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Abstract.

In this paper, we discuss the idea of a prime number race: what is it, what do we need to study it,
and, most importantly, who wins? To answer these questions, we consider various notions of the
density of a set of integers, and use these to say how often one “contestant” is winning.

I. Introduction

Pick a positive integer, at least 3; we’ll call it q. Now pick two other positive integers, less than q,
and not equal; we’ll call them a1 and a2. (This is why we want q ≥ 3: if not, we don’t have a race!)
Make sure that both a1 and a2 are coprime to q, and we’re ready for a prime number race.

We define the function π(x; q, a) = # {p ≤ x : pprime, p ≡ a (mod q)}. A prime number race
compares the functions π(x; q, a1) and π(x; q, a2) at each natural number n. We want to know “how
often” π(x; q, a1) > π(x; q, a2).

It will also be of interest to us to examine races with more “contestants”. More specifically,
instead of choosing only a1 and a2, we choose i integers in [1, q − 1], where aj 6= ak for j 6= k, and
each aj is coprime to q. We then ask “how often” π(x; q, a1) > π(x; q, a2) > . . . > π(x; q, ai).

To prove necessary results, it will be necessary at times to assume two strong hypotheses: the
Generalized Riemann Hypothesis (GRH) and the Grand Simplicity Hypothesis (GSH). We will
state these presently.

II. Preliminaries

a. Primes in Arithmetic Progressions

One of our first assumptions was that a1 was coprime to q. We can see that if this is not the case,
the function π(x; q, a1) is not very interesting: if a1 is prime, π(x; q, a1) = 1 for all x ≥ a1, and if a1

is not prime, the function is identically zero. However, even in the coprime case, we have not ruled
out that π(x; q, a1) is not constant for all x sufficiently large. That this is not the case is given by
Dirichlet’s Theorem on Primes in Arithmetic Progressions (Corollary 4.10, [7]):

Theorem (Dirichlet). If (a, q) = 1, then there are infinitely many primes p ≡ a (mod q).

From this we see that lim
x→∞

π(x; q, a1) =∞.
It is because of Dirichlet’s theorem that we concern ourselves only with the case where the

modulus and remainder are coprime.
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b. Dirichlet Characters and Dirichlet L-functions

The proof of Dirichlet’s theorem usually presented in courses on analytic number theory involves
Dirichlet characters and their associated Dirichlet L-functions. (Selberg [11] gave a proof of this
theorem that does not use Dirichlet L-functions.) As we will use these objects many times in this
paper, we define them now.

Consider the ring Z/qZ; we call its elements the residue classes modulo q. An element a ∈ Z/qZ
is a unit if there exists b ∈ Z/qZ with ab = 1. (Since Z/qZ is commutative, it follows that b is also
a unit.) These units form an abelian group under the multiplication in Z/qZ; we denote this group
(Z/qZ)

×. We call the elements of (Z/qZ)
× the reduced residue classes modulo q. We denote the

residue class of a ∈ Z modulo q by [a]q, and we know that [a]q = {qn+ a : n ∈ Z}.

Definition. A Dirichlet character modulo q is a function χ : Z→ C that is totally multiplicative,
supported on the reduced residue classes modulo q, and has period q.

We can also think of a Dirichlet character as an irreducible representation of the group (Z/qZ)
×

extended to Z. (For more on this approach, see [12] and especially Section 4.2 in [7].) We can
weaken the hypothesis of total multiplicativity to multiplicativity; see Theorem 4.7 in [7].

All nonzero values of Dirichlet characters are roots of unity. We call a Dirichlet character com-
plex if at least one of its values has nonzero imaginary part; otherwise it is real. The real character
that is identically 1 (except where the definition requires that it be zero) is the principal character,
and we denote it χ0; other real characters are quadratic. Note that if χ is quadratic, χ2 = χ0, and
that this is not the case for complex characters.

Definition. Let χ be a Dirichlet character modulo q. The Dirichlet L-function associated to χ is

L(s, χ) =
∞∑
n=1

χ(n)n−s wherever this series converges.

We can show that L(s, χ) converges absolutely for Re(s) > 1, and if χ 6= χ0, L(s, χ) converges
for Re(s) > 0 (but does not converge absolutely for Re(s) ∈ (0, 1]). L(s, χ0) has a simple pole
of residue 1/φ(q) at s = 1. Dirichlet’s theorem can be shown by proving that L(1, χ) 6= 0 for all
Dirichlet characters χ. Additionally, in the region of absolute convergence, L(s, χ) has an Euler
product: L(s, χ) =

∏
p

(1− χ(p)p−s)−1, where the product runs over all primes.

c. The Generalized Riemann Hypothesis and the Grand Simplicity Hypothesis

From the fact that L(s, χ) is equal to a convergent product for Re(s) > 1, it is nonzero in that
region. From the functional equation for L(s, χ) (see Section 10.1 in [7]), L(s, χ) has “trivial” zeros
on the nonpositive real axis. (It may also be the case that L(s, χ) has zeros on the imaginary axis.
These only arise when χ is an imprimitive character–see Section 9.1 in [7]–and result from factors
of the form (1−χ(p)p−s) being the only difference between the L-function associated to χ and that
associated to the primitive character inducing χ.) All other zeros of L(s, χ) are nontrivial zeros,
with real part in (0, 1), the critical strip. We use the notation ρ = β + iγ to denote a nontrivial
zero of L(s, χ).

