M be a {multiplicative) submonoid of Z+ such that 0 ismnotin M

denote the

and M comtains at least one element other than 1. Let ZM

localization of the integers at M ({obtained by inverting the primes which

divide elements of M). Define X to be the union of those components

M

Xm of X suchthat me M C 7, X and note that X

0 M B2 sub /i ~-space

of X. We shall prove that the unit component of I‘(XM,{-;) is equivalent
as an infinite loop space to thellocalization at M of the unit component of
(X, e).

For an Emspace (Y,x) and an element i of the group completion

th

of 1rOY, let I‘i(Y,x) denote the i component of the ze:f:oth space

) e d - Rl
(Y,x) of @ T(Y,x). Let .. X I'(X,8) and t ®.XM r(xM,g)
denote the group completions obtained by specialization of Theorem 3.1.

We shall make one further simplifying assumption (although it could per-

haps be avoided at the price of some extra work).

CCCCC0CCCCCCCCeacc
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Definition 5.1. X is said to be convergent at M if for each

prime p which does not divide any element of M there exists an eventually
increasing sequence ni(p) such that (La)*: Hj(Xi; Zp) - Hj(I‘i(X, 0); Zp)
is an isomorphism for all j < ni(p).' Here we allow p = 0, when Z,p is to

be interpreted as the rational numbers.
This condition seems always to be satisfied in practice.

Examples 5.2. X is convergent at M in the following cases.

() X is grouplike under 8, sothat w X is a ring; here . :Xi—»I‘i(X,B)

(]

1t a weak homotopy equivalence.

(i) . X =CY for some f‘d -space Y; here the result holds by inspection
0 ) P

of the calculation of ‘I—I*(CY; Zp) in [26,1§5].

{(tii) For p not dividing any element of M, the additive translations

X -

¥ induce isomorphisms Hj(xi; Zp) - HJ.(X Zp) for j < ni(p),

i1’
where {ni(p)} is eventually increasing; here the result holds since, ny
{46,3.9], (Le)* induces an isomorphism
lzn H*(Xi; Zp) - liin H*(l“i(x, 8); Zp‘) = H*(I‘O(X, 8); Zp).

The last exafnple applies to' X = B for the interesting bipermutative
categories (L displayed in VI §5. .
We shall be considering spaces obtained by application of the one operad
recognition principle of Theorem 3.1 to K -spaces, hence all spaces in sight
will be 3 X ‘Km-spaces (where given ﬂ-spaces are regarded as M X ‘)(CD—
spaces by pullback along the projection).
We shall allow ourselves to invert weak homotopy equivalences by work-
ing in the category HJ (see I §2). |
In the case X = QSO, the idea of the following result is due to Sullivan.

Tornehave [76, 5.8] proved this case and also proved a somewhat weaker re-

(




sult in the case X = B4R k [77,3.1]

Theorem 5.3. Consider the following commutative diagram, in which
all spaces are § X '}ﬁoo—spaces, all maps are composites of { X ‘Km- maps
and homotopy inverses of A X '}(m-maps, and the maps i are inclusions of

components.

T, 8 —I— rx,.8)

TL®

r(r; (%,6),6) —Ti—s (1, (%,0),6)

/

T, (X, 0) —_— . Iy (%.8)

(i) 1 m X is a ring, then (PI)L®:X1+ T

at M.

(XM, £) is a localization
of Xl

(i1) If X is convergent, then I‘L(B:I‘(X

M,g) - r(rM(X,e),g) is a

weak homotopy equivalence.
Therefore, if X is convergent, the composite of #x ’){_m-maps and
inverses of M X K o ~Taps
-1,
g = (Dg) (Tihg :T (X, 0) = (X, ,E)
is a localization of I‘l(X, 8) at M.

Proof. The last statement will follow from (ii) and from (i)
applied to T'(X,8). Write the set of elements of M in order as
l,ml, mz, ... and define ni = ml- . mi e M., Fix c € {: (n) and write
n for Bn(cn)(ln) ¢ X for any positive integer n. Consider the sequence

of spaces and maps

(my)  lm,)

(*) X, X X s L X e e
1 ! TS 7

T (ml)

ere 'r(mi) means multiplicative right translation by mi;thus, forme M,
f(m)(x) = F;Z(g)(x, m) for any fixed ge H(2). By the definition of a group

mpletion,
H (6, 8)%) = lim H(X k)

r any commutative ring % , where the limit is taken over

SR)

m,n ¢ M.
mn

() H (K ;%) ~ H (X
Compare [45, 1.2].) By cofinality, we see that H*(I."1 (XM,ﬁ); fe‘) is
omorphic to H*(—X—M;-k_), where fM denotes the mapping telescope
the sequence (*), Moreover, By [46, 3.9], this isomorphism can be

alized naturally by a map T®:3—{M - T (XM, £) in HYJ such that the

ollowing diagram commutes in HJ (where j is the natural inclusion):

— 3 . %
x1 .XM

‘”® rc@

I'i
T, (%,,8) ——— T, (X, . £)

Actually, the cited result is stated under cellular restrictions and with’
M free on one generator, but its proof transcribes trivially to the present
gontext,) We prove first that ﬁ*(i—M' Zp) =0 if p divides some element
M. This will imply that multiplication by p is an isomorphism on

(XM; Z), hence that H*( XM; Z) is a Z__-module and I (XM, £) is an

M
~M ‘itself will ﬁe M-local if it is simple (or at least
potent). ~ Denote the products on H*(X; ZP) coming from 6 and £ by
%%y and xy and write [n] for éhe homology class correspending to the
int neX . Let xe Hq(X; ZP), g > 0. We claim that x- [pt] =0 for

t sufficiently large. Indeed, by [26,11,1.5],
1
welpl = %[5 ok D1D) = 30 M w e wx(® o IR

ere X —» > x(l)® cee ®X(P) gives the iterated coproduct, y is the
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[p]

sum of the symmetric terms (all p ®-factors the same), and y denotes

the pth power of y under the y-product. Since degy = o/p, our claim
follows by iteration. In the seéuence (*), p divides infinitely many of the
m, and our claim therefore implies that ﬁ*( fM; Zp) = 0. To prove (i),
choose points -ne X-—n’ define p(n) to be the additive right translation
p(n)(x) = ez(cz)(x, n), and observe that the definition, VI.1.8 and VI.1.9,

ofa (&, H)-space implies that the following ladder is homotopy

commutative:
T(my) (m,,)
1 1 x 2 Xn Y
! 2
p(-1) pl-n;) p(-nz)
(m,) v(m,)
1 2
XO XO XO

The cited definitions also imply that t(m) is homotopic to the miP power
operation x Om(cm ¥x™).  Thus the bottom arrows -r(rni) induce
multiplication by m, on homotopy groups, hence the mapping telescope of
the bottom sequence is a localization of Xo at M. Since the vertical
arrows are homoto py equivalences and ’fM is simple (as a limit of simple
spaces), j:X1 - —fM and T®j = (I‘i)l-®:Xl - I’l(XM,g) are also
localizations at M. To prove (ii), note that the first parts of the ér?of

apply to I'(X,8) as well as to X and consider the commutative ladder

'r(ml) ‘r(mz)
Xl X Xn e
! 2
L
3] ‘e >
'r(ml) 'r(rnz)
rl(x, ) T (x,0) — I (X,8) — **-
1 2

Since X is convergent at M, the induced map '}EM—» —fM(X’ 8) of

mapping telescopes induces isomorphisms on homology with coefficients

S G G G R A G
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in Zp if p does not divide any element of M. Therefore the same state-
ment holds for .

Tig :rl(xM,g) - rl(rM(x,e),g) .
Since these spaces are M-local, this proves (11) on the 1~component and
therefore on all components.

By application of the theorem in the situations of Corollaries 4.4
and 4, 5, with CI an Eco operad, we obtain the following result. Recall
from [45, 8. 14] that w,CY is the free commutative monoid generated by
the based set -n-OY and that 0 QY is the group completion of -rroCY.

Let CMY, CivIY’ and QMY denote the unions of the components correspond-
ingto M in CY, C'Y and QY.

Corollary 5.4, Let Y bea ﬂjo~space and consider the following
commutative diagram in HJ , in which all spaces are H x K_m-spaces

and all maps are composites of H X ')(lw-maps and inverses of § X 'K_oo—

maps:

Iee

¢

I‘l(C'Y, 8) DAL B I‘I(CY, 0)

r,(QY,8) ——= Q¥
$ $ ‘N | (ridg

' T I‘a'm‘rr
r,(C Y, 8) ~——T(C,, ¥, &)

r,(R,¥.8) == I,(R,.8)

(1) All horizontal arrows are weak homotopy equivalences.

(ii) All vertical arrows are localizations at M.

Consider the case (&', 4')=(Q, Q) and Y = s, Here

DMSO = 1] K(Zm, 1) and QISO = SF, Thus, as an infinite loop space,
. meM 0
the l-component T (D S ,£) of our group completionof || XK(Z_,1) is
1M meM m
equivalent to the localization of SF at M. This statement is a version of




the main theorem of Tornehave's paper [76]. The force of the particular
example (), () is the connection it establishes, via VI.5.1, between
the category of finite sets under & and the theory of stable spherical

fibrations,

VIII. Algebraic and topological K~theory*®

We hez;e apply the machinery of the previous two chapters to
btain Eoo ring spectra \xilhich represent various cohomology theories
of interest. The emphasis will be on the construction and analysis of
pproximations derived from discrete categories for spaces and spectra
:relevant to the J-theory diagram studied in chapter V.

In section 4, after showing that the ordinary cohomology theories
ith coefficients in comrnutativé rings are represente‘d by Ecn ring spectra,
e define hiéher K-groups of a permutative or bipermutative category a
s the homotopy groups Qf its associated spectrum or Eco ring spectrum
TR0 ; when (L= }JQ(’A for a discrete ring A, our definition
yields Quillen's higher K-groups of A [59,61]. When A is commutative,
ur construction rather trivially gives the ring structure on K*A. We have
lready calculated KO, Z in VIL. 4.6, and, in Remarks 3.6, we shall
elate this to Quillen's results about K, Z [60]. Beyond these observa-
ons, we have no new applications to algebraic K-theory. The calcula-~
‘tional power of infinite loop space theory lies primarily in connection
iwith fine structure, such as homology operations (and the arguments in
:§4 will demonstrate how powerful this structure can be). _ItA is not geared
‘towards analysis of homotopy types (other than delocpings. of known ones).
In view of the present primitive state of calculations in algebraic ‘K-theory,

‘it is too early to tell how useful the rich extra structure which we shall

obtain on the representing spectra for the relevant cohomology theories

will turn out to be. We end section 1 with a discussion of the relationship

“#* (by J.P. May and J. Tornehave)
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between representation theory and the internal structure on the zero that BSF splits as BJP X BClerJ as an infinite loop space at' p. These

spaces of spectra derived from bipermutative categories. results were first proven, quite differently, by the second author [77]. The

In section 2, we prove that the real and complex (connective) topo- present proofs do not use Brauer lifting ap.d illustrate the richness

logical K~theories are represented by the Eoo ring spectra kO = QmTB@’ of structure of Em ring spaces. All of the constructions we use work

and kU = @QOTBUL . We then use Brauer lifting to transport Bott perio- equally well at the prime 2, but the key calculation fails; here thg orienta-

dicity from kO and kU to QOOTBO'Eq (g 0dd) and 2PTB 4 f.lzq , all tion sequence

sF -+ 18

T .6, 9
. —2 ~ BSF
gz~ BIEFii) — B

completed away from  q. These results imply that Brauer lifting on the

th s P .
completed zero  space level is an infinite loop map, a result first proven (where Jéz is the 1-component of the zeroth space of J,ZS ) may be regarded

by the second aathor [75], in the complex case, by different methods. We as a codification of how the infinite loop space SF is built up from BCokerJ

also use recent results of Adams and Priddy [8] and of Madsen, Snaith, and & discrete miodel for 3-®2 .

and the second author [42], together with a representation theoretical We agree to replace any space not of the homotopy type of a CW-

calculation, to prove that Brauer lifting gives an infinite loop complex by a weakly equivalent CW-complex, without change of notation

map on the multiplicative as well as on the additive infinite loop space level. (so as to allow the construction of inverse maps to weak equivalences without

One point of these results is that they allow us to study infinite loop further verbiage).

properties of the Adams operations, and of maps derived from them, by

use of the Frobenius automorphism in section 3. In Theorem 3.2, we obtain
§1. Examples; algebraic K-theory

discrete models j: for the spectra jp introduced in V§5. These models

R . A svalentl
result by completion of Eoo ring spectra at p and, at p, the classifying Let A be a commutative topological semi-ring or, equivalently,

8 ; - o0 i
space B(SF;jps) for jp ~oriented spherical fibrations is B CokerJ endowed an (R, 1L)-space (see V1.2.4). By VIL 4.1 and VIL. 2.4, 2 TA is an

, - : ; = - d
with an infinite loop space structure. In Theorem 3.4, we use Brauer lifting Eoo ring spectrum (in fact, since TLX Df £, X spectrum) an

. th s .
to demonstrate that a large portion of the J-theory diagram, centering its zero space I'A is an Em ring space. By VII.4.2, v:A ~TA

around B Coker J, is a commutative diagram of infinite loop spaces and is a group completion of the additive structure of A which is com-

maps. patible with its multiplicative structure. Of course, I'A is not a ring.

