ON THE EQUATION o*(0*(n)) = 2n

V. SITARAMAIAH AND M.V. SUBBARAO®

ABSTRACT. As usual o(n) denotes the sum of the divisors
of n and o'(n) the sum of the unitary divisors of n. Surya-
narayana defined super perfect numbers as solutions of a’(a(n)) =
2n and showed that even super perfect numbers are of the form
n = 2% provided 2¥*1—1 isa prime. He asked for the existence
of odd super perfect numbers. J.L. Hunsucker and Carl Pomer-
ance (Indian J. Math. 17 (1975)) showed that there are no such
numbers less than 7-10%%. In this paper we consider solutions
of o*(0*(n)) = 2n which may be called unitary super perfect
numbers (USP numbers). While o*(c*(n)) = 2n+1 has no
solutions and ¢*(0*(n)) = 2n —1 has n = 1,3 as the only
solutions, there are both even and odd USP numbers — ten of
them up to 24000 (namely 2, 9, 165, 238, 1640, 4320, 10250,
100824, 13500 and 23760) and 22 of them upto 10% as listed
in the appendix at the end. We do not know of any odd USP
numbers other than 9 and 165. Perhaps such numbers are finite
in number whereas even USP numbers are likely to be infinite.

§1. Introduction

Let o(n) denote the sum of the divisors of n. It is well-known that
a natural number 7 is called a perfect number if o(n) = 2n. In 1969,
D. Suryanarayana (cf. [10]) called a natural number n ‘super perfect’ if
a(a(n)) = 2n. He proved that an even number n is super perfect if and
only if n =2* where 2¥*1—1 is a prime number. He asked whether there
were odd super perfect numbers. To this question, H.J. Kanold (cf. [5])
proved that an odd super perfect number, if it exists, must be a square. Till
today, neither an example of an odd super perfect number has been found
nor the non-existence of such a number has been demonstrated. However,
J.L. Hunsucker and Carl Pomerance (cf. [4]) proved that there are no odd
super perfect numbers less than 7-10%¢. We believe that this is the best
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result obtained on the upper bound of odd super perfect numbers.

A divisor d of n is called a unitary divisor (cf. [2]) and write
d|ln, if (d,n/d) =1, where (a,b) denotes, as usual, the greatest common
divisor of a and b. Let o*(n) denote the sum of the unitary divisors
of n. It is known (cf. [2]) that o* is a multiplicative function; that
is, g*(mn) = o*(m)c*(n), whenever (m,n) = 1. Also, o*(1) =1 and
o*(p*) =p*+1, where p is a prime and a is a positive integer.

Analogous to the notion of perfect numbers, in 1966, M.V. Subbarao
and L.J. Warren [9] introduced the notion of a unitary perfect number as
follows: a positive integer 7 is called a unitary perfect number if ¢*(n) =
2n. They proved that there are no odd unitary perfect numbers. The
only five unitary perfect numbers known till now are 6, 60, 90, 87360 and
146361946186458562560000 = 218.3.5%.7-11-13-19-37-79-109-157-313.
The first four examples were due to M.V. Subbarao and L.J. Warren [9)
and the last being due to C.R. Wall {11]. It is not known whether there
exists a unitary perfect number not divisible by 3 (see M.V. Subbarao
and L.J. Warren [9]) and also whether there are infinitely many unitary
perfect numbers (see M.V. Subbarac [7]). We also refer to the paper of
M.V. Subbarao, T.J. Cook, R.S. Newberry and J.M. Weber [8] for certain
results on unitary perfect numbers. An open problem is whether there
exists a unitary muiltiperfect number — that is an integer n for which
o*(n) = kn for an integer k > 2.

In this paper, analogous to the notion of superperfect numbers, we
introduce the notion of unitary super perfect number as follows: a natu-
ral number 7 is called unitary super perfect (USP) if o*(0*(n)) = 2n.
The first ten such numbers are 2, 9, 165, 238, 1640, 4320, 10250, 10824,
13500 and 23760. Thus there are both even and odd USP numbers. To
our knowledge such numbers do not seem to have been studied so far. In
this paper we obtain some of the simplest properties of these numbers.

Let w(n) denote the number of distinct prime factors of n. In The-
orems 3.1 and 3.2, we prove that the only USP numbers with w(n) =1
are 2 and 9. In Theorem 3.3, we prove that there are no USP numbers
with w(n) = 2. In Theorem 3.4, we prove that if w(n) >3 and n is
an odd USP number such that 3|(n,0*(n)), then n must be square-free
(that is, a product of distinct primes); if w(n) > 4, then w(n) > 46. If
n is an odd USP number not divisible by 3, we show (Theorem 3.5) that
3|o*(n); in such a case we prove that n must be square-free, w(n) is even
and w(n) > 52. If n is an odd USP number divisible by 3,3{0*(n) and
w(n) > 3, we show that w(n) > 19 (Theorems 3.6 and 3.8). In Theo-
rem 3.7, we characterize 165 as the only odd USP number with w(n) = 3.
We do not know any examples of odd USP numbers other than 9 and
165. We believe that the set of such numbers is finite.