Conjecture (Generalized Riemann Hypothesis). If ρ = β + iγ is a nontrivial zero of L(s, χ), then
β = 1/2.
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Conjecture (Grand Simplicity Hypothesis, as in [10]). The set
{
γ : L( 1

2 + iγ) = 0, χ primitive, γ ≥ 0
}
is

linearly independent over Q.

Making these two assumptions will facilitate later computations.

d. The functions ψ(x; q, a) and θ(x; q, a), and the Prime Number Theorem for Arithmetic
Progressions

The Prime Number Theorem for Arithmetic Progressions can be stated as an asymptotic: If
(a, q) = 1, then π(x; q, a) ∼ li(x)

φ(q) , where li(x) =
´ x

2
dt

log(t) . In essence, each residue class mod-
ulo q containing infinitely many primes gets its “fair share”, as there are φ(q) such residue classes.
However, the error term hidden by this asymptotic is of great interest here. It turns out to be more
natural to study two functions related to π(x; q, a).

Definition. θ(x; q, a) =
∑
p≤x

p≡a (q)

log p.

The Prime Number Theorem for Arithmetic Progressions can be stated in the following form:
If (a, q) = 1, then θ(x; q, a) ∼ x

φ(q) .

However, θ is not the function from which we will be able to derive the most useful information.
Rather, it is ψ(x; q, a) that will do this.

Definition. The von Mangoldt lambda function is defined by Λ(n) =

{
log p, ifn = pr

0, else.

Λ(n) detects when a number n is a power of a prime, pr, and its value can be thought of as
1
r log pr.

Definition. ψ(x; q, a) =
∑
n≤x

n≡a (q)

Λ(n).

The Prime Number Theorem for Arithmetic Progressions can also be stated as follows: If
(a, q) = 1, then ψ(x; q, a) ∼ x

φ(q) . We do have an explicit formula for this function, which we
will derive later, and which, when combined with assumptions regarding the zeros of L(s, χ) for
characters χ (mod q), will facilitate our computations.

III. A Prime Number Race

Let’s examine the functions π(x; 4, 1) and π(x; 4, 3). Each of these is asymptotic to 1
2 li(x), but is it

the case that the “size” of the set where π(x; 4, 1) > π(x; 4, 3) (and vice versa) is asymptotically 1
2?

As we will see later, the answer to this question is no. To provide some evidence for why this might
be so, let us examine the values of these functions at various points. (The values in the following
table are from [8] and [9].)
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x π(x; 4, 1) π(x; 4, 3)

10 1 2
100 11 13
1000 80 87
10000 609 619
100000 4783 4808
1000000 39175 39322
10000000 332180 332398
100000000 2880504 2880950
1000000000 25423491 25424042
10000000000 227523275 227529235
100000000000 2059020280 2059034532
1000000000000 18803924340 18803987677

While we have only examined these functions at very specific points (10n for 1 ≤ n ≤ 12), we see
that π(x; 4, 3) seems to be maintaining a lead over π(x; 4, 1), small compared to x, but nonetheless
a lead. Leech [4] found that π(26861; 4, 1) = 1473, while π(26861; 4, 3) = 1472. However, 26863 is
also prime, and congruent to 3 modulo 4, and the next prime after that one is 26879, also congruent
to 3 modulo 4. (Exploring a bit further, we find that the next few primes are 26881, 26891, 26893,
26903, and 26921, so that while the race is tied at some of these values, π(x; 4, 1) does not retake
the lead.) He also found a more extreme difference at 623681: π(623681; 4, 1) = 25444, while
π(623681; 4, 3) = 25436, and notes that except for 26861 and various values between 616000 and
634000, there are no other x where π(x; 4, 1) > π(x; 4, 3) and x is less than or equal to 3000000.

We will see later that in a sense we will soon define, π(n; 4, 3) > π(n; 4, 1) is true for over 99%
of integers n.

IV. Probability and Density

a. Probability

Ideally, we would like to define a “nice” probability measure on N. We first recall the definition of
a probability measure (from [1]).

Definition. Let Ω be a set. We say that a family F of subsets of Ω is a σ-algebra on Ω if:
i. F is not empty.
ii. F is closed under complements, that is, A ∈ F implies Ac ∈ F , and
iii. F is closed under countable union, that is, if {Ai}∞i=1 is a sequence of sets in F , then

⋃
i≥1

Ai ∈ F .

The ordered pair (Ω,F) is called a measurable space. When Ω is countable, we usually take F
to be its power set. Another important σ-algebra is the Borel σ-algebra, defined as follows (see, for
instance, p. 22 in [3]):

Definition. Let X be a topological space. The Borel σ-algebra on X, denoted BX , is the smallest
σ-algebra containing all open sets in X, that is, it is the intersection of all σ-algebras containing all
open sets in X.
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We now define the notion of a probability measure on a measurable space.

Definition. A probability measure P on the measurable space (Ω,F) is a function P : F → R
such that:
i. P (A) ≥ P (Ø) = 0 for all sets A ∈ F ,
ii. if {Ai}∞i=1 is a sequence of pairwise disjoint sets in F , that is, with Ai ∩Aj = Ø whenever i 6= j,
P (
⋃
i≥1

Ai) =
∑
i≥1

P (Ai), and

iii. P (Ω) = 1.

One immediate consequence of this definition is that if A, B ∈ F and A ⊂ B, then P (A) ≤ P (B),
and another is that P (Ac) = 1− P (A).

We also define what it means for two elements of F , which we call events, to be independent.

Definition. Two events A, B ∈ F are independent if P (A ∩B) = P (A)P (B).