In section 4, we construct an exponential infinite loop map The original precise structure on A has been weakened to structure

I‘OBﬁ.Xkr - I‘lB ﬂ.‘l{'kr (away from r) and prove that, with r = r(p), it precise only.up to all higher coherence homotopies.

becomes an equivalence when localized at an odd prime p. The dc;main Now let A be discrete. Then I'A is homologicall.y discrete,

and range here are discrete models for .Tp and J , and the constructed in the sense that HiI”A =0 for i> 0, and " A= 1roA - 1TOTA is the

‘ ®p
map factors through the unit map e:SF — I‘lBﬁfkr of j: . It follows
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completion of A to a ring. ¥ A is already a ring, then . :A ~TA is
a homotopy equivalence and the Eco ring spectrum 2CTA is thus an
Eilenberg-Mac Lane spectrum HA = K(A,0). Therefore any ordinary
cohomology theory with coefficients in a commutative ring is represented
by an Eoo ring spectrum.

Less trivial exampleé arise from categories associated to com-
mutative rings., We proceed from the general to the particular.

I (a_, ®,0,c) is a permutative category, then B(L is a @,—spéce,
by VI.4.2, and VIL 3.1 ‘ gives an infinite loop space I'BQ. and a map
v :BOL -~ I'B(L which is a group completion. Wé define the algebraic

K-groups of (L by
Kia = vi(I‘B(].,O) for i2 0.

¥ ((.,9,0,¢,8,1,T) is a bipermutative category, then BQL is a

(), ))-space, by VI. 4.4, and VII, 2.4 and VIL 4. 2 give that I'BQL

is a (@ X ’Koo’ @ XL )—spaée and that « is comp;.tible with the multi~
plicative as well as the additive structure. Moreover, VI.2.5 gives that
K,Q is a commutative (in the graded sense) and associative ring with
unit. Additive right translation by one defines a homotopy equivalence
p(1) from the zero component I‘OBCL tov the 1~component I*IBCL .
Since (I‘OBO._, 8) and (I'IBCL,f,) are iEoo spaces, we therefore have two
O-~connected spectra, one coming from © and the other from & , both
of which have the higher K-groupse .of (L as homotopy 'groups. These
spectra will generally be very different, but Theorem 4.1 below will
show that in certain interesting cases they do become equivalent when
localized at an appropriate prime.

Now let the permutative category Q be of the form specified in

Vi.5.8, ‘so that (L can be thought of as a disjoint union of topological

roups G{n) for n> 0. Then BQ. = || BG(n). Define BG to be the
imit of the translations p{l): BG{n) = BG(n+1). As explained in [46,

.9], there is a well-defined natural homotopy class
T :BG ~ rOB(L

uch that the restriction of U to BG(n) is homotopic to the composite
f v :BG(n) - I‘nB(L and the translation I"nBCL - I"OBQ. ; the
fact that 1+ :BQ = I'BO.  is a group completion implies that &« induces
n isomorphism on homology {with any coefficients). Therefore TI'BG
s homologically equivalent to BG X Z.

To relate the constructions above to Quillen's ‘a.lg‘ebraic K-theory,
e must review some of his results and definitions [59,61,62]. Recall
hat a group is said to be perfect if it is equal to its commutator subgroup.
et X be a connected CW-complex and let N be a perfect normal sub-

s + :
roup of w X. Then there is a map f1X = X , unique up to homotopy,

1

uch that the kernel of -r,f is N and f induces an isomorphism on .

1
dmology with any coefficients (see Wagoner [79]). »If. N is the com-
utator subgroup of -n-lX, then X+ is a simple space. If Y is a con-
ected space such that ‘TI'IY contains no non-trivial i)eriect subgroup,
hen £': (x*,¥]~[X,Y] is an isomorphism.
In this connection, we record the following useful triviality.
Lemma 1.1. Let f:X - X' be a map of connected spaces which
nduces an isomorphism on integral homology. Then
&:x,02] - [X,92] |
8 an isomorphism for any space Z.
Proof., T X - ZX!'  is an equivalence,

Let A be a discrete ring (associative with unit). The

ommutator subgroup EA of GLA is perfect, and Quillen defined
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KA = vi(BGLA+) for i3> 1.
Consider the permutative category }JIA of VI.5.2. By the universal
property of £ (or the lemma),v:BGLA —~ I“OBJLI'A induces a map
v :BGLAT - I,B HXA suchthat 7Tof is homotopic to t. Since T

+

and f are homology isomorphisms, so is 7. Since BGLA and

I‘OB KM ¥A are simple, T is therefore a homotopy equivalence. Thus

KA = Ki?ﬂfA for i21.

Now let A be commutative. Then H JA is bipermutative and
K*H.fA is thus ‘a ring. Here KOH A= Z., If instead of HLA we
use a bipermutative category P A of finitely generated projective
modules (as exists by VI.3. 5), then we obtain a commutative graded
ring K*ﬂJA such that Kisz = KiA for all i 20 (by [46,p.85]).

Alternative constructions of spectra haﬁng the KiA as homotopy
groups can be obtained by use of the black boxes of Boardman and Vogt,
Segal, Anderson,the second author,and Barratt and Eccles [20,68,10,76,
16]. It seems likely that all of these constructions yield spectra
equivalent to ours, but a proof would be tedious and unrewarding.
Gersten and Wagoner [30 and79 ] have constructed a spectrum having.
the KiA as homotopy groups by means of ring theoretic arguments within
algebraic K-theory. The relationship between their spectrum and ours
will be determined in chapter IX.

The discussion of sections 2 and 3 below suggests that the alge-
braic K-theory of discrete commutative rings can be thought of as analo-

gous to complex K-theory and that the appropriate analog of real K-theory

can be defined by
KO,A = KiD’A for i 21,

where (A is the bipermutative cagegory of VI, 5,3. The ring homo-

morphism
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K CA ~ K*B %A

induced by the inclusion of A in H LA canbe thought of as analo»—
gous to complexification, This idea is presumably not new: it can be
viewed as the starting point for Karoubi's treatment of Hermitia.n
K-theory 34]. (However, by VIL 4.6, KO,Z is notvery interes‘ting.)
The following immediate consequence of VI, 5.8, VII.3.1, and
VIL. 4. 2 plays a key role in many of the topological applications. It
reduces to group theory the analysis of the action maps 0 and £ on

the Eco ring space I'BL derived from a bipermutative category

Q= 1] Glo). Let

T3

et prG(n) -» G(pn) and o

§ 6w = ate™
p .
be the homomorphisms of groups specified by

8...0g , Yeln, ..., n)
v " (p)

vee X
-1
o (p)

(See VI.1.1 and 1.4 for notations.) Let | denote both projections

R x Ka)" & and WXL ~ Q..

cp(o‘; gl' e gp) = (gu--'l(l)

and <n,...,n>.

-g) = (g

c (o3g,,. X
P 1 P 0_1(1)

Proposition 1.2. For any permutative category (L of the form

1l G(n), the following diagram is homotopy commutative:

(OUp) XK ()] X5, BG@)PLELW () x5, BGE)® =
B P

1x.P

@) x K @)%y, (¢ BO)F 2 r
P

it L is bipermutative, then the following diagram is commutative:

Be
B(EPS G(n))—> BG(pn).




pe— .

it MR a

T,

5

T Al

e

. : BE
[Rp) X X(p)] X5, BG()P4XLT(p) X, BG(n)° = B2 SGlm)—LE> BG(P)
P p .

X P v

@) X £ ()% (r,B0)P £ r BR
P n

Let (L = ’4“{’}\ for a commutative topological ring A and let
G be a compact topological group. For a representation p:G - GL(n, 4)
and a subgroup w of EP, define the additive and multiplicative wreath

product representations 7r5p and 175®p to be the composites
fo e °p
rjG w{ GL(n, &) ~E» GL{pn, A)
. 1 g
and TfG ———L-E-—-;rfc;L(n,A) —PE+ gL@P, &)

The proposition reduces analysis of ep and gp on I'BYLA to ahalysis
of these wreath products, Pragmatically, however, there is an essential
difference. The operation -n'jp is additive in p, hence passes to repre-

sentation rings, and is trivially seen to satisfy the character formula

xtfedesgy,--ng )= > x(e)e) -

P ofi) = i
In contrast, TVJ@P is multiplicative but pot additive in p,iand there is
no general formula for the calculation of X(’"j@ p) in terms of y(p).
Of course, Eoo maps are struéture-éreserving before passage
to homoi}opy, whereas representation theoretic techniques apply only
after passage to homotopy. This suggests use of the following (not quite

standard) definition.

1
With k=p and jr = 2, the diagram of VI. 4.3 implies the formula

. Tr—[g(p-hr) = vfép+wj:®o-+ g%(i’p-i)“fpi”p-l )

Definition 1.3.. Let p be a prime, let w be the cyclic group

forder p embedded as usual in EP, and let W be any contractiblg
pace on which 7 acts freely (for example C(p) for any Eco operad &),
n Hi ~space (X,8) is a (homotopy associative) H-space X together
‘with a map 8: W Xﬂ_ %P X such that for each w e W the restriction of
to XP 2w xxP is homotopic to the p-fold iterate of the product on X.
An Hgo-maé £:(X,8) ~ (X',8') is an H-map f:X = X' such that the

ollowing diagram is homotopy commutative:

P
W X XP __....;..).S..f"._._.__) W X (Xl)p
w "

] et

X — X

Clearly an Eoo map, and in particular an infinite loop map, is an
Hzo—map. Mod p homology operations are defined in terms of 6 [26,151]
and are thgs presérved by Hﬁo-maps. If X and X' are infinite loop spaces
derived from permutative categories (of the usual form) and if appropriate
.i_r_r_xl terms vanish, then Proposition 1.2 reduces the determination of
whether or not an H-map £X =~ X' is an ch’—map to representation theory.

The following remarks give the details of this reduction.

Remarks 1.4. Let Y be an infinite loop space with induced Hgo-structure
W X_n_Yp - Y. (Wé use the letter £ since we choose to think of Y as
multiplicative, that being appropriate to our applications of these remarks
 in the next section. ) Fix points m and m“1 in‘ the components Ym and
Ym__l of Y. Since the product # and inverse map X on Y are infinite

cop maps and thus Hgo—maps, the following diagrams are homotopy com-

P

relates to £ on WX v P
1 T m

mutative ; they show how £ on W X -n'Y
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\P (1, w_-3) ' 1o ) x
wx_yP X ey ¢P — T s wx YR (Wx {m 3Py, W xP ——— e (W X x2)x (wx {mpP)EXE o ¥ xx
™l ™ m wm v - " m - ™ om ™ . mP mP
£ Exg :
15, P (1xP) x (1B VXL
b4 - # b4 XY
: mt (10 £ x¢
0 p X
wx vP m (wxWYnz)x(wxv{m} ] ¥ XY
where 7(m}y) = v # m and wm(w,yl,. . "Yp) = (w,m,...,m), and ™ om : m m
~ .Ya—(m‘l)i’ wixx}
o 1 X)(p £ .
Wx Y —_—a Wx YP wx 1P > %
™ m-l ™ 0 L
EXE (L x Py {1 xR £Xf
£ £ . £
' (1:‘-" ) v £ x
X wx zP —— B (W x Zp)><(W><{m}P)”"“'_—g -2z XZ
Y - Y " m om b mP
m ¥ mP P _
1xf
- #(1x
X 7({m l)p (1)
These diagrams combine to give the homotopy commutative diagram &
Wx_zZP z,

P (e )
wx v PRI e v P T i w vPyx (W x {m}P)
Tl om - m &

By [46, 3.9}, if X is'the mapping telescope af {a cofinal subsequence of) the

g x o v . -
Xt ¥, then there is a2 homology isomorphism ¢ (X Y1 whose restriction to
o
: -1
# 1 . ) L {m™) —B, P P
Yl Y PX Y —lX g px ¥ X ., is homotopic to Xm-w- Ym—--—-~»—-~w>Y1. LXTHW X XP - W x-erJ, and
m m"P m~  m

the natural map Tel{W X‘_ETX;:} - W Xwi_p are homolqgy isomorphisms, hence,
. 1
by Lemma 1,1 and the diagram, we conclude that if Iim [W X Xp 2 Zl] = 0
-— T m

and if fu:X > Z is an Hzowma.p, tbr.?n 1 Yl - Zl is an H§0~map. When the}{m

Let Z be another infinite loop space and suppose that -11-0Y = -n-OZ. Let

f: Y1 - .'1:'.1i be an H-rnap. Since Y = Y). x WOY and Z = Zl X ’rrOZ as

H-spaces [26,1,4.4], f is the i~component of an H-map £1¥ + 7 with are classifying spaces of groups and Zm is BOX {m} or BU X {m}, Proposition

w f= 1. Assume that ¥ = I(X,%), where {X,£} isan Eoo space with 1.2 reduces the verification that fi is an Hm—map to representation theory.

Q

) ' ) p P
vOX a multiplicative submonoid of Z+, and let . :X - ¥ be the natural The following remarks recast the notions of H -space and H -map.

