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PREFACE

Several years ago while reading Weil's Number Theory: An Approach
Through History, I noticed a conjecture of Euler concerning primes of the
form x2 + 14y2. That same week I picked up Cohn’s A Classical Invitation
to Algebraic Numbers and Class Fields and saw the same example treated
from the point of view of the Hilbert class field. The coincidence made it
clear that something interesting was going on, and this book is my attempt
to tell the story of this wonderful part of mathematics.

I am an algebraic geometer by training, and number theory has always
been more of an avocation than a profession for me. This will help explain
some of the curious omissions in the book. There may also be errors of his-
tory or attribution (for which I take full responsibility), and doubtless some
of the proofs can be improved. Corrections and comments are welcome!

I would like to thank my colleagues in the number theory seminars
of Oklahoma State University and the Five Colleges (Amherst College,
Hampshire College, Mount Holyoke College, Smith College and the Uni-
versity of Massachusetts) for the opportunity to present material from this
book in preliminary form. Special thanks go to Dan Flath and Peter Nor-
man for their comments on earlier versions of the manuscript. I am also
grateful to the reference librarians at Amherst College and Oklahoma State
University for their help in obtaining books through interlibrary loan.

DaviD A. Cox

Ambherst, Massachusetts
August 1989
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NOTATION

The following standard notation will be used throughout the book.

SL(2,R)
Gal(L/K)
Ok

Cn — eZm’ /n
[a,b]
ged(a, b)
N

Q.E.D.

The integers.

The rational numbers.

The real numbers.

The complex numbers.

The upper half plane {x +iy € C:y > 0}.

The ring of integers modulo #.

The coset of a € A4 in the quotient A/B.

The group of units in a commutative ring R with identity.
The group of invertible matrices (¢ %), a,b,¢,d € R.

The subgroup of GL(2, R) of matrices with determinant 1.
The Galois group of the field extension K C L.

The ring of algebraic integers in a finite extension K of Q.
The standard primitive nth root of unity.

The set {ma + nb: m,ne 71}.

The greatest common divisor of the integers a and b.
The number of elements in a finite set S.

The end of a proof or the absence of a proof.

xi






PRIMES OF THE FORM x? + ny?






INTRODUCTION

Most first courses in number theory or abstract algebra prove a theorem of
Fermat which states that for an odd prime p,

p=x*+y% x,y€l < p=1mod 4.

This is only the first of many related results that appear in Fermat’s works.
For example, Fermat also states that if p is an odd prime, then

p=x2+2y2, x,y€Z < p=1,3mod8
p=x2+3y2, x,y€Z < p=3or p=1mod 3.

These facts are lovely in their own right, but they also make one curious
to know what happens for primes of the form x? + 5y%, x2 + 6y?, etc. This
leads to the basic question of the whole book, which we formulate as fol-
lows:

Basic Question 0.1. Given a positive integer n, which primes p can be ex-
pressed in the form
p = x%+ny?

where x and y are integers?
We will answer this question completely, and along the way we will en-

counter some remarkably rich areas of number theory. The first steps will
be easy, involving only quadratic reciprocity and the elementary theory of

1



2 INTRODUCTION

quadratic forms in two variables over Z. These methods work nicely in the
special cases considered above by Fermat. Using genus theory and cubic
and biquadratic reciprocity, we can treat some more cases, but elementary
methods fail to solve the problem in general. To proceed further, we need
class field theory. This provides an abstract solution to the problem, but
doesn’t give explicit criteria for a particular choice of n in x? + ny2. The
final step uses modular functions and complex multiplication to show that
for a given n, there is an algorithm for answering our question of when
p = x%+ny?.

This book has several goals. The first, to answer the basic question, has
already been stated. A second goal is to bridge the gap between elementary
number theory and class field theory. Although our basic question is simple
enough to be stated in any beginning course in number theory, we will see
that its solution is intimately bound up with higher reciprocity laws and class
field theory. A related goal is to provide a well-motivated introduction to
the classical formulation of class field theory. This will be done by carefully
stating the basic theorems and illustrating their power in various concrete
situations.

Let us summarize the contents of the book in more detail. We begin in
Chapter One with the more elementary approaches to the problem, using
the works of Fermat, Euler, Lagrange, Legendre and Gauss as a guide. In
§1, we will give Euler’s proofs of the above theorems of Fermat for primes
of the form x% + y?, x? + 2y? and x? + 3y2, and we will see what led Euler
to discover quadratic reciprocity. We will also discuss the conjectures Euler
made concerning p = x> + ny? for n > 3. Some of these conjectures, such
as

(0.2) p=x*+5y? < p=1,9 mod 20,
are similar to Fermat’s theorems, while others, like

p=1mod3and2isa

p=x*+27y? — _ .
cubic residue modulo p,

are quite unexpected. For later purposes, note that this conjecture can be

written in the following form:

p=1mod3and x*=2mod p
(0.3) p=x+27y° — _
has an integer solution.

In §2, we will study Lagrange’s theory of positive definite quadratic
forms. After introducing the basic concepts of reduced form and class num-
ber, we will develop an elementary form of genus theory which will enable
us to prove (0.2) and similar theorems. Unfortunately, for cases like (0.3),
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genus theory can only prove the partial result that
x% +27y?
(0.4) p= or < p=1mod 3.
4x2 + 2xy + Ty

The problem is that x2 + 27y and 4x* +2xy + 7y? lie in the same genus
and hence can’t be separated by simple congruences. We will also discuss
Legendre’s tentative attempts at a theory of composition.

While the ideas of genus theory and composition were already present in
the works of Lagrange and Legendre, the real depth of these theories wasn’t
revealed until Gauss came along. In §3 we will present some basic results
in Gauss’ Disquisitiones Arithmeticae, and in particular we will study the
remarkable relationship between genus theory and composition. But for our
purposes, the real breakthrough came when Gauss used cubic reciprocity to
prove Euler’s conjecture (0.3) concerning p = x* + 27y%. In §4 we will give
a careful statement of cubic reciprocity, and we will explain how it can be
used to prove (0.3). Similarly, biquadratic reciprocity can be used to answer
our question for x2 + 64y2. We will see that Gauss clearly recognized the
role of higher reciprocity laws in separating forms of the same genus. This
section will also begin our study of algebraic integers, for in order to state
cubic and biquadratic reciprocity, we must first understand the arithmetic
of the rings Z[¢*™/3] and Z[i].

To go further requires class field theory, which is the topic of Chapter
Two. We will begin in §5 with the Hilbert class field, which is the maximal
unramified Abelian extension of a given number field. This will enable us
to prove the following general result:

Theorem 0.5. Let n = 1,2 mod 4 be a positive squarefree integer. Then there
is an irreducible polynomial fu(x) € Z[x] such that for a prime p dividing
neither n nor the discriminant of fa(x),

(—n/p) =1and fa(x)=0mod p

p=x*+ny’ < . .
has an integer solution.

While the statement of Theorem 0.5 is elementary, the polynomial f,(x) is
quite sophisticated: it is the minimal polynomial of a primitive element of
the Hilbert class field L of K = Q(v/—n).

As an example of this theorem, we will study the case n = 14. We will
show that the Hilbert class field of K = Q(v/—14) is L = K(a), where a =

v/2v/2 — 1. By Theorem 0.5, this will show that for an odd prime p,
(—14/p) =1and (x2 +1)* =8 mod p

(0.6) p=x2+14y <
has an integer solution,
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which answers our basic question for x* + 14y2. The Hilbert class field will
also enable us in §6 to give new proofs of the main theorems of genus
theory.

The theory sketched so far is very nice, but there are some gaps in it.
The most obvious is that the above results for x2+27y? and x? + 14y?
((0.3) and (0.6) respectively) both follow the same format, but (0.3) does
not follow from Theorem 0.5, for n = 27 is not squarefree. There should be
a unified theorem that works for all positive n, yet the proof of Theorem
0.5 breaks down for general n because Z[\/—n] is not in general the full
ring of integers in Q(v/—n).

The goal of §§7-9 is to show that Theorem 0.5 holds for all positive
integers n. This, in fact, is the main theorem of the whole book. In §7
we will study the rings Z[\/—n] for general n, which leads to the concept
of an order in an imaginary quadratic field. In §8 we will summarize the
main theorems of class field theory and the Cebotarev Density Theorem,
and in §9 we will introduce a generalization of the Hilbert class field called
the ring class field, which is a certain (possibly ramified) Abelian extension
of Q(v/—n) determined by the order Z[/—n]. Then, in Theorem 9.2, we
will use the Artin Reciprocity Theorem to show that Theorem 0.5 holds for
all n >0, where the polynomial f,(x) is now the minimal polynomial of a
primitive element of the above ring class field. To give a concrete example
of what this means, we will apply Theorem 9.2 to the case x2 + 27y2, which
will give us a class field theory proof of (0.3). In §§8 and 9 we will also
discuss how class field theory is related to higher reciprocity theorems.

The major drawback to the theory presented in §9 is that it is not con-
structive: for a given n > 0, we have no idea how to find the polynomial
fn(x). From (0.3) and (0.6), we know f»;(x) and fi4(x), but the methods
used in these examples hardly generalize. Chapter Three will use the the-
ory of complex multiplication to remedy this situation. In §10 we will study
elliptic functions and introduce the idea of complex multiplication, and then
in §11 we will discuss modular functions and show that the j-function can
be used to generate ring class fields. As an example of the wonderful for-
mulas that can be proved, in §12 we will give Weber’s computation that

j(V-14) =23 (323 +228V2 + (231 + 161\/5) V2v2— 1)3.

These methods will also enable us to prove the Baker-Heegner-Stark The-
orem on imaginary quadratic fields of class number 1. The final section of
the book will discuss the class equation, which is the minimal polynomial
of j(v/—n). We will learn how to compute the class equation, and this in
turn will lead to a constructive solution of p = x? + ny?. We will then de-
scribe some more recent work by Deuring and by Gross and Zagier. In 1946
Deuring proved a result about the difference of singular j-invariants, which
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implies an especially elegant version of our main theorem, and drawing on
Deuring’s work, Gross and Zagier discovered yet more remarkable proper-
ties of the class equation. The book will end with a discussion of elliptic
curves and an application of the class equation to primality testing.

Number theory is usually taught at three levels, as an undergraduate
course, a beginning graduate course, or a more advanced graduate course.
These levels correspond roughly to the three chapters of the book. Chapter
One requires only beginning number theory (up to quadratic reciprocity)
and a semester of abstract algebra. Since the proofs of quadratic, cubic
and biquadratic reciprocity are omitted, this book would be best suited as
a supplementary text in a beginning course. For Chapter Two, the reader
should know Galois theory and some basic facts about algebraic number
theory (these are reviewed in §5), but no previous exposure to class field
theory is assumed. The theorems of class field theory are stated without
proof, so that this book would be most useful as a supplement to the topics
covered in a first graduate course. Chapter Three requires a knowledge
of complex analysis, but otherwise it is self-contained. (Brief but complete
accounts of the Weierstrass p-function and modular functions are included
in §§10 and 11.) This portion of the book should be suitable for use in a
graduate seminar.

There are exercises at the end of each section, many of which consist of
working out the details of arguments sketched in the text. Readers learning
this material for the first time should find the exercises to be useful, while
more sophisticated readers may skip them without loss of continuity.

Many important (and relevant) topics are not covered in the book. An
obvious omission in Chapter One concerns forms such as x* — 2y, which
were certainly considered by Fermat and Euler. Questions of this sort lead
to Pell’s equation and the class field theory of real quadratic fields. We
have also ignored the problem of representing arbitrary integers, not just
primes, by quadratic forms, and there are interesting questions to ask about
the number of such representations (this material is covered in Grosswald’s
recent book [47]). In Chapter Two we do not discuss adeles or ideles—we
give only a classical formulation of class field theory. For a more modern
treatment, see either Neukirch [80] or Weil [104]. We also do not do justice
to the use of analytic methods in number theory. For a nice introduction
in the case of quadratic fields, see Zagier [111]. Our treatment of elliptic
curves is rather incomplete. See Husemoller [58] or Silverman [93] for the
basic theory, while more advanced topics are covered by Lang [73] and
Shimura [90].

There are many books which touch on the number theory encountered
in studying the problem of representing primes by x? + ny?. Four books
that we particularly recommend are Cohn’s A Classical Invitation to Alge-
braic Numbers and Class Fields [19], Lang’s Elliptic Functions [73], Scharlau
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and Opolka’s From Fermat to Minkowski [86], and Weil’s Number Theory:
An Approach Through History [106]. These books, as well as others to be

found in the bibliography, open up an extraordinarily rich area of mathe-

matics. The purpose of this book is to reveal some of this richness and to
encourage the reader to learn more about it.



CHAPTER ONE

—

FROM FERMAT TO GAUSS

§1. FERMAT, EULER AND QUADRATIC RECIPROCITY

In this section we will discuss primes of the form x?+ ny%, where n is
a fixed positive integer. Our starting point will be the three theorems of
Fermat

p=x+y% x,y€l < p=1mod4
(1.1) p=x*+2y% x,y€Z < p=1lor3mod8
p=x2+3y2, x,y €21 <= p=3or p=1mod3

mentioned in the introduction. The goals of §1 are to prove (1.1) and,
more importantly, to get a sense of what’s involved in studying the equation
p = x* + ny? when n > 0 is arbitrary. This last question was best answered
by Euler, who spent 40 years proving Fermat’s theorems and thinking about
how they can be generalized. Our exposition will follow some of Euler’s
papers closely, both in the theorems proved and in the examples studied.
We will see that Euler’s strategy for proving (1.1) was one of the primary
things that led him to discover quadratic reciprocity, and we will also dis-
cuss some of his conjectures concerning p = x? + ny? for n > 3. These re-
markable conjectures touch on quadratic forms, composition, genus theory,
cubic and biquadratic reciprocity, and will keep us busy for the rest of the
chapter.
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A. Fermat

Fermat’s first mention of p = x> + y2 occurs in a 1640 letter to Mersenne
[35, Vol. 11, p. 212), while p = x? + 2y? and p = x2 + 3y? come later, first
appearing in a 1654 letter to Pascal [35, Vol. II, pp. 310-314]. Although
no proofs are given in these letters, Fermat states the results as theorems.
Writing to Digby in 1658, he repeats these assertions in the following form:

Every prime number which surpasses by one a multiple of four is
composed of two squares. Examples are 5, 13, 17, 29, 37, 41, etc.

Every prime number which surpasses by one a multiple of three is
composed of a square and the triple of another square. Examples are
7, 13, 19, 31, 37, 43, etc.

Every prime number which surpasses by one or three a multiple
of eight is composed of a square and the double of another square.
Examples are 3, 11, 17, 19, 41, 43, etc.

Fermat adds that he has solid proofs—“firmissimis demonstratibus” [35,
Vol. 11, pp. 402408 (Latin), Vol. III, pp. 314-319 (French)].

The theorems (1.1) are only part of the work that Fermat did with x2 +
ny*. For example, concerning x? + y2?, Fermat knew that a positive integer
N is the sum of two squares if and only if the quotient of N by its largest
square factor is a product of primes congruent to 1 modulo 4 [35, Vol. III,
Obs. 26, pp. 256-257], and he knew the number of different ways N can
be so represented [35, Vol. III, Obs. 7, pp. 243-246]. Fermat also studied
forms beyond x? + y2, x% +2y? and x? + 3y2. For example, in the 1658
letter to Digby quoted above, Fermat makes the following conjecture about
x% + 5y2, which he admits he can’t prove:

If two primes, which end in 3 or 7 and surpass by three a multi-
ple of four, are multiplied, then their product will be composed of a
square and the quintuple of another square.

Examples are the numbers 3, 7, 23, 43, 47, 67, etc. Take two of
them, for example 7 and 23; their product 161 is composed of a square
and the quintuple of another square. Namely 81, a square, and the
quintuple of 16 equal 161.

Fermat’s condition on the primes is simply that they be congruent to 3 or 7
modulo 20. In §2 we will present Lagrange’s proof of this conjecture, which
uses ideas from genus theory and the composition of forms.

Fermat’s proofs used the method of infinite descent, but that’s often all
he said. As an example, here is Fermat’s description of his proof for p =
x2 + y2 [35, Vol. 11, p. 432):
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If an arbitrarily chosen prime number, which surpasses by one a
multiple of four, is not a sum of two squares, then there is a prime
number of the same form, less than the given one, and then yet a third
still less, etc., descending infinitely until you arrive at the number 5,
which is the least of all of this nature, from which it would follow
was not the sum of two squares. From this one must infer, by deduc-
tion of the impossible, that all numbers of this form are consequently
composed of two squares.

This explains the philosophy of infinite descent, but doesn't tell us how
to produce the required lesser prime. In fact, we have only one complete
proof by Fermat. It occurs in one of his marginal notes (the area of a right
triangle with integral sides cannot be an integral square [35, Vol. 111, Obs.
45, pp. 271-272]—for once the margin was big enough!). The methods of
this proof (see Weil [106, p. 77] or Edwards [31, pp. 10-14] for modern
expositions) do not apply to our case, so that we are still in the dark. In
his recent book [106], Weil makes a careful study of Fermat’s letters and
marginal notes, and with some hints from Euler, he reconstructs some of
Fermat’s proofs. Weil’s arguments are quite convincing, but we won’t go
into them here. For the present, we prefer to leave things as Euler found
them, i.e., wonderful theorems but no proofs.

B. Euler

Euler first heard of Fermat’s results through his correspondence with Gold-
bach. In fact, Goldbach’s first letter to Euler, written in December 1729,
mentions Fermat’s conjecture that 22° + 1 is always prime [40, p. 10]. Shortly
thereafter, Euler read some of Fermat’s letters that had been printed in
Wallis’ Opera [100] (which included the one to Digby quoted above). Euler
was intrigued by what he found. For example, writing to Goldbach in June
1730, Euler comments that Fermat’s four-square theorem (every positive
integer is a sum of four or fewer squares) is a “non inelegans theorema”
[40, p. 24]. For Euler, Fermat’s assertions were serious theorems deserving
of proof, and finding the proofs became a life-long project. Euler’s first pa-
per on number theory, written in 1732 at age 25, disproves Fermat’s claim
about 22" + 1 by showing that 641 is a factor of 2** +1 [33, Vol. II, pp. 1-
5]. Euler’s interest in number theory continued unabated for the next 51
years—there was a steady stream of papers introducing many of the fun-
damental concepts of number theory, and even after his death in 1783, his
papers continued to appear until 1830 (see [33, Vol. IV-V]). Weil’s book
[106] gives a detailed survey of Euler’s work on number theory (other ref-
erences are Burkhardt [14], Edwards [31, Chapter 2], Scharlau and Opolka
[86, Chapter 3], and the introductions to Volumes II-V of Euler’s collected
works [33]).
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We can now present Euler’s proof of the first of Fermat’s theorems from

(1.1):

Theorem 1.2. An odd prime p can be written as x* + y2 if and only if p =
1 mod 4.

Proof. If p = x? + y?, then congruences modulo 4 easily imply that p =
1 mod 4. The hard work is proving the converse. We will give a modern
version of Euler’s proof. Given an odd prime p, there are two basic steps
to be proved:

Descent Step: If p | x? + y2, ged(x,y) = 1, then p can be written as x? + y2.
Reciprocity Step: If p =1 mod 4, then p | x2 + y?, ged(x,y) = 1.

It will soon become clear why we use the names “Descent” and “Reci-
procity.”

We’ll do the Descent Step first since that’s what happened historically.
The argument below is taken from a 1747 letter to Goldbach [40, pp. 416—
419] (see also [33, Vol. I, pp. 295-327]). We begin with the classical identity

(1.3) (2 +yH)(22 +w?) = (xz £ yw)? + (xw F yz)?
(see Exercise 1.1) which enables one to express composite numbers as sums

of squares. The key observation is the following lemma:

Lemma 1.4. Suppose that N is a sum of two relatively prime squares, and
that g = x> + y? is a prime divisor of N. Then N/q is also a sum of two
relatively prime squares.

Proof. Write N = a® + b%, where a and b are relatively prime. We also have
g = x>+ y2, and thus g divides
x*N - a2q = x2(a2 + b2) — a2(x2 + y2)
= x2b* — a’y? = (xb—ay)(xb + ay).

Since g is prime, it divides one of these two factors, and changing the sign
of a if necessary, we can assume that q | xb—ay. Thus xb—ay = dq for
some integer d.

We claim that x |a +dy. Since x and y are relatively prime, this is
equivalent to x | (a + dy)y. However,

(a+dy)y=ay +dy2 = xb—dgq +dy2
= xb—d(x* +y*) + dy* = xb—dx?,
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which is obviously divisible by x. Furthermore, if we set a + dy = cx, then
the above equation implies that b = dx + cy. Thus we have

a=cx—dy

1.5
(1) b=dx+cy.

Then, using (1.3), we obtain
N =a’>+b*=(cx— dy): + (dx + cy)?
= (x2 + y?)(c? + d*) = q(c* + d°).

Thus N /q = ¢ + d? is a sum of squares, and (1.5) shows that ¢ and d must
be relatively prime since a and b are. This proves the lemma. Q.E.D.

To complete the proof of the Descent Step, let p be an odd prime di-
viding N = a? + b?, where a and b are relatively prime. If a and b are
changed by multiples of p, we still have p | a? + b*. We may thus assume
that |a| < p/2 and |b| < p/2, which in turn implies that N' < p?/2. The new
a and b may have a greatest common divisor d > 1, but p doesn’t divide d,
so that dividing a and b by d, we may assume that p | N, N < p*/2, and
N = a? + b* where ged(a,b) = 1. Then all prime divisors g # p of N are
less than p. If ¢ were a sum of two squares, then Lemma 1.4 would show
that N /q would be a multiple of p, which is also a sum of two squares.
If all such ¢’s were sums of two squares, then repeatedly applying Lemma
1.4 would imply that p itself was of the same form. So if p is not a sum of
two squares, there must be a smaller prime g with the same property. Since
there is nothing to prevent us from repeating this process indefinitely, we
get an infinite decreasing sequence of prime numbers. This contradiction
finishes the Descent Step.

This is a classical descent argument, and as Weil argues [106, pp. 63-69],
it is probably similar to what Fermat did. In §2 we will take another ap-
proach to the Descent Step, using the reduction theory of positive definite
quadratic forms.

The Reciprocity Step caused Euler a lot more trouble, taking him until
1749. Euler was clearly relieved when he could write to Goldbach “Now
have I finally found a valid proof” [40, pp. 493-495]. The basic idea is quite
simple: since p =1 mod 4, we can write p = 4k + 1. Then Fermat’s Little
Theorem implies that

¥ —Dx* +1)=x* —1=0mod p

for all x 20 mod p. If x?* — 1 0mod p for one such x, then p | x* +1,
so that p divides a sum of relatively prime squares, as desired. For us, the
required x is easy to find, since x% — 1 is a polynomial over the field Z/pZ
and hence has at most 2k < p — 1 roots. Euler’s first proof is quite different,
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for it uses the calculus of finite differences—see Exercise 1.2 for details.
This proves Fermat’s claim (1.1) for primes of the form x? + y2. Q.E.D.

Euler used the same two-step strategy in his proofs for x? + 2y% and
x% + 3y?. The Descent Steps are

If p | x* + 2y2, ged(x,y) = 1, then p is of the form x? + 2y?
If p | x* + 3y?, ged(x,y) = 1, then p is of the form x? + 3y?2,
and the Reciprocity Steps are
If p=1,3mod 8, then p | x* +2y?, ged(x,y)=1
If p=1mod 3, then p | x* +3y?, ged(x,y) =1,

where p is always an odd prime. In each case, the Reciprocity Step was
harder to prove than the Descent Step, and Euler didn’t succeed in giving
complete proofs of Fermat’s theorems (1.1) until 1772, 40 years after he
first read about them. Weil discusses the proofs for x? + 2y% and x? + 3y2
in [106, pp. 178-179, 191, and 210-212], and in Exercises 1.4 and 1.5 we will
present a version of Euler’s argument for x2 + 3y2.

C. p = x* + ny? and Quadratic Reciprocity

Let’s turn to the general case of p = x? + ny?, where 7 is now any positive
integer. To study this problem, it makes sense to start with Euler’s two-step
strategy. This won’t lead to a proof, but the Descent and Reciprocity Steps
will both suggest some very interesting questions for us to pursue.

The Descent Step for arbitrary n > 0 begins with the identity

(1.6) (x* + ny?)(2* + nw?) = (xz £ nyw)* + n(xw F yz)?

(see Exercise 1.1), and Lemma 1.4 generalizes easily for n > 0 (see Exercise
1.3). Then suppose that p | x> + ny2. As in the proof of the Descent Step
in Theorem 1.2, we can assume that |x|,|y| < p/2. For n <3, it follows
that x*> + ny? < p? when p is odd, and then the argument from Theorem
1.2 shows that p is of the form x*+ ny? (see Exercise 1.4). One might
conjecture that this holds in general, i.e., that p | x? + ny? always implies
p = x* + ny?. Unfortunately this fails even for n = 5: for example, 3 |21 =
1> +5-22 but 3 # x2 + 5y%. Euler knew this, and most likely so did Fermat
(remember his speculations about x% + 5y?). So the question becomes: how
are prime divisors of x% + ny? to be represented? As we will see in §2, the
proper language for this is Lagrange’s theory of quadratic forms, and in
particular a complete solution to the Descent Step will follow from the
properties of reduced forms.
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Turning to the Reciprocity Step for n > 0, the general case asks for con-
gruence conditions on a prime p which will guarantee p | x2 + ny?. To see
what kind of congruences we need, note that the conditions of (1.1) can
be unified by working modulo 4n. Thus, given n >0, we’re looking for
a congruence of the form p = a,f,... mod 4n which implies p | x? + ny?,
ged(x,y) = 1. To give a modern formulation of this last condition, we first
define the Legendre symbol (a/p). If a is an integer and p an odd prime,
then

0 pla
(f-> = 1  p/)a and a is a quadratic residue modulo p

-1 p/) a and a is a quadratic nonresidue modulo p.

We can now restate p | x2 + ny? as follows:

Lemma 1.7. Let n be a nonzero integer, and let p be an odd prime not
dividing n. Then

p | x* +ny? ged(x,y) =1 < (_p’z> = 1.

Proof. The basic idea is that if x> + ny? =0 mod p and ged(x,y) = 1, then
y must be relatively prime to p and consequently has a multiplicative in-

verse modulo p. The details are left to the reader (see Exercise 1.6).
Q.ED.

The arguments of the above lemma are quite elementary, but for Euler
they were not so easy—he first had to realize that quadratic residues were
at the heart of the matter. This took several years, and it’s fun to watch
his terminology evolve: in 1744, he writes “prime divisors of numbers of
the form aa — Nbb” [33, Vol. 11, p. 216]; by 1747 this changes to “residues
arising from the division of squares by the prime p” [33, Vol. II, p. 313];
and by 1751 the transition is complete—Euler now uses the terms “residua”
and “non-residua” freely, with the “quadratic” being understood [33, Vol. 1I,
p. 343].

Using Lemma 1.7, the Reciprocity Step can be restated as the following
question: is there a congruence p = a,f,... mod 4n which implies (—n/p)
=1 when p is prime? This question also makes sense when n <0, and in
the following discussion n will thus be allowed to be positive or negative.
We will see in Corollary 1.19 that the full answer is intimately related to
the law of quadratic reciprocity, and in fact the Reciprocity Step was one of
the primary things that led Euler to discover quadratic reciprocity.

Euler became intensely interested in this question in the early 1740s, and
he mentions numerous examples in his letters to Goldbach. In 1744 Euler
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collected together his examples and conjectures in the paper Theoremata
circa divisores numerorum in hac forma paa + qbb contentorum [33, Vol.
II, pp. 194-222]. He labels his examples as “theorems,” but they are really
“theorems found by induction,” which is eighteenth-century parlance for
conjectures based on working out some particular cases. Here are of some
of Euler’s conjectures, stated in modern notation:

(j) =1 <= p=1Tmod 12

(-p—s =1 <= p=1,37,9mod 20

(1.8)
=1 <= p=+1mod 12

N

3
P
k]

(?7) =1 <= p=1,9,11,15,23,25 mod 28
) =1 <«= p=+1,+11mod 20

/'\

(_p_) =1 <= p=+1,43,49 mod 28,

where p is an odd prime not dividing n. In looking for a unifying pattern,
the bottom three look more promising because of the +’s. If we rewrite the
bottom half of (1.8) using 11 = —9 mod 20 and 3 = —25 mod 28, we obtain

(—3) =1 4= p=+41mod 12

(g) =1 <= p=+41,49mod 20

(%) =1 < p=+41,425,49 mod 28.

All of the numbers that appear are odd squares!
Before getting carried away, we should note another of Euler’s conjec-
tures:

(—2) =1 <= p=+41,£5 mod 24.

Unfortunately, +5 is not a square modulo 24, and the same thing happens
for (10/p) and (14/p) . But 3, 5 and 7 are prime, while 6, 10 and 14 are
composite. Thus it makes sense to make the following conjecture for the
prime case:
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Conjecture 1.9. If p and q are distinct odd primes, then
(%) =1 < p =+ mod 4q for some odd integer 3 .

The remarkable fact is that this conjecture is equivalent to the usual state-
ment of quadratic reciprocity:

Proposition 1.10. If p and q are distinct odd primes, then Conjecture 1.9 is

equivalent to
<£) <£1_) _ (~1)@-DE-D/,
q/\P

Proof. Let p* = (—1)?~Y/2p_Then the standard properties

-1\ _ -1)/2
<_;) _ (1)~
(ab _fa\[b
7)-()G)
of the Legendre symbol easily imply that quadratic reciprocity is equivalent
to

5)-()

(see Exercise 1.7). Since both sides are +1, it follows that quadratic reci-

p 2

Comparing this to Conjecture 1.9, we see that it suffices to show

(1.11)

(1.13) (%) —1 <= p=+0 mod 4q, B odd.
The proof of (1.13) is straightforward and is left to the reader (see Exercise
1.8). Q.E.D.

With hindsight, we can see why Euler had trouble with the Reciprocity
Steps for x2+2y? and x?+3y%: he was working out special cases of
quadratic reciprocity! Exercise 1.9 will discuss which special cases were in-
volved. We will not prove quadratic reciprocity in this section, but later in
§8 we will give a proof using class field theory. Proofs of a more elementary
nature can be found in most number theory texts.
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The discussion leading up to Conjecture 1.9 is pretty exciting, but was it
what Euler did? The answer is yes and no. To explain this, we must look
more closely at Euler’s 1744 paper. In addition to conjectures like (1.8), the
paper also contained a series of Annotations where Euler speculated on
what was happening in general. For simplicity, we will concentrate on the
case of (N /p), where N > 0. Euler notes in Annotation 13 [33, Vol. II, p.
216] that for such N’s, all of the conjectures have the form

(%) =1 <= p=+a mod4N

for certain odd values of a. Then in Annotation 16 [33, Vol. I, pp. 216-
217], Euler states that “while 1 is among the values [of the a’s], yet likewise
any square number, which is prime to 4N, furnishes a suitable value for «.”
This is close to what we want, but it doesn’t say that the odd squares fill up
all possible a’s when N is prime. To see this, we turn to Annotation 14
[33, Vol. II, p. 216], where Euler notes that the number of a’s that occur is
(1/2)¢(N). When N is prime, this equals (N — 1)/2, exactly the number of
incongruent squares modulo 4N . Thus what Euler states is fully equivalent
to Conjecture 1.9. In 1875, Kronecker identified these Annotations as the
first complete statement of quadratic reciprocity [68, Vol. 11, pp. 3-4].

The problem is that we have to read between the lines to get quadratic
reciprocity—why didn’t Euler state it more explicitly? He knew that the
prime case was special, for why else would he list the prime cases before
the composite ones? The answer to this puzzle, as Weil points out [106, pp.
207-209), 1s that Euler’s real goal was to characterize the a’s for all N, not
just primes. To explain this, we need to give a modern description of the
t+a’s. The following lemma is at the heart of the matter:

Lemma 1.14. If D = 0,1 mod 4 is a nonzero integer, then there is a unique

homomorphism x :(Z/D1)* — {£1} such that x([p]) =(D/p) for odd
primes p not dividing D. Furthermore,

1 when D >0

x(=1h= { ~1  when D <0,

Proof. The proof will make extensive use of the Jacobi symbol. Given m >
0 odd and relatively prime to M, recall that the Jacobi symbol (M /m) is

detined to be the product
M\ {4(M
m) - [\ Pi

l=
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where m = p;--- p, is the prime factorization of m. Note that (M /m) =
(N/m) when M = N mod m, and there are the multiplicative identities

(=) =) (5)
() = () (5)

(see Exercise 1.10). The Jacobi symbol also satisfies the following version
of quadratic reciprocity:

(%) = (_1)(m—1)/2

(116) (3> _ (— 1)/

m

M m
Z ) = (— M -Dm=1)/4
(see Exercise 1.10).

For this lemma, the crucial property of the Jacobi symbol is one usually
not mentioned in elementary texts: if m = n mod D, where m and n are
odd and positive and D = 0,1 mod 4, then

2)-()

The proof is quite easy when D =1 mod 4 and D > 0: using quadratic reci-
procity (1.16), the two sides of (1.17) become

_\D-1m-1)/a( M
(1) ( D)

_\@-1n-1y/4f 1

To compare these, first note that the two Jacobi symbols are equal since
m=nmod D. From D = 1 mod 4 we see that

(D - 1)(m—1)/4= (D —1)(n—1)/4=0 mod 2

(1.15)

(1.18)

since m and n are odd. Thus the signs in front of (1.18) are both +1, and
(1.17) follows. When D is even or negative, a similar argument using the
supplementary laws from (1.16) shows that (1.17) still holds (see Exercise
1.11).

It follows from (1.17) that x([m]) = (D/m) gives a well-defined homo-
morphism from (Z/DZ)* to {£1} (see Exercise 1.12), and the statement
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concerning x([—1]) follows from the above properties of the Jacobi sym-
bol (see Exercise 1.12). Finally, the condition that x([p]) = (D/p) for p
prime determines y uniquely follows because every class in (Z/DZ)* con-
tains a prime—this is a consequence of Dirichlet’s theorem on primes in
arithmetic progressions (to be proved in §8). Q.E.D.

The above proof made heavy use of quadratic reciprocity, which is no
accident: Lemma 1.14 is in fact equivalent to quadratic reciprocity and the
supplementary laws (see Exercise 1.13). For us, however, the main feature
of Lemma 1.14 is that it gives a complete solution of the Reciprocity Step
of Euler’s strategy:

Corollary 1.19. Let n be a nonzero integer, and let x : (Z/4nZ)* — {11} be
the homomorphism from Lemma 1.14 when D = —4n. If p is an odd prime
not dividing n, then the following are equivalent:

(i) p|x%+ ny?, ged(x,y) = 1.
(i) (—n/p)=1.
(iii) [p] € ker(x) C (Z/4nZ)*.

Proof. (i) and (ii) are equivalent by Lemma 1.7, and since (—4n/p)=
(—n/p), (i1) and (iii) are equivalent by Lemma 1.14. Q.E.D.

To see how this solves the Reciprocity Step, note that if ker(y) =
{[a)},[8}[7);---}, then [p] € ker(x) is equivalent to the congruence p =
a,3,7,... mod 4n, which is exactly the kind of condition we were looking
for. Actually, Lemma 1.14 allows us to refine this a bit: when n = 3 mod 4,
then congruence can be taken to be of the form p = a,f,7,... mod n (see
Exercise 1.14). We should also note that in all cases, the usual statement of
quadratic reciprocity makes it easy to compute the classes in question (see
Exercise 1.15 for an example).

To see how this relates to what Euler did in 1744, let N be as above, and
let D =4N in Lemma 1.14. Then ker(x) consists exactly of Euler’s +a’s
(when N > 0, the lemma also implies that —1 € ker()x), which explains the
+ signs). The second thing to note is that when N is odd and squarefree,
K = ker(x) is uniquely characterized by the following four properties:

(i) X is a subgroup of index 2 in (Z/4NZ)*.
(ii) —1€ K when N > 0and —1¢ K when N <0.

(iii) K has period N if N =1mod 4 and period 4N otherwise. (Having
period P > 0 means that if [a],[b] € (Z/4NZ)*, [a] € K and a = b mod
P, then [b]€ K .)

(iv) K does not have any smaller period.
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For a proof of this characterization, see Weil [106, pp. 287-291]. In the
Annotations to his 1744 paper, Euler gives very clear statements of (i)—(iii)
(see Annotations 13-16 in [33, Vol. II, pp. 216-217]), and as for (iv), he
notes that N is not a period when N # 1 mod 4, but says nothing about the
possibility of smaller periods (see Annotation 20 in [33, Vol. II, p. 219]).
So Euler doesn’t quite give a complete characterization of ker()x), but he
comes incredibly close. It is a tribute to Euler’s insight that he could deduce
this underlying structure on the basis of examples like (1.8).

D. Beyond Quadratic Reciprocity

We will next discuss some of Euler’s conjectures concerning primes of the

form x% + ny? for n > 3. We start with the cases n = 5 and 14 (taken from

his 1744 paper), for each will have something unexpected to offer us.
When n = 5, Euler conjectured that for odd primes p # 5,

(120) p = x2+5y? <= p=1,9mod 20
. 2p = x* +5y% <= p =3,7mod 20.

Recall from (1.8) that p|x2+ 5y? is equivalent to p =1,3,7,9 mod 20.
Hence these four congruence classes break up into two groups {1,9} and
{3,7} which have quite different representability properties. This is a new
phenomenon, not encountered for x2 + ny? when n < 3. Note also that the
classes 3,7 modulo 20 are the ones that entered into Fermat’s speculations
on x2+ 5y2, so something interesting is going on here. In §2 we will see
that this is one of the examples that led Lagrange to discover genus theory.

The case n = 14 is yet more complicated. Here, Euler makes the follow-
ing conjecture for odd primes # 7:

x2 + 14y?
= =1,9,15,23,25, d 56
P {2x2+7y2} < p 9 39 mo

3p = x% + 14y? < p =3,5,13,19,27,45 mod 56.

(1.21)

As with (1.20), the union of the two groups of congruence classes in (1.21)
describe those primes for which (—14/p) = 1. The new puzzle here is that
we don’t seem to be able to separate x2 + 14y? from 2x? + 7y2. In §2, we
will see that this is not an oversight on Euler’s part, for the two quadratic
forms x2 + 14y? and 2x? + 7y? are in the same genus and hence can’t be
separated by congruence classes. Another puzzle is why (1.20) uses 2p while
(1.21) uses 3p. In §2 we will use composition to explain these facts. One
could also ask what extra condition is needed to insure p = x? + 14y2. This
lies much deeper, for as we will see in §5, it involves the Hilbert class field

of Q(v—14).
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The final examples we want to discuss come from quite a different
source, the Tractatus de numerorum doctrina capita sedecim quae supersunt,
which Euler wrote in the period 1748-1750 [33, Vol. V, pp. 182-283]. Euler
intended this work to be a basic text for number theory, in the same way
that his Introductio in analysin infinitorum [33, Vol. VIII-IX] was the first
real textbook in analysis. Unfortunately, Euler never completed the Tracta-
tus, and it was first published only in 1849. Weil [106, pp. 192-196] gives a
description of what’s in the Tractatus (see also [33, Vol. V, pp. XIX-XXVI]).
For us, the most interesting chapters are the two that deal with cubic and
biquadratic residues. Recall that a number a is a cubic (resp. biquadratic)
residue modulo p if the congruence x> = a mod p (resp. x* = a mod p) has
an integer solution. Euler makes the following conjectures about when 2 is
a cubic or biquadratic residue modulo an odd prime p:

5 5 p=1mod3and2isa
(1.22) p=x“+21y° <=
cubic residue modulo p

p=1mod4and 2is a
(123)  p=x>+64y° =
biquadratic residue modulo p

(see [33, Vol. V, pp. 250 and 258]). In §4, we will see that both of these
conjectures were proved by Gauss as consequences of his work on cubic
and biquadratic reciprocity.

The importance of the examples (1.20)—(1.23) is hard to overestimate.
Thanks to Euler’s amazing ability to find patterns, we now see some of
the serious problems to be tackled (in (1.20) and (1.21)), and we have our
first hint of what the final solution will look like (in (1.22) and (1.23)).
Much of the next three sections will be devoted to explaining and proving
these conjectures. In particular, it should be clear that we need to learn
a lot more about quadratic forms. Euler left us with a magnificent series
of examples and conjectures, but it remained for Lagrange to develop the
language which would bring the underlying structure to light.

E. Exercises

1.1. In this exercise, we prove some identities used by Euler.
(a) Prove (1.3) and its generalization (1.6).
(b) Generalize (1.6) to find an identity of the form

(ax® +cy>)(az? + cw?) = (7)* + ac(?)’.

This is due to Euler [33, Vol. I, p. 424].



1.2.

1.3.
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1.8.
1.9.
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Let p be prime, and let f(x) be a monic polynomial of degree d < p.
This exercise will describe Euler’s proof that the congruence f(x) #

0 mod p has a solution. Let Af(x) = f(x +1)— f(x) be the ditfer-
ence operator.

a) For any k > 1, show that A*f(x) is an integral linear combina-
y g

tion of f(x),f(x + 1),...,f(x + k).

(b) Show that A?f(x) = d!.

(c) Euler’s argument is now easy to state: if f(x)# 0 mod p has no
solutions, then p | A?f(x) follows from (a). By (b), this is impos-
sible.

Let n be a positive integer.

(a) Formulate and prove a version of Lemma 1.4 when a prime g =
x2 + ny? divides a number N = a? + nb?.

(b) Show that your proof of (a) works when n =3 and g = 4.

In this exercise, we will prove the Descent Steps for x% + 2y? and

x2 +3y2.

(a) If a prime p divides x% + 2y?2, ged(x,y) = 1, then adapt the argu-
ment of Theorem 1.2 to show that p = x? + 2y2. Hint: use Exer-
cise 1.3.

(b) Prove that if an odd prime p divides x* + 3y?, ged(x,y) = 1, then
p = x?+ 3y%. The argument is more complicated because the
Descent Step fails for p = 2. Thus, if it fails for some odd prime
p, you have to produce an odd prime g < p where it also fails.
Hint: part (b) of Exercise 1.3 will be useful.

If p = 3k + 1 is prime, prove that (—3/p) = 1. Hint:
4x* —1) = (xF—1)-40x* + x* +1)
= (x* = 1)((2x* + 1)* + 3).
Note that Exercises 1.4(b) and 1.5 prove Fermat’s theorem for x> +
3y2.
Prove Lemma 1.7.

Use the properties (1.11) of the Legendre symbol to prove the quad-
ratic reciprocity is equivalent to (1.12).

Prove (1.13).

In this exercise we will see how the Reciprocity Steps for x* + y?2,
x2 +2y? and x2 + 3y? relate to quadratic reciprocity.

(a) Use Lemma 1.7 to show that for a prime p > 3,
p|x*+3y?% ged(x,y)=1 <= p=1mod3
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2)-0)

By (1.12), we recognize this as part of quadratic reciprocity.

(b) Use Lemma 1.7 and the bottom line of (1.11) to show that the
statements

is equivalent to

p|x*+y? ged(x,y) =1 <= p=1mod4
p|x*+2y% ged(x,y)=1<= p=1,3mod 8

are equivalent to the statements

(:;1_) = (_1)(P—1)/2

(%) — (—1)& D/

1.10. This exercise is concerned with the properties of the Jacobi symbol
(M /m) defined in the proof of Lemma 1.14.
(a) Prove that (M /m) = (N/m) when M = N mod m.
(b) Prove (1.15).
(c) Prove (1.16) using quadratic reciprocity and the two supplemen-
tary laws (—1/p) = (—1)%?=D/2 and (2/p) = (—1)®*~D/8, Hint:
if r and s are odd, show that

(rs—-1)/2 =(r—-1)/2+(s—1)/2 mod 2
(r’s* —1)/8=(r*-1)/8 + (s* — 1)/8 mod 2.

(d) If M is a quadratic residue modulo m, show that (M /m) = 1.
Give an example to show that the converse is not true.

1.11. Use (1.15) and (1.16) to complete the proof of (1.17) begun in the
text.

1.12. This exercise is concerned with the map x:(Z/DZ)* — {+1} of
Lemma 1.14. When m is odd and positive, we define y([m]) to be
the Jacobi symbol (D /m).

(a) Show that any class in (Z/DZ)* may be written as [m], where
m is odd and positive, and then use (1.17) to show that y is a
well-defined homomorphism on (Z/DZ7)*.

(b) Show that
1 ifD>0

x(=1) = { -1 D<o
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(c) If D =1 mod 4, show that
1 if D=1mod 8

x(2) = { -1 if D =5 mod 8.

1.13. In this exercise, we will assume that Lemma 1.14 holds for all non-
zero integers D = 0,1 mod 4, and we will prove quadratic reciprocity
and the supplementary laws.

(a) Let p and q be distinct odd primes, and let g*= (—1)¢~D/2q.
By applying the lemma with D = g*, show that (¢*/-) induces
a homomorphism from (Z/qZ)* to {£1}. Since (-/q) can be
regarded as a homomorphism between the same two groups and
(Z/q7)* is cyclic, conclude that the two are equal.

(b) Use similar arguments to prove the supplementary laws. Hint:
apply the lemma with D = —4 and 8 respectively.

1.14. Use Lemma 1.14 to prove that when n = 3 mod 4, there are integers
a,(,7,... such that for an odd prime p not dividing n, p | x*> + ny?,
ged(x,y) = 1if and only if p = o,f,7,... mod n.

1.15. Use quadratic reciprocity to determine those classes in (Z/847)*
with (=21/p) = 1. This tells us when p | x? + 21y%, and thus solves
Reciprocity Step when n = 21.

1.16. In the discussion following the proof of Lemma 1.14, we stated that
K = ker(y) is characterized by the four properties (i)—-(iv). When
D = 4q, where ¢ is an odd prime, prove that (i) and (ii) suffice to
determine K uniquely.

§2. LAGRANGE, LEGENDRE AND QUADRATIC FORMS

The study of integral quadratic forms in two variables
f(x,y)=ax2+bxy +cy2, a,bcel

began with Lagrange, who introduced the concepts of discriminant, equiv-
alence and reduced form. When these are combined with Gauss’ notion of
proper equivalence, one has all of the ingredients necessary to develop the
basic theory of quadratic forms. We will concentrate on the special case of
positive definite forms. Here, Lagrange’s theory of reduced forms is espe-
cially nice, and in particular we will get a complete solution of the Descent
Step from §1. When this is combined with the solution of the Reciprocity
Step given by quadratic reciprocity, we will get immediate proofs of Fer-
mat’s theorems (1.1) as well as several new results. We will then describe
an elementary form of genus theory due to Lagrange, which will enable us
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to prove some of Euler’s conjectures from §1, and we will also be able to
solve our basic question of p = x? + ny? for quite a few n. The section will
end with some historical remarks concerning Lagrange and Legendre.

A. Quadratic Forms

Our treatment of quadratic forms is taken primarily from Lagrange’s “Re-
cherches d’Arithmétique” of 1773-1775 [69, pp. 695-795] and Gauss’ Dis-
quisitiones Arithmeticae of 1801 [41, §§153-226]. Most of the terminology
is due to Gauss, though many of the terms he introduced refer to concepts
used implicitly by Lagrange (with some important exceptions).

A first definition is that a form ax? + bxy + cy? is primitive if its coef-
ficients a, b and c are relatively prime. Note that any form is an integer
multiple of a primitive form. We will deal exclusively with primitive forms.

An integer m is represented by a form f(x,y) if the equation

(2.1) m = f(x,y)

has an integer solution in x and y. If the x and y in (2.1) are relatively
prime, we say that m is properly represented by f(x,y). Note that the basic
question of the book can be restated as: which primes are represented by
the quadratic form x2 + ny??

Next, we say that two forms f(x,y) and g(x,y) are equivalent if there
are integers p, ¢, r and s such that

(2.2) f(x,y)=g(px+qy,rx +sy) and ps—qr =+1.

Since det(£?) = ps —qr = £1, this means that () is in the group of
2 x 2 invertible integer matrices GL(2,Z), and it follows easily that the
equivalence of forms is an equivalence relation (see Exercise 2.2). An im-
portant observation is that equivalent forms represent the same numbers,
and the same is true for proper representations (see Exercise 2.2). Note
also that any form equivalent to a primitive form is itself primitive (see Ex-
ercise 2.2). Following Gauss, we say that an equivalence is a proper equiva-
lence if ps —qr =1, ie., (1) € SL(2,Z), and it is an improper equivalence
if ps —qr = —1 [41, §158]. Since SL(2,7) is a subgroup of GL(2,7), it fol-
lows that proper equivalence is also an equivalence relation (see Exercise
2.2).

The notion of equivalence is due to Lagrange, though he simply said
that one form “can be transformed into another of the same kind” [69, p.
723). Neither Lagrange nor Legendre made use of proper equivalence. The
terms “equivalence” and “proper equivalence” are due to Gauss [41, §157],
and after stating their definitions, Gauss promises that “the usefulness of
these distinctions will soon be made clear” [41, §158]. In §3 we will see that
he was true to his word.
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As an example of these concepts, note that the forms ax? + bxy + cy?
and ax? — bxy + cy? are always improperly equivalent via the substitution
(x,y) — (x,—y). But are they properly equivalent? This is not obvious. We
will see below that the answer is sometimes yes (for 2x2 4 2xy + 3y?) and
sometimes no (for 3x% 4 2xy + 5y?).

There is a very nice relation between proper representations and proper
equivalence:

Lemma 2.3. A form f(x,y) properly represents an integer m if and only
if f(x,y) is properly equivalent to the form mx?+ bxy +cy? for some
b,ce L.

Proof. First, suppose that f(p,q) = m, where p and g are relatively prime.
We can find integers r and s so that ps —gr =1, and then

fpx + ry,gx + sy)= f(p,q@)x* + Qapr + bps + brq + 2cqs)xy
+ f(r,5)y? = mx? + bxy + cy?

is of the desired form. To prove the converse, note that mx? + bxy + cy?
represents m properly by taking (x,y) = (1,0), and the lemma is proved.
Q.E.D.

We define the discriminant of ax?+ bxy + cy? to be D = b* — 4ac. To
see how this definition relates to equivalence, suppose the forms f(x,y)
and g(x,y) have discriminants D and D' respectively, and that

f(x,y)=g(px+qy,rx+sy), p,q,r,sel.

Then a straightforward calculation shows that
D = (ps —qr)°D',

(see Exercise 2.3), so that the two forms have the same discriminant when-
ever ps —qr = +1. Thus equivalent forms have the same discriminant.

The sign of the discriminant D has a strong effect on the behavior of the
form. If f(x,y) = ax? + bxy + cy?, then we have the identity

(2.4) 4af(x,y) = (2ax + by)* — Dy>.

If D >0, then f(x,y) represents both positive and negative integers, and
we call the form indefinite, while if D < 0, then the form represents only
positive integers or only negative ones, depending on the sign of a, and
f(x,y) is accordingly called positive definite or negative definite (see Exer-
cise 2.4). Note that all of these notions are invariant under equivalence.

The discriminant D influences the form in one other way: since D =
b? — 4ac, we have D = b® mod 4, and it follows that the middle coefficient
b is even (resp. odd) if and only if D =0 (resp. 1) mod 4.
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We have the following necessary and sufficient condition for a number
m to be represented by a form of discriminant D:

Lemma 2.5. Let D = 0,1 mod 4 be an integer and m be an odd integer rel-
atively prime to D. Then m is properly represented by a primitive form of
discriminant D if and only if D is a quadratic residue modulo m.

Proof. 1If f(x,y) properly represents m, then by Lemma 2.3, we may as-
sume f(x,y) = mx*+bxy +cy*. Thus D = b> —4mc, and D = b* mod m
follows immediately.

Conversely, suppose that D =b?* mod m. Since m is odd, we can as-
sume that D and b have the same parity (replace b by b+ m if neces-
sary), and then D =0,1 mod 4 implies that D = b* mod 4m. This means
that D = b* — 4mc for some c. Then mx? + bxy + cy? represents m prop-
erly and has discriminant D, and the coefficients are relatively prime since
m is relatively prime to D. Q.E.D.

For our purposes, the most useful version of Lemma 2.5 will be the tol-
lowing corollary:

Corollary 2.6. Let n be an integer and let p be an odd prime not dividing
n. Then (—n/p) =11if and only if p is represented by a primitive form of
discriminant —4n.

Proof. This follows immediately from Lemma 2.5 because —4n is a qua-
dratic residue modulo p if and only if (—4n/p) = (—n/p)=1. Q.E.D.

This corollary is relevant to the question raised in §1 when we tried to
generalize the Descent Step of Euler’s strategy. Recall that we asked how
to represent prime divisors of x? + ny?, ged(x,y) = 1. Note that Corollary
2.6 gives a first answer to this question, for such primes satisty (—n/p) =
1, and hence are represented by forms of discriminant —4#n. The problem
is that there are too many quadratic forms of a given discriminant. For
example, if the proof of Lemma 2.5 is applied to (-3/13) = 1, then we see
that 13 is represented by the form 13x* + 12xy + 3y? of discriminant —12.
This is not very enlightening. So to improve Corollary 2.6, we need to show
that every form is equivalent to an especially simple one. Lagrange’s theory
of reduced forms does this and a lot more.

So far, we've dealt with arbitrary quadratic forms, but from this point
on, we will specialize to the positive definite case. These forms include the
ones we’re most interested in (namely, x* + ny? for n > 0), and their theory
has a classical simplicity and elegance. In particular, there is an especially
nice notion of reduced form.
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A primitive positive definite form ax? + bxy + cy? is said to be reduced
if

(2.7) |b| <a <c, and b> 0 if either |b| =a ora=c.

(Note that a and ¢ are positive since the form is positive definite.) The
basic theorem is the following:

Theorem 2.8. Every primitive positive definite form is properly equivalent to
a unique reduced form.

Proof. The first step is to show that a given form is properly equivalent
to one satisfying |b] < a < c. Among all forms properly equivalent to the
given one, pick f(x,y) = ax? + bxy + cy? so that |b| is as small as possible.
If a < |b], then

glx,y)=f(x+my,y)= ax® + (2am + b)xy + c’y2

is properly equivalent to f(x,y). Since a < |b|, we can choose m € Z so that
|2am + b| < |b|, which contradicts our choice of f(x,y). Thus a > |b|, and
c > |b| follows similarly. If a > ¢, we need to interchange the outer coef-
ficients, which is accomplished by the proper equivalence (x,y)+— (—y, x).
The resulting form satisfies |b| < a <c.

The next step is to show that such a form is properly equivalent to a re-
duced one. By definition (2.7), the form is already reduced unless b < 0 and
a = —b or a = c. In these exceptional cases, ax? — bxy + cy? is reduced, so
that we need only show that the two forms ax?+ bxy + cy? are properly
equivalent. This is done as follows:

2

a=-b:(x,y)—(x+y,y) takes ax“—axy + cy? to ax®+axy +cy?.

a=c :(x,y)— (-y,x) takes ax®+bxy+ay? to ax®—bxy +ay’.

The final step in the proof is to show that different reduced forms can-
not be properly equivalent. This is the uniqueness part of the theorem. If
f(x,y) = ax®+ bxy + cy? satisfies |b| < a < c, then one easily shows that

(2.9) f(x,y) = (a—|b| + c)min(x?,y*)

(see Exercise 2.7). Thus f(x,y) > a— |b| + ¢ whenever xy # 0, and it fol-
lows that a is the smallest nonzero value of f(x,y). Furthermore, if ¢ > a,
then ¢ is the next smallest number represented properly by f(x,y), so that
in this case the outer coefficients of a reduced form give the minimum val-
ues properly represented by any equivalent form. These observations are
due to Legendre [74, Vol. 1, pp. 77-78].
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We can now prove uniqueness. For simplicity, assume that f(x,y) =
ax®+ bxy + cy? is a reduced form that satisfies the strict inequalities |b| <
a < c¢. The above considerations imply that

(2.10) a<c<a-|bl+c

are the three smallest numbers properly represented by f(x,y). Using these
inequalities and (2.9), it follows that

f(x,y) =a, ged(x,y) =1 <= (x,y) = £(1,0)
f(x,y) =c¢, ged(x,y) =1 4= (x,y) = £(0,1)

(see Exercise 2.8). Now let g(x,y) be a reduced form equivalent to f(x,y).
Since these forms represent the same numbers and are reduced, they must
have the same first coefficient a by Legendre’s observation. Now consider
the third coefficient ¢’ of g(x,y). We know that a < ¢’ since g(x,y) is re-
duced. If equality occurred, then the equation g(x,y) = a would have four
proper solutions +(1,0) and +(0,1). Since f(x,y) is equivalent to g(x,y),
this would contradict (2.11). Thus a <c¢’, and then Legendre’s observa-
tion shows that ¢ = ¢’. Hence the outer coefficients of f(x,y) and g(x,y)
are the same, and since they have the same discriminant, it follows that
g(x,y) =ax®+bxy +cy?.

It remains to show that f(x,y) = g(x,y) when we make the stronger as-
sumption that the forms are properly equivalent. If we assume that

g(x,y)=f(px+qy,rx+sy), ps—qr=1,

then a =g(1,0) = f(p,q) and ¢ =g(0,1) = f(r,s) are proper representa-
tions. By (2.11), it follows that gp,q) +(1,0) and (r,s) = £(0,1). Then
ps —qr =1 implies (? 7) 1 ,and f(x,y) = g(x,y) follows easily.
When a = |b| or a =, the above argument breaks down, because the
values in (2.10) are no longer distinct. Nevertheless, one can still show that
f(x,y) and g(x,y) reduce to ax?+ bxy + cy?, and then the restriction b >
0 in definition (2.7) implies equality. (See Exercise 2.8, or for the complete
details, Scharlau and Opolka [86, pp. 36-38].) Q.E.D.

(2.11)

Note that we can now answer our earlier question about equivalence
versus proper equivalence. Namely, the forms 3x% 4 2xy + 5y? are clearly
equivalent, but since they are both reduced, Theorem 2.8 implies that they
are not properly equ1valent On the other hand, of 2x% +2xy + 3y?, only
2x% + 2xy + 3y? is reduced (because a = |b|), and by the proof of Theorem
2.8, it is properly equivalent to 2x% — 2xy + 3y?2.

In order to complete the elementary theory of reduced forms, we need
one more observation. Suppose that ax? + bxy + cy? is a reduced form of
discriminant D < 0. Then b* < a? and a < ¢, so that

—D = 4ac - b* > 4a® — a® = 34°
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and thus

(2.12) a <+/(-D)/3.

If D is fixed, then |b| < a and (2.12) imply that there are only finitely many
choices for a and b. Since b?> — 4ac = D, the same is true for ¢, so that
there are only a finite number of reduced forms of discriminant D. Then
Theorem 2.8 implies that the number of proper equivalence classes is also
finite. Following Gauss [41, §223], we say that two forms are in the same
class if they are properly equivalent. We will let A(D) denote the number
of classes of primitive positive definite forms of discriminant D, which by
Theorem 2.8 is just the number of reduced forms. We have thus proved the
following theorem:

Theorem 2.13. Let D < 0 be fixed. Then the number h(D) of classes of prim-
itive positive definite forms of discriminant D is finite, and furthermore h(D)
is equal to the number of reduced forms of discriminant D. Q.E.D.

The above discussion also shows that there is an algorithm for computing
reduced forms and class numbers which, for small discriminants, is easily
implemented on a computer (see Exercise 2.9). Here are some examples
which will prove useful later on:

D h(D) | Reduced Forms of Discriminant D
—4 1 x? + y?
-8 1 x2 + 2y?
12 1 x? + 3y?
(2.14) -20 2 x? 4 5y2,2x% + 2xy + 3y?
—28 1 x? + Ty?
—56 4 x? + 14y%,2x% + Ty?,3x% + 2xy + 5y?
—108 3 x4+ 27y2,4x? £ 2xy + Ty?
—256 4 x% 4 64y2 4x% + 4xy + 17y%,5x% + 2xy + 13y?

Note, by the way, that x? + ny? is always a reduced form! For a further
discussion of the computational aspects of class numbers, see Buell [12] and
Shanks [89] (the algorithm described in [89] makes nice use of the theory
to be described in §3).

This completes our discussion of positive definite forms. We should also
mention that there is a corresponding theory for indefinite forms. Its roots
reach back to Fermat and Euler (both considered special cases, such as
x? —2y?), and Lagrange and Gauss each developed a general theory of
such forms. There are notions of reduced form, class number, etc., but
the uniqueness problem is much more complicated. As Gauss notes, “it
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can happen that many reduced forms are properly equivalent among them-
selves” [41, §184]. Determining exactly which reduced forms are prop-
erly equivalent is not easy (see Lagrange [69, pp. 728-740] and Gauss [41,
§§183-193]). There are also connections with continued fractions and Pell’s
equation (see [41, §§183-205]), so that the indefinite case has a very differ-
ent flavor. Two modern references are Flath [36, Chapter IV] and Zagier
[111, §§8, 13 and 14].

B. p = x2 + ny? and Quadratic Forms

We can now apply the theory of positive definite quadratic forms to solve
some of the problems encountered in §1. We start by giving a complete
solution of the Descent Step of Euler’s strategy:

Proposition 2.15. Let n be a positive integer and p be an odd prime not
dividing n. Then (—n/p) =1 if and only if p is represented by one of the
h(—4n) reduced forms of discriminant —4n.

Proof. This follows immediately from Corollary 2.6 and Theorem 2.8.
Q.E.D.

In §1 we showed how quadratic reciprocity gives a general solution of the
Reciprocity Step of Euler’s strategy. Having just solved the Descent Step, it
makes sense to put the two together and see what we get. But rather than
just treat the case of forms of discriminant —4n, we will state a result that
applies to all negative discriminants D < 0. Recall from Lemma 1.14 that
there is a homomorphism y : (Z/DZ)* — {£1} such that x([p]) = (D/p)
for odd primes not dividing D . Note that ker(x) C (Z/DZ)* is a subgroup
of index 2. We then have the following general theorem:

Theorem 2.16. Let D =0,1mod 4 be negative, and let x : (Z/DZ)* —
{£1} be the homomorphism from Lemma 1.14. Then, for an odd prime p
not dividing D, [p] € ker(x) if and only if p is represented by one of the h(D)
reduced forms of discriminant D.

Proof. The definition of x tells us that [p] € ker(x) if and only if (D/p) =
1. By Lemma 2.5, this last condition is equivalent to being represented by

a primitive positive definite form of discriminant D, and then we are done
by Theorem 2.8. Q.E.D.

The basic content of this theorem is that there is a congruence p =
a,,7,... mod D which gives necessary and sufficient conditions for an odd
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prime p to be represented by a reduced form of discriminant D. This re-
sult is very computational, for we know how to find the reduced forms, and
quadratic reciprocity makes it easy to find the congruence classes a, 3,7,...
mod D such that (D/p) = 1.

For an example of how Theorem 2.16 works, note that x2 + y2, x? + 2y?
and x* + 3y? are the only reduced forms of discriminants —4, —8 and —12
respectively (this is from (2.14)). Using quadratic reciprocity to find the
congruence classes for which (—-1/p), (—2/p) and (—3/p) equal 1, we get
immediate proofs of Fermat’s three theorems (1.1) (see Exercise 2.11). This
shows just how powerful a theory we have: Fermat’s theorems are now
reduced to the status of an exercise. We can also go beyond Fermat, for
notice that by (2.14), x? + 7y? is the only reduced form of discriminant
—28, and it follows easily that

(2.17) p=x2+7y? < p=1,911,15,23,25 mod 28

for primes p # 7 (see Exercise 2.11). Thus we have made significant pro-
gress in answering our basic question of when p = x? + ny?.

Unfortunately, this method for characterizing p = x? + ny? works only
when A(—4n) = 1. In 1903, Landau proved a conjecture of Gauss that there
are very few n’s with this property:

Theorem 2.18. Let n be a positive integer. Then

h(—-4n)=1 < n=123,40r7.

Proof. We will follow Landau’s proof [70]. The basic idea is very simple:
x2+ ny? is a reduced form, and for n ¢ {1,2,3,4,7}, we will produce a
second reduced form of the same discriminant, showing that h(—4n) > 1.
We may assume n > 1.

First suppose that n is not a prime power. Then n can be written n = ac,
where 1 < a < ¢ and ged(a,c) = 1 (see Exercise 2.12), and the form

ax? + cy?

is reduced of disciminant —4ac = —4n. Thus h(—4n) > 1 when n is not a
prime power.
Next suppose that n = 2". If r > 4, then

4x% +4xy + (2772 + 1)y?

has relatively prime coefficients and is reduced since 4 <2"~2 + 1. Fur-
thermore, it has discriminant 42 —4-4(2"=2 + 1) = —16-2""2 = —4n. Thus
h(—4n)>1 when n =2", r > 4. One computes directly that h(—4-8) =2
(see Exercise 2.12), which leaves us with the known cases #» = 2 and 4.
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Finally, assume that n = p”, where p is an odd prime. If n+ 1 can be
written n + 1 = ac, where 2 < a < ¢ and ged(a,c) = 1, then

ax? +2xy +cy?

is reduced of discriminant 2% — 4ac = 4 —4(n + 1) = —4n. Thus h(—4n) > 1
when n + 1 is not a prime power. But n = p” is odd, so that n + 1 is even,
and hence it remains to consider the case n +1=2%. If s > 6, then

8x2 + 6xy + (2° 73+ 1)y?

has relatively prime coefficients and is reduced since 8 < 2°~3 + 1. Further-
more, it has discriminant 6 —4-8(2° 3+ 1)=4-4-2°=4—-4(n+1) =
—4n, and hence h(—4n)>1 when s > 6. The cases s =1, 2, 3, 4 and 5
correspond to n=1, 3, 7, 15 and 31 respectively. Now n =15 is not a
prime power, and one computes that A(—4-31) =3 (see Exercise 2.12).
This leaves us with the three known cases n = 1, 3 and 7, and completes
the proof of the theorem. Q.E.D.