We see that if A and B are independent, so are Ac and B. We see this by using the fact that
B = (A ∩ B) ∪ (Ac ∩ B), and the union is one of disjoint sets. Thus, taking probabilities, using
independence, and rearranging we find that P (Ac∩B) = P (B)(1−P (A)) = P (Ac)P (B). It follows
that if A and B are independent, so are Ac and Bc.

The “nicest” probability measure we could place on N would be a uniform measure: one where
P ({m}) = P ({n}) for all m, n ∈ N. But this is clearly not possible, since N can be written as the
union of the sets {n} for each n ∈ N, and these sets are pairwise disjoint. If each of these sets has
measure 0, then by the second axiom P (N) = 0, and if each has measure α > 0, then again by the
second axiom P (N) =∞, and in either case this contradicts the third axiom.

But while we cannot define a uniform probability measure on N, we may still be able to define
a probability measure that preserves some of our intuitions about the integers: for instance, that
the probability that a number is divisible by an integer a is 1/a. It turns out that we cannot do
this. We follow the exposition in Chapter III.1 in [13].

Theorem (Theorem 1 from Chapter III.1 in [13]). Let aN = {k ∈ N : a | k}. There does not exist
a probability measure P on N such that for all a ∈ N, P (aN) = 1/a.

To prove this theorem, we will need one of Mertens’ formulas. We omit the proof.

Lemma (Theorem 2.7e in [7]). For x ≥ 2,
∏
p≤x

(
1− 1

p

)−1

= eγ log x + O (1), where γ is Euler’s

constant: γ = lim
x→∞

(
∑
n≤x

1
n − log x).

Proof of the Theorem. We employ contradiction. Assume such a measure exists.
We know that if (a, b) = 1, aN ∩ bN = abN, and so the events aN and bN are in this case

independent. Thus so are aNc and bNc, and hence

P (aNc ∩ bNc) =

(
1− 1

a

)(
1− 1

b

)
when (a, b) = 1. By induction we obtain that for any integers m, n with m < n, that, with p
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denoting a prime,

P ({m}) ≤ P

 ⋂
m<p≤n

pNc
 =

∏
m<p≤n

(
1− 1

p

)
.

But by the Lemma, since we may take n to be as large as desired, the product can be made
arbitrarily close to 0. Hence for any m ∈ N, P ({m}) = 0, but, as above, this contradicts the
definition of a probability measure. Q.E.D.

We also note that while intuitively we would like the probability that an integer n is greater
than a given integer N to be 1, that is, that P ({n ∈ N : n > N}) = 1, since this set contains all
the integers save only finitely many, this would require that for all n ≤ N , P ({n}) = 0. But again,
since we would want this to be true for all N , we have the same contradiction. (Alternatively, we
would like the probability that an integer n lies in some given finite subset of N to be zero, but by
the same argument this cannot happen.) It is for this reason that we have the notion of the density
of a set of integers.

b. Density

By using density, we preserve our intuitions that the “probability” of aN is 1/a and that a finite set
has “probability” zero, at the cost of various properties of probability measures. We may define the
density of a set of integers generally as follows:

Definition. Let {λn}∞n=1 be a sequence of nonnegative real numbers with
∞∑
n=1

λn =∞. Let A ⊆ N

and define the density d(A) of A as the limit (if it exists), of

d(A;x) :=

 ∑
a≤x, a∈A

λa

∑
n≤x

λn

−1

,

as x→∞.

Certainly any finite set has d(A) = 0, and so this is not a probability measure on N.
Since we define density as a limit, we can replace the sum

∑
n≤x

λn by any function f(x) asymptotic

to it. For instance, since
∑
n≤x

1 = x+O (1), we can define the natural density of a set A ⊆ N by

d(A) = lim
x→∞

1

x
(# {a ≤ x : a ∈ A}) .

We also define the upper and lower asymptotic densities of A, denoted d(A) and d(A) respec-
tively, by replacing the limit in the above with lim sup or lim inf respectively.

Let us note the following:
i. If A = {n ∈ N : n ≡ a (mod q)}, then since # {a ≤ x : a ∈ A} = [x/q] +O (1), any arithmetic

progression modulo q has a natural density, and it is 1/q, as our intuition says it is.
ii. The sequence a1 < a2 < . . . has natural density α ∈ [0, 1] if and only if lim

n→∞
n/an = α.
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iii. Not all sequences have a natural density. Consider the sequence A of integers n with

first digit 1 in their base 10 expansion. Then A =
∞⋃
k=0

{
n : 10k ≤ n < 2 · 10k

}
. Define A(x) :=

# {a ≤ x : a ∈ A}. Then for m ≥ 1, we have that A(10m− 1) = 1
9 (10m− 1) while A(2 · 10m− 1) =

5
9 (2 · 10m − 1) + 4

9 . Hence d(A) ≤ 1/9, d(A) ≥ 5/9 , and so d(A) does not exist. We will return to
this example later.

iv. If we denote by νN the probability measure on N assigning probability 1/N to each of the
first N positive integers, we have that for any sequence A, d(A) = lim

N→∞
νN (A), assuming both

exist, so that while natural density itself is not a probability measure, it is the limit of probability
measures, and it is these measures that have properties close to those we expect intuitively.

As we noted above, the sum
∑
n≤x

λn can be replaced by any function f(x) asymptotic to it. We

have examined the case λn = 1. We can also consider other values for λn. We list some possible
choices, with smooth asymptotic f(x), below.