In §4, we consider even USP numbers. It is easily seen that 238 is
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a solution of w(n) =3 and w(¢*(n)) =2. In Theorem 4.1, we show that
if n is an even USP number with w(o*(n)) =2, then 3|a*(n), 3tn
and m must be square-free. In Theorem 4.2, we characterize 238 as
the only even USP number satisfying w(n) =3 and w(¢*(n)) = 2. We
are unable to produce any even USP number other than 238 satisfying
w(o*(n)) = 2. However, we show that if n is an even USP number with
w(o*(n)) =2 and w(n) > 4, then w(n) is odd (Theorem 4.3) and n
must be very large (see Remark 4.3). It is not difficult to see that the
numbers 1640 and 10250 are USP numbers with w(n) = w(o*(n)) =3;
the USP numbers 4320 and 13500 are solutions of the pair of equations
w(n) =3 and w(o*(n)) =4. We do not know whether these are the only
solutions of the corresponding equations. Further, the number 23760 is a
solution of w(n) = w(s*(n)) =4 and 10824 is a solution of w(n) = 4
and w(o*(n)) = 3; we conjecture that such USP numbers are finite in
number.

§2. Preliminaries

Throughout this paper, we use only ‘elementary’ ideas which, how-
ever, may be sometimes tricky, and to save on the length of the paper, we
omit proofs in several places which the interested reader should be able to
supply with little difficulty.

Lemma 2.1. (a) If 2< a <k and 2*—1|2¥+ 1, then o =2 and k
is odd.

(b) If a isodd, a>1 and a® —1a*+1 for some B, 1< B <a then
a=3 and B=1.

Lemma 2.2, (cf. [4], Theorem 13, p. 13). If (a,b) = 1, then every odd
prime factor of a® 4+ b% is of the form 4n + 1.

Lemma 2.3. Let a be odd and 2° = —1 (mod p), where p is an odd
prime. Then p=1 or 3 (mod 8).

Lemma 2.4. Let ¢ > 1 and odd. If 2%|[a* + 1, where « is odd, then
2%||a? + 1 for every divisor d of a.

Proof. We can assume that a > 1 and 1 <d < a. Let a®+1 = 2%y,
where £ > 1 and u odd. Since a is odd and d|e, a%+1|e*+ 1. Hence
we can write a®+1=2%1¢ where 2, > 1, t odd and tju. Let r =a/d
so that » > 3 and odd.

103




We have
" (r
o __ (4T _ (9T14 1\ — _1\r—koz kik
a® = (a%)" = (271t — 1) 1+Z(k)( 1)r—koziky
k=1
so that

"
a®*+1= 231{rt + Z (;) (_l)r—k2xl(k—1)tk}
k=2

=2%1.m, m odd,
since 7 and t are odd. Hence z; =z so that 2%|ja? 4+ 1.

Corollary 2.1. If a is odd and a > 1, then a® + 1 = 2% implies that
a=1.

Proof. Suppose a > 1. If a is odd, then by Lemma 2.4, a + 1 = 27,
which is not possible. If « is even, since y? =1 (mod 4), when y is odd,
we have

2° = a*+1=(a*?)? +1 =2 (mod 4),

which is not possible since > 2. Hence a=1.

Lemma 2.5. Let o be an odd prime. If p and q are odd primes such
that

p*+1=2%¢, =z2>1, y2>1,

then p+1 =27

Proof. Suppose that p+1=2%¢* 1<z <y. Wehave

pa = (zzqz _ 1)0: = -1+ Z(_l)a—k<:) (2zqz)k’

k=1
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o that
2oy = p 41 = Ig(_l)a-k (:) (2°¢")*
-z {ar 30 (7)),
#r = o 30 () 0ne 1)

From (2.1), it follows that g¢|a and hence ¢ = a since a is a prime.
Replacing @ by ¢ in (2.1) and cancelling ¢ on both sides of (2.1), we
obtain,

q
y—z-1 _ 1 — _1\4—k q zz(k—l) z(k-1)-1 2
q 1 ,;2( 1) (k) q (2:2)
q—1 q
— Z(_l)q—k(k)2x(k—1)qz(k—1)—l +2::(q—1)qz(q—1)—1'
k=2

Since ¢|(¥), 1<k <g—1 (Hardy and Wright [3], Theorem 75, p. 64),
it follows that ¢ divides the left hand side of (2.2), which is possible only
when y—z—1=0 or y=z+1. Thus we must have p*+1 = 27¢**!
and p+1=2%¢* sothat ¢=(p*+1)/(p+1). Hence

plg—-1. (2.3)
Since p+1=2%¢*, z2>1, wehave
glp+1. (2.4)

(2.3) and (2.4) imply that ¢ =p+ 1, which is impossible since p and ¢
are odd primes. Hence z=0 and p+1=2%
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Lemma 2.6. Let a be odd and composite. If p and g are odd primes,
then p*+1=2%¢¥, x2>1 and y>1, isimpossible.

Proof. Suppose p* + 1 = 2%q¥, If s is any prime factor of «, then
p* + 1jp* + 1. By Corollary 2.1, p® + 1 = 2% is not possible. Hence
p* + 1 =2%¢* for some k>1. By Lemma 2.5, p+1=2°. Let dja and
l1<d<a. Let r=a/d Wehave p?+1=2%¢* where 1<z <y. Also

r
p* = (pd)" = (2"'qz — 1)" =14+ Z (T) (_1)r~k2xquk’
k
k=1
so that

r
T Y O — 9T % T _1\r-koz(k-1) ,2(k-1)
97qY = p* +1 2q{r+kZ_2(k>( 1)r-koate=1) }

and hence

r

—z T r—koz(k- z(k—
& =r+2(k)(—1) kga(k1) gs(k-1)

k=2
It follows that g¢jr = a/d and so g|a. Therefore p?+1|p*+1 and hence
p?+1=2%¢% for some B>1 sothat
p? = ~1 (mod q). (2.5)

Since ¢ is a prime, by Fermat’s theorem,

p? = p (mod q). (2.6)

(2.5) and (2.6) imply that q|p+1 = 2%, which is impossible since ¢ is an
odd prime.

Lemma 2.7. We have

(a) 2* =—1 (mod5) if and only if =2 (mod 4).