Note that we’ve already discussed the cases n =1, 2, 3 and 7, and the
case n = 4 was omitted since p = x2 + 4y? is a trivial corollary of p = x? +
y? (p is odd, so that one of x or y must be even). One could also ask if
there is a similar finite list of odd discriminants D < 0 with A(D) = 1. The
answer is yes, but the proof is much more difficult. We will discuss this
problem in §7 and give a proof in §12.

C. Elementary Genus Theory

One consequence of Theorem 2.18 is that we need some new ideas to char-
acterize p = x* + ny? when h(—4n) > 1. To get a sense of what’s involved,
consider the example n = 5. Here, Theorem 2.16, quadratic reciprocity and
(2.14) tell us that

p=13,7,9mod 20 <= (—?5) =1

= p= x% +5y? or 2x% +2xy + 3y2.

(2.19)

We need a method of separating reduced forms of the same discriminant,
and this is where genus theory comes in. The basic idea is due to Lagrange,
who, like us, used quadratic forms to prove conjectures of Fermat and Eu-
ler. But rather than working with reduced forms collectively, as we did in
Theorem 2.16, Lagrange considers the congruence classes represented in
(Z/D1Z)* by a single form, and he groups together forms that represent the
same classes. This turns out to be the basic idea of genus theory!
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Let’s work out some examples to see how this grouping works. When
D = -20, one easily computes that

2 2 : *
x4+ 5y represents 1,9 in (Z/20Z)

(2.20)
2x% + 2xy + 3y* represents 3,7 in (Z/20Z)*

while for D = —56 one has
x>+ 14y%, 2x* + 7y* represent 1,9,15,23,25,29 in (Z/567)"

(2.21)
3x2 £ 2xy + 5y° represent  3,5,13,19,27,45 in (Z/567)"

(see Exercise 2.14—the reduced forms are taken from (2.14)). In his mem-
oir on quadratic forms, Lagrange gives a systematic procedure for deter-
mining the congruence classes in (Z/DZ)* represented by a form of dis-
criminant D [69, pp. 759-765], and he includes a table listing various re-
duced forms together with the corresponding congruence classes [69, pp.
766-767]. The examples in Lagrange’s table show that this is a very natural
way to group forms of the same discriminant.

In general, we say that two primitive positive definite forms of discrimi-
nant D are in the same genus if they represent the same values in (Z/DZ)*.
Note that equivalent forms represent the same numbers and hence are in
the same genus. In particular, each genus consists of a finite number of
classes of forms. The above examples show that when D = —20, there are
two genera, each consisting of a single class, and when D = —56, there are
again two genera, but this time each genus consists of two classes.

The real impact of this theory becomes clear when we combine it with
Theorem 2.16. The basic idea is that genus theory refines our earlier cor-
respondence between congruence classes and representations by reduced
forms. For example, when D = —20, (2.19) tells us that p=1,3,7,9 mod
20 <= x>+ 5y? or 2x* + 2xy + 3y*. If we combine this with (2.20), we

obtain

2 2
p=x"+5y" < p=19mod 20
(2.22)
p=2x*+2xy+3y’ < p=3,7mod 20.

Notice that the top line of (2.22) solves Euler’s conjecture (1.20) for when
p = x* + 5y?! The thing that makes this work is that the two genera rep-
resent disjoint values in (Z/20Z)*. Looking at (2.21), we see that the same
thing happens when D = —56, and then using Theorem 2.16 it is straight-
forward to prove that

2.23) p=x*+14y* or 2x* + 7y? <= p=1,9,15,23,25,39 mod 56
| ,0=3162332xy+5y2 < p=3,5,13,19,27,45 mod 56
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(see Exercise 2.15). Note that the top line proves part of Euler’s conjecture
(1.21) concerning x2 + 14y2.

In order to combine Theorem 2.16 and genus theory into a general the-
orem, we must show that the above examples reflect the general case. We
first introduce some terminology. Given a negative integer D = 0,1 mod 4,
the principal form is defined by

x°— —y°, D =0 mod 4

1-D
4
It is easy to check that the principal form has discriminant D and is reduced
(see Exercise 2.16). Note that when D = —4n, we get our friend x2 + ny?.
Using the principal form, we can characterize the congruence classes in

(Z/DZ)* represented by a form of discriminant D:

x?+xy+ y2,  D=1mod4.

Lemma 2.24. Given a negative integer D =0,1mod 4, let ker(x) C (Z/
D1Z)* be as in Theorem 2.16, and let f(x,y) be a form of discriminant D.

(i) The values in (Z/DZ)* represented by the principal form of discriminant
D form a subgroup H C ker(x).

(ii) The values in (Z/DZ)* represented by f(x,y) form a coset of H in
ker(x).

Proof. We first show that if a number m is prime to D and is represented by
a form of discriminant D, then [m] € ker(). By Exercise 2.1, we can write
m = d*m', where m' is properly represented by f(x,y). Then x([m]) =
x([d*m']) = x([d])*x([m']) = x([m']). Thus we may assume that m is prop-
erly represented by f(x,y), and then Lemma 2.5 implies that D is a qua-
dratic residue modulo m, i.e., D = b* — km for some b and k. When m is
odd, the properties of the Jacobi symbol (see Lemma 1.14) imply that

a=(3) = (55) - (7) - () -

and our claim is proved. The case when m is even is covered in Exercise
2.17.

We now turn to statements (i) and (ii) of the lemma. Concerning (i), the
above paragraph shows that H C ker(y). When D = —4n, the identity (1.6)
shows that H is closed under multiplication, and hence H is a subgroup.
When D = 1 mod 4, the argument is slightly different: here, notice that

4 (x2 +xy + 1—_4-2y2) = (2x +y)* mod D,
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which makes it easy to show that H is in fact the subgroup of squares in

(Z/DZ)* (see Exercise 2.17).
To prove (ii), we need the following observation of Gauss [41, §228]:

Lemma 2.25. Given a form f(x,y) and an integer M, then f(x,y) properly
represents numbers relatively prime (o M.

Proof. See Exercise 2.18. Q.E.D.

Now suppose that D = —4n. If we apply Lemma 2.25 with M = 4n and
then use Lemma 2.3, we may assume that f(x,y) = ax? + bxy + cy*, where
a is prime to 4n. Since f(x,y) has discriminant —4n, b is even and can be
written as 2b’, and then (2.4) implies that

af(x,y)=(ax+ b'y)? + ny®.

Since a is relatively prime to 4n, it follows that the values of f(x,y) In
(Z/4nZ)* lie in the coset [a]"'H. Conversely, if [c]€ [a]"'H, then ac =
22 + nw? mod 4n for some z and w. Using the above identity, it is €asy tO
solve the congruence f(x,y)=c mod4n, and thus the coset [a]~'H con-
sists exactly of the values represented in (Z/DZ)" by f(x,y). The case D =
1 mod 4 is similar (see Exercise 2.17), and Lemma 2.24 is proved. Q.E.D.

Since distinct cosets of H are disjoint, Lemma 2.24 implies that different
genera represent disjoint values in (Z/D1Z)*. This allows us to describe gen-
era by cosets H' of H in ker(x). We define the genus of H' to consist of all
forms of discriminant D which represent the values of H' modulo D. Then
Lemma 2.24 immediately implies the following refinement of Theorem 2.16:

Theorem 2.26. Ler D = 0,1 mod 4 be negative, and let H C ker(x) be as in
Lemma 2.24. If H' is a coset of H in ker(x) and p is an odd prime not
dividing D, then [p] € H' if and only if p 1s represented by a reduced form of
discriminant D in the genus of H'. Q.E.D.

This theorem is the main result of our elementary genus theory. It general-
izes examples (2.22) and (2.23), and it shows that there are always congru-
ence conditions which characterize when a prime is represented by some
form in a given genus.

For us, the most interesting genus is the one containing the principal
form, which following Gauss, we call the principal genus. When D = —4n,
the principal form is x>+ ny?, and since x* + ny? is congruent modulo
4n to x* or x* + n, depending on whether y is even or odd, we get the
following explicit congruence conditions for this case:
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Corollary 2.27. Let n be a positive integer and p an odd prime not dividing
n. Then p is represented by a form of discriminant —4n in the principal

genus if and only if for some integer 3,
p =/ or B%+ nmod 4n. Q.E.D.

There is also a version of this for discriminants D = 1 mod 4—see Exercise
2.20.

The nicest case of Corollary 2.27 is when the principal genus consists of
a single class, for then we get congruence conditions that characterize p =
x? + ny?. This is what happened when n = 5 (see (2.22)), and this isn’t the
only case. For example, the table of reduced forms in Lagrange’s memoir
[69, pp. 766-767] shows that the same thing happens for n=6, 10, 13, 15,
21, 22 and 30—for each of these n’s, the principal genus consists of only
one class (see Exercise 2.21). Corollary 2.27 then gives us the following
theorems for primes p:

2 <= p=1,7mod 24

p=x>+6y
p=x*+10y°> < p=1,911,19 mod 40

p=x+13y? < p=1,917,25,29,49 mod 52

(228)  p=x*+15y? < p=1,19,31,49 mod 60
p=x*+21y* < p=1,2537 mod 84
p=x>+22y* < p=1,9,15,23,25,31,47,49,71,81 mod 88
p=x"+30y° < p=1,31,49,79 mod 120.

It should be clear that this is a powerful theory! A natural question to ask
is how often does the principal genus consist of only one class, i.e., how
many theorems like (2.28) do we get? We will explore this question in more
detail in §3.

The genus theory just discussed has been very successful, but it hasn’t
solved all of the problems posed in §1. In particular, we have yet to prove
Fermat’s conjecture concerning pg = x* + 5y?, and we've only done parts
of Euler’s conjectures (1.20) and (1.21) concerning x> + 5y? and x? + 14y2.
To complete the proofs, we again turn to Lagrange for help.

Let’s begin with x* + 5y2. We've already proved the part concerning
when a prime p can equal x* + 5y (see (2.22)), but it remains to show
that for primes p and ¢,

(2299 p,q=3,7mod20= pg = x*+5y?  (Fermat)
B p=3,7mod20=2p = x* + 5y> (Euler).
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Lagrange’s argument [69, pp. 788-789] is as follows. He first notes that
primes congruent to 3 or 7 modulo 20 can be written as 2x” + 2xy + 3y?
(this is (2.22)), so that both parts of (2.29) can be proved by showing that
the product of two numbers represented by 2x2 +2xy + 3y? is of the form
x2 + Sy2. He then states the identity

2.30 2x2 + 2xy + 3y?)(22% + 22w + 3w?
y

=R2xz+xw+yz+ 3yw)® + 5(xw —yz)?
(see Exercise 2.22), and everything is proved!

Turning to Euler’s conjecture (1.21) for x? + 14y%, we proved part of it
in (2.23), but we still need to show that

p =3,5,13,19,27,45 mod 56 <= 3p = x* + 14y°.

Using (2.23), it suffices to show that 3 times a number represented by 3x2+
2xy + Sy?, or more generally the product of any two such numbers, is of the
form x2 + 14y2. So what we need is another identity of the form (2.30), and
in fact there is a version of (2.30) that holds for any form of discriminant
—4n:

(2.31) (ax® +2bxy + cy*)(az* + 2bzw + cw?)

= (axz + bxw + byz + cyw)* + n(xw — yz)°
(see Exercise 2.21). Applying this to 3x2 + 2xy + Sy* and n = 14, we are
done.

We can also explain one other aspect of Euler’s conjectures (1.20) and
(1.21), for recall that we wondered why (1.20) used 2p while (1.21) used 3p.
The answer again involves the identities (2.30) and (2.31): they show that
2 (resp. 3) can be replaced by any value represented by 2x* +2xy + 3y?
(resp. 3x2 + 2xy + 5y?). But Legendre’s observation from the proof of The-
orem 2.8 shows that 2 (resp. 3) is the best choice because it’s the smallest
nonzero value represented by the form in question. We will see below and
in §3 that identities like (2.30) and (2.31) are special cases of the composi-
tion of quadratic forms.

We now have complete proofs of Euler’s conjectures (1.20) and (1.21)
for x2 + 5y and x2 + 14y2. Notice that we’ve used a lot of mathematics:
quadratic reciprocity, reduced quadratic forms, genus theory and the com-
position of quadratic forms. This amply justifies the high estimate of Euler’s
insight that was made in §1, and Lagrange is equally impressive for provid-
ing the proper tools to understand what lay behind Euler’s conjectures.

D. Lagrange and Legendre

We've already described parts of Lagrange’s memoir “Recherches d’Arith-
métique”, but there are some further comments we’d like to add. First,
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although we credit Lagrange with the discovery of genus theory, it appears
only implicitly in his work. The groupings that appear in his tables of re-
duced forms are striking, but Lagrange’s comments on genus theory are a
different matter. On the page before the tables begin, Lagrange explains
his grouping of forms as follows: “when two different [forms] give the same
values of b [in (Z/4nZ)*], one combines these [forms] into the same case”
[69, p. 765]. This is the sum total of what Lagrange says about genus theory!

After completing the basic theory of quadratic forms (both definite and
indefinite), Lagrange gives some applications to number theory. To moti-
vate his results, he turns to Fermat and Euler, and he quotes from two
of our main sources of inspiration: Fermat’s 1658 letter to Digby and Eu-
ler’s 1744 paper on prime divisors of paa 4 qyy. Lagrange explicitly states
Fermat’s results (1.1) on primes of the form x? + ny?, n = 1,2 or 3, and
he notes Fermat’s speculation that pg = x> + 5y° whenever p and g are
primes congruent to 3 or 7 modulo 20. Lagrange also mentions several of
Euler’s conjectures, including (1.20), and he adds “one finds a very large
number of similar theorems in Volume XIV of the old Commentaires de
Pétersbourg [where Euler’s 1744 paper appeared], but none of them have
been demonstrated until now” [69, pp. 775-776].

The last section of Lagrange’s memoir is titled “Prime numbers of the
form 4nm + b which are at the same time of the form x? + ny2” [69, p.
T75]. It’s clear that Lagrange wanted to prove Theorem 2.26, so that he
could read off corollaries like (2.17), (2.22), (2.23) and (2.28). The problem
is that these proofs depend on quadratic reciprocity, which Lagrange didn’t
know in general—he could only prove some special cases. For example, he
was able to determine (+2/p), (£3/p) and (+5/p), but he had only partial
results for (+7/p). Thus, he could prove all of (2.22) but only parts of the
others (see [69, pp. 784-793] for the full list of his results). To get the flavor
of Lagrange’s arguments, the reader should see Exercise 2.23 or Scharlau
and Opolka [86, pp. 41-43]. At the end of the memoir, Lagrange summa-
rizes what he could prove about quadratic reciprocity, stating his results in
terms of Euler’s criterion

(P-1)/2 — (E‘_) d
a = mo .
> p

For example, for (2/p), Lagrange states [69, p. 794]:

Thus, if p is a prime number of one of the forms 87 + 1, 2(P—1/2 _
1 will be divisible by p, and if p is of the form 8n+3, 2(°-1/2 4 1
will thus be divisible by p.

We next turn to Legendre. In his 1785 memoir “Recherches d’Analyse
Indeterminee” [75], the two major results are first, a necessary and suffi-
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cient criterion for the equation
ax2+by2+czz=0, a,b,cel

to have a nontrivial integral solution, and second, a proof of quadratic reci-
procity. Legendre was clearly influenced by Lagrange, but he replaces La-
grange’s “2(P~1/2 _ 1 will be divisible by p” by the simpler phrase “2(°~)/2
= 17, where, as he warns the reader, “one has thrown out the multiples
of p in the first member” [75, p. 516]. He then goes on to state quadratic
reciprocity in the following form [75, p. 517]:

¢ and d being two [odd] prime numbers, the expressions ¢(@~D/2,
d€-1/2 do not have different signs except when ¢ & d are both of the
form 4n — 1; in all other cases, these expressions will always have the
same sign.

Except for the notation, this is a thoroughly modern statement of quadratic
reciprocity. Legendre’s proof is a different matter, for it is quite incomplete.
We won’t examine the proof in detail—this is done in Weil [106, pp. 328-
330 and 344-345]. Suffice it to say that some of the cases are proved rig-
orously (see Exercise 2.24), some depend on Dirichlet’s theorem on primes
in arithmetic progressions, and some are a tangle of circular reasoning.

In 1798 Legendre published a more ambitious work, the Essai sur la
Théorie des Nombres. (The third edition [74], published 1830, was titled
Théorie des Nombres, and all of our references will be to this edition.) Le-
gendre must have been dissatisfied with the notation of the ‘‘Recherches’’,
for in the Essai he introduces the Legendre symbol (a/p). Then, in a sec-
tion titled “Theorem containing a law of reciprocity which exists between
two arbitrary prime numbers,” Legendre states that if n and m are distinct

odd primes, then
(1’_) _ (_1)(n—1)/2-(m—1)/2(’_"_)
m n

(see [74, Vol I, p. 230]). This is where our notation and terminology for
quadratic reciprocity come from. Unfortunately, the Essai repeats Legen-
dre’s incomplete proof from 1785, although by the 1830 edition there had
been enough criticism of this proof that Legendre added Gauss’ third proof
of reciprocity as well as one communicated to him by Jacobi (still maintain-
ing that his original proof was valid).

The Essai also contains a treatment of quadratic forms. Like Lagrange,
one of Legendre’s goals was to prove theorems in number theory using
quadratic forms. The difference is that Legendre knows quadratic reciproc-
ity (or at least he thinks he does), and this allows him to state a version of
our main result, Theorem 2.26. Legendre calls it his ‘‘Théoréme General”’
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[74, Vol. 1, p. 299], and it goes as follows: if [a] is a congruence class lying
in ker(x), then

every prime number comprised of the form 4nx +a ...will con-
sequently be given by one of the quadratic forms py? + 2qyz +rz?
which correspond to the linear form 4nx + a.

The terminology here is interesting. Euler and Lagrange would speak of
numbers “of the form” 4nx + a or “of the form” ax? + bxy + cy?. As the
above quote indicates, Legendre distinguished these two by calling them
linear forms and quadratic forms respectively. This is where we get the
term “quadratic form”.

While Legendre’s ‘“Théoréme’’ makes no explicit reference to genus the-
ory, the context shows that it’s there implicitly. Namely, Legendre’s book
has tables similar to Lagrange’s, with the forms grouped according to the
values they represent in (Z/DZ)*. Since the explanation of the tables im-
mediately precedes the statement of the ‘‘“Théore¢me’’ [74, Vol. I, pp. 286-
298], it’s clear that Legendre’s correspondence between linear forms and
quadratic forms is exactly that given by Theorem 2.26.

To Legendre, this theorem “is, without contradiction, one of the most
general and most important in the theory of numbers” [74, Vol. 1, p. 302].
Its main consequence is that every entry in his tables becomes a theorem,
and Legendre gives several pages of explicit examples [74, Vol. I, pp. 305-
307]. This is a big advance over what Lagrange could do, and Legendre
notes that quadratic reciprocity was the key to his success [74, Vol. I, p.

307]:

Lagrange is the first who opened the way for the study of these
sorts of theorems. ... But the methods which served the great geome-
ter are not applicable ... except in very few cases; and the difficulty
in this regard could not be completely resolved without the aid of the
law of reciprocity.

Besides completing Lagrange’s program, Legendre also tried to under-
stand some of the other ideas implicit in Lagrange’s memoir. We will dis-
cuss one of Legendre’s attempts that is particularly relevant to our
purposes: his theory of composition. Legendre’s basic idea was to gen-
eralize the identity (2.30)

(2x% + 2xy + 3yH)(222% + 2zw + 3w?)
= (2xz + xw + yz + 3yw)? + 5(xw — yz)?

used by Lagrange in proving the conjectures of Fermat and Euler con-
cerning x2 + 5y%. We gave one generalization in (2.31), but Legendre saw
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that something more general was going on. More precisely, let f(x,y) and
g(x,y) be forms of discriminant D. Then a form F(x,y) of the same dis-
criminant is their composition provided that

f(x,y)8(z,w) = F(Bl(x’y;Z’w)’BZ(x’y;Z’w))
where
Bi(x,y;z,w) = ajxz + bjxw +c;yz + d;yw, 1 =12

are bilinear forms in x,y and z,w. Thus Lagrange’s identity shows that
x2 4+ 5y2 is the composition of 2x2 + 2xy + 3y? with itself. And this is not
the only example we've seen—the reader can check that (1.3), (1.6) and
(2.31) are also examples of the composition of forms.

A useful consequence of composition is that whenever F(x,y) is com-
posed of f(x,y) and g(x,y), then the product of numbers represented by
f(x,y) and g(x,y) will be represented by F(x,y). This was the 1dea that
enabled us to complete the conjectures of Fermat and Euler for x? + 5y?
and x? + 14y2.

The basic question is whether any two forms of the same discriminant
can be composed, and Legendre showed that the answer is yes [74, Vol. 1],
pp 27-30]. For 51mphcltly, let’s dlSCUSS the case where the forms f(x,y) =
ax® 4 2bxy + cy? and g(x,y) = a'x? + 2b'xy + c'y* have discriminant —4n,
and a and a' are relatively prime (we can always arrange the last condition
by changing the forms by a proper equivalence). Then the Chinese remain-
der theorem shows that there is a number B such that

B =+bmod a

(2.32)
B=+4b modd'.

It follows that B2 4+ n=b*+ (ac—b*)=0mod a, so that a | B>+ n. The
same holds for a', and thus aa' | B>+ n. Then Legendre shows that the

form
B*+n ,
y

— 1,2
F(x,y)=aa x*+2Bxy + v
is the composition of f(x,y) and g(x,y). A modern account of Legendre’s
argument may be found in Weil [106, pp. 332-335]), and we will consider
this problem (from a slightly different point of view) in §3 when we discuss
composition in more detail.

Because of the + signs in (2.32), two forms in general may be com-
posed in four different ways. For example, the forms 14x% + 10xy + 21y?
and 9x2 + 2xy + 30y? compose to the four forms

126x% +38xy + 5y%,  126x%+ 74xy + 13y?,

and it is easy to show that these forms all lie in different classes (see Exer-
cise 2.26). Since Legendre used equivalence rather than proper equivalence,
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he sees two rather than four forms here—for him, this operation “leads in
general to two solutions” [74, Vol. 11, p. 28].

One of Legendre’s important ideas is that since every form is equivalent
to a reduced one, it suffices to work out the compositions of reduced forms.
The resulting table would then give the compositions of all possible forms
of that discriminant. Let’s look at the case n = 41, which Legendre does in
detail in [74, Vol. II, pp. 39-40]. He labels the reduced forms as follows:

A= x?+41y°
B =2x*+ 2xy + 21y?

(2.33) C =5x* +4xy + 9y’

D = 3x* 4+ 2xy + 14y°

E = 6x* 4+ 2xy + 7y

(Legendre writes the forms slightly differently, but it’s more convenient to
work with reduced forms.) He then gives the following table of composi-
tions:

2.34
(AA)=A BB=A4A | CC=AorB | DD=AorC | EE=AorC
AB=B | BC=C | CD=DorE | DE=BorC
AC=C | BD=EFE | CE=DorE
AD =D | BE=D
AE = E

This almost looks like the multiplication table for a group, but the binary
operation isn’t single-valued. To the modern reader, it’s clear that Legendre
must be doing something slightly wrong.

One problem is that (2.33) lists 5 forms, while the class number is 8. (C,
D and E each give two reduced forms, while 4 and B each give only one.)
This is closely related to the ambiguity in Legendre’s operation: as long as
we work with equivalence rather than proper equivalence, we can'’t fix the
sign of the middle coefficient 2b of a reduced form, so that the + signs in
(2.32) are forced upon us.

This suggests that composition might give a group operation on the class-
es of forms of discriminant D. However, there remain serious problems
to be solved. Composition, as defined above, is still a multiple-valued op-
eration. Thus one has to show that the signs in (2.32) can be chosen wuni-
formly so that as we vary f(x,y) and g(x,y) within their proper equivalance
classes, the resulting compositions are all properly equivalent. Then one has
to worry about associativity, inverses, etc. There’s a lot of work to be done!
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This concludes our discussion of Lagrange and Legendre. While the last
few pages have raised more questions than answers, the reader should still
be convinced of the richness of the theory of quadratic forms. The surpris-
ing fact is that we have barely reached the really interesting part of the
theory, for we have yet to consider the work of Gauss.

E. Exercises

2.1.

2.2

2.3.

2.4.

2.3.

2.6.

2.7.
2.8.

If a form f(x,y) represents an integer m, show that m can be written
m = d*m’, where f(x,y) properly represents m’.
In this exercise we study equivalence and proper equivalence.

(a) Show that equivalence and proper equivalence are equivalence
relations.

(b) Show that improper equivalence is not an equivalence relation.

(c) Show that equivalent forms represent the same numbers, and
show that the same holds for proper representations.

(d) Show that any form equivalent to a primitive form is itself primi-
tive. Hint: use (c).

Let f(x,y) and g(x,y) be forms of discriminants D and D' respec-
tively, and assume that there are integers p, q, r and s such that

f(xy)=8(px +qy,rx +sy).
Prove that D = (ps —qr)*D’.

Let f(x,y) be a form of discriminant D # 0.

(a) If D > 0, then use (2.4) to prove that f(x,y) represents both pos-
itive and negative numbers.

(b) If D <0, then show that f(x,y) represents only positive or only
negative numbers, depending on the sign of the coefficient of x2.

Formulate and prove a version of Corollary 2.6 which holds for arbi-
trary discriminants.

Find a reduced form that is properly equivalent to the form 126x% +
74xy + 13y2. Hint: make the middle coefficient small—see the proof
of Theorem 2.8.

Prove (2.9) for forms that satisfy |b| <a <c.

This exercise is concerned with the uniqueness part of Theorem 2.8.
(a) Prove (2.11).
(b) Prove a version of (2.11) that holds in the exceptional cases |b| =

a or a = ¢, and use this to complete the uniqueness part of the
proof of Theorem 2.8.
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Write a computer program that computes all reduced forms for a
given discriminant in the range —32768 < D < 0. This range is easily
implemented using the integer arithmetic of standard languages such
as BASIC or Pascal. For example, one finds that h(—32767) = 52. If
you don’t write a computer program, you should check the following
examples by hand.

(a) Verify the entries in table (2.14).

(b) Compute all reduced forms of discriminants —3, —15, —24, —31,
and —-52.

2.10. This exercise is concerned with indefinite forms of discriminant D >

2.11.

2.12.

2.13.

2.14.
2.15.
2.16.

0, D not a perfect square. The last condition implies that the outer
coefficients of a form with discriminant D are nonzero.

(a) Adapt the proof of Theorem 2.8 to show that any form of dis-
criminant D is properly equivalent to ax? + bxy + cy?, where

b] < la] < el.
(b) If ax® + bxy + cy? satifies the above inequalities, prove that

vD
-

la] <

(c) Conclude that there are only finitely many proper equivalence
classes of forms of discriminant D. This proves that the class
number h(D) is finite.

Use Theorem 2.16, quadratic reciprocity and table (2.14) to prove
Fermat’s three theorems (1.1) and the new result (2.17) for x2 + 7y?2.

This exercise is concerned with the proof of Theorem 2.18.

(a) If m > 1 is an integer which is not a prime power, prove that m
can be written m = ac where 1< a < ¢ and ged(a,c) = 1.

(b) Show that (—32) = 2 and h(—124) = 3.

Use Theorem 2.16, quadratic reciprocity and table (2.14) to prove
(2.19), and work out similar results for discriminants —3, —15, —24,
—31 and -52.

Prove (2.20) and (2.21). Hint: use Lemma 2.24.
Prove (2.23).

Let D be a number congruent to 1 modulo 4. Show that the form
x%2 + xy + (1 - D)/4y? has discriminant D, and show that it is re-
duced when D < 0.
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2.18.

2.19.

2.20.

2.21.

2.22.
2.23.
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In this exercise, we will complete the proof of Lemma 2.24 for dis-

criminants D = 1 mod 4. Let x :(Z/DZ)* — {£1} be as in Lemma

1.14.

(a) If an even number is properly represented by a form of discrim-
inant D, then show that D = 1 mod 8. Hint: use Lemma 2.3.

(b) If m is relatively prime to D and is represented by a form of
discriminant D, then show that [m] € ker()). Hint: use Lemma
2.5 and, when m is even, (a) and Exercise 1.12(c).

(c) Let H C (Z/D1Z)* be the subgroup of squares. Show that H con-

sists of the values represented by x2 + xy + (1 — D)/4y*. Hint:

use
1-D

4

4(x2+xy + yz)z‘(2x+y)2 mod D.

(d) If f(x,y) is a form of discriminant D, then show that the values
in (Z/D1)* represented by f(x,y) form a coset of H in ker(x).
Hint: use (2.4).

Let f(x,y) = ax? + bxy + cy?, where as usual we assume ged(a, b, ¢)

= 1.

(a) Given a prime p, prove that at least one of f(1,0), f(0,1) and
f(1,1) is relatively prime to p.

(b) Prove Lemma 2.25. Hint: use (a) and the Chinese Remainder
Theorem.

Work out the genus theory of Theorem 2.26 for discriminants —15,
—24, —31 and —52. Your answers should be similar to (2.22) and
(2.23).

Formulate and prove a version of Corollary 2.27 for negative dis-
criminants D =1 mod 4. Hint: by Exercise 2.17(c), H is the sub-
group of squares.

Prove (2.28). Hint: for each n, find the reduced forms and use
Lemma 2.24.

Prove (2.30) and its generalization (2.31).

The goal of this exercise is to prove that (—2/p) =1 when p =
1,3 mod 8. The argument below is due to Lagrange, and is simi-
lar to the one used by Euler in his proof of the Reciprocity Step for
x? + 2y? [33, Vol. 1, pp. 240-281].

(a) When p = 1 mod 8, write p = 8k + 1, and then use the identity
xB 1= ((x* — 12 + 2x%) (x* — 1)
to show that (-=2/p) = 1.
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(b) When p=3mod8, assume that (—2/p)= —1. Show that
(2/p) = 1, and thus by Corollary 2.6, p is represented by a form
of discriminant 8.

(c) Use Exercise 2.10(a) to show that any form of discriminant 8 is
properly equivalent to +(x2 —2y?).

(d) Show that an odd prime p = +(x? — 2y?) must be congruent to
+1 modulo 8.

From (a)—(d), it follows easily that (—2/p) = 1 when p = 1,3 mod 8.

One of the main theorems is Legendre’s 1785 memoir [74, pp. 509-
513] states that the equation

ax®+by* +cz* =0,

where abc is squarefree, has a nontrivial integral solution if and only

if

(i) a, b and c are not all of the same sign, and

(ii) —bc, —ac and —ab are quadratic residues modulo |a|, |b| and
|c| respectively.

As we've already noted, Legendre tried to use this result to prove

quadratic reciprocity. In this problem, we will treat one of the cases

where he succeeded. Let p and g be primes which satisfy p = 1 mod

4 and g = 3 mod 4, and assume that (p/q) = —1and (q¢/p) = 1. We

will derive a contradiction as follows:

(a) Use Legendre’s theorem to show that x2 + py? —gz% =0 has a
nontrivial integral solution.

(b) Working modulo 4, show that x? + py? — gz%> = 0 has no non-
trivial integral solutions.

In [106, pp. 339-345], Weil explains why this argument works.

Recall that the opposite of the form ax? + bxy + cy? is the form
ax? —bxy + cy?. Prove that two forms are properly equivalent if
and only if their opposites are.

Verify that 14x2 + 10xy + 21y and 9x2 + 2xy + 30y? compose to
the four forms 126x2+ 74xy + 13y? and 126x?+38xy + 5y2, and
show that they all lie in different classes. Hint: use Exercises 2.6 and
2.25.

Let p be a prime number which is represented by forms f(x,y) and
g(x,y) of the same discriminant.

(a) Show that f(x,y) and g(x,y) are equivalent. Hint: use Lemma
2.3, and examine the middle coefficient modulo p.

(b) If f(x,y)=x%+ny?, and g(x,y) is reduced, then show that
f(x,y) and g(x,y) are equal.
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§3. GAUSS, COMPOSITION AND GENERA

While genus theory and composition were implicit in Lagrange’s work,
these concepts are still primarily linked to Gauss, and for good reason:
he may not have been the first to use them, but he was the first to under-
stand their astonishing depth and interconnection. In this section we will
prove Gauss’ major results on composition and genus theory for the spe-
cial case of positive definite forms. We will then apply this theory to our
question concerning primes of the form x? + ny?, and we will also discuss
Euler’s convenient numbers. These turn out to be those n’s for which each
genus consists of a single class, and it is still not known exactly how many
there are. The section will end with a discussion of Gauss’ Disquisitiones
Arithmeticae.

A. Composition and the Class Group

The basic definition of composition was given in §2: if f(x,y) and g(x,y)
are primitive positive definite forms of discriminant D, then a form F(x,y)
of the same type is their composition provided that

f(x,y)g(z,w) = F(Bl(x’y;Z’w)’B2(x’y;Z’w))’
where
Bi(x,y;z,w)=a;jxz + bixw +c;yz +d;yw, i =12

are integral bilinear forms. Two forms can be composed in many differ-
ent ways, and the resulting forms need not be properly equivalent. In §2
we gave an example of two forms whose compositions lay in four distinct
classes. So if we want a well-defined operation on classes of forms, we must
somehow restrict the notion of composition. Gauss does this as follows:
given the above composition data, he proves that

(3.1) a1b2 — a2b1 = :l:f(l,()), aijcty —azty = :i:g(l, O)

(see [41, §235] or Exercise 3.1), and then he defines the composition to be
a direct composition provided that both of the signs in (3.1) are +.

The main result of Gauss’ theory of composition is that for a fixed dis-
criminant, direct composition makes the set of classes of forms into a finite
Abelian group [41, §§236—40, 245 and 249]. Unfortunately, direct composi-
tion is an awkward concept to work with, and Gauss’ proof of the group
structure is long and complicated. So rather than follow Gauss, we will take
a different approach to the study of composition. The basic idea is due to
Dirichlet [28, Supplement X], though his treatment was clearly influenced
by Legendre. Before giving Dirichlet’s definition, we will need the following
lemma:
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Lemma 3.2. Assume that f(x,y) = ax*+bxy + cy? and g(x,y)=a'x*+
b'xy + c'y? have discriminant D and satisfy gcd(a,a’,(b+ b')/2) =1 (since
b and b' have the same parity, (b+b')/2 is an integer). Then there is a
unique integer B modulo 2aa’ such that

B =bmod 2a
B = b' mod 24’
B? =D mod 4aa’'.

Proof. The first step is to put these congruences into a standard form. If a
number B satisfies the first two, then

B? —(b+ b")B + bb' = (B — b)(B — b')= 0 mod 4ad’,
so that the third congruence can be written as
(b+ b")B = bb' + D mod 4aa’.
Dividing by 2, this becomes
(3.3) (b+b')/2-B=(bb' + D)/2 mod 2aa’.

If we multiply the first two congruences by a' and a respectively and com-
bine them with (3.3), we see that the three congruences in the statement of
the lemma are equivalent to

a'- B =a'b mod 2aad’
(3.4 - a-B=ab mod 2ad’
(b+b")/2-B=(bb' + D)/2 mod 2aa’.

The following lemma tells us about the solvability of these congruences:

Lemma 3.5. Let p1,q1,-.-, Pr.qr, m be numbers with ged(py,...,p,,m) = 1.
Then the congruences

piB =¢q; mod m, I=1,...,r
have a unique solution modulo m if and only if for all i,j = 1,...,r we have
(36) Pid; =Pjqi mod m.

Proof. See Exercise 3.3. Q.E.D.
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Since we are assuming ged(a,a’,(b + b')/2) = 1, the congruences (3.4)
satisfy the gecd condition of the above lemma, and the compatibility condi-
tions (3.6) are easy to verify (see Exercise 3.4). The existence and unique-
ness of the desired B follow immediately. Q.E.D.

We can now give Dirichlet’s definition of composition. Let f(x,y) =
ax?+ bxy + cy? and g(x,y) = a’'x? + b'xy + c'y? be primitive positive def-
inite forms of discriminant D < 0 which satisfy gcd(a,a’,(b +b')/2) = 1.
Then the Dirichlet composition of f(x,y) and g(x,y) is the form

B*-D ,

— 1.2
(3.7) F(x,y)=aa'x*+ Bxy + PR

where B is the integer determined by Lemma 3.2. The basic properties of
F(x,y) are:

Proposition 3.8. Given f(x,y) and g(x,y) as above, the Dirichlet composi-
tion F(x,y) defined in (3.7) is a primitive positive definite form of discrim-
inant D, and F(x,y) is the direct composition of f(x,y) and g(x,y) in the
sense of (3.1).

Proof. An easy calculation shows that F(x,y) has discriminant D, and the
form is consequently positive definite.

The next step is to prove that F(x,y) is the composition of f(x,y) and
g(x,y). We will sketch the argument and leave the details to the reader.
Let C = (B%2— D)/4aa’', so that F(x,y) = aa'x? + Bxy + Cy?. Then, using
the first two congruences of Lemma 3.2, it is easy to show that f(x,y)
and g(x,y) are properly equivalent to the forms ax? + Bxy + a’'Cy? and
a'x? + Bxy + aCy? respectively. However, for these last two forms one has
the composition identity

(ax’> + Bxy + a'Cy*)a'z?* + Bzw + aCw?) = aa' X* + BXY + CY?,

where X =xz— Czw and Y =axw +a'yz + Byw. It follows easily that
F(x,y) is the composition of f(x,y) and g(x,y). With a little more effort,
it can be checked that this is a direct composition in Gauss’ sense (3.1).
The details of these arguments are covered in Exercise 3.5.

It remains to show that F(x,y) is primitive, i.e., that its coefficients are
relatively prime. Suppose that some prime p divided all of the coefficients.
This would imply that p divided all numbers represented by F(x,y). Since
F(x,y) is the composition of f(x,y) and g(x,y), this implies that p di-
vides all numbers of the form f(x,y)g(z,w). But we know that f(x,y) and
g(x,y) are primitive, and from here it is easy to derive a contradiction
(see Exercise 3.5 for the details). This completes the proof of the proposi-
tion. Q.E.D.
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While Dirichlet composition is not as general as direct composition (not
all direct compositions satisfy gced(a,a’,(b + b')/2) = 1), it is easier to use
in practice since there is an explicit formula (3.7) for the composition. No-
tice also that the congruence conditions in Lemma 3.2 are similar to the
ones (2.32) used by Legendre. This is no accident, for when D = —4n and
ged(a,a') = 1, Dirichlet’s formula reduces exactly to the one given by Leg-
endre (see Exercise 3.6).

We can now state our main result on composition:

Theorem 3.9. Let D =0,1 mod 4 be negative, and let C(D) be the set of
classes of primitive positive definite forms of discriminant D. Then Dirichlet
composition induces a well-defined binary operation on C(D) which makes
C(D) into a finite Abelian group whose order is the class number h(D).

Furthermore, the identity element of C(D) is the class containing the prin-
cipal form

xz—gy2 if D =0mod 4

4

x2+xy+ y2 if D =1mod 4,

and the inverse of the class containing the form ax® + bxy + cy? is the class
containing ax® — bxy + cy?.

Remarks. Some terminology is in order here.

(i) The group C(D) is called the class group, though we will sometimes
refer to C(D) as the form class group to distinguish it from the ideal
class group to be defined later.

(ii) The principal form of discriminant D was introduced in §2. The class it
lies in is called the principal class. When D = —4n, the principal form
is x2 + ny?.

(iii) The form ax? —bxy + cy? is called the opposite of ax? + bxy + cy?, so
that the opposite form gives the inverse under Dirichlet composition.

Proof. Let f(x,y) = ax?® + bxy + cy? and g(x,y) be forms of the given type.
Using Lemmas 2.3 and 2.25, we can replace g(x,y) by a properly equivalent
form a'x? + b'xy + c'y? where ged(a,a’) = 1. Then the Dirichlet composi-
tion of these forms is defined, which proves that Dirichlet composition is
defined for any pair of classes in C(D). To get a group structure out of this,
we must then prove that:
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(i) This operation is well-defined on the level of classes, and
(ii) The induced binary operation makes C(D) into an Abelian group.

The proofs of (i) and (ii) can be done directly using the definition of Dirich-
let composition (see Dirichlet [28, Supplement X] or Flath [36, §V.2]), but
the argument is much easier using ideal class groups (to be studied in §7).
We will therefore postpone this part of the proof until then. For now, we
will assume that (i) and (ii) are true.

Let’s next show that the principal class is the identity element of C(D).
To compose the principal form with f(x,y) = ax? + bxy + cy?, first note
that the ged condition is clearly met, and thus the Dirichlet composition
is defined. Then observe that B = b satisfies the conditions of Lemma 3.2,
so that by formula (3.7), the Dirichlet composition F(x,y) reduces to the
given form f(x,y). This proves that the principal class is the identity.

Finally, given f(x,y) = ax® + bxy + cy?, its opposite is f'(x,y) = ax? —
bxy + cy?. Since ged(a,a,(b+ (—b))/2) =a may be >1, we can’t apply
Dirichlet composition directly. But if we use the proper equivalence (x,y)
— (—y, x), then we can replace f'(x,y) by g(x,y) = cx® + bxy + ay®. Since
ged(a,c,(b + b)/2) = ged(a,c,b) = 1, we can apply Dirichlet’s formulas to
f(x,y) and g(x,y). One checks easily that B = b satisfies the conditions of
Lemma 3.2, so that the Dirichlet composition is acx? + bxy + y2. We leave
it to the reader to show that this form is properly equivalent to the principal
form (see Exercise 3.7). This completes the proof of the theorem. Q.E.D.

We can now complete the discussion (begun in §2) of Legendre’s theory
of composition. To prevent confusion, we will distinguish between a class
(all forms properly equivalent to a given form) and a Lagrangian class (all
forms equivalent to a given one). In Theorem 3.9, we studied the compo-
sition of classes, while Legendre was concerned with the composition of
Lagrangian classes. It is an easy exercise to show that the Lagrangian class
of a form is the union of its class and the class of its opposite (see Exer-
cise 3.8). By Theorem 3.9, this means that a Lagrangian class is the union
of a class and its inverse in the class group C(D). Thus Legendre’s “op-
eration” is the multiple-valued operation that multiplication induces on the
set C(D)/~, where ~ is the equivalence relation that identifies x € C(D)
with x~! (see Exercise 3.9). In Legendre’s example (2.33), which dealt with
forms of discriminant —164, we will see shortly that C(—164) ~ 7 /87, and
it is then an easy exercise to show that C(—164)/~ is isomorphic to the
structure given in (2.34) (see Exercise 3.9).

The elements of order < 2 in the class group C(D) play a special role in
composition and genus theory. The reduced forms that lie in such classes
are easy to find:
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Lemma 3.10. A reduced form f(x,y) = ax?®+ bxy + cy? of discriminant D
has order <2 in the class group C(D) ifand only if b=0, a=b or a = c.

Proof. Let f'(x,y) be the opposite of f(x,y). By Theorem 3.9, the class
of f(x,y) has order <2 if and only if the forms f(x,y) and f'(x,y) are
properly equivalent. There are two cases to consider:

|b| < a < c: Here, f'(x,y) is also reduced, so that by Theorem 2.8,
the two forms are properly equivalent <= b = 0.
a = b or a = c: In these cases, the proof of Theorem 2.8 shows that

the two forms are always properly equivalent.

The lemma now follows immediately. Q.ED.

For an example of how this works, consider Legendre’s example from §2
of forms of discriminant —164. The reduced forms are listed in (2.33), and
Lemma 3.10 shows that only 2x2 + 2xy +21y? has order 2. Since the class
number is 8, the structure theorem for finite Abelian groups shows that the
class group C(—164) must be Z/87.

A surprising fact is that one doesn’t need to list the reduced forms in
order to determine the number of elements of order 2 in the class group:

Proposition 3.11. Let D = 0,1 mod 4 be negative, and let r be the number
of odd primes dividing D. Define the number 1 as follows: if D =1 mod
4, then p=r, and if D =0 mod 4, then D = —4n, where n > 0, and pis
determined by the following table:

n 12
n=3mod4 r
n=1,2mod 4 r+1
n=4mod 8§ r+1
n=0mod 8§ r+2

Then the class group C(D) has exactly 2*~! elements of order < 2.

Proof. For simplicity, we will treat only the special case D = —4n, where
n=1mod 4. Recall that a form of discriminant —4n may be written as
ax? + 2bxy + cy?. The basic idea of the proof is to count the number of
reduced forms that satisfy 2b = 0, a = 2b or a = ¢, for by Lemma 3.10, this
gives the number of classes of order <2 in C(—4n). Since n is odd, note
that r is the number of prime divisors of n.

First, consider forms with 2b = 0, i.e., the forms ax? + cy?, where ac =
n. Since a and ¢ must be relatively prime and positive, there are 2" choices
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for a. To be reduced, we must also have a < ¢, so that we get 271 reduced
forms of this type.

Next consider forms with @ = 2b or a = ¢. Write n = bk, where b and k&
are relatively prime and 0 < b < k. As above, there are 21 such b’s. Set
¢ = (b+k)/2, and consider the form 2bx* +2bxy + cy?. One computes
that it has discriminant —4n, and since n =1 mod 4, its coefficients are
relatively prime. We then get 2r=1 reduced forms as follows:

2b < c: Here, 2bx? + 2bxy + cy* is a reduced form.

2b > c: Here, 2bx? + 2bxy + cy? is properly equivalent to
cx? +2(c —b)xy + cy* via (x,y) — (=y,x +¥).
Since 2b > ¢ = 2(¢ — b) < ¢, the latter is reduced.

The next step is to check that this process gives all reduced forms with
a = 2b or a = ¢. We leave this to the reader (see Exercise 3.10).

We thus have 27~1 + 271 = 2" elements of order < 2, which shows that
p=r +1 in this case. The remaining cases are similar and are left to the
reader (see Exercise 3.10, Flath [36, §V.5], Gauss [4], §257-258] or Mathews
[78, pp. 171-173]). Q.E.D.

This is not the last we will see of the number p, for it also plays an
important role in genus theory.

B. Genus Theory

As in §2, we define two forms of discriminant D to be in the same genus
if they represent the same values in (Z/DZ)*. Let’s recall the classifica-
tion of genera given in §2. Consider the subgroups H C ker(x) C (Z/D1Z)*,
where H consists of the values represented by the principal form, and
Y :(Z/DZ)* — {£1} is defined by x([p]) = (D/p) for p) D prime. Then
the key result was Lemma 2.24, where we proved that the values repre-
sented in (Z/DZ)* by a given form f(x,y) are a coset of H in ker(x). This
coset determines which genus f(x,y) is in.

Our first step is to relate this theory to the class group C(D). Since all
forms in a given class represent the same numbers, sending the class to the
coset of H C ker(y) it represents defines a map

(3.12) ®:C(D) — ker(x)/H.

Note that a given fiber ®~1(H'), H' € ker(x)/H , consists of all classes in
a given genus (this is what we called the genus of H ' in Theorem 2.26),
and the image of ® may thus be identified with the set of genera. A crucial
observation is that ® is a group homomorphism:
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Lemma 3.13. The map ® which maps a class in C(D) to the coset of values
represented in ker(x)/H is a group homomorphism.

Proof. Let f(x,y) and g(x,y) be two forms of discriminant D taking values
in the cosets H' and H" respectively. We can assume that their Dirichlet
composition F(x,y) is defined, so that a product of values represented by
f(x,y) and g(x,y) is represented by F(x,y). Then F(x,y) represents values
in H'H'", which proves that H'H" is the coset associated to the composi-
tion of f(x,y) and g(x,y). Thus ® is a homomorphism. Q.E.D.

This lemma has the following consequences:

Corollary 3.14. Let D = 0,1 mod 4 be negative. Then:

(i) All genera of forms of discriminant D consist of the same number of
classes.

(i1) The number of genera of forms of discriminant D is a power of two.

Proof. The first statement follows since all fibers of a homomorphism have
the same number of elements. To prove the second, first note that the sub-
group H contains all squares in (Z/DZ)*. This is obvious because if f(x,y)
is the principal form, then f(x,0) = x>. Thus every element in ker(y)/H
has order < 2, and it follows from the structure theorem for finite Abelian
groups that ker(y)/H ~ {+1}" for some m. Thus the image of ®, being
a subgroup of ker(x)/H, has order 2* for some k. Since ®(C(D)) tells us
the number of genera, we are done. Q.E.D.

Note also that ®(C(D)) gives a natural group structure on the set of
genera, or as Gauss would say, one can define the composition of genera
[41, §§246-247)].

These elementary facts are nice, but they aren’t the whole story. The
real depth of the relation between composition and genera is indicated by
the following theorem:

Theorem 3.15. Let D = 0,1 mod 4 be negative. Then:

(i) There are 2#~ genera of forms of discriminant D, where . is the number
defined in Proposition 3.11.

(i) The principal genus (the genus containing the principal form) consists of
the classes in C(D)?, the subgroup of squares in the class group C(D).
Thus every form in the principal genus arises by duplication.

Proof. We first need to give a more efficient method for determining when
two forms are in the same genus. The basic idea is to use certain assigned
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characters, which are defined as follows. Let pi,...,p, be the distinct odd
primes dividing D . Then consider the functions:

xi(a)= (—5—) defined for a prime to p;, i = 1,...,r
I

§(a)= (—1)@-D/2 defined for a odd
e(a)= (—1)@-D/8  defined for a odd.

Rather than using all of these functions, we assign only certain ones, de-
pending on the discriminant D. When D = 1 mod 4, we define x1,...,Xr to
be the assigned characters, and when D = (0 mod 4, we write D = —4n, and
then the assigned characters are defined by the following table:

n assigned characters
n =3 mod 4 X1r---s Xr
n =1mod4 X1s---sXrs0
n=2mod 8 X1s---3 Xrs 0€
n=6mod38 X1s---s Xrs€
n=4mod8 X1y--esXrs0
n=0mod38 X1s-++s Xrs 0, €

Note that the number of assigned characters is exactly the number p given
in Proposition 3.11. It is easy to see that the assigned characters give a
homomorphism

(3.16) U:(Z/D1)" — {£1}*4.
The crucial property of ¥ is the following:
Lemma 3.17. The homomorphism ¥ : (Z/D1)* — {£1}* of (3.16) is sur-

jective and its kernel is the subgroup H of values represented by the principal
form. Thus ¥ induces an isomorphism

(Z/D1)*/H = {+1}*.

Proof. When D =1 mod 4, the proof is quite easy. First note that if p is
an odd prime, then for any m > 1, the Legendre symbol (a/p) induces a
surjective homomorphism

(3.18) (-/p):(2/p"1)" — {1}

whose kernel is exactly the subgroup of squares of (Z/p™Z)* (see Exer-
cise 3.11). Now let D = —[]_, p™ be the prime factorization of D. The
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Chinese Remainder Theorem tells us that
7]
@/p7y = 1]@/pi 2y,
1=i
so that the map ¥ can be interpreted as the map
7]
H@/pzy — {£13*
1=i

given by ([a1],...,[a,]) = ((a1/p1),---,(au/py))- By the analysis of (3.18), it
follows that ¥ is surjective and its kernel is exactly the subgroup of squares

of (Z/DZ)*. By part (c) of Exercise 2.17, this equals the subgroup H of
values represented by the principal form x2 + xy + ((1— D)/4)y?, and we
are done.

The proof is more complicated when D = —4#n, mainly because the sub-
group H represented by x? + ny? may be slightly larger than the subgroup
of squares. However, the above argument using the Chinese Remainder
Theorem can be adapted to this case. The odd primes dividing n are no
problem, but 2 causes considerable difficulty (see Exercise 3.11 for the de-

tails). Q.E.D.

We can now prove Theorem 3.15. To prove (i), note that ker(y) has in-
dex 2 in (Z/DZ)*. By Lemma 3.17, it follows that ker(y)/H has order 2#~1,
We know that the number of genera is the order of ®(C(D)) C ker(x)/H,
so that it suffices to show ®(C(D)) = ker(x)/H . Since ® maps a class to
the coset of values it represents, we need to show that every congruence
class in ker(y) contains a number represented by a form of discriminant
D. This is easy: Dirichlet’s theorem on primes in arithmetic progressions
tells us that any class in ker(y) contains an odd prime p. But [p] € ker(y)
means that x([p]) = (D/p) = 1, so that by Lemma 2.5, p is represented by
a form of discriminant D, and (i) is proved.

To prove (ii), let C denote the class group C(D). Since ¢ : C — ker(x)/
H ~ {+1}#~1 is a homomorphism, it follows that C?> C ker(®), and we get
an induced map

(3.19) C/C? — {£1}+ 71,

We compute the order of C/C? as follows. The squaring map from C to
itself gives a short exact sequence

O——+C0—+C——+C2——+O

where ( is the subgroup of elements of order < 2. It follows that the index
[C : C?] equals the order of Gy, which is 2#~! by Proposition 3.11.

Thus, in map given in (3.19), both the domain and the range have the
same order. But from (i) we know that the map is surjective, so that it
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must be an isomorphism. Hence C? is exactly the kernel of the map ®.

Since ker(®) consists of the classes in the principal genus, the theorem is
proved. Q.E.D.

We have now proved the main theorems of genus theory for primitive
positive definite forms. These results are due to Gauss and appear in the
fifth section of Disquisitiones Arithmeticae [41, §§229-287]. Gauss’ treat-
ment is more general than ours, for he considers both the definite and
indefinite forms, and in particular, he shows that Proposition 3.11 and The-
orem 3.15 are true for any nonsquare discriminant, positive or negative. His
proofs are quite difficult, and at the end of this long series of arguments,
Gauss makes the following comment about genus theory [41, §287]:

these theorems are among the most beautiful in the theory of bi-
nary forms, especially because, despite their extreme simplicity, they
are so profound that a rigorous demonstration requires the help of
many other investigations.

Besides these theorems, there is another component to Gauss’ genus the-
ory not mentioned so far: Gauss’ second proof of quadratic reciprocity [41,
§262], which uses the genus theory developed above. We will not discuss
Gauss’ proof since it uses forms of positive discriminant, though the main
ideas of the proof are outlined in Exercises 3.12 and 3.13. Many people
regard this as the deepest of Gauss’ many proofs of quadratic reciprocity.

Gauss’ approach to genus theory is somewhat different from ours. In
Disquisitiones, genera are defined in terms of the assigned characters intro-
duced in the proof of Theorem 3.15. Given a form f(x,y) of discriminant
D, let f(x,y) represent a number a relatively prime to D. If the p as-
signed characters are evaluated at a, then Gauss calls the resulting p-tuple
the complete character of f(x,y), and he defines two forms of discriminant
D to be in the same genus if they have the same complete character [41,
§231]. The following lemma shows that this is equivalent to our previous
definition of genus:

Lemma 3.20. The complete character depends only on the form f(x,y), and
wo forms of discriminant D lie in the same genus (as defined in §2) if and
only if they have the same complete character.

Proof. Suppose that f(x,y) represents a, where a is relatively prime to D.
Then Gauss’ complete character is nothing other than ¥([a]), where ¥ is
the map defined in (3.16). By Lemma 2.24, the possible a’s lie in a coset
H' of H in (Z/DZ)*, and this coset determines the genus of f(x,y). Using
Lemma 3.17, it follows that the complete character is uniquely determined
by H', and Lemma 3.20 is proved. Q.E.D.
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We should mention that Gauss’ use of the word “character” is where the
modern term “group character” comes from. Also, it is interesting to note
that Gauss never mentions the connection between his characters and La-
grange’s implicit genus theory. While Gauss’ characters make it easy to de-
cide when two forms belong to the same genus (see Exercise 3.14 for an ex-
ample), they are not very intuitive. Unfortunately, most of Gauss’ successors
followed his presentation of genus theory, so that readers were presented
with long lists of characters and no motivation whatsoever. The simple idea
of grouping forms according to the congruence classes they represent was
usually not mentioned. This happens in Dirichlet [28, pp. 313-316] and in
Mathews [78, pp. 132-136], although Smith [95, pp. 202-207] does discuss
congruence classes.

So far we have discussed two ways to formulate genera, Lagrange’s and
Gauss’. There are many other ways to state the definition, but before we
can discuss them, we need some terminology. We say that two forms f(x, y)
and g(x,y) are equivalent over a ring R if there is a matrix P f{) € GL(2,R)
such that f(x,y) =g(px +qy,rx+sy). If R=17/ml, we say that f(x,y)
and g(x,y) are equivalent modulo m. We then have the following theorem:

Theorem 3.21. Let f(x,y) and g(x,y) be primitive forms of discriminant
D # 0, positive definite if D < 0. Then the following statements are equiva-
lent:

(i) f(x,y) and g(x,y) are in the same genus, i.e., they represent the same
values in (Z/D17)*.

(i) f(x,y) and g(x,y) represent the same values in (Z/m1)* for all non-
zero integers m.

(iii) f(x,y) and g(x,y) are equivalent modulo m for all nonzero inte-
gers m.

(iv) f(x,y) and g(x,y) are equivalent over the p-adic integers 1, for all
primes p.

(v) f(x,y) and g(x,y) are equivalent over Q via a matrix in G1(2, Q) whose
entries have denominators prime to 2D .

(vi) f(x,y)and g(x,y) are equivalent over Q without essential denominator,
Le., given any nonzero m, a matrix in GL(2,Q) can be found which
takes one form to the other and whose entries have denominators prime
o m.

Proof. Tt is easy to prove (vi) = (iii) = (ii) = (i) and (vi) = (v) = (i) (see
Exercise 3.15), and (jii) < (iv) is a standard argument using the compact-
ness of Z, (see Borevich and Shafarevich [8, p. 41] for an analagous case).
A proof of (i) = (iii) appears in Hua [57, §12.5, Exercise 4], and (i) = (iv)
is in Jones [63, pp. 103-104]. Finally, the implication (iv) = (vi) uses the
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Hasse principle for the equivalence of forms over Q and may be found in
Jones [63, Theorem 40] or Siegel [91]. Q.E.D.

Some modern texts give yet a different definition, saying that two forms
are in the same genus if and only if they are equivalent over Q (see, for ex-
ample, Borevich and Shafarevich [8, p. 241]). This characterization doesn’t
hold in general (x% + 18y? and 2x? + 9y? are rationally equivalent but be-
long to different genera—see Exercise 3.16), but it does work for field
discriminants, which means that D =1 mod 4, D squarefree, or D = 4k,
k # 1 mod 4, k squarefree (see Exercise 3.17—we will study such discrim-
inants in more detail in §5). According to Dickson [26, Vol. III, pp. 216
and 236], Eisenstein suggested in 1852 that genera could be defined using
rational equivalence, and only later, in 1867, did Smith point out that extra
assumptions are needed on the denominators.

C. p = x* + ny? and Euler’s Convenient Numbers

Our discussion of genus theory has distracted us from our problem of deter-
mining when a prime p can be written as x2 + ny?. Recall from Corollary
2.27 that genus theory gives us congruence conditions for p to be repre-
sented by a reduced form in the principal genus. The nicest case is when
every genus of discriminant —4n consists of a single class, for then we get
congruence conditions that characterize p = x2 + ny? (this is what made
the examples in (2.28) work). Let’s see if the genus theory developed in this
section can shed any light on this special case. We have the following result:

Theorem 3.22. Let n be a positive integer. Then the following statements are

equivalent:

(i) Every genus of forms of discriminant —4n consists of a single class.

(ii) If ax® + bxy + cy? is a reduced form of discriminant —4n, then either
b=0,a=bora=c.

(iii) Two forms of discriminant —4n are equivalent if and only if they are
properly equivalent.

(iv) The class group C(—4n) is isomorphic to (Z/2Z)" for some integer m.

(v) The class number h(—4n) equals 2#~', where p is as in Proposition
3.11.

Proof. We will prove (i) = (ii) = (iii) = (iv) = (v) = (i). Let C denote
the class group C(—4n).

Since the principal genus is C? by Theorem 3.15, (i) implies that C?=
{1}, so that every element of C has order < 2. Then Lemma 3.10 shows
that (i) = (ii).
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Next assume (ii), and suppose that two forms of discriminant —4n are
equivalent. By Exercise 3.8, we know that one is properly equivalent to the
other or its opposite. We may assume that the forms are reduced, so that
by assumption b =0, a = b or a = c. The proof of Theorem 2.8 shows that
forms of this type are always properly equivalent to their opposites, so that
the forms are properly equivalent. This proves (ii) = (iii).

Recall that any form is equivalent to its opposite via (x,y)— (x,—y).
Thus (iif) implies that any form and its opposite lie in the same class in C.
Since the opposite gives the inverse in C by Theorem 3.9, we see that every
class is its own inverse. The structure theorem for finite Abelian groups
shows that the only groups with this property are (Z/2Z)™, and (iii) = (iv)
is proved.

Next, Theorem 3.15 implies that the number of genera is [C : C?] =
2¢—1 5o that

(3.23) h(—4n) = |C| =[C : C?]|C? = 2*71|C?|.

If (iv) holds, then C* = {1}, and then (v) follows immediately from (3.23).
Finally, given (v), (3.23) implies that C2 = {1}, so that by Theorem 3.15, the
principal genus consists of a single class. Since every genus consists of the
same number of classes, (i) follows, and the theorem is proved. Q.E.D.

Notice how this theorem runs the full gamut of what we’ve done so far:
the conditions of Theorem 3.22 involve genera, reduced forms, the class
number, the structure of the class group and the relation between equiva-
lence and proper equivalence. For computational purposes, the last condi-
tion (v) is especially useful, for it only requires knowing the class number.
This makes it much easier to verify that the examples in (2.28) have only
one class per genus.

Near the end of the fifth section of Disquisitiones, Gauss lists 65 dis-
criminants that satisfy this theorem [41, §303]. Grouped according to class
number, they are:

h(—4n) n’s with one class per genus

1 1,2,3,4,7

2 5,6,8,9,10,12,13,15,16,18,22,25,28,37,58

4 21,24,30,33,40,42,45,48,57,60,70,72,78,85,88,93,102,112
130,133,177,190,232,253

8 105,120,165,168,210,240,273,280,312,330,345,357,385
408,462,520,760

16 840,1320,1365,1848
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Gauss was interested in these 65 n’s not for their relation to the question of
when p = x? + ny?, but rather because they had been discovered earlier by
Euler in a different context. Euler called a number n a convenient number
(numerus idoneus) if it satisfies the following criterion:

Let m be an odd number relatively prime to n which is properly
represented by x2 + ny2. If the equation m = x? + ny* has only one
solution with x,y > 0, then m is a prime number.

Euler was interested in convenient numbers because they helped him find
large primes. For example, working with n = 1848, he was able to show that

18,518,809 = 197% + 1848 100°

is prime, a large one for Euler’s time. Convenient numbers are a fascinating
topic, and the reader should consult Frei [38] or Weil [106, pp. 219-226] for
a fuller discussion. We will confine ourselves to the following remarkable
observation of Gauss:

Proposition 3.24. A positive integer n is a convenient number if and only if
for forms of discriminant —4n, every genus consists of a single class.

Proof. We begin with a lemma:

Lemma 3.25. Let m be a positive odd number relatively prime to n > 1.
Then the number of ways that m is properly represented by a reduced form of

discriminant —4n is
—n
2 (1+ (_))
II{1+(7

plm

Proof. See Exercise 3.20 or Landau [71, Vol. 1, p. 144]. Q.E.D.

This classical lemma belongs to an area of quadratic forms that we have
ignored, namely the study of the number of representations of a number by
a form. To see what this has to do with genus theory, note that two forms
representing m must lie in the same genus, for the values they represent in
(Z/4nZ)* are not disjoint. We thus get the following corollary of Lemma
3.25:

Corollary 3.26. Let m be properly represented by a primitive positive definite
form f(x,y) of discriminant —4n, n>1, and assume that m is odd and
relatively prime to n. If r denotes the number of prime divisors of m, then m
is properly represented in exactly 2"*! ways by a reduced form in the genus of
f(x, ). Q.E.D.
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Now we can prove the proposition. First, assume that there is only one
class per genus. If m is properly represented by x2 + ny? and m = x? + ny?
has a unique solution when x,y > 0, then we need to prove that m is prime.
The above corollary shows that m is properly represented by x2 + ny? in
2"*1 ways since x2+ ny? is the only reduced form in its genus. At least
21 of these representations satisfy x,y > 0, and then our assumption on
m implies that r = 1, i.e., m is a prime power p?. If a > 2, then Lemma
3.25 shows that p?~2 also has a proper representation, and it follows easily
that m has at least two representations in nonnegative integers. This con-
tradiction proves that m is prime, and hence » is a convenient number.

Conversely, assume that n is convenient. Let f(x,y) be a form of dis-
criminant —4n, and let g(x,y) be the composition of f(x,y) with itself. We
can assume that g(x,y) is reduced, and it suffices to show that g(x,y) =
x% + ny? (for then every element in the class group has order < 2, which
implies one class per genus by Theorem 3.22).

Assume that g(x,y) # x> + ny?, and let p and q be distinct odd primes
not dividing n which are represented by f(x,y). (In §9 we will prove that
f(x,y) represents infinitely many primes.) Then g(x,y) represents pq, and
formula (2.31) shows that x% + ny? does too. By Corollary 3.26, pq has
only 8 proper representations by reduced forms of discriminant —4n. At
least one comes from g(x,y), leaving at most 7 for x? + ny?. It follows that
pq is uniquely represented by x2+ ny? when we restrict to nonnegative
integers. This contradicts our assumption that n is convenient. Q.E.D.