# λn f(x)

1 1 x
2 1/n log x

3

{
1, ifn is prime
0, else

x
log x , li(x)

4

{
1
p , ifn is a prime p
0, else

log log x

5

{
log p, ifn is a prime p
0, else

x

6

{
log p
p , ifn is a prime p

0, else
log x

7 Λ(n) x

8 Λ(n)
n log x

9

{
1, ifn ≡ a (mod q)
0, else

x
q

(2 follows from Corollary 1.15 in [7]; 3, 5, and 7 from Theorem 6.9 in the same; 4, 6, and 8
follow from Theorem 2.7 there.)

We will use choice 2 in our discussion of how often a “contestant” in a prime number race is
winning. It is with this notion of density that we make statements such as “π(n; 4, 3) > π(n; 4, 1)
is true for over 99% of integers n”. We call this density logarithmic density.

We denote the logarithmic density of a sequence A by δ(A), and the upper and lower logarithmic
densities (again defined by replacing the limit in the definition by lim sup or lim inf respectively)
by δ(A) and δ(A) respectively.

It turns out that the existence of logarithmic density is a weaker statement than the existence
of natural density. We make this precise as follows.
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Theorem (Theorem 2 from Chapter III.1 in [13]). For any sequence A ∈ N, d(A) ≤ δ(A) ≤ δ(A) ≤
d(A), and so if A has a natural density, it has a logarithmic density and the two are equal.

Proof. Define A(x) :=
∑

a≤x, a∈A
1 and L(x) :=

∑
a≤x, a∈A

1/a. Using integration by parts on L(x), we

obtain L(x) = A(x)
x +

´ x
1
A(t)
t2 dt, for x ≥ 1.

Now let ε > 0. Then we have some t0(ε) such that for all t > t0(ε), d(A)− ε ≤ A(t)
t ≤ d(A) + ε.

Substituting this into our formula for L(x), with x > t0, we obtain

(d(A)− ε) log (x/t0) ≤ L(x) ≤ 1 + log t0 +
(
d(A) + ε

)
log (x/t0) .

(Note that A(t)
t is bounded below trivially by 0 and above trivially by 1.) Taking x to ∞ (using

lim inf and lim sup if necessary) and then ε to 0 gives the stated inequalities. Q.E.D.

To show that a set can have a logarithmic density without having a natural density, we consider

the set A =
∞⋃
k=0

{
n : 10k ≤ n < 2 · 10k

}
again. We have seen that this set does not have a natural

density. However, it does have a logarithmic density. To see this, consider L(x) as defined in the
proof of the above theorem. Then

L(x) =
∑
a≤x

1

a
=

∑
0≤k≤log x/log 10

∑
10k≤n<2·10k

1

n

n≤x

=
∑

0≤k≤log x/log 10

(
log 2 +O

(
1

k + 1

))

+O (1) =
log 2

log 10
log x+O (log log x) ,

from which it follows that δ(A) = log 2
log 10 .

From this we see that while “proper” probability theory will not yield the results we expect in
the case we want, we have a way of recovering our intuitive results, through natural density. Even
when that fails to exist, we can look to see if the logarithmic density exists, as it coincides with
natural density when the latter exists.

V. The Explicit Formula

It turns out that there is a formula for ψ(x; q, a) that depends upon the zeros of L(s, χ) over all
characters χmod q. To derive this formula, we examine a function more closely related to L(s, χ),
ψ(x, χ).

Definition. ψ(x, χ) =
∑
n≤x

χ(n)Λ(n).

We have an “orthogonality” relationship between characters that allows us to detect a given
reduced residue class:

1

φ(q)

∑
χ

χ(a)χ(n) =

{
1, ifn ≡ a (mod q)
0, else,
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and from this we see that ψ(x; q, a) = 1
φ(q)

∑
χ
χ(a)ψ(x, χ).

We define the related function ψ0(x, χ) by modifying the sum defining ψ(x, χ) slightly: if x is
an integer such that Λ(x) 6= 0, count the last summand with only half the weight, that is, make it
(χ(x)Λ(x))/2 rather than χ(x)Λ(x). Then as long as χ 6= χ0, and q is fixed, we have

ψ0(x, χ) = −
∑
ρ

xρ

ρ
+O (log x) , (1)

where the sum runs over all nontrivial zeros ρ of L(s, χ), from Corollary 12.11 and (12.13) in [7].
We may replace ψ0(x, χ) with ψ(x, χ), as the difference is O (log x).

For the principal character χ0, we have the same formula except for an additional term x. These
terms arise from Perron’s formula (Theorem 5.1 in [7]), taking α(s) to be −L

′

L (s, χ). Plugging these
into our formula for ψ(x; q, a) in terms of ψ(x, χ), we obtain an explicit formula for ψ(x; q, a):

ψ(x; q, a) =
x

φ(q)
− 1

φ(q)

∑
χ

(
χ(a)

∑
ρ

xρ

ρ

)
+O(log x), (2)

where the outer sum runs over the characters χmodulo q, and the inner sum runs over the nontrivial
zeros of L(s, χ), that is, those with 0 < Re(ρ) < 1.

From this, one can derive that under the Generalized Riemann Hypothesis, we have a formula
for the difference between π(x; q, a1) and π(x; q, a2):

π(x; q, a1)− π(x; q, a2)
√
x/log x

=
1

φ(q)

∑
χ

(χ(a1)− χ(a2))
∑

ρ= 1
2 +iγ

xiγ

ρ

+N(a2, q)−N(a1, q)

+O(1),

(3)
where the outer sum runs over the characters χ modulo q, the inner sum runs over the nontrivial
zeros of L(s, χ) (all of which have real part 1/2 under GRH), and

N(a, q) = #
{
m ∈ Z/qZ : m2 ≡ a (mod q)

}
.