(b) 2°= -1 (mod 11) ifand only if z=5 (mod 10).
(c) 2% = -1 (mod 17) if and only if £ =4 (mod 8).

(d) 2% =—1 (mod 53) if and only if z =26 (mod 52).
(e) 2% = -1 (mod 107) if and only if z =53 (mod 106).
(f) 3°*= -1 (mod 5) if and only if =2 (mod 4).
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(g) 3% = -1 (mod 11) has no solution.

(h) 3% =—1 (mod 17) if and only if x =8 (mod 16).
(i) 3%=—1 (mod 53) if and only if = =26 (mod 52).

() 3= —1 (mod 107) has no solution.

(k) If @ isodd, 512041, 17{29+1 and 5312°+ 1.
(1) 543+ 1 and z is even imply that 4|z.

(m) 53+ 1 and « is even imply that 53437+ 1.

i

Proof. In solving the exponential congruences (a) - (j), we use that 2 is
a primitive root mod 5, 11, 53 and 107; 3 is a primitive root mod-
ulo 17 and adopt the method as given in Example 3, Apostol [1], Chap-
ter 10, page 215, (k) is a consequence of (a), (c) and (d). (1) follows from
(f). (m) follows from (1) and (i).

Lemma 2.8. The equation 2* + 1 =3* has no solutions if = > 3.

Proof. Let 2% + 1 = 3% for some positive integers a and z > 3. Then
we have

z
= —1 (mod 3*) <=>a = —(‘0—(212 (mod ¢(3%))
< a =31 (mod 2-3>7%)

where ¢ is Euler-totient function. In particular 3*~!|a sothat a >3%"1.
Since 2" > 3n for n > 4, we obtain

3 =20+12>2"" +1>27 >3.3771 =37,
a contradiction.

Lemma 2.9. Let n=pJ'p§?---p% be odd and USP. Then we can find
positive integers a > r, b and an odd prime q such that

(1 + 1)(P3* +1) - (P27 +1) = 2°¢",

and

(2° + 1)(¢® +1) = 2pT*p3? - - - p2-.

Proof. Follows from the definition of USP number.
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Lemma 2.10. Let n be an odd USP number and 3|n. Let o*(n) = 2°¢®,
where ¢ is an odd prime # 3. Let w(n) >3. We have

(8) w(n) isodd <= 3|(2°+1,¢" +1).
If w(n) is odd, we have

(b) 3%|n= a; > 2.

(¢) a and b are odd and b > 3.

(d) ¢g=5 (mod 12).

(e) 5jn <= g¢=4 (mod 5).

(f) 7In <= b = 3 (mod 6) and either ¢ = 3 (mod7) or ¢ = 5
(mod 7).

(g) If =5 and 7|n then oy > 6, where 3%|n.

Lemma 2.11. Let 3|n, n oddand n be USP. Let o*(n) = 2¢°, where
¢g=1 (mod 4) and b odd. If w(n) >4, then b> 3.

§3. Main Results
We first prove the following:
Theorem 3.1. 2* is not a USP number if k > 2.

Proof. Suppose 2% is USP. We must have

2t =" (0*(2%)) = o*(2¥ +1). (3.1)
If 2 +1=p*, p an odd prime, then we must have

Pt =g (p*) =p*+1=2F + 2,

so that 28 =2%-1 4+ 1 and hence k = 1. However k 2 2. Hence we can
assume that

2% 4 1=p3 oo, (3.2)

where p;’s are distinct odd primes and r > 2. From (3.2) and (3.1) we
have

r
2k+1 =g* (p?l . .pg") = H (p:x‘ + 1), (3'3)
=1
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so that
pri4+1=2% i=12,...,1, (34)
where a; > 2 for each 7 and
-

Sa=k+1 (3.5)

i=1
Further a; # a; for i# j. From (3.4) and (3.2),

r

28 +1=]J> -1 (3.6)

i=1

From (3.6) and Lemma 2.1(a), it follows that a; =2, for 1 =1,2,...,7.
This is a contradiction since 7 > 2 and a; # a; for i # j. Hence 2k
can not be USP if k > 2.

Theorem 3.2. If p® is a USP number, where p is an odd prime, then
p=3 and a=2.

Proof. If p* is a USP number, we can find positive integers a,b and an
odd prime ¢ such that

p*+1=2%" (3.7)
and
(2¢ +1)(¢° + 1) = 2p™. (3.8)

From (3.7) and (3.8), we obtain that 2° +3 = ¢?(2* — 1), so that a= L.
Hence g =5 and b= 1. Using these resultsin (3.8), we obtain that p=3
and o=2.

Corollary 3.1. The only USP numbers n with w(n) =1 are n =2
and n=9.

Theorem 3.3. If n = py'p5?, p1 and p; being distinct primes, then
n can not be a USP number.

Proof. First we assume that n is even. Without loss of generality we may
suppose that p; =2 and p; is an odd prime. We must have

geitlper o gt (o (21pg?)) = o* (2% + 1)(p3? +1)).  (3.9)
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Let
(2% +1)(p3* +1) = 2°¢3" - - g, (3.10)

where ¢;’s are distinct odd primes. From (3.9) and (3.10), we obtain
(2* +1)(g* + 1)+ (g +1) = 22F1p32. (3.11)

From (3.11), 2°+1=p3?, 1<f2< g and from (3.10), 2°lp3* +1, so
that p‘g’ —1|p5* + 1. By Lemma 2.1(b), we must have p; =3, Gy =1
so that a = 1. Using these values in (3.10) and (3.11), we obtain

@ +1)(3* +1)=2- gy -+ g, (3.12)
and

(qih +1)--- (g + 1) = 200 +13%a-1, (3.13)