Gauss never states Proposition 3.24 formally, but it is implicit in the
methods he discusses for factoring large numbers [41, §§329-334].

In §2 we asked how many such n’s there were. Gauss suggests [41, §303]
that the 65 given by Euler are the only ones. In 1934 Chowla [17] proved
that the number of such »’s is finite, and by 1973 it was known that Euler’s
list is complete except for possibly one more n (see Weinberger [108]).
Whether or not this last n actually exists is still an open question.

From our point of view, the upshot is that there are only finitely many
theorems like (2.28) where p = x% + ny? is characterized by simple congru-
ences modulo 4n. Thus genus theory cannot solve our basic question for
all n. In some cases, such as D = —108, it’s completely useless (all three
reduced forms x° +27y% and 4x%+2xy + 7y? lie in the same genus), and
even when it’s a partial help, such as D = —56, we’re still stuck (we can sep-
arate x?+ 14y? and 2x2 + 7y? from 3x2+2xy + Sy?, but we can’t distin-
guish between the first two). And notice that by part (iii) of Theorem 3.21,
forms in the same genus are equivalent modulo m for all m # 0, so that
no matter how m is chosen, there are no congruences p = a,b,c,... mod m
which can separate forms in the same genus. Something new is needed. In
1833, Dirichlet described the situation as follows [27, Vol. I, p. 201]:
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there lies in the mentioned [genus] theory an incompleteness, in
that it certainly shows that a prime number, as soon as it is contained
in a linear form [congruence class], necessarily must assume one of
the corresponding quadratic forms, only without giving any a priori
method for deciding which quadratic form it will be. ... It becomes
clear that the characteristic property of a single quadratic form be-
longing to a group [genus] cannot be expressed through the prime
numbers in the corresponding linear forms, but necessarily must be
expressed by another theory not depending on the elements at hand.

As we already know from Euler’s conjectures concerning x? + 27y? and
x? + 64y? (see (1.22) and (1.23)), the new theory we're seeking involves
residues of higher powers. Gauss rediscovered Euler’s conjectures in 1805,
and he proved them in the course of his work on cubic and biquadratic reci-
procity. In §4 we will give careful statements of these reciprocity theorems
and show how they can be used to prove Euler’s conjectures.

D. Disquisitiones Arithmeticae

Gauss’ Disquisitiones Arithmeticae covers a wide range of topics in num-
ber theory, including congruences, quadratic reciprocity, quadratic forms
(in two and three variables), and the cyclotomic fields Q((n), (n = €2™/".
There are several excellent accounts of what’s in Disquisitiones, notably
Biihler [13, Chapter 3], Bachmann [42, Vol. X.2.1, pp. 8-40] and Rieger
[84], and translations into English and German are available (see item [41]
in the references). Rather than try to survey the whole book, we will in-
stead make some comments on Gauss’ treatment of quadratic reciprocity
and quadratic forms, for in each case he does things slightly different from
the theory presented in §§2 and 3.

Disquisitiones contains the first published (valid) proof of the law of qua-
dratic reciprocity. One surprise is that Gauss never uses the term “qua-
dratic reciprocity”. Instead, Gauss uses the phrase “fundamental theorem”,
which he explains as follows [41, §131]:

Since almost everything that can be said about quadratic residues
depends on this theorem, the term fundamental theorem which we will
use from now on should be acceptable.

In the more informal setting of his mathematical diary, Gauss uses the term
“golden theorem” to describe his high regard for quadratic reciprocity [42,
Vol. X.1, entries 16, 23 and 30 on pp. 496-501] (see Gray [44] for an English
translation). Likewise absent from Disquisitiones is the Legendre symbol,
for Gauss uses the notation aRb or aNb to indicate whether or not a was a
quadratic residue modulo b [41, §131]. (The Legendre symbol does appear
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in some of his handwritten notes—see [42, Vol. X.1, p. 53]—but this doesn’t
happen very often.)

One reason why Gauss ignored Legendre’s terminology is that Gauss dis-
covered quadratic reciprocity independent of his predecessors. In a marginal
note in his copy of Disquisitiones, Gauss states that “we discovered the fun-
damental theorem by induction in March 1795. We found our first proof,
the one contained in this section, April 1796” [41, p. 468, English editions]
or [42, Vol. I, p. 476]. In 1795 Gauss was still a student at the Collegium
Carolinum in Brunswick, and only later, while at G6ttingen, did he discover
the earlier work of Euler and Legendre on reciprocity.

Gauss’ proof from April 1796 appears in §§135-144 of Disquisitiones.
The theorem is stated in two forms: the usual version of quadratic reci-
procity appears in [41, §131], and the more general version that holds for
the Jacobi symbol (which we used in the proof of Lemma 1.14) is given in
[41, §133]. The proof uses complete induction on the prime p, and there
are many cases to consider, some of which use reciprocity for the Jacobi
symbol (which would hold for numbers smaller than p). As Gauss wrote in
1808, the proof “proceeds by laborious steps and is burdened by detailed
calculations” [42, Vol. II, p. 4]. In 1857, Dirichlet used the Jacobi symbol
to simplify the proof and reduce the number of cases to just two [27, Vol.
II, pp. 121-138]. It is interesting to note that what Gauss proves in Disqui-
sitiones is actually a bit more general than the usual statment of quadratic
reciprocity for the Jacobi symbol (see Exercise 3.24). Thus, when Jacobi
introduced the Jacobi symbol in 1837 [61, Vol. VI, p. 262], he was simply
giving a nicer but less general formulation of what was already in Disquisi-
tiones.

As we mentioned in our discussion of genus theory, Disquisitiones also
contains a second proof of reciprocity that is quite different in nature. The
first proof is awkward but elementary, while the second uses Gauss’ genus
theory and is much more sophisticated.

Gauss’ treatment of quadratic forms occupies the fifth (and longest) sec-
tion of Disquisitiones. It is not easy reading, for many of the arguments
are very complicated. Fortunately, there are more modern texts that cover
pretty much the same material (in particular, see either Flath [36] or Math-
ews [78]). Gauss starts with the case of positive definite forms, and the
theory he develops is similar to the first part of §2. Then, in [41, §182],
he gives some applications to number theory, which are introduced as
follows:

Let us now consider certain particular cases both because of their
remarkable elegance and because of the painstaking work done on
them by Euler, who endowed them with an almost classical distinc-
tion.
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As might be expected, Gauss first proves Fermat’s three theorems (1.1),
and then he proves Euler’s conjecture for p = x? + 5y? using Lagrange’s
implicit genus theory (his proof is similar to what we did in (2.19), (2.20)
and (2.22)). Interestingly enough, Gauss never mentions the relation be-
tween this example and genus theory. In contrast to Lagrange and Legen-
dre, Gauss works out few examples. His one comment is that “the reader
can derive this proposition [concerning x? + 5y?] and an infinite number
of other particular ones from the preceding and the following discussions”
[41, §182].

Gauss always assumed that the middle coefficient was even, so that his
forms were written f(x,y) = ax? + 2bxy + cy?. He used the ordered triple
(a,b,c) to denote f(x,y) [41, §153], and he defined its determinant to be
b* —ac [41, §154]. Note that the discriminant of ax? + 2bxy + cy? is just 4
times Gauss’ determinant.

Gauss did not assume that the coefficients of his forms were relatively
prime, and he organized forms into orders according to the common di-
visors of the coefficients. More precisely, the forms ax? + 2bxy + cy? and
a'x?+2b'xy + c'y? are in the same order provided that gcd(a,b,c) =
ged(a',b',c') and ged(a,2b,c) = ged(a',2b',c') [41, §226]. To get a better
idea of how this works, consider a primitive quadratic form ax? + bxy +
cy?. Here, a, b and c are relatively prime integers, and b may be even or
odd. We can fit this form into Gauss’ scheme as follows:

b is even: Then b = 2b', and ax® + 2b'xy + cy?® satisfies gcd(a,b’,c)
= gecd(a,2b',¢) = 1. Gauss called forms in this order
properly primitive.

b is odd: Then 2ax® + 2bxy + 2cy* satisfies ged(2a,b,2c) = 1,
ged(2a,2b,2c) = 2. Gauss called forms in this order

improperly primitive.

So all primitive forms are present, though the ones with b odd appear in
disguised form. This doesn’t affect the class number, but it does cause prob-
lems with composition.

Gauss’ classification of forms thus consists of orders, which are made
up of genera, which are in turn made up of classes. This is reminiscent of
the Linnean classification in biology, where the categories are class, order,
family, genus and species. Gauss’ terms all appear on Linneaus’ list, and it
is thus likely that this is where Gauss got his terminology. Since our current
term “equivalence class” comes from Gauss’ example of classes of properly
equivalent forms, we see that there is an unexpected link between modern
set theory and eighteenth-century biology.
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Finally, let’s make one comment about composition. Gauss’ theory of
composition has always been one of the more difficult parts of Disquisi-
tiones to read, and part of the reason is the complexity of Gauss’ presenta-
tion. For example, the proof that composition is associative involves check-
ing that 28 equations are satisfied [41, §240]. But a multiplicity of equations
is not the only difficulty here—there is also an interesting conceptual issue.
Namely, in order to define the class group, notice that Gauss has to put
the structure of an abstract Abelian group on a set of equivalence classes.
Considering that we’re talking about the year 1801, this is an amazing level
of abstraction. But then, Disquisitiones is an amazing book.

E. Exercises
3.1. Assume that F(x,y) = Ax?>+ Bxy + Cy? is the composition of the
forms f(x,y) = ax? + bxy + cy? and g(x,y) = a'x? + b'xy + c'y* via
f(x,y)g(z,w) = F(@ixz +bixw +ciyz +diyw,azxz
+ byxw + cayz + dryw),

and suppose that all three forms have discriminant D # 0. The goal
of this exercise is to prove Gauss’ formulas (3.1).

(a) By specializing the variables x, y, z and w, prove that
aa' = Aa® + Baja, + Ca}
ac' = Ab? + Bbyb, + Ch3
ab' = 2A4a1by + B(a1b, + azb1) + 2Cazb;.
Hint: for the first one, try x =z=1andy =w = 0.
(b) Prove that a = +(a1b, — a>b;). Hint: prove that
a*(b'’* — 4d'c') = (arb; — ab *(B? — 4A4C).

(c) Prove that a’' = £(aic2 —azcy).

3.2. Show that the compositions given in (2.30) and (2.31) are not direct
compositions.

3.3. Prove Lemma 3.5. Hint: there are a,aq,...,a, such that am + Z;zl
a;pi = 1.

3.4.  Verify that the congruences (3.4) satisfy the compatibility conditions
of Lemma 3.5.

3.5. Let f(x,y)=ax?+bxy+cy?, g(x,y)=a'x?+bxy+c'y> and B
be as in Lemma 3.2. We want to show that aa'x? + Bxy + Cy?,
C = (B*— D)/4aa', is the direct composition of f(x,y) and g(x,y).
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(a) Show that f(x,y) (resp. g(x,y)) is properly equivalent to ax® +
Bxy + a'Cy? (resp. a'x? + Bxy + aCy?). Hint: for f(x,y), use
B = b mod 2a.

(b) Let X = xz— CywandY = axw + a'yz + Byw. Then show that

(ax®+ Bxy +a'Cy?)(a'z* + Bzw + aCw?)
=aa'X*+BXY + CY>.

Furthermore, show that this is a direct composition in the sense
of (3.1). Hint: first show that

(ax + (B +VD)y/2)(a'z + (B + VD)w/2)
=ad'X + (B + VD)Y /2.

(c) Suppose that a form G(x,y) is the direct composition of forms
h(x,y) and k(x,y). If h(x,y) is properly equivalent to h(x,y),
then show that G(x,y) is also the direct composition of A(x,y)
and k(x,y).

(d) Use (a)-(c) to show that the Dirichlet composition is a direct
composition.

(e) Prove that the Dirichlet composition of primitive forms is prim-
itive. Hint: since F(x,y) represents any product f(x,y)g(z,w),
show that the ged of all numbers represented by F(x,y) is 1,
and conclude that F(x,y) is primitive.

This problem studies the relation between Legendre’s and Dirichlet’s

formulas for composition.

(a) Suppose that f(x,y)=ax?+2bxy+cy? and g(x,y)=a'x*+
2b'xy + c'y? have the same discriminant and satisfy ged(a,a’) =
1. Show that the Dirichlet composition of these forms is the one
given by Legendre’s formula with both signs + in (2.32).

(b) In Exercise 2.26, we saw that the forms 14x% + 10xy + 21y? and
9x2 + 2xy + 30y? compose to 126x2 + 74xy + 13y? and 126x* +
38xy + 5y®. Which one of these four is the direct composition
of the original two forms?

Show that acx?+ bxy + y? is properly equivalent to the principal
form.

For us, a class consists of all forms properly equivalent to a given
form. Let a Lagrangian class (this terminology is due to Weil [106,
p. 319]) consist of all forms equivalent (properly or improperly) to a
given form.
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(a) Prove that the Lagrangian class of a form is the union of the
class of the form and the class of its opposite.
(b) Show that the following statements are equivalent:
(i) The Lagrangian class of f(x,y) equals the class of f (x,y).
(i) f(x,y) is properly equivalent to its opposite.
(1ii) f(x,y) is properly and improperly equivalent to itself.
(iv) The class of f(x,y) has order <2 in the class group.

3.9.  In this problem we will describe the “almost” group structure given
by Legendre’s theory of composition. Let G be an Abelian group
and let ~ be the equivalence relation which identifies a~! and a for
alaeG.

(a) Show that multiplication on G induces an operation on G/~
which takes either one or two values. Furthermore, if a, b€ G
and [a], [b] are their classes in G/~, then show that [a]-[b]
takes on only one value if and only if a, b or ab has order <2
inG.

(b) If G is cyclic of order 8, show that G/~ is isomorphic (in the
obvious sense) to the structure given by (2.33) and (2.34).

(c) If C(D) is the class group of forms of discriminant D, show that
C(D)/~ can be naturally identified with the set of Lagrangian
classes of forms of discriminant D (see Exercise 3.8).

3.10. Complete the proof of Proposition 3.11 for the case D = —4n, n =
1 mod 4, and prove all of the remaining cases.

3.11. This exercise is concerned with the proof of Lemma 3.17.
(a) Prove that the map (3.18) is surjective and its kernel is the sub-
~ group of squares.

(b) We next want to prove the lemma when D = —4n, n > 0. Write
n = 2%m where m is odd, so that we have an isomorphism

(Z/DZ)* ~(Z/2°%*1)* x (Z/m1)*.

Let H denote the subgroup of values represented by x% + ny?2.

() Show that H = H, X (Z/mZ)** where H, = H N(Z/
2a+27)* x {1}).

(i) When a > 4, show that H; = (Z/2°*?7)*?, where H, is as
in (i). Hint: the description of (Z/2%*2Z)* given in Ireland
and Rosen [59, §4.1] will be useful.

(iii) Prove Lemma 3.17 when D = 0 mod 4. Hint: treat the cases
a=0,1,2,3and > 4 separately. See also Ireland and Rosen
[59, §4.1].
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In Exercises 3.12 and 3.13 we will sketch Gauss’ second proof of
quadratic reciprocity. There are two parts to the proof: first, one
shows, without using quadratic reciprocity, that for any nonsquare
discriminant D,

(x) the number of genera of forms of discriminant D is < 2r=1

where p is defined in Proposition 3.11, and second, one shows that
(x) implies quadratic reciprocity. This exercise will do the first step,
and Exercise 3.13 will take care of the second.

We proved in Exercise 2.10 that when D >0 is not a perfect
square, there are only finitely many proper equivalence classes of
primitive forms of discriminant D. The set of equivalence classes
will be denoted C(D), and as in the positive definite case, C(D)
becomes a finite Abelian group under Dirichlet composition (we will
prove this in the exercises to §7). We will assume that Proposition
3.11 and Theorem 3.15 hold for all nonsquare discriminants D . This
is where we pay the price for restricting ourselves to positive definite
forms—the proofs in the text only work for D < 0. For proofs of
these theorems when D > 0, see Flath [36, Chapter V], Gauss [41,
§§257-258] or Mathews [78, pp. 171-173].

To prove (x), let D be any nonsquare discriminant, and let C de-
note the class group C(D). Let H C (Z/DZ)* be the subgroup of
values represented by the principal form.

(a) Show that genera can be classified by cosets of H in (Z/DZ)*.
Thus, instead of the map ® of (3.12), we can use the map

& : C— (Z/D1)*/H,

so that ker(®') is the principal genus and ®'(C) is the set of gen-
era. Note that this argument does not use quadratic reciprocity.

(b) Since H contains all squares in (Z/DZ)*, it follows that C* C
ker(®'). Now adapt the proof of Theorem 3.15 to show that

the number of genera is < [C : C?] =2F71,

where the last equality follows from Proposition 3.11. This
proves (x).

In this exercise we will show that quadratic reciprocity follows from
statement (x) of Exercise 3.12. As we saw in §1, it suffices to show

(5)-1=(2)

where p and g are distinct odd primes and p* = (—1)(?~V/2p,
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(a) Show that Lemma 3.17 holds for all nonzero discriminants D, so

that we can use the assigned characters to distinguish genera.

(b) Assume that (p*/q) = 1. Applying Lemma 2.5 with D = p*, g is

represented by a form f(x,y) of discriminant p*. The number
p from Proposition 3.11 is 1, so that by (), there is only one
genus. Hence the assigned character (there is only one in this
case) must equal 1 on any number represented by f(x,y), in
particular g. Use this to prove that (q/p) = 1. This proves that

(r*/q9) =1=(q/p)=1.

(c) Next, assume that (q/p) = 1 and that either p =1 mod 4 or q=

1 mod 4. Use part (b) to show that (p*/q) = 1.

(d) Finally, assume that (q/p) =1 and that p = g = 3 mod 4. This

(e)

time we will consider forms of discriminant pq. Proposition
3.11 shows that p =2, so that by (), there are at most two
genera. Furthermore, the assigned characters are x;(a) = (a/p)
and x2(a) = (a/q). Now consider the form f(x,y)= px?+
pxy + ((p—q)/4)y?, which is easily seen to have discriminant
pq. Letting (x,y) = (0,4), it represents p — g. Use this to com-
pute the complete character of the forms f(x,y) and —f(x,y),
and show that one of these must lie in the principal genus since
there are at most two genera. Then show that (—p/q) = 1. Note
that parts (c) and (d) imply that (¢/p) = 1= (p*/q) = 1, which
completes the proof of quadratic reciprocity.

Gauss also used (x) to show that (2/p) = (~1)?"~D/8, Adapt
the argument given above to prove this. Hint: when p =
3,5 mod 8, show that p is properly represented by a form of
discriminant 8. When p =1 mod 8, note that the form 2x2 +
xy + ((1— p)/8)y? has discriminant p and represents 2, and the
argument is similar when p = 7 mod 8.

Use Gauss’ definition of genus to divide the forms of discriminant
—164 into genera. Hint: the forms are given in (2.33). Notice that
this is much easier than working with our original definition!

Prove the implications (vi) = (iii) = (i) = (i) and (vi) = (v) = (i)
of Theorem 3.21.
Prove that the forms x* + 18y? and 2x2 + 9y? are rationally equiva-

lent but belong to different genera. Hint: if they represent the same
values in (Z/72Z)*, then the same is true for any divisor of 72.

Let D be a field discriminant, i.e., D =1 mod 4, D squarefree, or

D =

4k, k #1mod 4, k squarefree. Let f(x,y) and g(x,y) be two

forms of discriminant D which are rationally equivalent. We want to
prove that they lie in the same genus.
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(a) Let m be prime to D and represented by g(x,y). Show that
f(x,y) represents d’m for some nonzero integer d.

(b) Show that f(x,y) and g(x,y) lie in the same genus. Hint: by
Exercise 2.1, f(x,y) properly represents m' where d'*m’' = d*m
for some integer d'. Show that m’' is relatively prime to D. To
do this, use Lemma 2.3 to write f(x,y) = m'x% + bxy + cy?.

When D = —4n is a field discriminant, we can use Theorem 3.21

to give a different proof that every form in the principal genus is a

square (this is part (ii) of Theorem 3.15). Let f(x,y) be a form of

discriminant —4n which lies in the principal genus.

(a) Show that f(x,y) properly represents a number of the form a2,
where a is odd and relatively prime to n. Hint: use part (v) of
Theorem 3.21.

(b) By (a), we may assume that f(x,y) = a’x? + 2bxy + cy®. Show
that ged(a,2b) =1, and conclude that g(x,y)=ax®+2bxy+
acy? has relatively prime coefficients and discriminant —4n.

(c) Show that f(x,y) is the Dirichlet composition of g(x,y) with
itself.

This argument is due to Arndt (see Smith [95, pp. 254-256]),
though Arndt proved (a) using the theorem of Legendre discussed
in Exercise 2.24. Note that (a) can be restated in terms of ternary
forms: if f(x,y) is in the principal genus, then (a) proves that the
ternary form f(x,y)—z? has a nontrivial zero. This result shows
that there is a connection between ternary forms and genus theory.
It is therefore not surprising that Gauss used ternary forms in his
proof of Theorem 3.15.

Let C(D) be the class group of forms of discriminant D < 0. Prove
that the following statements are equivalent:

(i) Every genus of discriminant D consists of a single class.
(i) C(D)~ {£1}#~1, where p is as in Proposition 3.11.
(iii) Every genus of discriminant D consists of equivalent forms.

In this exercise we will prove Lemma 3.25. Let m > 0 be odd and
prime to n > 1.

(a) Show that the number of solutions modulo m of the congruence

x’=—nmod m
is given by the formula

1(+(%))

plm
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(b) Consider forms g(x,y) of discriminant —4n of the form
g(x,y) = mx? + 2bxy + cy?, 0<b<m.

Show that the map sending g(x,y) to [b] € (Z/mZ)* induces a
bijection between the g(x,y)’s and the solutions modulo m of
x? = —n mod m.

(c) Let f(x,y) have discriminant —4n and let f(u,v) =m be a
proper representation. Pick rg, 5o so that usg —vro =1, and set
r=ro+uk,s =so+ vk. Note that as k € Z varies, we get all
solutions of us — vr = 1. Then set

g(x,y)=f(ux +ry,vx +sy)

and show that there is a unique k£ € Z such that g(x,y) satisfies
the condition of (b). This form is denoted g, ,(x,y).

(d) Show that the map sending a proper representation f(u,v) = m
to the form g, ,(x,y) is onto.

(C) If gu',v'(X,}’) =gu,v(x,y), let

G- )
7 6 S\ s r s)’
Show that f(ax + By,yx + dy) = f(x,y) and, since n > 1, show

that (‘,; 7Y =+(;}). Hint: assume that f(x,y) is reduced, and

use the arguments from the uniqueness part of the proof of The-
orem 2.8.

(f) Conclude that g, ,(x,y) =guv(x,y) if and only if (u',v')=
+(u,v), so that the map of (d) is exactly two-to-one. Combining
this with (a) and (b), we get a proof of Lemma 3.25.

This exercise will use Lemma 3.25 to study the equation m> = a? +

2b2.

(a) If m is odd, use Lemma 3.25 to show that the equations m =
x? +2y? and m® = x? + 2y? have the same number of proper
solutions.

(b) If m = a® + 2b? is a proper representation, then show that
m* = (a® — 6ab®)’ + 2(3a’b - 2b°)°

is a proper representation.
(c) Show that the map sending (a,b) to (a® — 6ab?,3a’b —2b3) is
injective. Hint: note that

(a + bV/=2)3 = (a® — 6ab?) + (3a*b — 2b*)V/-2.
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(d) Combine (a) and (c) to show that all proper representations of
m? = x? + 2y?, m odd, arise from (b).

Use Exercise 3.21 to prove Fermat’s famous result that (x,y) =
(3,+5) are the only integral solutions of the equation x3 = y2 + 2.
Hint: first show that x must be odd, and then apply Exercise 3.21
to the proper representation x3 = y2 + 2. 12. It’s likely that Fermat’s
original proof of this result was similar to the argument presented
here, though he would have used a version of Lemma 1.4 to prove
part (c) of Exercise 3.21. See Weil [106, pp. 68—69 and 71-73] for
more details.

Let p be an odd prime of the form x2 + ny?, n > 1. Use Lemma
3.25 to show that the equation

p = x* + ny?

has a unique solution once we require x and y to be nonnegative.
Note also that Lemma 3.25 gives a very quick proof of Exercise 2.27.

This exercise will examine a generalization of the Jacobi symbol. Let
P and Q be relatively prime nonzero integers, where Q is odd but
possibly negative. Then define the extended Jacobi symbol (P/Q)
via

(P) ~ { (P/IQ])  when |Q|>1

0 1 when |Q| = 1.

(a) Prove that when P and Q are odd and relatively prime, then

(E Q) _ (L 1yP-DQ-1)/4+en®)-Den(@)-1/4
0/)\P

where sgn(P) = P/|P|.
(b) Gauss’ version of (a) is more complicated to state. First, given P
and Q as above, he lets p denote the number of prime factors of

O (counted with multiplicity) for which P is not a quadratic
residue. This relates to (P/Q) by the formula

(5)-c

Interchanging P and Q, we get a similarly defined number q.
To relate the parity of p and q, Gauss states a rule in [41,
§133] which breaks up into 10 separate cases. Verify that the
rule proved in (a) covers all 10 of Gauss’ cases.



74 §4. CUBIC AND BIQUADRATIC RECIPROCITY

(c) Prove the supplementary laws:

(F) = seatpx-nr-o2

(%) — (_1)(P2—1)/8.

3.25. Let p =1 mod 8 be prime.

(a) If C(—4p) is the class group of forms of discriminant —4p, then
use genus theory to prove that

C(-4p)~(Z/2°T) x G

where a > 1 and G has odd order. Thus 2 | h(—4p).
(b) Let f(x,y) =2x2+2xy + ((p + 1)/2)y?. Use Gauss’s definition
of genus to show that f(x,y) is in the principal genus.

(c) Use Theorem 3.15 to show that C(—4p) has an element of order
4. Thus 4| h(—4p).

§4. CUBIC AND BIQUADRATIC RECIPROCITY

In this section we will study cubic and biquadratic reciprocity and use them
to prove Euler’s conjectures for p = x> +27y? and p = x® + 64y? (see
(1.22) and (1.23)). An interesting feature of these reciprocity theorems is
that each one requires that we extend the notion of integer: for cubic reci-
procity we will use the ring

(4.1) Ilwl={a+bw:abecl}, w=e>"3=(-1+v/-3)/2
and for biquadratic reciprocity we will use the Gaussian integers
(4.2) I[il={a+bi:abel}, i =v-1.

Both Z[w] and Z[i] are subrings of the complex numbers (see Exercise 4.1).
Our first task will be to describe the arithmetic properties of these rings
and determine their units and primes. We will then define the generalized
Legendre symbols (a/m)3 and (a/m)4 and state the laws of cubic and bi-
quadratic reciprocity. The proofs will be omitted since excellent proofs are
already available in print (see especially Ireland and Rosen [59, Chapter
9]). At the end of the section we will discuss Gauss’ work on reciprocity
and say a few words about the origins of class field theory.
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A. Z[w] and Cubic Reciprocity

The law of cubic reciprocity is intimately bound up with the ring Z[w] of
(4.1). The main tool used to study the arithmetic of Z[w] is the norm func-
tion: if @ = a + bw is in Z[w], then its norm N(a) is the positive integer

N(a) = aa = a* —ab + b,

where @ is the complex conjugate of a (in Exercise 4.1 we will see that
@ € Z[w]). Note that the norm is multiplicative, i.e., for a,( € Z[w], we have

N(af) = N(a)N(B)
(see Exercise 4.2). Using the norm, one can prove that Z[w] is a Euclidean

ring:

Proposition 4.3. Given o, € Z[w), B # 0, there are v,6 € Z{w] such that
a=7y0+46 and N(8) < N(B).

Thus 2[w] is a Euclidean ring.

Proof. Note that the norm function N(a) = a@ is defined on Q(w) = {r +
sw:r,s € Q} and satisfies N(uv) = N(u)N(v) for u,v € Q(w) (see Exercise
4.2). Then

a_oaof _ aof

B pp NO®)
so that /B =r + sw for some r,s € Q. Let ri,51 be integers such that
Ir—ri|<1/2 and |s — 53| <1/2, and then set y = r; + s;w and § = a — 0.
Note that 7,8 € Z[w] and @ = g + §. It remains to show that N () < N ().
To see this, let e = /B —v = (r —r1) + (s — s1)w, and note that

§=a-76=p(a/B~7)=Pe
Since the norm is multiplicative, it suffices to prove that N(¢) < 1. But
NEe)=N({(r—rn)+(—-s1)w)=(r— r)?—(r—r)(s—s1)+(s— 51)%,

and the desired inequality follows from |r — ri|,|s — 51| < 1/2. By the stan-
dard definition of a Euclidean ring (see, for example, Herstein [54, §3.7]),
we are done. Q.E.D.

€ Q(w),

Corollary 4.4. Z[w] is a PID (principal ideal domain) and a UFD (unique
factorization domain).

Proof. It is well known that any Euclidean ring is a PID and a UFD—see,
for example, Herstein [54, Theorems 3.7.1 and 3.7.2]. Q.E.D.
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For completeness, let’s recall the definitions of PID and UFD. Let R
be an integral domain. An ideal of R is principal if it can be written in
the form aR = {af3 : § € R} for some a € R, and R is a PID if every ideal
of R is principal. To explain what a UFD is, we first need to define units,
associates and irreducibles:

(i) a € R is a unit if aff = 1 for some S € R.
(ii) o, € R are associates if a is a unit times 3. This is equivalent to
aR = BR.
(ii1) A nonunit a € R is irreducible if a = fy in R implies that 5 or 7 is a
unit.

Then R is a UFD if every nonunit a # 0 can be written as a product of
irreducibles, and given two such factorizations of a, each irreducible in the
first factorization can be matched up in an one-to-one manner with an as-
sociate irreducible in the second. Thus factorization is unique up to order
and associates.

It turns out that being a PID is the stronger property: every PID is a
UFD (see Ireland and Rosen [59, §1.3]), but the converse is not true (see
Exercise 4.3). Given an element a # 0 in a PID R, the following statements
are equivalent:

(i) a is irreducible.
(ii) a is prime (an element a of R is prime if a | f7y implies a | B or a | 7).
(iii) aR is a prime ideal (an ideal p of R is prime if By € p implies 3 € p
or y € p).
(iv) aR is a maximal ideal.
(See Exercise 4.4 for the proof.)

Since Z[w] is a PID and a UFD, the next step is to determine the units
and primes of Z[w]. Let’s start with the units:

Lemma 4.5.
(i) An element a € Z[w] is a unit if and only if N(a) = 1.
(ii) The units of Z[w] are Z[w]* = {+1,+w, +w?}.
Proof. See Exercise 4.5. Q.E.D.

The next step is to describe the primes of Z[w]. The following lemma
will be useful:

Lemma 4.6. If a € Z[w] and N(a) is a prime in Z, then « is prime in Z[w].
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Proof. Since Z[w] is a PID, it suffices to prove that « is irreducible. So
suppose that a = $7 in Z[w]. Taking norms, we obtain the integer equation

N(a)=N(By)=N(B)N(7)

(recall that the norm is multiplicative). Since N(«a) is prime by assumption,
this implies that N(83) or N(y) is 1, so that § or 7 is a unit by Lemma
4.5. Q.E.D.

We can now determine all primes in Z[w]:

Proposition 4.7. Let p be a prime in 1. Then:
() If p = 3, then 1 —w is prime in I[w] and 3 = —w?(1 — w)>.
(i) If p =1 mod 3, then there is a prime T € Z|w] such that p = 77, and
the primes T and T are nonassociate in 1[w].
(iii) If p =2 mod 3, then p remains prime in 1|w].

Furthermore, every prime in Z[w] is associate to one of the primes listed in
(i)-(iii) above.

Proof. Since N(1—w) =3, Lemma 4.6 implies that 1 —w is prime in Z[w],
and (i) follows. To prove (ii), suppose that p = 1 mod 3. Then (-3/p) =1,
so that p is represented by a reduced form of discriminant —3 (this is The-
orem 2.16). The only such form is x>+ xy + y2, so that p can be writ-
ten as a> —ab + b*>. Then ¥ = a + bw and T = a + bw?® have norms N(7) =
N(m) = p and hence are prime in Z[w] by Lemma 4.6. In Exercise 4.7 we
will prove that m and 7 are nonassociate. The proof of (iii) is left to the
reader (see Exercise 4.7).

It remains to show that all primes in Z[w] are associate to one of the
above. Let’s temporarily call the primes given in (i)—(iii) the known primes
of Z[w], and let a be any prime of Z[w]. Then N(a) = aa is an ordinary
integer and may be factored into integer primes. But (i)—(iii) imply that
any integer prime is a product of known primes in Z[w], and consequently
aa = N(a) is also a product of known primes. The proposition then follows
since Z[w] is a UFD. Q.E.D.

Given a prime 7 of Z[w], we get the maximal ideal 7Z[w] of Z[w]. The
quotient ring Z[w]/7Z[w] is a thus a field. We can describe this field more
carefully as follows:

Lemma 4.8. If w is a prime of 1|w], then the quotient field 1[w]/TZ[w] is
a finite field with N() elements. Furthermore, N(m) = p or p* for some
integer prime p, and:
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() If p=3or p=1mod 3, then N(m)= p and 1/ pl ~ I[w]/7Z[w].
(i) If p=2mod 3, then N(n) = p? and 7/ p1 is the unique subfield of or-
der p of the field 1[w]/7Z[w] of p* elements.

Proof. In §7 we will prove the that if 7 is a nonzero element of Z|w], then
Z[w]/7Z[w] is a finite ring with N(7) elements (see Lemma 7.14 or Ireland
and Rosen [59, §8§9.2 and 14.1]). Then (i) and (ii) follow easily (see Exercise
4.8). Q.E.D.

Given «, § and 7 in Z|w], we will write @ = f mod 7w to indicate that
a and @ differ by a multiple of w, i.e., that they give the same element in
Z[w]/mZ[w]. Using this notation, Lemma 4.8 gives us the following analog
of Fermat’s Little Theorem:

Corollary 4.9. If 7 is prime in Z|w] and doesn’t divide a € Z|w], then

aVN™-1=1 mod .

Proof. This follows because (Z[w]/7mZ[w])* is a finite group with N(7) — 1
elements. Q.E.D.

Given these properties of Z[w], we can now define the generalized Leg-
endre symbol (a/7)3. Let m be a prime of Z[w] not dividing 3 (i.e., not
associate to 1 — w). It is straightforward to check that 3| N(7w)— 1 (see Ex-
ercise 4.9). Now suppose that a € Z[w] is not divisible by 7. It follows from
Corollary 4.9 that x = a®™(M=1/3 is a root of x3 =1 mod «. Since

}—1=(x—-1)(x -w)(x—w?) mod 7
and 7 is prime, it follows that

aWN@-D/3 =1 4 w? mod .

However, the cube roots of unity 1,w,w? are incongruent modulo 7. To see

this, note that if any two were congruent, then we would have 1 = w mod ,
which would contradict m not associate to 1 —-w (see Exercise 4.9 for the
details). Then we define the Legendre symbol (a/7)3 to be the unique cube
root of unity such that

(4.10) o(N®-D/3 = (%)3 mod 7.

The basic properties of the Legendre symbol are easy to work out. First,
from (4.10), one can show

(=G5
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and second, @ = § mod 7 implies that

(5= ()

(see Exercise 4.10). The Legendre symbol may thus be regarded as a group
homomorphism from (Z[w]/7Z[w])* to C*.

An important fact is that the multiplicative group of any finite field is
cyclic (see Ireland and Rosen [59, §7.1]). In particular, (Z[w]/wZ[w])* is
cyclic, which implies that

(9_)3 =1 < oaNM-D3 = 1modr

(4.11) m

< x*=amodr has a solution in Z[w]

(see Exercise 4.11). This establishes the link between the Legendre symbol
and cubic residues. Note that one-third of (Z[w]/7Z[w])* consists of cubic
residues (where the Legendre symbol equals 1), and the remaining two-
thirds consist of nonresidues (where the symbol equals w or w?). Later on
we will explain how this relates to the more elementary notion of cubic
residues of integers.

To state the law of cubic reciprocity, we need one final definition: a
prime 7 is called primary if 7 = £1 mod 3. Given any prime 7 not dividing
3, one can show that exactly two of the six associates +7, +wn and w27
are primary (see Exercise 4.12). Then the law of cubic reciprocity states the
following:

Theorem 4.12. If w and 6 are primary primes in 1|w] of unequal norm, then

(-

Proof. See Ireland and Rosen [59, §§9.4-9.5] or Smith [95, pp. 89-91].
Q.E.D.

Notice how simple the statement of the theorem is—it’s among the most
elegant of all reciprocity theorems (biquadratic reciprocity, to be stated be-
low, is a bit more complicated). The restriction to primary primes is a nor-
malization analogous to the normalization p > 0 that we make for ordinary
primes. Some books (such as Ireland and Rosen [59]) define primary to
mean 7 = —1 mod 3. Since (—1/7); = 1, this doesn’t affect the statement
of cubic reciprocity.

There are also supplementary formulas for (w/7); and (1—w/7);. Let 7
be prime and not associate to 1—w. Then we may assume that 7 = —1 mod
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3 (if m is primary, one of +w satisfies this condition). Writing 7 = —1+
3m + 3nw, it can be shown that

w — ,mtn
O
(F7) =

The first line of (4.13) is easy to prove (see Exercise 4.13), while the second
is more difficult (see Ireland and Rosen [59, p. 114] or Exercise 9.13).

Let’s next discuss cubic residues of integers. If p is a prime, the basic
question is: when does x3 =a mod p have an integer solution? If p =3,
then Fermat’s Little Theorem tells us that a> =a mod 3 for all a, so that
we always have a solution. If p =2 mod 3, then the map a — a® induces
an automorphism of (Z/pZ)* since 3) p — 1 (see Exercise 4.14), and con-
sequently x3 = a mod p is again always solvable. If p = 1 mod 3, things are
more interesting. In this case, p = 77 in Z[w], and there is a natural iso-
morphism Z/pZ ~ 7[w]/7mZ[w] by Lemma 4.8. Thus, for p}a, (4.11) implies
that

(4.13)

3 _ . . a _
(4.14) x> =amod p is solvable in 7 < (—)3 = 1.

Furthermore, (Z/pZ)* breaks up into three pieces of equal size, one of
cubic residues and two of nonresidues.

We can now use cubic reciprocity to prove Euler’s conjecture for primes
of the form x2 + 27y?:

Theorem 4.15. Let p be a prime. Then p = x*>+27y? if and only if p =
1 mod 3 and 2 is a cubic residue modulo p.

Proof. First, suppose that p = x* +27y?. This clearly implies that p =1
mod 3, so that we need only show that 2 is a cubic residue modulo p. Let
7 = x + 3v/=3y, so that p = 77 in Z[w]. It follows that 7 is prime, and then
by (4.14), 2 is a cubic residue modulo p if and only if (2/7); = 1. However,
both 2 and m = x + 3y/—3y are primary primes, so that cubic reciprocity
implies

(B3

It thus suffices to prove that (7/2); = 1. However, from (4.10), we know
that

(4.17) (%)3 = 7 mod 2
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since (N(2)—1)/3 = 1. So we need only show that 7 = 1 mod 2. Since v/—3
=14+2w,m=x+3v/-3y =x+3y + 6yw, so that T=x + 3y = x + y mod
2. But x and y must have opposite parity since p = x? + 27y?, and we are
done.

Conversely, suppose that p = 1 mod 3 is prime and 2 is a cubic residue
modulo p. We can write p as p =77, and we can assume that 7 is a

primary prime in Z[w]. This means that m = a + 3bw for some integers a
and b. Thus

4p = 47T = 4(a* — 3ab + 9b?) = (2a — 3b)* + 27b°,

Once we show b is even, it will follow immediately that p is of the form
x% +27y2.

We now can use our assumption that 2 is a cubic residue modulo p.
From (4.14) we know that (2/7)3 = 1, and then cubic reciprocity (4.16) tells
us that (w/2); = 1. But by (4.17), this implies 7 = 1 mod 2, which we can
write as a + 3bw = 1 mod 2. This easily implies that a is odd and b is even,
and p = x2 + 27y? follows. The theorem is proved. Q.E.D.

B. Z[i] and Biquadratic Reciprocity

Our treatment of biquadratic reciprocity will be brief since the basic ideas
are similar to what we did for cubic residues (for a complete discussion, see
Ireland and Rosen [59, §§9.7-9.9]). Here, the appropriate ring is the ring of
Gaussian integers Z[i] as defined in (4.2). The norm function N(a + bi) =
a® + b?> makes Z[i] into a Euclidean ring, and hence Z[i] is also a PID and
a UFD. The analogs of Lemma 4.5 and 4.6 hold for Z[{], and it is easy to
check that its units are +1 and +i (see Exercise 4.16). The primes of Z[i]
are described as follows:

Proposition 4.18. Let p be a prime in 1. Then:
() If p =2, then 1+ i is prime in Z[i] and 2 = i3(1 +i)°.
(i) If p =1 mod 4, then there is a prime w € L[i] such that p = T, and the
primes m and T are nonassociate in Z[i].
(iii) If p =3 mod 4, then p remains prime in Z[i].
Furthermore, every prime in 1[i] is associate to one of the primes listed in
(i)-(iii) above.

Proof. See Exercise 4.16. Q.E.D.

We also have the following version of Fermat’s Little Theorem: if 7 is
prime in Z[i] and doesn’t divide a € Z[i], then

(4.19) aVN™-1=1modn
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(see Exercise 4.16).

These basic facts about the Gaussian integers appear in many elemen-
tary texts (e.g., Herstein [54, §3.8]), but such books rarely mention that the
whole reason Gauss introduced the Gaussian integers was so that he could
state biquadratic reciprocity. We will have more to say about this later.

We can now define the Legendre symbol (a/m)s. Given a prime 7 of
Z[i] not associate to 1+ i, it can be proved that +1,+/ are distinct modulo
7 and that 4 | N(7)— 1 (see Exercise 4.17). Then, for a not divisible by 7,
the Legendre symbol (a/7)4 is defined to be the unique fourth root of unity
such that

(4.20) aNM-1/4 = (%>4 mod 7.

As in the cubic case, we see that

(%) , =1« x*=amodn is solvable in Z[i],
and furthermore, the Legendre symbol gives a character from (Z[i]/7Z[i])*
to C*, so that (Z[i]/mZ[i])* is divided into four equal parts (see Exercise
4.18). When p =1 mod 4, we have (Z[i]/wZ[i])* ~ (Z/pZ)*, and the parti-
tion can be described as follows: one part consists of biquadratic residues
(where the symbol equals 1), another consists of quadratic residues which
aren’t biquadratic residues (where the symbol equals —1), and the final two
parts consist of quadratic nonresidues (where the symbol equals +i)—see
Exercise 4.19.

A prime 7 of Z[i] is primary if # =1 mod 2 + 2i. Any prime not asso-
ciate to 1+ i has a unique associate which is primary (see Exercise 4.21).
With this normalization, the law of biquadratic reciprocity can be stated as
follows:

Theorem 4.21. If 7 and 8 are distinct primary primes in L[i], then

6 T B 3
(;>4 - (5>4(_1)(N(9) L)(N(m)—1)/16

Proof. See Ireland and Rosen [59, §9.9] or Smith [95, pp. 76-87]. Q.E.D.

There are also supplementary laws which state that

L) o2
T 4

(4.22) |
(ﬂ) _ ja=b-1-b%/4
T 4
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where T = a + bi is a primary prime. As in the cubic case, the first line of
(4.22) is easy to prove (see Exercise 4.22), while the second is more ditficult
(see Ireland and Rosen [59, Exercises 32-37, p. 136])

We can now prove Euler’s conjecture about p = x* + 64y

Theorem 4.23.
(i) If m = a + bi is a primary prime in L[i], then

2 _ q;ab/2
<‘7—r>4 =1 .

(ii) If p is prime, then p = x> + 64y? if and only if p=1mod 4 and 2 is a
biquadratic residue modulo p.

Proof. First note that (i) implies (ii). To see this, let p = 1 mod 4 be prime.
We can write p = a*> + b*> = 77, where 7 = a + bi is primary. Note that a is
odd and b is even. Since 7/ pZ ~ Z[i]/7Z[i], (i) shows that 2 is a biquadratic
residue modulo p if and only if b is divisible by &, and (i1) follows easily.
One way to prove (i) is via the supplementary laws (4.22) since 2 =
3(1+1)? (see Exercise 4.23). However, in 1857, Dirichlet found a proof
of (i) that uses only quadratic reciprocity [27, Vol. II, pp. 261-262]. A ver-
sion of this proof is given in Exercise 4.24 (see also Ireland and Rosen [59,
Exercises 26-28, p. 64]). Q.E.D.

C. Gauss and Higher Reciprocity

Most of the above theorems were discovered by Gauss in the period 1805-
1814, though the bulk of what he knew was never published. Only in 1828
and 1832, long after the research was completed, did Gauss publish his
two memoirs on biquadratic residues [42, Vol. II, pp. 65-148] (see also [4],
pp. 511-586, German editions] for a German translation). The first memoir
treats the elementary theory of biquadratic residues of integers, and it in-
cludes a proof of Euler’s conjecture for x* + 64y?. In the second memoir,
Gauss begins with a careful discussion of the Gaussian integers, and he ex-
plains their relevance to biquadratic reciprocity as follows [42, Vol. II, §30,
p. 102]:

the theorems on biquadratic residues gleam with the greatest sim-
plicity and genuine beauty only when the field of arithmetic is ex-
tended to imaginary numbers, so that without restriction, the num-
bers of the form a + bi constitute the object [of study], where as usual
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I denotes v/—1 and the indeterminates a, b denote integral real num-
bers between —oo and +o0o. We will call such numbers integral com-
plex numbers (numeros integros complexos) ...

Gauss’ treatment of Z[i] includes most of what we did above, and in partic-
ular the terms norm, associate and primary are due to Gauss.

Gauss’ statment of biquadratic reciprocity differs slightly from Theorem
4.21. In terms of the Legendre symbol, his version goes as follows: given
distinct primary primes 7 and 6 of Z[i],

If either 7 or 6 is congruent to 1 modulo 4, then (7/60)4 = (6/7)4.
If both 7 and 6 are congruent to 3 + 2i modulo 4, then (7/6); = —(8/7)4.

In Exercise 4.25 we will see that this is equivalent to Theorem 4.21. As
might be expected, Gauss doesn’t use the Legendre symbol in his mem-
oir. Rather, he defines the biquadratic character of a with respect to «
to be the number A € {0,1,2,3} satisfying a®¥(M~1/4 = j* mod 7 (so that
(a/m)s =i*), and he states biquadratic reciprocity using the biquadratic
character. For Gauss, this theorem is “the Fundamental Theorem of bi-
quadratic residues” [42, Vol. II, §67, p. 138], but instead of giving a proof,
Gauss comments that

In spite of the great simplicity of this theorem, the proof belongs to
the most hidden mysteries of higher arithmetic, and at least as things
now stand, [the proof] can be explained only by the most subtle inves-
tigations, which would greatly exceed the limits of the present memoir.

Later on, we will have more to say about Gauss’ proof.
In the second memoir, Gauss also makes his only published reference to
cubic reciprocity [42, Vol. 11, §30, p. 102]:

The theory of cubic residues must be based in a similar way on a
consideration of numbers of the form a + bk, where £ is an imaginary
root of the equation 43— 1= 0, say & = (—1+ +/—3)/2, and similarly
the theory of residues of higher powers leads to the introduction of
other imaginary quantities.

So Gauss was clearly aware of the properties of Z[w], even if he never made
them public.

Turning to Gauss’ unpublished material, we find that one of the earliest
fragments on higher reciprocity, dated around 1805, is the following “Beau-
tiful Observation Made By Induction” [42, Vol. VIII, pp. 5 and 11]:
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2 is a cubic residue or nonresidue of a prime number p of the
form 3n + 1, according to whether p is representable by the form
xx +27yy or 4xx +2xy + Tyy.

This shows that Euler’s conjecture for x* + 27y? was one of Gauss’ starting
points. And notice that Gauss was aware that he was separating forms in
the same genus—the very problem we discussed in §3.

Around the same time, Gauss also rediscovered Euler’s conjecture for
x? + 64y? [42, Vol. X.1, p. 37]. But how did he come to make these conjec-
tures? There are two aspects of Gauss’ work that bear on this question. The
first has to do with quadratic forms. Let’s follow the treatment in Gauss’
first memoir on biquadratic residues [42, Vol. II, §§12-14, pp. 75-78]. Let
p =1mod 4 be prime. If 2 is to be a biquadratic residue modulo p, it fol-
lows by quadratic reciprocity that p = 1 mod 8 (see Exercise 4.26). By Fer-
mat’s theorem for x2 + 2y2, p can be written as p = a® + 2b*, and Gauss
proves the lovely result that 2 is a biquadratic residue modulo p if and only
if a = +1 mod 8 (see Exercise 4.27). This is nice, but Gauss isn’t satisfied:

Since the decomposition of the number p into a single and dou-
ble square is bound up so prominently with the classification of the
number 2, it would be worth the effort to understand whether the de-
composition into two squares, to which the number p is equally liable,
perhaps promises a similar success.

Gauss then computes some numerical examples, and they show that when
p is written as a® + b?, 2 is a biquadratic residue exactly when b is divisible
by 8. This could be how Gauss was led to the conjecture in the first place,
and the same thing could have happened in the cubic case, where primes
p =1mod 3 can be written as a® + 3b2.

The cubic case most likely came first, for it turns out that Gauss de-
scribes a relation between x2 + 27y? and cubic residues in the last section
of Disquisitiones. This is where Gauss discusses the cyclotomic equation
xP — 1 =0 and proves his celebrated theorem on the constructibility of reg-
ular polygons. To see what this has to do with cubic residues, let’s describe
a little of what he does. Given an odd prime p, let {, = ¢2™/? be a prim-
itive pth root of unity, and let g be a primitive root modulo p, ie., g is
an integer such that [g] generates the cyclic group (Z/pZ)*. Now suppose
that p — 1 =ef, and let A be an integer. Gauss then defines [41, §343] the
period (f,A) to be the sum

f-1 _
A=) ¢f
j=0
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These periods are the key to Gauss’ study of the cyclotomic field Q((,). In
fact, if we fix f, then the periods (f,1), (f,8), (f,&%),...,(f,g¢!) are the
roots of an irreducible integer polynomial of degree e, and consequently
these periods are primitive elements of the unique subfield @ C K C Q((p)
of degree e over Q.

When p =1 mod 3, we can write p — 1 = 3f, and then the three above
periods are (f,1), (f,g) and (f,gz). Gauss studies this case in [41, §358],
and by analyzing the products of the periods, he deduces the amazing result
that

(4.24) If 4p = a* + 27b* and a = 1 mod 3, then N = p + a — 2, where

N is the number of solutions modulo p of x> — y*>=1mod p.

To see how cubic residues enter into (4.24), note that N = 9M + 6, where
M is the number of nonzero cubic residues which, when increased by one,
remain a nonzero cubic residue (see Exercise 4.29). Gauss conjectured this
result in October 1796 and proved it in July 1797 [42, Vol. X.1, entries 39
and 67, pp. 505-506 and 519]. So Gauss was aware of cubic residues and
quadratic forms in 1796. Gauss’ proof of (4.24) is sketched in Exercise 4.29.

Statement (4.24) is similar to the famous last entry in Gauss’ mathemat-
ical diary. In this entry, Gauss gives the following analog of (4.24) for the
decomposition p = a® + b? of a prime p = 1 mod 4:

If p =a®+b? and a + bi is primary, then N = p —2a — 3, where

N is the number of solutions modulo p of x? + y2+x%y?=1mod p

(see [42, Vol. X.1, entry 146, pp. 571-572]). In general, the study of the
solutions of equations modulo p leads to the zeta function of a variety over
a finite field. For an introduction to this extremely rich topic, see Ireland
and Rosen [59, Chapter 11]. In §14 we will see how Gauss’ results relate to
elliptic curves with complex multiplication.

Going back to the cubic case, there is a footnote in [41, §358] which gives
another interesting property of the periods (f,1), (f,g) and (f,g?):

(4.25) ((f, 1) +w(f,8) +w(f,&%)" = pa +bvV=27)/2,
where 4p = a® + 27b°.

The right hand side is an integer in the ring Z[w], and one can show that
® = (a + byv/—-27)/2 is a primary prime in Z[w] and that p = n7. This is
how Gauss first encountered Z[w] in connection with cubic residues. No-
tice also that if we set y(a) = (a/7)3 and pick the primitive root g so that
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x(g) = w, then

p—1
(4.26) (fs 1) +w(f,g) + W3 (f.87) =Y x(a)s.
a=1

This is an example of what we now call a cubic Gauss sum. See Ireland and
Rosen [59, §§8.2-8.3] for the basic properties of Gauss sums and a modern
treatment of (4.24) and (4.25).

The above discussion shows that Gauss was aware of cubic residues and
Z[w] when he made his “Beautiful Observation” of 1805, and it’s not sur-
prising that two years later he was able to prove a version of cubic reci-
procity [42, Vol. VIII, pp. 9-13]. The biquadratic case was harder, taking
him until sometime around 1813 or 1814 to find a complete proof. We
know this from a letter Gauss wrote Dirichlet in 1828, where Gauss men-
tions that he has possessed a proot of the “Main Theorem” for around 14
years [42, Vol. 11, p. 516]. Exact dates are hard to come by, for most of
the fragments Gauss left are undated, and it’s not easy to match them up
with his diary entries. For a fuller discussion of Gauss” work on biquadratic
reciprocity, see Bachman [42, Vol. X.2.1, pp. 52-60] or Rieger [34].

Gauss’ proofs of cubic and biquadratic reciprocity probably used Gauss
sums similar to (4.26), and many modern proofs run along the same lines
(see Ireland and Rosen [59, Chapter 9]). Gauss sums were first used in
Gauss’ sixth proof of quadratic reciprocity (see [42, Vol. II, pp. 55-59] or
[41, pp. 501-505, German editions]). This is no accident, for as Gauss ex-
plained in 1818:

From 1805 onwards [ have investigated the theory of cubic and bi-
quadratic residues ... Theorems were found by induction ... which had
a wonderful analogy with the theorems for quadratic residues. On the
other hand, for a long time all attempts at complete proofs have been
futile. This was the motive for endeavoring to add yet more proofs to
those already known for quadratic residues, in the hope that of the
many different methods given, one or the other would contribute to
the illumination of the related arguments [for cubic and biquadratic
residues]. This hope was in no way in vain, for at last tireless labor
has led to favorable success. Soon the fruit of this vigilance will be
permitted to come to public light ...

(see [42, Vol. 11, p. 50] or [41, p. 497, German editions]). The irony is that
Gauss never did publish his proofs, and it was left to Eisenstein and Jacobi
to give us the first complete treatments of cubic and biquadratic reciprocity
(see Collinson [22] or Smith [95, pp. 76-92] for more on the history of these
reciprocity theorems).



88 §4. CUBIC AND BIQUADRATIC RECIPROCITY

We will conclude this section with some remarks about what happened
after Gauss..Number theory was becoming a much larger area of mathemat-
ics, and the study of quadratic forms and reciprocity laws began to diverge.
In the 1830s and 1840s, Dirichlet introduced L-series and began the analytic
study of quadratic forms, and simultaneously, Eisenstein and Jacobi worked
out not only cubic and biquadratic reciprocity, but also reciprocity for 5th,
8th and 12th powers. Kummer was also studying higher reciprocity, and he
introduced his “ideal numbers” to make up for the lack of unique factoriza-
tion in Q(e>™/P). Both he and Eisenstein were able to prove generalized
reciprocity laws using these “ideal numbers” (see Ireland and Rosen [59,
Chapter 14] and Smith [95, pp. 93-126]). In 1871 Dedekind made the tran-
sition from “ideal numbers” to ideals in rings of algebraic integers, thereby
laying the foundation for modern algebraic number theory and class field
theory.

But reciprocity was not the only force leading to class field theory: there
was also complex multiplication. Euler, Lagrange, Legendre and others
studied transformations of the elliptic integrals

/ dx
V(A= x)(1-k2x2)

and they discovered that certain values of k, called singular moduli, gave
elliptic integrals that could be transformed into complex multiples of them-
selves. This phenomenon came to be called complex multiplication. In work-
ing with complex multiplication, Abel observed that singular moduli and
the roots of the corresponding transformation equations have remarkable
algebraic properties. In modern terms, they generate Abelian extensions of
Q(v/—n), ie., Galois extensions of Q(y/—n) with Abelian Galois group.
These topics will be discussed in more detail in Chapter Three.

Kronecker extended and completed Abel’s work on complex multiplica-
tion, and in so doing he made the amazing conjecture that every Abelian
extension of Q(v/—n) lies in one of the fields described above. Kronecker
had earlier conjectured that every Abelian extension of Q lies in one of
the cyclotomic fields Q(e?™/™) (this is the famous Kronecker-Weber theo-
rem, to be proved in §8). Abelian extensions may seem far removed from
reciprocity theorems, but Kronecker also noticed relations between singu-
lar moduli and quadratic forms. For example, his results on complex mul-
tiplication by v/—31 led to the following corollary which he was fond of
quoting:

(x3—10x)% +31(x2 1> =0mod p

p=x*+31y? = { , ,
has an integral solution
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(see [68, Vol. 11, pp. 93 and 99-100, Vol. 1V, pp. 123-129]). This is sim-
ilar to what we just proved for x*+27y* and x* + 64y* using cubic and
biquadratic reciprocity. So something interesting is going on here.
We thus have two interrelated questions of interest:
(i) Is there a general reciprocity law that subsumes the known ones”

(i) Is there a general method for describing all Abelian extensions of a
number field?
The crowning achievement of class field theory is that it solves both of
these problems simultaneously: an Abelian extension L of a number field
K is classified in terms of data intrinsic to K, and the key ingredient linking
L to this data is the Artin reciprocity theorem. Complete statements of the
theorems of class field theory will be given in Chapter Two, and in Chapter
Three we will explain how complex multiplication is related to the class

field theory of imaginary quadratic fields.
For a fuller account of the history of class field theory, see the article

by W. and F Ellison [32, §§III-IV] in Dieudonné’s Abrégé d’Histoire des
Mathématiques 1700-1900. Weil has a nice discussion of reciprocity and cy-
clotomic fields in [105] and [107], and Edwards describes Kummer's “ideal

numbers” in [31, Chapter 4].

D. Exercises

4.1. Prove that Z[w] and Z[i] are subrings of the complex numbers and
are closed under complex conjugation.

4.2. Let Q) = {r +sw:r,s € Q}, and define the norm of r + sw to be
N(r+sw) = (r +sw)(r +sw).
(i) Show that N(r + sw) = r*—rs+s°.
(ii) Show that N (uv) = N(u)N(v) for u,v € Qw).

4.3. It is well-known that R = C[x,y] is a UFD (see Herstein [54, Corol-

lary 2 to Theorem 3.11.1]). Prove that I = {f(x,y) € R : f(0,0) = 0}
is an ideal of R which is not principal, so that R is not a PID. Hint:

x,yel.

44. Given « # 0 in a PID R, prove that a is irreducible <= « is prime
&= aR is a prime ideal <= aR is a maximal ideal.

4.5. Prove Lemma 4.5. Hint for (ii): use (i) and (2.4).

4.6. While Z[w] is a PID and a UFD, this exercise will show that the
closely related ring Z[+/—3] has neither property.
(a) Show that &1 are the only units of Z[v/—3].



90

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.
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(b) Show that 2, 1++/—3 and 1—+/—3 are nonassociate and irre-
ducible in Z[+/=3]. Since 4 =2-2 = (1+v/-=3)(1 —+/=3), these
elements are not prime and thus Z[v/—3] is not a UFD.

(c) Show that the ideal in Z[v/—3] generated by 2 and 1 + /=3 is not
principal. Thus Z[v/—3] is not a PID.

This exercise is concerned with the proof of Proposition 4.7. Let p be
a prime number.

(a) When p =1 mod 3, we showed that p = 77T, where 7 and T are
prime in Z[w]. Prove that 7 and T are nonassociate in Z[w].

(b) When p =2mod 3, prove that p is prime in Z[w]. Hint: show
that p is irreducible. Note that by Lemma 2.5, the equation p =
N (a) has no solutions.

Complete the proof of Lemma 4.8.

Let m be a prime of Z[w] not associate to 1 —w.
(a) Show that 3| N(w)— 1.
(b) If any two of 1, w and w? are congruent modulo 7, then show that

1 =w mod 7, and explain why this contradicts our assumption on
7. This proves that 1, w and w? are distinct modulo 7.

Let m be prime in Z[w], and let a,( € Z[w] be not divisible by .
Verify the following properties of the Legendre symbol.

(@) (af/m)s = (a/m)s(B/m)s.
(b) (a/m); = (B/m)3 when a =3 mod 7.

Let 7 be prime in Z[w]. Assuming that (Z[w]/7Z[w])* is cyclic, prove
(4.11).

Let 7 be a prime of Z[w] which is not associate to 1—w. Prove that
exactly two of the six associates of & are primary.

Prove the top line of (4.13).
Use the hints in the text to prove that the congruence x* = a mod p
is always solvable when p is a prime congruent to 2 modulo 3.

In this problem we will give an application of cubic reciprocity which
is similar to Theorem 4.15. Let p = 1 mod 3 be a prime.

(a) Use the proof of Theorem 4.15 to show that 4p can be written
in the form 4p = a? + 27b%, where a = 1 mod 3. Conclude that
T = (a +3+/—3b)/2 isa primary prime of Z[w]and that p= 77T.
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4.17.

4.18.

4.19.
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(b) Show that the supplementary laws (4.13) can be written

<£>3 — yAa+2)/3
m

<1 — w>3 _ (@+2)/3+b
m

where 7 Is as in part (a).
(c) Use (b) to show that (3/7); = w??.
(d) Use (¢) and (4.14) to prove that for a prime p,

5 p=1mod3and 3is a
4p = x* +243y% —
cubic residue modulo p.

Euler conjectured the result of (d) (in a slightly different form) in
his Tractatus [33, Vol. V, pp. XXII and 250].

In this exercise we will discuss the properties of the Gaussian inte-
gers Z[i].

(a) Use the norm function to prove that Z[i] is Euclidean.

(b) Prove the analogs of Lemmas 4.5 and 4.6 for Z[i].

(¢c) Prove Proposition 4.18.

(d) Formulate and prove the analog of Lemma 4.8 for Z[i].

(e) Prove (4.19).

If 7 1s a prime of Z[{] not associate to 1+ ¢, show that 4 | N(7) — 1
and that +1 and =+ are all distinct modulo .

This exercise is devoted to the properties of the Legendre symbol

(a/m)s, where m is prime in Z[i] and « is not divisible by .

(a) Show that a™W(™=D/4 is congruent to a unique fourth root of
unity modulo 7. This shows that the Legendre symbol, as given
in (4.20), 1s well-defined. Hint: use Exercise 4.17.

(b) Prove that the analogs of the properties given in Exercise 4.10
hold for (a/m)4.

(¢c) Prove that

o

<_>4 =1 <= x*=amod7 is solvable in Z[i].
T

In this exercise we will study the integer congruence x* = a mod p,

where p = 1mod 4 is prime and a is an integer not divisible by p.
(a) Write p =77 in Z[i]. Then use (4.20) to show that (a/7r)42 =
(a/p), and conclude that (a/m)s; = +1 it and only if (a/p) = 1.
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4.20.

4.21.

4.22.
4.23.

4.24.
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(b) Verify the partition of (Z/pZ)* described in the discussion fol-
lowing (4.20).

Here we will study the congruence x* = a mod p when p = 3 mod 4

is prime and a is an integer not divisible by p.

(a) Use (4.20) to show that (a/p)s = 1. Thus a is a fourth power
modulo p in the ring Z[i].

(b) Show that a is the biquadratic residue of an integer modulo p if
and only if (a/p) = 1. Hint: study the maps ¢ (x) = x2 on an
Abelian group of order 2m, m odd.

If a prime 7 of Z[i] is not associate to 1+ i, then show that a unique
associate of w is primary.

Prove the top formula of (4.22).

Use the supplementary laws (4.22) to prove part (i) of Theorem
4.23.

Let p=1mod 4 be prime, and write p = a? + b*, where a is odd
and b is even. The goal of this exercise is to present Dirichlet’s ele-
mentary proof that (2/m)s = i®®/2, where 7 = a + bi.

(a) Use quadratic reciprocity for the Jacobi symbol to prove that
(a/p) =1.
(b) Use 2p = (a + b)* + (a — b)* and quadratic reciprocity to show

that
(a + b) = (—1)@+oy-1/8,
P

(c) Use (b) and (4.20) to show that

p 7r

(d) From (a + b)? = 2ab mod p, deduce that
(i) (a +b)P~D/2 = (2ab)P-D/* mod p.

(ii) (@ +b/p) = (2ab/m)4.
(e) Show that 2ab = 2a%i mod =, and then use (a) and Exercise 4.19

to show that
2ab _ 21
T )T \T )

(f) Combine (c), (d) and (e) to show that (2/7)4 = i?®/2.
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In this exercise we will study Gauss’ statement of biquadratic reci-

procity.

(a) If 7 is a primary prime of Z[i], then show that either 7 = 1 mod
4 or m =3+ 2i mod 4.

(b) Let 7 and 6 be distinct primary primes in Z[i]. Show that bi-
quadratic reciprocity is equivalent to the following two state-
ments:

If either w or € is congruent to 1 modulo 4,

then (7/0)4 = (0/7)4.