The presence of the term N(a2, q)−N(a1, q) in (3) already indicates some sort of bias in favour
of nonsquares modulo q, as it is positive when a2 is a square and a1 is not, and negative when a1

is a square and a2 is not. It would seem that this bias disappears when a1 and a2 are both squares
or both nonsquares; we shall discuss this further shortly.

We also have a truncated form of (1) ((2.1) in [10]), with γ = Im(ρ) and where the sum runs
over nontrivial zeros ρ of L(s, χ):

ψ(x, χ) = −
∑
|γ|≤T

xρ

ρ
+O

(
x log2(xT )

T
+ log x

)
. (4)

One natural question is to ask whether the double sum in (3) ever “overcomes” the negative
number from N(a2, q)−N(a1, q) (when a1 is a square and a2 is not). In 1914, Littlewood showed
in [5] the following:
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Theorem. There are arbitrarily large values of x for which π(x; 4, 1) > π(x; 4, 3); in fact, there are
arbitrarily large x for which

π(x; 4, 1)− π(x; 4, 3)
√
x/log x

≥ 1

2
log log log x.

So π(x; 4, 3) never quite stays in the lead, and in fact π(x; 4, 1) sometimes races out far ahead
of π(x; 4, 3). But the values of x for Littlewood’s result guarantees this are extremely large. For
instance, this lower bound is not attained the first time π(x; 4, 1) is ahead of π(x; 4, 3), at x = 26861,
for there the left-hand side is less than 0.07 while the right-hand side is greater than 0.4. At the
larger gap Leech [4] found, at x = 623681, where π(x; 4, 1) − π(x; 4, 3) = 8, the left-hand side is
less than 0.15, while the right-hand side is greater than 0.45. It is worth noting, however, that
log log log x grows extremely slowly; the least integer x for which log log log x ≥ 1 is x = 3814280,
and the least integer x for which 1

2 log log log x ≥ 1 exceeds 10702, and so it is not implausible that
this bound is attained infinitely often.

However we are interested in how often π(x; 4, 1) > π(x; 4, 3). Our discussion of notions of
density above will aid us in answering this question.

VI. More About Prime Number Races

With our notions of density and the explicit formula in hand, we are better equipped to handle
prime number races. We follow part of the exposition in [10] for now.

The sets whose densities we wish to know are those corresponding to a specific order of the race.
That is, if a1, a2, . . . , ar ∈ (Z/qZ)

×, we want to know the density of the set of natural numbers n
for which π(n; q, a1) > π(n; q, a2) > · · · > π(n; q, ar). We do not quite look at this set, but rather
at the set of real numbers x for which π(x; q, a1) > π(x; q, a2) > · · · > π(x; q, ar), and we call this
set Pq;a1,a2,...,ar . We can still define logarithmic density here: for a set P of real numbers, define its
logarithmic density δ(P ) by

δ(P ) = lim
X→∞

1

logX

ˆ
P∩[2,X]

dt

t
,

and define the upper and lower densities δ(P ) and δ(P ) by taking lim sup and lim inf respectively
instead of the limit.

To help us compute the logarithmic density of these Pq;a1,a2,...,ar , we will define a few other
functions. First, we define Eq;a1,a2,...,ar (x) by

Eq;a1,a2,...,ar (x) =
log x√
x

(φ(q)π(x; q, a1)− π(x), . . . , φ(q)π(x; q, ar)− π(x)) ,

for x ≥ 2. Each coordinate measures how far away π(x; q, ai) is from its “fair share”. The
normalization log x√

x
is there so that, under the Generalized Riemann Hypothesis, E varies in a con-

trollable way. In fact, it has a limiting distribution in the following sense:

Theorem 1. Assume GRH. Then Eq;a1,a2,...,ar has a limiting distribution µq;a1,a2,...,ar on Rr, that
is,

lim
X→∞

1

logX

ˆ X

2

f(Eq;a1,a2,...,ar (x))
dx

x
=

ˆ
Rr
f(x)dµq;a1,a2,...,ar (x),

10



for all bounded, continuous functions f on Rr.

We note that if µq;a1,a2,...,ar is absolutely continuous (with respect to Lebesgue measure), then

δ(Pq;a1,a2,...,ar ) = µq;a1,a2,...,ar ({x ∈ Rr : x1 > x2 > · · · > xr}) .

However, this would require a version of Theorem 1 that allows for discontinuous integrands, or
at least characteristic functions of sufficiently nice sets.

A related problem is that of the number of primes that are quadratic residues as compared to
those that are not. Here we must take q = 4, q = pα, or q = 2pα, where α ≥ 1 and p is an odd
prime, as for these moduli exactly half of the reduced residues are squares. Then define πR(x, q)
to be the number of primes that are squares modulo q and do not exceed x, and define πN (x, q) to
be the number of primes that are not squares modulo q and do not exceed x. We define the sets
Pq;N,R and Pq;R,N in a fashion similar to how we defined Pq;a1,a2,...,ar , that is,

Pq;N,R = {x ≥ 2 : πN (x, q) > πR(x, q)} ,

Pq;R,N = {x ≥ 2 : πR(x, q) > πN (x, q)} .