Eoo map. Write m for consistently chosen basepoints in Xm' Y , and Remarks £.5. Let {X,0) be an Hiuspa.ce. Let w: E -~ B be a principal

m

Zm. All parts of the following diakram commute, by the facts above, except m-covering classified by piB - W/x, let TE +W cover p, and define

for the front and lowex back right rectangles; 7.8 -wx 5P by Vib) = (fe, ae,... ,ape), where ve = b and @« generates w,
o

For ge [E+,X]. define the transfer t{g)s[BT,X]to be the composite




vvvvvwvw'v‘%éwvvw*vvwwv

B~ wx"E?-iff-giwxwxp ~Lox,
When vis Wx XP « w X_“KP and g: W X xP - x i:s_the projection ;n the iast
coordinate, (1Xg9} V = 4. Therefore an H-map X - Y between ‘Hio‘spa.ces is
an HQZ -map if and only if it commutes with transfer, For examples such as
pTIBSO ~ BSO® [42], it is useful to observe that a simple diagram chase from
the definition, VI.1.40, of an Eoo ring space implies that if (X,VG, £} is an Em-

ring space, then

-1 Lo
Tl + 8 = qff) +igfe) + 2 S il

where v and T®denote the transfers associated to 8 and £ and + and - .den
note the products induced by @ and £ on the functor [?7,X].

The criterion (below V.7.2) of Madsen, Snaith, and the second author [42]
for determining when an H-map f: l‘ﬁlp nd B%P or fi B/S\Op - ZB/S\Op is an
infinite loop map transiates to the assertion that f is an infinite loop map if and
only if it is an Hi ~map, The Adams-Priddy theorem V. 4.2, together with
II. 2.13 and 2. 14, yields the following very useful consequence,

Theorem 4.6. Let X and ¥ be infinite loop spaces of the homotopy type
of BSO or of BSU localized or completed at 2 set of primes T. Then an H-map
X ¥ is an infinite loop map if and only if its completion at p is an HOF; -tnap

for all primes pe T.

§2. Bott periodicity and Brauer lifting

Write ﬁ for either of the bipermutative categories T or U
specified in V1. 5,4 and write G for either O or U. Define
kG = QOOTBH . The homelogy isomorphism © :BG —~ I‘OBE is a
homotopy equivelence, hence the zeroth space I'BY  of kG is

egquivalent to BG X %. Since o : Ll BG(n) - I'BG is a map of H-spaces

for both @ and &, it follows that I'BG represents the z:ing»vaiued. .
functor KGX on finite dimensional CW-complexes X, The externg.l
tensor product KGX @KGY —~ KG(X X Y) is defined on maps

it} X+ - 7Bl  and 8] ‘.(’+ - I"BH {where the plus notation again denotes

addition of 2 disjoint basepoint) as the composite
x x 1)t = xta v A8, TRlA TBE ~2 W B Y

et do8 or d=2 for G=0 or G =1, One formulation of

Bott periodicity asserts that

4
®:Kox @Kas® - Ko xs%

i an isomorphism or, equivalently, that tensoring with a generator

{b] « 'n'dBG B ﬂdFOBM defines an isomerphism

¥aox - FoE'x).
Bott [21] deduced the latter isomorphism by verifying that the adjoint

dBG of the composite

0
saast —, 5o Be 2. B

G-

i homotopic to the iterated Bott map discussed in IS 1. Under the
equivalence T 1 BG - I‘OBG, this adjoint corresponds to the restriction
to 0-components of zeroth‘ spaces of the adjoint Bi1kG *Qdkc- of the
.gomposite map in H i

kG A sinl KGAT BH £+ o

given by 11.2.9. In view of I, 3.10, we conclude that § Oerﬂ ~o%reY
.agrees under the equivalence rBE = BG X Z with the Bott map

BGXZ S’Zd(BG X Zh

By 11.3.2,11.3.9, and 11.3.14, it foliows itmmediately that kO

and kU are isomorphic in H.4 to the connective zing spectra obtained
rom the periodic Bott spectra by killing their homotop.y groups in nega-

ive degrees. We have thus proven the following result,
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‘Theorem 2.1. kO and kU represent real and complex con-
nective K-theory (as ring-valued cohomology theories).

In particglar, the diagrams of Proposition 1,2 now reduce the
analysis of homology operations on BO and BU to representation theory.
Application of the additive diagram to BO and BU was first justified
by Boardman [unpublished] and has been exploited by Priddy [54] in

mod 2 homology and by Snaith [70.] in K-theory.

Remark 2.2, As proven by Bott [21], real periodicity factors as the

composite of the two natural isomorphisms
s o~ 4 A~ 4 s s 4 o~ 4
KOX @ KSpS~ ~ KSp(Z "X) and KSpY ®KSpS ~ KO(Z Y).

A full understanding of these transformations in our context would seem

to require a theory of Eoo module spectra over Eoo ring spectra.

We now turn to Brauer lifting.. Fix a g;rime q andlet k= Kq
be an algebraic closure of the field of g elements. Let kr denote the
field with » = qa elements contained in k, so that k = lkn kr' Fix an
embedding w: K* - (E* of multiplicative groups. Recall from Green
[31, Theorem 1] that if p:G = GL(n, k) is a representation of a finite
group G and if p(g) has roots E_‘,i(g), then the complex-valued function

xp(é) = %} wE,(e)
i=1
is the character of a unique (virtual) representation \(p) ¢ RG.
Quillen [58, p. 79] proved that if q is odd and p takes values in O(n,k},
then xp is the character of a (necessarily unique) real representation
Ap) ¢ ROG., If m: H - GL(m,k) is a representation of another finite
group H, then
Xt 8) = X () +x (g) and x g (hg)=x (h)x, (&)

Therefore, if RkG denotes the representation ring of G over k, the

<N
\j:

~
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following diagrams are commutative:
R HXR G —2— R (HXG) and RHXR -8 R, (HXG)
k k k k
{4) A XN A XX )
®
RH X RG R(H X G) RH X RG R{H X G)

By Adams!' formula [{,4.1(vi}], the following diagram also commutes,
where, for r= qa, ¢r denotes the iterated Frobenius automorphism

(VI. 5.5):

¢

RG ——>———> RG

Thus \pr)\(p).= Mp) if p:G ~ GL(n, k) factors through GL(n, kr)'
The analogs of the diagrams above also commute in the real case and
relate the orthogonal representation fing ROkG to ROG.

Of course, passage to classifying maps and then to Grothendieck
groups gives ring homomorphisms RG - KU(BG) and ROG - KO(BG),
and these become isomorphisms w};en the left sidés are completed with
respect to the IG-adic topology [14]. Moreover, by [14,4.2 and 7.1
(and p. 13,17)], KU_i(BG) = 0 and KO-i(BG) is a finite dimensional

vector space over Z Let X (n,r): BGL(n; kr) ~ BU represent the

2
¢clement of KU(BGL(n; kr)) obtained by application of X\  to the
difference of the inclusion of GL(n, kr) in GL(n,k) and the trivial
representation of degree n. Since \ is natural in G and additive,

the maps \(n, r) are compatible {up to homotw py) as n and r increase,

i .
Since the relevant ]}_r_n terms vanish, there result unique homotopy

classes
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(*) x:BGLEq -~ BU and, if q is odd, X :BO Eq*BO

compatible with the M(n,r). The main step in Quillen's proof of the

Adams conjecture was the following result [58,1,6].

Theorem 2.3, The maps \ of (%) induce isomorphisms on

cohbmology with coefficients in Zp for each prime p ;! q.

As we have explained in section 1, the group completion property of

the recognition principle VII. 3.1 gives homology isomorphisms

T :BGLk ~ roBklxk and T:BOk - roBGk.
Invoking L.emma 1.1, we define

(=) X :rOBBXEq ~ BU and, if qis odd, X : rOBCqu» BO

to be the unique homotopy classes such that ReT . (Of course, we
could also invoke the properties of the plus construction, but its use
would add nothing to the discussion,)

We shall need the following observation.

Lemma 2.4. The following diagrams are homotopy commutative:

r,BHALk X T BAYK £ TBHLk and T BMXKaI,BAXk <, B YLK,
XX X : A X
BU X BU ———2 » BU BU ABU ® BU

and similarly with I‘OBBJ?k and BU replaced by I‘OBOk and BO.

Proof. Since KU(XAY) = EU(X X Y) is a monomorphism for any
X and Y, it suffices to consider the second diagram with smash products
replaced by Cartesian prcducts., For both diagrams, it suffices to prove

commutativity after composition with v X T  and thus, since the rele-
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1
ant lim™ terms vanish, after further composition with the inclusions
BGL(m, kr) X BGL(n, ks)' Now the conclusion is immediate from the

fagrams (A).

Similarly, diagram (B) implies the following result:

Lemma 2. 5. The following diagrams are homotopy commutative:

g # ‘
TOBBXk—f——>F0BBfk and rOBGk rOBC?k

L F 1, )

Ir r
BU—————lp-—-——* BU: BO —-———LP——————'BO

At this point, it will be convenient to introduce a generic (and
busive) simplification of notation, to be used throughout the rest of

he book . We shall write Ya for specified "discrete models" for
opologically significant spaces or spectra Y. In each case, Y6 will

¢ derived from the classifying spaces of discrete categories by means
{ suitable topological constructions. In particular, ‘we have the follow-
ng notations.

Definition 2. 6. Define ZBU6 and BO6 to be the completions
way from gq of the spaces I B H «X’Fq and (with g odd) POBOEq .
evert to the convention that G= O or G = U and define

N
:BC:':6 - BG[1/q] to be the completion away from q of the map T oof (¥% ).

efine k06 and kUs to be the completions away from q . of the Eoo

&

Ing spectra SZOOTB@'Eq and @°TB Bd,')"li'q Then BG® is the O-com-

onent of the zeroth space of kGa.

The following result is an immediate consequence of Theorem 2.3
nd the homological characterization of completions (see II §2).

8

n A
Corollary 2,.7. N :BG° -~ BG[l/q] is a homotopy equivalence.
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This justifies our thinking of BG5 as a model for BG. Of course,
the use of completions rather than localizations is essential here since

— — -
-n-ZiBGqu = 0 and rZi+IBGqu = Z[q l]/Z [59, p. 585]. We can now

s 5
verify that kG~ zrepresents the completion away from gq of real or
complex connective K~-theory and that the equivalence ,';\ is an infinite
loop map.
s . : 8 ~,

Theorem 2.8. There is a unique isomorphism A:kG - kG[1/q]
of ring spectra in H& such that the 0-component of the zeroth map of A
. : A ) A
is equivalent to \ :BG -~ BG[l/q], G=0O or G=U.

5 A
Proof. -rro(kGO) and wo(kG[l/qJO) are both canonically iso-
A A

morphic to the ring Z[1/q]l= X Z(p) , and there is a unique (continuous)

P# g
isomorphism of rings from one to the other. Denote this isomorphism

A .

by 'rro)\ . By Il.3.10 and a trivial diagram chase from Lemma 2.4, TI'O,):.
~ 5 A

and N:BG - BG[1/q] together determine an equivalence

A 5 A .

AikGy kC’r[l/q]0 of ring spaces, Write b® for the composite

d A -1
s¢ —2 s ng —Yuv BG[1/q] —2—s BGOY .

A & 8
Thus A, [b7]={[b]. Let B :kGP ~a%aG® be adjoint to the composite

5
1ab
1Goas? 222 b Bt £ b,

& .8 ) ~
Then (kG ', B ), (&[l/cﬂ, B), and the map \ of — spaces satisfy the
hypotheses of II. 3. 14 (and II. 3.9). The conclusion follows from those

results and I1. 3.2,

The following addendum is the reasonthat this result is of topo-
logical interest; it shows that the Frobenius automorphisms }Zfr and
Adams operations q;r (both completed away from q) agree under - A.

Theorem 2.9. The following diagram commutes in ud ,

G=0 or G=U:

219
kCr8 -——-—-——-—-L—“-—"' k(}5
A » lA
£5[1/q] L] RG[V/a]

Proof. ¢r is induced by passage from bipermutative categories
to Eoo ring spaces to Em ring spectra to completions away from q.
Lemma 2.5 implies that the two composites induce the same map in nY

th . . . .
on zero = spaces and that this map is one of ring spaces. The conclusion

follows by IL 3.15 and the uniqueness clause of IL 3. 14.

Let BG6 denote the 1-component of the zs:):oth space of kGa.

®

- — — %
Clearly O(l,kq) =7 GL(l,kq) = kq , and the completion away from

P
q of the infinite loop map B : BTQ; g BC* is an equivalence by a simple

homological calculation. Let BSG{E® denote the simply connected cover

of BG%. The same proof as that of V.3.1 yields the following observation.
Lemma 2.10. BO% and BU& are equivalent as infinite loop

A
spaces to BO(1) X BSOé and to BU(1)[1/q] X BSU%.

The 1~component BGI?® - B‘G® of the ze:roth map of
A kGO - &[l/q] is clearly compatible with the splittings given by the
lemma and V.3.1. Itis the1"efore an infinite loop map by the following
theorem.

Theorem 2.11. A: BSG% - B/S?}U/q] is an infinite loop map,
G=0 or G=1U.