If 7 and @ are both congruent to 3 + 2i modulo 4,

then (7/0)s = —(0/7)4.
This is how Gauss states biquadratic reciprocity in [42, Vol. II,
§67, p. 138].

If 2 is a biquadratic residue modulo an odd prime p, prove that
p =+£1mod 8.

In this exercise, we will present Gauss’ proof that for a prime p =
1 mod 8, the biquadratic character of 2 is determined by the decom-
position p = a? + 2b*. As usual, we write p = 7T in Z[i].

(a) Show that (—1/m)s = 1 when p =1 mod 8.

(b) Use the properties of the Jacobi symbol to show that

3)-

(c) Use the Jacobi symbol to show that (b/p) = 1. Hint: write b =
2™¢, ¢ odd, and first show that (¢/p) = 1.

(d) Show that
(2)- (5= (5)-(5);

Hint: use Exercise 4.19.
Combining (c) and (d), we see that (2/7)s = (—1)@~D/8 and Gauss’
claim follows. If you read Gauss’ original argument [42, Vol. II, §13],
you’ll appreciate how much the Jacobi symbol simplifies things.

Let (f,A) and (f, ) be periods, and write (f,p) = (¥t + ---(#/. Then
prove that

f
£ Fm)y =D (A + ).
j=1
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Let p =1 mod 3 be prime, and set p—1 = 3f. Let (f,1), (f,g) and
(f,g?) be the periods as in the text. Recall that g is a primitive root
modulo p. In this problem we will describe Gauss’ proof of (4.24)
(see [41, §358]). For i, j € {0,1,2}, let (ij) be the number of pairs
(m,n), 0 <m,n < f —1, such that

1 +g3m+i _:_g3n+j mod p.

(a) Show that the number of solutions modulo p of the equation
x3—y3=1mod p is N = 9(00) + 6.
(b) Use Exercise 4.28 to show that
(fs1)-(F,1) = £ + (00)(f,1) + (01)(f,8) + (02)(f &)
(fs1)- (F,8) = (10)(f, 1) + (A1)(f»8) + (12)(f .87)

and conclude that (00)+ (01) +(02) = f —1 and (10) + (11) +
(12) = f. Hint: (f,0) = f and —1 = (-1)3.

(c) Show that (10) = (22), (11) = (20) and (12) = (21). Hint: expand
(f,8)-(f,1) and compare it to what you got in (b).

(d) Arguing as in (c), show that the 9 quantities (ij) reduce to three:

a =(12) = (21) = (00) + 1

p=(01) =(10) = (22)
v = (02) = (20) = (11).

(e) Note that (f,1)-(f,g)-(f,g?) is an integer. By expanding this
quantity in terms of a, 8 and <y, show that

a2+ﬁ2+72—a=aﬁ+ﬁ'y+a'y.
(f) Using (e), show that
(6a—38-3y—2)*+27(B—7)* = 12(a + B +7) — 4

(g) Recall that a + 3+ = f (this was proved in (b)) and that p —
1=3f. Then use (e) to show that

4p = a® + 27b?,

where a =6a—-38—-3y—-2and b=(5—1.
(h) Let a be as in (g). Show that

a=9% -3a+p+7)—2=9a—-p-—1.
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Then use a = (00) + 1 and (a) to conclude that
a=N-—p+2.

This proves (4.24).
In his first memoir on biquadratic residues [42, Vol. II, §§15-20, pp.
78-89], Gauss used the (ij)’s (without using Gauss sums) to deter-
mine the biquadratic character of 2.






CHAPTER TWO

CLASS FIELD THEORY

§5. THE HILBERT CLASS FIELD AND p = x2 + ny?

In Chapter One, we used elementary techniques to study the primes repre-
sented by x2 + ny?, n> 0. Genus theory told us when p = x2 + ny? for a
large but finite number of n’s, and cubic and biquadratic reciprocity enabled
us to treat two cases where genus theory failed. These methods are lovely
but limited in scope. To solve p = x? + ny? when n > 0 is arbitrary, we will
need class field theory, and this is the main task of Chapter
Two. But rather than go directly to the general theorems of class field
theory, in §5 we will first study the special case of the Hilbert class
field. Theorem 5.1 below will use Artin Reciprocity for the Hilbert class
field to solve our problem for infinitely many (but not all) n>0. We
will then study the case p = x? + 14y? in detail. This is a case where our
previous methods failed, but once we determine the Hilbert class field
of Q(v/—14), Theorem 5.1 will immediately give us a criterion for when
p = x%+ 14y2,

The central notion of this section is the Hilbert class field of a number
field K. We do not assume any previous acquaintance with this topic, for
one of our goals is to introduce the reader to this more accessible part of
class field theory. To see what the Hilbert class field has to do with the
problem of representing primes by x2 + ny?2, let’s state the main theorem
we intend to prove:

97
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Theorem 5.1. Let n > 0 be an integer satisfying the following condition:
(5.2) n squarefree, n % 3 mod 4.

Then there is a monic irreducible polynomial f,(x) € Z[x] of degree h(—4n)
such that if an odd prime p divides neither n nor the discriminant of f,(x),
then

, , (-n/p)=1and f,(x)=0mod p
p=XxX"+tny <=
has an integer solution.

Furthermore, f,(x) may be taken to be the minimal polynomial of a real alge-
braic integer « for which L = K(«) is the Hilbert class field of K = Q(\/—n).

While (5.2) does not give all integers n > 0, it gives infinitely many, so
that Theorem 5.1 represents some real progress. In §9 we will use the full
power of class field theory to prove a version of Theorem 5.1 that holds for

all positive integers n.

A. Number Fields

We will review some basic facts from algebraic number theory, including
Dedekind domains, factorization of ideals, and ramification. Most of the
proofs will be omitted, though references will be given. Readers looking for
a more complete treatment should consult Borevich and Shafarevich [§],
Lang [72] or Marcus [77]. For an especially compact presentation of this
material, see Ireland and Rosen [59, Chapter 12].

To begin, we define a number field K to be a subfield of the complex
numbers C which has finite degree over Q. The degree of K over Q is
denoted [K : Q]. Given such a field K, we let Ok denote the algebraic
integers of K, i.e., the set of all @ € K which are roots of a monic integer
polynomial. The basic structure of Ok is given in the following proposition:

Proposition 5.3. Let K be a number field.
(1) Ok is a subring of C whose field of fractions is K.
(il) Ok is a free Z-module of rank [K : Q].

Proof. See Borevich and Shafarevich [8, §2.2] or Marcus [77, Corollaries to
Theorems 2 and 9]. Q.E.D.

We will often call Og the number ring of K. To begin our study of Ok,
we note that part (1) of Proposition 5.3 has the following useful conse-
quence concerning the ideals of Og:
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Corollary 5.4. If K is a number field and a is a nonzero ideal of Ok, then
the quotient ring Ok [ a is finite.

Proof. See Exercise 35.1. Q.E.D.

Given a nonzero ideal a of the number ring Ok, its norm is defined to
be N(a) = |Ok/a|. Corollary 5.4 guarantees that N(a) is finite.

When we studied the rings Z[w] and Z[i] in §4, we used the fact that they
were unique factorization domains. In general, the rings Ok are not UFDs,
but they have another property which is almost as good: they are Dedekind
domains. This means the following:

Theorem 5.5. Let Ok be the ring of integers in a number field K. Then Ok
is a Dedekind domain, which means that
(i) Ok is integrally closed in K, i.e, if a € K satisfies a monic polynomial
with coefficients in Ok, then a € Ok.
(ii) Ok is Noetherian, i.e., given any chain of ideals ay C a3 C ---, there is
an integer n such that a,, = Q,, 41 = ---.
(iii) Every nonzero prime ideal of Ok is maximal.

Proof. The proof of (i) follows easily from the properties of algebraic inte-
gers (see Lang [72, §1.2] or Marcus [77, Exercise 4 to Chapter 2]), while (ii)
and (iii) are straightforward consequences of Corollary 5.4 (see Exercise
5.1). Q.E.D.

The most important property of a Dedekind domain is that it has unique
factorization at the level of ideals. More precisely:

Corollary 5.6. If K is a number field, then any nonzero ideal a in Ok can
be written as a product

a=p1...pr

of prime ideals, and the decomposition is unique up to order. Furthermore,
the p;’s are exactly the prime ideals of Ok containing a.

Proof. This corollary holds for any Dedekind domain. For a proof, see Lang
[72, §1.6] or Marcus [77, Chapter 3, Theorem 16]. In Ireland and Rosen [59,
§12.2] there is a nice proof (due to Hurwitz) that is special to the number
field case. Q.E.D.

Prime ideals play an especially important role in algebraic number the-
ory. We will often say “prime” rather than “nonzero prime ideal”, and the
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terms “prime of K” and “nonzero prime ideal of Og” will be used inter-
changeably. Notice that when p is a prime of K, the quotient ring O /p
is a finite field by Corollary 5.4 and Theorem 5.5. This field is called the
residue field of p.

Besides ideals of Ok, we will also use fractional ideals, which are the
nonzero finitely generated Og-submodules of K. The name “fractional ide-
al” comes from the fact that such an ideal can be written in the form aa,
where a € K and a is an ideal of Ok (see Exercise 5.2). Readers unfamiliar
with fractional ideals should consult Marcus [77, Exercise 31 to Chapter 3].
The basic properties of fractional ideals are:

Proposition 5.7. Let a be a fractional Ok-ideal.

(1) a is invertible, i.e., there is a fractional Ok-ideal b such that ab = Ok.
The ideal b will be denoted a=!.

(1) a can be written uniquely as a product a = []._ pl', r; € Z, where the
p;’s are distinct prime ideals of O.

Proof. See Lang [72, §1.6] or Marcus [77, Exercise 31 to Chapter 3].
Q.E.D.

We will let Ix denote the set of all fractional ideals of K. Ix is closed
under multiplication of ideals (see Exercise 5.2), and then part (i) of Propo-
sition 5.7 shows that Ix is a group. The most important subgroup of Ix is
the subgroup Py of principal fractional ideals, i.e., those of the form aOg
for some a € K*. The quotient Ix/Px is the ideal class group and is de-
noted by C(Ok). A basic fact is that C(Ok) is a finite group (see Borevich
and Shafarevich [8, §3.7] or Marcus [77, Corollary 2 to Theorem 35]). In
the case of imaginary quadratic fields, we will see in Theorem 5.30 that the
ideal class group is closely related to the form class group defined in §3.

We will next introduce the idea of ramification, which is concerned with
the behavior of primes in finite extensions. Suppose that K is a number
field, and let L be a finite extension of K. If p is a prime ideal of Ok, then
pO; is an ideal of O, , and hence has a prime factorization

pOL = ‘131 e ;3
where the ‘B;’s are the distinct primes of L containing p. The integer e;,
also written ey, , is called the ramification index of p in ;. Each prime
B; containing p also gives a residue field extension Ok /p C Or/*B;, and
its degree, written f; or fpiip, 18 the inertial degree of p in B;. The basic
relation between the e;’s and f;’s is given by

Theorem 5.8. Let K C L be number fields, and let p be a prime of K. If
e; (resp. fi), i =1,...,g are the ramification indices (resp. inertial degrees)
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defined above, then

Proof. See Borevich and Shafarevich [8, §3.5] or Marcus [77, Theorem 21].
Q.E.D.

In the above situation, we say that a prime p of K ramifies in L if any of
the ramification indices e; are greater than 1. It can be proved that only a
finite number of primes of K ramify in L (see Lang [72, §II1.2] or Marcus
[77, Corollary 3 to Theorem 24]).

Most of the extensions K C L we will deal with will be Galois ex-
tensions, and in this case the above description can be simplified as fol-
lows:

Theorem 5.9. Let K C L be a Galois extension, and let p be prime in K.

(i) The Galois group Gal(L/K) acts transitively on the primes of L con-
taining p, i.e., if P and P' are primes of L containing p, then there is
o € Gal(L/K) such that a(*B) = P'.

(ii) The primes By,...,"B, of L containing p all have the same ramification
index e and the same inertial degree f, and the formula of Theorem 5.8
becomes |

efg =[L:K].

Proof. For a proof of (i), see Lang [72, §1.7] or Marcus [77, Theorem 23].
The proof of (ii) follows easily from (i) and is left to the reader (see Exer-
cise 5.3). Q.E.D.

Given a Galois extension K C L, an ideal p of K ramifies if ¢ > 1, and
is unramified if e = 1. If p satisfies the stronger condition e = f =1, we
say that p splits completely in L. Such a prime is unramified, and in addition
pOy, is the product of [L: K] distinct primes, the maximum number allowed
by Theorem 5.9. In §8 we will show that L is determined uniquely by the
primes of K that split completely in L.

We will also need some facts concerning decomposition and inertia
groups. Let K C L be Galois, and let B be a prime of L. Then the decom-
position group and inertia group of *B are defined by

Dy = {7 € Gal(L/K): o() = B}
Iy = {0 € Gal(L/K):0(a) = amod B for all a € O }.
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It is easy to show that Iy C Dy and that an element o € Dy induces an
automorphism & of O /P which is the identity on Og/p, p = PN Ok (see

Exercise 5.4). If G denotes the Galois group of Ok /p C O /B, it follows

that & € G. Thus the map ¢ — G defines a homomorphism Dg — G whose
kernel is exactly the inertia group Iy (see Exercise 5.4). Then we have:

Proposition 5.10. Let Dy, Iy and G be as above.
(i) The homomorphism Dy — G is surjective. Thus Dy [Ig ~ G.
(ii) |Iq3| = es,mp and |Dq3| = e;,mpf;mp.

Proof. See Lang [72, §1.7] or Marcus [77, Theorem 28]. Q.E.D.

The following proposition will help us decide when a prime is unramified
or split completely in a Galois extension:

Proposition 35.11. Let K C L be a Galois extension, where L = K (a) for
some o € Or. Let f(x) be the monic minimal polynomial of a over K, so
that f(x) € Ok[x]. If p is prime in Ok and f(x) is separable modulo p, then
(i) p is unramified in L.
(i) If f(x)= fi(x)-- fg(x) mod p, where the fi(x) are distinct and irre-
ducible modulo p, then B; = pOr + fi(a)OL is a prime ideal of Oy,
Pi# Pjfori#j, and

pOL = P1---Pe.

Furthermore, all of the f;(x) have the same degree, which is the inertial
degree f.

(iii) p splits completely in L if and only if f(x)= 0 mod p has a solution in
Ok.

Proof. Note that (i) and (iii) are immediate consequences of (ii) (see Exer-
cise 5.5). To prove (ii), note that f(x) separable modulo p implies that

f(¥) = fi(x) - fo(x) mod p,

where the fi(x) are distinct and irreducible modulo p. The fact that the
above congruence governs the splitting of p in Oy is a general fact that
holds for arbitrary finite extensions (see Marcus [77, Theorem 27]). How-
ever, the decomposition group from Proposition 5.10 makes the proof in
the Galois case especially easy. See Exercise 5.6. Q.E.D.
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B. Quadratic Fields

To better understand the theory just sketched, let’s apply apply it to the case
of quadratic number fields. Such a field can be written uniquely in the form
K = Q(v/N), where N # 0,1 is a squarefree integer. The basic invariant of
K is its discriminant dg , which is defined to be

N if N=1mod 4
dK=

(5.12)
4N otherwise.

Note that dg =0,1 mod 4 and K = Q(V/dg), so that a quadratic field is
determined by its discriminant.

The next step is to describe the integers Ok of K. Writing K = Q(vV/N),
N squarefree, one can show that

Z[V/N], N # 1 mod 4
(5-13) Ok = Z[1+\/ﬁ

> ], N=1mod 4

(see Exercise 5.7 or Marcus [77, Corollary 2 to Theorem 1]). Hence the
rings Z[w] and Z[i] from §4 are the full rings of integers in their respective
fields. Using the discriminant, this description of Ox may be written more
elegantly as follows:

(5.14) Ok =1 [ﬂ‘f—@]

2

(see Exercise 5.7).

We can now explain the restriction (5.2) made on n in Theorem 35.1.
Namely, given n > 0, let K be the imaginary quadratic field @(/—n). Then
(5.12) and (5.13) imply that

(5.15) dx = —4n < Ok =1I[\/—n] <= n satisfies (5.2)

(see Exercise 5.8). Thus the condition (5.2) on n is equivalent to Z[\/—n]
being the full ring of integers in K. For other n’s, we will see in §7 that
Z[/—n] is no longer a Dedekind domain but still has a lot of interesting
structure.

We next want to discuss the arithmetic of a quadratic field K. As in §4,
this means describing units and primes, the difference being that “prime”
now means “prime ideal”. Let’s first consider units. Quadratic fields come
in two flavors, real (dx >0) and imaginary (dx < 0), and the units Ok
behave quite differently in the two cases. In the imaginary case, there are
only finitely many units. In §4 we computed O} for K = Q(v/-3) or Q(i),
and for all other imaginary quadratic fields it turns out that O = {1}
(see Exercise 5.9). On the other hand, real quadratic fields always have
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infinitely many units, and determining them is related to Pell’s equation
and continued fractions (see Borevich and Shafarevich [8, §2.7]).

Before describing the primes of Ok, we will need one useful bit of
notation: if D =0,1 mod 4, then the Kronecker symbol (D /2) is defined
by

0 if D=0mod 4

(§)= 1 if D=1 mod 8
-1 if D =5 mod 8.

We will most often apply this when D = dg is the discriminant of a quadrat-
ic field K. The following proposition tells us about the primes of quadratic
fields:

Proposition 5.16. Let K be a quadratic field of discriminant dg, and let the
nontrivial automorphism of K be denoted a— a'. Let p be prime in 1.
() If (dx/p)=0 (i.e, p|dg), then pOg = p* for some prime ideal p of
Ok.
(ii) If (dx/p) = 1, then pOk = pp’, where p # p' are prime in Ok.
(ii1) If (dx/p) = —1, then pOg is prime in Ok.
Furthermore, the primes in (i)—(iii) above give all nonzero primes of Ok.

Proof. To prove (1), suppose that p is an odd prime dividing dx, and let p
be the ideal

p=pOk +/dkOk.

Squaring, one obtains

p? = p*Ok + p\/dxOk + dg Ok.

However, dk is squarefree (except for a possible factor of 4) and p is an
odd divisor, so that ged(p?,dk) = p. It follows easily that p> = pOx, and
then the relation efg = [K : Q] =2 from Theorem 5.9 implies that p is a
prime ideal. The case when p = 2 is similar and is left as part of Exercise
5.10.

Let’s next prove (ii) and (iii) for an odd prime p not dividing dg. The
key tool will be Proposition 5.11. Note that f(x) = x> — dg is the minimal
polynomial of the primitive element \/dg of K over Q, and since p /) dg,
f(x) is separable modulo p. Then Proposition 5.11 shows that p is unram-
ified in K.

If (dx/p) =1, then the congruence x2 = dx mod p has a solution, and
consequently p splits completely in K by part (iii) of Proposition 5.11, i.e.,
pOk = p,p, for distinct primes p; and p, of Og. Since Gal(K/Q) acts
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transitively on the primes of K containing p (Theorem 5.9), we must have
p,' = p,, and it follows that pOk factors as claimed. If (dx/p) = —1, then
f(x) = x? — dk is irreducible modulo p, and hence by part (ii) of Proposi-
tion 5.11, pOk is prime in K.

The proof of (ii) and (iii) for p =2 is similar and is left as an exer-
cise (see Exercise 5.10). It remains to prove that the prime ideals listed so
far are all nonzero primes in Ok. The argument is analagous to what we
did in Proposition 4.7, and the details are left to the reader (see Exercise
5.10). Q.E.D.

From this proposition, we get the following immediate corollary which
tells us how primes of Z behave in a quadratic extension:

Corollary 5.17. Let K be a quadratic field of discriminant dg, and let p be
an integer prime. Then:

(i) p ramifies in K if and only if p divides dg.
(i) p splits completely in K if and only if (dx/p) = 1. Q.E.D.

C. The Hilbert Class Field

The Hilbert class field of a number field K is defined in terms of the un-
ramified Abelian extensions of K. To see what these terms mean, we begin
with the “Abelian” part. This is easy, for an extension K C L is Abelian if it
is Galois and Gal(L/K) is an Abelian group. But we aren’t quite ready to
define “unramified”, for we first need to discuss the ramification of infinite
primes.

Prime ideals of Ok are often called finite primes to distinguish them
from the infinite primes, which are determined by the embeddings of K
into C. A real infinite prime is an embedding o : K — R, while a complex
infinite prime is a pair of complex conjugate embeddings 0,0: K — C,
o # o. Given an extension K C L, an infinite prime ¢ of K ramifies in L
provided that o is real but it has an extension to L which is complex.
For example, the infinite prime of Q is unramified in Q(\/f) but ramified
in Q(v-2).

An extension K C L is unramified if it is unramified at all primes, finite
or infinite. While this is a very strong restriction, it can still happen that a
given field has unramified extensions of arbitrarily high degree (an example
is K =Q(v/—2-3-5-7-11-13), a consequence of the work of Golod and
Shafarevich on class field towers—see Roquette [85]). But if we ask for
unramified Abelian extensions, a much nicer picture emerges. In §8 we will
use class field theory to prove the following result:
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Theorem 5.18. Given a number field K, there is a finite Galois extension L
of K such that:
(i) L is an unramified Abelian extension of K.

(i1) Any unramified Abelian extension of K lies in L. Q.E.D.

The field L of Theorem 5.18 is called the Hilbert class field of K. It is the
maximal unramified Abelian extension of K and is clearly unique.

To unlock the full power of the Hilbert class field L of K, we will use the
Artin symbol to link L to the ideal structure of Og. The following lemma
is needed to define the Artin symbol:

Lemma 5.19. Let K C L be a Galois extension, and let p be a prime of Ok
which is unramified in L. If *B is a prime of O containing p, then there is
a unique element o € Gal(L/K) such that for all a € O,

o(a) = a™® mod P,

where N (p) = |Ok/p| is the norm of p.

Proof. As in Proposition 5.10, let Dy and Iy be the decomposition and
inertia groups of ‘B. Recall that o € Dy induces an element & € G, where
G is the Galois group of Op /P over Ok/p. Since p is unramified in L,
part (ii) of Proposition 5.10 tells us that |Iy| = e, = 1, and then the first
part of the proposition implies that ¢ — & defines an isomorphism

Dy = G.

The structure of the Galois group G is well known: if Ok /p has g elements,

then G is a cyclic group with canonical generator given by the Frobenius
automorphism x — x? (see Hasse [50, pp. 40—41]). Thus there is a unique
o € Dy which maps to the Frobenius element. Since ¢ = N(p) by defini-
tion, o satisfies our desired condition

o(@)=a¥® mod P forallac Oy.

To prove uniqueness, note that any o satisfying this condition must lie in
Dg, and then we are done. Q.E.D.

The unique element o of Lemma 5.19 is called the Artin symbol and
is denoted ((L/K)/B) since it depends on the prime P of L. Its crucial
property is that for any a € O, we have

L/K

(5.20) (_‘,ﬁ_) (a) = a¥® mod P,
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where p = BN Ok . The Artin symbol ((L/K)/PB) has the following useful
properties:

Corollary 5.21. Let K C L be a Galois extension, and let p be an unramified
prime of K. Given a prime B of L containing p, we have:

(i) If o € Gal(L/K), then

(i) =o(5)7

(ii) The order of ((L/K)/B) is the inertial degree f = fgp-
(iii) p splits completely in L if and only if (L/K)/B) = 1.

Proof. The proof of (i) is a direct consequence of the uniqueness of the
Artin symbol. The details are left to the reader (see Exercise 5.12).

To prove (ii), recall from the proof of Lemma 5.19 that since p is un-
ramified, the decomposition group D is isomorphic to the Galois group
of the finite extension Ok /p C O /P whose degree is the inertial degree
f . By definition, the Artin symbol maps to a generator of the Galois group,
so that the Artin symbol has order f as desired.

To prove (iii), recall that p splits completely in L if and only if e = f =
1. Since we’re already assuming that e = 1, (iii) follows immediately from
(ii). Q.E.D.

When K C L is an Abelian extension, the Artin symbol ((L/K)/*B) de-
pends only on the underlying prime p = PN Ok . To see this, let P’ be

another prime containing p. We've seen that P’ = o(*P) for some o €
Gal(L/K). Then Corollary 5.21 implies that

(59~ (48)-+(4)~- (%)

since Gal(L/K) is Abelian. It follows that whenever K C L is Abelian, the
Artin symbol can be written as ((L/K)/p).

To see the relevance of the Artin symbol to reciprocity, let’s work out an
example. Let K = Q(v/=3) and L = K(v2). Since Ok is the ring Z[w] of
§4, it’s a PID, and consequently a prime ideal p can be written as 7Z[w],
where 7 is prime in Z[w]. If m doesn’t divide 6, it follows from Proposi-
tion 5.11 that 7 is unramified in L (see part (a) of Exercise 5.14). Since
Gal(L/K) ~ 7 /37 is Abelian, we see that ((L/K)/7) is defined. To deter-
mine which automorphism it is, we need only evaluate it on v2. The answer
is very nice:

(5.22) (5/—15) (V2) = (3)3\75.

T T
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So the Artin symbol generalizes the Legendre symbol! To prove this, let P
be a prime of O;, containing 7. Then, by (5.20),

(K5 () = (42)" moa s

™
= 2NM-1/3 .32 mod B.

However, we know from (4.10) that

HN(m)=1)/3 _ (%)3 mod 7,

and then 7 € P implies

(———L/K) (\3/5) = (2)3\7-2— mod ‘.
T T
Since ((L/K)/m)(v'2) equals v/2 times a cube root of unity (which are dis-
tinct modulo P—see part (a) of Exercise 5.13), (5.22) is proved. In Exercise
5.14, we will generalize (5.22) to the case of the nth power Legendre sym-
bol.

When K C L is an unramified Abelian extension, things are especially
nice because ((L/K)/p) is defined for all primes p of Ok . To exploit this,
let Ix be the set of all fractional ideals of Ox. As we saw in Proposition
5.7, any fractional ideal a € Ix has a prime factorization

r
a= pr", riel,
i=1

and then we define the Artin symbol ((L/K)/a) to be the product

() -2y

i=1

The Artin symbol thus defines a homomorphism, called the Artin map,

Notice that when K C L is ramified, the Artin map is not defined on all of
Ix . This is one reason why the general theorems of class field theory are
complicated to state.

The Artin reciprocity theorem for the Hilbert class field relates the Hilbert
class field to the ideal class group C(Og) as follows:
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Theorem 5.23. If L is the Hilbert class field of a number field K, then the
Artin map

is surjective, and its kernel is exactly the subgroup Py of principal fractional
ideals. Thus the Artin map induces an isomorphism

C(Ok) = Gal(L/K). Q.E.D.

This theorem will follow from the results of §8. The appearance of the class
group C(Ok) explains why L is called a “class field”.

If we apply Galois theory to Theorems 5.18 and 5.23, we get the fol-
lowing classification of unramified Abelian extensions of K (see Exercise
5.17):

Corollary 5.24. Given a number field K, there is a one-to-one correspon-
dence between unramified Abelian extensions M of K and subgroups H of the
ideal class group C(Ok). Furthermore, if the extension K C M corresponds
to the subgroup H C C(Ok), then the Artin map induces an isomorphism

C(Ox)/H = Gal(M /K). QED.

This corollary is class field theory for unramified Abelian extensions, and
it illustrates one of the main themes of class field theory: a certain class of
extensions of K (unramified Abelian extensions) are classified in terms of
data intrinsic to K (subgroups of the ideal class group). The theorems we
encounter in §8 will follow the same format.

Theorem 5.23 also allows us to characterize the primes of K which split
completely in the Hilbert class field:

Corollary 5.25. Let L be the Hilbert class field of a number field K, and let
p be a prime ideal of K. Then

p splits completely in L <=> p is a principal ideal.

Proof. By Corollary 5.21, we know that p splits completely if and only if
((L/K)/p) = 1. Since the Artin map induces an isomorphism C(Ok) ~~
Gal(L/K), we see that ((L/K)/p) =1 if and only if p determines the triv-
ial class of C(Ok). By the definition of the ideal class group, this means
that p is principal, and the corollary is proved. Q.E.D.

In §8, we will see that the Hilbert class field is characterized by the prop-
erty that the primes that split completely are exactly the principal prime
ideals.
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D. Solution of p = x2 + ny? for infinitely many n

Now that we know about the Hilbert class field, we can prove Theorem 5.1:

Proof of Theorem 5.1. The first step is to relate p = x? + ny? to the behav-
ior of p in the Hilbert class field L. This result is sufficiently interesting to
be a theorem in its own right:

Theorem 5.26. Let L be the Hilbert class field of K = Q(\/—n). Assume that
n satisfies (5.2), so that Og = L[\/—n). If p is an odd prime not dividing n,
then

p = x* + ny? < p splits completely in L.

Proof. Since n satisfies (5.2), we know from (5.15) that d¢ = —4n and Ok
= Z[\/—n]. Let p be an odd prime not dividing n. Then pfdg, so that p
is unramified in K by Corollary 5.17. We will prove the following equiva-
lences:

p=x*+ny? < pOg =pp, p # p, and p is principal in Ok
(5.27) < pOg = pp, p # p, and p splits completely in L
<= p splits completely in L,

and Theorem 5.26 will follow.

To prove the first equivalence, suppose that p = x2 + ny? = (x + /—ny)
X(x —/—ny). Setting p = (x + /—ny)Ok, then pOg = pp must be the
prime factorization of pOk in Ok . Note that p # p since p is unramified in
K . Conversely, suppose that pOkx = pp, where p is principal. Since O =
Z[\/—n], we can write p = (x + /—ny)Ok. This implies that pOx = (x2 +
ny?)Ox, and it follows that p = x2 + ny?2.

The second equivalence follows immediately from Corollary 5.25. To
prove the final equivalence, we will use the following lemma:

Lemma 5.28. Let L be the Hilbert class field of an imaginary quadratic field
K, and let T denote complex conjugation. Then T(L) = L, and consequently
L is Galois over Q.

Proof. 1t is easy to see that 7(L) is an unramified Abelian extension of
T(K)= K. Since L is the maximal such extension, we have 7(L)C L,
and then 7(L) = L since they have the same degree over K. Hence T €
Gal(L/Q), which implies that L is Galois over Q (see Exercise 5.19).

Q.E.D.

To finish the proof of (5.27), note that the condition

pOxk =pp, p # p, and p splits completely in L
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says that p splits completely in K and that some prime of K containing p
splits completely in L. Since L is Galois over Q, this is easily seen to be
equivalent to p splitting completely in L (see Exercise 5.18), and Theorem
5.26 is proved. Q.E.D.

The next step in the proof of Theorem 5.1 is to give a more elementary
way of saying that p splits completely in L. We have the following criterion:

Proposition 5.29. Let K be an imaginary quadratic field, and let L be a
finite extension of K which is Galois over Q. Then:

(i) There is a real algebraic integer « such that L = K(a).
(i) Given a as in (i), let f(x) € Z[x] denote its monic minimal polynomial.
If p is a prime not dividing the discriminant of f(x), then

(dx/p)=1and f(x)=0mod p

p splits completely in L < {
has an integer solution.
Proof. By Lemma 5.28, L is Galois over Q, and thus [LNR: Q] =[L: K]
since LNR is the fixed field of complex conjugation. This implies that for
ace LNR,
LNR =Q(a) < L =K(a)

(see Exercise 5.19). Hence, if a € O NR satisfies LNR = Q(a), then a is
a real integral primitive element of L over K, and (i) is proved. Further-
more, given such an a, let f(x) be its monic minimal polynomial over Q.
Then f(x) € Z[x], and since [LNR:Q] =[L:K], f(x) is also the minimal
polynomial of a over K.

To prove the final part of (ii), let p be a prime not dividing the discrim-
inant of f(x). This tells us that f(x) is separable modulo p. By Corollary
5.17 we have

_ _ d
POk =pp, p#p < (?K)=1.

We may assume that p splits completely in K, so that Z/pZ ~ Ok/p. Since
f(x) is separable over Z/pZ, it is separable over Ok /p, and then Proposi-
tion 5.11 shows that

p splits completely in L <= f(x) =0 mod p is solvable in Ok

<= f(x)=0mod p is solvable in Z,

where the last equivalence again uses Z/pZ ~ Ok /p. The proposition now
follows from the last equivalence of (5.27). Q.E.D.
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We can now prove the main equivalence of Theorem 5.1. Since the
Hilbert class field L of K = Q(v/—n) is Galois over @, Proposition 5.29
implies that there is a real algebraic integer o which is a primitive element
of L over K. Let f,(x) be the monic minimal polynomial of «a, and let
p be an odd prime dividing neither » nor the discriminant of f,(x), then
Theorem 5.26 and Proposition 5.29 imply that

p = x>+ ny* <= p splits completely in L
(-n/p)=1and f,(x)=0mod p
—

has an integer solution.

In the second equivalence, recall that n satisfies (5.2), so that dg = —4n,
and hence (dg/p) = (—n/p).

[t remains to show that the degree of f,(x) is the class number A(—4n).
Using Galois theory and Theorem 5.23, it follows that f,(x) has degree

[L: K] =|Gal(L/K)| = [C(Ok)I.

In Theorem 5.30 below we will see that when dg <0, there is a natural

isomorphism
C(Ok)~ C(dk)

between the ideal class group C(Ok) and the form class group C(dg ) from
§3. Since dg = —4n in our case, we have |C(Ok)| = |C(—4n)| = h(—4n),
which completes the proof of Theorem 5.1. Q.E.D.

The polynomial f,(x) of Theorem 5.1 is not unique—there are lots of
primitive elements. However, we can at least predict its degree in advance
by computing the class number A(—4n). In §8 we will see that knowing
fn(x) is equivalent to knowing the Hilbert class field.

We have now answered our basic question of when p = x* + ny?, at
least for those n satisfying (5.2). Notice that quadratic forms have almost
completely disappeared! We used x? + ny? in Theorem 5.26, but otherwise
all of the action took place using ideals rather than forms. This is typical
of what happens in modern algebraic number theory—ideals are the dom-
inant language. At the same time, we don’t want to waste the work done
on quadratic forms in §§2-3. So can we translate quadratic forms into ide-
als? In §7 we will study this question in detail. The full story is somewhat
complicated, but the case of negative field discriminants rather nice: here,
the form class group C(dg) from §3 is 1somorphic to the ideal class group
C(Ok). More precisely, we get the following theorem, which is a special
case of the results of §7:

Theorem 5.30. Let K be an imaginary quadratic field of discriminant
dx < 0. Then:
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() If f(x,y)=ax?+bxy +cy? is a primitive positive definite quadratic
form of discriminant dg, then

[a,(—b + \/dk)/2] = {ma + n(—b + \/dk)/2: m,n € 1}

is an ideal of Ok.

(i) The map sending f(x,y) to [a,(—b + /dk)/2] induces an isomorphism
between the form class group C(dk) of §3 and the ideal class group
C(Ok). Hence the order of C(Ok) is the class number h(dg). Q.E.D.

If we combine Theorems 5.30 and 5.23, we see that the Galois group
Gal(L/K) of the Hilbert class field of an imaginary quadratic field K is
canonically isomorphic to the form class group C(dk). Thus the “class”
in “Hilbert class field” refers to Gauss’ classes of properly equivalent qua-
dratic forms.

This theorem allows us to compute ideal class groups using what we
know about quadratic forms. For example, consider the quadratic field K =
Q(v/—14) of discriminant —56. In §2 we saw that the reduced forms of
discriminant —56 are x? + 14y?, 2x? + 7y? and 3x% +2xy + Sy2. The form
class group C(—56) is thus cyclic of order 4 since only x2 + 14y? and 2x2 +
7y? give classes of order < 2. Then, using Theorem 5.30, we see that the
ideal class group C(Ok) is isomorphic to Z/4Z, and furthermore, ideal class
representatives are given by [1,/—14] = Ok, [2,v/—14] and [3,1+ /—14].
See Exercises 5.20-5.22 for some other applications of Theorem 5.30.

The final task of §5 is to work out an explicit example of Theorem 5.1.
We will discuss the case p = x? + 14y?, which was left unresolved at the end
of §3. Of course, we know from Theorem 5.1 that there is some polynomial
f1a(x) such that

(—14/p) =1 and fi4(x)=0mod p

p=x*+14y? =
has an integer solution,

but so far all we know about fi4(x) is that it has degree 4 since h(—56) = 4.
This illustrates one weakness of Theorem 5.1: it tells us that fi4(x) exists,
but doesn’t tell us how to find it. To determine f14(x), we need to know the
Hilbert class field of Q(v/—14). The answer is as follows:

Proposition 5.31. The Hilbert class field of K = Q(v—-14) is L = K(a),
where o = \/2\/2 — 1.

Proof. Since h(—56) = 4, the Hilbert class field has degree 4 over K. Then
L = K(a) will be the Hilbert class field once we show that K C L is an
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unramified Abelian extension of degree 4. It’s easy to see that K C L is
Abelian of degree 4, so that we need only show that it is unramified. Fur-
thermore, since K is imaginary quadratic, the infinite primes are automati-
cally unramified.

Note that a® = 2v/2 — 1, so that v/2 € L. If we let K; = K(+/2), then we
have the extensions

KCK;CL,

and it suffices to show that K C K; and K; C L are unramified (see Exer-
cise 5.15). Since each of these extensions is obtained by adjoining a square
root (K; = K(v2) and L = K;(\/E), p = 2v/2 — 1), let’s first prove a gen-
eral lemma about this situation:

Lemma 5.32. Let L = K(\/u) be a quadratic extension with u € Ok, and let

p be prime in Ok.

(i) If 2u & p, then p is unramified in L.

(ii) If2€ p, u¢ p and u = b* — 4c for some b,c € Ok, then p is unramified
in L.

Proof. (i) Since the discriminant of x? —u is 4u¢ p, x* — u is separable
modulo p. Thus p is unramified by Proposition 5.11.

(i) Note that L = K(B), where 8 = (—b+ \/u)/2 is a root of x? + bx +
c. The discriminant is b —4c = u ¢ p, so again p is unramified by Proposi-
tion 5.11. Q.ED.

Now we can prove Proposition 5.31. To study K C K, let p be prime in
Ok . Since K; = K(+/2), part (i) of Lemma 5.32 implies that p is unramified
whenever 2 ¢ p. It remains to study the case 2 € p. Since /—14 € K and
V2 € Ky, we also have /=7 € K, ie., K; = K(v/=7). Since —7 ¢ p and
—7 =12~ 4.2, p is unramified by part (ii) of Lemma 5.32.

The extension K; C L is almost as easy. We know that L = K;(\/f),
p=2v2-1.Let u' =-2+/2—1. Since Vi =+/=7€ Ky, it follows that
\//7 € L, and in fact

L = Ky(vi) = Ki(+/i)-

Now let p be prime in K;. If 2¢ p, then pu+ p' = —2 shows that u ¢ p or
p' ¢ p, and p is unramified by part (i) of Lemma 5.32. If 2 € p, then u ¢ p
since p =2v2—1. We also have pu = (1+v/2)? —4, and then part (ii) of
Lemma 5.32 shows that p is unramified. Q.E.D.

We can now characterize when a prime p is represented by x2? + 14y2:
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Theorem 5.33. If p # 7 is an odd prime, then
(-14/p)=1and (x* +1)>=8mod p

p=xt+14y? = {
has an integer solution.

Proof. Since a = \/2v/2—1 is a real integral primitive element of the Hil-

bert class field of K = Q(v/—14), its minimal polynomial x* +2x% -7 =

(x2 + 1)? — 8 can be chosen to be the polynomial fi4(x) of Theorem 5.1. Its

discriminant is —214 - 7 (see Exercise 5.24), so that the only excluded primes

are 2 and 7. Then Theorem 5.33 follows immediately from Theorem 35.1.
Q.E.D.

These methods can be used to compute the Hilbert class field in other
cases (see Herz [56]). For example, in Exercise 5.25, we will see that the

Hilbert class field of K = Q(v=T7)is L = K(a), where a = /(1 + vI7)/2.

This gives us an explicit criterion for a prime to be of the form x2 + 17y?
(see Exercise 5.26).

One unsatisfactory aspect of these examples is that they don’t explain
how the primitive element « of the Hilbert class field was found. In general,
the Hilbert class field is difficult to describe explicitly, though this can be
done for class numbers < 4 (see Herz [56]). In §6 we will use genus theory
to discover the above primitive elements when K = Q(v/—14) or Q(v—17),
and in Chapter Three we will use complex multiplication to give a general
method for finding the Hilbert class field of any imaginary quadratic field.

E. Exercises

5.1. Let Ok be the algebraic integers in a number field K.

(a) Show that a nonzero ideal a of Ok contains a nonzero integer m.
Hint: if « # 0 is in a, let x* + a;x"~1 +--- + a, be its minimal
polynomial. Show that m = a,, is what we want.

(b) Show that Ok /a is finite whenever a is a nonzero ideal of Ok.
Hint: if m is the integer from (a), consider the surjection Og/
mQg — Ok /a. Use part (ii) of Proposition 5.3 to compute the
order of Og/mOk.

(c) Use (b) to show that every nonzero ideal of Ok is a free Z-
module of rank [K: Q].

(d) If we have ideals a; C a; C ---, show that there is an integer n
such that a, = a,4+1 = ---. Hint: consider the surjections Ok /a;
— Ok /a; — -+, and use (b).

(e) Use (b) to show that a nonzero prime ideal of Ok is maximal.
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We will study the elementary properties of fractional ideals in a num-
ber field K. Recall that a C X is a fractional ideal if, under ordinary
addition and multiplication, it is a finitely generated Ox-module.

(a) Show that a is a fractional ideal if and only if a = ab, where
a € K and b is an ideal of Ok . Hint: write each generator of a
in the form a/3, a, € Ok. Going the other way, use part (c) of
Exercise 5.1 to show that ab is a finitely generated Og-module.

(b) Show that a nonzero fractional ideal is a free Z-module of rank
[K : Q]. Hint: use (a) and part (c¢) of Exercise 5.1.

(c) Show that the product of two fractional ideals is a fractional ideal.

Let K C L be a Galois extension, and let p C P be prime ideals of K
and L respectively.

(a) If ¢ € Gal(L/K), then prove that ey p = epjp and foipyp =

foip-
(b) Prove part (ii) of Theorem 5.9.

Let K C L be a Galois extension, and let P be prime in L. Then

we have the decomposition group Dg = {0 € Gal(L/K):d(*B) = B}

and the inertia group Iy = {0 € Gal(L/K):0(a)= a mod ‘P for all

a e OL} .

(a) Show that Iy C Dyg.

(b) Show that ¢ € Dy induces an automorphism & of O /P which is
the identity on Ok /p, p = PN Ok.

(c) Let 0 € Dyg. Then show that o € I if and only if the automor-
phism & from (b) is the identity.

In Proposition 5.11, prove that parts (i) and (iii) are consequences of
part (ii).

In this exercise, we will prove part (ii) of Proposition 5.11. Let P be a

prime of Oy, containing p, and let Dg = {0 € Gal(L/K): o (P) = B}

be the decomposition group. In Proposition 5.10 we observed that the

order of Dy is ef , where e = eg), and f = fip,;.

(a) Since f(x)= fi(x)--- fe(x) mod p, show that f;(a) € P for some
. We can assume that fi(a) € B.

(b) Using f =[OL/B: Ok /], prove that f > deg(fi(x)).

(¢) Since fi(o(a)) € P for all 0 € Dy, show that deg(fi(x)) > |Dgy|
= ef . Hint: this is where separability is used.

(d) From (b) and (c) conclude that e = 1 and f = deg(fi(x)). Thus p
is unramified in L.

(e) Show that pO;, = Py --- P, where P; is prime in O, and fi(a) €
B . This shows that all of the f;(x)’s have the same degree.
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(f) Show that B; is generated by p and f;(a). Hint: let I; = pO +
Ji(a)Ok. Use I; CP; and I --- I, C pOy, to show I; = P;.

3.7. In this problem we will determine the integers in the quadratic field
K = Q(v/N), where N is squarefree. Let a — a' denote the nontriv-
ial automorphism of K.

(a) Given @ = r + sv/N € K, define the trace and norm of a to be
T(a)=a+a =2r
N(a) = aa' =r?—s*N.
Then prove that for a,8 € K,
T(a+p)=T()+T(B)
N(ap) = N(a)N(p).
(b) Given a € K, prove that a € Ok if and only if T(a),N(a) € Z.

(c) Use (b) to prove the description of Ok given in (5.13).
(d) Prove the description of Ok given in (5.14).

5.8. Use (5.12) and (5.13) to prove (5.15).

3.9. In this exercise we will study the units in an imaginary quadratic field
K. Let N(a) be the norm of a € K from Exercise 5.7.
(a) Prove that a € Ok is a unit if and only if N(a) = 1.

(b) Show that O = {1} unless K = Q(i) or Q(w), in which case
Ok = {£1,+i} or {#1,+w,+w?} respectively. Hint: use (a) and
(5.13). Exercises 4.5 and 4.16 will also be useful.

5.10. Let K be a quadratic field of discriminant dg, and let the nontrivial
automorphism of K be (a + b\/dk)' = a — b\/dx. We want to com-
plete the description of the prime ideals p of Ok begun in Proposi-
tion 5.16. Our basic tools will be Proposition 5.11 and the formula
efg = 2 from Theorem 5.9.

(@) If 2| dk, then show that 20k = p?, p = p' prime. Hint: write
dx = 4N and set

20k +(1+V/N)Ok, N odd
P= { 20k + VN Ok, N even.
(b) If 2fdk, then show that
dx =1mod 8 <= 20k = pp’, p # p' prime
dx =5 mod 8 <> 20k is prime in Og.

Hint: apply Proposition 5.11 to K = Q(a), a = (1 + v/dg)/2.
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(c) Show that the ideals described in parts (i)(iii) of Proposition
5.16 give all prime ideals of Og. Hint: use norms to prove that
any prime ideal p contains a nonzero integer m. Thus p | mOk,
and we are done by unique factorization.

Notice how these results generalize the descriptions given in Propo-

sitions 4.7 and 4.18 of the primes in Z[w] and Z[i].

This problem will study the norm of a prime p in a number field K.

Recall that the norm N(p) is defined by N(p) = |Og/p|. Let p be

the unique prime of Z contained in p.

(i) Show that N(p) = p/, where f is the inertial degree of p
over p.

(i) Now assume that p is prime in a quadratic field K. Show that

pldg :N(p)=p

D p splits completely in K
pldg : N(p) = {

P2, pOk is prime in Og.
Hint: use efg = 2.

This exercise is concerned with the Artin symbol ((L/K)/B).
(a) Prove part (i) of Corollary 5.21.

(b) Let K C L be a Galois extension and let p be a prime of K un-
ramified in L. Prove that the set {((L/K)/B): P is a prime of
L containing p} is a conjugacy class of Gal(L/K). This conju-
gacy class is defined to be the Artin symbol ((L/K)/p) of p.

Assume that the number field K contains a primitive nth root of
unity ¢. In this problem we will discuss a generalization of the Leg-
endre symbol. Let a € Ok and let p be a prime ideal of O such
that na ¢ p.

(a) Prove that 1, (,...,{"! are distinct modulo p. Hint: show that
x" —1 is separable modulo p.

(b) Use (a) to prove that n | N(p) — 1.

(c) Show that aN(®)=1)/n j5 congruent to a unique nth root of unity

modulo p. This allows us to define the nth power Legendre sym-
bol (a/p), to be the unique nth root of unity such that

aV@)-D/n _ (%)n mod p.

(d) Prove that (a/p), =1 if and only if a is an nth power residue
modulo p.
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Let K, n, a and p be as in the previous exercise, and let L = K (/a).
Note that L is an Abelian extension of K. In this problem we will
relate the Legendre symbol (a/p), to the Artin symbol ((L/K)/p).

(a) Show that p is unramified in L. Hint: show that x” — a is sepa-
rable modulo p and use Proposition 5.11.

(b) Generalize the argument of (5.22) to show that

(4560~ (o

p p

Suppose that K C M C L are number fields.

(a) Let p be prime in Ok, and assume that p C B C P’, where P
(resp. P') is prime in Op (resp. Or). Then show that eg: ), =
Ep|1BEPlp-

(b) Prove that a prime p of Ok is unramified in L if and only if
p is unramified in M and every prime of Oy lying over p is
unramified in L.

(c) Prove that L is an unramified extension of K if and only if L is
unramified over M and M is unramified over K .

Let K C L be an unramified Abelian extension, and assume that
K CM C L. By the previous exercise, K C M is unramified, and it
is clearly Abelian. We thus have Artin maps

(-L—/-I-{-) :Ix — Gal(L/K)

(M) :Ix — Gal(M/K)

and we also have the restriction map r: Gal(L/K) — Gal(M /K).
Then use Lemma 5.19 to prove that

(45)-ro (1)

Prove Corollary 5.24. Hint: besides Galois theory and Theorems 5.18
and 5.23, you will also need Exercises 5.15 and 5.16.

If KCM C L, where L and M are Galois over K, then prove that
a prime p of Ok splits completely in L if and only if it splits com-
pletely in M and some prime of Oy containing p splits completely
in L.

Let K be an imaginary quadratic field, and let K C L be a Galois
extension. As usual, 7 will denote complex conjugation.

(a) Show that L is Galois over Q if and only if 7(L) = L.
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(b) If L is Galois over Q, then prove that
(i) [LNR:Q]=[L:K].
(ii) Forae LNR, LNR = Q(a) < L = K(a).
Show that Z[(1+ +/—19)/2] is a UFD. Hint: every PID is a UFD

(see Ireland and Rosen [59, §1.3]) or Marcus [77, pp. 255-256)). Thus,
by Theorem 5.30, it suffices to show that 4(—19) = 1.

In this exercise we will study the ring Z[v/-2].

(a) Use Theorem 5.30 to show that Z[/—2] is a UFD.

(b) Show that /-2 is a prime in Z[/=2].

(c) If ab=u? in Z[/-2] and a and b are relatively prime, then
prove that a and b are cubes in Z[v/-2].

We can now give a second proof of Fermat’s theorem that (x,y) =
(3,+5) are the only integer solutions of the equation x3 = y? + 2.

(@) If x3 =y? +2, show that y + /=2 and y — /=2 are relatively
prime in Z[v/—2]. Hint: use part (b) of Exercise 5.21.

(b) Use part (c) of Exercise 5.21 to show that (x,y) = (3,%5).

This argument is due to Euler [33, Vol. I, Chapter XII, §§191-193],
though he assumed (without proof) that Exercise 5.21 was true.

If D =1 mod 4 is negative and squarefree, prove a version of Theo-
rems 5.1 and 5.26 for primes of the form x? + xy + ((1— D)/4)y2.

Prove that the discriminant of x*+ bx?+ ¢ equals 2*c(b? — 4c)’.
Hint: write down the roots explicitly.

Let K = Q(v/-17).
(a) Show that C(Og)~1Z/4L.
(b) Show that the Hilbert class field of K is L = K(a), where a =

\/ (1 ++/17)/2. Hint: use the methods of Proposition 5.31. The

only tricky part concerns primes of K(+/17) which contain 2.
Setting u = (1 ++/17)/2 and ' = (1—-+/17)/2, note that u and
u' satisfy x = x% — 4.

Prove an analog of Theorem 5.33 for primes of the form x2 + 17y2.

§6. THE HILBERT CLASS FIELD AND GENUS THEORY

In Chapter One we studied the genus theory of primitive positive definite
quadratic forms, and our main result (Theorem 3.15) was that for a fixed
discriminant D:
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(i) There are 2#~! genera, where p is the number defined in Proposition
3.11.

(i) The principal genus consists of squares of classes.

In this section, we will use Artin reciprocity for the Hilbert class field of an
imaginary quadratic field K to prove (i) and (ii) when D is the discriminant
dg of K. This result is less general than what we proved in §3, but the
proof is such a nice application of the Hilbert class field that we couldn’t
resist including it. Readers more interested in p = x? + ny? may skip to §7
without loss of continuity.

The key to the class field theory interpretation of genus theory is the
concept of the genus field. Given an imaginary quadratic field K of discrim-
inant dg, Theorem 5.30 tells us that the form class group C(dg) is isomor-
phic to the ideal class group C(Og). The principal genus is a subgroup of
C(dg) and hence maps to a subgroup of C(Ok). By Corollary 5.24, this
subgroup determines an unramified Abelian extension of K which is called
the genus field of K. Theorem 6.1 below will describe the genus field explic-
itly and show that the characters used in Gauss’ definition of genus appear
in the Artin map of the genus field. This will take a fair amount of work,
but once done, (i) and (ii) above will follow easily by Artin Reciprocity.
We will then discuss how the genus field can help in the harder problem of
determining the Hilbert class field.

A. Genus Theory for Field Discriminants

Here is the main result of this section:

Theorem 6.1. Let K be an imaginary quadratic field of discriminant dg. Let

pt be the number of primes dividing dk, and let py,...,p, be the odd primes

dividing dg (so that p = r or r + 1 according to whether dg =0 or 1 mod 4).

Set p* = (—1)Pi~D/2p;. Then:

(i) The genus field of K is the maximal unramified extension of K which is

an Abelian extension of Q.

(ii) The genus field of K is K(,/p},---»v/P})-

(iii) The number of genera of primitive positive definite forms of discriminant
dg is 2H -1

(iv) The principal genus of primitive positive definite forms of discriminant
dg consists of squares of classes.

Proof. First, note that for field discriminants dg, the number p defined in
the statement of the theorem agrees with the one defined in Proposition
3.11 (see Exercise 6.1). Note also that (iii) and (iv) of the theorem are the
facts about genus theory that we want to prove.
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To start the proof, let L be the Hilbert class field of K, and let M
be the unramified Abelian extension of K corresponding to the subgroup
C(Ok)* C C(Ok) via Corollary 5.24. We claim that

(6.2) M is the maximal unramified extension of K Abelian over Q.

To prove this, consider an unramified extension 1\2[ of K which is Abelian
over Q. Then M is also Abelian over K, so that M C L, and we thus have
the following diagram of fields:

L -
|

(6.3) Abelian

M
|
K

|
Q
We want the maximal such M . Since L is Galois over Q (see Lemma 5.28),
we can interpret (6.3) via Galois theory. Let G = Gal(L/Q). Then M be-
ing Abelian over Q is equivalent to [G,G] C Gal(L/M), where [G,G] is
the commutator subgroup of G (see Exercise 6.2). Note also that [G,G] C
Gal(L/K) since the latter has index two in G. Thus M satisfies (6.3) if and

only if
[G,G] C Gal(L/M) c Gal(L/K).

It follows by Galois theory that the maximal unramified extension of K
Abelian over Q is the one that corresponds to [G,G]. By Theorem 5.23,
Gal(L/K) can be identified with C(Ok) via the Artin map. If we can
show that [G, G] C Gal(L/K) maps to C(Ok)* C C(Ok), then (6.2) will fol-
low.

We first compute G = Gal(L/Q). We have a short exact sequence

1 — Gal(L/K) — G — Gal(K/Q) — 1

which splits because complex conjugation 7 is in G by Lemma 5.28. Thus
G is the semidirect product Gal(L/K)x (Z/2Z), where Z /27 acts by conju-
gation by 7.

Under the isomorphism Gal(L/K) ~ C(Ok), conjugation by 7 operates
on C(Ok) by sending an ideal to its conjugate. To see this, let p be a prime
ideal of O . Then the uniqueness part of LLemma 5.19 shows that

W
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(see Exercise 6.3), and our claim follows. However, for any ideal a of Ok,
we will prove in Lemma 7.14 that the product aa is always a principal ideal,
and it follows that the class of @ is the inverse of the class of a in C(Ok).
Hence G may be identified with the semidirect product C(Og)x (Z/2Z),
where 7 /27 acts by sending an element of C(Ok) to its inverse.

It is now easy to show that [G,G] = C(Ok)?. First, note that C(Ok)>
is normal in G (any subgroup of C(Og) is, which has unexpected conse-
quences—see Exercise 6.4), and since Z /27 acts trivially on C(Ok)/C(Ok)?
(every element is its own inverse), we have

(6.5) G/C(Ok) ~ (C(Ok) % (1/21))/C(Ok )
~ (C(Ok)/C(Ok)*) x (1/21),

so that G/C(Ok)? is Abelian (see Exercise 6.5). It follows that [G,G] C
C(Ok)?. To prove the opposite inclusion, note that for any a € C(Ok), we
have (a,1) € C(Ok)x (Z/2Z), and then

(a,1)(1,7)(a,1)7 (1, 7)) = (a%,1),

where 7 is the nontrivial element of Z/2Z. This proves that [G,G] =
C(Ok)?, and (6.2) is proved.
We will next show that

(6.6) M = K(\/Pfse-s /PP,

where p}’s are as in the statement of the theorem. We begin with two pre-
liminary lemmas. The first concerns some general facts about ramification
and the Artin symbol:

Lemma 6.7. Let L and M be Abelian extensions of a number field K, and
let p be prime in Ok.

(i) p is unramified in LM if and only if it is unramified in both L and M.
(i) If p is unramified in LM, then under the natural injection

Gal(LM /K) — Gal(L/K) x Gal(M /K),
the Artin symbol (LM /K)/p) maps to (L/K)/p),((M /K)/)).

Proof. See Exercise 6.6, or, for a more general version of these facts, Mar-
cus [77, Exercises 10-11, pp. 117-118]. Q.E.D.

The second lemma tells us when a quadratic extension K C K(v/a), a €
Z, is unramified:
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Lemma 6.8. Let K be an imaginary quadratic field of discriminant d,

and let K (\/a) be a quadratic extension where a € Z. Then K C K (\Va)

is unramified if and only if a can be chosen so that a dy and a = 1 mod

4,

Proof. For the most part, the proof is a straightforward application of the
techniques used in the proof of Proposition 5.31. See Exercises 6.7, 6.8 and
6.9 for the details. Q.E.D.

We can now prove (6.6). Let M* = K(,/p3,...,/Pf). Since p} divid-
es dx and satisfies p} = 1mod 4, K C K(,/p}) is unramified by Lemma
6.8, and consequently K C M* is unramified by Lemma 6.7. But M* =
Q(\/d_K, V/Pi--s/PF) is clearly Abelian over Q, so that M* C M by the
maximality of M .

To prove the opposite inclusion, we first study Gal(M /Q). Since Q C
M C L corresponds to G D C% D {1} under the Galois correspondence, we
have

Gal(M /Q) ~ Gal(L/Q)/Gal(L/M) = G/C(Ok)?,

so that by (6.5), Gal(M /Q) ~(Z/2Z)" for some m. Then Galois theory
shows that M = Q(,/as,...,/an,) where aj,...,a,, € Z (see Exercise 6.10).
Thus M is the compositum of quadratic extensions K C K(y/a;), a; € Z,
and by Lemma 6.7, each of these is unramified.

It thus suffices to show that M* contains all unramified extensions K C
K(y/a), a€Z. By Lemma 6.8, we may assume that a = 1 mod 4 and that
a | dg . It follows that a must be of the form PP, 1S << <,
so that K(y/a) is clearly contained in M*. This completes the proof of
(6.6).

We will next show that [M:Q] = 2*. Note that M = Q(Vdk,/p},-.-,
vP}). When dx =1 mod 4, we have dg = pj---p;,sothat [M:Q]=2" =

2# since p = r in this case. When dx = 0 mod 4, we can write dx = —4n,
n > 0, and then we have
QU, /Py s VP n=1mod 4

(6.9) M =S Q(V2,\/P}r- s VP, n=6mod 8
QW-2,\/pf..s/PF), n=2mod8

(see Exercise 6.11). Thus [M : Q] = 2"*1 = 2#. Since [C(Ok): C(Ok)?] equals
half of [G: C(Ok)?] = [M : Q] = 2#, we have proved that

(6.10) [C(Ok): C(Ok)*] =2+~ 1.

We can now compute the Artin map (M /K)/-): Ix — Gal(M /K). If
we set K; = K(,/p}), then M is the compositum K;---K,, and we have a
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natural injection
r
(6.11) Gal(M /K) — [] Gal(Ki/K).
i=1
Furthermore, we may identify Gal(K;/K) with {+1}, so that composing the
Artin map with (6.11) gives us a homomorphism

(I)K :IK — {il}r.

We claim that if a is an ideal of Ok prime to 2dk, then ®x(a) can be
computed in terms of Legendre symbols as follows:

(6.12) By (a) = ((lel“))<%@))

where N(a) = |Ok/a| is the norm of a.

To prove (6.12), we will need one basic fact about norms: if a and b are
ideals of Ok, then N(ab)= N(a)N(b) (see Lemma 7.14 or Marcus [77,
Theorem 22]). It follows that both sides of (6.12) are multiplicative in a,
so that we may assume that a is a prime ideal p of Og. Then Lemma 6.7,
applied to (6.11), shows that ((M /K)/p) maps to the r-tuple

(575)(5))
’ yeees " )
If we can show that

6.13) (B = (B2 vir,

Di

then (6.12) will follow immediately.
To prove (6.13), let P be a prime of Ok, containing p, and set o =
((Ki/K)/p). By Lemma 5.19 we see that

619 o(VE)=(VE) T =DM /pF mod .

Since K is a quadratic field, it follows that N(p) = p or p? (see Exercise
5.11), and thus here are two cases to consider.
If N(p) = p, then we know that

(pH)P—D/2 = (!g-) mod p.

Since pe P and (p’/p) = (p/pi;) by quadratic reciprocity, we see that
(6.14) reduces to

()= ()= ()

Di
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and we are done. If N(p) = p?, then by Fermat’s Little Theorem,

(P72 = ((p1)®*2) " = 1 mod p,

so that (6.14) becomes

a(Jp_f)E\/EfE(ip(?—))\/ﬁmod‘ﬁ,

and (6.13) is proved. This proves (6.12).

For the rest of the proof, we will assume that dx = —4n, n>0 (see
Exercise 6.12 for the case dx =1 mod 4). Here, it is easily checked that
the map (6.11) is an isomorphism, and then Artin reciprocity (Corollary
5.24) for K C M means that the map ®x : Ix — {+1}" of (6.12) induces an
isomorphism

A:C(0Og)/C(Ok)? =5 {£1},

where the A stands for Artin.

It’s now time to bring in quadratic forms. Let C(d) be the class group
of primitive positive definite forms of discriminant dx = —4n, and let P be
the principal genus. Recall from the proof of Theorem 3.15 that we have the
p = r + 1 assigned characters xo,x1,...,Xr, Where o is one of 4, € or ée,
and x;(a) = (a/p;) for i = 1,...,r. In Lemma 3.20, we proved that if f(x,y)
represents a number a prime to 4n, then the genus of f(x,y) is determined
by the (r + 1)-tuple (xo(a), x1(a),...,xr(a)). Thus we have an injective map

G:C(dg)/P — {£1}*1,

where the G stands for Gauss.
To relate the two maps A4 and G, we will use the isomorphism C(dk)~
C(Ok) of Theorem 5.30. Since C(dk)? C P, we get the following diagram:

C(dx)/C(dx)? —2—> C(dg)/P —Z— {£1}7+1

(6.15) ] x

A

C(OK)7C(0K)2 > {;1}'

where a : C(dk)/C(dk)? — C(dk)/P is the natural surjection and  is the
projection onto the last r factors.

We claim that this diagram commutes, which means that Gauss’s defini-
tion of genus is amazingly close to the Artin map of the genus field. (The
full story of the relation is worked out in Exercise 6.13.)

To prove that (6.15) commutes, let f(x,y) = ax? + 2bxy + cy? be a form
of discriminant —4n. We can assume that a is relatively prime to 4n. Then,
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in (6.15), if we first go across and then down, we see that the class of f(x,y)
maps to

(6.16) x1(@)y..., Xr (@) = ((%)(;‘—))

Let’s see what happens when we go the other way. By Theorem 5.30, f(x,y)
corresponds to the ideal a = [a,b + /—n] of Ok . However, it is easy to see
that the natural map

(6.17) L/al — Ok/a

is an isomorphism (see Exercise 6.14). Thus a has norm N(a) = a, and our
description of the Artin map from (6.12) shows that f(x,y) maps to

o ((59)-()- () (3)

Comparing (6.16) and (6.18), we see that (6.15) commutes as claimed.
Now everything is easy to prove. If we go down and across in (6.15), the
resulting map is injective. By commutivity, it follows that a : C(dx)/C(dk)?
— C(dg)/P must be injective, which proves that C(dg)* = P, and part
(iv) of the theorem is done. The number of genera is thus [C(dk): P] =
[C(dk): C(dk)*] = [C(Ok): C(Ok)*] = 2#~1 (the last equality is (6.10)),
and (iii) follows. Finally, since P = C(dk)? corresponds to C(Ok)?, we see
that M is the genus field of K, and then (i) and (ii) follow from (6.2) and
(6.6). Theorem 6.1 is proved. Q.E.D.

B. Applications to the Hilbert Class Field

Theorem 6.1 makes it easy to compute the genus field. So let’s see if the
genus field can help us find the Hilbert class field, which in general is more
difficult to compute. The nicest case is when the genus field equals the
Hilbert class field, which happens for field discriminants where every genus
consists of a single class (see Exercise 6.15). In particular, if dx = —4n,
then this means that n is one of Euler’s convenient numbers (see Proposi-
tion 3.24). Of the 65 convenient numbers on Gauss’ list in §3, 35 satisfy the
additional condition that dx = —4n (see Exercise 6.15), so that we can de-
termine lots of Hilbert class fields. For example, when K = Q(+/-5), Theo-
rem 6.1 tells us that the Hilbert class field is K (v/5) = K (i). Other examples
are just as easy to work out (see Exercise 6.16).