From (3.12), 2||3%2 + 1 so that a, is even. We distinguish the following
cases:

Cask 1. Let o) be odd so that 3|2** +1. From (3.12), ¢; = 3 for some
i. Let ¢ = 3. From (3.13), it follows that 7 > 2 and 3% +1=2%, 2<
z < a;+1, sothat by =1, by Corollary 2.1 so that £ = 2. We obtain
from (3.12) and (3.13) that

(2% +1)(3* + 1) = 6g5? - -- P, (3.14)
and
(g2 +1)-++(gb +1) = 21321 (3.15)

From (3.15) we have for 2<1i <,

q + 1= 2%3%,

r r
wich z; > 0, Yi 2> 0, E Ti =0a;—1 and ¥i = ag — 1. From (3.14),
2

1=2 =
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we then obtain

(2% +1)(3%7 +1) = eﬁ(znsv-‘ ~1)

i=2

<6 I:I 2%i3¥
i=2

= 9%13%

a contradiction.

CASE 2. Let o be even. Since az is also even, it follows from Lemma 2.2
and (3.12), that ¢; =1 (mod 4) for 1 <i<r. Hence 2|g;* +1, for i=
1,2,...,r. Hence (3.13) implies that r» = a;+1 sothat r is odd. We show
that 3|g*+1 for 1 <i<r. If 31¢)+1, for some i, then (3.13) implies
that qf" +1=2% =z2>2, sothat q?" = —1 (mod 4). However qf" =1
(mod 4), since ¢; =1 (mod 4). Thus 3|q:-"+1, for i=1,2,...,r. Hence
b; isoddfor i=1,2,...,r sothat ¢*+1=2-3%, 4 >1, 1<isr
Lemma 2.6 implies that b; isaprimeor b;=1 for 1<i<r. If b; isa
prime for some i, Lemma 2.5 implies that g¢;41 = 2, which is impossible.
Hence b; =1 for 1 <i < r. Thus we must have

(2% +1)(3** +1) =2q1 ... ¢ (3.16)
(qn +1)-- (g +1) = 2031321 (3.17)

and
G+1=2-3% 1<i<r (3.18)

If y; >2 for i=1,2,...,r then (3.18) implies that ¢; = —1 (mod 9).
Since a3 >2, 3*?+1=1 (mod 9). Using these results in (3.16) and the
fact that r is odd, we get that

2%t +1=2-(-1)"=-2 (mod 9)

or
2% = -3 (mod9),
which is impossible. Hence y; = 1 for exactly one i say “i = 1” and

vi > 2 for i=2,3,...,7. Insuch a case we have ¢ =5 and ¢ = —1
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(mod 9) for i=2,3,...,r. Using these results in (3.16), we obtain,

2%t +1=2-5-(-1)""1 (mod 9)
=1 (mod 9),

which is again not possible.
Thus in all cases we could obtain a contradiction. Hence n = 2%1p3?
can not be USP. The case when n is odd can be easily dealt with.

Theorem 3.4. Let n be an odd USP number. If 3|(n,0*(n)), then we
have

(a) n is square-free if w(n) > 3.
(b) w(n) =23 implies that n = 165.
(¢) If w(n)>4, then 17{n, 53%n and 107%n.
(d) If w(n)>4 and w(n) is odd, we have
(di) w(n)=>93, if 5tn and 11{n.
(d2) w(n)>63, if 54{n and 11 |n.
(da) w(n)>227, if 5|n and 11| n.
(dy) w(n) 251, if 5|n and 114n.
(e) If w(n)>4 and w(n) is even, we have
(e1) w(n) =50, if 5¢fn and 11{n.
(es) w(n)>178, if 5fn and 11|n.
(es) w(n)>238, if 5|n and 11|n.
(eq) w(n)>46, if 5|n and 114n.

Proof. Let n = 3*'p)?...p% be an odd unitary super-perfect number,
with 3 <py <p3 <--- <p,. By Lemma 2.9 (g =3) we can find positive
integers a > r and b such that

(3% +1)(p3? + 1) - -+ (p2 + 1) = 223, (3.19)

and

(22 +1)(3° +1) = 2.3%1pg2 ... por, (3.20)

a; = 1. Also, from (3.26), 3|2°+1, so that a is odd. Again from (3.20),
2/|3% + 1, so that b is even. Thus (3.19) and (3.20) can be written as

From (3.25), 3*1 + 1 = 2% for some z > 1. Hence by Corollary 2.1,

22+ 1)(p3° +1)--- (2 + 1) = 22723, (3.21)
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and
(2* +1)(3° + 1) = 6p32p3° - - - p2~ (3.22)

with a odd and b even.

Proof of (a). If o; is even for some i, 2 <i<r, then by Corollary 2.1,
p® + 1 = 2% is impossible. Hence for even «;, from (3.21) we must
have p{* 4+ 1 = 2%3¥ for some positive integers = and y. However by
Lemma 2.2, 3 { p + 1, if o; is even. Hence «; must be odd for
2 <i<r. ByLemmas 22, 23 and (3.28), p; =1 (mod4) or p; =3
(mod 8) or p; =1 (mod8) for 2<i<r. If 3fp™ +1 for some
i, 2 <1i<r, then (3.27) implies that p{*+1 = 2%. Corollary 2.1 implies
that a; =1 sothat p;+1=2% If p;=1 (mod 4), then z =1 which
is not possible. If p; = 3 (mod 8), then z = 2. This is also not possible
since p; # 3. Thus 3|p{+1 for 2 < i <r, sothat p{+1 = 273¥, where
1<z2<2 and y>1. Since «; is odd, it follows from Lemmas 2.5 and
2.6 that oy =1 or o; is a prime. If o; is a prime, then by Lemma 2.5,
pi+1 = 2% 1< z < 2, which is not possible. Hence ao; = 1 for
2 <t <r. Thus (a) follows.
From (a), (3.21) and (3.22), we have the following;

(p2 + 1)(ps +1)--- (pr + 1) = 22723 (3.23)
and

(2 +1)(3°+1) = 6paps -+ pr, (3.24)

with @ odd, a > r and b even.
If can be shown that for 2<i <,

2-3%, y; odd,if p;=-3 (mod 8)
pi+1=1{ 2.3% e evenif p;=1 (mod 8) (3.25)
4.3%, y! odd,if p;=3 (mod8).