Proof. By Theorem 1.6, it suffices to prove that the completion
of ‘A at each prime p# q is an Hga-map, and this will hold if it does so
on the localized level with SG replaced by G. For clarity of notation,

we treat the case G = U. The only additional point needed in the real case

{s that the relevant representation theoretical constructs, in particular




e

e

Y

==

the decomposition homomorphism, restrict appropriately, andthe requi-
site information is contained in the appendix of Quillen's paper [58]. Let M
be the the monoid of positive integers prip'xe to p, let X = BM% ffq ,
let Y= IP(X,£), let v :X™ Y be the natural Eco map, and let
Z= I‘(BMﬁXG, £). Of course, MXC and U can be used interchangeably
here, HAC being given its usual topology. By VIL. 5.3 (and the diagram
in its statement), we have infinite loop maps

g:1,,(B &.xiq,e) + Y and ¢:I‘M(B/:1,{’<E,B) - 2z
§vhich restrict on components to localizations at p. We agree to write »
BUX,{m} = I‘m(B/‘JZC, 8) for m e M; thus Zr;u is the localization of
BUX{m} at p. There is a unique map f: Yl-> Zl such thai
foff = ¢°(~): * 1), where T* 1 is the translation to 1-components of
the map T of (**); f is an H-map since X *1 is so by the second
diagram of (A). Since the map A: BU6 - ﬁg;l/q] is the completion

®

of N#1 awayfrom gq, it clearly suffices to prove that f: Yl -~ Zlv
is'an Hzo-rnap. By Remarks 1.4, { extends to an H-map Y~ Z and
it suffices to prove that the composite foi :X = Z is an Hso-map.
The Brauer lifts of the incl;lsions GL(m, kr) - GL( rn,'l-‘:'q)' fit together to
give a unique map B: BGL(m,.Kq) -+ BU X {m} ., and we also write B for

its composite with the classifying map of any representation H - GL(m,Eq).

It follows easily from the definition of N and the proof of VII.5.3 that fo1 o fop

Xm - Zm. Thus we must prove that the following diagram is homotopy commutative

w X"BGL(m, kq)p o B(’n’j GL(m, kq)) — B BGL(mp, 'lzq)

= 1ﬁ

w XW(BUX{m})p BU X {mP}

1><¢pl

P : .
W X_“(Zm) z

g
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ly an obvious limit argument, it suffices to prove this with Tiq replaced

y k, (for each r = q’) in the top row. By Lemma 1.1 and a transfer argument,
he resulting diagram will homotopy comrmute if it does so with domain

estricted to W X“n_(BH)p for a p-Sylow subgroup H of GL(m,kr) (since

he index of 'n'fH in w[GL(m, kr) is prime to p and since Zmp is a

-local space). Let £ be a finite field between kr and Eq . Bya

rivial diagrafn chase, it suffices to prove that the diagram above homo-

opy commﬁtes after replacement of l—iq by £ in the top row and restric-

lon of the domain to W X“(BH)p. Let pe be the maximal order of an

ilement of nj H. Construct a field K C € which contains all (pe)th.

ots of unity and has a discrete valuatioh whose valuation ring A has
uotient field £ , er 2 C Eq . Consider the following diagram, where
is the inclusion of H in GL(m,?), = HXA - B Xt isinducedby

bhe quotient map A -+f, and i: H LA~ H &€ is induced by the inclusion

~

Bc
B(WJ‘H) —EQ:(—Q———> B(Trj GL(m, £)) ———t—> BGL(mP, 2)

B(1f5) B(1Jr) Br
BE
a(lf i) B(r [ GL(m, A))————L—= BGL(m", 4) B

:/{(di) BT ,/5

B{r [ GL(m, €)) P BGL(mP, €) —————>BU X {m"}

'he two interior parallelograms obviously commute. Let % be the com-
jletion of K. Then R H = R?(H [69,14.6], and the decomposition homo-~
rphism d: R?(H ~R, H is an isomorphism [69, 15.2 and 15. 5]. Thus
RKH g RJZ H is also an isomorphism, and, since d maps R;H onto

H, any representation pst H-~GL(m,! ) lifts to a representation

5 H -~ GL(m, A) [69, especially the remarks on pp. 136, 139, 141]‘. This
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lifting to an honenst rather than virtual representation is crucial. By
Proposition 1.2 (applied to B{C under ®), the fact that ¢ is an infinite
loop map,and a trivial diagram chase, it suffices to prove that the com-
posite BH-—-:-B—(ﬁ)—L BGL(m, €) — BU X {m} is homotopic to B and that
the outer rectangle of the diagram is homotopy commutative. Actually,
because of the homomorphism p: k: - (B* in our definition of Brauer lift-
ing, these assertions will in general be off by certain Adams operations.
To rectify this, we need only choose pu consistently with the requisite
decomposition homomorphism (in a manner independent of p). We do
=Z andlet A =2, ..

0 0 (q)
given Q’j—i'Bj-i' and Aj-i’ let Aj be' the localization of the ring of

this as follows. Let 2‘0 = (q) in B Inductively,
cyclotomic integers Bj = Z[exp(Zwi/(qj-i)(qj-i-- 1) -+ (g-1)] at a chosen
prime ideal Q’j which contains a‘j—i C Bj-i' Let Kj C @ be the field
of fragtions of Aj’ let lj be the quotient of Aj by its.maximal ideal, let
i Aj -~ € be the inclusion, and let r:‘Aj - lj be the quotient map.
Obviously char .lj = q and l.i:n 1. = E;g.’ Mo;eover, Aj contains a group
v of (qj-1)~ .. (q—i)St roots of unity which r maps isomorphically onto
the corre_sponding subgroup Vj- of Ij* , these isomorphisms being com-
patible as j varies. We specify }L:E: - c* by letting its restriction to 'v'j
be ioe r-i. In the construction of our last diagram, we agree to choose

A= Aj and ,l = !j for j sufficiently large. It is then obvious that the charac-
ter of ip:H * GL(m,C) is Xgr 80 that veB(if) =2 B, Similarly,if G is a
finite p~group with no elements of order.greater than pe and if

cr:.G - GL(mp, A) is a representation, then the character of

io: G - GL{mP, €) is X, and ve é(i«r): BG - BU X{mP} is therefore

homotopic fp B. With o= ::Upo (:lfb') H - GL{mP, 4), it follows that

the outer rectangle of our diagram is indeed homotopy commutative.
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§3. Finite fields, Frobenius, and B Coker J

Throughout this section, all spaces and spectra are to be com-~
pleted at a fixed prime p and r = qaL (qo0dd) is to be r(p). Thusr=3
if p=2 and r reduces mod p2 to a gener#tor of the group.of units of
Z if p>2. We retain the notations of the previous section and con-
tinue with the discussion of discrete models for various of the spaces

and maps in the J-theory diagram of V §3.

We have an equivalence of orientation sequences

SF ° BO% T > B(SF; kO%) —L—» BSF
” b [os
SF f B8O z 1

® B(SF; kO) ~———2t—s BSF

(compare V.2, 4) and an equivalence of fibration sequences

c(f) 5

B(sF; k0%) BSping

lBA lA

(¢’ BSping

BC6
P

Spiné

i ]

Spi BC = B(SF; kO
Pm® p (SF; kO)

Here BSpiné is the 2~connected cover of BSO% and Sp:i_né is its
loop space. c(ﬁr) is the universal cannibalistic class (defined above

5*1{05

V.2.2) determined by ﬂfr kO and is an infinite loop map because
¢r is the completion of a map of Eoo ring spectra, The fibre BC:,i of
er) is thus an infinite loop space, and we think of it as BCp endowed
with an infinite loop space structure, We shall prove in Theorem 3; 4
that both diagrams above are comrmutative diagrams of infinite loop

spaces and maps.
In order to obtain a better understanding of the infinite loop space

BCS , we construct discrete models for the spectra jp and jO2 of V.5.46.

Recall the functor QT from Em ring spaces to Eoo ring spectra of VIL.4.1.

i

i
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N LB _ o (o = o® r & g1
Definition 3.1, Define j, = © TBWNk, and jO, = TBOK,. bo® —Ff kO : bo
. ) [} &
For p>2, define j: =P TBH Lk . The bipermutative categories \ N \ | \
- T 5 . 5
Nk,, Ok,, and hx’kr are specified in VI.5.7,5.3, and 5.2 (and the abud - ~ Ff kG " - bu
: A Al
specified Eoo ring spectra are understood to be completed at p). Let QA 1 l A Al A
] & th bo j — kO 2 bO_
J_ and J, denote the 0O-component and 1-component of the zero P
’ o ‘ \ \ c c
.6 5 . 5 &
space of which is equivalentto J_ X Z and let JO_, and r.
P ip ¢ 4 P @ 2 Qbu > Fy" kU bu

JO’?@Z denote the O-component and 1 -~component of (jOg )0 .

) - . : & .
The following theorem is based on ideas and results of Quillen ince p >2, bo = bspin. The arrows labelled ¢’ are induced by passage

. [57, 59] and Fiedorowicz and Priddy [28]. o completed spectra from the inclusion o} 'Eq - k% _gq of bipermutative

categories. By [1,5.1] and Theorem 2.8, the dotted arrows are all

Theorem 3,2, There are equivalences y: jg - jp and

- 5 equivalences in H 4 . On the level of bipermutative categories,
V:jOZ - jOz such that the following diagrams commute in ud : '

¢r: K :‘Eq» ﬂx k restricts to the identity on o) :/\"kr. By passage to
q

5 ' 6 :
.0 K & : ] s 0 K & )
p T/ kO and i, jo, > kO completed spectra, we conclude that the composite of #5-1 with the
v A v v A i —
! 1 1 l l, map j; ~KU® induced by the inclusion of # .X’kr in # :{kq is trivial,
j “—— kO iy jO, — —> X0 . 5 r '
P 2 There results a lift p.:jp -~ Fg@°, and p obviously induces an iso-

& . ‘
where the K are induced by inclusions of bipermutative categories morphism on w_,. Since KU_lBG = 0 for a finite group G [14, 4.2]
0 P

&
(when p > 2, in the sense that jp6 NI kO5 —_— kU5 is induced by

Bt x_ -~ fJXiZq).

and since the zeroth space functor commutes with fibres [48,VIIL], the

h
0-component of the zerct map of p is determined by the homotopy

Proof. It will be conveﬁient to tréat the cases p>2 and p=2 commutative diagram 5
separately. We adopt the obvious discrete models anaiog of the notations ko Jp
in V.5, 14,
fibre (%-1) By Bt gy

(i) p>2. Inview of Theorem 2.9 (and [48,1(2.12)]), we have the
followi i £ fibrati in HJ * ‘
wing comparisons of {ibration sequencés in Hi , where Fy and Quillen [59, p. 576] proved that b induces an isomorphism on mod p
r .
¥ denote th 1 t fibres:
g ene € relevant Bbres homology andis therefore a homotopy equivalence (since J; and the
fibre of ¢r_1 are p-complete simple spaces). It follows that p

induces isomorphisms on -, for all i and is thus an equivalence.
i

-1
The desired equivalence V@ j[f - jP is ¢ °fep .
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ii = 2. Let FO¢3 and Fﬁ53 denote the fibres of ﬁf3—-1:k06

- b505
and of #°-1:k0% = bspin®. By V.5.45 and Theorems 2.8 and 2.9,

comparisons of fibrations yield a commutative diagram

g’ Fog’ 10"
A A A
j2 jO2 kO
in which the maps A are equivalences. The composite of ]?)'3—1:k05 -+ bso®

&

with K61j02

-~ k06 is trivial since }53: C:YE3 - (S‘K3 restricts to the

identity on (7 k3 and since [jOg ,bsoﬁ] = [jOg,bos] by the proof of

0 0
V.5.15 and the fact that H jOZ6 = H kO'5 (where H denotes mod 2

3
The right triangle commutes and induces 6 in such a2 manner that Fg

cpy a5 O 3 - )
cohomology).  There results a lift p"]OZ - FOﬁ » and p obviously is canonically equivalent to the fibre of 8 and the solid arrow diagram is

induces an isomorphism on LY Restriction to the 0-component of a braid of fibrations (by [48,1 (2.13)]. @ restricts non-trivially to Qbsoa,

th : : ;
zero  spaces gives a homotopy commutative diagram and we define £ = 8{l. We need a slight calculation to construct p. Re-

8
) : 2, .6
- JOZ I coll that H'bso = ZZ(A/ASqa) (e.g., by [8]). Since H'kO =0,
*o 3 5 5, *
ﬂ -4: kO ~ bso induces the trivial map on H and we have an exact
3 . .
fibre(ﬂB-i) BO® -1 > BSO6 2 sequence

1 2 k. 3 a3y L
- - Sq ~HF - Z(& AS -0
Here Bo is not determined by the diagram, but Fiedorowicz and Priddy 0~ A/ASq + ASq ob (A/ <)

[28] have proven that any H-map Il"o which makes the triangle homotopy ; Thus H1F0¢3 = Z2 and its unique non-zero class 6 restricts to the
commute induces an isomorphism on mod 2 homology and is therefore a I generator of H*Qbsoa. By inspbection of the fibration

homotopy equivalence. (Friedlander [29], following up Quillen's ideas F - jOg LN K(é(z), 0) with O-connected fibre, we see that this is
about étale cohomology [57], earlier obtained a particular equivalence consistent with the known fact (e.g. [28]) that HIJOg = H1 B0k3 is
Hy * not necessarily an infinite loop map.) Thus b is an equivalence 2,8 Z, with non-zero classes corresponding to the ‘determinaht, thé
in Hf . Next, consider the following diagram in H4: spinor norm, and their product; we denote the last of these classes

by go. In view of VI.5.3 and V1.5.7, JZB is equivalent to the fibre
PN T
of E,O:J'Og - K(Zz,l) (see [28]). Thus the cofibre of j, ~jO, is

- 'K,(Zz, 1) by the long exact homotopy sequence. Clearly, the cofibre
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map jOg - K(Zz,l) must be the non-trivial map £, hence jg
must be equivalent to the fibre of £. We conclude (by [48,1 (2.12)]
that there exists p:jg -~ F¢3 which makes the diagram above commute
in H,X , and p is an equivalence by the ﬁve lemma. The desired
equivalences v:j;S -"jz and v :jO{Z3 ~'-j02 are A.p and A- .