The more typical situation is when the Hilbert class field is strictly big-
ger than the genus field. It turns out that the genus field can still provide us
with useful information about the Hilbert class field. Let’s consider the case
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K = Q(v—=14). Here, the genus field is M = K(v/—7) = K(v/2) by Theo-
rem 6.1. Since the class number is 4, we know that the Hilbert class field is
a quadratic extension of M, so that L = M(\/u) for some u € M. This is
already useful information, but we can do better. In Theorem 5.1, we saw
the importance of a real primitive element of the Hilbert class field. So let’s
intersect everything with the real numbers. This gives us the quadratic ex-
tension M NR C LNR. Since M = K(v2) = Q(v—14,1/2), it follows that
M NR = Q(+/2). Thus we can write L NR = Q(v/2,/u), where u > 0 is in
Q(V2), and from this it is easy to prove that

L = K(/u), u=a+bv2>0, abel

(see Exercise 6.17). Hence genus theory explains the form of the primitive

element a = v/2v/2 — 1 of Proposition 5.31. In Exercise 6.18, we will con-
tinue this discussion and show how one can take u = a + bv/2 and discover
the precise form u = 2v/2 — 1 of the primitive element of the Hilbert class
field.

It’s interesting to compare this discussion of x2 + 14y? to what we did in
§3. The genus theory developed in §3 told us when p was represented by
x? + 14y? or 2x? + 7y?, but this partial information didn’t help in deciding
when p = x% + 14y?. In contrast, the genus theory of Theorem 6.1 deter-
mines the genus field, which helps us understand the Hilbert class field. The
field-theoretic approach seems to have more useful information.

This ends our discussion of genus theory, but it by no means exhausts
the topic. For more complete treatments of genus theory from the point
of view of class field theory, see Hasse [51], Janusz [62, §V].3] and Cohn’s
two books [19, Chapters 14 and 18] and [21, Chapter 8]. Genus theory can
also be studied by standard methods of algebraic number theory, with no
reference to class field theory. Both Cohn [20, Chapter XIII] and Hasse
[50, §§26.8 and 29.3] use the Hilbert symbol in their discussion of genera.
For a more elementary approach, see Zagier [111]. Genus theory can also
be generalized in several ways. It is possible to define the genus field of
an arbitrary number field (see Ishida [60]), and in another direction, one
can formulate genus theory from the point of view of algebraic groups and
Tamagawa numbers (Ono [82] has a nice introduction to this subject). For
a survey of all these aspects of genus theory, see Frei [39].

C. Exercises

6.1. Let dx be the discriminant of a quadratic field. When considering
forms of discriminant dx, show that the number p from Proposition
3.11 is just the number of primes dividing dk.
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6.6.

6.7.

6.8.
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Suppose that we have fields K ¢ M C L, where L is Galois over K
with group G = Gal(L/K). Prove that M is Abelian over K if and
only if [G,G]C Gal(L/M).

Prove statement (6.4).

If K is an imaginary quadratic field and M is an unramified Abelian
extension of K, then prove that M is Galois over Q. Hint: use the
description of Gal(L/Q), where L is the Hilbert class field of K .

Prove statement (6.5).

In this problem we will prove Lemma 6.7. Let p be a prime of O.
(a) If p is unramified in LM, then use Exercise 5.15 to show that it’s
unramified in both L and M.

(b) Prove the converse of (a). Hint: assume not. Then use the facts
about the decomposition group from Proposition 5.10 to find ¢ €
Gal(LM /K), o # 1, such that o(a) =a mod P for all a € Opy
(and P is a prime of Opy containing p). Argue that o, and oy
are the identity. Note that (a) and (b) prove part (i) of Lemma
6.7.

(c) Use Exercise 5.16 to prove part (ii) of Lemma 6.7.

(d) With the same hypothesis as Lemma 6.7, show that p splits com-
pletely in LM if and only if it splits completely in both L and M .
In Exercise 8.14 we will see that this result can be proved without
assuming that L and M are Galois over K.

Let K = Q(i,v/2m), where m € Z is odd and squarefree.

(a) Let a = (1+i)v2m/2. Show that a®> =im, and conclude that
a € Ok . (It turns out that 1, i, v2m and o form an integral basis
of Ox—see Marcus [77, Exercise 42 to Chapter 2].)

(b) Let P be the ideal of Og generated by 1+ i and 1+ a. Show that
20k = P4, and conclude that B is prime. Hint: compute P2.

Let K be an imaginary quadratic field. We want to show that if K C
K (i) is unramified, then dy = 12 mod 16.

(a) Show that K C K (i) is ramified when dx = 1 mod 4. Hint: con-
sider the diagram of fields

K ()

Q(i)/ \K
N



130 §6. THE HILBERT CLASS FIELD AND GENUS THEORY

If K C K(i) is unramified, show that 2 is unramified in K (i). But
2 ramifies in Q(i). Exercise 5.15 will be useful.

(b) Show that the extension is ramified when dx = 0 mod 8. Hint: if
it’s unramified, show that the ramification index of 2 in K (i) is at
most 2. Then use Exercise 6.7.

Since an even discriminant is of the form 4N, where N = 2,3 mod 4,
it follows from (a) and (b) that dx = 12 mod 16 when K C K(i) is
unramified.

6.9. In this exercise we will prove Lemma 6.8.

(a) Prove that K C K(y/a) is unramified when a | dx and a = 1 mod
4. Hint: when 2 ¢ p, note that dx = ab, where K( /a) = K(V/b).

(b) Assume that K C K(+/a) is unramified. Show that a | d¢ and con-
sequently that a may be chosen to be odd. Hint: if p is a prime
such that p |a, p/dk, then analyze p in the fields

K(/a)
N

Q(Va)

o

(c) Let K C K(y/a) be unramified, where a | dg is odd.

(i) If a = 3 mod 4, show that dx¢ = 12 mod 16. Hint: apply (a) to
—a, and then use Exercise 6.8.

(ii) If dx = 12 mod 16, show that K (y/a) = K(v/b), where b | dg
and b = 1 mod 4. Hint: factor dg.
Lemma 6.8 follows easily from (a)-(c).

6.10. If M is a Galois extension of Q and Gal(M /Q)~ (Z/2Z)™, then
show that M = Q(\/ay,..., /am), a; € I squarefree.

6.11. Prove the description of the genus field M given in (6.9).
6.12. Complete the proof of Theorem 6.1 when dx =1 mod 4, dx < 0.

6.13. Let K be an imaginary quadratic field of discriminant —4n. The
description of the genus field M given in (6.9) gives us an isomor-
phism

Gal(M /Q) — {£1}*.

However, we also have maps

C(—4n) — C(Og) — Gal(M /K).
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If we combine these with the natural inclusion Gal(M /K) C Gal(M /
Q), then we get a map
C(—4n) — {£1}*.

Show that this map is exactly what Gauss used in his definition of
genus. Hint: it’s fun to see the characters €, § and €6 from §3 reap-
pear. For example, when 7 is odd, the key step is to show that

(M/K

a

)(i) - 5(N(a))i

for ideals a prime to 4n. The proof is similar to the proof of (6.13).
Prove that the map (6.17) is an isomorphism.

In this exercise we will study when the genus field equals the Hilbert
class field.

(a) Prove that the genus field of an imaginary quadratic field K
equals its Hilbert class field if and only if for primitive positive
forms of discriminant di , there is only one class per genus.

(b) Of Gauss’ list of 65 convenient numbers n in §3, which satisfy
the condition (5.2) that guarantees that —4n is a field discrim-
inant? This gives us a list of fields where we know the Hilbert
class field.

Compute the Hilbert class fields of the fields Q(v/—6), Q(v—10)
and Q(v-395).

Let K = Q(v/—14), and let L be the Hilbert class field of K. The
genus field M of K is K(v=7) = K(V2), so that L is a degree 2
extension of M. Use the hints in the text to show that L = K(1/u),
where u =a+bv2>0,a,bel.

In this exercise we will discover a primitive element for the Hilbert

class field L of K = Q(v/—14). From the previous exercise, we know

that L = K(\/u), where u =a +bv2>0,a,b€ 7. Let ' =a—bV2.

(a) Show that Gal(L/Q) is the dihedral group (o,7:0%=1, 7%=
1, ot = 103) of order 8, where o(y/#) = Vu' and T is complex
conjugation. Conclude that 02(/&1) = —/u and 7(Vu') = —Vu/'.

(b) Show that Q(v/=7) is the fixed field of 0> and o'7.

(c) Show that v/uu' is fixed by o2 and o7, and then using 7, con-
clude that Vuu' = m\/=7, me 1.

(d) Let N be the norm function on Q(Vv2), and let m = 2v2 1.
Note that N(r) = —7. Show that u = ma, where N(a)= m?.
Hint: Z[v2] is a UFD. You may have to switch « and u'.
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(e) Assume that u has no square factors in Z[v/2]. Then show that
u = emn, where € is a unit and n is a squarefree integer prime to
14. Hint: use Proposition 5.16 to describe the primes in Z[v/2].

(f) Show that n» must be +1. Hint: note that uO; = 70O, -nQy is a
square, and conclude that any prime dividing n ramifies in L.

(g) Thus u = e by (f). All units of Z[v/2] are of the form +(v/2 -
1)" (see Hasse [50, pp. 554-556]). Since N(u)= —7 and

N(v2-1) = —1, we can assume u = 7 since u > 0.

This proves that v/u = /T = \/2v/2 — 1 is the desired primitive ele-
ment.

6.19. Adapt Exercises 6.17 and 6.18 to discover a primitive element for
the Hilbert class field of Q(+/—17). Hint: see Exercise 5.25. You may
assume that the integers in Q(v/17) are a UFD and that the units are
all of the form +(4 + v17)", m € Z (see Borevich and Shafarevich
[8, p- 422]). This method will lead most naturally to u = 4 + /17,
which is related to our earlier choice (1+ v/17)/2 via

4+ V17)-(1+V1T)/2 = (5 + V17)/2)%.

This problem may also be done without using the fact that Q(v/17)
has class number 1 (see Herz [56]).

6.20. Let K = Q(v/=55).
(a) Show that C(Og)~17/4L.

(b) Determine the Hilbert class field of K. Hint: use the methods
of Proposition 5.31. Exercises 6.17 and 6.18 will show you what
to look for.

(c) Prove an analog of Theorem 5.33 for primes of the form x* +
55y2.

§7. ORDERS IN IMAGINARY QUADRATIC FIELDS

In §5, we solved our basic question of p = x? + ny? for those n’s where
Z[\/—n] is the full ring of integers Ok in K = Q(v/—n) (see (5.15)). This
holds for infinitely many »’s, but it also leaves out infinitely many. The full
story of what happens for these other »’s will be told in §9, and we will see
that the answer involves the ring Z[\/—n]. Such a ring is an example of an
order in an imaginary quadratic field, which brings us to the main topic of
§7.

We begin this section with a study of orders in a quadratic field K.
Unlike Ok, an order O is usually not a Dedekind domain, so that the ideal
theory of O is more complicated. This will lead us to restrict the class
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of ideals under consideration. In the case of imaginary quadratic fields,
there is a nice relation between ideals in orders and quadratic forms. In
particular, an order O has an ideal class group C(0), and we will show that
for any discriminant D < 0, the form class group C(D) from §3 is naturally
isomorphic to C(O) for a suitable order O. Then, to prepare the way for
class field theory, we will show how to translate ideals for an order O in
K into terms of the maximal order Ok . The section will conclude with a
discussion of class numbers.

A. Orders in Quadratic Fields

An order O in a quadratic field XK is a subset O C K such that

(i) O is a subring of K containing 1.

(ii) O is a finitely generated Z-module.
(iii) O contains a Q-basis of K.
Since O is clearly torsion-free, (ii) and (iii) are equivalent to O being a free
Z-module of rank 2 (see Exercise 7.1). Note also that by (iii), K is the field
of fractions of O.

The ring Ok of integers in K is always an order in K—this follows from
the description (5.13) of Ok given in §5. More importantly, (i) and (ii)
above imply that for any order O of K, we have O C Ok (see Exercise
7.2), so that Ok is the maximal order of K.

To describe orders in quadratic fields more explicitly, first note that by
(5.14), the maximal order Ok can be written as follows:

_ dx +Vdg
==

where dg is the discriminant of K. We can now describe all orders in qua-
dratic fields:

(7 1) OK = [11 wK]) Wk

Lemma 7.2. Let O be an order in a quadratic field K of discriminant dg.
Then O has finite index in Ok, and if we set f =[Ok : O], then

O=17Z+fOk=[1fwkl],

where wg is as in (7.1).

Proof. Since O and Ok are free Z-modules of rank 2, it follows that
[Ok: O] < 0o. Setting f =[Ok : O], we have fOx C O, and then Z + fOg C
O follows. However, (7.1) implies Z + f Ox = [1,f wk], so that to prove the
lemma, we need only show that [1, fwk] has index f in Og = [1,wk]. This
last fact is obvious, and we are done. Q.E.D.
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Given an order O in a quadratic field K, the index f = [Ok: O] is called
the conductor of the order. Another important invariant of O is its discrim-
inant, which is defined as follows. Let a — a' be the nontrivial automor-
phism of K, and suppose that O = [a,3]. Then the discriminant of O is

the number 2

o (a2 1))

The discriminant is independent of the integral basis used, and if we com-
pute D using the basis O = [1,fwg] from Lemma 7.2, then we obtain the
formula

(7.3) D = f2dyg.

Thus the discriminant satisfies D = 0,1 mod 4. From (7.3) we also see that
K = Q(vD), so that K is real or imaginary according to whether D > 0
or D <0. In fact, one can show that D determines O uniquely and that
any nonsquare integer D = 0,1 mod 4 is the discriminant of an order in a
quadratic field. See Exercise 7.3 for proofs of these elementary facts. Note
that by (7.3), the discriminant of the maximal order Ok is di , which agrees
with the definition given in §5.

For an example of an order, consider Z[/—n] C K = Q(v/—n). The dis-
criminant of Z[v/—n] is easily computed to be —4n, and then (7.3) shows

that
—4n = f2dg.

This makes it easy to compute the conductor of Z[\/—n]. This order will
be used in §9 when we give the general solution of p = x2 + nyZ2.

Now let’s study the ideals of an order O. If a is a nonzero ideal of O,
then the proof of Corollary 5.4 adapts easily to show that ©/a is finite
(see Exercise 7.4). Thus we can define the norm of a to be N(a) = |0/q|.
Furthermore, as in the proof of Theorem 5.5, it follows that @ is Noetherian
and that every nonzero prime ideal of O is maximal (see Exercise 7.4).
However, it is equally obvious that if the conductor f of O is greater than
1, then O is not integrally closed in K, so that O is not a Dedekind domain
when f > 1. Thus we may not assume that the ideals of O have unique
factorization.

To remedy this situation, we will introduce the concept of a proper ideal
of an order. Namely, given any ideal a of @, notice that

Oc{feK:BacCa}

since a is an ideal of O. However, equality need not occur. For example,
if O = Z[v/-3] is the order of conductor 2 in K = Q(v/=3), and a is the
ideal of O generated by 2 and 1 + v/—3, then one sees easily that

O#{peK:faCca} =0k



A. ORDERS IN QUADRATIC FIELDS 135

(see Exercise 7.5). In general, we say that an ideal a of O is proper when-
ever equality holds, i.e., when

O={feK:BaCa}.

For example, principal ideals are always proper, and for the maximal order,
all ideals are proper (see Exercise 7.6).

We can also extend this terminology to fractional ideals. A fractional
ideal of O is a subset of K which is a nonzero finitely generated O-module.
One can show that every fractional ideal is of the form aa, where a € K*
and a is an O-ideal (see Exercise 7.7). Then a fractional O-ideal b is proper

provided that
O={BeK:pbCb}.

Once we have fractional ideals, we can also talk about invertible ideals:
a fractional O-ideal a is invertible if there is another fractional O-ideal b
such that ab = O. Note that principal fractional ideals (those of the form
a0, a € K*) are obviously invertible. The basic result is that for orders in
quadratic fields, the notions of proper and invertible coincide:

Proposition 7.4. Let O be an order in a quadratic field K, and let a be a
fractional O-ideal. Then a is proper if and only if a is invertible.

Proof. If a is invertible, then ab = O for some fractional O-ideal b. If 8 €
K and fBa C a, then we have

BO = B(ab) = (Ba)b C ab = O,

and 8 € O follows, proving that a is proper.
To argue the other way, we will need the following lemma:

Lemma 7.5. Let K = Q(7) be a quadratic field, and let ax* + bx + ¢ be the
minimal polynomial of T, where a, b and c are relatively prime integers. Then
[1,7] is a proper fractional ideal for the order [1, at] of K.

Proof. First, [1,aT] is an order since a7 is an algebraic integer. Then, given
B € K, note that B[1,7] C [1,7] is equivalent to

B-1€[1,7]
p-Te[l,T]

The first line says 8 = m + n7, m,n € Z. To understand the second, note
that

n
,6'r=m'r+n'rz=m'r+5(—bfr—c)

—cn (—bn )
=—4+|—+m]T.
a a
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Since ged(a,b,c) =1, we see that 87 € [1,7] if and only if a | n. It follows
that

{BeK :p[LT]C[1,T]} =[1,aT],

which proves the lemma. Q.E.D.

Now we can prove that proper fractional ideals are invertible. First
note that a is a Z-module of rank 2 (see Exercise 7.8), so that a = [a,B]
for some o, € K. Then a = «[l,7], where 1 = Bla. If ax? + bx + c,
ged(a,b,c,) = 1, is the minimal polynomial of T, then Lemma 7.5 implies
that O = [1,a7]. Let B8 — B’ denote the nontrivial automorphism of K.
Since 7' is the other root of ax? + bx + c, using Lemma 7.5 again shows
thata’ = a'[1,7'] is a fractional ideal for [1,a7] = [1,a7’] = O. We claim
that
(7.6) aa’ = N‘(la)

0.

To see why, note that
aad’ = aaa'[1,7][1,7'] = N(a)[a,ar,at’,atT'].
Since 7+ 7' = —b/a and 77’ = c¢/a, this becomes
aaa’ = N(a)[a,at,—b,c] = N(a)[1,a7] = N(a)O

since ged(a,b,c) = 1. This implies (7.6), which in turn proves that a is in-
vertible. Q.E.D.

Unfortunately, Proposition 7.4 is not strong enough to prove unique fac-
torization for proper ideals (see Exercise 7.9 for a counterexample). Later
we will see that unique factorization holds for a slightly smaller class of
ideals, those prime to the conductor.

Given an order O, let I(O) denote the set of proper fractional @-ideals.
By Proposition 7.4, I(O) is a group under multiplication: the crucial issues
are closure and the existence of inverses, both of which follow from the
invertibility of proper ideals (see Exercise 7.10). The principal O-ideals give
a subgroup P(O) C I(0), and thus we can form the quotient

C(0) = I(0)/P(0),

which is the ideal class group of the order @. When O is the maximal order
Ok, I(Ok) and P(Ok) will be denoted Iy and Px, respectively. This is
the notation used in §5, and in general we will reserve the subscript K
exclusively for the maximal order. Note that the above definition of C(Ox)
agrees with the one given in §5.
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B. Orders and Quadratic Forms

We can relate the ideal class group C(O) to the form class group C(D)
defined in §3 as follows:

Theorem 7.7. Let O be the order of discriminant D in an imaginary qua-

dratic field K .

() If f(x,y)=ax*+bxy +cy?* is a primitive positive definite quadratic
form of discriminant D, then [a,(—b + /D)/2] is a proper ideal of O.

(ii) The map sending f(x,y) to [a,(—b+ V/D)/2] induces an isomorphism
between the form class group C(D) and the ideal class group C(O).
Hence the order of C(O) is the class number h(D).

(iii) A positive integer m is represented by a form f(x,y) if and only if m is
the norm N (a) of some ideal a in the corresponding ideal class in C(O)
(recall that N(a) = |O/a|).

Remark. Because of the isomorphism C(D)~ C(O), we will sometimes
write the class number as h(O) instead of h(D).

Proof. Let f(x,y) = ax?+ bxy + cy? be a primitive positive definite form
of discriminant D < 0. The roots of f(x,1) = ax? + bx + ¢ are complex, so
that there is a unique 7 € h (b is the upper half plane) such that f(7,1) =
0. We call 7 the root of f(x,y). Since a >0, it follows that 7 = (—b +
vD)/2a. Thus

[a,(—b + \/13)/2] = [a,aT] = a[1,T].

Note also that 7 € K.

To prove (i), note that by Lemma 7.5, a[1,7] is a proper ideal for the
order [1,a7]. However, if f is the conductor of O, then D = f2dx by (7.3),
and thus

aTt =

~b++vVD _ —b+f\dk
2 B 2

b+de dK'I"\/d_K _ b+de
S () =

+fWK.

Since D = b? — 4ac, fdg and b have the same parity, so that (b+ fdg)/2
€ Z. It follows that [1,a7] = [1,fwk], so that [1l,at] = O by Lemma 7.2.
This proves that a[1,7] is a proper O-ideal.
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To prove (ii), let f(x,y) and g(x,y) be forms of discriminant D, and let
T and 7' be their respective roots. We will prove the following equivalences:

f(x,y),8g(x,y) are properly equivalent
,_PT+q (P 4) € SL(2,7)

rt+s’ \r s
<= [L,7]=A[1,7'], AeK"*.

(7.8) =T

To see why this is true, assume that f(x,y) =g(px +qy,rx +sy), where
(£1) € SL(2,7). Then

(7.9) 0=f(1,1)=g(pT+q,r7+5)=(r7 +1)’g (f:ig,l),

so that g((p7 + q)/(r7 +5),1) = 0. However, an easy computation shows
that

(7.10) Im(pT s q) = det (p q) |rT + 5| 72Im(7)
r s

rtT+s

(see Exercise 7.11). This implies (p7 + q)/(r7 + s) € b, and thus 7' = (p7 +
q)/(r7 +5) by the uniqueness of the root 7'. Conversely, if 7/ = (p7 +
q)/(r7 +s), then (7.9) shows that f(x,y) and g(px + qy,rx + sy) have the
same root, and it follows easily that they must be equal (see Exercise 7.12).
This proves the first equivalence of (7.8).

Next, if 7' = (pT+ q)/(rT +s), let \=r7+s € K*. Then

" _ pPT +4q
AL, 7= (rT +5) [1, r'r+s]

=[rT+s,pT+q] =[1,7]

since (2 7) € SL(2,Z). Conversely, if [1,7] = A[1,7'] for some A € K*, then
[1,7] = [A,AT'], which implies
A =pT+¢q
A=r7+Ss
for some (? 7) € GL(2,Z). This gives us
L _PTHg
rT+s’

and then (7.10) shows that (£7) € SL(2,Z) since 7 and 7' are both in b.
This completes the proof of (7.8).

Using (77.8), one easily sees that the map sending f(x, y) to a[1,7] induces
an injection

C(D) — C(O).
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To show that the map is surjective, let a be a fractional O-ideal. As in
the proof of Proposition 7.4, we can write a = [a,f] for some a,f € K.
Switching a and @ if necessary, we can assume that 7= §/a lies in .
Let ax2 + bx + ¢ be the minimal polynomial of 7. We may assume that
ged(a,b,c) = 1 and a > 0. Then f(x,y) = ax? + bxy + cy* is positive def-
inite of discriminant D (see Exercise 7.12), and f(x,y) maps to a[l,7].
This ideal lies in the class of a = [a, ] = a[1,7] in C(O), and surjectivity is

proved.
We thus have a bijection of sets
(7.11) C(D) — C(0).

We next want to see what happens to the group structure, but we first need
to review the formulas for Dirichlet composition from §3. Given two prim-
itive positive definite forms f(x,y) = ax? + bxy + cy? and g(x,y) = a’'x* +
b'xy + ¢'y? of discriminant D, suppose that gcd(a,a’,(b + b')/2) = 1. Then
the Dirichlet composition of f(x,y) and g(x,y) was defined to be the form

— ,2
F(x,y)=aa'x*+ Bxy + PR

where B is the unique number modulo 2aa’ such that
B = b mod 2a

(7.12) B = b’ mod 24’
B?= D mod 4aa’

(see Lemma 3.2 and (3.7)). In Theorem 3.9 we asserted that Dirichlet com-
position made C(D) into an Abelian group, but the proof given in §3 was
not complete. So our first task is to use the bijection (7.11) to finish the
proof of Theorem 3.9.

Given f(x,y), g(x,y) and F(x,y) as above, we get three proper ideals
of O:

[a,(=b + f1/dK)/2), [@',(~b' + f\/dk)/2] and [ad’,(—B + f/dk)/2].

If we set A =(—B + f1/dk)/2 and use the top two lines of (7.12), then
these ideals can be written as

[a,A], [a',A] and [ad’,Al.
We claim that
(7.13) [a,A][a’,A] = [ad',A].
To see this, note that A2 = —BA mod aa’' by the last line of (7.12). Thus
[a,A][a’,A] = [ad’,aA,a' A, A?] = [ad',aA,a' A,—BA].
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However, from (7.12) one easily proves that gcd(a,a’,B) = 1 (see Exercise
7.13), and then (7.13) follows immediately.

By (7.11) and (7.13), we see that the Dirichlet composition of f(x,y)
and g(x,y) corresponds to the product of their corresponding ideal classes,
which proves that Dirichlet composition induces a well-defined binary op-
eration on C(D). Furthermore, since the product of ideals makes C(O) into
a group, it follows immediately that C(D) is a group under Dirichlet com-
position. This completes the proof of Theorem 3.9, and it is now obvious
that (7.11) is an isomorphism of groups.

Before we can prove part (iii) of the theorem, we need to learn more
about the norm N(a) = |O/a| of a proper O-ideal a. The basic properties
of N(a) are:

Lemma 7.14. Let O be an order in an imaginary quadratic field. Then:
(i) N(aO) = N(a) forae O, a #0.

(ii) N(ab) = N(a)N(b) for proper O-ideals a and b.

(iii) aa = N(a)O for a proper O-ideal a.

Proof. The proof of (i) is covered in Exercises 7.14 and 7.15. We will next
prove a special case of (ii): if @ # 0 in O, we claim that

(7.15) N(aa) = N(a)N(a).

To prove this, note that the inclusions aa C aO C O give us the short exact
sequence
0—-aO/aa— O/aa— O/aO — 0,

which implies that |O/aa| = |O/aO||aO/aa|. Since multiplication by « in-
duces an isomorphism O/a = aO/aa, we get N(aa) = N(aO)N(a), and
then (7.15) follows from (i).

Before proving (ii) and (iii), we need to study N(a). If we write a in
the form a = ¢[1,7], then Lemma 7.5 implies that O = [1,ar]. Since
[a,aT] obviously has index a in [1,a7], we obtain

N(a[l,7]) = a.
Then a-a = a-a[l,7] and (7.15) imply that
(7.16) N@ =Y fla).

Now (iii) follows immediately by combining (7.16) with the equation

N(a)
a

aaq = ()
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proved in (7.6). Turning to (ii), note that (iii) implies that
N(ab)O =ab-ab = ad-bb = N(a)O-N(b)O = N(a)N(b)O,
and then N(ab) = N(a)N(b) follows. Q.E.D.

A useful consequence of this lemma is that if a is a proper O-ideal,
then @ gives the inverse of a in C(O). This follows immediately from a@ =
N(a)O. In Exercise 7.16 we will use the isomorphism C(D) ~ C(O) to give
a second proof of this fact.

We can now prove part (iii) of the theorem. If m is represented by
f(x,y), then m = d?a, where a is properly represented by f(x,y). We may
assume that f(x,y) = ax? + bxy + cy?. Then f(x, y) maps to a = a[1,7], so
that N(a) = a by (7.16). It follows that N(da) = d*a = m, so that m is the
norm of an ideal in the class of a.

Conversely, assume that N(a) =m. We know that a = a[l,7], where
Im(1) > 0 and a72 + bt + ¢ =0, ged(a,b,c) =1 and a > 0. Then f(x,y) =
ax? + bxy + cy? maps to the class of a, so that we need only show that
f(x,y) represents m.

By (7.16), we know that

N(a)
—

m = N(a)=

However, a[1,7] = a C O =[1,at], so that a = p + qat and ar =r +sat
for some integers p,q,r,s € Z. Thus (p + qat)T =r + sat, and since ar? =
—br — ¢, comparing coefficients shows that p = as + bq. Hence

m = Nfla) }l(p2 —bpgq +acq?)
% ((as + bq)? — b(as + bq)q + acq®)
%(azs + absq + acq®)
= as® + bsq + cq* = f(s,9).
This proves (iii) and completes the proof of Theorem 7.7. Q.E.D.

Notice that Theorem 5.30 is an immediate corollary of Theorem 7.7.

The map f(x,y)~ a = [a,(—b++/D)/2] of Theorem 7.7 has a natural
inverse which is defined as follows. If a = [a,f] is a proper O-ideal with
Im(8/a) > 0, then

f(xy)= N(C;:(:)ﬂy)
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is a positive definite form of discriminant D. On the level of classes, this

map is the inverse to the map of Theorem 7.7 (see Exercise 7.17).
Theorem 7.7 allows us to translate what we know about quadratic forms

into facts about ideal classes. Here is an example that will be useful later

on:

Corollary 7.17. Let O be an order in an imaginary quadratic field. Given a
nonzero integer M, then every ideal class in C(QO) contains a proper O-ideal
whose norm is relatively prime to M .

Proof. In Lemma 2.25 we learned that any primitive form represents num-
bers relatively prime to M, and the corollary then follows from part (iii) of
Theorem 7.7. Q.E.D.

The reader may wonder if Theorem 7.7 holds for real quadratic fields.
Simple examples show that this isn’t true in general. For instance, when
K = Q(V/3), the maximal order Og = Z[V/3] is a UFD, which implies that
C(Og)~{1}. Yet the forms £(x* —3y?) of discriminant dg = 12 are not
properly equivalent, so that C(dg) # {1} (see Exercise 7.18 for the details).
In order to make a version of Theorem 7.7 that holds for real quadratic
fields, we need to change the notion of equivalence. In Exercises 7.19-7.24
we will explore two ways of doing this:

1. Change the notion of equivalence of ideals. Instead of using all principal
ideals P(O), use only P*(0O), which consists of all principal ideals a0
where N(a) > 0. The quotient /(O)/P*(0O) is the narrow (or strict) ideal
class group and is denoted by C*(O). In Exercise 7.21 we will construct
a natural isomorphism C(D)~ C*(O) which holds for any order in any
quadratic field K. We also have C*(O) = C(O) when K is imaginary,
and the same is true when K is real and O has a unit € with N(¢) = —1.
If K has no such unit, then |CT(O)| = 2|C(O)|.

2. Change the notion of equivalence of forms. Instead of using proper
equivalence, use the notion of signed equivalence, where f(x,y) and
g(x,y) are signed equivalent if there is a matrix (£ ?) e GL(2,Z) such
that

p q
f(x,y) = det ( - > g(px+qy,rx+sy).

The set of signed equivalence classes is denoted C;(D), and in Exercise
7.22 we will see that there is a natural isomorphism Cs(D) =~ C(O). The
criteria for when C;(D) = C(D) are the same as above.

For other treatments of the relation between forms and ideals, see Bore-
vich and Shafarevich [8, Chapter 2, §7.5], Cohn [19, §§14.A-C] and Zagier
[111, §§8 and 10].
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C. Ideals Prime to the Conductor

The theory described so far does not interact well with the usual formu-
lation of class field theory. The reason is that class field theory is always
stated in terms of the maximal order Ok . So given an order O in a qua-
dratic field K, we will need to translate proper O-ideals into terms of Og-
ideals. This is difficult to do directly, but becomes much easier once we
study O-ideals prime to the conductor.

Given an order O of conductor f, we say that a nonzero O-ideal a is
prime to [ provided that a + f O = O. The following lemma gives the basic
properties of O-ideals prime to the conductor:

Lemma 7.18. Let O be an order of conductor f .

(i) An O-ideal a is prime to f if and only if its norm N (a) is relatively prime
0 f.

(ii) Every O-ideal prime to f is proper.

Proof. To prove (i), let my: O/a — O/a be multiplication by f. Then
a+ fO =0 <= my is surjective <= my is an isomorphism.

By the structure theorem for finite Abelian groups, my is an isomorphism
if and only if f is relatively prime to the order N(a) of O/a, and (i) is
proved.

To show that an O-ideal a prime to f is proper, let 8 € K satisfy fa C a.
Then g is certainly in Ok, and we thus have

PO =p(a+ fO)=Pa+LfOCa+ fOk.

However, f Ox C O, which proves that SO C O. Thus g € O, which proves
that a is proper. Q.E.D.

It follows that O-ideals prime to f lie naturally in /(O) and are closed
under multiplication (since N(ab) = N(a)N(b) will also be prime to f).
The subgroup of fractional ideals they generate is denoted 1(O,f) C 1(O),
and inside of I(O, f) we have the subgroup P(O, f) generated by the prin-
cipal ideals O where a € O has norm N(a) prime to f. We can then
describe C(O) in terms of I(O, f) and P(O, f) as follows:

Proposition 7.19. The inclusion 1(O, f) C 1(O) induces an isomorphism
1(0,£)/P(O,f) = 1(0)/ P(O) = C(O).

Proof. The map I1(O,f) — C(O) is surjective by Corollary 7.17 (any ideal
class in C(O) contains an O-ideal prime to f), and the kernel is 1(O, f)N
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P(0O). This obviously contains P(O, f), but the inclusion I(O, f)N P(O) C
P(O,f) needs proof. An element of I(O,f)N P(O) is a fractional ideal
a® = ab~!, where a € K and a and b are O-ideals prime to f. Let m =
N(b). Then mO = N(b)O = bb, so that mb—1 = b. Hence

ma® =a-mb~1=abcCO,

which proves that maQ € P(O,f). Then a® = ma®-(mO)~! is also in
P(O,f), and the proposition is proved. Q.E.D.

For any order O, ideals prime to the conductor relate nicely to ideals
for the maximal order Ok . Before we can explain this, we need a defini-
tion: given a positive integer m, an Ok-ideal a is prime to m provided that
a+ mQOkg = Ok. As in Lemma 7.18, this is equivalent to gcd(N(a), m) = 1.
Thus, inside of the group of fractional Ok-ideals Iy, we have the subgroup
Ix(m) C Ik generated by Og-ideals prime to m.

Proposition 7.20. Let O be an order of conductor f in an imaginary qua-
dratic field K.
(i) If a is an Ok-ideal prime to f, then anN O is an O-ideal prime to f of

the same norm.

(ii) If a is an O-ideal prime to f, then aOg is an Ok-ideal prime to f of
the same norm.

(iii) The map a— an O induces an isomorphism Ix(f) = 1(O,f), and the
inverse of this map is given by a — aOk.

Proof. To prove (i), let a be an Ok-ideal prime to f. Since O/aN O injects
into Ok /a and N(a) is prime to f, so is N(an ©), which proves that an O
is prime to f. As for norms, consider the natural map

C’)/aﬂ(’)—»(’)K/a.

It is injective, and since a is prime to f, multiplication by f induces an
isomorphism of Ok /a. But fOg C O, and surjectivity follows. This shows
that the norms are equal, and (i) is proved.

To prove (ii), let a be an O-ideal prime to f. Since

aOg +f(91( = ((1 +f0)01( = 00k = Ok

we see that aOg is also prime to f. The statement about norms will be

proved below.
Turning to (iii), we claim that

aOkNO=a when a is an O-ideal prime to f

(7.21)
(aNO)Okx =a  when ais an Ok-ideal prime to f.
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We start with the top line. If a is an O-ideal prime to f, then
a0k NO = (a0x NO)O
= (a0 NO)(a + fO)
ca+ f(aOxkNO)Ca+a-fOg.

Since fOk C O, this proves that aOg N O C a. The other inclusion is obvi-
ous, so that equality follows. Turning to the second line of (7.21), let a be
an Ok-ideal prime to f. Then

a=a0=a(anNO0+ fO)C(anO)Ok + fa.

However, faC fOgx C O, so that faCcanNO C(aNO)Ok, and a C (an
O)Ok follows. The other inclusion is obvious, which finishes the proof of
(7.21). Notice that (7.21) and (i) imply the norm statement of (ii).

From (7.21) we get a bijection on the monoids of Og- and O-ideals
prime to f. If we can show that a+— anN O preserves multiplication, then
we get an isomorphism Ix(f) ~ I(O,f) (see Exercise 7.25). But multiplica-
tivity is easy, for the inverse map a — aOg is obviously multiplicative:

(ab)(’)K = (101( . bOK.
This proves the proposition. Q.E.D.

Using this proposition, it follows that every O-ideal prime to f has a
unique decomposition as a product of prime O-ideals which are prime to f

(see Exercise 7.26).
We can now describe C(O) in terms of the maximal order:

Proposition 7.22. Let O be an order of conductor f in an imaginary qua-
dratic field K. Then there are natural isomorphisms

C(O) = I(0,f)/P(O,f) = Ik(f)/ Pk 2(f),

where Pk z(f) is the subgroup of Ix(f) generated by principal ideals of the
form aOk, where a € Ok satisfies a = a mod f Ok for some integer a rela-
tively prime to f.

Remark. To keep track of the various ideal groups, remember that the sub-
script K refers to the maximal order Ok (as in Ik, Ik(f), etc.), while no
subscript refers to the order O (as in 1(0), I(O, f), etc.).

Proof. The first isomorphism comes from Proposition 7.19. To prove the
second, note that a— aOg induces an isomorphism I1(O,f)~ Ix(f) by
Proposition 7.20. Under this isomorphism P(O, f) C I(O, f) maps to a sub-
group P C Ix(f). It remains to prove P = Pk 7(f).
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We first show that for a € O,

(7.23) a=amod fOk, a€Z, ged(a,f) =1
< a €0, ged(N(a),f) = 1.

Going one way, assume that a =a mod fOg, where a € Z is relatively
prime to f. Then N(a)=a? mod f follows easily (see Exercise 7.27), so
that gcd(N (), f) = ged(a?,f) = 1. Since fOx C O, we also see that a € O.
Conversely, let a € O =[1, fwg] have norm prime to f. Then a =a mod
fOk for some a €. Since gcd(N(a),f) =1 and N(a)=a®?mod f, we
must have gcd(a, f) = 1, and (7.23) is proved.

We know that P(O, f) is generated by the ideals aO, where a € O and
N(a) is relatively prime to f. Thus P is generated by the corresponding
ideals aOk, and by (7.23), this implies that P = Pg (O, f). Q.E.D.

In §9 we will use this proposition to link C(O) to the class field theory
of K. For other discussions of the relation between ideals of @ and Oy,
see Deuring [24, §8] and Lang [73, §8.1].

D. The Class Number

One of the nicest applications of Proposition 7.22 is a formula for the class
number A(Q) in terms of its conductor f and the class number A(Og) of
the maximal order. Before we can state the formula, we need to recall some
terminology from §5. Given an odd prime p, we have the Legendre symbol
(dk/p), and for p = 2 we have the Kronecker symbol:

0 if 2 |dg
(51—21—(-)= 1 if dg =1mod8
-1 if dg =5 mod 8.

(Recall that dg = 1 mod 4 when dg is odd.) We can now state our formula
for h(O):

Theorem 7.24. Let O be the order of conductor f in an imaginary quadratic

field K. Then WO 4o\ 1
HO) = W}}(l‘ (5)3)

Furthermore, h(O) is always an integer multiple of h(Ok).

Proof. By Theorem 7.7 and Proposition 7.22, we have
h(O) = |C(O)| = |Ik(f)/Pk.2(f)
h(Ok) = |C(Ox)| = Ik / Px|-
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Since Ix(f) C Ix and Pg z(f) C Ix(f) N Pk, we get an exact sequence

(7.25)
0 — Ik(f)NPk/Pka(f) — Ik(f)/Pxkz(f) — Ix/Px
1 IR

C(0) —  C(Ok).

We know from Corollary 7.17 that every class in C(Ok) contains an Ok-
ideal whose norm is relatively prime to f. This implies that C(O) — C(Ok)
is surjective, which proves that h(Og) divides h(O). Furthermore, (7.25)
then implies that

h(O) _
(7.26) WOR) [k (f)N Pk /Pka(f)l.
It remains to compute the order of Ix(f)N Pk /Px 2(f). The key idea is to
relate this quotient to (Og /f Ok)*.

Given [a] € (Ok/fOk)*, the ideal aOk is prime to f and thus lies in
Ik(f)N Pk . Furthermore, if @ = mod fOk, we can choose u € @ with
ua=uff=1mod fOk. Then the ideals uaOk and ufOk lie in Pg 7(f),
and since

a(’)K . uﬁ(’)K = ﬁOK . ua(’)K,

aOk and Ok lie in the same class in Ix(f)N Px /P z(f). Consequently,
the map

¢:(Ok/fOk)" — Ix(f)NPk [Pk 2(f)

sending [a] to [aOk] is a well-defined homomorphism.

We will first show that ¢ is surjective. An element of Ix(f)N Px can be
written as aOg = ab~!, where a € K and a and b are Ok-ideals prime
to f. Letting m = N(b), we've seen that b = mb™!, so that maOk = ab,
which implies that ma € Og. Note also that maQg is prime to f. Since
mOk € Px a(f), it follows [aOk] = [maOk] = ¢([ma]), proving that ¢ is
surjective.

To determine the kernel of ¢, we will assume that O} = {1} (by Ex-
ercise 5.9, this means that K # Q(+/—3) or Q(¢)). In this case we will show
that there is an exact sequence

(727) 1 — @/fT)* 2 (Ok/fOK)* - Ix(F)N P /Py 2(f) — 1

where 1 is the obvious injection. The definition of Px z(f) makes it clear
that im(¢) C ker(¢). Going the other way, let [a] € ker(¢). Then aQOg €
Pxa(f), ie., aOg = BOx -7~ 'Ok, where § and 7 satisfy 8 = b mod f Ok
and v = ¢ mod f Ok for some [b] and [c] in (Z/fZ)*. Since O} = {£1}, it
follows that « = £3y~!, and one then easily sees that [b][c]™! € (Z/fZ)*
maps to [a] € (Ok/f Ok)*. This proves exactness.



148 §7. ORDERS IN IMAGINARY QUADRATIC FIELDS

It is well-known that

@ror=T1(1-5):

rlf

and in Exercises 7.28 and 7.29 we will show that

©Ox/fOxy 1= F*] ] (1 B %) (1_ (dFK) %) ‘

plf
Using these formulas and (7.26), we obtain
h(fsz) dg\ 1
Ix = 1—( 22 )=
h(dx) = Ik(f)NPg/Pxa(f)| = o )7p)
pr
which proves the desired formula since |Ok| = |0*| = 2. In Exercise 7.30

we will indicate how to modify this argument when Of # {£1}. Q.E.D.

This theorem may also be proved by analytic methods—see, for example,
Zagier [111, §8, Exercise 8].

Using Theorem 7.24, we can relate the class numbers A(m2D) and h(D)
as follows:

Corollary 7.28. Let D = 0,1 mod 4 be negative, and let m be a positive inte-

ger. Then o .
o) = e 1 (1-(5) ).

plm

where © and ©' are the orders of discriminant D and m*D, respectively (and
O’ has index m in O).

Proof. Suppose that the order O has discriminant D and conductor f. Then
the order @' C © of index m has discriminant m2D and conductor mf, and
the corollary follows from Theorem 7.24 (see Exercise 7.31). This corollary
is due to Gauss, and his proof may be found in Disquisitiones [41, §§254-
256]. Q.E.D.

The only method we learned in §2 for computing class numbers h(D)
for D < 0 was to count reduced forms. This becomes awkward as |D| gets
large, but other methods are available. By Theorem 7.24, we are reduced
to computing h(dg), and here one has the classic formula

ldx|—1

(7.29) h(dg)= (‘%")n,

n=1
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where (dg/n) is defined for n = p;--- p,, p; prime, by (dx/n) = [[;_;(dk/
pi). This formula is usually proved by analytic methods (see Borevich and
Shafarevich [8, Chapter 5, Section 4], or Zagier [111, §9]), but there is also
a purely algebraic proof (see Orde [83]).

While (7.29) enables us to compute h(dk) for a given imaginary qua-
dratic field, it doesn’t reveal the way h(dg) grows as |dg| gets large. Gauss
noticed this empirically in Disquisitiones [41, §302], but there were no com-
plete proofs until the 1930s. The best result is due to Siegel [92], who
proved in 1935 that

This implies that given any € > 0, there is a constant C(¢) such that
h(dg) > C(€)|dg |/

for all field discriminants dx < 0. Unfortunately, the constant C(¢) in Sie-
gel’s proof is not effectively computable given what we currently know
about L-series (these difficulties are related to the Riemann Hypothesis).
However, recent work by Goldfeld, Gross, Zagier and Oesterl€ has led to
the weaker formula

1 2

hdk) > 7555 (1 - [;“\_{‘_?il) log|dk],
pldx

where [ ] is the greatest integer function. For a fuller discussion of this

result and its implications, see Oesterlé [81] or Zagier [112].

These results on the growth of h(dg) imply that there are only finitely
many orders with given class number h (see Exercise 7.32). Nevertheless,
even when A is small, determining exactly which orders have class number
h remains a difficult problem. For the case of class number 1, the answer
is given by the following theorem due independently to Baker [3], Heegner
[52] and Stark [96]:

Theorem 7.30.
(i) If K is an imaginary quadratic field of discriminant dg, then
h(dg) =1 < dg = —-3,-4,-7,-8,-11,-19,—-43,-67,—-163.
(ii) If D =0,1 mod 4 is negative, then
h(D)=1 < D =-3,-4,-7,-8,-11,-12,-16,
—19,-27,-28,—43,-67,—163.
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Proof. First note that (i) = (ii). To see this, assume A(D) = 1. If we write
D = f*dg, then Theorem 7.24 tells us that h(dk)|h(D), and thus h(dg) =
1. By (i), this determines the possibilities for dg, but we still need to see
which conductors f > 1 can occur. First, suppose that O = {£1}.If f > 2,

()2

rlf

so that by Theorem 7.24, this case can be excluded. One then calculates
directly (using (i) and Theorem 7.24) that f = 2 happens only when dg =
—7, i.e, D = —28. The argument when O% # {£1} is similar and is left to
the reader (see Exercise 7.33).

The proof of (i) is a different matter. When the discriminant is even, the
theorem was proved in §2 by an elementary argument due to Landau (see
Theorem 2.18). But when the discriminant is odd, the proof is much more
difficult. In §12 we will use modular functions and complex multiplication
to give a complete proof of (i). Q.E.D.

E. Exercises

7.1. Let K be a finite extension of Q of degree n, and let M C K be a
finitely generated Z-module.
(a) Prove that M is a free Z-module.
(b) Prove that M has rank n if and only if M contains a Q-basis
of K.

7.2. Let O be an order in a quadratic field K. Prove that © ¢ O .

7.3. This exercise is concerned with the conductor and discriminant of an
order O In a quadratic field K. Let a+— o' be the nontrivial auto-
morphism of K.

(a) If O =[a,p], then the discriminant is defined to be

o-(w(3 1)

Prove that the D is independent of the basis used and hence de-
pends only on O.

(b) Use the basis O = [1, fwg] from Lemma 7.2 to prove that D =
[idx .

(¢) Use (b) and Lemma 7.2 to prove that an order in a quadratic field
is uniquely determined by its discriminant.

2



14.

1.5.

7.6.

1.7.

1.8.

1.9.

7.10.

7.11.

E. EXERCISES 151

(d) If D =0,1 mod 4 is nonsquare, then show that there is an order
in a quadratic field whose discriminant is D.

Let O be an order in a quadratic field K.

(a) If a is a nonzero ideal of O, prove that a contains a nonzero
integer m. Hint: take a € a, and use Lemma 7.2 to show that
a' € O, where a — a' is the nontrivial automorphism of K .

(b) If a is a nonzero ideal of O, show that O/a is finite. Hint: take
the integer m from (a) and show that O/mQ is finite.

(c) Use (b) to show that every nonzero prime ideal of O is maximal.
(d) Use (b) to show that O is Noetherian.

Let K = Q(v/-3), and let a be the ideal of O = Z[v/—3] generated
by 2 and 1+ +/—3. Show that

{feK:faCa} =0k # 0.

Let K be a quadratic field.
(a) Show that for any order of K, principal ideals are always proper.
(b) Show that for the maximal order Ok, all ideals are proper.

Let O be an order of K, and let b C K be an O-module (note that b
need not be contained in O). Show that b is finitely generated as an
O-module if and only if b is of the form aa, where a € K and a is an
O-ideal.

Show that a nonzero fractional @-ideal a is a free Z-module of rank
2. Hint: use the previous exercise and part (b) of Exercise 7.4.

Let O = Z[+/-3], which is an order of conductor 2 in the imaginary
quadratic field K = Q(+/-3).
(a) Show that C(O) ~ {1}, so that the proper ideals of O are exactly

the principal ideals. Hint: use Theorem 7.7 and what we know
from §2.

(b) Show that if unique factorization holds for proper ideals of O,
then O is a UFD.

(c) Show that 2, 1+ +/-3 and 1—+/-3 are irreducible (in the sense
of §4) in O. Since 4 =2-2=(1++/=3)(1-+/=3), this shows
that O is not a UFD.

This example shows that unique factorization can fail for proper

ideals.

If a and b are invertible fractional ideals for an order ©, then
prove that ab and a~! (where a~! is the fractional ¥-ideal such that
aa~! = ) are also invertible fractional O-ideals.

Prove (7.10).
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Let f(x,y) = ax*+ bxy + cy? be a quadratic form with integer co-

efficients, and let 7 be a root of ax? + bx + ¢ = 0.

(a) Prove that f(x,y) is positive definite if and only if @ > 0 and
T ¢ R.

(b) When f(x,y) is positive definite and ged(a,b,c) = 1, prove that
the discriminant of f(x,y) is D, where D is the discriminant of
the order O = [1,aT].

(c) Prove that two primitive positive definite forms which have the
same root 7 must be equal.

Let ax® + bxy + cy? and a'x? + b'xy + c'y? be two primitive posi-
tive definite forms of the same discriminant. Assume that ged(a,a’,
(b+b')/2) =1, and let B be the unique integer modulo 2aa’ which
satisfies the three conditions of (7.12). Prove that ged(a,a’,B) = 1.

Let O = [1,u] be an order in a quadratic field, and pick @ = a + bu €
O, a # 0. Since O is a ring, au can be written au = ¢ + du.

(a) Show that N(a) = ad — bc # 0.

(b) Since aO =[a,au]=[a+bu,c+dulCc O=[1,u] and ad-

bc #0, it is a standard fact (proved in Exercise 7.15) that

l(’)/a(’)l lad — bc|. Thus (a) proves the general relation that
N(aO) = |N(a)|.
Let M = 7%, and let A= (“5) be an integer matrix with det(4) =
ad — bc # 0. Writing M = [e1,e], note that AM = [ae; + bes,ce; +
dez]. Our goal is to prove that |M/AM| = |det(A4)|. Let A' =
(4 =), and note that A4' = A' A = det(A)].

(a) Show that det(A)M C AM and that AM /det(A)M ~ M /A'M.
(b) Use (a) and the exact sequence

0— AM /det(A)M — M [det(A)M —s M/ AM — 0

to show that |M /AM||M [ A'M | = (det(A))?.
(c) Let © = ((1) _&). Using ©40~! = A4', show that © : M — M in-
duces an isomorphism M /AM 5 M /A'M
(d) Conclude that |M /AM| = |det(A)|.
Let O be the order of discriminant D in an imaginary quadratic field
K, and let a be a proper O-ideal. In this exercise we will give two
proofs that the class of @ is the inverse of the class of a in C(0O).
(a) Prove this assertion using part (iii) of Lemma 7.14.

(b) In §3, we proved that the class of the opposite f'(x, y) =ax®—
bxy + cy? is the inverse of the class of f(x,y)=ax?®+bxy +
cy?. Using the isomorphism C(D) ~ C(0) from Theorem 7.7,
show that the class of @ is the inverse of the class of a in C(O).



E. EXERCISES 163

7.17. Let O be the order of discriminant D in the imaginary quadratic

1.18.

1.19.

1.20.

field K .
(a) Show that the map sending the proper O-ideal a = [a, 3] to the
quadratic form
N(ax - fy)

f(x,y)= N (a)

induces a well-defined map C(O) — C(D) which is the inverse
of the map ax? + bxy + cy? — [a,(—b + v/D)/2] of Theorem 7.7.
Hint: use (7.16) and Exercise 7.12.

(b) Give examples to show that the map ax®+bxy +cy?w—
[a,(—b + V/D)/2] of Theorem 7.7 is neither injective nor surjec-
tive on the level of forms and ideals.

Let K = Q(V/3), a field of discriminant dg = 12. By (5.13), we know

that Og = Z[/3].

(a) Use the absolute value of the norm function to show that Ok is
Euclidean, and conclude that C(Og) ~ {1}.

(b) Show that the form class group C(dg)= C(12) is nontrivial.
Hint: show that the forms +(x2 — 3y?) are not properly equiv-
alent. You will need to show that the equation a?—3c¢? = —1
has no solutions.

This shows that C(dk) % C(Ok) for K = Q(V/3).

In Exercises 7.19-7.24 we will explore two versions of Theorem 7.7
that hold for real quadratic fields K. To begin, we will study the
orientation of a basis a, § of a proper ideal a = [a,8] of an order
O in K. Let a — a' denote the nontrivial automorphism of K .

(a) Prove that o' — aff’ € R*. We then define sgn(a, ) to be the
sign of the nonzero real number o'f — af’.

(b) Let (71) € GL(2,Z), and set & = pa +qp, = ra +sf. Note
that a = [a, ] = [@,5]. Prove that

sgn(@, B) = det (f z) sgn(a, 5.

We say that a, § are positively oriented if sgn(a,3) >0 and neg-
atively oriented otherwise. By (b), two bases of a have the same
orientation if and only if their transition matrix is in SL(2,2).

Theorem 7.7 was proved using a map from quadratic forms to ideals.
In the real quadratic case, such a map is harder to describe (see
Exercise 7.24), but it is relatively easy to go from ideals to forms.
The goal of this exercise is to show how this is done. Let O be an
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order in a real quadratic field K, and let a = [a, 3] be a proper O-
ideal. Then define the quadratic form f(x,y) by the formula

fley)= T,

At this point, all we know is that f(x,y) has rational coefficients.
Let 7 = B/a, and let ax? + bx + ¢ be the minimal polynomial of 7.
We can assume that a,b,c € Z, a > 0 and gcd(a, b,c) = 1.

(a) Prove that N(a) = [N(a)|/a. Hint: adapt the proof of (7.16) to
the real quadratic case. Exercise 7.14 will be useful.

(b) Use (a) to prove that f(x,y)=sgn(N(a))(ax®+ bxy + cy?).
Thus f(x,y) has relatively prime integer coefficients.

(c) Prove that the discriminant of f(x,y) is D, where D is the dis-
criminant of O. Hint: see Exercise 7.12.

In this exercise we will construct a bijection C*(O) ~ C(D), where
C*(0O) is defined in the text.

(a) Let a be a proper O-ideal, and write a = [a, 3] where sgn(a, ()
>0 (see Exercise 7.19). Then let f(x,y) be the correspond-
ing quadratic form defined in Exercise 7.20. If &, § is another
positively oriented basis of a, then show that the corresponding
form g(x,y) from Exercise 7.20 is properly equivalent to f(x,y).
Furthermore, show that all forms properly equivalent to f(x,y)
arise in this way.

(b) If A€ O and N(A) > 0, then show that Aa gives the same class

of forms as a. Hint: show that sgn(Aa, AB) = sgn(N(A))sgn(a, B).

(c) From (a), (b) and Exercise 7.20 we get a well-defined map

C*(0) — C(D). To show that the map is injective, suppose that

a and @ give the same class in C(D). By (a), we can choose

positively oriented bases a = [a, 3] and @ = [a, §] which give the

same form f(x,y).

(1) Using Exercise 7.19, show that sgn(N(a)) = sgn(N(&)), i.e.,
N(aa) > 0. Then replacing a and @ by aa@a and a?a respec-
tively allows us to assume that a = &, ie., a = [a,] and
a = [a,f].

(ii) Let 7 = B/a and ¥ = §/a. Show that f(1,1) = f(#,1) = 0,
so that ¥ =7 or 7'. Then show that ¥ =17' contradicts
sgn(a, ) > 0, which proves that 8 = §.

(d) To prove surjectivity, let f(x,y) = ax?+ bxy +cy? be a form

of discriminant D, and let 7 be either of the roots of ax? +

bx + ¢ = 0. First show that at € O. Then define an O-ideal a as
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follows: if a > 0, then
a = [a,aT] where f(7,1) =0, sgn(1,7) > 0,
and if a < 0, then
a = \/dg[a,ar]  where f(7,1) =0, sgn(1,7) <O0.

Show that a is a proper O-ideal and that the form corresponding
to a from Exercise 7.20 is exactly f(x,y).

This completes the proof that C*(O) — C(D) is a bijection.

In this exercise we will construct a bijection C(O) ~ C(D), where

Cs(D) is defined in the text. Our treatment of Cs(D) is based on

Zagier [111, §8].

(a) Let a = [a, 5] be a proper O-ideal, where this time we make no
assumptions about sgn(a, ). Define f(x,y) to be the quadratic

form N(ax — By)
fGxp) = sgn(@py

which by Exercise 7.20 has relatively prime integer coefficients
and discriminant D. Show that as we vary over all bases of g,
the corresponding forms vary over all forms signed equivalent
to f(x,y)-

(b) Show that the map a — f(x,y) of (a) induces a well-defined bi-
jection C(O) ~ Cs(D). Hint: adapt the arguments of parts (b)-
(d) of Exercise 7.21.

This exercise will explore the relations between C(O), C*(0), C(D)
and Cs(D).
(a) Let K be an imaginary quadratic field.

(i) Show that PT(O)= P(0O), so that C*(O) always equals
C(O).

(ii)) The relation between C(D) and Ci (D) is more interest-
ing. Namely, in C(D), we had to explicitly assume that we
were only dealing with positive definite forms. However, in
Cs(D), one uses both positive definite and negative definite
forms. Show that any negative definite form is signed equiv-
alent to a positive definite one, and conclude that C(D) ~
Cs(D).

(b) Now assume that K is a real quadratic field.
(i) Show that there are natural surjections

C*(0) — C(0)
C(D) — Cs(D)
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which fit together with the bijections of Exercises 7.21 and
7.22 to give a commutative diagram

cCt(©) — C(D)
! !
c(O) = G(D)
(i) Show that the kernel of C*(0O)— C(O) is P(O)/P*(O)
and that P(O) = P*(O)U+/dgP*(0). Then conclude that
IC*(O)| _ { 1  if O has a unit of norm —1

|C(O)] - 2 otherwise.

(iii) From (i) and (ii), conclude that
|C(D)| { 1 if O has a unit of norm —1

|Cs(D)| - 2 otherwise.

7.24. Write down inverses to the bijections C*(0) = C(D) and C(0) 5

7.25.

7.26.

1.27.

7.28.

Cs(D) of Exercises 7.21 and 7.22. Hint: see part (d) of Exercise 7.21.
Note that the answer is more complicated than the map ax? + bxy
+cy? — [a,(-b + v/D)/2] of Theorem 7.7.

Let ¢ : {Ok-ideals prime to f} — {O-ideals prime to f} be a bijec-
tion which preserves multiplication. Show that ¢ extends to an iso-
morphism ¢ : Ix (f) = I(O,f).

Let O be an order of conductor f.

(a) Let a be an ideal of O which is relatively prime to f. Prove that
a is a prime O-ideal if and only if aOk is a prime Ok-ideal.
Hint: use Proposition 7.20 to show that O/a ~ Ok /aOk.

(b) Use (a) and the unique factorization of ideals in Ok to show
that O-ideals relatively prime to the conductor can be factored
uniquely into prime O-ideals (which are also relatively prime

to f).

If a,f € Ox and a = mod mOxk for some integer m, then prove
that N(a) = N(B) mod m.

Let K be a quadratic field, and let p be prime in Og. The goal of
this exercise is to prove that

Ok /p")*| = N(p)" " (N(p) - 1).

The formula is true if n = 1, and the general case follows easily by
induction once we prove that there is an exact sequence

1— Ok /p = (Ok/p") — (Ox/p"™)" — 1
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for n > 2. For the rest of the exercise fix an integer n > 2.
(a) Show that (Og/p™)* — (Ok/p"~1)* is onto. Hint: take [a] €
(Ok/p"~1)*, which means that af = 1+ 7, where § € Ok and
v € p"~L. Then show that a(8 +78)—1¢€ p” for an appropri-
ately chosen 0.
(b) By unique factorization, we know that p” is a proper subset of
p"~1 Pick u € p”~! such that u ¢ p”.
(i) Given a € Ok, show that [1 + au] € (Ok/p")".
(ii) From (i), it is easy to define a map ¢ : Ok /p — (Ok/p")".
With this definition of ¢, show that the above sequence is
exact.

Let K be an imaginary quadratic field.
(a) Let a = []i_,p be the factorization of a into primes. Show that
there is a natural isomorphism

Ok/a=~[](Ox/p}).
=1

This is the Chinese Remainder Theorem for Og. Hint: it is easy
to construct a map and show it is injective. Then use part (ii) of
Lemma 7.14.

(b) Use (a) and the previous exercise to show that if a is a nonzero
ideal of Ok, then

= N(a __b
(Ox/a)*] = N( )H<1 )

Notice the similarity to the usual formula for ¢(n) = [(Z/nZ)*|.
(¢) If m is a positive integer, conclude that

1 dg \ 1
urmeen=TL(1-3) (- (4)1)
p p/p
plm
where (dg/p) is the Kronecker symbol when p = 2.

Let K be any quadratic field, and let f be a positive integer.
(a) Use the obvious maps

{x1} — (Z/f1) x Ok
(Z/f1)" x Ok — (Ok/fOk)
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and the maps from (7.27) to prove that there is an exact se-
quence

1 —{£1} — (Z/f1)* x Ox — (Ok/f Ok)*
— Ix(f)N Pk /Pga(f)— 1.

Notice that when Oy = {11}, this sequence is equivalent to
(7.27).

(b) Use the exact sequence of (a) to prove Theorem 7.24 for all
imaginary quadratic fields.

Prove Corollary 7.28.

In this exercise we will use the inequality

! 2y7]
) W(dx) > 7 pldx(l e toglax

to study the equation h(dx) = h, where £ > 0 is a fixed integer and
dk varies over all negative discriminants.

(a) Show that 1—-[2,/p]/(p+ 1) > 1/2 when p > 11.
(b) If h(dk) = h, then use (a) and genus theory to conclude that

,_L2vml 1
H Cp+1)7™ 3 vy (h)+2°

pldx

where v,(h) is the highest power of 2 dividing 4. Hint: use The-
orem 3.15 or 6.1 to show that d is divisible by at most v,(h) + 1
distinct primes.

(c) If h(dk) = h, then show that () gives us the following estimate
for |dg|:
|di| < 2100220,

This proves that there are only finitely many negative discrimi-
nants with class number at most 4. Better bounds for |dk| can
be derived from (*) (see Oesterlé [81]), but the constant 1/7000
in (*) limits their usefulness. For discriminants prime to 5077,
Oesterlé hopes to improve this constant from 1/7000 to 1/55,
which would give an estimate strong enough to solve the class
number 3 problem (see [81]).

(d) If h is fixed and D = 0,1 mod 4 varies over all negative integers,
show that the equation (D) = h has only finitely many solu-
tions. Hint: use genus theory to bound the number of primes
dividing D, and then use Theorem 7.24.
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7.33. In Theorem 7.30, complete the proof of (i) = (ii) sketched in the
text.

§8. CLASS FIELD THEORY AND THE CEBOTAREV DENSITY
THEOREM

In this section we will present a classical formulation of class field theory,
where Abelian extensions of a number field are described in terms of cer-
tain generalized ideal class groups. After stating the main theorems (without
proof), we will illustrate their use by proving the Kronecker—Weber Theo-
rem and the existence of the Hilbert class field. We will then discuss gener-
alized reciprocity theorems for the nth power Legendre symbol (a/p), and
show how quadratic reciprocity follows from class field theory.

The Cebotarev Density Theorem hasn’t been mentioned before, but it
provides some important information about the behavior of the Artin map.
One of its classic applications is Dirichlet’s theorem on primes in arithmetic
progressions, and in §9 we will use the same methods to study primes repre-
sented by a given quadratic form. Another consequence of the Density The-
orem is that a Galois extension of a number field is determined uniquely
by the primes in the base field that split completely in the extension. As we
will see, this is closely related to our basic problem of characterizing the
primes represented by x2 + ny?2.

Our account of class field theory will be incomplete in several ways, and
at the end of the section we will discuss two of the most obvious omissions,
norms and ideles.

A. The Theorems of Class Field Theory

We begin our treatment of class field theory with the notion of a modulus.
Given a number field K, a modulus in K is a formal product

m=l—[p”p
p

over all primes p, finite or infinite, of K, where the exponents must sat-
isfy:
(i) ny >0, and at most finitely many are nonzero.
(ii) n, = 0 wherever p is a complex infinite prime.
(iii) ny, <1 whenever p is a real infinite prime.
A modulus m may thus be written mom,,, where mg is an Og-ideal and

My is @ product of distinct real infinite primes of K. When all of the
exponents n, =0, we set m = 1. Note that for a purely imaginary field K
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(the case we’re most interested in), a modulus may be regarded simply as
an ideal of Og.

Given a modulus m, let Ix(m) be the group of all fractional Ok-ideals
relatively prime to m (which means relatively prime to my), and let Px 1(m)
be the subgroup of Ix(m) generated by the principal ideals aOg, where
a € Ok satisfies

a =1 mod my and o(a) > 0 for every real infinite prime ¢ dividing m..