Proof of (b). Let r=3 and

ki =#{p;i:2<i<3, p; =3 (mod 8)
ko =#{pi:2<i<8, pi=1 (mod 8)
ks =#{p; :2<i<3, pi = -3 (mod 8), (3.26)
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so that
ky+ko+ k=2 (3.27)

From (3.25), (3.26) and (3.23), we have
a—2 =2k, + kg + ks. (328)

From (3.25) and (3.24), we have

b= uit+ Y wt Y e

pi €Sy pi€Ss pi€Sa

where S;,S; and S3 are the sets defining ki, k2 and ks respectively.
Since y, and y; are odd, it follows that k; and k3 are of the same
parity. Since a is odd, it follows from (3.28) that kz + k3 is odd so that
k, and k3 are of opposite parity. Hence if k; is even then k3 is also even
and k2 must be odd. This does not occur in virtue of (3.27). It follows
from (3.27) that k; = k3 = 1 and k; = 0. From (3.28) we must have
a = 5. From (3.24) (r = 3) it follows that either p2 or p3 is 11, say
p3 = 11. Using this, in place of (3.23) and (3.24), we obtain the equations
12(p2+1) = 2°.3% and 3°+1 = 2ps, which imply that b =2 and pz = 5.
Hence n=3:5-11 =165 and the proof of (b) is complete.

Proof of (c). Suppose that 17|n. From (3.30) it follows that 17|2*+1 or
17|3% + 1. Since a is odd, Lemma 2.7(c) implies that 17}2% + 1. Hence
17|3°+1. Again by Lemma 2.7(h), b= 8 (mod 16) sothat b= 8u where
u is odd. We note that 3% +1]3°+1 and 3% +1 = 2-17-193. Thus
193|3°+1 and 193 is a prime. From (3.30) and (3.29), we must have that
193 = —1 (mod 3) which is false. Hence 17{n.

We assume that 53|n. From (3.27), 53|2° +1 or 53/3° + 1. Since
a is odd, Lemma 2.7(d) implies that 5342°+1. Hence 53|3°+1 so that
b = 26 (mod 52), by Lemma 2.7(i). Let b = 26u where u is odd. It
follows that 3% + 1|3 + 1. But 3% + 1 = 2541865828330 =2-5-53 -1,
where r = 4795973261 is a prime, and r + 1 is not of the form 2%3Y.
Hence 53 {n.

Suppose that 107|n. From (3.24) and Lemma 2.7(e) and (j), it follows
that @ =53 (mod 106), so that 252 +1[2% +1. We have

253 11 = 3.107 - 28059810762433.

Hence 107 {n.
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The proof of (c) is complete.

We assume that 7 >4 sothat b > 4. Hence we have
¥ +1=1 (mod 8l). (3.29)

(d) Let r be odd.

Proof of (dy). Let 5tn and 11tn. It follows from (3.29) and (c) that
v >5 €>4 and y,>5 sothatfor 2<i<r, p;=—1 (mod 81).
Using this in (3.24) we obtain from (3.35), 2 +1 =6-(-1)""! = 6
(mod 81), so that 2° =5 (mod 81). Using that 2 is a primitive root
(mod 81), we find that this congruence is equivalent to the congruence
a = indy5 (mod 54) and ind5 = 23. Hence a = 23 (mod 54). We have
223 4 1 = 3p, where p = 2796203 is a prime. Also, p + 1 = 12.233017 =
12-43-5419 and 34233017. From (3.24) and (3.23) it follows that a # 23.
Hence a > 23+ 54 = 77. Since 43]129 = 27+ 1]2" +1 and 43 # -1
(mod 3), it follows that a # 77. Hence a > 77+ 54 = 131. Thus, here
4744297]2'31 + 1 and 314744298, so a > 131 + 54 = 185. From (3.24)
and (3.23) we see that a —2 < 2(r—1) or a < 2r. Since a is odd, we
must have a < 2r —1 sothat 2r— 12> a > 185 and hence r 2> 93.

Proof of (d2) . Let 5+ n and 1ljn. Let p2 = 11 so that p; = —1
(mod 81) for 3 <i <r. Hencefrom (3.24) and (3.29), we obtain 2°+1 =
6-11(—1)7~2 = —66 (mod 81), so that 2° = —67 = 14 (mod 81), which is
equivalent to a = 17 (mod 54). Alsosince 11|n, Lemma 2.7 ((b) and (g))
implies that a =5 (mod 10). This together with the previous congruence
relation implies that a = 125 (mod 270). Hence r > 63.

Proof of (d3) . Let 5|n and 1ljn. Let pz =5 and p3 = 11 so that by
(3.24) and (c), pi = —1 (mod 81), for 4 <i < r. We have by (3.28) and
(3.23), 2°+1=6-5-11-(—1)"~3 = 6 (mod 81), so that 2° =5 (mod 81).
Hence a = 23 (mod 54). Since 11jn from parts (b) and (g) of Lemma 2.7
and (3.23), it follows that ¢ =5 (mod 10); this together with the previous
congruence implies that a = 185 (mod 270). Since 1777|237 + 1]21%% + 1
and 1777 is a prime not congruent to —1 (mod 3), it follows that a #
185. Hence a > 185 + 270 = 455, so that r > 227.