Since ﬂr K5 = Kﬁ:jg - kOE, it follows from the definition of
c(#¥): B(sF; kOﬁ) - BSpiné (in V §2) that the restriction of c(f) to
B(SF;jp&) is the trivial infinite loop map. There results a lift
‘g6: B(SF;jz) - BCf> , and the proof of V. 5,17 yields the following
corollary. '

Corollary 3.3. LG: B(SF;jg) -~ BCS is an equivalence of infinite
loop spaces.

1

InV.§5, jp was regarded as a ring spectrum by pullback along v~ ",

On 1-components of ze:cc;th spaces, V a.nd V restrict to composite

equivalences

s o r A
Jo e B, ——s J
® ¢® ®p

5

where Fﬁé and Foﬁé denote the fibres of ;dr/1:130®» BSpinfi8 and

of ;0’3/1: BOS - Bsog.g. We shall see in the following theorem that the

®

0 iy

Foy% JO®Z

5
and JO®2

maps [\ may be regarded as infinite loop maps in view of Theorem 2.11.

When p > 2, W, is easily seento be an H-map; when p = 2, not even
this much is clear in view of the non-uniqueness of EO' However, the
proof of the following theorem will yield a possibly different {(when p = 2)
5 r
a o) -F which is an equivalence of infinite loop spaces,
map keilg, g whichi qui p sp
X s : - Txnad 3
and an analogous argument gives an equivalence p ®° JO@Z FO}Z’® of

infinite loop spackes. The composite Ap.® plays a central role in the

"multiplicative Brauer lift diagram® displayed on the following page.

jp)‘

.
3

5 7
B(SF
N\

Bv
e n

p

B(SF;0)

B(SF; kO}

7N\
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The dotted arrow portion of the diagram is an elaboration of part of the
J-theory diagram of V§3 (completed at p, with r = r{p)). The follow-
ing result asserts that discrete models yield an approximation to this part
of the J-theory diagram by a commutative diagram of infinite loop spaces
and maps and that this approximation is in fact consistent with all pre-
assigned geometric infinite loop space structures in sight. In other words,
our ad hoc discrete models notation behaves as if it were a functor naturally

equivalent to the identity.

Theorem 3.4. The solid arrow () and dotted arrow (~--)
portions of the multiplicative Brauer lift diagram are braids of fibra~
tions, the horizontal { »—» ) arrows are all equivalences, and the

entire diagram is a commutative diagram of infinite loop spaces and

infinite loop maps.

Proof. First focus attention on the solid arrow portion of the
diagram, It features two orientation sequences (for j: and kOb) and

the obvious comparison between them. We must construct an infinite

loop map LG.S ma ‘Js
PR “@p
& . : ; N & 6 5
such that ¢ 1is equivalent to the fibre mFk - J®p of g and
5 ] .8y, s s & .8
TV : Spm® - B(SF;JP) is equivalent to the fibre mFB «k - B(SF;JP)
of B Ka, these equivalences being compatible with infinite loop
equivalences (8:B(SF;j 8) - BC 5 and .p. 230 ‘Fﬁr . Thus con-
' P P ®® T ®
sider the following diagram (in which, as in V §3, the letters = and

are used generically for the natural maps of fibration sequences):

5
H)
" ®p

' ]
- B(SF;j;) is equivalent to the fibre of q: B(SF;JP) - BSF,

~ 3} )
and q:B(SF;kOS) -~ BSF induces q:FBx —.J@p {by base change).

By [48,1.(2.13)], (which is a precise form of Verdier's axiom for fibrations),

&

there is a canonical equivalence £:Fk - FBK5 such that

o, & Lo Qr and Gof = .

Clearly, 1;-,6 induces an equivelence Zﬁ: FBK5 - Spiné such that
o e 10T and o5 ac(d’).
oyl N .
Define ¢ 6. q(1;6) :Spm?& [ Jép It remains to construct
ke’ Jép - Fﬂé, and we note that

(Zsog)og, o Zscl,oﬂ‘r - Qc(ﬂr)ﬂ Qr = ﬂ¢r/1:0% *Spin?@.

th '
The constructions so far all result by passage to zero spaces from the
analogous constructions on spectra, hence we may regard the diagram

as one of connective spectra in H 5. By abuse, we retain the notations

: of the diagiam on the spectrum level. Here cofibrations and fibrations

e

HER

~
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agree up to sign, by [48,XI], hence standard arguments with cofibrations

~8 5 - r
show that o induces -~ F h that
t°f indu |J.®P ¢® suc a
5 ~8 .
1'rop.® = K and |J.®o‘ﬂ' =y 0l E in H ,

and p.® is an equivalence by the five lemma, Now passage back to zerc:,ch
spaces and comparis;on of the diagram above to the multipliéative Brauer
lift diagram complete the proof that the solid arrow portion of the latter

is a commutative diagram of infiniée loop spaces and maps and a braid‘

of fibrations. On the space level, we have already constructed all of the
horizontal equivalences, and we could of course assign infinite loop space
structures to their ranges by requiring them to be infinite loop maps.

The broblem that remains is to check the consistency of the resulting new
infinite loop space structures with the geometrically constructed infinite
loop space structures already existing on BO, BSpin, , B(SF;k0O), and
their loop spaces. By V.3.1, Lemma 2.10, and Theorem 2.11, we have that

5 ]
A:BO_ -~ BQ and A:BSpin_ - BSpi
® ® PPe e

are both infinite loop maps. We may therefore specify 4;r/1 as an
infinite loop map by /1 = Ae g /10 A"l (compare V.7.6 ). The
equivalence A: Fﬁé - J® P obtained by ;‘:omparison of fibrations

is then an infinite loop map if J’® p is given an infinite loop space
structure as the fibre of npr/l. Nexif, specify Ep = A|.®a xe: SE - J@p
as an infinite loop map. On the space level, parts of the multiplicative

Brauer lift diagram already known to commute then imply that
T
S8 1 2 Qc : (SF;kO) « 7, and w o~ ye:SF +~BO,.
Ep" qee o (4‘ ) ( ) ®p ° EP X ®

These were the defining conditions for the map labelled gp in V§3.
We have that wap =ye = Aye:SF -~ BO® as infinite loop maps in view of

V.7.9. Delooping once, we conclude {(by [48,1(2.12)])
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at there is an infinite loop map B'A: B(SF; kOB) - B(SF;kO) such that

qeB'A = q B(SF; k0%) - BSF and 7oA = B‘Au-r:BO%-’B(SF;kO)

¢ infinite 1oo‘p maps, We rﬁust verify that B'A is homotopic to BA,
nd of coursé geBA=qand ToA = BAo~ on the space level. Thus
BA/B'A factors as Tw for some map o :B(SF;kOa) - qu , and
wT =% . Since B(SF;kOa) has the homotopy type of BSpin X BCP,
by V.4, 7and V.4.8, and since [BCP’ qu] = 6, by V.7.8, w may be

regarded as a map BSpin ~ BO® . It clearly induces the trivial homo-

morphism on rational (indeed, on integral) cohomology, and V.2.8 and

2.10 imply that it is null homotopic. Thus BA = B'A. We may now specify
r PR T r -1 .

) as an infinite loop map by c(¢”) = Aec(f”)e (BA) ~. Similarly,
we specify B(SF;jp) as an infinite loop space by requiring Bv to be

-1
an infinite loop map and we specify Bk = BAe Bka*’ (Bv) :B(SF;jp) -
-4
B(SF; kO) and Tt =BveorToe HN) -~ B(SF;j as infinite loop
B(SF; k0) (dug 13 , = BEF1i)
maps. The remaining verifications are trivial.
We single out the followiug part of the theorem for emphasis

(compare V. 5.13).

K A
Corollary 3.5. The composite SF Xe, Jgp—&r Fﬂéw J@p

may be taken as the map ap: SF - J® P of the J-theory diagram.

The force of this assertion lies mainly at the prime 2. At odd

primes it is almost trivial, since there we have
. 0 .
== = 2, 3=0,
[sF, SO®] {QOS ,SO®] [B . SO®]

by VIL. 3.4 and [14], so that Ep is uniquely determined by the fact that

ité composite with -w: J@p - BO® is homotopic to »xe: SF - BO® .

We digress to give the following application of the corollary,

hich summarizes Quillen's results [60] about K, 2.
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o

3.5 and V. 4.6, pJ is a direct surnmand of K, Z. Finally, consider
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Remarks 3.6, For any commutative topological ring A, we have a

commutative diagram of bipermautative categories

e
T~

Oz ta

b5z

A
and a derived commutative diagram of K-groups in positive degrees

K*E/ [ l - SF/ l
~ TN

K*Z——-—-—>K*A

KO,z — KO,A or w*rilsaz

where the second diagram results from the first by translation from
th .
O-components to 1-components of zerc  spaces of spectra and where

rlB&.‘ is identified with SF wvia VII.3.4,4.4, and 4.5. By VIL. 4.6,

8

K*ET =,

maps monomorphically onto a direct summand of KO 22 the
complementary summand being isomorphic to -n':(RPm). When A =1IR,
KO, A=K A= w*BO® and V.5. 6 shows that the element Bye 'n'iSF, i=4

or 2 mod 8, defines a direct summand Z_ in KiZ. Let in dénote the

2

p-torsion in the image of j*:'n'iSpin - 'rriSF. When p >2 and A= kr(p)'

the p-torsion subgroup of K*A is isomorphic to pJ* and, by Corollary

% ZJi'

The image of Ji =Z, in KiZ is unknown, i =0 or 41 mod 8 (and ix 8).

2

Let A= k3. The 2-torsion subgroup of Ko4i-ik3 = K4i—1n k3 is 2J4i-1'

Write JU, and JUg for the fibre of 1];3-1:BU - BU and for rOB)SJ;f‘k3
{completed at 2). By the proof of Theorem 3.2, there is an equivalence

- &
110:.]'U2 - J’UZ under which the natural map JO: - .]'Ug corresponds to the

map c:JO, = JU, induced by complexification. By [1,5.2], JO, and

T45-1" "2

v-ﬁ-i‘TUz are the same group and Cait is the identity if i is even and’

™ *I‘iBC*A ,

L
B NI Z e W*PiBh fA
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multiplication by 2 if i is odd. Therefore, by Corollary 3.5 and V.4.6,

2J8i 1 is a direct summand of K*Z and the image in K*Z of the element

of order 2 in maps to sero in K.k,. Quillen [60] proved that

ZJSi—S
. R t et :
ZJ4i-1 maps monomorphically to K4i_iz by noting that Adams' e-invariant

can be identified with the map =« 4 1SF Tl 1X induced by the unique lift

{:SF =X of xe:SF - BO® to the fibre X of the Péntryagin character

BO®*> X K(Q,4i) and observing that { necessarily factors through
i>1
l"iB HX Z because the Chern classes of representations of discrete groups

are torsion classes. Karoubi [34] found that 233 is not a direct sum-

mand of K3Z , and Lee and Sczcarba [37] proved the deep result that Ksz

is exactly Z48 .

§4. The splitting of SF at odd primes

Again, all spaces and spectra are to be completed at a fixed
prime p# q and r = qa is to be r(p). Actually, almost all spaces
in sight will have finite homotopy groups, hence localization will
agree with completion,

Theorem 3,4 focuses attention on the orientation sequence

SF —e———>Jé —T +B(sF;j%) —LsBSF .
P P .