A basic result is that Pk ;(m) has finite index in Ix(m). When K is imag-
inary quadratic, this is proved in Exercise 8.1, while the general case may
be found in Janusz [62, Chapter IV.1]. A subgroup H C Ix(m) is called a
congruence subgroup for m if it satisfies

PK,l(m) CHC IK(m),

and the quotient
IK(m)/H

is called a generalized ideal class group for m.

For an example of these concepts, consider the modulus m = 1. Then
Px = Pk 1(1) is a congruence subgroup, so that the ideal class group C(Ok)
= Ix /Px is a generalized ideal class group. We also get some interesting
examples from §7. Let O be an order of conductor f in an imaginary qua-
dratic field K. In Proposition 7.22 we proved that the ideal class group
C(O) can be written

C(O) ~ Ik(f)/Pk,2(f),

where Pg z(f) is generated by the principal ideals aOk for a =a mod
fOk, a€l and ged(a,f) = 1. If we use the modulus f Ok, then the defi-
nition of Pg 1(f Ok) shows that

(8.1) Pk 1(fOk) C Pxa(f) C Ik(f) = Ik(f Ok),

and thus Pg z(f) is a congruence subgroup for f Ok . This proves that C(O)
is a generalized ideal class group of K for the modulus fOgk. In §7, the
group Pg z(f) seemed awkward, but it’s a very natural object from the point
of view of class field theory.

The basic idea of class field theory is that the generalized ideal class
groups are the Galois groups of all Abelian extensions of K, and the link
between these two is provided by the Artin map. To make this precise, we
need to define the Artin map of an Abelian extension of K.

Let m be a modulus divisible by all ramified primes of an Abelian ex-
tension K C L. Given a prime p not dividing m, we have the Artin symbol

(L/TK) € Gal(L/K)
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from §5. As in the discussion preceding Theorem 5.23, the Artin symbol
extends by multiplicativity to give us a homomorphism

& : Ix(m) — Gal(L/K)

which is called the Artin map for K C L and m. When we want to refer
explicitly to the extension involved, we will write ®; /K,m instead of ®y,.

The first theorem of class field theory tells us that Gal(L/K) is a gener-
alized ideal class group for some modulus:

Theorem 8.2. Let K C L be an Abelian extension, and let m be a modulus
divisible by all primes of K, finite or infinite, that ramify in L. Then:

(i) The Artin map ®, is surjective.
(ii) If the exponents of the finite primes dividing m are sufficiently large, then
ker(®w) is a congruence subgroup for w, i.e.,

PK,l(m) C kCI’(@m) C IK(m),
and consequently the isomorphism
Ix(m)/ker(®m) — Gal(L/K)

shows that Gal(L/K) is a generalized ideal class group for the modu-
lus m,

Proof. See Janusz [62, Chapter V, Theorem 5.7]. Q.E.D.

This theorem is sometimes called the Artin Reciprocity Theorem. The
key ingredient is the condition Pk 1(m) C ker(®m), for it says (roughly) that
the Artin symbol ((L/K)/p) depends only on p up to multiplication by
@, a =1 mod m. Later in this section we will see how Artin Reciprocity
relates to quadratic, cubic and biquadratic reciprocity.

Let’s work out an example of Theorem 8.2. Consider the extension Q C
Q(¢m), where (, = €*™/™ is a primitive mth of unity, and let m be the
modulus moo, where oo is the real infinite prime of Q. Using Proposition
5.11, one sees that any prime not dividing m is unramified in Q((») (see
Exercise 8.2), and it follows that the Artin map

Q1 Ig(m) — Gal(Q(¢n)/Q) ~ (Z/mI)*

is defined. & can be described as follows: given (a/b)Z € Ig(m), where
(a/b) > 0 and ged(a, m) = ged(b,m) = 1, then

a

(8.3) d,, (b

z) = [a][b] ! € (Z/m1Z)".
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It follows easily that
(8.4) ker(®m) = Pg1(m)

(see Exercise 8.2). The importance of this computation will soon become
clear.

One difficulty with Theorem 8.2 is that the m for which ker(®y,) is a
congruence subgroup is not unique. In fact, if P 1(m) C ker(®) and n is
any modulus divisible by m (it’s clear what this means), then

PK,l(m) C ker(<I>m) = PK,l(n) C ker((bn)

(see Exercise 8.4), so that Gal(L/K) is a generalized ideal class group for
infinitely many moduli. However, there is one modulus which is better than
the others:

Theorem 8.5. Let K C L be an Abelian extension. Then there is a modulus

f=f(L/K) such that

(i) A prime of K, finite or infinite, ramifies in L if and only if it divides {.

(ii) Let m be a modulus divisible by all primes of K which ramify in L. Then
ker(®w) is a congruence subgroup for w if and only if §| m.

Proof. See Janusz [62, Chapter V, §6 and Theorem 12.7]. Q.E.D.

The modulus f(L/K) is uniquely determined by K C L and is called the
conductor of the extension, and for this reason Theorem 8.5 is often called
the Conductor Theorem. In Exercise 8.5 we will compute the conductor of
Q C Q(¢m) (it need not be m), and in §9 we will compute the conductor of
a ring class field.

The final theorem of class field theory is the Existence Theorem, which
asserts that every generalized ideal class group is the Galois group of some
Abelian extension K C L. More precisely:

Theorem 8.6. Let m be a modulus of K, and let H be a congruence subgroup
for m, ie,
PK,l(m) CHC IK(m)

Then there is a unique Abelian extension L of K, all of whose ramified
primes, finite or infinite, divide w, such that if

(bm : IK(m) —_— Gal(L/K)
is the Artin map of K C L, then
H = ker(®n).
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Proof. See Janusz [62, Chapter V, Theorem 9.16]. Q.E.D.

The importance of this theorem is that it allows us to construct Abelian
extensions of K with specified Galois group and restricted ramification.
This will be very useful in the applications that follow.

Now that we’ve stated the basic theorems of class field theory, the next
step is to indicate how they are used. We will start with two of the nicest
applications: proofs of the Kronecker-Weber Theorem and the existence of
the Hilbert class field. A key tool in both proofs is the following corollary
of the uniqueness part of Theorem 8.6:

Corollary 8.7. Let L and M be Abelian extensions of K. Then L C M if and
only if there is a modulus m, divisible by all primes of K ramified in either L
or M, such that

PK,I(m) C ker(CI)M/KYm) C ker(be/K’m).

Proof. First, assume that L C M, and let r : Gal(M /K) — Gal(L/K) be the
restriction map. By Theorem 8.2 and Exercise 8.4, there is a modulus m
for which ker(®; /x m) and ker(®u/x.m) are both congruence subgroups for
m. The proof of Exercise 5.16 shows that ro @y g m = ®; /x.m, and then
ker(®ar/x,m) C ker(® /g w) follows immediately.

Going the other way, assume that Pg 1(m) C ker(®yr g m) C ker(®r/x m)-
Then, under the map Pk m:Ik(m)— GalM/K), the subgroup
ker(®r/x,m) C Ix(m) maps to a subgroup H C Gal(M /K). By Galois the-
ory, H corresponds to an intermediate field K C L c M. The first part of
the proof, applied to L C M, shows that ker(®; g w) = ker(®;/x w)- Then
the uniqueness part of Theorem 8.6 shows that L = L c M, and we are
done. Q.E.D.

We can now prove the Kronecker-Weber Theorem, which classifies all
Abelian extensions of Q:

Theorem 8.8. Let L be an Abelian extension of Q. Then there is a positive
integer m such that L C Q((m), (m = €™/™.

Proof. By the Artin Reciprocity Theorem (Theorem 8.2), there is a modulus
m such that Pgi(m) C ker(®,,qm), and by Exercise 8.4, we may assume
that m = moo. By (8.4) we know that Pg 1(m) = ker(®gc,)/qm), SO that

Pga(m) = ker(®gg,/qm) C ker(Pr/k,m).
Then L C Q(() follows from Corollary 8.7. Q.E.D.
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We should mention that the Kronecker—-Weber Theorem can be proved
without using class field theory (see Marcus [77, Chapter 4, Exercises 29-
36)).

Next, let’s discuss the Hilbert class field. To define it, apply the Existence
Theorem (Theorem 8.6) to the modulus m = 1 and the subgroup Py C Ix
(note that Px = Pk 1(m) in this case). Thus there is a unique Abelian ex-
tension L of K, unramified since m = 1, such that the Artin map induces
an isomorphism

(8.9) C(Ok) = Ix/Px — Gal(L/K).
L is the Hilbert class field of K, and its main property is the following:

Theorem 8.10. The Hilbert class field L is the maximal unramified Abelian
extension of K.

Proof. We already know that L is an unramified extension. Let M be an-
other unramified extension. The first part of the Conductor Theorem (The-
orem 8.5) implies that f(M /K) = 1 since a prime ramifies if and only if it
divides the conductor, and then the second part tells us that ker(®,, /K1) I8
a congruence subgroup for the modulus 1, so that

Pk C kCI‘((DM/K’l).
By the definition of the Hilbert class field, this becomes

Py = kCI'((DL/K,l) C ker((bM/K,l),
and then M C L follows from Corollary 8.7. Q.E.D.

Notice that Theorems 5.18 and 5.23 from §5 are immediate consequences
of (8.9) and Theorem 8.10.

There is a generalization of the Hilbert class field called the ray class
field. Namely, given any modulus m, the Existence Theorem shows that
there is a unique Abelian extension K, of K such that

PK,l(m) = ker((me/K,m)-

K is called the ray class field for the modulus m, and when m = 1, this re-
duces to the Hilbert class field. Another example is given by the cyclotomic
field Q((m): here, (8.4) shows that Q((,,) is the ray class field of Q for the
modulus moo. We also get a nice interpretation of the conductor f(L/K)
of an arbitrary Abelian extension L of K: it’s the smallest modulus m for
which L is contained in the ray class field K, (see Exercise 8.6).

Besides proving these classical results, class field theory is also the source
of most reciprocity theorems. In particular, we will discuss some reciprocity
theorems for the nth power Legendre symbol (a/p), mentioned in §5. To
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define this symbol, let K be a number field containing a primitive nth root
of unity ¢, and let p be a prime ideal of Ok. Then, for a € Ok prime to p,
we have Fermat’s Little Theorem

NP1 =1mod p.

Suppose that in addition p is prime to n. It can be shown that n | N(p) — 1
(see Exercise 5.13), and it follows that x = aW®)~1/" js a solution of the
congruence x" = 1 mod p. Consequently

aN®-D/m =1 ¢ .. " mod p.

Since the nth roots of unity are distinct modulo p (see Exercise 5.13),
aN®)—-D/n s congruent modulo p to a unique nth root of unity. This root
of unity is defined to be the nth power Legendre symbol (a/p),, so that
(a/p)n satisfies the congruence

o N®)-D/n (%)n mod p.

This symbol is a natural generalization of the Legendre symbols (a/m)3; and
(a/m)4 from cubic and biquadratic reciprocity.

The nth power Legendre symbol can be defined for more general ideals
as follows: given an ideal a of Ok which is prime to n and a, we set (a/a),

to be the product
r
a a
(&)=L

where a = p;---p, is the prime factorization of a. Thus, if m is a modulus
of K such that every prime containing na divides m, then the nth power
Legendre symbol gives a homomorphism

a

(T)n (M) — pens

where u, C C* is the group of nth roots of unity.

We will prove two reciprocity theorems for the nth power Legendre sym-
bol, but first we need to recall a fact from Galois theory. If K has a primi-
tive nth root of unity, then for a € K, the extension K C L = K(/a) is Ga-
lois, and if ¢ € Gal(L/K), then o(y/a) = (v/a for some nth root of unity
(. This gives us a map o — (, which defines an injective homomorphism

Gal(L/K) <> pin.

We can now state our first reciprocity theorem for (a/a)p,:

Theorem 8.11 (Weak Reciprocity). Let K be a number field containing a
primitive nth root of unity, and let L = K({/a), where a € Ok is nonzero.
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Assume that m is a modulus divisible by all primes of K containing na, and
assume in addition that ker(®y k) is a congruence subgroup for m. Then
there is a commutative diagram

Pk m

where Gal(L/K)— p, is the natural injection. Thus, if G is the image of
Gal(L/K) in pn, then the nth power Legendre symbol (a /), induces a sur-
jective homomorphism

’

(ﬂ)n : Ig(m)/Pg 1(m) —> G C pun.

Proof. To prove that the diagram commutes, it suffices to show
L/K ) (a)
— | (Va) = =}, V.
(Z5) @ = (),

This is an easy consequence of the definition of the Artin symbol (from
Lemma 5.19). The case n = 3 was proved in (5.22), and for general n, see
Exercise 5.14.

Turning to the final statement of the theorem, recall that ker(®, /K,m)
is a congruence subgroup for m. Thus Pk i(m) C ker(®/x,m) C Ix(m), so
that the Artin map ®;,/k, induces a surjective homomorphism

Ix(m)/Pg,1(m) — Ix(m)/ker(®, /x,m) — Gal(L/K).

Using the above commutative diagram, the theorem follows immediately.
Q.E.D.

This result is called “Weak Reciprocity” because rather than giving for-
mulas for computing (a/a),, the theorem simply asserts that the symbol is
a homomorphism on an appropriate group. Nevertheless, Weak Reciprocity
is a powerful result. For example, let’s use it to prove quadratic reciprocity:

Theorem 8.12. Let p and q be distinct odd primes. Then

(g) (%) = (~1)P-Da-D/4

Proof. Recall from §1 that quadratic reciprocity can be written in the form

(7))
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where p* = (—=1)P-1/2p,

The first step is to study Q C Q(+/p*). By (8.3) and (8.4), Gal(Q((,)/Q)
is a generalized ideal class group for the modulus poo, which implies
that the same is true for any subfield of Q((,) (see Exercise 8.7). Since
Gal(Q(¢p)/Q) is cyclic of order p — 1, there is a unique subfield Q C K C
Q(Cp) which is quadratic over Q. Then Gal(K/Q) is a generalized ideal
class group for poo, which implies that p is the only finite prime of Q that
ramifies in K . If we write K = Q(y/m), m squarefree, then Corollary 5.17
implies that m = p*, and hence K = Q(/p*) (see Exercise 8.7).

It follows that ker(®g,/57)/q,po0) i @ congruence subgroup for poo,and
thus by Weak Reciprocity, the Legendre symbol (p*/-) gives a surjective
homomorphism

(8.13) Ig(poo)/Pqi(poo) — {£1}.

However, the map sending [a] € (Z/pZ)* to [aZ] € Ig(poo)/Pg1(poo) in-
duces an isomorphism (Z/pZ)* = Ig(poo)/Pg1(po) (see Exercise 8.7).
Composing this map with (8.13) shows that (p*/-) induces a surjective ho-
momorphism from (Z/pZ)* to {+1}. But the Legendre symbol (-/p) is
also a surjective homomorphism between the same two groups, and since
(Z/pZ)* is cyclic, there is only one such homomorphism. This proves that

(5)-(3)
q p)
and we are done. Q.E.D.

The proof just given is closely related to the discussion of quadratic reci-
procity from §1. Recall that a key result implicit in Euler’s work was Lemma
1.14, which showed that (D/-) gives a well defined homomorphism defined
on (Z/DZ)* when D =0,1mod 4. The above argument uses Weak Reci-
procity to prove this when D = p*. In this way Weak Reciprocity (or more
generally, Artin Reciprocity) may be regarded as a far-reaching generaliza-
tion of Lemma 1.14.

Before we can state our second reciprocity theorem for the nth power
Legendre symbol, we need some notation: if @ and 8 are in Ok, then
(a/BOk)n is written simply (a/B), when defined. Then we have the fol-
lowing reciprocity theorem for (a/8)n:

Theorem 8.14 (Strong Reciprocity). Let K be a number field containing a
primitive nth root of unity, and suppose that a,3 € Ok are relatively prime
to each other and to n. Then

(5)-(5): = 1L(%D).

plnoo
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where (a,[3/9)n is the nth power Hilbert symbol (to be discussed below) and
oo is the product of the real infinite primes of K (which can occur only when
n=2).

Proof. While Weak Reciprocity was an immediate consequence of Artin
reciprocity, Strong Reciprocity is a different matter, for here one must first
study the nth power Hilbert symbol

(-

This symbol is an nth root of unity defined using the local class field theory
of the completion K, of K at the prime p. Since we haven’t discussed
local methods, we can’t even give a precise definition. A full discussion of
the Hilbert symbol is given in Hasse [49, Part II, §§11-12, pp. 53-64] and
Neukirch [80, §§II1.5 and IV.9, pp. 50-55 and 110-112], and both references
present a complete proof of the Strong Reciprocity theorem. In Exercise
8.9 we will list the main properties of the Hilbert symbol. Q.E.D.

To get a better idea of how Strong Reciprocity works, let’s apply it to cu-
bic reciprocity. Here, n =3 and K = Q(w), w = €*™/3, and the only prime
of Ok dividing 3 is A = 1 —w. Thus, given nonassociate primes 7 and 6 in
Ok , Strong Reciprocity tells us that

) - ()

Hence, to prove cubic reciprocity, it suffices to show that

(8.15) T, @ primary = (W/’\H )3 =1.

The proof of cubic reciprocity is thus reduced to a purely local computation
in the completion K, of K at A. Given the properties of the Hilbert symbol,
(8.15) is not difficult to prove (see Exercise 8.9). Biquadratic reciprocity
can be proved similarly, though the proof is a bit more complicated (see
Hasse [49, Part II, §20, pp. 105-106]). This shows that class field theory
encompasses all of the reciprocity theorems we'’ve seen so far.

B. The Cebotarev Density Theorem

The Cebotarev Density Theorem will provide some very useful information
about the Artin map. But first, we need to define the notion of Dirichlet
density.



B. THE CEBOTAREV DENSITY THEOREM 169

Let K be a number field, and let Px be the set of all finite primes of K .
Given a subset S C Pk, the Dirichlet density of S is defined to be

. Epes N(p)_s
08)= lim = = 1)

provided the limit exists. The basic properties of the Dirichlet density
are:
(i) 6(Pk) = 1.

(ii) If S C 7 and §(S) and 6(7) exist, then §(S) < 6(7).

(iii) If 6(S) exists, then 0 < §(S) < 1.

(iv) If § and T are disjoint and 6(S) and §(7) exist, then 6(SUT) =
0(S) + &(T7).

(v) If S is finite, then 6(S) = 0.

(vi) If 6(S) exists and 7 differs from S by finitely many elements, then
0(T) =6(S).

To prove these properties, one first must study the Dirichlet zeta function

(k(s) of K. This function is defined by

k()= N~ =[] 1-Nw™)"".

aC Ok PEPK

One can prove without difficulty that (x(s) converges absolutely for Re(s)
> 1 (see Janusz [62, §IV.4] or Neukirch [80, §V.6]). This implies that for
any S C Pk, the sum ), s N(p)~* converges absolutely for Re(s) > 1 (see
Exercise 8.10). A much deeper property of (x(s) is that it has a simple pole
at s = 1, which enables one to prove

N —8
1= llm log(CK(S)) —_ ]lm EPE'PK (p)
s—1+ —log(s —1) s—1+ —log(s—1)

(see Janusz [62, §1V.4] or Neukirch [80, §V.6]). This proves (i), and it is now
straightforward to prove (ii)-(vi) (see Exercise 8.10).

There is one more property of the Dirichlet density which is sometimes
useful. Let Px 1 = {p € Px : N(p) is prime}. Pk, is sometimes called the
degree 1 primes in K (recall that in general, N(p) = p/, where f is the
inertial degree of p € p in the extension Q C K). Then one can prove that

(8.16) 0(8) =6(SNPk,1)

whenever §(S) exists (see Janusz [62, §1V.4] or Neukirch [80, §V.6]).

Now let L be a Galois extension of K, possibly non-Abelian. If p is a
prime of K unramified in L, then different primes P of L containing p
may give us different Artin symbols ((L/K)/B). But all of the ((L/K)/B)
are conjugate by Corollary 5.21, and in fact they form a complete conjugacy
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class in Gal(L/K) (see Exercise 5.12). Thus we can define the Artin symbol
((L/K)/p) of p to be this conjugacy class in Gal(L/K). We can now state
the Cebotarev Density Theorem:

Theorem 8.17. Let L be a Galois extension of K, and let (o) be the conju-
gacy class of an element o € Gal(L/K). Then the set

S = {p € Pk :p is unramified in L and ((L/K)/p) = (o)}
has Dirichlet density

_ o)l _ o)
oS) = |Gal(L/K)| [L:K]

Proof. See Janusz [62, Chapter V, Theorem 10.4] or Neukirch [80, Chapter
V, Theorem 6.4]. Q.E.D.

Notice that the set S of the theorem must be infinite since it has positive
density (this follows from property (v) above). In particular, we get the
following corollary for Abelian extensions:

Corollary 8.18. Let L be an Abelian extension of K, and let m be a mod-
ulus divisible by all primes that ramify in L. Then, given any element o €
Gal(L/K), the set of primes p not dividing m such that ((L/K)/p) = o has
density 1/[L: K] and hence is infinite.

Proof. When Gal(L/K) is Abelian, the conjugacy class (o) is just the set
{o}. Q.E.D.

This corollary shows that the Artin map ®; /x m : Ix(m) — Gal(L/K) is sur-
jective in a very strong sense.

An especially nice case is when K = Q and L = Q((,,), for here Corol-
lary 8.18 gives a quick proof of Dirichlet’s theorem on primes in arithmetic
progressions (the details are left to the reader—see Exercise 8.11). In §9
we will apply these same ideas to study the primes represented by a fixed
quadratic form ax? + bxy + cy?.

Another application of Cebotarev Density concerns primes that split
completely in a Galois extension K C L. Namely, if we apply Theorem 8.17
to the conjugacy class of the identity element, we see that the primes in K
for which ((L/K)/p) = 1 have density 1/[L : K]. However, from Corollary
5.21, we know that

(5‘-%5) =1 <= p splits completely in L.



B. THE CEBOTAREV DENSITY THEOREM 171

Thus the primes that split completely in L have density 1/[L : K], and in
particular there are infinitely many of them. The unexpected fact is that
these primes characterize the extension K C L uniquely. Before we can
prove this, we need to introduce some terminology.

Given two sets S and 7, we say that SC 7 if SC 7 UX for some fi-
nite set &, and S =7 means that SC 7 and 7 C S. Also, given a finite
extension K C L, we set

Sr/k = {p € Pk : p splits completely in L}.

We can now state our result:

Theorem 8.19. Let L and M be Galois extensions of K. Then
(l) LCM SM/K C SL/K-
(ll) L=M SM/K = SL/K-

Proof. Notice that (ii) is an immediate consequence of (i). As for (i), we
will prove the following more general result which applies when only one
of L or M is Galois over K. This will be useful in §§9 and 11.

Proposition 8.20. Let L and M be finite extensions of K.
(i) If M is Galois over K, then LC M <= Sy;x C SL/k-

(i) If L is Galois over K, then L C M <= Sy/x C Sk, Where Sy is
defined by

SM/K = {p € Pk : p unramified in M, fg, =1
for some prime B of M}.

Remark. If M is Galois over K, then Sy sk reduces to Sy/k (see Exercise
8.12), and thus either part of Proposition 8.20 implies Theorem 8.19.

Proof. We start with the proof of (ii). When L C M, it is easy to see that
SM/K CS. /k (see Exercise 8.12). Conversely, assume that Sy /K C SL/K >
and let N be a Galois extension of K containing both L and M . By Galois
theory, it suffices to show that Gal(N/M) C Gal(N/L). Thus, given g €
Gal(N /M), we need to prove that g, is the identity.

By the Cebotarev Density Theorem, there is a prime p in K, unram-
ified in N, such that ((N/K)/p) is the conjugacy class of . Thus there is
some prime P of N containing p such that ((N/K)/P) = 0. We claim
that peS‘M/K. To see why, let P’ =PNOy. Then, for a € Oy, we
have

a=o(a)=a”® mod P'.
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The first congruence follows from o)) = 1, and the second follows by the
definition of the Artin symbol (see Lemma 5.19). Thus Oy /B’ ~ Ok /p, so
that fi|, = 1. This shows that p € Sy /¢ as claimed.

The Density Theorem implies that there are infinitely many such p’s.
Thus our hypothesis S‘M/K CSL /x allows us to assume that p € Sy /k, i.e.,
((L/K)/p) = 1. But Exercise 5.9 tells us that ((L/K)/p) = ((N/K)/P)|L.
Since ¢ = ((N/K)/P), we see that o), = 1 as desired.

To prove (i), first note L C M easily implies Sy /x C Sp/x (see Exer-
cise 8.12). To prove the other direction, let L' be the Galois closure of L
over K. It is a standard fact that a prime of K splits completely in L if
and only if it splits completely in L' (see Exercises 8.13-8.15 or Marcus
[77, Corollary to Theorem 31]). This implies that S; ,x = Sy /x. Since M

is Galois over K, we’ve already observed that Sy, /k = Sy - Thus our hy-
pothesis Sy /x C Sk can be written Sy x C S/, 50 that by part (ii) we
obtain L' C M, which obviously implies L C M . This completes the proofs
of Proposition 8.20 and Theorem 8.19. Q.E.D.

Theorem 8.19 is closely related to Corollary 8.7. The reason is that if
K C L is Abelian, then the set S x of primes that split completely is, up
to a finite set, exactly the prime ideals in ker(®,,xm), where m is any
modulus divisible by all of the ramified primes. Thus we don’t need the
whole kernel of the Artin map to determine the extension—just the primes
in it will suffice! In particular, this shows that Theorem 8.19 is relevant
to our question of which primes p are of the form x? + ny2. To see why,
consider the situation of Theorem 5.1. Here, K is an imaginary quadratic
field of discriminant dx = —4n (which means that n satisfies (5.2)). Then,
by Theorem 5.26,

p=x*+ny’ p splits completely in the Hilbert class field of K

whenever p is an odd prime not dividing n. Thus Theorem 8.19 shows that
the primes represented by x? + ny? characterize the Hilbert class field of
Q(+v/—n) uniquely. In §9 we will give a version of this result that holds for
arbitrary n.

C. Norms and Ideles

Our discussion of class field theory has omitted several important topics.
To give the reader a sense of what’s been left out, we will say a few words
about norms and ideles.

Given a finite extension K C L, there is the norm map Ny, ki L* — K*,
and Ny x can be extended to a map of ideals

NL/K :IL — IK
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(see Janusz [62, §1.8]). The importance of the norm map is that it gives a
precise description of the kernel of the Artin map. Specifically, let L be
an Abelian extension of K, and let m be a modulus for which Pk ;(m) C
ker(®.,/k,m)- Then an important part of the Artin Reciprocity Theorem
states that

(821) kCI'((pL/K’m) = NL/K(IL(m))PK,l(m)

(see Janusz [62, Chapter V, Theorem 5.7]). Norms play an essential role in
the proofs of the theorems of class field theory.

Class field theory can be presented without reference to ideles (as we
have done above), but the idelic approach has some distinct advantages.
Before we can see why, we need some definitions. Given a number field K,
the idele group Ig is the restricted product

IK = H*K;’
P

where p runs over all primes of K, finite and infinite, and K is the com-
pletion of K at p. The symbol H; means that Ix consists of all tuples (x;)
such that x, € Ok, for all but finitely many p. Ix is a locally compact topo-
logical group, and the multiplicative group K* imbeds naturally in Ix as
a discrete subgroup (see Neukirch [80, §V.2] for all of this). The quotient

group
CK = IK / K*
is called the idele class group.

We can now restate the theorems of class field theory using ideles. Given
an Abelian extension L of K, there is an Artin map

&,k : Ck — Gal(L/K)

which is continuous and surjective. This is the idele theoretic analog of the
Artin Reciprocity Theorem. Note that ker(®, k) is a closed subgroup of
finite index in Cx. There is also an idelic version of the Existence Theo-
rem, which asserts that there is a 1-1 correspondence between the Abelian
extensions of K and the closed subgroups of finite index in Cx. The nice
feature of this approach is that it always uses the same group Cg, unlike
our situation, where we had to vary the modulus m in Ix(m) as we moved
from one Abelian extension to the next.

Norms also play an important role in the idelic theory. Given an Abelian
extension L of K, there is a norm map

Np/k : CL — Ck,

and the idelic analog of {8.21) is that the kernel of the Artin map @k :
Ck — Gal(L/K) is exactly Ni;x(Cr). Thus the subgroups of Cx of finite
index are precisely the norm groups Ny /x(CL).-
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Standard references for the idele theoretic formulation of class field the-
ory are Neukirch [80] and Weil [104]. Neukirch also explains carefully the
relation between the two approaches to class field theory.

D. Exercises

8.1. Let K be an imaginary quadratic field, and let m be a modulus for

8.2.

8.3.

8.4.

K (which can be regarded as an ideal of Og). We want to show that
Pk 1(m) has finite index in Ig(m).
(a) Show that the map a — aOg induces a well-defined homomor-
phism
¢: ((’)K/m)* — Ig(m)N PK/PK,I(m),

and then show that there is an exact sequence
0% —s (Og/m)* -2 Ix(m)N Py /Py 1(m) —> 1.

Conclude that Ix(m)N Pg/Pk 1(m) is finite. Hint: see the proof
of Theorem 7.24.

(b) Adapt the exact sequence (7.25) to show that Ix(m)/Pg 1(m) is
finite (recall that C(Og) is finite by §2 and Theorem 7.7).

This problem is concerned with the Artin map of the cyclotomic ex-
tension Q C Q((n), where (,, = e?™/™_ We will assume that m > 2.

(a) Use Proposition 5.11 to prove that all finite ramified primes of
this extension divide m. Thus the Artin map ®,,., is defined.

(b) Show that &,,., : Ig(moo) — Gal(Q((m)/Q) ~ (Z/mZ)* is as de-
scribed in (8.3). Hint: use Lemma 35.19.
(c¢) Conclude that ker(®,00) = Pg,1(moo).

Let Q C Q((») be as in the previous problem, and assume that m >

2.

(a) Show that RN Q((,x) = Q(cos(2w/m)), and then conclude that
[Q(cos(2m/m)): Q] = (1/2)¢(m).

(b) Compute the Artin map @, : Ig(m) — Gal(Q(cos(27/m))/Q) ~
(Z/mZ)*/{£1}. Hint: use the previous exercise.

(c) Show that ker(®,,) = Pg 1(m).

Let K C L be an Abelian extension, and let m be a modulus for which
the Artin map @, is defined. If n is another modulus and m | n, prove
that

Pk 1(m) C ker(®m) = Pxa(n) C ker(®y).
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8.6.

8.7.

8.8.
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Prove that the conductor of the cyclotomic extension Q C Q((m) is
given by

1 m<?2
f(Q(¢m)/Q) =< (Mm/2o0o  m=2n, n>1o0dd
moo otherwise.

Hint: when m > 2, use Theorem 8.5 and Exercise 8.2 to show that the
conductor is of the form noo for some »n dividing m. Then use Corol-
lary 8.7 to show that Q({») C Q({»), which implies that ¢(m) | ¢(n).
The formula for §(Q((x)/Q) now follows from elementary arguments
about the Euler ¢-function.

This exercise is concerned with conductors.

(a) Given a modulus m for a number field K, let K, denote the
ray class field defined in the text. If L is an Abelian extension of
K, then show that the conductor f(L/K) is the greatest common
divisor of all moduli m for which L C K,.

(b) If L is an Abelian extension of Q, let m be the smallest positive
integer for which L C Q({») (note that m exists by the Kronecker-
Weber Theorem). Then show that

if LCR

otherwise.

f(L/Q) = { .

In this exercise we will fill in some of the details omitted in the
proof of quadratic reciprocity given in Theorem 8.12. Let p be an
odd prime.

(a) If K C L is an Abelian extension such that Gal(L/K) is a gener-
alized ideal class group for the modulus m of K, then prove that
the same is true for any intermediate field K C M C L.

(b) If K is a quadratic field which ramifies only at p, then use Corol-
lary 5.17 to show that K = Q(\/p*), p* = (-1)?~D/2p.

(c) Show that the map a — aZ induces an isomorphism (Z/pZ)* =
Ig(p0)/Pgi(poo).

This exercise will adapt the proof of Theorem 8.12 to prove (2/p) =

(_1)(p2—1)/8,

(a) Let H = {£1}Pgq,1(8>). Show that via the Existence Theorem,

H corresponds to Q(v/2). Hint: using the arguments of Theorem
8.12 and part (b) of Exercise 8.7, show that H corresponds to one
of Q(i), Q(v2) or Q(v/—2). Then use —1 € H to show that the
corresponding field must be real.
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(b) Construct an isomorphism (Z/82)* 5 Ig(800)/Pg,1(8c0), and
then use Weak Reciprocity to show that (2/-) induces a well-de-
fined homomorphism on (Z/8Z)* whose kernel is {£1}.

(c) Show that (2/p) = (—1)P°~D/8,

In this exercise we will use Strong Reciprocity and the properties of
the Hilbert symbol to prove cubic reciprocity. We will assume that
the reader is familiar with p-adic fields. To list the properties of the
Hilbert symbol, let K be a number field containing a primitive nth of
unity, and let p be a prime of K. The completion of K at p will be
denoted K. Then the Hilbert symbol (a,3/p), is defined for a,f €
K and gives a map

(—5) Ky x K} — ftn,

where p,, is the group of nth roots of unity. The Hilbert symbol has
the following properties:

(i) (ad',f/p)n = (a,/P)n(,B/P)n-
(ii) («',8B'/P)n = (@, 8/P)n(@: ' /P)n-
(iil) (@,8/p)n = (Byap);?.
(iv) (a,—a/p), = 1.

V) (&1-a/p) =1.
For proofs of these properties of the Hilbert symbol, see Neukirch
[80, §IILS].

Now let’s specialize to the case n =3 and K = Q(w), w = e2™/3,
As we saw in (8.15), Strong Reciprocity shows that cubic reciprocity is
equivalent to the assertion

7,0 primary in Og = (7r_/,\61)3 =1

where A = 1 —w. Recall that m primary means that 7 = +1 mod 30k .
In §4 we saw that replacing # by —m doesn’t affect the statement
of cubic reciprocity, so that we can assume that 7 = 6 = 1 mod A\2Og
(note that A? and 3 differ by a unit in Ok). Let K be the completion
of K at A, and let O, be the valuation ring of K,. We will use the
properties of the cubic Hilbert symbol to show that

a,f=1mod A0, = (a:\ﬁ)3 =1,

and then cubic reciprocity will be proved.
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() If a =1mod A*0O,, then prove that a = u3 for some u € O,.
Hint: if @ = 43 mod A0, for n > 4, then show that a = (u, +
aA"=2)3 mod A"*10, for an appropriately chosen a € Oj.

(b) If @ € O} and a = a’ mod MO, then prove that for any 3 € K3

(- (4

Hint: use (a) and property (i) above. Remember that (a,3/A)3 is
a cube root of unity.

(c) Now assume that a = =1 mod A\20,, and write a =1+ a)?,
a € Ox. Then first, apply property (v) to 1+aBA2, and second,
apply (b) to 1+ aBA? =1+ a)? mod A*O,. This proves that

(1 + a,\2,—aﬁ,\2)
1= -

A

From here, properties (ii) and (v) easily imply that (a,3/A); =1,
which completes the proof of cubic reciprocity.

8.10. In this exercise we will study the properties of the Dirichlet density.
(a) Assuming that (x(s) = 3,0, N(a)™° converges absolutely for
Re(s) > 1, show that for S C Pk, the sum s N(p)~* also
converges absolutely for Re(s) > 1.
(b) Use (a) to prove that properties (ii)—(iv) of the Dirichlet density
follow from (i) and the definition.

8.11. Apply the Cebotarev Density Theorem to the cyclotomic extension
Q C Q(¢m) to show that the primes in a fixed congruence class in
(Z/mZ)* have Dirichlet density 1/¢(m). This proves Dirichlet’s the-
orem that there are infinitely many primes in an arithmetic pro-
gression where the first term and common difference are relatively
prime.

8.12. Let M be a finite extension of a number field K, and let Sy, /K b€
the set of primes of Og defined in Proposition 8.20.

(a) If M is Galois over K, then show that Sy /¢ equals the set Sy
of Theorem 8.19.

(b) If L is a Galois extension of K and L C M, then show that
Sm/k CSL/k -

(c) If LC M are finite extensions of K, then show that Sm/k C
SL/K -
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8.13.

8.14.

8.15.

8.16.

§8. CLASS FIELD THEORY AND THE CEBOTAREV DENSITY THEOREM

Let K C N be a Galois extension, and let ‘B be a prime of Oy.

Set p=PN0Ok, e =eg, and f = fygp. If Dy C Gal(N/K) is the

decomposition group of P, we will denote the fixed field of Dy by

Ng . From Proposition 5.10, we know that |Dg| = ef, and Galois

theory tells us that [N: Ng] = |Dg|. Let B’ = PN Oy, .

(a) Prove that e/, = fq/|, = 1. Hint: by Proposition 5.10, the map
Dy — G is surjective, where G is the Galois group of Ok /p C
On/B. Use Og/p C Ong /B’ C On/*B, and remember that the
e’s and f’s are multiplicative (see Exercise 5.15).

(b) Given an intermediate field K CM C N, let Py, = PN Oy.
Then prove that

erpulp =fq3M|p =]l M CNr,p.

Hint: if M C Ng, then apply (a). Conversely, show that the com-
positum NgM is the fixed field for the decomposition
group of ‘B in Gal(N/M). By applying the result of (a) to M C
NgM and computing degrees, one sees that NgM = M, which
implies M C Ng.

Let L and M be finite extensions of a number field K, and let p be
a prime of K that splits completely in L and M. Then prove that
p splits completely in LM . Hint: let N be a Galois extension of K
containing both L and M, and let ‘P be a prime of N containing
p. From Exercise 8.13 we get the intermediate field K C Ng C N.
Then use part (b) of that exercise to show that L and M lie in Ng,
which implies LM C Ng.

Let L be a finite extension of a number field K, and let L' be the
Galois closure of L over K. The goal of this exercise is to prove that
SL/K = SL’/K~ By part (C) of Exercise 8.12, we have SL’/K C SL/K,
so that it suffices to show that a prime of K that splits completely in
L also splits completely in L'.

(a) Let 0 : L — C be an embedding which is the identity on K, and
let p be an ideal of K which splits completely in L. Then prove
that p splits completely in o(L).

(b) Since L' is the compositum of the a(L)’s, use the previous ex-
ercise to show that p splits completely in L'.

Let K C M be a finite extension of number fields. Then prove that
K C M is a Galois extension if and only if Sy /k = Sm/k - Hint: one
implication is covered in part (a) of Exercise 8.12, and the other
implication is an easy consequence of Proposition 8.20.
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§9. RING CLASS FIELDS AND p = x2 + ny?

In Theorem 5.1 we used the Hilbert class field to characterize p = x? + ny?
when 7 is a positive, squarefree and n # 3 mod 4. In §4, we also proved that
for an odd prime p,
=1 mod 3 and x3 =2 mod
p=x2+27y2<=>{p . . P
has an integer solution

) ) {pzlm0d4andx452modp
p=x"+64y° <= : :
has an integer solution.

These earlier results follow the format of Theorem 5.1 (note that both ex-
ponents are class numbers), yet neither is a corollary of the theorem, for
27 and 64 are not squarefree. In §9 we will use the theory developed in
§87 and 8 to overcome this limitation. Specifically, given an order O in
an imaginary quadratic field K, we will construct a generalization of the
Hilbert class field called the ring class field of O. Then, using the ring class
field of the order Z[\/—n], where n > 0 is now arbitrary, we will prove a
version of Theorem 5.1 that holds for all n (see Theorem 9.2 below). This,
of course, is the main theorem of the whole book. The basic idea is that the
criterion for p = x? + ny? is determined by a primitive element of the ring
class field of Z[\/—n]. To see how this works in practice, we will describe
the ring class fields of Z[v/—27] and Z[v/—64], and then Theorem 9.2 will
give us class field theory proofs of Euler’s conjectures for p = x? + 27y? or
x% + 64y?. To complete the circle of ideas, we will then explain how class
field theory implies those portions of cubic and biquadratic reciprocity used
in §4 in our earlier discussion of x + 27y? and x? + 64y2.

The remainder of the section will explore two other aspects of ring class
fields. We will first use the Cebotarev Density Theorem to prove that a
primitive positive definite quadratic form represents infinitely many prime
numbers. Then, in a different direction, we will give a purely field-theoretic
characterization of ring class fields and their subfields.

A. Solution of p = x> + ny? for all n

Before introducing ring class fields, we need some notation. If K is a num-
ber field, an ideal m of Ok can be regarded as a modulus, and in §8 we
defined the ideal groups Ix(m) and Pg i(m). In this section, m will usually
be a principal ideal aOg, and the above groups will be written Ix(a) and
P K,l(a).

To define a ring class field, let O be an order of conductor f in an
imaginary quadratic field K. We know from Proposition 7.22 that the ideal
class group C(O) can be written

O.1) C(O)~ Ik(f)/Px,a(f)



180 §9. RING CLASS FIELDS AND p = x* + ny?

(recall that Pk z(f) is generated by the principal ideals aOg, where a =
a mod f Ok for some integer a with gcd(a, f) = 1). Furthermore, in §8 we

saw that
Pxi(f) C Pk,z(f) C Ixk(f),

so that C(O) is a generalized ideal class group of K for the modulus f Ok
(see (8.1)). By the Existence Theorem (Theorem 8.6), this data determines
a unique Abelian extension L of K, which is called the ring class field of
the order O. The basic properties of the ring class field L are, first, all
primes of K ramified in L must divide fOg, and second, the Artin map
and (9.1) give us isomorphisms

C(O)~ Ix(f)/Pk,2(f) ~ Gal(L/K).

In particular the degree of L over K is the class number, i.e., [L:K]=
h(O). For an example of a ring class field, note that the ring class field
of the maximal order Ok is the Hilbert class field of K (see Exercise 9.1).
Later in this section we will give other examples of ring class fields.

We can now state the main theorem of the book:

Theorem 9.2. Let n > 0 be an integer. Then there is a monic irreducible poly-
nomial f,(x) € Z[x] of degree h(—4n) such that if an odd prime p divides
neither n nor the discriminant of f,(x), then

) ) { (—n/p)=1and fo(x)=0mod p
p=x-+ny°
has an integer solution.
Furthermore, f,(x) may be taken to be the minimal polynomial of a real
algebraic integer a for which L = K(«) is the ring class field of the order
Z[/—n] in the imaginary quadratic field K = Q(v/—n).

Finally, if fu(x) is any monic integer polynomial of degree h(—4n) for
which the above equivalence holds, then f,(x) is irreducible over 1 and is the
minimal polynomial of a primitive element of the ring class field L described
above.

Remark. This theorem generalizes Theorem 5.1, and the last part of the
theorem shows that knowing f,(x) is equivalent to knowing the ring class

field of Z[\/—n].

Proof. Before proceeding with the proof, we will first prove the following
general fact about ring class fields:

Lemma 9.3. Let L be the ring class field of an order O in an imaginary
quadratic field K. Then L is a Galois extension of Q, and its Galois group
can be written as a semidirect product

Gal(L/Q) ~ Gal(L/K) x (Z/21)
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where the nontrivial element of 71 /21 acts on Gal(L/K) by sending o to its

inverse o1,

Proof. In the case of the Hilbert class field, this lemma was proved in §6
(see the discussion following (6.3)). To do the general case, we first need to
show that 7(L) = L, where 7 denotes complex conjugation. Let m denote
the modulus f Ok, and note that 7(m) = m. Since ker(®;,/x m) = Pk,z(f),
an easy computation shows that

ker((br(L)/K,m) = T(ker(q)L/K,m)) = T(PK,Z(f)) = PK,Z(f)

(see Exercise 9.2), and thus ker(®,(y/k,m) = ker(®,/x,m)- Then 7(L) = L
follows from Corollary 8.7.

As we noticed in the proof of Lemma 5.28, this implies that L is Galois
over Q, so that we have an exact sequence

1— Gal(L/K) — Gal(L/Q) — Gal(K/Q)(~7/27) — 1.

Since 7 € Gal(L/Q), Gal(L/Q) is the semidirect product Gal(L/K)x (Z/
27), where the nontrivial element of Z/2Z acts by conjugation by 7. How-
ever, for a prime p of K, Lemma 5.19 implies that

(L/K) 1 (L/K) (L/K)

T T = = ——

p 7(p) p

(see Exercise 6.3). Thus, under the isomorphism Ix(f)/Px z(f)~ Gal(L/
K), conjugation by 7 in Gal(L/K) corresponds to the usual action of 7 on
Ix(f). But if a is any ideal in Ix(f), then aa@ = N(a)Ok lies in Pk z(f)
since N(a) is prime to f. Thus @ gives the inverse of a in the quotient
Ix(f)/ Pk z(f), and the lemma is proved. Q.ED.

We can now proceed with the proof of Theorem 9.2. Let L be the ring
class field of Z[\/—n]. We start by relating p = x2 + ny? to the behavior of
pin L:

Theorem 9.4. Let n > 0 be an integer, and L be the ring class field of the
order 1[\/—n} in the imaginary quadratic field K = Q(y/—n). If p is an odd
prime not dividing n, then

p = x* + ny? < p splits completely in L.

Proof. Let O = 7Z[\/—n]. The discriminant of O is —4n, and then —4n =
f*dg by (7.3), where f is the conductor of O. Let p be an odd prime not
dividing n. Then pJ f2dg, which implies that p is unramified in K. We will
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prove the following equivalences:
p=x*+ny’ < pOg=pp, p#p, and p=aOg, a €O
<> pOk =pp, p#p, and p € Px2(f)
< pOk =pp, p #p, and (L/K)/p) =1
<= pOg =pp, p #p, and p splits completely in L
<= p splits completely in L,

and Theorem 9.4 will follow.

To prove the first equivalence, suppose that p = x2 + ny? = (x + /=ny)
x(x —+/—ny). If we set p = (x + /—ny)Ok, then pOk = pp is the prime
factorization of pOk in Ok. Note that x + /—ny € O, and p # p since p
is unramified in K. Conversely, if pOx = pp, where p = (x + /—ny)Ok,
then it follows easily that p = x? + ny?.

Since p/ff, the second equivalence follows from Proposition 7.22, and
the next two equivalences are equally straightforward: the isomorphism
Ix(f)/ Pk z2(f) ~ Gal(L/K) given by the Artin map shows that p € Px z(f)
if and only if ((L/K)/p) = 1, and then Lemma 5.21 shows that ((L/K)/p) =
1if and only if p splits completely in L. Finally, recall from Lemma 9.3 that
L is Galois over Q. Thus, the proof of the last equivalence is identical to
the proof of the last equivalence of (5.27). This completes the proof of
Theorem 9.4. Q.E.D.

The next step is to prove the main equivalence of Theorem 9.2. By
Lemma 9.3, the ring class field L is Galois over Q, and thus Proposition
5.29 enables us to find a real algebraic integer a such that L = K(a). Let
fa(x) € Z[x] be the minimal polynomial of a over K. Since O has discrim-
inant —4n, the degree of f,(x) is [L: K] = h(O) = h(—4n). Then, combin-
ing Theorem 9.4 with the last part of Proposition 5.29, we have

p = x* + ny* <= p splits completely in L
{ (—n/p)=1and f,(x)=0mod p

has an integer solution,

whenever p is an odd prime dividing neither n nor the discriminant of
fa(x). This proves the main equivalence of Theorem 9.2.

The final part of the theorem is concerned with the “uniqueness” of
fn(x). Of course, there are infinitely many real algebraic integers which are
primitive elements of the extension K C L, and correspondingly there are
infinitely many f,(x)’s. So the best we could hope for in the way of unique-
ness is that these are all of the possible f,(x)’s. This is almost what the last
part of the statement of Theorem 9.2 asserts—the f,(x)’s that can occur
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are exactly the monic integer polynomials which are minimal polynomials
of primitive elements (not necessarily real) of L over K.

To prove this assertion, let f,(x) be a monic integer polynomial of de-
gree h(—4n) which satisfies the equivalence of Theorem 9.2. Then let g(x) €
K[x] be an irreducible factor of f,(x) over K, and let M = K(a) be the
field generated by a root of g(x). Note that « is an algebraic integer. If we
can show that L. C M, then

h(—4n) =[L: K] < [M: K] = deg(g(x)) < deg(fa(x)) = h(—4n),

which will prove that L = M = K(a) and that f,(x) is the minimal polyno-
mial of a over K (and hence over Q).

It remains to prove L C M. Since L is Galois over @ by Lemma 9.3,
Proposition 8.20 tells us that L C M if and only if Sy,q C S1/q, where:

S1/q@ = {p prime: p splits completely in L}
Smq = {p prime: there is an ideal P of M with fop =1}

Let’s first study S;,q. By Theorem 9.4, this is the set of primes p
represented by x+ ny2. Since f,(x) satisfies the equivalence of Theo-
rem 9.2, it follows that S; g is (with finitely many exceptions) the set of
primes p which split completely in K and for which f,(x)=0mod p has
a solution.

To prove S'M/Q C SL/q, suppose that p € S'M/Q. Then fg, = 1 for some
prime ‘P of M, and if we set p = PN Ok, then 1= Jpip = fpipSp|p- Thus
fo1p = 1, which implies that p splits completely in K (since it’s unrami-
fied). Note also that f,(x) =0 mod P has a solution in Oy since a € Oy
and g(a) = fa(a) = 0. But fy, = 1 implies that Z/pZ ~ Oy /B, and hence
fa(x) =0 mod p has an integer solution. By the above description of S; /Q>

it follows that p € Sy /q- This proves Sy /q C S1./q and completes the proof
of Theorem 9.2. Q.E.D.

There are also versions of Theorems 9.2 and 9.4 that characterize which
primes are represented by the form x%+ xy + ((1 - D)/4)y?, where D =
1 mod 4 is negative (see Exercise 9.3).

B. The Ring Class Fields of Z[\/-27] and Z[/—64]

Theorem 9.2 shows how the ring class field solves our basic problem of
determining when p = x? + ny?, and the last part of the theorem points
out that our problem is in fact equivalent to finding the appropriate ring
class field. To see how this works in practice, we will next use Theorem 9.2
to give new proofs of Euler’s conjectures for when a prime is represented
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by x2 +27y? or x? + 64y? (proved in §4 as Theorems 4.15 and 4.23). The
first step, of course, is to determine the ring class fields involved:

Proposition 9.5.

(i) The ring class field of the order 7[\/-27]CK =Q(v=3) is L=
K(V2).

(i) The ring class field of the order 1[vV—64] C K = Q(i) is L = K(V'2).

Proof. To prove (i), let L be the ring class field of Z[v/—27]. Although L
is defined abstractly by class field theory, we still know the following facts
about L:

(i) L is a cubic Galois extension of K = Q(v/-3) since [L:K]=
h(—4-27) = 3.

(ii) L is Galois over Q with group Gal(L/Q) isomorphic to the symmet-
ric group S3. This follows from Lemma 9.3 since S; is the semidirect
product (Z/3Z) x (Z/2Z) with Z /27 acting nontrivially.

(iii) All primes of K that ramify in L must divide 60k . To see this, note
that Z[v/—27] = Z[3v/-3] is an order of conductor 6 (since O =
Z[(—1++/=3)/2]), so that L corresponds to a generalized ideal class
group for the modulus 60 . By the Existence Theorem (Theorem 8.6),
the ramification must divide the modulus.

We will show that only four fields satisfy these conditions. To see this, first
note that K contains a primitive cube root of unity, and hence any cubic
Galois extension of K is of the form K (/u) for some u € K. (This is a
standard result of Galois theory—see Artin [2, Corollary to Theorem 25].)
However, the fact that Gal(L/Q)~ S; allows us to assume that u is an
ordinary integer. More precisely, we have:

Lemma 9.6. If M is a cubic extension of K = Q(v/—3) with Gal(M/Q)
~ S3, then M = K (/m) for some cubefree positive integer m.

Proof. The idea is to modify the classical proof that M = K (v/u) for some
u € K. We know that M is Galois over Q and that complex conjugation 7 is
in Gal(M /Q). Furthermore, if ¢ is a generator of Gal(L/K)~Z/3Z, then
Gal(L/Q) ~ S; implies that 707 = 0~1.

By Proposition 5.29, we can find a real algebraic integer a such that
M = K(a). Then define u; € M by

u = a+wo(a)+ w¥o"%(a), i =0,1,2.

The u;’s are algebraic integers satisfying o(;) = w'u;, and note that 7(;) =
u; since a is real and 7o7 = ¢~1. Thus the u;’s are all real. Then u is fixed
by both ¢ and 7, which implies that ug € Z. Similar arguments show that
w3 and u3 are also integers. If u; # 0, we claim that M = K (u1). This is
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easy to see, for [M : K] = 3, and thus M # K (u;) could only happen when
u; € K. Since u, is real, this would force u; to be an integer, which would
contradict o(u)) = wuy and wy # 0. This proves our claim, and if we set
m = u} € Z, it follows that M = K(u;) = K(v/m). We may assume that m
is positive and cubefree, and we are done.

If u; # 0, we are done by a similar argument. The remaining case to
consider is when u; = u, = 0. However, in this situation a simple applica-
tion of Cramer’s rule shows that our original a would lie in K and hence
be rational (since we chose a to be real in the first place). The details of
this argument are left to the reader (see Exercise 9.4), and this completes
the proof of Lemma 9.6. Q.E.D.

Once we know L = K(\/m) for some cubefree integer m, the next step
is to use the ramification of K C L to restrict m. Specifically, it is easy to
show that any prime of Ok dividing m ramifies in K(Ym) (see Exercise
9.5). However, by (iii) above, we know that all ramified primes divide 60k,
and consequently 2 and 3 are the only integer primes that can divide m.
Since m is also positive and cubefree, it must be one of the following eight
numbers:

2, 3,4,6,9, 12, 18, 36,
and this in turn implies that L must be one of the following four fields:
9.7) K(V2), K(V3), K(V6), K(V12)

(see Exercise 9.6). All four of these fields satisfy conditions (i)-(iii) above,
so that we will need something else to decide which one is the ring class
field L.

Surprisingly, the extra ingredient is none other than Theorem 9.2. More
precisely, each field listed in (9.7) gives a different candidate for the poly-
nomial fy;(x) that characterizes p = x? + 27y?, and then numerical com-
putations can determine which one is the correct field. To illustrate what
this means, suppose that L were K(v/3), the second field in (9.7). This
would imply that f»7(x) = x> — 3, which has discriminant —3° (see Exercise
9.7). If Theorem 9.2 held with this particular f7(x), then the congruence
x3 =3 mod 31 would have a solution since 31 = 22 + 2712 is of the form
x2 + 27y?. Using a computer, it is straightforward to show that there are
no solutions, so that K(v/3) can’t be the ring class field in question. Similar
arguments (also using p = 31) suffice to rule out the third and fourth fields
given in (9.7) (see Exercise 9.8), and it follows that L. = K (v/2) as claimed.

The second part of the proposition, which concerns the ring class field
of the order Z[/—64] C K = Q(i), is easier to prove than the first, for in
this case one can show that K(v/2) is the unique field satisfying the analogs
of conditions (i)—(iii) above (see Exercise 9.9). Q.E.D.
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Another example of a ring class field is given in Exercise 9.10, where we
will show that the field K (v/3) from (9.7) is the ring class field of the order
Z[9w] of conductor 9 in K = Q(v/-3).

If we combine Theorem 9.2 with the explicit ring class fields of Proposi-
tion 9.5, then we get the following characterizations of when p = x2 + 27y?
and p = x? + 64y? (proved earlier as Theorems 4.15 and 4.23):

Theorem 9.8.
(i) If p > 3 is prime, then

, , p=1mod3and x*=2mod p
p=x"+2ly° < . .
has an integer solution.

(ii) If p is an odd prime, then

) p=1mod 4 and x*=2mod p
p=x*+64y° — _ _
has an integer solution.

Proof. By Proposition 9.5, the ring class field of Z[v/—27] is L = K(v/2),
where K = Q(v/—3). Since v/2 is a real algebraic integer, the polynomial
f21(x) of Theorem 9.2 may be taken to be x> — 2. Then the main equiva-
lence of Theorem 9.2 is exactly what we need, once once checks that the
condition (—27/p) =1 is equivalent to the congruence p =1 mod 3. The
final detail to check is that the discriminant of x3 — 2 is —22-33 (see Exer-
cise 9.7), so that the only excluded primes are 2 and 3, and then (i) follows.
The proof of (ii) is similar and is left to the reader (see Exercise 9.11).

Q.E.D.

Besides allowing us to prove Theorem 9.8, the ring class fields deter-
mined in Proposition 9.5 have other uses. For example, if we combine them
with Weak Reciprocity from §8, we then get the following partial results
concerning cubic and biquadratic reciprocity:

Theorem 9.9.
(i) If a primary prime 7 of Z[w], w = €*™/3, is relatively prime to 6, then

2+ ()

(i) If p=1mod 4 is prime and p = a® + b?%, then m™ = a + bi is prime in

L[i], and
_% — iab/Z
A )
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Remark. Notice that these are exactly the portions of cubic and biquadratic
reciprocity used in our discussion of p = x? + 27y? and x2 + 64y? in §4 (see
Theorems 4.15 and 4.23).

Proof. We will prove (i) and leave the proof of (ii) as an exercise (see
Exercise 9.12). The basic idea is to combine Weak Reciprocity (Theorem
8.11) with the explicit description of the ring class field given in Proposi-
tion 9.5.

If K = Q(w), then Ok is the ring Z[w] from §4. Thus L = K (V2) is the
ring class field of the order of conductor 6, and hence corresponds to a sub-
group of Ix(6) containing Pk 1(6). This shows that the conductor § divides
60k . Then Weak Reciprocity tells us that the cubic Legendre symbol (2/-)s
induces a well-defined homomorphism

Ik (6)/ Pg,1(6) — pa

where pj3 is the group of cube roots of unity. However, the map sending
a € Ok to the principal ideal aOk induces a homomorphism

(Ok /60k)" — Ik(6)/ Pk z2(6)

(this is similar to what we did in §7—see part (c) of Exercise 9.21). Com-
bining these two maps, the Legendre symbol (2/-)3 induces a well-defined
homomorphism

(9.10) (O /60k)* — pia.

Recall that 7 is primary by assumption, which means that 7 = +1 mod
30k . Replacing m by —7 affects neither (2/7); nor (7 /2)3, so that we can
assume 7 = 1 mod 30k . Now consider the isomorphism

(9.11) (Ox [60k)* ~ (O /20k)* x (Ok /30k)*.

By (9.10), (2/-)3 is a homomorphism on (Ok /60k)*, and the condition 7 =
1 mod 30k means we are restricting this homomorphism to the subgroup
(Ok /20k)* x {1} relative to (9.11). But the cubic Legendre symbol (-/2)3
can also be regarded as a homomorphism on this subgroup, and we thus
need only show that these homomorphisms are equal.

To prove this, first note that (Ok /20k)* x {1} is cyclic of order 3 (Ok/
20k is a field with four elements), and the class of § = 1 + 3w in (Ok /60k)*
is a generator. Thus, to show that the two homomorphisms are equal, it suf-

fices to prove that
2\ _[¥6
93 \2)*

Using (4.10), this is straightforward to check—see Exercise 9.12 for the de-
tails. Theorem 9.9 is proved. Q.E.D.
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C. Primes Represented by Positive Definite Quadratic Forms

As an application of ring class fields, we will prove the classic theorem
that a primitive positive definite quadratic form ax? + bxy + cy?* represents
infinitely many prime numbers. The basic idea is to compute the Dirichlet
density (in the sense of §8) of the set of primes represented by ax* + bxy +
cy?, for once we show that the density is positive, there must be infinitely
many primes represented. Here is the precise statement of what we will
prove:

Theorem 9.12. Let ax®+ bxy +cy?® be a primitive positive definite qua-
dratic form of discriminant D < 0, and let S be the set of primes represented
by ax® + bxy + cy?. Then the Dirichlet density §(S) exists and is given by the
formula

1 5 . : : :
if ax® + bxy + cy* is properly equivalent to its opposite
2h(D)
() =
(D) otherwise.

In particular, ax®> + bxy + cy? represents infinitely many prime numbers.

Proof. Let O be the order of the discriminant D, and let K = Q(v/D). By
(7.3), we have D = f2dg, where f is the conductor of O. As in the state-
ment of the theorem, let S = {p prime: p = ax* + bxy + cy*}. We need to
compute the Dirichlet density of S.

The first step is to relate S to the generalized ideal class group Ix(f)/
Pg z(f). From Theorem 7.7 we have the isomorphism C(D)~ C(O), so
that the class [ax?+ bxy +cy*] € C(D) corresponds to the class [ag] €
C(O) for some proper O-ideal ag. Then part (ii1) of Theorem 7.7 tells us
that

(9.13) S ={p prime: p = N(b), b € [ag]}.

We need to state this in terms of the maximal order Ok . By Corollary 7.17
we may assume that ag is prime to f, and from here on we will consider
only primes p not dividing f. Under the map a — aOg, we know that b €
[a9] € C(O) corresponds to bOk € [agOk] € Ix(f)/ Pk z(f) (Proposition
7.22), and furthermore, b and b = bOx have the same norm when prime to
f (Proposition 7.20). Thus (9.13) implies

S = {p prime: p/f, p=N(b), b€ [aOk]}.
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Since p is prime, the equation p = N(b) forces b to be prime, so that this
description of S can be written

(914) S ={p prime:p[f, p = N(p), p prime,p € [a00k]}.

If L is the ring class field of O, then Artin Reciprocity gives us an iso-
morphism

(9.15) Ic(f)/ Pea(f) ~ Gal(L/K).

Under this isomorphism, the class of apOx maps to an element og¢ €
Gal(L/K), which we can regard as an element of Gal(L/Q). Letting (o)
denote its conjugacy class in Gal(L/Q), we claim that

(9.16) S = { p prime : p unramified in L, (%9) = (00)}.

The right hand side of (9.16) will be denoted S’, so that we must prove
S§=8'.

To show S’ C S, let p € S’. Thus ((L/Q)/p) = (0o), which means that
((L/Q)/B) = gy for some prime ‘B of L containing p. Then p = PN Ok is
a prime of K containing p, and we claim that p = N(p). To see this, note
that for any a € Oy,

(9.17) oo(a) = af mod P

since g9 = ((L/Q)/*B). But o9 € Gal(L/K), so that when a € Ok, the above
congruence reduces to
a = a? mod p.

This implies Ox /p ~Z/pZ, and N(p) = p follows. This fact and (9.17) then
imply that o is the Artin symbol ((L/K)/p). Since [aoOk] € Ix(f)/Px,z(f)
corresponds to gy € Gal(L/K) under the isomorphism (9.15), it follows that
p is in the class of agOk . Then (9.14) implies that p € S, at least when p) f,
and S’ C S follows. The opposite inclusion is straightforward and is left to
the reader (see Exercise 9.14). This completes the proof of (9.16).

From (9.16), the Cebotarev Density Theorem shows that S has Dirichlet
density (00|

09
6(S) L:Q

However, since og € Gal(L/K), Lemma 9.3 implies that (oo) = {d9,05'}
(see Exercise 9.15). Since [L: Q] = 2h(D), we see that

‘ 1
L <
2h(DY oo has order <2
6(S) = <
L h—(l—)—)', otherwise.
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Now 09 has order < 2 if and only if ax? + bxy + cy? has order < 2 in C(D),
and this last statement means that ax? + bxy + cy? is properly equivalent
to its opposite. This completes the proof of Theorem 9.12. Q.E.D.

As an example of what the theorem says, consider forms of discriminant
—56. The class number is 4, and we know the reduced forms from §2. Then
Theorem 9.12 implies that

§({p prime: p = x> + 14y*}) = }
§({p prime: p = 2x* + Ty*}) = 1
§({p prime: p = 3x* +2xy + 5y*}) = .

Notice that these densities sum to 1/2, which is the density of primes for
which (—56/p) = 1. This example is no accident, for given any negative
discriminant, the densities of primes represented by the reduced forms
(counted properly) always sum to 1/2 (see Exercise 9.17).

A weaker form of Theorem 9.12, which asserts that ax? + bxy + cy? rep-
resents infinitely many primes, was first stated by Dirichlet in 1840, though
his proof applied only to a restricted class of discriminants (see [27, Vol. |,
pp- 497-502]). A complete proof was given by Weber in 1882 [101], and in
1954 Briggs [10] found an “elementary” proof (in the sense of the “elemen-
tary” proofs of the prime number theorem due to Erdos and Selberg).

D. Ring Class Fields and Generalized Dihedral Extensions

We will conclude §9 by asking if there is an intrinsic characterization of
ring class fields. We know that they are Abelian extensions of K, but which
ones? The remarkable fact is that there is a purely field-theoretic way to
characterize ring class fields and their subfields. The key idea is to work
with the Galois group over Q. We used this strategy in §6 in dealing with
the genus field, and here it will be similarly successful. For the genus field,
we wanted Gal(L/Q) to be Abelian, while in the present case we will al-
low slightly more complicated Galois groups. The crucial notion is when an
extension of K is generalized dihedral over Q. To define this, let K be an
imaginary quadratic field, and let L be an Abelian extension of K which is
Galois over Q. As we saw in the proof of Lemma 9.3, complex conjugation
T is an automorphism of L, and the Galois group Gal(L/K) can be written
as a semidirect product

Gal(L/Q) ~ Gal(L/K) x (Z/21),

where the nontrivial element of Z/2Z acts on Gal(L/K) via conjugation by
T. We say that L is generalized dihedral over Q if this action sends every
element in Gal(L/K) to its inverse.
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In Lemma 9.3 we proved that every ring class field L is generalized
dihedral over Q, and it is easy to show that every subfield of L containing
K is also generalized dihedral over Q (see Exercise 9.18). The unexpected
result, due to Bruckner [11], is that this gives all extensions of K which are
generalized dihedral over Q: -

Theorem 9.18. Let K be an imaginary quadratic field. Then an Abelian ex-
tension L of K is generalized dihedral over Q if and only if L is contained in
a ring class field of K.