Now we define Eq;N,R(x) := log x√
x

(πN (x, q)−πR(x, q)), and we can show that δ(Pq;N,R)δ(Pq;R,N ) >

0, so that the residues win at times. We construct measures µq;N,R and µq;R,N similarly.
We can also construct measures µTq;a1,a2,...,ar that are defined in terms of nontrivial zeros of

L(s, χ), where χ runs over the Dirichlet characters modulo q and the imaginary parts γχ of the
zeros are at most T in absolute value. It is to facilitate working with these measures that we
make the Grand Simplicity Hypothesis regarding linear independence of imaginary parts of zeros
of Dirichlet L-functions.

Under GRH and GSH we can find an explicit formula for the Fourier transform µ̂q;a1,...,ar of
µq;a1,a2,...,ar :

µ̂q;a1,...,ar (ξ1, . . . , ξr) =

exp

i r∑
j=1

c(q, aj)ξj


 ∏

χ 6=χ0

χmod q

∏
γχ>0

J0

2
∣∣∣∑r

j=1 χ(aj)ξj

∣∣∣√
1
4 + γ2

χ


 , (5)

where χ0 is, as above, the principal character, c(q, a) = N(a, q) − 1 (where N(a, q) is the number
of square roots of a modulo q), and

J0(z) =

∞∑
m=0

(−1)m( z2 )2m

(m!)2
,

the zeroth Bessel function. If one can compute many zeros of L(s, χ), one can use this formula to
approximate µq;a1,a2,...,ar .

We are also interested in knowing when we may permute the r variables (x1, x2, . . . , xr) in Rr
without changing µq;a1,a2,...,ar , that is to say, whether µq;a1,a2,...,ar is symmetric. If it is, we say
that (q; a1, a2, . . . , ar) is unbiased. In this case we have δ(Pq;a1,a2,...,ar ) = 1

r! , and in fact we have
this equality for any permutation of the parameters ai. (It is not known whether the converse is
true.) Unfortunately, it is rarely the case that our choice of ai is unbiased:

11



Theorem 2. Assume GRH and GSH. Then (q; a1, a2, . . . , ar) is unbiased if and only if r = 2 and
c(q, a1) = c(q.a2), or r = 3 and there is some ρ ∈ (Z/qZ)

×, ρ 6= 1, with ρ3 = 1, a2 = a1ρ and
a3 = a1ρ

2.

Analysing the symmetry of µq;N,R displays a bias toward nonresidues, so that δ(Pq;N,R) ∈ ( 1
2 , 1).

More generally, when we race a square against a nonsquare, there is a bias toward the nonsquare,
and this is as we expect. This follows from an explicit formula for the Fourier transform µ̂q;R,N of
µq;R,N that is similar to the one given above for µ̂q;a1,...,ar ; we will give some details later.

However, if we let the modulus q grow, we find that the bias dissipates. In fact, we find the
following theorem:

Theorem 3. Assume GRH and GSH. Fix r. Then:

lim
q→∞

max
a1,...,ar∈(Z/qZ)×

∣∣∣∣δ(Pq;a1,...,ar )− 1

r!

∣∣∣∣ = 0.

This occurs even for the extreme case Pq;N,R: as q → ∞, δ(Pq;N,R) → 1
2 . Indeed we have a

“central limit theorem”:

Theorem 4. Assume GRH and GSH. Let µq;N,R be the limiting distribution of Eq;N,R(x)√
log q

. Then

µq;N,R converges in measure to the Gaussian distribution 1√
2π
e−x

2/2dx as q →∞.

We can think of this as meaning that the “variance”, log q, grows as q does to swamp the bias.
The proofs of these results are highly technical, and we do not present them in full.

Theorem 1 is shown by way of three lemmas. We assume the Generalized Riemann Hypothesis
in the following.

Lemma 1. Let E(x, q, a) = log x√
x

(φ(q)π(x; q, a)− π(x)). As x→∞,

E(x, q, a) = −c(q, a) +
∑
χ 6=χ0

χ(a)
ψ(x, χ)√

x
+O

(
1

log x

)
.

The constant term both here and in (3) seem to be skewing these functions in favour of nonsquares.
This result is shown by considering the explicit formulas in V.

Consider (4). If we assume GRH, it can be rewritten as follows:

ψ(x, χ) = −
√
x
∑
|γ|≤T

xiγ

1
2 + iγ

+O

(
x log2(xT )

T
+ log x

)
. (6)

Combining this with Lemma 1, we find that for T ≥ 1 and x ∈ [2, X]

E(x, q, a) = −c(q, a)−
∑
χ 6=χ0

χ(a)
∑
|γ|≤T

xiγ

1
2 + iγ

+ εa(x, T,X),
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where

εa(x, T,X) = −
∑
χ 6=χ0

χ(a)
∑

T≤|γ|≤X

xiγ

1
2 + iγ

+Oq

(√
x log2X

X
+

1

log x

)
.

Now define y = log x. Then dy = dx/x, and we can state the second lemma.

Lemma 2. Let T ≥ 1 and Y ≥ log 2. Then
ˆ Y

log 2

∣∣εa (ey, T, eY )∣∣2 dy � Y log2 T

T
+

log3 T

T
.

This lemma follows by expanding the integrand as a finite sum, integrating term by term, and
using Corollary 14.7 in [7], which states that N(T, χ), the number of nontrivial zeros of L(s, χ)
with imaginary part in [0, T ], is given by

N(T, χ) =
T

2π
log

(
qT

2π

)
− T

2π
+O (log qT ) .