Proof of (d4). Let 5ln and 11 { n. Let p; = 5 so that p; = —1
(mod 81) for 3 <i<r. Hence by(3.29) and (3.24),

2°4+1=6.5(-1)""2=-30 (mod 81),
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so that 2% = 50 (mod 81). Hence a = 47 (mod 54). Since 283 is a prime
factor of 247 +1 and 283 # —1 (mod 3), it follows that a % 47. Hence
a> 47+ 54 =101 so that r > 51.

(e) Let r be even and r > 4.

Proof of (e1). Suppose 5+ n and 11 {n. From (3.29) and (3.24), we
obtain that 2% = —7 (mod 81) so that e =43 (mod 54). We have

243 1 1 = 3.2932031007403.

If s=(2*3+1)/3, then s is a prime and s+ 1 is not of the form 273Y.
Hence a # 43 and so a > 43+ 54 = 97 so that r > 50.

Proof of (e3) . Let 5¢fn and 11ljn. We obtain that 2% = —16 (mod 81)
so that a = 31 (mod 54). Since 11|n, we also have a = 5 (mod 10);
combining this with the previous congruence relation we obtain that a = 85
(mod 270). We have 43691[2%° +1 and p+1=4-3-11-331. It follows
that a % 85 so that a > 355. Hence r > 178.

Proofof (e3) . Suppose 5|n and 11|n. We obtainthat 2° = —7 (mod 81)
and hence a =43 (mod 54). Also, 11|n implies that a =5 (mod 10) so
that a = 205 (mod 270). We have 83]2%5 4+ 1. Since 83+ 1 = 84 =
4-3-7 #2739, it follows that a # 205 so that a > 475. Hence r > 238.

Proof of (e4) . Let 5|n and 11} n. We obtain that 2% = 29 (mod 81)
so that a = 37 (mod 54). We note that a # 37 since 1777 is a prime
factor of 237+ 1 and 1777 # —1 (mod 3). Hence a > 91, and r > 46.

The proof of Theorem 3.4 is complete.
Theorem 3.5. Let n be an odd USP and 3{n. Then we have

(a) 3lo*(n).
(b) Fach prime factor p of n is congruent to 1 (mod 4) and

_{2-3”-—1, y odd, if p=-3 (mod 8)
p= 2:3°—-1, e even, if p=1 (mod 8).

(¢) w(n) is even.

(d) n is square-free.

(e) If 5tn then 53{n.

(f) If 5tn and 17 |n, then w(n) =12 (mod 216) and w(n) > 228.
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(g) If 5tn and 17{n, then w(n)=0 (mod 216) and w(n) > 432.

(h) If 5ln, 17|n and 53|n then w(n) =52 (mod 216).

(i) If 5in, 17|n and 53tn, then w(n) =124 (mod 216).

() If 5|n, 174fn and 53|n, then either “w(n) = 22 (mod 108) and
w(n) > 130" or “w(n) =76 (mod 108)”.

(k) If 5|n, 17{n and 53%n, then either ‘“Ww(n) =94 (mod 108)” or
“y(n) = 40 (mod 108) and w(n) > 148”.

Theorem 3.6. Let n be odd, 3|n and n be USP. Let gl|o*(n) and
q#3. If w(n)>5 and odd, then w(n) > 19.

Proof. Let n = 3*p3?..-p2r, sothat we have
(3% +1)(p5? + 1) --- (p2r +1) = 2°¢°, (3.30)

and
(2° +1)(¢" +1) = 2-3%1p5? -+ - pPr, (3.31)

for some positive integers a > r and b.
From (3.30) and (3.31), we obtain

2=(1+§i—;)fl(1+}%) (1+-2-1;)(1+%)=N, (3.32)

=2 ‘

say. By Lemma 2.10, we have a; > 2 and b > 3. Using these in (3.32)
for r =5, we obtain

25 (14 D0+ DD D0 B F) (10 3) <

a contradiction.
Let 7 <r < 17. We distinguish the following cases:

CaSE 1. Let 5|n and p; =5. By Lemma 2.10, we have ¢ =5 (mod 12)
and ¢ =4 (mod 5) so that g = 29 (mod 60); hence g > 29. Also, we
note that ¢ =29 (mod 60) and pa =5 imply that as > 6 and a; > 4.
Using these inequalities, ¢ >7 and b> 3, we obtain from (3.38),

18
e (10 2) () 1T (e D)0 1) (0 ) <2
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a contradiction, where ¢; is the i-th prime with ¢ =2, g2 =3, g3 =35
and so on.

CASE 2. Suppose 5{n and 7n.

(a) Let ¢ =5. By (g) of Lemma 2.10, we have a; > 6.
‘We have

2=N< (1+2—17) (1+§%) (1+ %) ,I=I4 (1+%) <1-994,
a contradiction.

(b) Let g # 5. It follows from Lemma 2.10(d) that ¢ > 17. Also, a1 > 7.
‘We obtain

1 1 1y 1 1
2=N§(1+§7) (1+§) (1+1—73) Q(I+Z) <1-98,

a contradiction.

CASE 3. Let 5fn and 7tn. Using a; >2, 227, b62>3 and ¢ >5,
we obtain from (3.38)

2=N< (1+-317) E-, (1+é)(1+§1;)(1+51§) <2,

a contradiction.
Hence the proof of Theorem 3.6 is complete.