Proof. By the above discussion, we know that any extension of K contained
in a ring class field is generalized dihedral over Q. To prove the converse,
fix an Abelian extension L of K which is generalized dihedral over Q. By
Artin Reciprocity, there is an ideal m and a subgroup Pg 1(m) C H C Ix(m)
such that the Artin map induces an isomorphism

(9.19) Ix(m)/H =5 Gal(L/K).

We saw in §8 that all of this remains true when m is enlarged, so that we
may assume that m = fOg for some integer f, and we can also assume
that f is divisible by the discriminant dx of K (this will be useful later in
the proof). To prove the theorem, it suffices to show that Px z(f) Cc H, for
this will imply that L lies in the ring class field of the order of conductor
[ in Ok . From the definition of Pg z(f), this means that we have to prove
the following for elements u € Og:

(9.20) cel,cprimeto f, u=cmod f = uOg € H.

The first step is to use the fact that Px;(fOg) C H: if a,8 € Ox are
prime to f, then we claim that

(9.21) a=pgmod fOx = (a0k € H < Ok € H).

To prove this, pick an element 7y € Ok such that ay =1 mod fOk. Then
B7 = 1mod f Ok also holds, so that ayOk and gyOk both lie in Pg 1(f Ok)
C H, and (9.21) follows immediately. One consequence of (9.21) is that
(9.20) is equivalent to the simpler statement

(9.22) ce€l,c prime to f = cOg € H.

So we need to see how (9.22) follows from L being generalized dihedral
over Q. Under the isomorphism (9.19), we know that conjugation by 7 on
Gal(L/K) corresponds to the usual action of 7 on Ix(f). Then L being
generalized dihedral over Q means that for a € Ix(f), the class of @ gives
the inverse of a in Ix(f)/H, which in turn means that a@d € H. Since aa =
N(a)Ok by Lemma 7.14, we see that for any ideal a € Ix(f), we have

(9.23) N(a)Og € H.
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It remains to prove that (9.23) implies (9.22). Note first that it suffices
to prove (9.22) when c is a prime p not dividing f. Recall that dg | f,
so that p is unramified in K. There are two cases to consider, depending
on whether or not p splits in K. If p splits, then p = N(p), where p is a
prime factor of pOg. Then, by (9.23), we have pOgx = N(p)Okx € H, as
desired. If p doesn’t split, then (dx/p) = —1 by Corollary 5.17. Let q be a
prime such that ¢ = —p mod f (such primes exist by Dirichlet’s theorem).
We claim that g splits completely in K. The proof will use the character x
from Lemma 1.14. Recall that this lemma states that the Legendre symbol
(dk/-) induces a well defined homomorphism ¥ : (Z/dxZ)* — {1}, and
since dg < 0, it also tells us that y([—1]) = —1. Since dg | f, we have g =
—p mod dg, and thus

(%) = x(ta) = xG-#D = x(-1xpD == (%) =1.

Hence g splits completely in K. The argument for the split case implies
that Ok € H, and then ¢ = —p mod fOk and (9.21) imply that pOg =
(—p)Ok € H. This proves (9.22) and completes the proof of Theorem 9.18.

Q.E.D.

In Exercises 9.19-9.24, we will explore some other aspects of ring class
fields, including a computation of the conductor (in the sense of class field
theory) of a ring class field. For further discussion of ring class fields, see
Bruckner [11], Cohn [19, §15.1] and Cohn [21, Chapter 8].

E. Exercises

9.1. Prove that the Hilbert class field of an imaginary quadratic field is the
ring class field of the maximal order.

9.2. Let O be the order of conductor f in the imaginary quadratic field
K, and let L be the ring class field of O. Let m = fOk, and let T
denote complex conjugation.

(a) Show that 7(m) = m and that 7(Px z(f)) = Px,z(f)-
(b) Show that ker(®-(ry/k,m) = T(ker(®L/x,m))-
(c) Using ker(®/k,m) = Pk,z(f), conclude that ker(®r(Ly/k,m) =
ker(®r,/x,m)-
9.3. Formulate and prove versions of Theorems 9.2 and 9.4 for primes

represented by the principal form x% + xy + ((1— D)/ 4)y? when D =
1 mod 4 is negative.

94. Let u;, i =0,1,2 be as in the proof of Lemma 9.6. If u; = u; =0,
then use Cramer’s rule to prove that a € K.
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Let L = K(/m) be a cubic extension of K where m is a cubefree
integer and K is an imaginary quadratic field. If p is any prime of K
dividing m, then prove that p ramifies in L.

Verify that if K = Q(v/—3) and L = K(v/m), where m is a cubefree
integer of the form 243% then L is one of the four fields listed in
(9.7).

Prove that the discriminant of the cubic polynomial x> — a is —27a?.

Use the arguments outlined in the proof of Proposition 9.5 to show
that none of the fields K (v¥/3), K(v/6) and K (v/12) can be the ring
class field of the order Z[/—27)]. Hint: use 31 = 22 +27-1°.

Prove part (ii) of Proposition 9.5 using the hints given in the text.

This exercise is concerned with the order Z[%w] of conductor 9 in

the field K = Q(w), w = €?™/3.

(a) Prove that L = K(v/3) is the ring class field of Z[9w]. Hint:
adapt the proof of Proposition 9.5.

(b) Use Exercise 9.3 to prove that for primes p > 5, p = x>+ xy +
61y? if and only if p =1 mod 3 and 3 is a cubic residue modu-
lo p.

(c) Use (b) to prove that for primes p > 5, 4p = x> + 243y if and
only if p =1 mod 3 and 3 is a cubic residue modulo p. Note that
this result, conjectured by Euler, was proved earlier in Exercise
4.15 using the supplementary laws of cubic reciprocity.

Prove part (ii) of Theorem 9.8.

This exercise is concerned with the proof of Theorem 9.9.
(a) Let 8 = 1+ 3w. To prove that (2/6)3 = (8/2)s, first use (4.10) to

show
2 2 (N(1+3w)—1)/3

(e ()= (2 rero

=1+ w mod 20k,

and then note that 1+w +w? =0 and 4—w? = —(1+ 2w)(1+
3w).
(b) Prove part (ii) of Theorem 9.9.
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Let K = Q(w), w = €2™/3, In this exercise we will use the ring class
field K (v/3) from Exercise 9.10 to prove the supplementary laws
of cubic reciprocity. Let p =1 mod 3 be prime. In Exercise 4.15 we
saw that 4p = a® + 27b?, which gave us the factorization p =77
where 7 = (a ++/—27b)/2 is primary. We can assume that a =
1 mod 3.

(a) Prove that (w/m)3 = w?@*2/3_ Hint: use (4.10).

(b) Adapt the proof of Theorem 9.9 to prove that (3/7); = w?,
Hint: use Exercise 9.10.

(c) Use 3 = —w?(1—w)? to prove that (1 —w/m); = wb+@+D/3,

(d) Show that the results of (a) and (c) imply the supplementary
laws for cubic reciprocity as stated in (4.13).

Let S and S’ be the two sets of primes defined in the proof of The-
orem 9.12. Prove that S C S’. Hint: use (9.14).

Let K be an imaginary quadratic field, and let K C L be an Abelian
extension which is generalized dihedral over Q. If o € Gal(L/K) C
Gal(L/Q), then prove that the conjugacy class (o) of o in Gal(L/Q)
is the set {o,07}.

In this exercise we will use (8.16) to give a different proof of The-
orem 9.12. We will use the notation of the proof of Theorem 9.12.

Thus O is the order of conductor f in an imaginary quadratic field
K, and L is the ring class field of O. Let

S = {p prime: p = ax® + bxy +cy*}.

(a) If ax?® + bxy + cy? gives us the class [a0Ok] € Ix(f)/Pk,z(f);
show that

S = {p primes: pff, pOx = pp, p € [agOk]}.

Hint: use (9.14).
(b) Use the Cebotarev Density Theorem to show that

S" ={pePx:p€laOkl}

has Dirichlet density §(S") = 1/h(D). Then use (8.16) to show
that 6(S" NPk 1) =1/h(D). Recall that Px={p € Px: N(p)
is prime}.

(c) Show that the mapping p — N(p) from §" NPk to S is either
two-to-one or one-to-one, depending on whether or not aoOg

has order < 2 in the class group. Then use (b) to prove Theorem
9.12.
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Fix a negative discriminant D.

(a) Show that the sum of the densities of the primes represented
by the reduced forms of discriminant D with middle coefficient
b > 0 is always 1/2.

(b) To explain the result of (a), first use Lemma 2.5 to show that
the primes represented by the forms listed in (a) are, up to a
finite set, exactly the primes for which (D /p) = 1. Then use the

Cebotarev Density Theorem to show that this set has density
1/2.

Let K be an imaginary quadratic field. Use Lemma 9.3 to prove
that any intermediate field between K and a ring class field of K is
generalized dihedral over Q.

An imaginary quadratic field K has infinitely many ring class fields
associated with it. In this exercise we will work out the relation be-
tween the different ring class fields.

(a) If O1 and O, are orders in K, then we get ring class fields L;
and L,. Prove that

O1C O, = L, C L.

(b) If f; is the conductor of O;, then prove that Oy C O; if and only
if f> | fi, and conclude that the result of (a) can be stated in
terms of conductors as follows:

f2lfi= L, CL;.

In Exercise 9.24, we will see that the converse of this implication
is false.

(c) Show that the Hilbert class field is contained in the ring class
field of any order, and conclude that A(dg) | A(f2dx). This fact
was proved earlier in Theorem 7.24.

Let L be the ring class field of an order O in an imaginary quadratic
field K. Such a field has two “conductors” associated to it: first,
there is the conductor f of the order O, and second, there is the
class field theory conductor f(L/K) of L as an Abelian extension of
K . There should be a close relation between these conductors, and
the obvious guess would be that

f(L/K)=fOk.
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In Exercises 9.20-9.23, we will show that the answer is a bit more
complicated: the conductor is given by the formula

( Ok, f =2o0r3K =Q(/-3)
Ok, =2, K = Q)
f(L/K) = { . :
(f/2)Ok, [ =2f", f' odd, 2 splits completely in K
. fOk, otherwise.

To begin the proof, let f be a positive integer, and let K be an
imaginary quadratic field. Assume that f = 2f’, where f' is odd and
2 splits completely in K. Let L and L' be the ring class fields of
K corresponding to the orders of conductor f and f' respectively.
Then prove that

f(L/K) = f(L'/K).

Hint: first show that L' C L, and then use Theorem 7.24 to conclude
that L' = L.

Let L be the ring class field of the order of conductor f in an imag-
inary quadratic field K, and assume that f(L/K) # fOk.

(a) Show that fOg = pm, where p is prime and f(L/K)|m. We
will fix p and m for the rest of this exercise.

(b) Prove that IK(f) N PK,l(m) C PK,z(f).

(c) Show that there is an exact sequence

Ox — (Ok/fOk)* 2, Py NIg(f)/Pxa(f) — 1,

where Pg is the group of all principal ideals and ¢ is the map
which sends [a] € (Ok/fOk)* to [aOk] € Px N Ix(f)/ Pk a(f).
Hint: This is similar to what we did in (7.27).

(d) Consider the natural maps
m:(Ok/fOk)* — (Ok/m)*
p:(Z/fL)" — (Ok/fOk)".

Show that ker(m) C Ok - Im(3). Hint: use (b) and the exact se-
quence of () to show that ¢~ (Ix(f)N Px1(m)) = OF - ker(r)
and ¢~(Px,2(f)) = Ok - Im(B).
In this exercise we will assume that O} = {+1} (by Exercise 5.9, this
excludes the fields Q(v/—3) and Q(i)). Let K, f and L be as in the

previous exercise, and assume in addition that if f = 2f', f' odd,
then 2 doesn’t split completely in K. Our goal is to prove that

J(L/K) = fOk.
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We will argue by contradiction. Suppose that §(L/K) # fOk.
Then Exercise 9.21 implies that fOx = pm, where p is prime and
f(L/K) | m. Furthermore, if m and § are the natural maps

T :(Ok/fOk)" — (O /m)*
p:@/f1) — (Ok/fOk)

then Exercise 9.21 also implies that ker(m) C Ok - Im(8), and since
O% = {£1}, we see that

ker(7) C Im(B).

We will show that this inclusion leads to a contradiction.
(a) Prove that

N(p), plm

fer(ml = { NG)-1,  pfm,

where p is the unique integer prime contained in p. Hint: use
Exercise 7.29.
(b) Note that N(p) = p or p*. Suppose first that N(p) = p.
(i) Show that m = mp for some integer m.
(ii) Use (i) to show that the map (Z/fZ)* — (Og/m)* is injec-
tive, and conclude that ker(7) N Im(B) = {1}.
(iii) Since ker(m) C Im(B), (ii) implies that ker(w) = {1}. Use
(a) to show that p =2, 2 splits completely in K, and f =
2m where m is odd. This contradicts our assumption on f .
(c) It remains to consider the case when N(p) = p?. Here, f = pm
and m = mQOkg.
(i) Show that ker(w)NIm(fB) ~ ker(#), where 0:(Z/fZ)* —
(Z/mZ)* is the natural map.
(i) Since ker(w) C Im(B), (i) implies that |ker(m)| < |ker(8)],
and we know |ker(w)| from (a). Now compute | ker(6)| and

use this to show that |ker(w)| < |ker(f)| is impossible.
Again we have a contradiction.

9.23. Recall the formula for the conductor f(L/K) stated in Exercise 9.20.
(a) Using Exercises 9.20 and 9.22, prove the desired formula when
O% = {£1}.
(b) Adapt the proof of Exercise 9.22 to the case Ok # {1}, and
prove the formula for f(L/K) for all K.
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9.24. Use the conductor formula from Exercise 9.20 to give infinitely many

examples where f(L/K) # f Ok . Also show that the converse of part
(b) of Exercise 9.19 is not true in general (i.e., L, C L; need not

imply f2 | f1).



CHAPTER THREE

COMPLEX MULTIPLICATION

§10. ELLIPTIC FUNCTIONS AND COMPLEX MULTIPLICATION

In Chapter Two we solved our problem of when a prime p can be written in
the form x2 + ny?. The criterion from Theorem 9.2 states that, with finitely
many exceptions,

(—n/p)=1and f,(x)=0mod p

p=x>+ny’ = _ _
has an integer solution.

The key ingredient is the polynomial f,(x), which we know is the minimal
polynomial of a primitive element of the ring class field of Z[\/—n]. But the
proof of Theorem 9.2 doesn’t explain how to find such a primitive element,
so that we have only an abstract solution of the problem of p = x? + ny?.
In this chapter, we will use modular functions and the theory of complex
multiplication to give a systematic method for finding f.(x).

In §10 we will study elliptic functions and introduce the idea of complex
multiplication. A key role is played by the j-invariant of a lattice, and we
will show that if O is an order in an imaginary quadratic field K, then its
j-invariant j(Q) is an algebraic number. But before we can get to the real
depth of the subject, we need to learn about modular functions. Thus §11
will present a brief but complete account of the main properties of modular
functions, including the modular equation. Then we will prove that j(O) is
not only an algebraic integer, but also that it generates (over K) the ring
class field of @. This theorem, often called the “First Main Theorem” of

199



200 §10. ELUPTIC FUNCTIONS AND COMPLEX MULTIPLICATION

complex multiplication, is the main result of §11. In §12 we will compute
j(O) in some special cases, and in §13 we will complete our study of j(O)
by describing an algorithm for computing its minimal polynomial (the so-
called “class equation”). When applied to the order Z[/—n], this theory
will give us an algorithm for constructing the polynomial f,(x) that solves
p = x2 + ny?. Finally, in §14 we will discuss elliptic curves and primality
testing.

Before we can begin our discussion of complex multiplication, we need
to learn some basic facts about elliptic functions and j-invariants.

A. Elliptic Functions and the Weierstrass p-Function

To start, we define a lattice to be an additive subgroup L of C which is gen-
erated by two complex numbers w; and w; which are linearly independent
over R. We express this by writing L = [w;,w;]. Then an elliptic function for
L is a function f(z) defined on C, except for isolated singularities, which
satisfies the following two conditions:

(i) f(z) is meromorphic on C.
(i) f(z+w)=f(z)forallwe L.
If L = [w;,w;], note that the second condition is equivalent to

f(z+w) = f(z+w)=f(2).

Thus an elliptic function is a doubly periodic meromorphic function, and
elements of L are often referred to as periods.

One of the most important elliptic functions is the Weierstrass gp-func-
tion, which is defined as follows: given a complex number z not in the
lattice L, we set

__ 1
p(z; L) 22 weLz:{o}((z w)? wz)'

When working with a fixed lattice L, we will usually write p(z) instead of
#(z; L). Here are some basic properties of the p-function:

Theorem 10.1. Let (z) be the Weierstrass p-function for the lattice L.

(i) p(z) is an elliptic function for L whose singularities consist of double
poles at the points of L.

(ii) g(z) satisfies the differential equation

p'(2) = 4p(2)’ — g2(L)p(2) — g3(L),
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where the constants g,(L) and g3(L) are defined by

gaL) = 60 > 517

I

ok

IS

o
€°| —

g3(L)

(iii) p(z) satisfies the addition law

p'(2) - p'(w>)2

1
pz+w) = —p(a) - po0) + 5 (ED—E L

whenever z,w ¢ L and z+w ¢ L.
Proof. The first step is to prove the following lemma:

Lemma 10.2. If L is a lattice and r > 2, then the series

Gw= Y =

weL-{0}

converges absolutely.

Proof. If L = [w;,w;], then we need to show that the series

> o= s
wl” & [mw; + nwy|

weL—{0}

converges, where Z:nn denotes summation over all ordered pairs (m,n) #
(0,0) of integers. If we let M = min{|xw; + ywy|: x2 + y? = 1}, then it is
easy to see that for all x,y € R,

|xw1 + yws| > M /x2 + y?

(see Exercise 10.1), and it follows that

1 1 1
' < ' :
Z |mwy + nwa|" ~ M’ Z (m2 + n2)r/2
mn m,n
By comparing the sum on the right to the integral

1
dxd
[ fewpsiiameyoymdzer

it is easy to show that the sum in question converges when r > 2 (see Exer-
cise 10.1). Q.E.D.
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We can now show that p(z) is holomorphic outside L. Namely, if  is a
compact subset of C missing L, it suffices to show that the sum in

p(z) = ;17 + ) <(z—1w)2 B c—ul_z>

weL—-{0}

converges absolutely and uniformly on Q. Pick a number R such that |z| <
R for all z € 2. Now suppose that z €  and that w € L satisfies |w| > 2R.
Then |z —w]| > %{w], and one sees that

1 1

(z—w)? w?

z(2w — 2)

_ R2w| + 3lw|)  10R
w(z —w)?

T wPREw)? wP

Since |w| > 2R holds for all but finitely many elements of L, it follows from
Lemma 10.2 that the sum in the p-function converges absolutely and uni-
tormly on §2. Thus p(z) is holomorphic on C — L and has a double pole at
the origin.

Notice that since (—z —w)* = (z — (—w))?, the identity P(—z) = p(z) fol-
lows immediately from absolute convergence. Thus the p-function is an
even function.

'To show that p(z) is periodic is a bit trickier. We first differentiate the
series for p(z) to obtain

, 1
o) (2):—22 WP

u)EL

Arguing as above, this series converges absolutely, and it follows easily that
©'(z) is an elliptic function for L (see Exercise 10.2). Now suppose that
L = [wy,w;]. The functions p(z) and p(z + w;) have the same derivative
(since p’(z) is periodic), and hence they differ by a constant, say p(z) =
9(z +w;) + C. Evaluating this at —w, /2 (which is not in L), we obtain

P(-wi/2) = p(~wi/2 +w;)) + C = p(w;/2) + C.

Since p(z) is an even function, C must be zero, and periodicity is proved.
It follows that the poles of p(z) are all double poles and lie exactly on the
points of L, and (i) is proved.

Turning to (ii), we will first compute the Laurent expansion of p(z) about
the origin:

Lemma 10.3. Let p(z) be the p-function for the lattice L, and let G, (L) be
the constants defined in Lemma 10.2. Then, in a neighborhood of the origin,
we have

1 & )
p@):;§+§:@n+1xbﬁxLym.

n=1
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Proof. For |x| < 1, we have the series expansion

1 > n
A=)y =1+;(n+l)x

(see Exercise 10.3). Thus, if |z| < |w|, we can put x = z/w in the above
series, and it follows easily that

1 1 &+l
(z—w)z_ﬁ_gw"”z )

Summing over all w € L — {0} and using absolute convergence, we obtain
1 oo
p(2)= -+ Zl(n +1)Gp4a(L)Z".
n=

Since the p(z) is an even function, all of the odd coefficients must vanish,
giving us the desired Laurent expansion. Q.E.D.

From this lemma, we see that
-2 X B
P'(2) = - + }:lZn(Zn + 1)G2n+2(L)22" 1
n=

and then one computes the first few terms of p(z)> and p'(z)? as follows:

PP = g5+ " +15G(L) + -

p’(z)2= i—%—%G6(L)+-~,

where +--- indicates terms involving positive powers of z (see Exercise
10.4). Now consider the elliptic function

F(2) = p'(2)* — 4p(2)* + 60G4(L)p(z) + 140Gs(L).

Using the above expansions, it is easy to see that F(z) vanishes at the ori-
gin, and then by periodicity, F(z) vanishes at all points of L. But it is also
holomorphic on C — L, so that F(z) is holomorphic on all of C. An easy ar-
gument using Liouville’s Theorem shows that F(z) is constant (see Exercise
10.5), so that F(z) is identically zero. Since g»(L) and g3(L) were defined
to be 60G4(L) and 140Gg(L) respectively, the proof of (ii) is complete.

In order to prove (iii), we will need the following lemma:

Lemma 10.4. If z,w ¢ L, then p(z) = p(w) if and only if z=4+w mod L.
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Proof. The <« direction of the proof is trivial since p(z) is an even func-
tion. To argue the other way, suppose that L = [wy,w,], and fix a number
—1<6<0. Let P denote the parallelogram {sw; +twz:86 <s,t <8+ 1},
and let T be its boundary oriented counterclockwise. Note that every com-
plex number is congruent modulo L to a number in P (see Exercise 10.6).
Fix w and consider the function f(z) = p(z) — p(w). By adjusting 8, we
can arrange that f(z) has no zeros or poles on I'. Then it is well known

that (
1 fl Z) = —
2mi /r f(2) dz=2-F

where Z (resp. P) is the number of zeros (resp. poles) of f(z) in P, count-
ing multiplicity. Since f'(z)/f(z) is periodic, the integrals on opposite sides
of T cancel, and thus [.(f'(z)/f(z))dz = 0. This shows that Z = P. How-
ever, P is easy to compute: from the definition of P, it’s obvious that 0
is the only pole of f(z) = p(z)—p(w) in P. It’s a double pole, and thus
Z = P =2, so that f(z) has two zeros (counting multiplicity) in P.

There are now two cases to consider. If w Z —w mod L, then modulo L,
w and —w give rise to two distinct points of P, both of which are zeros of
f(z2) = p(z) — p(w). Since Z = 2, these are all of the zeros, and their mul-
tiplicity is one, i.e., p'(w) # 0. If w = —w mod L, then 2w € L. Since gp'(z)
is an odd function (being the derivative of an even function), we obtain

P'(w)=p'(w-2w)=p'(-w) = —p'(w),

which forces p'(w) = 0. Thus modulo L, w gives rise to a zero of f(z) of
multiplicity > 2 in P, and again Z = 2 implies that these are all. This proves
the lemma. Q.E.D.

The proof of Lemma 10.4 yields the following useful corollary:
Corollary 10.5. If w ¢ L, then p'(w) = 0 if and only if 2w € L. Q.E.D.

Now we can finally prove the addition theorem. Fix w ¢ L, and consider
the elliptic function

p(2) p'(w))z_
P(z) — p(w)

If we can show that G(z) is holomorphic on C and vanishes at the origin,
then as in (ii), Liouville’s Theorem will imply that G(z) vanishes identically,
and the addition theorem will be proved.

Using Lemma 10.4, we see that the possible singularities of G(z) come
from three sources: L, L + {w} and L — {w}. By periodicity, it suffices to

G(2) = ol +w)+ p()+ p0) - 3
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consider G(0), G(w) and G(—w). Let’s begin with G(0). Using the Laurent
expansions for p(z) and p’(z), one sees that

1 (pl(z)_ p,(w))z _ 1 (—2/23—p’(w)+
4\ p(z) - p(w) 4\ 1/z22—p(w)+---

where as usual, +--- means terms involving positive powers of z. Hence

G(2) = plz + W)+ pW) + 23+ = =~ 2p(W) =+,

and it follows that G(0) = 0.
To simplify the remainder of the argument, we will assume that 2w ¢ L.
Turning to G(w), we use LHospital’s Rule to obtain

1
) =-z—2+2p(w)+---,

" 2
G(w) = p(2w) + 2p(W) — % (%-(%)) .

Since 2w ¢ L, Corollary 10.5 shows that p'(w) # 0, and thus G(w) is de-

fined. It remains to consider G(—w). We begin with some Laurent expan-
sions about z = —w:

pP(z +w) = (z+w)2+m

P(2) = (W) + ' (—W)(z + W) + - = p(w) = P (W)(z + W)+

where +--- now refers to higher powers of z + w. Since p'(w) # 0, these
formulas make it easy to show that G(—w) is defined (see Exercise 10.7).
This shows that G(z) is holomorphic and vanishes at 0, so that G(z) van-
ishes everywhere.

To complete the proof, we need to consider the case 2w € L. We leave
this to the reader (see Exercise 10.7). We have now proved all three parts
of Theorem 10.1. Q.E.D.

There are many more results connected with the Weierstrass p-function,
and we refer the reader to Chandrasekharan [16, Chapter III], Lang [73,
Chapter 1] or Whittaker and Watson [109, Chapter XX] for more details.

B. The j-Invariant of a Lattice

Elliptic functions depend on which lattice is being used, but sometimes dif-
ferent lattices can have basically the same elliptic functions. We say that
two lattices L and L' are homothetic if there is a nonzero complex number
A such that L' = AL. Note that homothety is an equivalence relation. It is
easy to check how homothety affects elliptic functions: if f(z) is an elliptic
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function for L, then f(Az) is an elliptic function for AL. Furthermore, the
p-function transforms as follows:

P(Az; AL) = A"p(z; L).

Thus we would like to classify lattices up to homothety, and this is where
the j-invariant comes in.

Given a lattice L, we have the constants g»(L) and g3(L) which appear
in the differential equation for p(z). It is customary to set

A(L) = ga(L) - 27g3(L)".

The number A(L) is closely related to the discriminant of the polynomial
4x* —g2(L)x — g3(L) that appears in the differential equation for ©(z). In
fact, if e}, ez and ez are the roots of this polynomial, then one can show
that

(10.6) A(L) = 16(e; — e2)*(e1 — e3)*(e2 — e3)?

(see Exercise 10.8). An important fact is that A(L) never vanishes, i.e.,

Proposition 10.7. If L is a lattice, then A(L) # 0.

Proof. If w¢ L and 2w € L, then Corollary 10.5 implies that p'(w) = 0.
Then the differential equation from Theorem 10.1 tells us that

0= p' (W)} = dp(w)* — g2(L)p(w) — g3(L),

so that p(w) is a root of 4x* — g>(L)x — ga3(L). If L = [wy,w,], this process
gives three roots p(w;/2), p(w2/2) and p((w; + w;)/2), which are distinct
by Lemma 10.4 since tw; /2, +w,/2 and +(w; + w;)/2 are distinct modulo
L. Thus the roots of 4x* —g,(L)x —g3(L) are distinct, and A(L) # 0 by
(10.6). Q.E.D.

The j-invariant j(L) of the lattice L is defined to be the complex num-
ber

- 82(L)’ g2 (L)’
10.8 L)=1728 > = 17282——~-,

(108) J(L) g2(L) — 27g3(L)? A(L)

Note that j(L) is always defined since A(L) # 0. The reason for the factor
of 1728 will become clear in §11. The remarkable fact is that the j-invariant

J(L) characterizes the lattice L up to homothety:

Theorem 10.9. If L and L' are lattices in C, then j(L) = j(L') if and only
if L and L' are homothetic.
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Proof. It is easy to see that homothetic lattices have the same j-invariant.
Namely, if A € C*, then the definition of g,(L) and g3(L) implies that

g2(AL) = A™*gy(L)
g3(AL) = A%g3(L),

and j(AL) = j(L) follows easily.
Now suppose that L and L' are lattices such that j(L) = j(L'). We first
claim that there is a complex number A such that

g2(L") = A"'ga(L)
g3(L") = A"gs(L).
When g2(L') # 0 and g3(L') # 0, we can pick a number A such that
A4 — gz(L) .
g2(L')
Since j(L) = j(L'), some easy algebra shows that

(10.10)

(10.11)

so that
g3(L)

g(L')
Replacing A by i) if necessary, we can assume that the above sign is+, and
then (10.11) follows. The proof when g2(L') = 0 or g3(L’) = 0 is similar and
is left to the reader (see Exercise 10.9).

To exploit (10.11), we need to learn more about the Laurent expansion
of the p-function:

A6 =4

Lemma 10.12. Let p(z) be the p-function for the lattice L, and as in Lemma
10.3, let

1 s n
p(z) = ) + Z:l(Zn + 1)G2,,+2(L)z2

be its Laurent expansion. Then for n > 1, the coefficient (2n + 1)G,, +2(L)
of z*" is a polynomial with rational coefficients, independent of L, in g2(L)
and g3(L).

Proof. For simplicity, we will write the coefficients of the Laurent expan-
sion as a, = (2n + 1)Gan+2(L). To get a relation among the a,’s, we differ-
entiate the equation p'(z)? = 4p(z)® — g2(L)p(z) — g3(L) to obtain

p"(2) = 6p(2)* — (1/2)82(L).
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By substituting in the Laurent expansion for p(z) and comparing the coef-
ficients of z2#~2, one easily sees that for n > 3,

n—2
2n(2n—-1a, =6 <2a,, + Zaian_1—i>

i=1
(see Exercise 10.10), and hence

n-2
(2n +3)(n —2)a, = 3Zaian_1_i.

i=1

Since g2(L) = 60G4(L) = 20a; and g3(L) = 140Ge(L) = 28a;, an easy in-
duction shows that a, is a polynomial with rational coefficients in g2(L)
and g3(L). This proves the lemma. Q.E.D.

Now suppose that we have lattices L and L' such that (10.11) holds
for some constant A. We claim that L' = AL. To see this, first note that
by (10.10), we have g,(L') = g»(AL) and g3(L') = g3(AL). Then Lemma
10.12 implies that p(z; L') and p(z; AL) have the same Laurent expan-
sion about 0, so that the two functions agree in a neighborhood of the
origin, and hence p(z; L") = p(z; AL) everywhere. Since the lattice is the
set of poles of the p-function, this proves that L' = AL, and the theorem is
proved. Q.E.D.

Besides the notion of the j-invariant of a lattice, there is another way
to think about the j-invariant which will be useful when we study modular
functions. Given a complex number 7 in the upper half plane h) = {7 € C:
Im(7) > 0}, we get the lattice [1,7], and then the j-function j(7) is defined
by

J(m)=j(1,7).

The analytic properties of j(7) play an important role in the theory of com-
plex multiplication and will be studied in detail in §11.

C. Complex Multiplication

We begin with the simple observation that orders in imaginary quadratic
fields give rise to a natural class of lattices. Namely, let O be an order in
the imaginary quadratic field K, and let a be a proper fractional O-ideal.
We know from §7 that a = [a, 3] for some a,( € K (see Exercise 7.8). We
can regard K as a subset of C, and since K is imaginary quadratic, a and
f are linearly independent over R (see Exercise 10.11). Thus a = [a,(] is a
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lattice in C, and consequently the j-invariant j(a) is defined. These com-
plex numbers, often called singular moduli, have some remarkable proper-
ties which will be explored in §11. For now, we have the more modest goal
of trying to motivate the idea of complex multiplication.

In order to simplify our discussion of complex multiplication, we will
fix the lattice L. As usual, p(z; L) 1s written p(z), and to simplify things
further, g,(L) and g3(L) will be written g, and g3. The basic idea of com-
plex multiplication goes back to the addition law for the p-function, proved
in part (iii) of Theorem 10.1. If we specialize to the case z = w, then
LHospital’s rule gives the following duplication formula for the p-function:

_ 1/p"(2)\*
(10.13) p(22) = ~2p(2) + (@’(Z)> .

However, the differential equation from Theorem 10.1 implies that
p'(2)° = 4p(2)° — g2p(2) — &3
p'"(2) = 6p(2)" = (1/2):,
and substituting these expressions nto (10.13), we obtain
(12p(2)° —g2)*
16(4p(2)° = g2p0(2) — 83)

Thus p(2z) is a rational function in p(z). More generally, one can show
by induction that for any positive integer n, p(nz) is a rational function in
©(z) (see Exercise 10.12). So the natural question to ask is whether there
are any other complex numbers «a for which p(az) is a rational function in
©(z). The answer is rather surprising:

P(2z) = =2p(z) +

Theorem 10.14. Let L be a lattice, and let p(z) be the p-function for L.
Then, for a number o € C — Z, the following statements are equivalent:

(1) p(az) is a rational function in P(z).

(i1) aL C L.
(iii) There is an order O in an imaginary quadratic field K such that « € O

and L is homothetic to a proper fractional O-ideal.

Furthermore, if these conditions are satisfied, then p(az) can be written in
the form

_Ap(2))
PO = Blo(2)

where A(x) and B(x) are relatively prime polynomials such that

deg(A(x)) =deg(B(x))+1=[L:alL] = N(a).
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Proof. (i) = (ii). If p(az) is a rational function in p(z), then there are
polynomials A4(x) and B(x) such that

(10.15) B(p(z))paz) = A(p(2)).

Since p(z) and p(az) have double poles at the origin, it follows from (10.15)
that

(10.16) deg(A(x)) = deg(B(x)) + 1.

Now let w € L. Then (10.15) and (10.16) show that p(az) has a pole at w,
which means that (z) has a pole at aw. Since the poles of p(z) are exactly
the period lattice L, this implies that aw € L, and aL C L follows.

(i) = (1). If aL C L, 1t follows that g(az) is meromorphic and has L
as a lattice of periods. Furthermore, note that p(az) is an even function
since ©(z) 1s. Then the following theorem immediately implies that p(az) is
a rational function in @(z):

Lemma 10.17. Any even elliptic function for L is a rational function in p(z).
Proof. This proof of this assertion is covered in Exercise 10.13. Q.E.D.

(1) = (111). Suppose that L C L. Replacing L by AL for suitable A, we
can assume that L = [1,7] for some 7 € C—R. Then aL C L means that
a =a+ bt and ar = c +d7 for some integers a, b, ¢ and d. Taking the
quotient of the two equations, we obtain

c+dr

a4+ bt

which gives us the quadratic equation
br* + (a—d)T—c =0.

Since 7 is not real, we must have b # 0, and then K = Q(7) is an imaginary
quadratic field. It follows that

O={feK:[LCL)

is an order of K for which L is a proper fractional O-ideal, and since « is
obviously in O, we are done.

(1i1) = (ii). This implication is trivial.

Finally, to prove the last statement of the theorem, suppose that

A(p(2))
B(p(z))

By (10.16), we know that deg(A(x)) = deg(B(x))+ 1, and in Corollary

(10.18) plaz) =
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11.27, we will show that N(a) = [L:«aL]. It remains to prove that the de-
gree of A(x) is the index [L:«aL].

Fix z € C such that 2z ¢ (1/a)L, and consider the polynomial A(x)—
@(az)B(x). This polynomial has the same degree as A4(x), and z can be
chosen so that it has distinct roots (see Exercise 10.14). Then consider the
lattices L C (1/a)L, and let {w;} be coset representatives of L in (1/a)L.
We claim that

(10.19)
The p(z + w;) are distinct and give all roots of A(x) — p(az)B(x).

This will imply deg(A(x)) =[(1/a)L:L]=[L:al], and the theorem will
be proved.

To prove (10.19), we first show that the p(z + w;) are distinct. If not,
we would have p(z+w;) = p(z +wj) for some [ # j. Then Lemma 10.4
implies that z + w; = £(z + w;) mod L. The plus sign implies w; = w; mod
L, which contradicts { # j, and the minus sign implies 2z = w; —w; mod L,
which contradicts 2z ¢ (1/a)L. Thus the p(z + w;) are distinct.

From (10.18), we see that A(p(z + w;)) = p(a(z + w;))B(p(z + w;)). But
wi € (1/a)L, so that a(z+w;)=azmod L, and hence p(a(z+w;)) =
©(az). This shows that the p(z + w;) are roots of A(x)— p(az)B(x). To
see that all roots arise this way, let u be another root. Note that B(u) # 0
since B(u) = 0 implies A(u) = 0, which is impossible since A(x) and B(x)
are relatively prime. By adapting the argument of Lemma 10.4, it is easy to
see that u = p(w) for some complex number w (see Exercise 10.14). Then

Ay A(p(w))
0D = By = Blowy ~ O

and using Lemma 10.4 again, we see that aw = +az mod L. Changing w to
—w if necessary (which doesn’t affect u = p(w) = p(—w)), we can assume
that w = z mod (1/a)L. Working modulo L, this means w = z + w; mod L
for some i, and thus u = p(w) = p(z + w;) is one of the known roots. This
proves (10.19), and we are done with Theorem 10.14. Q.E.D.

This theorem shows if an elliptic function has multiplication by some
a € C — R, then it has multiplication by an entire order O 1n an imaginary
quadratic field. Notice that all of the elements of O — Z are genuinely com-
plex, i.e., not real. This accounts for the name complex multiplication.

One important consequence of Theorem 10.14 is that complex multi-
plication is an intrinsic property of the lattice. So rather than talk about
elliptic functions with complex multiplication, it makes more sense to talk
about lattices with complex multiplication. Since changing the lattice by a
constant multiple doesn’t affect the complex multiplications, we will work
with homothety classes of lattices.
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Using Theorem 10.14, we can relate homothety classes of lattices and
ideal class groups of orders as follows. Fix an order O in an imaginary
quadratic field, and consider those lattices L C C which have O as their full
ring of complex multiplications. By Theorem 10.14, we can assume that L
is a proper fractional O-ideal, and conversely, every proper fractional O-
ideal is a lattice with O as its ring of complex multiplications. Furthermore,
two proper fractional O-ideals are homothetic as lattices if and only if they
determine the same class in the ideal class group C(O) (see Exercise 10.15).
We have thus proved the following:

Corollary 10.20. Let O be an order in an imaginary quadratic field. Then
there is a one-to-one correspondence between the ideal class group C(O) and
the homothety classes of lattices with O as their full ring of complex multipli-
cations. Q.E.D.

It follows that the class number A(O) tells us the number of homothety
classes of lattices having O as their full ring of complex multiplications.

Here are some examples. First, consider all lattices which have complex
multiplication by v/—3. This means that we are dealing with an order O
containing /-3 in the field K = Q(v/=3). Then O must be either Z[/=3]
or Z[w], w = €*™/3 and since both of these have class number 1, the only
lattices are [1,4/—3] and [1,w]. Thus, up to homothety, there are only two
lattices with complex multiplication by v/—3. Next, consider complex multi-
plication by v/—5. Here, K = Q(v/—5), and the only order containing /=5
is the maximal order Ox = Z[v/-5]. The class number is h(—20) = 2, and
since we know the reduced forms of discriminant —20, the results of §7
show that up to homothety, the only lattices with complex multiplication by
v/=5 are [1,4/=5] and [2,1+ /=53] (see Exercise 10.16).

The discussion so far has concentrated on the elliptic functions and
their lattices. Since our ultimate goal involves the j-invariant of the lattices,
we need to indicate how complex multiplication influences the j-invariant.
Let’s start with the simplest case, complex multiplication by i = v/—1. Up
to a multiple, the only possible lattice is L = [1,i]. To compute j(L) = j(i),
note that {L = L, so that by the homogeneity (10.11) of g3(L),

g3(L) = ga(iL) = i~%g3(L) = —g3(L).

This implies that g3(L) = 0, and then the formula (10.8) for the j-invariant
tells us that j(i) = 1728. Similarly, one can show that if L = [l,w], w =
e*™/3 then g(L) = 0, which tells us that j(w) = 0 (see Exercise 10.17).

A more interesting example is given by complex multiplication by v/=2.
By the above methods, the only lattice involved is [1,4/—2], up to homoth-
ety. We will follow the exposition of Stark [97] and show that

j(V/=2) = 8000.
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Since N(v/—2) = 2, Theorem 10.14 tells us that

A(p(2))

VvV=22)=

A 1)

where A(x) is quadratic and B(x) is linear. Dividing B(x) into A(x), we
can write this as

1
0. = +b+ ———
(10.21) P(V=22) = ap(2) + b+ o,
where a and ¢ are nonzero complex numbers. To exploit this identity, we
will use the Laurent expansion of p(z) at z = 0. The differential equation
for p(z) shows that the first few terms of the Laurent expansion are

(Z)—l+g222+g324+ g2

20 28 1200°

(this follows easily from the proof of Lemma 10.12—see Exercise 10.18). To
simplify this expansion, first note that g, and g3 are nonzero, for otherwise
there would be complex multiplication by i or w, which can’t happen for

= [1,v/=2] (see Exercise 10.19). Then, replacing L by a suitable multiple,
the homogeneity of g, and g3 allows us to assume that g, = 20g and g3 =
28g for some number g (see Exercise 10.19). With this choice of lattice, the
expansion for p(z) can be written

6 4+...

2
%_26+...’

and it follows that the expansion for p(1/—2z) is

1 2 4
p(z) = p +gz°+gz" +

2

(V- z)=;—2gz +4g2* —8%2 + -

Now the constants a and b in (10.21) are the unique constants such that
p(v/=2z) — ap(z) — b is zero when z = 0. Comparing the above expansions
for p(z) and p(v/—22), we see that a = —1/2 and b = 0. Then (10.21) tells
us the remarkable fact that (p(v/—22) + %go(z))‘1 is a linear polynomial in
p(z). Using the above expansions, one computes that

80(\/—_22)+180(Z) T L SR N
(/=20 +3000) = ( )

2 2 2
(10.22)
2 2 2 Sg) ,
== _Z_Z(9_-=2)224
3gz2 g 3g 3

(see Exercise 10.19). By (10.21), this expression is linear in gp(z). Looking at
the behavior at z = 0, it follows that the bottom line of (10.22) must equal

2 2
—_—— Z - =
S ORE
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and then comparing the coefficients of z? implies that

Solving this equation for g yields g = — , SO that
5-27
=200 = ==~
82 = 28 2
7-27
83 =128 = ——,
and thus 3
P
J(V=2) = 172822 = 8000 = 20°.
g5 —27g32
By a similar computation, one can also show that
14+ /=
’(;2_7) = 3375 = (=15)°

(see Exercise 10.20). In §12 we will explain why these numbers are cubes.

Besides allowing us to compute j(v/-2) and j((1+ +/—7)/2), the Lau-
rent series of the p-function can be used to give an elementary proof that
the j-invariant of a lattice with complex multiplication is an algebraic num-
ber:

Theorem 10.23. Let O be an order in an imaginary quadratic field, and let
a be a proper fractional O-ideal. Then j(a) is an algebraic number of degree
at most h(0O).

Proof. By Lemma 10.12, the Laurent expansion of p(z) can be written
1 o o)
p(Z) = ;2_ + X:Ian(gZ’g:;)Zzn’
n=

where each a,(g2,83) is a polynomial in g, and g3 with rational coeffi-
cients. To emphasize the dependence on g, and g3, we will write p(z) as

(25 82,83)-

By assumption, for any a € O, p(az) is a rational function in p(z), say
A(p(2;82,83))
B(p(z;82,83))

(10.24) p(az;gr,83) =

We then have the Laurent expansion

p(az;g2,83) = 222 +Zan(gz,g3)a2" 2,



C. COMPLEX MULTIPLICATION 215

which means that (10.24) can be regarded as an identity in the field C((z))
of formal meromorphic Laurent series. Recall that C((z)) is the field of
fractions of the formal power series ring C[[z]], so that an element of
C((2)) is a series of the form ) 7 _, b,z", b, € C.

Now let o be any automorphism of C. Then ¢ induces an automorphism
of C((z)) by acting on the coefficients. Thus, if we apply o to (10.24), we
obtain the identity

. _ A%(p(23 0(82), 0(85)))

A0B) (o062 06D = Bo(ozoe),0(60)

where A%(x) (resp. B?(x)) is the polynomial obtained by applying o to
the coefficients of A(x) (resp. B(x)). This follows because a,(g2,£3) is a
polynomial in g, and g3 with rational coefficients. We don’t know much
about 0(g2) and g(g3), but g3 —27g2 # 0 implies o(g2)* —270(g3)*> # 0. In
§11, we will prove that this condition on o(g,) and o(g;) guarantees that
there is a lattice L such that

g2(L) = 0(g2)
g3(L) = a(g3)

(see Corollary 11.7). Thus the formal Laurent series p(z; 0(g2),0(g3)) is
the Laurent series of the p-function p(z; L), and then (10.25) tells us that
©(z; L) has complex multiplication by o(a). This holds for any a € O, so
that if O’ is the ring of all complex multiplications of L, then we have
proved that

0 =0(0)CO.

If we work with 0~! and interchange a and L, the above argument shows
that O' C O, which shows that O is the ring of all complex multiplications
of both a and L.

Now consider j-invariants. The above formulas for g,(L) and g3(L) im-
ply that

(10.26) J(L) = a(j(a)).

Since L has O as its ring of complex multiplications, Corollary 10.20 im-
plies that there are only A(O) possibilities for j(L). By (10.26), there are
thus at most h(O) possibilities for o(j(a)). Since o was an arbitrary au-
tomorphism of C, it follows that j(a) must be an algebraic number, and
in fact the degree of its minimal polynomial over Q is at most A(©). This
proves the theorem. Q.E.D.

In §11 we will prove the stronger result that j(a) is an algebraic infe-
ger and that the degree of its minimal polynomial equals the class number
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h(0©). But we thought it worthwhile to show what can be done by elemen-
tary means. Furthermore, the method of proof used above (the action of
an automorphism on the coefficients of a Laurent expansion) is similar to
some of the arguments to be given in §11.

For a more classical introduction to complex multiplication, the reader
should consult the recent book [9] by Borwein and Borwein.

D. Exercises

10.1.

10.2.

10.3.

10.4.

10.5.

10.6.

This exercise is concerned with the proof of Lemma 10.2.

(a) If L = [wy,w] is a lattice, let M = min{|xw; + yw,|: x2 + y% =
1}. Show that M > 0 and that |xw; + yw;| > M +/x? + y? for all
x,y €R.

(b) Show that the integral [ [, »-,(x* +y*)™" 2dxdy converges
when r > 2.

(c) Show that the series Y, ,(m* + n?)~"/2 converges when r > 2.
Hint: compare the series to the integral in part (b).

In the proof of Theorem 10.1, we proved that p'(z) = =23 ., (z -
w)~3.

(a) Show that this series converges absolutely for z ¢ L.

(b) Using (a), show that p'(z + w) = p'(z) for Z € L.

Show that for |x| <1, (1—x)~2= 372 ,(n+ 1)x". Hint: differenti-
ate the standard identity (1— x)~1 = > x".

Use Lemma 10.3 to show that

=2 s

, 4  24G4(L
p(z)2=}3———z‘—;(——)—80G6(L)+---,

where + ... indicates terms involving positive powers of z.

Use Liouville’s Theorem to show that a holomorphic elliptic function
f(2z) must be constant. Hint: consider |f(z)| on the parallelogram
{sw1 +tw,:0<s,t <1}. Exercise 10.6 will be useful.

Let L = [wy,w,] be a lattice. For a fixed a € C, consider the paral-
lelogram P = {a + sw; + tw, : 0 <5,z < 1}. Show that if z € C, then
there is z' € P such that z = z’ mod P. Note that the parallelogram
used in Lemma 10.4 corresponds to a = dw; + dw;.
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10.7. As in the proof of the addition theorem, let

2
so’(z)—so’(w)) _
P(z) = p(w)

(a) If 2w ¢ L, complete the argument begun in the text to show

that G(—w) is defined.

(b) Prove the addition law when 2w € L. Hint: take a sequence of
points w; converging to w such that 2w; ¢ L for all i.

G(2) = p(z-+ )+ p(@) + pw)~ 5 (

10.8. Let 4x3 — g,x — g3 be a cubic polynomial with roots e;, e, and e3.
(a) Show that e; +ey;+e3=0, eje; +ejez+eze3=—g2/4 and
e1e23 = g3/4.
(b) Using (a), show that g3 — 27g2 = 16(e1 — e2)*(e1 — e3)*(e2 — e3)>.

10.9. Let L and L' be lattice such that j(L)=j(L"). If g2(L')=0 or
g3(L") = 0, prove that there is a complex number A such that (10.11)
holds. Hint: by Proposition 10.7, they can’t both be zero.

10.10. Let the Laurent expansion of the gp-function about 0 be p(z) =
272+ 3% a,z*", where a, = (2n + 1)Ga,+2 is as in Lemma 10.3.

(a) Use the differential equation for the p-function to show that
p'"(2) = 6p(2)* — (1/2)g2(L).
(b) Use (a) to show that for n > 3,

n—2
2n(2n—1)a, =6 <2a,, + Zaian_l_,) .

i=1

10.11. Let K be an imaginary quadratic field, which can be regarded as a
subfield of C.

(a) If O is an order in K and a = [a, ] is a proper fractional O-
ideal, then show that a and § are linearly independent over R.
Thus a C C is a lattice.

(b) Conversely, let L C C be a lattice which is contained in K.

Show that L is a proper fractional O-ideal for some order O
of K.

10.12. Let L be a lattice, and let n be a positive integer.

(a) Prove that p(nz) is a rational function in p(z). Hint: use the
addition law and induction on n. For a quicker proof, use
Lemma 10.17.

(b) Adapt the proof of Theorem 10.14 to show that the numera-
tor of the rational function of part (a) has degree n? and the
denominator has degree n* — 1.
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10.13.

10.14.

10.15.

10.16.
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In this exercise we will see how to express elliptic functions for a
given lattice L in terms of p(z) and p'(2).

(a) Let f(z) be an even elliptic function which is holomorphic on
C — L. Prove that f(z) is a polynomial in p(z). Hint: show that
there is a polynomial 4(x) such that the Laurent expansion of
f(z2) — A(p(2)) has only terms of nonnegative degree. Then use
Exercise 10.5.

(b) Let f(z) be an even elliptic function that has a pole of order

m at w € C. We will assume that w ¢ L.
(i) If 2w ¢ L, prove that (p(z) — p(w))™ f(z) is holomorphic
at w. Hint: use Corollary 10.5.
(if) If 2w € L, prove that m is even. Hint: f(z) = f(2w — 2).
(iii) If 2w € L, prove that (p(z)— p(w))™/%f(z) is holomor-
phic at w. Hint: use the proof of Lemma 10.4 to show
that p''(w) # 0.

(c) Show that an even elliptic function f(z) is a rational function
in p(z). This will prove Lemma 10.17. Hint: write L = [wq,w,],
and consider the parallelogram P = {sw; + tw,:0<s,r <1}.
Note that only finitely many poles of f(z) lie in P. Now use
part (b) to find a polynomial B(x) such that B(p(z))f(z) is
holomorphic on C — L (use Exercise 10.6). Then the claim fol-
lows easily by part (a).

(d) Show that all elliptic functions for L are rational functions in
#(z) and p'(z). Hint:

foy= LOHED  (1O=TC0)

This exercise is concerned with the proof of Theorem 10.14.

(a) Let A(x) and B(x) be relatively prime polynomials. Prove that
there are only finitely many complex numbers A such that the
polynomial A(x)— AB(x) has a multiple root. Hint: show that
every multiple root is a root of A(x)B'(x)— A'(x)B(x).

(b) Adapt the proof of Lemma 10.4 to show that for any complex
number u, the equation u = p(w) always has a solution.

Let a and b be two proper fractional O-ideals, where O is an order
in an imaginary quadratic field. Prove that a and b determine the
same class in the ideal class group C(O) if and only if they are
homothetic as lattices in C.

In this exercise we study lattices with complex multiplication by a
fixed a € C.
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(a) Verify that upto a multlple the only lattices with complex mul-
tiplication by /=5 are [1,/=5] and [2,1 + V=31

(b) Determine, up to a multiple, all lattices with complex multi-
plication by v/—14. Hint: see the example following Theorem
5.25.

(c) Let K be an imaginary quadratic field of discriminant dg, and
let @« € Ok — Z. Show that up to homothety, the number of lat-
tices given with complex multiplication by « is given by

[Ok:Z[a]]

Y h(f%dk).
f=1

10.17. Let w = e?>™/3, and let L be the lattice [1,w]. Show that g,(L) =
J(w)=0.

10.18. Use the proof of Lemma 10.12 to show that in a neighborhood of
z = 0, the Laurent expansion of the p-function is

p(Z) g2 Z2 + 83 Z4 + g2

20 28 1200°

10.19. This exercise is concerned with the computation j(v/—2) = 8000.

(a) If L is a lattice with go(L) = 0, then prove that L is a multi-

ple of [1,w], w = e?™/3. Hint: use Theorem 10.9 and Exercise
10.17.

(b) Similarly, show that if g3(L) = 0, then L is a multiple of [1,:].

(c) If L is a lattice with g,g3 # 0, then show that there is a nonzero
complex number A such that for some g € C, A~%g, = 20g and
A~%g; = 28¢. Hint: use (10.10).

(d) Verify the computations made in (10.22).
10.20. Show that j((1++v—7)/2) = —3375.

64 ...

§11. MODULAR FUNCTIONS AND RING CLASS FIELDS

In §10 we studied complex multiplication, and we saw that for an order O
in an imaginary quadratic field, the j-invariant j(a) of a proper fractional
(O-ideal a is an algebraic number. This suggests a strong connection with
number theory, and the goal of §11 is to unravel this connection by relating
j(a) to the ring class field of O introduced in §9. The precise statement of
this relation is the “First Main Theorem” of complex multiplication, which
is the main result of this section:
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Theorem 11.1. Let O be an order in an imaginary quadratic field K, and
let a be a proper fractional O-ideal. Then the j-invariant j(a) is an algebraic
integer and K(j(a)) is the ring class field of the order O.

For a fixed order O, we will prove in §13 that the j(a)’s are all conju-
gate and hence are roots of the same irreducible polynomial over Q. This
polynomial is called the class equation of O and will be studied in detail in
§13.

Of special interest is the case when O = Z[\/—n]. Here, Theorem 11.1
implies that j(O) = j(y/—n) is an algebraic integer and is a primitive ele-
ment of the ring class field of Z[\/=n]. It is elementary to see that j(\/—nr)
i1s real (see Exercise 11.1), and thus, by Theorem 9.2, the class equation of
Z[\/—n] can be used to characterize primes of the form p = x* + ny>.

Before we can prove Theorem 11.1, we need to learn about modular
functions and the modular equation. The first step is to study the j-function
J(7) in detail.

A. The j-Function

The j-invariant j(L) of a lattice L was defined in §10 in terms of the con-
stants g2(L) and g3(L). Given 7 in the upper half plane b, we get the lattice
[1,7], and then the j-function j(7) is defined by

J(m) = j(L7].
We also define g>(7) and g3(7) by

(1) =g([1,7]) = 602

m
g3(r) = g3((1.7]) = 1402 m

where Zmn denotes summation over all ordered pairs of integers (m,n) #
(0,0). By (10.8), it follows that j(7) is given by the formula

g2(7)’
T) = 1728~
. AG)”
where A(T) = g2(7)3 — 27g3(7)>.
The properties of j(7) are closely related to the action of the group
SL(2,Z) on the upper half plane . This action is defined as follows: if
zebhandy=(;5)€SL(2,Z), then

ar + b
cT+d’

7T =
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It is easy to check that 47 € b (see Exercise 11.2), and we say that y7 and
7 are SL(2,Z)-equivalent. Then the j-function has the following properties:

Theorem 11.2.
(i) j(7) is a holomorphic function on 1.
(ii) If 7 and 7' lie in Y, then j(7)= j(7') if and only if 7' =47 for some
v € SL(2,2). In particular, j(7) is SL(2,Z)-invariant.
(iii) j: b — C is surjective.
(iv) For € b, j'(1) # 0, except in the following cases:
(@) 7 =i, 7€ SL(2,Z), where j'(1) =0 but j"(1) # 0.
(b) T =qw, w=e*™/3, yecSL(2,Z), where j'(1)=j"(1)=0 but
j"(r) #0.

Proof. To prove (i), recall from Proposition 10.7 that A(7) never vanishes.
Thus it suffices to show that g,(7) and g3(7) are holomorphic. For g,(7),
this works as follows. By Lemma 10.2, the sum defining g2(7) converges ab-
solutely, but we still must show that the convergence is uniform on compact
subsets of . To see this, first note that g,(7 + 1) = g2(7) (this follows from
absolute convergence). Thus it suffices to show that convergence is uniform
when 7 satisfies |Re(7)| < 1/2 and Im(7) > €, where € < 1 is an arbitrary
positive number. In this case it is easy to show that

€
|m + nt| > —2—\/m2+n2

(see Exercise 11.3), and then uniform convergence is immediate. The proof
for g3(7) is similar, so that g2(7), g3(7), A(7) and j(7) are all holomorphic
on bh.

Turning to (ii), we need to recall the following fact from in §7: if 7,7’ € b,
then

1,7] and [1,7'] are homothetic <= 7' =47 for some 7y € SL(2,2).
Y Y

See (7.8) for the proof (in §7, we assumed that 7 and 7' lay in an imaginary
quadratic field, but the proof given for (7.8) holds for arbitrary 7,7’ € b).
From Theorem 10.9, we also know that

j(r)=j(t") < [1,7] and [1,7'] are homothetic.

Combining these two equivalences, (ii) is immediate.
Before we can prove (iii), we need to compute the limits of g>(7) and
g3(7) as Im(7) — oco. To study g,(7), write

1 <1 > 1
80 = 00 Gy = 0| 2w T 2 Gy
m,n m=

mn=—oo

n#0
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Using the uniform convergence proved in (i), we see that

=1
llm gz(’f) = 120 E %,
m=1

Im(r)—o0

and then the well known formula >~  1/m*=7%/90 (see Serre [88,
§VII.4.1]) implies that

4
I = —7*.
Im(;)IE’oogz(T) 37T
The case of g3(7) is similar. Here, the key formula is >.~_, 1/m® = 7°/945
(see Serre [88, §VII.4.1]), and one obtains

11 = 75,
Im(7'1)nl~oog3(7-) 27

These limits imply that

4 3 8 2
li ATY=( =7*) =27 =7%) =0
mim A7) (3”) (27”) ’

and 1t follows easily that

(11.3) lim  j(7) = cc.

Im(r)—co

We will also need the following lemma:

Lemma 11.4. Every 7 € b is SL(2,Z)-equivalent to a point 7' which satisfies
IRe(7")] <1/2 and Im(7') > 1/2.

Proof. It Im(7) > 1/2, then there is an integer m such that 7/ = 7 + m sat-
isties |[Re(7')] <1/2 and Im(7') > 1/2. Since 7' =7+ m = ((1)’;1)7, we are
done in this case.

It Im(7) < 1/2, then by the argument of the previous paragraph, we can

assume |Re(7)| < 1/2. It follows that |7| < 1/v/2, so that
~1\ I
Im (——) _ Im(7) > 2Im(7).

T |7]?

Since —-1/7 = ((1) "01)7, we can more than double the imaginary part of 7 by
using an element of SL(2,Z7). Repeating this process as often as necessary,
we must eventually obtain a SL(2, Z)-equivalent point 7’ € h which satisfies

Im(7") > 1/2. Q.E.D.

This lemma is related to the idea of finding a fundamental domain for
the action of SL(2,7) on h. We won’t use this concept 1n the text, but there
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is an interesting relation between fundamental domains and reduced forms
(in the sense of Theorem 2.8). See Exercise 11.4 for the details.

We can now show that the j-function is surjective. Since it’s holomor-
phic and nonconstant, its image is an open subset of C. If we can show that
the image is closed, surjectivity will follow. So take a sequence of points
J(Tx) which converges to some w € C. We need to show that w = j(7) for
some 7 € h. By Lemma 11.4, we can assume that each 7; lies in the region
R={reb:|Re(r)| <1/2,/Im(7)| > 1/2}. If the imaginary parts of the 7;.’s
were unbounded, then by the limit (11.3), the j(7;)’s would have a sub-
sequence which converged to co. This is clearly impossible. But once the
imaginary parts are bounded, the 7;’s lie in a compact subset of h. Then
they have a subsequence converging to some 7 € f, and it follows by conti-
nuity that j(7) = w, as desired.

The proof of (iv) will use the following lemma:

Lemma 11.5. If 7,7" € b, then there exist neighborhoods U of T and V of '
such that the set {y € SL(2,Z) :y({U)YNV # D} is finite,

Proof. This lemma says that SL(2,Z) acts properly discontinuously on b,
and the proof is given in Exercise 11.5. Q.E.D.

Corollary 11.6. If 7 € b, then T has a neighborhood U such that for all
v € SL(2,2),
YUINU #0 = 7 =T1.

Proof. See Exercise 11.5. Q.E.D.

Now suppose that j'(7) = 0. Then 7 has a neighborhood U such that for
w sufficiently close to j(7), there are 7/ # 7" € U such that j(7') = j(7'") =
w. By (ii), 7" = 7' for some y # +I, where I = (). Thus y(U)NU # 0.
By shrinking U and using Corollary 11.6, it follows that y7 =7, v # +1.
This is a very strong restriction on 7. To see why, let v = (¢ Z) . Then y1 =
7 implies that
[1,7] = (c7 + d)[1,7]

(see the proof of (7.8)), and since v # £/, an easy argument shows that
¢ # 0 (see Exercise 11.6). Thus @ = ¢t +d ¢ Z, so that by Theorem 10.14,
the lattice [1,7] has complex multiplication by an order O in an imaginary
quadratic field. Furthermore, afl,7] = [1,7] implies that « € O*. However,
we know that O* = {£1} unless O = Ok for K = Q(i) or Q(w), w = &*™/3
(see Exercise 11.6). Both of these orders have class number 1, so that
[1,7] is homothetic to either [1,i] or [1,w]. Thus j/(7) = 0 implies that 7
is SL(2, Z)-equivalent to either i or w.
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When 7 is SL(2,Z)-equivalent to i, we may assume that 7 =i, and we
need to show that j'(i) = 0 and j"(i) # 0. To prove the former, note that

27g3 (’I’ )2
A(T)

In §10 we proved that g3(i) = 0, and j'(i) = 0 follows immediately. Now
suppose that j”(i) = 0. Then i is at least a triple zero of j(7)— 1728, so
that for w sufficiently near 1728, there are distinct points 7, 7' and 7" near
i such that j(7) = j(7') = j(7") =w. Then 7' = 117, 7" = 427, where +£I,
+71 and 4+, are all distinct elements of SL(2,Z). By Corollary 11.6, 7i =
121 = i, so that at least 6 elements of SL(2,Z) fix i. Since only 4 elements
of SL(2,2) fix i (see Exercise 11.6), we see that j”(i) # 0. The case when
T = w is similar and is left to the reader (see Exercise 11.6). Theorem 11.2
is proved. Q.E.D.

j(r)—1728 = 1728223

The surjectivity of the j-function implies the following result which was
used in §10:

Corollary 11.7. Let g, and g3 be arbitrary complex numbers such that g3 —
27g2 # 0. Then there is a lattice L such that g,(L) = g, and g3(L) = gs.

Proof. Since the j-function is surjective and g5 —27g% # 0, there is some
T € b such that

. g2
j(r) = 1728————
gz 2783

Arguing as in the proof of (10.11), this equation implies that there is a
nonzero complex number A such that

g2=2"g:(7)
g3 = A"%;(7).
Using (10.10), it follows that L = A[1,7] is the desired lattice. Q.E.D.

Since j(7) is invariant under SL(2,7), we see that

jern=i((y 1)) =io.

This implies that j(7) is a holomorphic function in ¢ = ¢q(7) = e2™T | de-
fined in the region 0 < |g| < 1. Consequently j(7) has a Laurent expansion

o0

jm) = Z cnq",

n=-—-oo
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which is called the g-expansion of j(7). The following theorem will be used
often in what follows:

Theorem 11.8. The g-expansion of j(T) is

oo

+ chq”,

n=0

1

J(m)= L7441 106888g + . = 1

1 q

where the coefficients c, are integers for all n > 0.

Proof. We will prove this in §12 using the Weber functions and the Weier-
strass o-function. More standard proofs may be found in Apostol [1, §1.15]
or Lang [73, §4.1]. Q.E.D.

This theorem is the reason that the factor 1728 appears in the definition
of the j-invariant: it’s exactly the factor needed to guarantee that all of the
coefficients of the g-expansion are integers without any common divisor.

B. Modular Functions for I;(m)

One can define modular functions for any subgroup of SL(2,7), but we
will concentrate on the subgroups Iy(m) of SL(2,Z), which are defined as
follows: if m 1s a positive integer, then

To(m) = {(j Z) € SL(2,Z): ¢ =0mod m}

Note that I'y(1) = SL(2,Z). Then a modular function for Ty(m) is a complex-
valued function f(7) defined on the upper half plane b, except for isolated
singularities, which satisfies the following three conditions:

(1) f(7) is meromorphic on b.