We note that the number of nontrivial zeros of L(s, χ) with imaginary part in [−T, 0] is N(T, χ)
by the mirroring of zeros of L(s, χ) and L(s, χ) in the critical strip (see p. 333 in [7]).

Lastly, we need a result on the limiting distribution of E(x, q, a) − εa(x, T,X). We consider a
Lipschitz continuous function f : Rr → R with Lipschitz constant cf , that is, for all x, y ∈ Rr,

|f(x)− f(y)| ≤ cf |x− y| .

Now let E(y) = (E(ey, q, a1), . . . , E(ey, q, ar)), and consider

1

Y

ˆ Y

log 2

f(E(y))dy.

To facilitate studying this, we define

E
(T )
j (y) = −c(q, aj)−

∑
χ6=χ0

χ(aj)
∑
|γ|≤T

eiyγ

1
2 + iγ

and let E(T )(y) =
(
E

(T )
1 (y), . . . , E

(T )
r (y)

)
; we then look at

1

Y

ˆ Y

log 2

f(E(T )(y))dy.

Lemma 3. For each T we have a probability measure νT on Rr with

νT (f) :=

ˆ
Rr
f(x)dνT (x) = lim

Y→∞

1

Y

ˆ Y

log 2

f(E(T )(y))dy

13



for all bounded, continuous functions f on Rr. Furthermore, we have a constant c, depending only
on the modulus q, such that the support of νT is contained in the ball B(0, c log2 T ).

From this, letting ε(T )(y) := E(y) − E(T )(y), we have, when f is Lipschitz continuous with
Lipschitz constant cf , that

1

Y

ˆ Y

log 2

f(E(y))dy =
1

Y

ˆ Y

log 2

f(E(T )(y))dy +O

(
cf
Y

ˆ Y

log 2

∣∣∣ε(T )(y)
∣∣∣ dy) ,

with the implicit constant depending only on q. By Jensen’s inequality (see p. 461 in [3]) this is

1

Y

ˆ Y

log 2

f(E(T )(y))dy +O

 cf√
Y

(ˆ Y

log 2

∣∣∣ε(T )(y)
∣∣∣2 dy) 1

2

 ,

and by Lemma 2, this becomes

1

Y

ˆ Y

log 2

f(E(T )(y))dy +O

(
cf

(
log T√
T

+
log2 T

Y
√
T

))
.

Taking lim inf and lim sup as Y →∞ here gives us that

νT (f)−O
(
cf log T√

T

)
≤ lim inf

1

Y

ˆ Y

log 2

f(E(y))dy

≤ lim sup
1

Y

ˆ Y

log 2

f(E(y))dy ≤ νT (f) +O

(
cf log T√

T

)
. (7)

Since T can be arbitrarily large, we have that the desired limit exists, so that for Lipschitz
continuous functions f ,

µ(f) := lim
Y→∞

1

Y

ˆ Y

log 2

f(E(y))dy.

This provides the limiting distribution, since the fact that µ is a probability measure on Rr
follows from the fact that νT is for all T .

The result about the support of νT from Lemma 3 allows us to say something about the behaviour
of µ away from the origin. Let B(0, λ) be the open ball of radius λ centred at the origin; then for
λ = c log2 T we have, from (7), that

µ (B(0, λ)c) = νT (B(0, λ)c) +O

(
log T√
T

)
= O

(
log T√
T

)
= O

(√
λe−c

√
λ
)

= O
(
e−c2

√
λ
)
.

Here c2 depends only upon q.

Just as we can, under GRH and the Grand Stability Hypothesis (GSH), find a formula for the
Fourier transform of µq;a1,a2,...,ar , we can find one for the Fourier transform µ̂q;R,N of µq;R,N ; recall
that we require here that q = 4, or that there is some prime p and some r ∈ N with q = pr or
q = 2pr. For such q there is one real, non-principal Dirichlet character. We denote this character
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χ1, and we denote a nontrivial zero of L(s, χ1) by 1
2 + iγχ1 . Then we may state the formula, which

is (3.4) in [10]:

µ̂q;R,N (ξ) = eiξ
∏
γχ1

>0

J0

 2ξ√
1
4 + γ2

χ1

 .

But J0 is even, and so this requires that the density function of µq;R,N be symmetric about
t = −1. But this function is entire, so it is not identically zero on (−1, 0), and thus

δ(Pq;R,N ) =

ˆ ∞
0

dµq;R,N (t) <
1

2
.

In other words, the nonsquares “win”.

Theorem 2, giving a sufficient condition on δ(Pq;a1,a2,...,ar ) = 1
r! for any permutation of the ai,

is proved by considering the explicit formula (5) after first proving a symmetry in the argument of
the Bessel function. Define

Bχ(ξ1, . . . , ξr) :=

∣∣∣∣∣∣
r∑
j=1

χ(aj)ξj

∣∣∣∣∣∣ .
Lemma 4. Bχ(ξ1, . . . , ξr) is symmetric in its arguments for all χ if and only if r = 2 and
c(q, a1) = c(q.a2), or r = 3 and there is some ρ ∈ (Z/qZ)

×, ρ 6= 1, with ρ3 = 1, a2 = a1ρ
and a3 = a1ρ

2.

The proof is a case-by-case calculation; we do note that it shows that if r ≥ 4 and Bχ is
assumed to be symmetric, any three of the ai would be related as in the r = 3 condition, which
is a contradiction to their being distinct. (Note that Theorem 2 gives a sufficient condition. It
is possible to “get lucky” and have δ(Pq;a1,a2,...,ar ) = 1

r! for all permutations of the aj even if the
conditions in Theorem 2 fail. We will give some cases in which this does not happen later.)