Theorem 3.7. Let n be an odd, USP number with w(n) = 3. Then
n = 165.

Proof. By Theorem 3.5, 3|n. If 3[o*(n), it follows from Theorem 3.4 that
n=165. Let qlo*(n) and ¢# 3. Let n=3"p3?p5*, a and b beasin

Theorem 3.6. Taking =3, using ¢ 23,0623, a3 >2 and ¢=>35, we
obtain from (3.32) (r =3),

25 (1) (1+5) (1 2) (14 ) (1 8) <2

a contradiction.
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Theorem 3.8. Let 3|n, n oddand n beUSP. Let glo*(n) and q # 3.
Let w(n) be even and w(n) > 4. Then w(n) > 19.

§4. Even Unitary Super Perfect Numbers

Throughout this section, we assume that n is an even unitary super
perfect number. First we prove the following:

Theorem 4.1. If w(o*(n)) =2, then 3lo*(n), 3{n and n is square-
free.

Proof. Let n = 2%pT'...p%, where p;’s are distinct odd primes with
1 t P

p1 < p2 < -+ < pr. We can find positive integers a > r, b and an odd

prime ¢ such that

(2% +1) (pT* +1) -+ (p2 +1) = 2°¢", (4.1)

and
(2° +1)(¢* +1) =25t 1pfr ... por. (4.2)
From (4.1), 2*+1=¢° forsome ¢, 1<c<b andfrom (4.2), 2>*!|¢°+
1. Hence ¢°—1]¢° +1. By Lemma 2.1, we must have c=1 and ¢=3
so that & = 1. Thus 3|o*(n). Taking @ =1 and ¢ =3 in (4.1) and

(4.2), we obtain

(PP +1) -+ (p2r +1) =223, (4.3)

and
(2°+1)(3°+1) =4p* - - p2. (4.4)
Suppose 3|n so that p; =3. From (4.3) (p1 = 3), it follows that 3** +

1 = 2% and Corollary 2.1 implies that a; = 1. Taking oy =1 and p; =3
in (4.3) and (4.4), we obtain

1=(1+$)(1+5§—,;)-~(1+p;,>(1+2i0)(1+él—b) >1,

a contradiction. Hence 3{ n.

We now prove that n is square-free. Since 4|3® + 1 (from (4.4)),
b must be odd. Also, b >3. If b =1, then p2? +1 = 2% for some
z>3 and 2°—1|2°+1, which is not possible by Lemma 2.1. Since 3{n,
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from (4.4) it follows that 3{2%+1 and hence a is even. By Lemma 2.2,
every prime factor of 2* + 1 is congruent to 1 (mod 4). Since b is odd,
every odd prime factor of 3* + 1 is congruent to 1 or —5 (mod 12).
Thus for each i, 1<i<r, p; =1 (mod4) or p; =1 (mod 12) or
pi = -5 (mod 12). We fix 4, 1<i<r. From (4.3), p{*+1=2% or
pi +1=2%3% forsome z; > 1 and y; > 1. If p{ + 1 = 2%, then
a; = 1 by Corollary 2.1. If pJ + 1 = 2%3%, then «a; must be odd,
by Lemma 2.2. If a; > 1, then by Lemma 2.6 and 2.5, o; is a prime
and p; +1 =2%. Hence z; > 2 so that p; =3 (mod 4). So, p; = -5
(mod 12). Since o; is odd,

5% 4 1=(=5)*+1=p +1=2%3% =0 (mod 12),

so that 5% =1 (mod 12). But 5% = 2% = —1 (mod 3), since «; is
odd. This is a contradiction. Hence «; = 1. This being true for ¢ =
1,2,...,r, it follows that n is square-free.

Theorem 4.2. If w(n) =3 and w(o*(n)) =2, then n = 238.

Proof. Taking r=2 and o =ag=:-+=a, =1 in (4.3) and (4.4), we
obtain

(p1+1)(p2 + 1) = 2231 (4.5)
and

(2°+1)(3° + 1) = 4p1pa. (4.6)

From (4.6) we obtain

2°+1=p, 4.7
and

3% +1=4p,.
From (4.5), p2+1 =2-3Y for some y > 1, so that by (4.7), 2-3¥ =
pa+1=2%42=2(2°"1+1) and hence 2°7! +1 = 3Y. By Lemma 2.8,
it follows that either “a—1=1,y=1" or “a—1=3, y=2". If a =2,

then from (4.7), p2 = 5. From (4.5) we obtain that p; +1 = 2-3°°2,
From (4.6) we get that

9(p; +1) +1= 99, + 11

4p, =3 +1=
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so that 8p; = 9p; + 11, a contradiction. Hence a —1 =3, thatis, a =4
and ps = 17. Using these values in (4.5) and (4.6), we get that p; = 7.
Hence n=2:7-17 = 238 and Theorem 4.2 follows.

Remark 4.1. From the proof of Theorem 4.1, it follows that in case w(a'(n))
= 2, then every prime factor p of n is either congruent to 1 (mod 4)
or congruent to 1 or —5 (mod 12). If p = 1 (mod 4) and p|n, then
p=2-3¥—1 for some y > 1. We also note that if p = —5 (mod 12) and
p|n, then p must be a Mersenne prime.

Remark 4.2. 1t is not difficult to show that w(n) =3 and 33|joc*(n) imply
that n = 238.

Theorem 4.3. If w(o*(n)) =2, then w(n) is odd.
Proof. Let n=2p1pz---pr and t=#{1<i<r: p; =-5 (mod 12)}.