The maé + is null homotopic by the splitting of SF in V.4.6-4,8

(and Gorollary 3.5). When p=2, [70,9.44 or 26 I1.42.2] show that

there is no splitting SF = Cz X .]'2 as H—space.s, and presumably the

first delooping of 7 already fails to be null homotopic. When p > 2,

we shall prove an exponential law for H S(Rr and shall use it to split

SF and B(SF;kOB) as infinite loop spaces; it will follow that T is

trivial as an infinite loop map.

s
e
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Let M denote the monoid {rn] n>0} . Subscripts M will
denote unions of components indexed on M. Since QOOSO is the free
spectrum generated by S0 (by IL.1.6) and also the free WXL -
spectrum generated by SO (by IV.2.4 and 2. 5), there is an exponential
unit map of spectra e QmSO -~ ﬁwT(QMSO, £) specified on S0 by
0~1 and 1~ x for any chosen point x ¢ QrSO and also a unit map
of @ x X -spectra e: Qms0 - 2PT(B fii(kr, 8). By VI.5.2 and 5.6,
we‘have a unit functor e: £ — 1:15("1(1.‘ and ;l. forgetful functor
1 4 Xkr - & . Let e, =fe: § = & (which is an exponential map of
permutative categories) and let g = ef: & fkr - .&fkr. Recall from
VI.5.1 that B = DSO. W;ith these notations, freeness and VIL 4. 4, 4. 5,
5.3, and 5. 4 yield the following.homotopy commutative diagram in which

6:J'a-»SF
P P

all maps indicated by = are homotopy equivalences and «
is defined to be the composite from the lower left to the upper right corner:

&
o e
P

0 e, 0 (I."i);,® /
QS  ——— 1(Q,S, £) ~ SF
~— -1 ’ ) - -1
= |T(ela ) o I‘\p(rawv) Iw(wl"am-rr) o
Te
e| 1,8’ 0) ——F— 1 (d, 5% ¢) r, (ps°, o) e
Te I‘fl Te Te
r(BY%k_,6) e . r (B, HXk_,E£) ..____.ﬂ__ T (BHSk ,0
0 r’ 1M T’ = 1 i )
' / ) \ '
o 5 ®p

Here (T'i) |,® and the maps § are equivalences since they are localizations

at M and we are further localizing or completing all spaces at p. The

aps e: QOSO—" JPG and e!SF - J%P are the restrictions tothe 0 and 1

components of the zeroth map of the unit of jg . Of course, the
equalities which involve JZ and .ngp require p to be odd, but we

can construct a precisely analogous diagram

ase
0 2

QOS SF
5

e 0'2 e

5 )

T 5 ®2

eczz

by use pf ’n,k3 rather than # .X’kr. An analogous diagram can also
be constructed by use of ) kr' Henceforward, we assume that p

is odd.

By the results of VII §4 and 5 cited above, all maps in our dia-

gram are composites of maps of B x¥x ‘K.m-spaces and homotopy

" inverses of maps of WUXLXK w—spaces, and the diagram induces a-

similar commutative diagfarﬁ in H/& . Clearly all three operads are
required: it is (Kco which acts naturally on QOS‘O,‘ X on SF, and n»
on B«LJ-,'f: kr (in two ways). Because of the different geometric sources
of the actions, the state;ment that all of our maps preserve them is highly

non-trivial. s

o
Theorem 4.,1. The composite JG P+ sF —3 J is
. P ®p
a homotopy equivalence.

Proof. By our diagram, the specified composite may also be

described as

-1
5 _ Tg . . g
Jp_ro(thkr,e) I‘l(B,M'Bfkr,g) ~ I‘l(Bzx.rkr,e) J®P.

It clearly suffices to prove that ﬂnl-I‘g induces an isomorphism on



238

mod p homology H,. By Quillen [59,§8], there exist elements y. of
i
degree 2i(p-1) and =z, of degree 2i(p-1)-1, i >1,such that

5
H*J’p = H*BGL(oo,kr) = P{yi}®E{zi} .

Actually, we shall only need that H*J's is additively no larger than
stated. This is the easy part of Quillen's work and depends only on
the form of the p-Sylow subgroups of the GL{n; kr) [59,p. 573-574].
The rest of the computation of H*J'E:S will fall out of the argument to
follow {and is thus independent of Brauer lifting). The remainder of
the proof depends solely on general properties of the Pontryagin pro-
ducts * and # and the homology operations Q° and B° determined
on E_ ring spaces by @ and £ respectively [26,11§1, 2], together with
particular properties of H*QS0 [26;184, 11§5}. Write # by juxta-
position on elements, and write [n] for the homology class of a com-
ponent n. By [26,11.2.8],modulo linear combinations of * -products

between positive degree elements,
~5 1 s
(@  8%xl= G- x=P-p) .

The coefficient is non-zero because r reduces mod p2 to a generator
of the group of units of Z , . By [26,IL.2.8],for x e HQ 0 or
P m

X e H*I“m(Bid[;('kr, 8),
() mxs= (xx[1-m])[m].
Let k= r"P%(rP- r); then (a) and (b) imply
() Q°%[r] = W(Q[114[1 - p)I=PL.
Since er.: QSO »r(QMso, £) and I'g are exponential, they send
Q1 [-p] to B[] [Pl

In view of {c), it follows that ({I'ie L®)~ler and ¢-1Fg send
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Q%1l#[-p] to kQ°[1]%[1-p],

modulo elements decomposable under the translate * of the #-product
from the zero component to the one component. By the multiplication
table for # on H.SF [26,11.5.6], it follows immediately that .the
composite

. -1
o Wingly (e

P{Q° 1 *[-p]}® E{p[1]+[-p]} CH QS SF

is a monomorphism (this being the step which would fail if p = 2).
. . -1 0 &
Since (1"1o1,®) e factors through e: QOS - Jp , we conclude by

a count of dimensions that

1,35 = P (el @ E(paDIH-0])

as a Hopf algebra (under *) over the Steenrod algebra A. Moreover,
by translation x -~ x%[1], we now have a basis in which we know

5 & &
H,J as a coalgebra over A (because J_ and J are the 0 and
“@p & ( p ®p

I components of rBH Sf"kr). We already know that
-1 1 1
F,. (el (R [11+[-p]) = kQ[1]x[1-p]# 0,

and it follows by standard techniques that ¢;1 (I‘g)* is an isomorphism.
In detail, ¢; l(I"g)* is a morphism of connected Hopf algebras of the
same finite dimension in each degree and will be an isomorphism if it is
a monomorphism on primitive elements. Let 2 of degree 2s(p-1),

be the s 0 even degree basic primitive element of H*Jf3 , namely the
sP Newton polynomial in the Qs[l]*[-p]. Since, by [26,1.1.1],

P:Qs{i] = (-1)(z, s(p-1) - pr) 0°"7[1], a standard calculation gives

r r
B op, = (-1)7(x,s(p-1)-pr-1)p, . -
Therefore some P,: P #0, r>0, unless &= pk for some k 2 0 when

1 = P -
Py Pgyy =P 2nd By Pei1 T "Poyip

if k22

R R

o

e

iy

s
FEtona
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and
p-1

= P
P* ps+p»-1 ps and P* P

=2p_, if k=1

stp-1
Thus, by induction on s, ﬂ;l(l"g)*(ps) #0 forall s>1. Let b,
of degree 2s(p-1)-1, be the s odd degree basic primitive element
of H, L]'pa , sothat b_= ﬁQS[l]*[—p] modulo elements decompos-

s+l

able under * (and Bp, = (-1) s_bs). Since , again by [26,1.1.1],

Pi BQSU] = (-1)"(x, s(p-1) - pr - 1)BQS_T[1]; another calculation gives

124 b = (-1)7(z, s(p-1)-pr-1)b___.

The coefficient here is the same as that in the even degree case, hence
. -1 .
the same special cases show that ﬁ* (I‘g)*(bs) #0 forall s since

ﬁ*—l(l"g)* (bl) # 0. The proof is complete.

In the following corollaries, we write * or # for the product
on infinite loop spaces according to whether we choose to think of them
as additive or multiplicative., Recall from Corollary 3.3 that

(SF;j;) = QB(SF;ij) is equivalent as an infinite loop space to

C6 = QBC6 .
P P
Corollary 4.2.  The composites
5 5 tza XQq ) 4
7, X (SF;jP) e SF X SF —— SF
5
) 5 Bae Xg 4
and BT, % B(SF;jp)——E———-—-—»- BSF X BSF —— BSF

are equivalences of infinite loop spaces.

Proof., $2q is equivalent to the fibre of e!SF -~ J%p , hence
the theorem implies that the first composite, and thus also the second,

induces an isomorphism on hormotopy groups.

Choose an infinite loop map w: BSF - B(SF;j:) such that

wq =1 as infinite loop maps.
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Corollary 4,3. The map
T N
B(SF;kO ) (ely ). wa) BOg X B(SF;J':)

is an equivalence of infinite loop spaces.

Proof. Since q: B(SF;jg) — BSF factors through

- g: B(SF;kOa) - BSF, this follows from V. 4. 4 (last line), V. 4.8 (i),
agd tl}e J-theory diagram of V §3 together with the multiplicative

Brauer lift diagram of Theorem 3.4.

The original diagram of this section suggests that (S}?‘;Aj;) = GS
s the multiplicative analog of the additive infinite loop space Cgp de~

ined as the fibre of el QOSO - Jg . Of course, we know that Js and

&

are equivalent infinite loop spaces. In comtrast, although C@'p

8
‘®p
and Cg are evidently homotopy equivalent, there is no equivalence of
infinite loop spaces between them because their homology operations
. differ [26;1§4, 11 §6].

Corolvlary 4.4, The composite

-r'laﬁ X w

5, 8 p 0 o % 0
Jpxc@p QOS X QOS — QOS
is a homotopy equivalence (but T-ldg is mot an infinite loop map),

where T: QOSO -~ SF is the translation x —~x*1.

In fact, by [26,1§4] and our.proof of Theorem 4.1, the image

of (‘r_lag )ﬂ generates H*QOSO as an algebra over the.Dyer-—
Lashof algebra (under * and the QS), and this statement even re-
mains true at thev prime 2. By [26,11§1], we also have the following
technical consequence of our proof which has been used in the homolo-
gical study of BF and BTop in [26,11]. Conceptually, we have here

used crude information on homology oper ations to obtain the geometric
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splitting of SF, and we there used the geometric splitting to ob-
tain more subtle information.

5
Gorollary 4, 5. (ap )* : H*J'g - H*SF takes the elements

Q°[1]x[-p] and ﬁQs[l]*[—p]’ to generators of the subalgebra
P{Q°[1]x[1-p]} ® E{(pR[1}[1-p]}

of H,SF considered as an algebra under the * product.
The point is that no higher operations QI[l], 1) > 1, con-

on the specified generators. Since

tribute to the image of (ag)*

5 R foa s :
(czp)* is multiplicative with respect to # , rather than *, on H,SF,
such operations can contribute to the image of (ag )* on decomposable

elements.

Remarks 4.6. The second author's original proof of Theorem 4.1 gave

different information. Since p is odd, we may think of .TP and
J as the fibres of Lpr-l and \pr/l on BU and BU, . Since
®p ®
-1
[J'p, U] = KU “BGL{co, kr) = 0 (by Theorem 3.2 and [14]), the com-

posite equivalence epap of V.4.6 is characterized by homotopy com-

mutativity of the diagram

J BU
P
:‘P p P
. iy
J, BU
®p ®

where pr is the cannibalistic class determined by xpr and the standard
orientation BU ~ B(U;kU). A representation theoretical calculation

([77,4.1]) shows that the diagram
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78 d I L BU
P P i
6 of
o
P
) v - o
J J BU
Sp ®p ®

is homotopy commutative, where the maps v arethe 0 and 1 com-
th : S8
ponents of the zero  map of the equivalence v:j = j of Theorem
. P P
3.2, Thus ¢ a = Vea 5v-1 and eaa is an equivalence,
PP P P

aﬁ v-1: Jp - SF is an infinite loop map while aP: Jp -+ S5F makes
the J-theory diagram homotopy commutative and, in particular, is such
that j:Spin - SF factors through it. In view of Corollary 3.5 and the
previous remarks, it is natural to hope that these two maps are homo-
topic or, at least, that ap can be chosen as an infinite loop map. This
would certainly hold if V.7.14 {the complex Adams conjecture on the
infinite loop level) were satisfied.

Very recently, Friedlander [Stable Adams' conjecture. Preprint]
and Seymour have announced proofs of Conjecture V, 7.14. Unfortunately,
Segal's machinery [68] seems essential to Friedlander's proof, hence
it is not yet known that his infinite loop structure on SF agrees with ours

(and ours is essential to such basic facets of the theory as the orientation

sequences). We have not séen the details of Seymour's argument.




IX. Pairings in infinite loop space theory

Maps of spectra of the general form D!’E - F are central to
stable homotopy theory. The purpose of this chapter is to develop a
theory of pairings that allows one to recognize such maps in the guise
of appropriate space level maps xAY - Z, where X,Y, and Z are
Em.spaces. Since XAY will not itself be an Em space, such a theory
is certainly not implicit in the recognition principle already obtained
in chapter VII. It will be convenient to work with (weak) presg;ectra
and their pairings in the sense of Whitehead [80] throughout this
chapter. The relationship between these notions and the stable cate-
gory has been explained in I1§3. |

While a theory of pairings is ar; obvious desideratum of any com-
plete treatment of infinite loop épace theory and shouid have many other
applications, the need for it emerged in attempts to compare our
machine-built spectra o adin PA,where PA is the category of finitely
generated projective modules over a ring A, to the C.;xersten-Wagoner
spectra [30,79]. Let CA be the ring of in?inite, but row and columﬁ
finite, matrices with entries in A and let SA be the quotient of CA by
the ideal ge-nerated by the finite matrices. Gersten and Wagoner
showed that QKSA is equivalent to KA, where KA denotes BGL(oo,A)+X KOA,
and thus produced an {l-prespectrum GWA = {KSiA |iz0}.