One interesting consequence of Theorem 2 is that (q; a1, a2, . . . , ar) is never unbiased in the case
where q is a prime congruent to 2 modulo 3, as for such primes, each reduced residue class has a
unique cube root.

To prove Theorems 3 and 4, one shows that the Fourier transforms of the measures under con-
sideration converge (as q → ∞) to the Fourier transform of a Gaussian measure (of appropriate
dimension); Lévy’s theorem ([6]) then implies that the measures themselves converge to a Gaussian
measure.

Another result on symmetries was proved (under GRH and GSH) by Feuerverger and Martin
in [2]:

Theorem 5. Let q, r ≥ 2 be integers, and let a1, . . . , ar be distinct reduced residue classes modulo
q. Then all of the following hold:
a. Let a−1

j be the multiplicative inverse of aj . Then δ(Pq;a1,...,ar ) = δ(Pq;a−1
1 ,...,a−1

r
).

b. Let b be a reduced residue class modulo q such that for each 1 ≤ j ≤ r, we have c(q, aj) =
c(q, baj). (For example, this holds if b is a square modulo q.) Then δ(Pq;a1,...,ar ) = δ(Pq;ba1,...,bar ).
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c. If each aj is a square modulo q and b is a reduced residue class modulo q, then δ(Pq;a1,...,ar ) =
δ(Pq;ba1,...,bar ).
d. If all the aj are squares modulo q, or they are all nonsquares modulo q, we have δ(Pq;a1,...,ar ) =
δ(Pq;ar,...,a1).
e. Let b be a reduced residue class modulo q such that for each 1 ≤ j ≤ r, we have c(q, aj) 6= c(q, baj).
(For example, this holds if q is an odd prime power, or twice an odd prime power, and b is a non-
square modulo q.) Then δ(Pq;a1,...,ar ) = δ(Pq;bar,...,ba1).

For instance, modulo 8 or 12, the multiplicative group of the reduced residue classes is isomorphic
to (Z/2Z)× (Z/2Z). Thus each reduced residue class is its own multiplicative inverse, and the only
square is 1. Hence in determining the symmetries in the prime number race involving the three
nonsquares, criteria a, b, c and e cannot apply, but criterion d implies all of the following:

δ(P8;3,5,7) = δ(P8;7,5,3),

δ(P8;5,3,7) = δ(P8;7,3,5),

δ(P8;3,7,5) = δ(P8;5,7,3),

δ(P12;5,7,11) = δ(P12;11,7,5),

δ(P12;7,5,11) = δ(P12;11,5,7),

δ(P12;5,11,7) = δ(P12;7,11,5).

Feuerverger and Martin also compute these densities explicitly:

Theorem 6. Assume GRH and GSH. With all densities given within 0.000001 of the true value,
we have

δ(P8;3,5,7) = δ(P8;7,5,3) = 0.1928013,

δ(P8;5,3,7) = δ(P8;7,3,5) = 0.1407724,

δ(P8;3,7,5) = δ(P8;5,7,3) = 0.1664263,

δ(P12;5,7,11) = δ(P12;11,7,5) = 0.1984521,

δ(P12;7,5,11) = δ(P12;11,5,7) = 0.1799849,

δ(P12;5,11,7) = δ(P12;7,11,5) = 0.1215630.

Hence we have cases in which the densities are not invariant under all permutations of the aj ,
that is, in light of Theorem 2, we do not always “get lucky” and have δ(Pq;a1,a2,...,ar ) = 1

r! for all
permutations of the aj .

They also establish inequalities between various permutations of the aj provided those residue
classes satisfy certain conditions.

Theorem 7. Assume GRH and GSH. Let q ≥ 2 be an integer, and let N , N ′, S, S′ be distinct
reduced residue classes modulo q where N and N ′are nonsquares, and S and S′ are squares. Then:
a. δ(Pq;N,N ′,S) > δ(Pq;S,N ′,N );
b. δ(Pq;N,S,S′) > δ(Pq;S′,S,N );
c. δ(Pq;N,S,N ′) > δ(Pq;N ′,S,N ) if and only if δ(Pq;N,S) > δ(Pq;N ′,S);
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d. δ(Pq;S,N,S′) > δ(Pq;S′,N,S) if and only if δ(Pq;S,N ) > δ(Pq;S′,N ).

In other words, nonsquares tend to dominate three-way races, and the behaviour of two-way
races between squares and nonsquares dictates the behaviour of the three-way race involving those
squares and nonsquares, and vice versa.

Going back to the modulo 4 race, the computation of δ(P4;N,R), among other such densities, is
a final result in Rubenstein and Sarnak’s paper. The derivation of their formula is most of Section
4 of that paper, and we do not state it here. We state only their final calculations:

δ(P3;N,R) = 0.9990 . . . ,

δ(P4;N,R) = 0.9959 . . . ,

δ(P5;N,R) = 0.9954 . . . ,

δ(P7;N,R1) = 0.9782 . . . ,

δ(P11;N,R) = 0.9167 . . . ,

δ(P13;N,R) = 0.9443 . . . .

Already we begin to see the phenomenon Theorems 3 and 4 assert exists in the limit, that as q
grows large, the race between the nonsquares and the squares becomes more and more even.

VII. Conclusion

Bet on nonsquares. Just make sure there aren’t too many of them.
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