Let S denote the set defining t. If {1 € S, by Remark 4.1, we must have
pi = 2% — 1, where z; is an odd prime. Also, p; ¢ S implies that

p; =2-3% —1 for some y; > 1. From (4.3) (¢y = az =---= a, = 1),
we obtain
a=Ea:.—+r——t. (4.8)
i€s

Since a is even, from (4.8) it follows that r is even. Since w(n) =
r+1, w(n) must be odd.

Theorem 4.4. Let w(c*(n)) = 2 and w(n) > 4. Then n must be
divisible by a Mersenne prime.

Proof. Let n = 2p;p3--+p, so that we have
(p1+1)---(pr + 1) = 20371, (4.9)

and
(2°+1)(3°+1) =4p;---p,, (4.10)

with @ even and b odd. Cleary b= 1 can not occur. If 5 =3, then
7in and hence the conclusion of the theorem holds. We may assume that
b>4 sothat 3°+1= (mod 81).

Suppose that n is not divisible by any Mersenne prime. By Re-
mark 4.1, it follows that every prime factor of n is of the form 2-3v¥ —1
for some y > 1. Henceif p; ¢ {5,17,53}, then p; = —1 (mod 81).
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Therefore, if no p; € {5,17,53}, from (4.10) and since r is even, we
obtain

2°4+1=4-(-1)"=4 (mod 81),

a contradiction.

Suppose p; € {5,17,53} for some i, 1<% <7 From Lemma 2.7,
it follows that 5|n ==>17{n, 5{n==53{n and 17jn =>53{n.

Let 53|n. Then 5|n and 17}n. From (4.10), we obtain

2 +1=7 (mod 81),

a contradiction. Hence 53 1{n.
Let 5n. Then 17{n. From (4.10), we obtain

224+1=4.5-(—1)""1'=-20 (mod 81),

a contradiction. Hence 54 n.
Let 17|n. From (4.10), we obtain,

20 41=4-17-(-1)""1=-68 (mod 81),
again a contradiction. The proof of Theorem 4.4 is complete.

Remark 4.3. Let w(o*(n)) = 2 and w(n) 2 4 (so that w(n) > 5
since w(n) is odd). If n is divisible by a Mersenne prime 2> 289 — 1,
then obviously we must have n > 2-5-7-11. (2% —1) > 385.2%.
Let the largest Mersenne prime factor of n be less than 289 — 1. Let
M, = 2P — 1, so that the only Mersenne primes dividing n are among
Mas, Ms, M7, Mys, My7, Mg, M3; and Mg;. Let S denote the set of these
eight Mersenne primes. We observe that 5ln = 17{ n, 53|n = 5|n
and 17jn = 53 { n. Hence we can distinguish four cases viz., (i) 53|n
(i) 5/n and 53t n (iii) 5fn and 17|n (iv) 5{n and 17 {n. In
each case we obtain 255 possibilities by assuming that n is divisible by
exactly k primes from S where 1 < k < 8. Suppose 5|n, 53|n, M3|n
and 7 is not divisible by any of the other seven Mersenne primes in S.
In this case from (4.10) we obtain that 2%+ 1 = 32 (mod 81) so that
23 = 31 (mod 81), which is equivalent to @ = 20 (mod 54). Since 53|n
if and only if a = 26 (mod 52), it follows that a = 182 (mod 1404). In
this case ((4.8), k=1, 7;=3) a=r—-14+3=r+2=w(n)-1+2=
w(n) + 1, so that w(n) = 181 (mod 1404). In this way we have exam-
ined all the 4 -255 = 1020 possibilities. In case (i) it has been found
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that out of the 255 possibilities only 62 are feasible (in the remain-
ing 255 — 62 possibilities either we obtain that a is odd or that the
exponential congruence 2% = y (mod 81) has no solution) and the least
value of w(n) is 45. In case (ii) we found that 62 possibilities are
feasible and w(n) > 19. In case (iv), 58 possibilities are feasible and
w(n) > 21. In case (iii), there are 62 possibilities which are feasible and
w(n) = 11 (mod 108) or w(n) = 17 (mod 108) or w(n) =9 (mod 108)
or w(n) > 21. If w(n) =11 (mod 108), then the only Mersenne primes
dividing n are Ms, M3, M7 and Meg;; or Ms, Ms, Mi3, Mig, M3; and
Mg1; or Ms, Mis, My7, Mg, M3, and Mg,. If w(n) =17 (mod 108), the
only Mersenne primes dividing n are Mj7,Mj9 and Ms;. If w(n) =9
(mod 108), the only Mersenne primes dividing n are Ms, Ms, My3, M)
and Mig. Thus we find that n is very large.

§5. Concluding Remarks

It is niot difficult to show that the equation ¢*(0*(n)) =2n+1 has
no solution and the only solutions of ¢*(c*(n)) =2n—1 are 1 and 3.
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Appendix

All numbers n < 108 such that o*a*(n) = kn

n

2=2

9 =232
10=2-5
18=2-32 .
30=2-3-5 ;
165 =3-5-11 /
238=2.7-17
288 = 25 . 32

660 =22.3.5-11
720=124.32.5
1640 =23 .5.41
4320=2%.3%.5
10250 = 2- 53 - 41
10824 =2%.3-11-41
13500 = 22.33. 5%
23760 =24.3%.5.11
58500 = 22.32.53.13
66912 =25.3-17-41
425880 = 23-32.5.7.132
520128 =2%.3%.7.43
873180 =22.34.5.72.11
931392 =26.33.72.11
1899744 =26.3%3.7.11.257
2129400 = 23 -32.52.7.132
2146560 =28.3.5.13.43
2253888 = 26.32.7.13.43
3276000 = 25.32.5%.7.13
4580064 = 28 .35.19.31
4668300 =22.3%.5%.7.13.19
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