Since free modules are cofinal among projective modules, BGL{cw, A)

may be regarded as limBAut P, Pe A (up to homotopy type; compare

[46,p.85]). By the universal property of the plus construction (above VIIL1.1)},

the tensor product functor PA X B - P (A ®ZB) induces a map
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i: KAA KB - K(A®Z B). Suppose given a functor E from rings to
f-prespectra, written EA = {EiA ] i 0}, such that EOA = KA and suppose
that E admits an external tensor product, by which we understand a natural
= pairing (EA,EB) »E(A ®Z B) which extends the map p of zeroth spaces,
ith these data, Fiedorowicz [27] has proven that there is a natural map

EA -~ GWA of Q-prespectra such that fO:EoA = KA = KA is the identity.
It follows (by II. 2,10 and 2.11) that the as sdciated_connective spectra of EA
and GWA are equivalent.

Now let EA denote ’SZOOTB‘(PA regarded as an Q-prespectrum.
ertainly EOA is KA (up to homotopy type). The results of ‘this chapter
ill imply that E admits an external teﬁsor pro&uct and thus that EA is

e associated connective spectrum of GWA,

We develop s’uitably reiated notions of pairings of symmetric monoidal
‘categories, of permutative categories, and of ®l-spaces in section 1. We
prove that pairings of /I -~spaces induce pairings of Q-prespectra in section 2.
Schematically, our results can be summarized as follows:

Pairings of symmetric monoidal cateéories
blow up

pairings of pern:;utative categories

B

pairings of 'f)-spaces

T

pairings of ﬂgprespectra

While there is an evident intuitive relationship between the present
theory and the Eoo ring theory of the earlier chapters, I have not attempted

to combine the two lines of thought into a single more general theory.
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1. Pairings of categories and of (-spaces

Let (L, 3, and & be symmetric monoidal categories with products
@ and units 0. A pairing ®:QA X B~ { is a functor Q such that
AR®O0=0 and 0®B =0 together with a coherent natural bidistributivity
‘isomorphism

(*) «(rea)@(BoB) = (aQ@B)e (A®BY) @ (A'®B) @ (A'Q®BY)

for A,A'e JO. and B, B' ¢ Uf3; the extra parentheses are needed since
® on (& is not ;ssumed to be associative.

The category theorist will recognize that this is not really a definition.
Precision would require elucidation of the meaning of coherence, via a
specification of just which diagrams involving d and the associativity, unity,
and commutativity isomorphisms a,b, and ¢ are required to commute.

The details would be analogous to those in La Plaza [35]. We prefer to be
informal since the intuition should be clear. Of course‘, the example to
keep in mindis ®: FAXTFB~ ZP(A@ZB).

We would like to define a pairing of permutative categories by requiring
the isomorphisms d to be identity maps. However, expansioﬁ of the right
sides of (*) when the left sides-are

(Ao A0 AMR(BOBY) and (AD(A'0 AM))R (B B')
demonstrates that, m the absence of strict commutativity, this requirement
would be unreasonable. We are led to the following definition.

Definition 1,1. Let ( , B, and C . be permutative categories, with
products @ and units 0, and assume given subsets HQ of Q. and e
of U which generate /(L and U/ under ®. A pairing ®: AXB~ {
is a functor & such that A®0=0, 0®B =0, and for all sequences

{a,,... ,Aj} of objects in HOL and ail sequences {Bl’ cees Bk} of objects

1
in K8

CCCCOOOCCOC CoCCaoe e
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(%) (A1€B...63 Aj)®(BlG)...EBBk) = (Al® Bl)®...®(A1® Bk) ®...®
(Aj ®.B1)® - ®(Aj ®Bk)

and the following diagram comrutes for all permutations ¢ ¢ Ej and Te Ek'
where the unlabelled isomorphisms are given by the commutativity iso~

morphisms of 1 , #3 , and & :

(5 1

®... @Aj)®(B1$... ®B)= (A1®Bl)@...$(Aj®Ak)

I e

(Ao_(l)e. .. B Aq(j)) ®(BT(1)€B e @ B'r(k)) = (Au'(l) ®B’r(1)) @...0 (Asr(j)®A—r(k))

By use of the commutativity isomorphism of t , (¥%) determines a
natural bidistributivity isomorphism d as in (¥). The commutative diagrams
" above give coherence. Thus a pairing of permutative categories is also a
pairing of symmefric monc;idal categories. It is an instructive exercise to
verify that ®: LA X HLB ~ HX(a ®Z B) is a pairing of permutativv‘e
categories. In this case, the generating sets of objects have the single
element 1, (#%)is trivial, and only the diagrammatic relationship between

the commutativity isomorphisms need be checked,

Recall the functor & of VI.3.2 from symmetric monoidal categories

to permutative categories.

Proposition 1.2, A pairing ®: 4 X B~ § of symmetric monoidal
categories naturally determines a pairing ®:®0. X 83 — &( of per-
mutative categories such that the diagram

e x an —B  ag

. xﬂl 1

o xn ® %

commutes up to coherent natural isomorphism,

e

\

R e

Frata
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Proof. The space of objects of ®0. is the free monoid with unit 0
generated by O , hence we take U as the generating set in (¥ @‘CL and
similarly for $ . Recall that, with the product on 100 again written as @,

7 is specified on objects by

w(Ala...@Aj) = AIGB(AZEB(A3G)...(A @Aj)...)).

j-1
As in [46, 4. 2] or VL. 3.5, the morphisms from A to A’ in @1 are the
morphisms from wA to mA' in (L, with composition and the co}nmutativitgr
isomorphism c¢ determined in an evident way from these data on a.
Define ®: @A X &1 ~ 2 by (#*) on objects. On morphisms f:A ~ A!

and g:B -~ B! in QL and & , the morphism {®gARB ~ A'Q®B!'
in 86 s specified by the com;:;osite

T(A®B) = 7 (4) @u(B) —LE > r(aAN@(B) = w(A'QB)

in { , where the unlabelled isomorphisms z-;re uniquely determined by the
coherent natural isomorphisms . a,c, and d of C aﬁd are the isomorphisms
required for the diagram in the statement of the proposition. The commuta-
tivity of the diagram in Definition 1.1 follows from the coherence of the
given pairing ®: (L XB =~ . Indeed, the omitted formal definition of
col;xerence here can be specified simply by listing those diagrams which
suffice for the present proof.

Now recall the categorical Eoo qperad @ of vi§4. The tensor pro-

duct Zj Xz - ij (of Notations VI.1.4) induces a functor

S x¥ -5
Z:j zk jk

amap &: R XNE) = Nk

Definition 1.3. LetX,Y, and Z be Q-spaces. A pairing 1X XY - Z

and thus, by application of the classifying space functor B,

is a map f which factors through XA Y and is such that the following diagram

commutes:?

248
?.m(j)xxjxdh(k)xsrk %1% % >X X ¥
XXl f
DG X R x % x ¥ z
XTXv . 6
R () X AW X EAT)E ®x " R (k) x 25

1,...,:cj,yl,...,yk) = (xl/\ Tyreens XA Yk""’xj"yl""’xj'\yk) .

I do not have a definition (or any prospective applications) for a notion
pairing of o) ~spaces for a general E(jo operad £ . One could, of course,
mply appeal to VI. 2.7 (iii), which shows that é -spaces can be replaced

v equivalent &Y -spaces.

Proposition 1,4, If &: Ax% - Lisa pairing of permutative
categories, then f= B®: BL X B - BE is a pairing of X -spaces.
Proof, The basepoint of B(L is given by the ébject 0 (regarde_d
88 a O-simplex), and f factors through BOL A BB by the nullity of zero.
‘The diagram of Deéfinition 1.1 implies the cornmutativiéy‘ of the following

herence diagram:

'*iju_JxEkx ak ] > X B

1XTX1 \\{\\
‘ LY

5 x%’kxoﬂxaak

J il
1X1X v /
P Cjk
Z.xE x(Gx 53)jk BxXeT ®x®’ % x e
.
J k ik ¢

here the functor v is defined just as was the map v in the previous

definition. The conclusion follows upon application of B.
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2. The recognition principle for pairings

We here extend the one operad recognition principle of VII§3 to a
recognition principle for pairings. Although the present theory is basically
an elaboration of the additive theory, it will still be necessary, for techni-
cal reasons, to work with the little convex bodies (partial) operads .K_n

rather than with the little cubes operads ( a Defin

®: X ()X X ()= X_, (%) by

k 1 1

<c1,...,¢j>®<ci,...,c' >=<c. X ci,...,c "

Let @n

and the maps just defined together determine maps
@R ) x@ E)~R_ (k).

associated to () a We begin by using the maps @ to define a "pairing of

denote 1) X kn for n>1. The maps ®: Q) X Q (k) -~ O (k)
Let D_ denote the (partial) monad

monads® D AD -D .
m n mtn

Proposition 2.1, For based spaces X and Y, the composite maps

Q ) x % X&) ) X Yk——l—&ﬁer(j) X ® (k) x xIx v 8%y,

s jk
R nlik) X EAY)Y
where v is as specified in Definition 1.3, induce maps
X :D_ XADY -~ D X~ Y)
mn m n m+n
such that the following diagrams commute:

M m+n(xrnn)

p@x. p@y —mm 1) o x.py) (2) (X AY)
m n mtn’ m n
BeA B H
)‘mn
D XAD Y ; D (XaY)
m n m+n

and

X cllc""’ cj Xci,..., c:j Xe!l>,
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D_XAD_ Y—-—-—-—-———-——>D mEAY)

Proof, Dmx is constructed from ,_U__ -‘Qm(j) x X7 by use of appropri-

ate equivariance and basepc;int identifications, and its product p and unit 1
are induced from the structural maps vy and unit 1 for the operadé 2 and
(see VI.1.2 and [45,2.4]) . The proof consists of a check, in principle
for 4) and the Km separately, of the commutation relations between &
and the defining data of the specified operads. The details are closely
analogous to those already formulated in VI.1.6-1,10 (specialized to the case
k = 2) and will therefore be omitted. The top row of the first diagram must
be interpreted in Fhe svense of partial monads, the superscripts indicating
restrictions of powers such that only composable pairs of little convex bodies

are in sight (see VIL.1.1 and the discussion following VII, 2.1). For

(1) (D XAD Y), composability is to be interpreted in terms of ® on the K's,

(@)

Indeed, we may specify this space to be the inverse image of D (X AY)

2)

under D ) and then check that it contains the image of Drf,Z)XADé Y

(\
m+in' mn
under the map .

H DDY - .

)"mn DmDmXA nn m(DmXADnY)

Let ﬁn: EnDn - Dn be the adjoint of the composite of the projection
LH Dn - Kn and the morphism of monads an: Kn -5 of VILZ.2.
Recall (for twisting maps) that we are writing suspension coordinates on the
right.

Proposition 2.2. The foilowi.ng diagrams commute for all X and Y

W]

R ey

i

i

2
T

oAl
AT

iRy

o

2

eSS
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~min
n, InTal m+n -~ A mn m-n.
2D xaz"p Yy —2IN mp xaD ¥) —— 5 5TPp (XA Y)
m n m n } m+q
ﬁmA ﬁn ﬁm+n
=% Az Y trral > 2™ x Ay

‘Proof. We may define (K _XAK Y - K (XAY) just as in the
—— mn m n mtn

previous proposition, and then '“.)‘rn = X\ (raw). Moreover, as was

y2 mn

pointed out in [45, 8. 3] in the case of little cubes, the following diagram is -

commutative:
A
K X K Y ma K_ . (XAY)
m n m+n
&% 1 “min
@PEPRAQ Y —— D PPy )

The conclusion follows by passage to adjoints.

Recall that o: K _~ Y\'.n is the morphism of operads specified
a N

+1
by ¢ ~c X1 on little convex bodies, and also write ¢ for

1Xo: % =% .. Weneedto know that, up to homotopy, ¢ is inde~-
“n “n+l

pendent of the choice of privileged coordinate., The following analog of

[45, 4.9] for little cubes will give the idea. Let o': ri a ‘;F"n-i-l be specified

by c =1 Xc on little convex bodies.

Lemma 2.3. The maps o and o' from “J"Ln(j) to '.'f\ln_}_l(j) are
Zj—equivaria_ntly homotopic.

n+l n+l
Proof. Define orthogonal transformations g,g'tR - R by

. (s, =) if n is even
g(s,x) = (x,5) and g'(s,%) =

(1-s,x) if n is odd
for xe¢ R” and s ¢ R. Since g and g' both have degree (-l)n, there is a

path h:I~- On) from gto g'. For a little convex body c: R™ = R”, we have

grie)g™l = olc) and glo'(e)(g) " = o'(c).
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The required homotopy is given on little convex bodies ¢ by conjugation

of o'(c) with the orthogonal transformations ht .

It is not just the existeﬁce but the form of the homotopies that is
essential for our purposes. For example, the following result is immediate
from the previous proof. '

Proposition 2.4. The bottom part of the following diagram commutes

and the top part commutes up to homotopy for all X and Y:

A
Dm+lx l:)nY
V *mitl,n
A
mn [

D X«aD Y -——*r D (XAY) = D
m n min

DmXA Dn-l-l ¥

min+l *r¥)

4{-1

At this point, we recall Whitehead's definition [80] of a pairing.

Definition 2.5. A pairing f#:({T',T") -~ T of prespectra consists of

mn= Tl‘_n/\ TI;' - Tm for m,n > 0 such that, up to hbmotopy, the

maps f# tn

bottom part of the following diagram commutes and the top part of the dia-

gram commutes up to the sign (-1)":

\ " u'mAl o .
ZT AT ey Tm+1’\ T
Iar ¢rn+1, n
=6 v ‘
B(T, AT::) =T +n 2 Tm+n+l
1
1rg : m, ntl

T ABT" i T A"
m n m  ntl

For a Q -space X, we have the prespectrum TX specified by

TX = Bz, D,,X),
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where TOX =X, with structural maps

i+l

o = B(L,o,1): ZTX = B(Z,D,X) ~ B p

X) =T, X .

1+1’
We have the following recognition principle for pairings.
Theorem 2.6. A pairing. £1XAY > Z of ’.‘r\\ -spaces naturally
induces a pairing f:(TX, TY) =~ TZ of prespectra such that ﬁ0,0 = f.
Proof. As inthe first diagram of Proposition 2.1, the maps X\
can be iterated to yield
(@ (a (@, = (a

by D XAD Y-D (XAY).
mn m- n mn

(2 m-n .
By composing with D f smashing with spheres s§7As" =5 (which
are taken as one-point compactifications of Euclidean spaces here), and
using a twist map T, we obtain maps

g__ B (=7,D_,X)aB (>: D_ Y)»B(zm+n ,Z) .

mngq g m+n
By the definition of a pairing of %) -spaces, we have the commutative

diagrams A D

D XaD Y —22,p  (xay)—242_,p 2z
m n m+n min
8re 3

XAy zZ

where the 6 are composites of projections and the given actions of D on
X,Y, and Z. In view of the definition of the face and degeneracy operators
[45, 9. 6] and the commutative diagrams of Propositions 2.1 and 2.2, it
follows that ﬂmn " is a map of simplicial spaces. For any simplicial
based spaces U and V, the matural homéomorphism

[o} x [v] & |uxV]| indaces a map. [Ula V] = |UAV], and we therefore
obtain a map ﬂmnl TmXATnY ——,Tm{_nz on passage to geometric realiza-
tion. Certa.irtlly- ﬁ0,0 = £, On the level of g-simplices, the diagra;m of

the previous definition can be written as follows:

GO e

0O C OO0
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“ma (2
D(Q)x/\s A S /\D(q)Y/\S ~—-—IE-(-1—-——*Dq)+1XASm+1/\Dn yas™
1 ¢m+1,n, q
1 ﬂmnql (q) min 1 “min (q) m-ntl
D X/\S AD Y/\S s~ L p T zasT Rt SRR, p ZAS
min m+n+1
1"
m,nt+l, g

(a) m (q) n llA nqg () m_ (9 ‘n+1

D "XAS TAD YAS AS mmm—ipr D TXASTAD YAS
m n m n+l

The bottom part commutes by Proposition 2.4. Provided tha.t we first twist

(@ pldy

s® past S , application of the homotopy of Proposition 2.4 to D XA
and of the orthogonal transformations which give that homotopy to Sm-*‘1 n
yieldé a homotopy for the top part of the diagram. These homotopies as q
varies are compatible with the face and degeneracy operators (for each
parameter t € I) and so determine the required homotopy on passage to
geometric realization, It is for this compatibility with face operators
that use of little convex bodies rather than little cubes is essential,

While the passage via a® frém pairings of pres;pectra to maps in
the stable category has already been discussed in II.3.3 and 3.4, we
should perhaps say a bit about the more elementary passage from pairings

of prespectra to pairings of Q-prespectra. Provided that we are willing

to neglect phantom maps, the functor 2™ can be redefined homotopically

by o QJ
© T)i = Tel Ti+j'

with 3T, -’(ﬂmT)i being given by the 0th term of the limit systemn.
i
Given a pairing f:(T', T") - T, the maps
P T Do m+n
E‘j.ﬂ Tim” ¢ Tj‘*‘“ - itj+min

. g x - m n
specified by ﬂij(f/\ glxay) = ﬂi+m,j+n(f(x),\g(y)) for xe€ S and ye S

are such that the following diagrams are homotopy commutative:




m+l, |y A Bt
m . Ltma " @ Tj+n'
2 i+m/\
m+n.,
m n,..u ij mn, £ Yi+j+mén m-n+l
t [r—— - Y ___..__.._.__..J_—-—-p. 0
T 9 Tign & Tjmin ikj+mentl
n .,
InQ o'j i
mT;‘ n+l, n
itm jin+l

there being a permutation of loop coordinates in the upper part which can-
cels the sign inserted inthe definition of a pairing. Still neglecting

phantom maps, there result maps
¥ 1P - T m, s . - (+
¢ij.(a T )i/\(sz T )j 2 Tel(R T & ij) © T)iﬁ

which give a pairing g: @1, @CT") - 2®T. The following diagrams
are clearly homotopy commutative:

g,.

1)

T'ATH ey
3 s

J

LAL L
~

00,y 00, 1 ij (o0
@FT"), A0 T_)J.—J——f(ﬂ Tyt

In the context of Theorem 2.5, the group completion property of the
recognition principle implies that the map ﬂOO is characterized by the
case i= j=0 of this diagram (compare [46,3.9], VIL. 1.1, and the para-
graphs above the latter result).

~

One could obtain a genuine pairing § , without neglect of phantom

maps, by an elaboration of the discussion just given in terms of the mapping.

_cylinder techniques of [43, Theorem 4]. However, the extra precision

would be insignificant in view of II. 3. 4.
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137

100, 135,

completion 37ff, 116

composable sequences 171

composition product 14

convergent at M 195

cross—section 50

§ (superscript) 217

§-invariant 118

D~gpace 150-151, 159ff, 248ff,

253ff

(D,D)-space 150, 160ff

v, (0,7) 150, 158

d-invariant 118

decomposition homomorphism 221
determinant bundle 55
direct sums 27

discrete model 217

ge-invariant 119 ‘
E(=finite sets) 161, 164, 236
e-invariant 120

E_ operad 140
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function spaces

E°° ring_space 72, 140, 146

E_ space 140
E-cohomology 39
E~orientable 51
E-orientation 52ff
canonical 53
of a bundle theory G 92ff,
95£f
perfect 93ff
equivariant half-smash product 66
exponential units 147

external tensor product 245

FA(=free A-modules) 162

F/PL 24

F/Top 123, 136

FR, FE, SFE 54

Fv-bundle 50
ko[1/2]-oriented 127

4"

F(n) 22

"

F, ¥ 22

fibred products 12
fibrewise smash product 51
in orientation theory 53,
60-61, 82

Frobenius automorphism ¢r
215, 217, 219, 223ff

164,

12, 26

function spectra 32

rX, r(%,0) 183

G-prespectrum 66ff
66,

Go—space 140

G~space with zero 66, 72

G-spectrum 68

=GLA 162, 164, 224, 235ff
6LP, 1, 6IS]1 68
G[Te] 66, 140
G(n) /PL(n), G/PL 129
G, G(n) 22
GVv-bundle 50
E~oriented 52, 56

stable equivalence of 91

Gersten—Wagonef spectrum 206,
244-245
Grothendieck group 149, 215

group completion 150, 168, 178

Hz—space 209ff
HS 34

S HT 34
homogeneous space

homotopy category 27

< homotopy groups 34
ifhomotopy sets 33, 55
I 9
I[T1 12
moneid in 20
‘1, 13
LI (RT) 27
éI*[T] 13
¥, 1f 170
I-functor 11
group—~like 20, 50

group~valued 20, 50
monoid-valued * 20, 50, 75

~functor 13

1,~prefunctor 73
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ImJd 114

infinite loop map 93
eguivalence 95

ipr s 30, 122, 223
I 114
I, Jgp 112, 133, 223, 228, 233,

P
235££, 240ff

homotopy groups of 118

at, g5 108 ‘

Jo 122, 223, 228

2

Ju 234

2
JG(X) 91

JO(X), JOg (X) 119, 129

JSO(X), JSOg (X) 119
JSpin (X), JSping(X) 119£f
JTop(X) 129

J~hHomomorphism 91
bordism 78

J-theory diagram 107

Kn,KV,Km

170, 172-173
(K_,L) 178

kO, kU 103, 213, 218, 224
KG{X) 91

KO(X) 115£f
KSpin(X) T115££
KA 206

KyZ 234-236
KO,A 207
KO, % 234

KVX' 177
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K~theory

algebraic 201, 204ff, 234-235

connective 214, 218
periodic 43, 121, 213

i

K(G;E) 92

L")

K(SF;3) 122

L
K(SF;k0) 117, 128

u

KF(X) 128
n

KG(X) 91

N
K Top (X) 128

L 10
L~prespectrum 73ff
L-spectrum 74

1

lim 33, 39, 43
primnt

Localization 37f££f, 115
of B(8G;E) 99
of I'q(X,e) 196ff

of 8F 199
loops
av 26
(for Q% see “spectra'")
of E_ spaces 187
of spectra 34
M-space 148
(M, M) ~space 148
M(G;E) B8A4ff
M(G;Y), MG 75ff
M 112
P
M 108
MG-orientation 77
MPL, MSPL 76
MSp-orientability 83

MU-~orientability 83

Monad 72, 141, 145, 177, 179
action on a functor 181
action on a space 141
algebra 141, 146
partial 177, 181

Nk 165, 224, 237

3
N-space 148

(N,M)-space 148
(N,N)-space 148, 203
N 126

P

NT 124

normal space 77, 85

0 163

0n 162, 164, 206, 224, 237
0z 167, 193

0, S0 15, 22

obstruction to
E-orientability 81£f
kO-orientability 118
R-orientability 57
reduction to Top 128
S-orientability 59

operad 139, 141

action on a space 140, 142
action on an operad 143
linear isometries 10
little convex bodies

169, 171££, 176ff
little cubes 169, 173
partial 172, 176, 181

operad pair 144
action on a space 145
partial 178

orientation - 52ff
canonical 58

orientation diagram 55, 59,
80ff, 83

orientation sequence 81, 223,
235

P 28
P 66
e

PA 31

PA (=projective A-modules) 162,
244-245

pin 16, 22
pin® 16, 22
PD 23

PL/O 24

PL, SPL 23ff, 129-130

pairing of

monads 250

permutative categories 246ff

D-spaces 248ff

symmetric monoidal categories
246fF ;

weak prespectra 42, 69-70,
253ff

periodic space 43
ring space 45
(see also “spectrum")
plus construction 205
Pontryagin~Thom construction 76
prespectrum 27
coordinatized 31
free 29
Q 41 o ]
suspension I 29, 70
E, ring 68
weak 40

Puppe desuspension theorem -34

Q 30, 71
Q(G;E) (X) 92
Q(SF;k0) (X) 118£f, 129
Q. s® 236, 241£f

o_ 30, 71

r(p) 110, 223

recognition principle 183, 188,
191, 254

reduction of structural monoid
50, 77 ’

representation ring 214

ring space 45

S 28
Sc' 44
S 66
e

Sf 163
Sa 3

S (=Sphere spectrum) 34, 7%
SF 22, 112, 235ff, 240ff
SF/Spin 113, 134

SGV-bundle 58
E~oriented ' 58

STop 22, 23, 127
kO[1/2]~orientation of 123

S—~orientation 60
Sp 15, 22
.6
SF; - 240
( Jp)
(SF;k0) 105, 112
(SF;k0)/Spin 105, 113

semi~ring 148, 203
pseudo 148

smash product 32, 35, 69

spectrum 28

Q 28
associated connective 36,
44, 47

associated 9° 29, 71
connective 35
n-connected 35
coordinate~free 33
coordinatized 31

E ring 68
ETlenberg—MacLane 36, 204
free 30

periodic 43ff

periodic connective 44ff
periodic connective ring 46
periodic ring 46

ring 35




. spectrum

unital 66
weak ring 40

i
spherical fibration 50, 128
kO~oriented 117££, 127

Spin 16, 22, 23
kO-orientation of 104£f

spin® 16, 22, 23
kU orientation of 104ff

Spin-bundle 115£f
spinor norm 164

stable G-bundle 91
E~oriented 92, 95ff

Stiefel-Whitney class 57
E~theory B81£f
kO-theory 118

suspension

V26

(fFor % see "prespectrum")
of spectra 34

T .9

T 65

e

t 14, 22, 26, 31, 176

T(G;E) 84

T(G;Y), TG 75

T-complete 37

T-local 37

Thom complex 49, 51

Thom isomorphism 52, 110

Thom spectrum 65

Top/0 23, 127

Top/PL 23
Top 22, 23

Top bundle 127ff

transfér 211

trivialization 59, 77
stable 59

TX, @°TX 182-183

u 163
U, su 15, 17, 22
universal bundle 16

universal covering spaces 12

v 35

W 54

w(E;E) B81ff.

w,w‘L 110-111

WHS 41

weak equivalence 34, 95
Whitney sum 11, 15, 51
wreafh product 165, 206ff

Wu classes 110

Zeroth space 29
of a G-gpectrum 179
T and QT of 186, 192
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