(i1) f(7) is invariant under Iy(m).
(ii1) f(7) is meromorphic at the cusps.
By (ii), we mean that f(y7) = f(7) for all 7 € h and v € [(m). To explain
(iif), some more work is needed. Suppose that f(7) satisfies (i) and (ii), and
that v € SL(2,Z). We claim that f(y7) has period m. To see this, note that

m

T+m=Urt, where U = ((1) ). An easy calculation shows that yUy~1 ¢
Iv(m), and we then obtain

fOy(r+m))= f(yUT) = f(yUy™q7) = f(y7)

since f(7) is [y(m)-invariant. It follows that if ¢ = g(7) = €*™7, then f(7y7)
is a holomorphic function in ¢'/™, defined for 0 < |¢}/™| < 1. Thus f(y7)
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has a Laurent expansion

famy= > anq"'™,

H=—00

which by abuse of notation we will call the g-expansion of f(y7). Then
f(7) 18 meromorphic at the cusps if for all v € SL(2,2), the g-expansion of
f(y7) has only finitely many nonzero coefficients for negative exponents.

The basic example of a such a function is given by j(7). It is holomorphic
on b, invariant under SL(2,7), and Theorem 11.8 implies that it is mero-
morphic at the cusps. Thus j(7) is a modular function for SL(2,Z) = I(1).
The remarkable fact is that modular functions for both SL(2,7) and I'y(m)
are easily described in terms of the j-function:

Theorem 11.9. Let m be a positive integer.

(1) j(7) is a modular function for SL(2,2), and every modular function for
SL(2,27) ts a rational function in j(T).

(1) j(7) and j(mT) are modular functions for Iy(m), and every modular
function for Ty(m) is a rational function of j(t) and j(mr).

Proof. Note that (i) is a special case of (ii). It is stated separately not only
because of its independent interest, but also because it’s what we must
prove first.

Betfore beginning the proof, let’s make a comment about g-expansions.
Our definition requires checking the g-expansion of f(y7) for all y¢€
SL(2,Z). Since f(7) is Iy(m)-invariant, we actually need only consider the
g-expansions of f(v;7), where the 7;’s are right coset representatives of
[o(m) C SL(2,Z). So there are only finitely many g-expansions to check.
The nicest case is when f(7) is a modular function for SL(2,Z), for here
we need only consider the g-expansion of f (7).

We can now prove (i). We've seen that j(7) is a modular function for
SL(2,Z), so we need only show that every modular function f(7) for
SL(2,Z) is a rational function in j(7). We will begin by studying some spe-
cial cases. We say that a modular function f(7) is holomorphic at oo if its
g-expansion involves only nonnegative powers of q.

Lemma 11.10.
(1) A holomorphic modular function for SL(2,7) which is holomorphic at
oo 1S constant.

(1) A holomorphic modular function for SL(2,Z) is a polynomial in j(T).

Proof. To prove (i), let f(7) be the modular function in question. Since
f(7) is holomorphic at oo, we know that f(oc) = limypr)—o f(7) exists
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as a complex number. We will show that f(hU {oo}) is compact. By the
maximum modulus principle, this will imply that f(7) is constant.

Let f(7) be a sequence of points in the image. We need to find a sub-
sequence that converges to a point of the form f(7) for some 7 € b. Since
f(7) is SL(2,Z)-invariant, we can assume that the 7;’s lie in the region
R={T ebh:|Re(1)| <1/2, [Im(7)| > 1/2} (see Lemma 11.4). If the imag-
inary parts of the 7;’s are unbounded, then by the above limit, a subse-
quence converges to f(oco). If the imaginary parts are bounded, then the
7.’s lie in a compact subset of b, and the desired subsequence is easily
found. This proves (i).

Turning to (ii), let f(7) be a holomorphic modular function for SL(2,Z).
Its g-expansion has only finitely many terms with negative powers of g.
Since the g-expansion of j(7) begins with 1/q, one can find a polynomial
A(x) such that f(1)— A(j(7)) is holomorphic at co. Since it is also holo-
morphic on b, it is constant by (i). Thus f(7) is a polynomial in j(7), and
the lemma is proved. Q.E.D.

To treat the general case, let f(7) be an arbitrary modular function for
SL(2,7), possibly with poles on b. If we can find a polynomial B(x) such
that B(j(7))f(7) is holomorphic on b, then the lemma will imply that f(7)
is a rational function in j(7). Since f(7) has a meromorphic g-expansion,
it follows that f(7) has only finitely many poles in the region R ={T € b:
IRe(7)| < 1/2, |Im(7)| > 1/2}, and since f(7) is SL(2,Z)-invariant, Lemma
11.4 implies that every pole of f(7) is SL(2,Z)-equivalent to one in R.
Thus, if B(j(7))f(7) has no poles in R, then it is holomorphic on b.

So suppose that f(7) has a pole of order m at 1o € R. If j'(70) # 0,
then (j(T)— j(70))"f(7) is holomorphic at 79. In this way we can find a
polynomial B(x) such that B(j(7))f () has no poles in R, except possibly
for those where j'(7o) = 0. When this happens, part (iv) of Theorem 11.2
allows us to assume that 7o = i or w = ¢2™/3, When 79 = i, we claim that m
is even. To see this, note that in a neighborhood of i, f(7) can be written
in the form

__8()
f(T) - (T—i)m,
where g(7) is holomorphic and g(i) # 0. Now ( _] ;) € SL(2,Z) fixes i, so
that
_ _ _8(=1/7)
f(T) - f(_l/T) - (_1/7_ _ i)m’

Comparing these two expressions for f(7), we see that

8(-1/7) = 8 (™).
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Evaluating this at 7 = i implies that g(i) = (—1)™g(), and since g(i) # 0, it
follows that m is even. By Theorem 11.2, j(7)— 1728 has a zero of order 2
at i, and hence (j(7) — 1728)™/2f (1) is holomorphic at i. The argument for
To = w is similar and is left to the reader (see Exercise 11.7). This completes
the proof of part (i) of Theorem 11.9.

To prove part (ii), it is trivial to show that j(7) is a modular function for
Io(m). As for j(mr), it is certainly holomorphic, and to check its invariance

properties, let ¥ = (2 %) € Ty(m). Then
) . m(aTt +b . a-mtT+bm
J(m77)=1(—(—-—))=1( )

cT+d c/m-mt+d

Since 7 € To(m), it follows that 7' = (%, ") € SL(2,Z). Thus

j(myT) = j(y'm7) = j(m7),

which proves that j(mt) is Ty(m)-invariant.
In order to show that j(mT) is meromorphic at the cusps, we first relate
Io(m) to the set of matrices

a b
C(m) = {(O d) rad=m, a>0, 0<b<d, ged(a,b,d) = 1}.

The matrix oo = (7 (1)) € C(m) has two properties of interest: first, oo7 =
mT, and second,

To(m) = (64 'SL(2,2)00) N SL(2,7)

(see Exercise 11.8). Note that these two properties account for the Ty(m)-
invariance of j(mt) proved above. More generally, we have the following
lemma:

Lemma 11.11. For o € C(m), the set
(65 'SL(2,7)0)NSL(2,7)

is a right coset of Ty(m) in SL(2,Z). This induces a one-to-one correspon-
dence between right cosets of To(m) and elements of C(m).

Proof. See Exercise 11.8. Q.E.D.

This lemma implies that [SL(2,2): T[y(m)] = |C(m)|. One can also com-
pute the number of elements in C(m): one gets the formula:

ceml=m]] (1+)

plm
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(s/ee)Exercise 11.9), and thus the index of Ly(m) is SL(2,Z) is m[] (1 +
1/p).

We can now compute some g-expansions. Fix 7y € SL(2,Z), and choose
o € C(m) so that v lies in the right coset corresponding to ¢ in Lemma
11.11. This means that ogy = Jo for some ¥ € SL(2,2), and hence j(m~yT)
= j(ogyT) = j(JoT) = j(oT) since j(7) is SL(2,Z)-invariant. Hence
(11.12) j(myT) = j(oT).
Suppose that 0 = (§ Z). We know from Theorem 11.8 that the g-expansion
of j(7)1s
. 1 <
./(T):_+chqn7 Cn€Z7
4 n=0

and since o7 = (at + b)/d, it follows that

CI(O'T) — eZm'(ar+b)/d — eZﬂ'ib/dqa/d.
If we set (,, = e>™/™ we can write this as
q(o7) = (o (g ™)"
since ad = m. This gives us the g-expansion
—ab 00
11.13 (myT) = '(Jfr)=——<—’"a——+ CaC2om (gt an ch €l
( ‘ ) j( 7 ) ./ (ql/m)az ncm C] ) ’ n .
n=0

There are only finitely many negative exponents, which shows that j(mr) is
meromorphic at the cusps, and thus j(m7) is a modular function for Io(/m).

The next step is to introduce the modular equation ®,(X,Y). Let the
right cosets of [p(m) in SL(2,Z) be Ly(m)y;, i = 1,...,|C(m)|. Then con-
sider the polynomial in X

|C(m)]
eu(X,7)= ] (X - j(myim)).
=1

We will prove that this expression is a polynomial in X and j(7). To see
this, consider the coefficients of ®,,(X,7). Being symmetric polynomials in
the j(m7;T)s, they are certainly holomorphic. To check invariance under
SL(2,7), pick v € SL(2,Z). Then the cosets Ip(m)yiy are a permutation of
the To(m)y;’s, and since j(mT) is invariant under Iy(m), the j(my;yT)’s are
a permutation of the j(m7;7)’s. This shows that the coefficients of ®,,(X,7)
are invariant under SL(2,Z).

We next have to show that the coefficients are meromorphic at infin-
ity. Rather than expand in powers of g, it suffices to expand in terms
of gl/m = ¢2™7/m and show that only finitely negative exponents appear.
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By (11.12), we know that j(my;7) = j(oT) for some ¢ € C(m), and then
(11.13) shows that the g-expansion for j(m7;7) has only finitely many nega-
tive exponents. Since the coefficients are polynomials in the Jj(my;7)’s, they
clearly are meromorphic at the cusps.

This proves that the coefficients of ®,,(X,7) are holomorphic modular
functions, and thus, by Lemma 11.10, they are polynomials in J(1). This
means that there is a polynomial

®,(X,Y)€C[X,Y]

such that
|C(m)|

(11.14) Cu(X,j() = [] (X - j(my)).
=1

The equation @,,(X,Y) =0 is called the modular equation, and by abuse
of terminology we will call ®,,(X,Y) the modular equation. Using some
simple field theory, it can be proved that ®,,(X,Y) is irreducible as a poly-
nomial in X (see Exercise 11.10).

By (11.12), each j(my;7) can be written j(o7) for a unique ¢ € C(m).
Thus we can also express the modular equation in the form

(11.15) (X, i) = [ (X ~j(ar)).

oceC(m)
Note that j(mT) is always one of the j(o7)’s since (% (1)) € C(m). Hence

@ (j(m7), j(7)) = 0,

which is one of the important properties of the modular equation. Note that
the degree of ¢,,(X,Y) in X is |C(m)|, which we know equals ml],.(1+
1/p).

Now let f(7) be an arbitrary modular function for Iy(m). To prove that
f(7) is a rational function in j(7) and j(m7), consider the function

plm

|C(m)|

_ ” f(iT)
G(X,7) = ®m(X, (1)) ; X omyt)
(11.16)
)|
= > fam [ — jmy).
i=1 J#

This is a polynomial in X, and we claim that its coefficients are modular
functions for SL(2,Z). The proof is similar to what we did for the modular
equation, and the details are left to the reader (see Exercise 11.11). But
once the coefficients are modular functions for SL(2,7), they are rational
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functions of j(7) by what we proved above. Hence G(X,7) is a polynomual

G(X,j(m) e CUMNIX]-
We can assume that 7y is the identity matrix. By the product rule, we

obtain .
o U0mT), () = LIl(j(mT) = j(my;7)).
J
Thus, substituting X = j(m7) in (11.16) gives

GU(mT) (7)) = [(7) 9 (mT) J (7))

Now @,,(X,j(7)) is irreducible (see Exercise 11.10) and hence separable,
so that (9/0X)®,(j(mT),j(7)) # 0. Thus we can write

G((m7), (7))
5 ((mT), (7))

(11.17) f(r) =

which proves that f(7) is a rational function in j(7) and j(m7). This com-
pletes the proof of Theorem 11.9. Q.E.D.

There is a large literature on modular functions, and the reader may
wish to consult Apostol [1], Koblitz [67], Lang [73] or Shimura [90] to learn
more about these remarkable functions.

C. The Modular Equation ¢,,(X,Y)

The modular equation, as defined by equations (11.14) or (11.15), will play
a crucial role in what follows. In particular, we will make heavy use of
the arithmetic properties of ®,,(X,Y), which are given in the following

theorem:

Theorem 11.18. Let m be a positive integer.
(i) ¢,,(X,Y) e Z[X,Y].
(ii) ®m(X,Y) is irreducible when regarded as a polynomial in X .
(i) ,(X,Y)=,(Y,X)if m>1
(iv) If m is not a perfect square, then ®,,(X,X) is a polynomial of degree
> 1 whose leading coefficient is +1.
(v) If mis a prime p, then ®,(X,Y)=(X? -Y)(X —Y?)mod pZ[X,Y].

Proof. To prove (i), it suffices to show that an elementary symmetric func-
tion f(7) in the j(oT)’s, 0 € C(m), is a polynomial in j(7) with integer
coefficients. We begin by studying the g-expansion of f(7) in more detail.
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Let ¢,, = ¢?™/™. By (11.13), each j(o7) lies in the field of formal meromor-
phic Laurent series Q((,,)((¢"/™)), and since f(7) is an integer polynomial
in the j(o7)’s, f(1) also lies in Q((,,)((¢"/™)).

We claim that f(7) is contained in the smaller field Q((g!/™)). To see
this, we will use Galois theory. An automorphism ¥ € Gal(Q((,,)/Q) de-
termines an automorphism of Q((,,)((¢'/™)) by acting on the coefficients.
Given o = (| 2) € C(m), let’s see how 9 affects j(o7). We know that 9((,,)
= (% for some integer k relatively prime to m, and from (11.13), it follows
that

; gmabk a n mar
VYT = i ch SO

n=0

since all of the ¢,’s are integers. Let b’ be the unique integer 0 < b’ < d

such that b’ = bk mod d. Since ad = m, we have (%% = (%" and conse-

quently the above formula can be written

ab’
¢(](UT)) = gln/im)a chgab n 1/m a’ "

n=0

If we let o' = (2%, then ¢’ € C(m), and (11.13) implies that

YUeT)) = j(a').

Thus the elements of Gal(Q((,,)/Q) permute the j(o7)’s. Since f(7) is sym-
metric in the j(o7)’s, it follows that f(7) € Q((¢*/™)).

We conclude that f(7) € Z((q)) since the g-expansion of f(7) involves
only integral powers of g and the coefficients of the g-expansion are al-
gebraic integers. It remains to show that f(7) is an integer polynomial in
J(7). By Lemma 11.10, we can find A(X) € C[X] such that f(1) = A(j(1)).
Recall from the proof of Lemma 11.10 that 4(X) was chosen so that the
g-expansion of f(7)— A(j(7)) has only terms of degree > 0. Since the ex-
pansions of f(7) and j(7) have integer coefficients and j(r)=1/g +---, it
follows that A(X) € Z[X]. Thus f(7) = A(j(7)) is an integer polynomial in
J(7), and (i) is proved.

We should mention that the passage from the coefficients of the g-
expansion to the coefficients of the polynomial 4(X) is a special case of
Hasse’s g-expansion principle—see Exercise 11.12 for a precise formula-
tion.

A proof of (ii) is given in Exercise 11.10, and a proof of (iii) may be
found in Lang [73, §5.2, Theorem 3].

Turning to (iv), assume that m is not a square. We want to study the
leading term of the integer polynomial ®,,(X,X). Replacing X with j(7),
it suffices to study the coefficient of the most negative power of g in the
g-expansion of ®,,(j(r),/(7)). However, given o = (25) ¢ C(m), (11.13)
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tells us that

oo

ab
(11.19) - Jor) = -~ DT}

for some coefficients d,,. Since m is not a perfect square, we know that
a#d, ie., a/d#1. Thus the coefficient of the most negative term in
(11. 19) is a root of unity. By (11.15), ®,,(j(7),j(7)) is the product of the
factors (11.19), so that the coefficient of the most negative power of g In
®,,(j(T),j(7)) is also a root of unity. But this coefficient is an integer, and

thus it must be +1, as claimed.
Finally, we turn to (v). Here, we are assuming that m = p, where p is
prime. Let ¢, = ¢2™/#. We will use the following notation: given f(7) and

g(1) in Z[¢,]((¢"/P)) and @ € Z[(,], we will write
f(r)=g(7) mod «

to indicate that f(7) —g(7) € aZ[(,]((¢"/7)).
Since p is prime, the elements of C(p) are easy to write down:

(1 i> 0 )
ag; = y I=VU,..., D —
0 p P

(0 )

op = .

P \o 1

If 0<i< p-1,then (11.13) tells us that

jloiT) = 1/p + chg‘”(ql/")” 1/p + ch(ql/p)” mod 1 - ¢,

q
which implies that

(11.20) j(oiT) = j(ooT) mod 1—¢,

for 0 <i < p— 1. Turning to j(o,7), here (11.13) tells us that

1 oo
. - pn
](UPT)_ qp +Zocnq ’

and since ¢/ = ¢, mod p, it follows easily that
j(opT) = j(7)P mod p.

Since 1 -, divides p in Z[(,] (see Exercise 11.13), the above congruence
can be written

(11.21) jlopT) = j(7)P mod 1 - (.
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Then (11.20) and (11.21) imply that

P
(X, (1) = [[(X = j(a:7))
(=0

= (X — j(007))?(X — j(T)P) mod 1 -,
= (X? — j(o0T)P)(X — j(T)7) mod 1,

where we are now working in the ring Z[(,]((4'/?))[X]. However, the ar-
gument used to prove (11.21) is easily adapted to prove that

Jj(t)= j(ooT)? mod 1— Cp
(see Exercise 11.14), and then we obtain
Cp(X, (7)) = (XP = j(r)X = j(7)?) mod 1 (.

The two sides of this congruence lie in Z((g))[X], so that the coefficients
of the difference are ordinary integers divisible by 1 — Gp 1n the ring Z[(,].
This implies that all of the coefficients are divisible by p (see Exercise
11.13), and thus

©p(X,J(1)) = (XF = j(M)(X — j(1)P) mod pZ((g))[X]-
Then the Hasse g-expansion principle (used in the proof of (i)) shows that
P,(X,Y)=(XP -Y)X -YP)mod pZ[X,Y],

as desired (see Exercise 11.15). The above congruence was first discovered
by Kronecker (in a slightly different context) and is sometimes called Kro-
necker’s congruence. This completes the proof of Theorem 11.18. Q.E.D.

The properties of the modular equation are straightforward conse-
quences of the properties of the j-function, which makes the modular equa-
tion seem like a reasonable object to deal with. This is true as long as one
works at the abstract level, but as soon as one asks for concrete exam-
ples, the situation gets surprisingly complicated. For example, when m = 3,
Smith [94] showed that ®3(X,Y) is the polynomial

(11.22)
X(X +28.3.53)2 + y(v +25.3.5%?

~ XY+ 2237 31X YH X +Y)
~2%.3%.9907XY(X*+Y?) +2-3*.13.193-6367X 27?2
+210.3°.5%.17. 263X Y(X +Y) - 2% .50. 22973 XY
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The modular equation ®,,(X,Y) has been computed for m =5, 7 and 11
(see Hermann [53] and Kaltofen and Yui [66]), and in §13 we will discuss
the problem of computing ®,,(X,Y) for general m.

Before we can apply the modular equation to complex multiplication,
one task remains: we need to understand the modular equation in terms of
Jj-invariants of lattices. The basic idea is that if L is a lattice, then the roots
of &,(X,j(L)) =0 are given by the j-invariants of those sublattices L' C
L which satisfy:

(i) L' is a sublattice of index m in L, i.e., [L:L'] = m.

(i) The quotient L/L' is a cyclic group.

In this situation, we say that L' is a cyclic sublattice of L of index m. Here
is the precise statement of what we want to prove:

Theorem 11.23. Let m be a positive integer. If u,v € C, then ®,,(u,v) =0 if
and only if there is a lattice L and a cyclic sublattice L' C L of index m such
that u= j(L") and v = j(L).

Proof. We will first study the cyclic sublattices of the lattice [1,7], 7 € b:

Lemma 11.24. Let 7 € b, and consider the lattice [1,7].

(i) Given a cyclic sublattice L' C [1,7T] of index m, there is a unique o =
(25 € Cc(m) such that L' = d[1,07].

(ii) Conversely, if o = (85%) € C(m), then d[1,67) is a cyclic sublattice of
[1,7] of index m.

Proof. First recall that C(m) is the set of matrices

a b
C(m) = {(0 d) tad=m, a >0, 0<b<d, ged(a,b,d) = 1}.

A sublattice L' C L = [1,7] can be written L' = [aT + b,cT + d], and in Ex-
ercise 7.15 we proved that [L: L'] = |ad — bc| = m. Furthermore, a stan-
dard argument using elementary divisors shows that

(11.25) L/L' is cyclic <= gcd(a,b,c,d) =1

(see, for example, Lang [73, pp. 51-52]). Another proof of (11.25) is given
in Exercise 11.16.

Now suppose that L' C [1,7] is cyclic of index m. If d is the smallest
positive integer contained in L', then it follows easily that L' is of the form
L' =[d,aT + b} (see Exercise 11.17). We may assume that a > 0, and then
ad = m. However, if k is any integer, then

L' =[d,(aT + b) + kd] = [d,aT + (b + kd)],
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so that by choosing k appropriately, we can assume 0 < b < d. We also have
ged(a,b,d) = 1 by (11.25), and thus the matrix o = 33) lies in C(m). Then

L' =[d,at +b] =d[1,(a7 + b)/d] = d[1,07]

shows that L' has the desired form. It is straightforward to prove that o €
C(m) is uniquely determined by L' (see Exercise 11.17), and (i) is proved.
The proof of (ii) follows immediately from (11.25), and we are done.
Q.E.D.

By this lemma, the j-invariants of the cyclic sublattices L' of index m of
[1,7] are given by

J(LY) = j@[1,07]) = j([1,07]) = j(0o7).

By (11.15), it follows that the roots of ®,,(X,j(7)) =0 are exactly the j-
invariants of the cyclic sublattices of index m of [1,7]. It is now easy to

complete the proof of Theorem 11.23 (see Exercise 11.18 for the details).
Q.E.D.

D. Complex Multiplication and Ring Class Fields

To prove Theorem 11.1, we will apply the modular equation to lattices with
complex multiplication. The key point is that such lattices have some es-
pecially interesting cyclic sublattices. To construct these sublattices, we will
use the notion of a primitive ideal. Given an order O, we say that a proper
O-ideal is primitive if it is not of the form da where d > 1 is an integer
and a is a proper O-ideal. Then primitive ideals give us cyclic sublattices as
follows:

Lemma 11.26. Let O be an order in an imaginary quadratic field, and let
b be a proper fractional O-ideal. Then, given a proper O-ideal a, ab is a
sublattice of b of index N(a), and ab is a cyclic sublattice if and only if a is

a primitive ideal.

Proof. Replacing b by a multiple, we can assume that b C O. Then the
exact sequence

0— b/ab—»(’)/ab—»(’)/b—»O

implies that [b: ab]N(b) = N(ab) = N(a)N(b), and [b:ab] = N(a) fol-
lows.

Now assume that b/ab is not cyclic. By part (a) of Exercise 11.16, it
follows that b/ab contains a subgroup isomorphic to (Z/dZ)? for some d >
1, so that there is a sublattice ab C b’ C b such that b’'/ab ~ (Z/dZ)?. Since
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b’ is rank 2, this implies that ab = db’, and then a =db’'b~!. But b’'6~! C
O since b’ C b, which shows that a is not primitive.

The converse, that a not primitive implies b/ab not cyclic, is even easier
to prove, and is left to the reader (see Exercise 11.19). This completes the
proof of the lemma. Q.E.D.

When we apply this lemma, a will often be a principal ideal a = aO,
a € O. In this case, aQ is primitive as an ideal if and only if a is primitive
as an element of O (which means that a is not of the form df where d > 1
and € O). Since N(a) = N(aO) by Lemma 7.14, we get the following
corollary of Lemma 11.26:

Corollary 11.27. Let O and b be as above. Then, given a € O, ab is a
sublattice of b of index N(a), and ab is a cyclic sublattice if and only if a is
primitive. Q.E.D.

We are now ready to prove Theorem 11.1, the “First Main Theorem” of
complex multiplication.

Proof of Theorem 11.1 Let a be a proper fractional O-ideal, where O
is an order in an imaginary quadratic field K. We must prove that j(a) is
an algebraic integer and that K(j(a)) is the ring class field of O. We will
follow the proof given by Deuring in [24, §10].

Let’s first use the modular equation to prove that j(a) is an algebraic
integer. The basic idea is quite simple: let a € O be primitive so that by the
above corollary, aa is a cyclic sublattice of a of index m = N(«a). Then, by
Theorem 11.23, we know that

0= Bm(j(@a), j(a)) = Tm(j(a), j(a)) = 0

since j(aa) = j(a). Thus j(a) is a root of the polynomial ®,,(X,X). Since
®,,(X,Y) has integer coefficients (part (i) of Theorem 11.18), this shows
that j(a) is an algebraic number. Furthermore, if we can pick a so that m =
N(a) is not a perfect square, then the leading coefficient of ®,,(X,X) is
41 (part (iv) of Theorem 11.18), and thus j(a) will be an algebraic integer.
So can we find a primitive a € O such that N(a) is not a perfect square?
We will see below in (11.28) that O has lots of a’s such that N(«a) is prime.
Such an « is certainly primitive of nonsquare norm. For a more elementary
proof, let f be the conductor of O. By Lemma 7.2, O =[1,fwg], wg =
(dx +/dk)/2. Then a = fwg is primitive in O, and one easily sees that
its norm N (a) is not a perfect square (see Exercise 11.20).

Let L denote the ring class field of O. In order to prove L = K(j(a)),
we will study how integer primes decompose in L and K(j(a)). We will
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make extensive use of the results of §8, especially Proposition 8.20. As
usual, f and D will denote the conductor and discriminant of .

Let’s first study how integer primes behave in the ring class field L. Let
S1/q be the set of primes that split completely in L. We claim that

(11.28) S1./q = {p prime: p = N(a) for some a € O}.

(As noted above, this shows that there are a’s in O with N(a) prime.)
When D =0 mod 4, then O = Z[/—n] for some positive integer n. Thus
N(a) = N(x + y/—n) = x* + ny?, so that (11.28) says, with finitely many
exceptions, that the primes splitting completely in L are those represented
by x? + ny?. This was proved in Theorem 9.4. The case when D = 1 mod 4
is similar and was covered in Exercise 9.3. This proves (11.28).

Let M = K(j(a)). Since L is Galois over Q by Lemma 9.3, part (i) of
Proposition 8.20 shows that M C L is equivalent to

(11.29) SL/9 C Sm/gs

Take p € S1/q, and assume that p is unramified in M (this excludes only
finitely many p’s). By (11.28), p = N(a) for some a € ©. Then aa C a is a
sublattice of index N(a) = p, and is cyclic since p is prime. Thus

0=2,(j(an) j(a)) = @,(j(a)j(a))-

Using the Kronecker’s congruence from part (v) of Theorem 11.18, this
implies that

0=2,(j(a)j(a)) = —(j(a)f - j(a))* + pB

for some § € Oy . Now let P be any prime of M containing p. The above
equation then implies that

(11.30) j(8)? = j(a) mod P.

We claim the following:
(i) Ok[j(a)] C Op has finite index.
(ii) If pJ[Oum:Ok[j(a)]], then (11.30) implies that a” = a mod P for all
a€ Oy.

The proof of (i) is a direct consequence of M = K(j(a)) and is left to the
reader (see Exercise 11.21). As for (ii), note that p splits completely in
L, so that it splits completely in K, and hence p € p C ‘B for some ideal
p of norm p. This implies that a” = a mod P holds for all a € Ok, and
consequently the congruence holds for all a € Ok[j(a)] by (11.30). Then
(ii) follows easily (see Exercise 11.21).

From (ii) it follows that fi, = 1, and since this holds for any P con-
taining p, we see that p splits completely in M. This proves (11.29), and
M C L follows.
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The inclusion M = K(j(a)) C L shows that the ring class field L con-
tains the j-invariants of all proper fractional O-ideals. Let & = A(O), and
let a;, i =1,...,h be class representatives for C(O). It follows that any j(a)
equals one of j(ay),...,j(azn), and furthermore j(a;),...,j(ax) are distinct.
Thus

(11.31) A =]1G@) - i(a))
i<j
is a nonzero element of O .

To prove the opposite inclusion L C M, we will use the criterion Sur /g C
Sp/k from part (ii) of Proposition 8.20. So let p € S‘M/Q, which means that
p is unramified in M and fy), = 1 for some prime P of M containing p.
In particular, this implies that p splits completely in K, and thus p = N(p)
for some prime ideal of O. Then Proposition 7.20 tells us that p = N(pN
O) (we can assume that p doesn’t divide f—this excludes finitely many
primes). If we can show that pN O is a principal ideal aO, then p = N(a)
implies that p € S, by (11.28). We may assume that p is relatively prime

to the element A of (11.31).
Let o' =(pnO)a. Since pNO has norm p, a’ Ca is a sublattice of

index p by Lemma 11.26, and it is cyclic since p is prime. Thus & ,(j(a’),
j(a)) = 0. Using Kronecker’s congruence again, we can write this as

0=3,(j(a"),j(a)) = (j(a")? — j(a))(J(a") = j(8)") + pQ(j(a'), j(a))

for some polynomial Q(X,Y) € Z[X,Y]. Let B be a prime of L contain-
ing P. Since j(a’) and j(a) are algebraic integers lying in L, the above
equation implies that pQ(j(a'),j(a)) € P. Thus

(11.32)  j(@Y =ja)modP or  j(a')=j(a)” mod P.

However, we also know fg, = 1, which tells us that j(a)? = j(a) mod B,
and since B C ‘B, we obtain

(11.33) j(a)? = j(a) mod ‘B.
It is straightforward to show that (11.32) and (11.33) imply
j(a) = j(a") mod .

If a and a' lay in distinct ideal classes in C(O), then j(a) — j(a") would be
one of the factors of A from (11.31), and p and A would not be relatively
prime. This contradicts our choice of p, so that a and a' = (pN O)a must
lie in the same ideal class in C(Q). This forces p N O to be a principal ideal,
which as we showed above, implies that p € S.,q. Thus Sy,q C S1/q,
which completes the proof that L = M . Theorem 11.1 is proved.  Q.E.D.
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As an application of Theorem 11.1, let’s see what it tells us about the
Abelian extensions of an imaginary quadratic field K . First, we know that
the Hilbert class field of K is the ring class field of the maximal order Ok .
Thus we get the following corollary of Theorem 11.1:

Corollary 11.34. If K is an imaginary quadratic field, then K(j(Og)) is the
Hilbert class field of K . Q.E.D.

Besides the Hilbert class field, Theorem 11.1 also allows us to describe
other Abelian extensions of K. Recall that in Theorem 9.18 we proved that
an Abelian extension of K is generalized dihedral over Q if and only if it
lies in some ring class field of K. Combining this with Theorem 11.1, we
get the following theorem:

Corollary 11.35. Let K be an imaginary quadratic field, and let K C L be
a finite extension. Then L is an Abelian extension of K which is gener-
alized dihedral over Q if and only if there is an order O in K such that
L C K(j(O)). Q.E.D.

To complete our discussion of ring class fields and complex multipli-
cation, we need to compute the Artin map of a ring class field using j-
invariants. The answer is given by the following theorem:

Theorem 11.36. Let O be an order in an imaginary quadratic field K, and
let L be the ring class field of O. If a is a proper fractional O-ideal and p is
a prime ideal of Ok, then

L -

(%25 )G = ierioa)

Proof. For analytic proofs, see Deuring [24, §15], Lang [73, Chapter 12, §3]
or Cohn [21, §11.2], while algebraic proofs (which use the reduction theory
of elliptic curves) may be found in Lang [73, Chapter 10, §3] or Shimura
[90, §5.4]. We will use this theorem (in the guise of Corollary 11.37 below)
in §12 when we compute some j-invariants, though our discussion of the
class equation in §13 will use only Theorem 11.1. Q.E.D.

In terms of the ideal class group, Theorem 11.36 can be stated as follows:

Corollary 11.37. Let O be an order in an imaginary quadratic field K, and
let L be the ring class field of O. Given proper fractional O-ideals a and b,
define a,(j(b)) by

aa(j(b)) = j(ab).



D. COMPLEX MULTIPLICATION AND RING CLASS FIELDS 241

Then o4 is a well-defined element of Gal(L/K), and a — ¢, induces an iso-
morphism
C(0) = Gal(L/K).

Proof. This is a straightforward consequence of Theorem 11.36 and the
isomorphisms

C(O)~I1(O,f)/P(O,f) ~ Ik (f )/ Pk 2(f),
where f is the conductor of O. See Exercise 11.22 for the details. Q.E.D.

The “First Main Theorem” of complex multiplication allowed us to de-
scribe some of the Abelian extensions of K, namely those which are gen-
eralized dihedral over Q. The “Second Main Theorem” of complex multi-
plication answers the question of how to describe all Abelian extensions of
K. By class field theory, every Abelian extension lies in a ray class field
for some modulus m of K, so that we need only find generators for the ray
class fields of K. Rather than work with an arbitrary modulus m, we will
describe the ray class fields only for moduli of the form NOg, where N is
a positive integer. It is easy to see that any Abelian extension of K lies in
such a ray class field (see Exercise 11.23).

The basic idea is that the ray class field of NOg is obtained by adjoining,
first, the j-invariant j(L) of some lattice L, and second, some values of the
Weierstrass p-function evaluated at N-division points of the lattice L, i.e.,
if L = [a,f], then we use

ma+nfg

(11.38) 4] ( N ,L)

for suitable m and n. The observation that (11.38) generates Abelian ex-
tensions of K goes back to Abel. The problem is that these values aren’t
invariant enough: if we multiply the lattice by a constant, the j-invariant re-
mains the same, but the values (11.38) change. To remedy this problem, we
introduce a variant of the Weierstrass p-function called the Weber function.
Given the lattice L, the Weber function 7(z; L) is defined by

. 2
gg((i)) p(z; L)2 if g3(L) =0

T(z; L) = 4 i‘g:)) p(z; LY ifg2(L)=0
82%262)(1‘) p(z; L)  otherwise,

where A(L) =g,(L)* —27g3(L)?. It is easy to check that 7(Az;AL) =
7(z; L) for all A € C* (see Exercise 11.24).
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We can now state the “Second Main Theorem” of class field theory,
which uses singular j-invariants and the Weber function to generate ray
class fields:

Theorem 11.39. Let K be an imaginary quadratic field of discriminant dg,
and let N be a positive integer.

(i) K(j(Ok), 7T(1/N; Ok)) is the ray class field for the modulus N Ok.
(ii) Let O be the order of conductor N in K. Then K(j(O),7(wg; O)),
where wg = (dg +/dxk)/2, is the ray class field for the modulus N Ok.

Proof. Notice that in each case we obtain the ray class field by adjoining
the j-invariant of a lattice and the Weber function of one N -division point.
The proof of (i) may be found in Deuring [24, §26] or Lang [73, §10.3,
Corollary to Theorem 7], and the proof of (ii) follows from Satz 1 of Franz
[37]. These references also explain how to generate the ray class field of an
arbitrary modulus m of K. Q.E.D.

The theory of complex multiplication, even in the one variable case de-
scribed here, is still an active area of research. See, for example, the books
Elliptic Functions and Rings of Integers [15] by Cassou-Nogues and Taylor
and Arithmetic on Elliptic Curves with Complex Multiplication [45] by Gross.

E. Exercises

11.1. This exercise will study j-invariants and complex conjugation.
(a) Let L be a lattice, and let L denote the lattice obtained by com-
plex conjugation. Prove that g,(L) = g2(L), g3(L) = g3(L) and
J(L) = Jj(L).
(b) Let a be a proper fractional O-ideal, where O is an order in
an imaginary quadratic field. Show that j(a) is a real number if

and only if the class of a has order <2 in the ideal class group
C(O). Hint: use (a) and Theorem 10.9.

One consequence of (b) is that j(O) is real for any order O.
11.2. Ifrebhandy= (4 Z) € SL(2,2), then show that

L +b
= er+d
also lies in b. This shows that SL(2,Z7) acts on h. Hint: use (7.9).

11.3. Let 7 satisfy |[Re(7)| < 1/2 and |Im(7)| > €, where € < 1 is fixed. Our
goal is to show that for x,y € R,

|x + y7| > g\/xz + y2.
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If we let 7 = a + bi, then the above is equivalent to
€2
(x + ay)* + b*y? > Z(x2 +y?).

(a) Show that the inequality is true when |x + ay| > (¢/2)|x|.

(b) When |x +ay| < (¢/2)|x|, use |a| <1/2 and € < 1 to show that
x| <lyl.
(¢) Using (b), show that the inequality is true when |x + ay|<

(¢/2)|x].

In Lemma 11.4 we showed that every point of § is SL(2,7)-equiva-
lent to a point in the region {7 € b:|Re(7)| < 1/2,|Im(7)| > 1/2}.
In this exercise we will study the smaller region

F={rebh:|Re(r)|<1/2, |7| > 1, and
Re(7) > 0 if [Re(7)| =1/2 or |7]| =1},

and we will show that every point of § is SL(2,7)-equivalent to a
unique point of F. This is usually expressed by saying that F is a
fundamental domain for the action of SL(2,Z) on . Our basic tool
will be positive definite quadratic forms f(x,y) = ax?® + bxy + cy?,
where we allow a, b and ¢ to be real numbers. We say that two
such forms f(x,y) and g(x,y) are R*-equivalent if there is (?¢) €
SL(2,7) such that

f(x,y)=2g(px+qy,rx +sy)

for some A >0 in R. Finally, we say that f(x,y) = ax? + bxy + cy?
is reduced if

a<|b|<c,and b>0if a = |b] or |b| =c.

This is consistent with the definition given in §2.

(a) Show that R*-equivalence of positive definite forms is an equiv-
alence relation.

(b) Show that every positive definite form is R*-equivalent to a re-
duced form, and that two reduced forms are R™-equivalent if
and only if one is a constant multiple of the other. Hint: see the
proof of Theorem 2.8.

(c) Show that every positive definite form f(x,y)=ax?+ bxy +
cy? can be written uniquely as f(x,y) = a|x — 7y|?, where T €
b. In this case we say that 7 is the root of f(x,y) (this is con-

sistent with the terminology used in §7). Furthermore, show that
b = 2aRe(7) and ¢ = a|T|.
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(d) Show that two positive definite forms are R"-equivalent if and
only if their roots are SL(2,Z)-equivalent. Hint: see the proof of
(7.8).

(e) Show that a positive definite form is reduced if and only if its
root lies in the fundamental domain F.

(f) Conclude that every 7€ b is SL(2,Z)-equivalent to a unique
point of F.

This exercise shows that there is a remarkable relation between re-

duced forms and fundamental domains. Similar considerations led

Gauss (unpublished, of course) to discover the idea of a fundamen-

tal domain in the early 1800s. See Cox [23] for more details.

In this exercise we will prove Lemma 11.5 and Corollary 11.6.
(a) Let M and ¢ be positive constants, and define K C h by

K={rtebh:|Re(T)| <M, e <|Im(7)| < 1/€}.

We want to show that the set A(K) = {y € SL(2,Z): v(K)NK #

0} is finite. So take ¥ = (?5) € A(K), which means that there

is 7 € K such that y7 € K. If we can bound |a|, |b|, |c| and |d|

in terms of M and ¢, then finiteness will follow.

(i) Use (7.9) to show that [cT +d| < 1/¢.

(ii) Since |cT + d|? = (cRe(7) + d)? + ¢*Im(7)*, conclude that
lc| < 1/€? and |d| < (e + M)/€>.

(iii) Show that y~! € A(K). By (ii), this implies that |a| < (e +
M)/e.

(iv) Show that |b| < |cT + d||yT| + |a||T|, and conclude that |b]
is bounded in terms of M and e.

(b) Use (a) to show that if U is a neighborhood of 7 € h such that
U C b is compact, then {y € SL(2,Z):y({U)NU # 0} is finite.
This will prove Lemma 11.5.

(c) Prove Corollary 11.6.

This exercise is concerned with the proof of part (iv) of Theorem

11.2.

(a) Suppose that v = (?%) € SL(2,Z) and that y7 = 7 for some 7 €
h. We saw in the text that this implies [1,7] = (c¢T + d)[1,7].
Prove that ¢ # 0. Hint: show that ¢ = 0 implies y = i((l) ”f) . But
such a v with m # 0 has no fixed points on b.

(b) Let O be an order in an imaginary quadratic field such that
O* # {£1}. Prove that O = O for K = Q(i) or Qw), w=
e2™/3  Hint: when O = Ok, see Exercise 5.9. See also Lemma
7.2
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(c) Show that the only elements of SL(2,7) fixing i are +(,}) and
+(_05). Hint: use (a).
(d) If w = €*™/3 show that j'(w) = j"(w) = 0 but j"'(w) # 0.

Let f(7) be a modular function for SL(2,Z), and assume that f(7)

has a pole of order m at 7 = w, w = €2™/3.

(a) Prove that m is divisible by 3. Hint: argue as in the case when
f(7) has a pole at 7 = i. Note that w is fixed by (_i é)

(b) Prove that j(7)™/?f(7) is holomorphic at w. Hint: use part (iv)
of Theorem 11.2.

As in the proof of Theorem 11.9, let

b
Lh(m) = {(Z d) e SL(2,Z): ¢ =0 mod m}
b
C(m) = {(C(; d) rad=m, a>0, 0<b<d, ged(a,b,d) = 1},

and let oo = (70) € C(m).

(a) Show that Ty(m) = (a4 'SL(2,Z)00) NSL(2,Z).

(b) If 0 € C(m), then show that ((fo_lsL(2,Z)a)ﬁSL(2,Z) Is a co-
set of [y(m) in SL(2,72).

(c) In the construction of part (b), show that different ¢’s give dif-
ferent cosets, and that all cosets of Iy(m) in SL(2,Z) arise in this
way.

Let m be a positive integer, and let f(m) denote the number of
triples (a,b,d) of integers which satisfy ad =m, a>0, 0<b <d
and ged(a,b,d) = 1. Thus f(m) = |C(m)l, where C(m) is the set of
matrices defined in the the previous exercise. The goal of this exer-
cise is to prove that

f(m)=mH(1+%>.

pim

(a) If we fix a positive divisor d of m, then a = m/d is determined.
Show that the number of possible b’s for this d is given by

d
ged(d,m/d)

¢(ged(d, m/d)),

where ¢ denotes the Euler ¢-function.
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(b) Use the formula of (a) to prove that f(m) is multiplicative,
i.e.,, that if m; and m; are relatively prime, then f(mim;) =
f(m)f(m2).

(c) Use the formula of (a) to prove that if p is a prime, then
f(py=p"+p "
(d) Use (b) and (c) to prove the desired formula for f(m).

11.10. In this exercise we will show that &,,(X,Y) is irreducible as a poly-
nomial in X (which will prove part (ii) of Theorem 11.18). Let v;
be coset representatives for Iy(m) in SL(2,Z). As we saw in (11.14),
we can write

|C(m)]
Em(X,j(1) = ] (X = j(myT)).
i=1

Let F,, be the field C(j(7),j(mT7)). Since ®,,(X,j(7)) has coeffi-

cients in C(j(7)) and j(mT) is a root, it follows that [F,,: C(j(7))]

< ¥(m). If we can prove equality, then &,,(X, (7)) will be the

minimal polynomial of j(m7) over C(j(7)), and irreducibility will
follow.

(a) Let F be the field of all meromorphic functions on b, which
contains F,, as a subfield. For v € SL(2,Z), show that f(7) +—
f(y7) 1s an embedding of F,, into F which is the identity on
CGU(m)-

(b) Use (11.13) to show that j(my;7) # j(m~y;7) fori # j. The em-
beddings constructed in (a) are thus distinct, which shows that
[Fm: C(j(T))] > ¥(m). This proves the desired equality.

11.11. Show that the coefficients of G(X,7) (as defined in (11.16)) are
modular functions for SL(2,Z). Hint: argue as in the case of the
modular function. You will use the fact that f(+;7) has a meromor-
phic g-expansion.

11.12. Let A C C be an additive subgroup, and let f(7) be a holomorphic
modular function. Suppose that its g-expansion is

oo

f(T) = Z anqn’

n=-—M

and that a, € A4 for all n <0. Then prove the Hasse g-expansion
principle, which states that f(7) is a polynomial in j(7) with coef-
ficients in 4. Hint? since the g-expansion of j(7) has integer coef-
ficients and begins with 1/q, the polynomial A(x) used in part (ii)
of Lemma 11.10 must have coefficients in 4.
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Let p be a prime, and let ¢, = ¢>™/7,
(a) Prove that p = (1-(,)(1~- (f,)- ~(1- (5"1). Hint: factor xP~!

+.-+x+1.
(b) Given a € Z[(,], define the norm Ng ),q(a) to be the num-
ber
Nogye@ = [ @
7€Gal(Q((,)/ Q)

For simplicity, we will write N(a) instead of Ng,)/q(@)-
Then prove that N(a) is an integer, and show that N(af) =
N(@)N(B) and N(1-(,) = p.

(¢) If an integer a can be written a = (1 —( p) where a € Z[(,],
then use (b) to prove that a is divisible by p.

Adapt the proof of (11.21) to show that j(7) = j(0¢7)? mod p.

Let f(X,Y)eZ[X,Y] be a polynomial such that f(X,j(7))€
pL((q))[X]. Prove that f(X,Y)e€ pZ[X,Y]. Hint: apply the
g-expansion principle (Exercise 11.12) to the coefficients of X .

Let M =72, and let 4 be a 2 x 2 integer matrix with det(A4) # 0.
We know by Exercise 7.15 that M /AM is a finite group of order
|det(4)|. The object of this exercise is to prove that M /AM is
cyclic if and only if the entries of A4 are relatively prime.

(a) Let G be a finite Abelian group. Prove that G is not cyclic if
and only if G contains a subgroup isomorphic to (Z/dZ)? for
some integer d > 1. Hint: use the structure theorem for finite
Abelian groups.

(b) Assume that the entries of A have a common divisor d > 1,
and prove that M /AM is not cyclic. Hint: write A =dA’',
where A’ is an integer matrix, and note that A'M /dA'M C
M /AM . Then use (a).

(c) Finally, assume that M /AM is not cyclic, and prove that that
the entries of 4 have a common divisor d > 1. Hint: by (a),
there is AM C M' C M such that M'/ AM ~ (Z/d1)? for some
d > 1. Prove that AM = dM', and conclude that d divides the
entries of A4.

This exercise is concerned with the proof of Lemma 11.24.

(a) Let L' be a sublattice of [1,7] of finite index, and let d be the
smallest positive integer in L'. Then prove that L' = [d,aT + b]
for some integers a and b.

(b) Let T € b, and let C(m) be the set of matrices defined in the
text. If 0,0’ € C(m) and d[1,07] = d'[1,0'7], then prove that
og=o0'.
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In the text, we proved that for 7 € b, the roots of ®,,(X,j(7))=0
are the j-invariants of the cyclic sublattices of index m of [1,7]. Use
this fact and the surjectivity of the j-function to prove Theorem
11.23.

Let O be an order, and let b be a proper fractional O-ideal. If a
is a proper O-ideal which is not primitive, then prove that b/ab is
not cyclic. Hint: use part (a) of Exercise 11.16.

Let O be an order in an imaginary quadratic field K of conductor
f . Letting wg = (dx + v/dx)/2, we proved in Lemma 7.2 that O =
[1,fwk]. Prove that a = fwg is a primitive element of O whose
norm is not a perfect square.

Let K C L be an extension of number fields, and let a € Oy, satisfy

L = K(a).

(a) Prove that Ok[a] has finite index in Op. Hint: By Theorem
5.3, we know that Oy, is a free Z-module of rank [L: Q]. Then
show that Ok[a] has the same rank.

(b) Let P be a prime ideal of Or, and suppose that N(PB) = p/,
where p is relatively prime to [0 : Ok[a]]. If §? = mod P
holds for all 8 € Ok[a], then show that the same congruence
holds for all B € Op. Hint: if N = [OL: Ok[a]], then multipli-
cation by N induces an isomorphism of O, /B.

Complete the proof of Corollary 11.37.

Let K be an imaginary quadratic field, and let L be an Abelian
extension of K. Prove that there is a positive integer N such that
L is contained in the ray class field for the modulus NOy.

If L is a lattice and 7(z; L) is the Weber function defined in the
text, then prove that 7(Az; AL) = 7(z; L) for any A € C*.

§12. MODULAR FUNCTIONS AND SINGULAR ;-INVARIANTS

The j-invariant j(L) of a lattice with complex multiplication is often called
a singular j-invariant or a singular modulus. In §11 we learned about the
fields generated by singular moduli, and in this section we will compute
some of these remarkable numbers. One of our main tools will be the func-
tion y,(7), which is defined by

12(1) = V(7).

We will show that y,(37) is a modular function for I)(9), and we will use
12(7) to generate ring class fields for orders of discriminant not divisible
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by 3. This will explain why the j-invariants computed in §10 were perfect

cubes.
We will then give a modern treatment of some of the results contained

in Volume III of Weber’s monumental Leharbuch der Algebra [102]. There
1s a wealth of material in this book, far more than we could ever cover
here. We will concentrate on some applications of the Dedekind 7n-function
n(7) and the three Weber functions f(7), f;(7) and §,(7). These functions
are closely related to ¥,(7) and j(7) and make it easy to compute the j-
invariants of most orders of class number 1. The Weber functions also give
some interesting modular functions, which will enable us to compute that

(12.1)
3
(V=14 =2 <323 +228V2 + (231 + 161\/5)\/;/—:> .

At the end of the section, we will present Heegner’s proof of the Baker—
Heegner-Stark theorem on imaginary quadratic fields of class number 1.

A. The Cube Root of the j-Function

Our first task is to study the cube root 72(7) of the j-function. Recall from
§11 that j(7) can be written as the quotient

g2(7)?
A(T)

j(1) = 1728

The function A(7) is nonvanishing and holomorphic on the simply con-
nected domain b, and hence has a holomorphic cube root /A(7). Since
A(T) is real-valued on the imaginary axis (see Exercise 12.1), we can choose

/A(T) with the same property. Using this cube root, we define

82(7)
/a0

Since g»(7) is also real on the imaginary axis (see Exercise 12.1), it fol-
lows that v,(7) is the unique cube root of j(7) which is real-valued on the
Imaginary axis.

For us, the main property of v2(7) is that it can be used to generate all
ring class fields of orders of discriminant not divisible by 3. Note that 7
needs to be chosen carefully, for replacing 7 by 7 + 1 doesn’t affect j(7),
but we will see below that 7,(7 + 1) = (5 '72(7), where (; = e*™/3. The
necessity to normalize 7 leads to the following theorem:

72(7) =12

Theorem 12.2. Let O be an order of discriminant D in an imaginary qua-
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dratic field K. Assume that 3) D, and write O = [1,1y], where
Vv —m, D=-4m=0mod 4

=93 3+/-m

2 2

= —m =1 mod 4.
Then v:(1y) is an algebraic integer and K (2(7y)) is the ring class field of O.
Furthermore, Q(72(70)) = Q(j(m0)).

Let’s first see how this theorem relates to the j-invariants computed in
§10. When O has class number one, we know that j(O) is an integer, so
that by Theorem 12.2, 72(7) is also an integer when 3/ D. This explains
why

o = 123
V=2 = 20

(57

= 153
J 5 1

are all perfect cubes. (In the last case, note that j((1+=7)/2) = j((3 +
v —7)/2), so that Theorem 12.2 does apply.)

Proof of Theorem 12.2. By Theorem 11.1, we know that K (j(7y)) is the ring
class field of O = [1,7¢]. Thus, to prove Theorem 12.2, it suffices to prove

that

R(12(70)) = QUJ(70))

whenever 3/ D. The first proof of this theorem was due to Weber [102,
§125], and modern proofs have been given by Birch [7] and Schertz [87].
Our presentation is based on [87].

The first step of the proof is to show that y,(37) is @ modular function.

Proposition 12.3. 72(37) ts a modular function for the group Ty(9).

Proof. We first study how 7,(7) transforms under elements of SL(2,7). We
claim that

Y2(—=1/7) = 72(T)
12T+ 1) = (5 (1),

where (; = ™/, The first line of (12.4) is easy to prove, for y2(—1/7) is
a cube root of j(—1/7) = j(7). But —1/7 lies on the imaginary axis when-
ever 7 does, so that y,(—1/7) is a cube root of j(7) which is real on the
imaginary axis. By the definition of y,(7), this implies y2(—1/7) = 12(7).

(12.4)
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To prove the second line of (12.4), consider the g-expansion of (7).
We know that

=g+ cnq" =g h(q),

n=0

where A(q) is holomorphic for || < 1 and #(0) = 1. We can therefore write
h(q) = u(q)*, where u(q) is holomorphic and 1(0) = 1. Note also that u(q)
has rational coefficients since 4(g) does (see Exercise 12.2). Then ¢~*/3u(q)
is a cube root of j(7) which is real-valued on the imaginary axis, and it fol-

lows that
12.5) M) =q7Puq)=q P+ bg"),  bi€Q.
n=0

[t is now trivial to see that (7 + 1) = (3_172(7), and (12.4) 1s proved.
We next claim that if () € SL(2,Z), then

at + b _ 2.
(126) v <C7_ " d) — Cézc ab+a“cd Cd')’Z(T)-

To see this, first note that (12.6) holds for § = (? %) and T = (;]) by
(12.4). It is well-known that these two matrices generate SL(2,Z) (see Serre
[88, §VIL.1] or Exercise 12.3). Then (12.6) follows by induction on the
length of (¢%) as aword in § and T (see Exercise 12.5).

Given (12.6), it follows easily that 7,(7) is invariant under the group of

matrices
. a b
I‘(3)={< ):b.z_czOmod3}.
c d

This group is related to Ip(9) by the identity

(5 (s ),

and a simple computation then shows that 7,(37) is invariant under Iy(9)
(see Exercise 12.5). The group I'(3) is not the largest subgroup of SL(2,7)
fixing 72(7), but it’s the one that relates most easily to the Iy(m)’s (see
Exercise 12.5).

To finish the proof that 7,(37) is a modular function for I4(9), we need
to check its behavior at the cusps. Let v € SL(2,Z). By Theorem 11.9, j(37)
is a modular function for I}(3), so that j(3y7) has a meromorphic expan-
sion in powers of q'/>. Taking cube roots, this implies that y,(3y7) has
a meromorphic expansion in powers of g'/?, which proves that 1,(37) is
meromorphic at the cusps. This proves the proposition. Q.E.D.
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Once we know that 92(37) is a modular function for Ip(9), Theorem
11.9 tells us that it is a rational function in j(7) and j(97). The following
proposition will give us information about the coefficients of this rational

function:

Proposition 12.7. Let f(7) be a modular function for Ty(m).
(1) If the q-expansion of f(7) has rational coefficients, then f(1)€ Q(j(T),

j(mm)). .
(i) Assume in addition f(7) is holomorphic on b, and let 1o € . If

g(}%(j(mm),j(m)) £ 0,
then f(1y) € Q(j(70),j(mTo)).

Remark. Note that the hypothesis of (i) involves only the expansion of f(7)
in powers of g'/™. For general 7 € SL(2,Z), the expansion of f(y7) need
not have coefficients in Q.

Proof. 'To prove (i), we will use the representation
Gmt),j(1))
55 Im(i(m7),j(7))

(12.8) f(r)=

given by (11.17). Since the denominator clearly lies in Q(j(7),j(m7)) (part
(1) of Theorem 11.18), it suffices to show that the same holds for the nu-

merator. We know that G(j(mrT), j(7)) lies in C(j(7))[j(mT)], so that
P(j(m7), j(T))
o3(r)

where P(X,Y) and Q(Y) # 0 are polynomials with complex coefficients.
Let’s write these polynomials as

N M
P(X,Y)=> > ayX'Y*

i=0 k=0

G(j(mt),j(7)) =

L
QY)=) hY'.
=0

Then (12.8) implies that

PU(MT, /(7)) = F(7) T2 (mm). SR ()
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which we can write as

N M . 50, L
YN awj(mT) (1) = f(Mgx G(mm)(T) (szj(’f)l)
1=0

(=0 k=0

Substituting in the g-expansions of f(7), j(r) and j(m7) and equating co-
efficients of powers of g!/™, we get an infinite system of homogeneous
linear equations with the a;’s and b;’s as unknowns. The g-expansions of
f(1), j(r) and j(m7) all have coefficients in Q, and the coefficients of
(8/0X)®(X,Y) are also rational. Thus the coefficients of our system of
equations all lie in Q. This system has a solution over C which is nontrivial
in the b;’s (since Q(j(7)) # 0), and hence must have a solution over Q also
nontrivial in the b;’s. This proves that P(X,Y) and Q(Y') # 0 can be chosen
to have rational coefficients, which proves part (i).

To prove (ii), let’s go back to the definition of G(X,j(7)) given in
(11.16). Since f(7) is holomorphic on b, the coefficients of G(X, j(1)) are
also holomorphic on h. As we saw in Lemma 11.10, this means that the
coefficients are polynomials in j(7). Thus, in the representation of f(1)
given by (12.8), the numerator G(j(mT), j(7)) is a polynomial in j(m7) and
j(1). By a slight modification of the argument for part (i), we can assume
that it has rational coefficients (see Exercise 12.6). Consequently, whenever
the denominator doesn’t vanish at 79, we can evaluate this expression at

= 715 to conclude that f(7o) lies in Q(j(70), j(Mm™0))- Q.E.D.

We want to apply this proposition to 72(70), where 7o is given in the
statement of Theorem 12.2. By (12.5), we see that the g-expansion of 7,(37)
has rational coefficients. Since it is a modular function for I;(9), Proposi-

tion 12.7 tells us that _ _
Y2(37) € Q(7), J(97))-

Since we’re concerned about 42(7), we need to evaluate the above expres-
sion at T = 79/3. We will for the moment assume that

(129) O (G, i(m /) 0.

Since 7,(37) is holomorphic, the second part of Proposition 12.7 then im-
plies that y2(70) € Q(j(70/3),j(370)), which we can write as

(12.10) 12(70) € QU([1,70/31), J([1,370]))-

To see what this says about 7,(7), recall that O =[1,79]. Then O' =
[1,37] is the order of index 3 in O, and the special form of 7y implies
that [1,79/3] is a proper fractional @'-ideal (this follows from Lemma 7.5
and 3/ D—see Exercise 12.7). Thus, by Theorem 11.1, both j(70/3) and
j(37q) generate the ring class field L' of the order O'. Consequently, (12.10)
implies that 7,(7o) lies in the ring class field L'.
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Let L denote the ring class field of O, so that L ¢ L'. To compute the
degree of this extension, recall that the class number is the degree of the
ring class field over K. Since the discriminant of O is D, this means that

[L': L] = h(9D)/h(D). Corollary 7.28 implies that

- 221-(2)})

and since 3} D, we see that L C L' is an extension of degree 2 or 4.
Now consider the following diagram of fields:

Q((m)) C L
n n

Q(1r2(m0)) C L'

We know that L has degree 2 over Q(j(79)), and by the above computation,
L' has degree 2 or 4 over L. It follows that the degree of Q(72(79)) over
Q(j(70)) is a power of 2. But recall that 7,(79) is the real cube root of
J(70), which means that the extension Q(j(79)) C Q(72(7)) has degree 1 or
3. Hence this degree must be 1, which proves that Q(j (7)) = Q(72(7o))-

We are not quite done with the theorem, for we still have to verify that
(12.9) is satisfied, i.e., that

o (Gm),(10/3)) # 0.

For later purposes, we will prove the following general lemma:

Lemma 12.11. Let O be an order in an imaginary quadratic field, and as-
sume that O* = {£1}. Write O = [1,a], and assume that for some integer s,
s | T(a) and ged(s?, N(a)) is squarefree, where T(a) and N (a) are the trace
and norm of a. Then for any positive integer m,

O I (j(ma/s)i(a/s)) #0.

Proof. Since ®,,(j(ma/s),j(a/s)) =0, the nonvanishing of the partial de-
rivative means that j(ma/s) is not a multiple root of the polynomial

Sn(X,jla/s) = [ (X —i(oa/s)).

oeC(m)

Thus we must show that

: : m 0
j(ma/s) # j(oa/s), ceC(m), o#0y)= ( 0 1) :
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So pick ¢ = (2%) € C(m), o # g9, and assume that j(ma/s) = j(ca/s).
In terms of lattices, this means that there is a complex number A such
that

(12.12) AM1,ma/s] = [d,aa/s + b].

We will show that this leads to a contradiction when O* = {£1}.

The idea is to prove that A is a unit of O. To see this, note that by
Lemma 11.24, both [1,ma/s] and [d,aa/s + b] have index m in [1,a/s], so
that A must have norm 1. Furthermore, we have

sA € s[d,aa/s +b] = [sd,aa + sb] C [s,q].
Writing sA = us + va, u,v € Z, and taking norms, we obtain
52 = s2N(\) = N(us + va) = u>s* + usvT(a) + v>*N(a).

Since s | T(a), it follows that s2|v2N(a), and since ged(s?, N(a)) is square-
free, we must have s |v. This shows that A € [l,a] = O, so that A is a
unit since it has norm 1. Then O* = {41} implies that A = £1, and hence
[1,ma/s] = [d,aa/s + b], which contradicts ¢ # gy by the uniqueness part
of Lemma 11.24. The lemma is proved. Q.E.D.

We want to apply this lemma to the case s =3, m=9 and a = 7p.
Using the special form of 7y, it is easy to see that the norm and trace
conditions are satisfied (note that the discriminant of O = [1,70] is D =
T(70)* — 4N (79)). Thus (12.9) holds except possibly when O is Z[i] or Z[(,].
The latter can’t occur since 3 doesn’t divide the discriminant, and when
O = 1[i], a simple argument shows that (12.12) is impossible (see Exercise
12.8). This completes the proof of Theorem 12.2. Q.E.D.

This theorem tells us about the behavior of 9,(79) when 3 doesn’t divide
the discriminant D . For completeness, let’s record what happens when D is
a multiple of 3 (see Schertz [87] for a proof):

Theorem 12.13. Let O be an order of discriminant D in an imaginary qua-
dratic field K. Assume 3| D and D < —3, and write O = [1,7,], where

V—m, = —4m =0 mod 4
T0 = { 3++v—m
2 b

= —m = 1 mod 4.

Then K (v2(70)) is the ring class field of the order O' = [1,37] and is an
extension of degree 3 of the ring class field of O. Furthermore, Q(y2(7o)) =
Q(j(370))- Q.E.D.
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B. The Weber Functions

To work effectively with 72(7), we need good formulas for computing it.
This leads us to our next topic, the Dedekind 7n-function 7(7) and the three
Weber functions f(7), f,(7) and §,(7). If T € h, we let g = e2™7 as usual,
and then the Dedekind 7-function is defined by the formula

(1) =q"*[[(1- 4"
n=1

Note that this product converges (and is nonzero) for 7 € b since 0 < |g]|
<1.

We then define the Weber functions f(7), f;(7) and f,(7) in terms of the
n-function as follows:

_ 117 +1)/2)
f(T) - C48 ,,](7.)
7(7/2)
12.14 =
( ) fl(T) ,,](7.)
— \/577(27)’
fZ(T) ,,](7.)
where (, = €2™/%_ From these definitions, one gets the following product

expansions for the Weber functions:

f(r)=q7'/% ﬁ(l +q""11%)

n=1

(12.15) fi(m)=q7 % ﬁ(l - g%

n=1
f(m) = V2q/* TI A + ")
n=1

(see Exercise 12.9), and we also get the following useful identities connect-
ing the Weber functions:

Ff(Mf(T) = V2

(12.16)
(2N)R(T) = V2

(see Exercise 12.9).
Much deeper lie the following relations between 7(7), f(7), f;(7) and
f,(7) and the previously defined functions j(7), 72(7) and A(7):
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Theorem 12.17. If T € b, then A(7) = (2m)2y(1)* and

@ -16 _ f,(1)#+16 _ f,(1)* + 16
72(7-) - f('T)S = - fl(T)S = 2 fz('T)S .

Remark. Since j(7) = 72(7)3, this theorem gives us some remarkable for-
mulas for computing the j-function.

Proof. We need to relate 7(7) and the Weber functions to the Weierstrass
p-function. Let p(z) = p(z;7) denote the p-function for the lattice [1,7],
and set

er=p(1/2), ex2=p(1/2), e3=p((r+1)/2)

We will prove the following formulas for the differences e; — e;:

ey —e1 = win(T)*§(r)°
(12.18) ez — ez = wrq(T)*f, (1)°
e3— ey = won(1)*,(7)°.

The basic strategy of the proof is to express e; — e; in terms of the Weier-
strass o-function, and then use the product expansion of the o-function to
get product expansions for e; — e;. Proofs will appear in the exercises.

The Weierstrass o-function is defined as follows. Let 7 € b, and let L be
the lattice [1,7]. Then the Weierstrass ¢-function is the product

) = _ 2\ pz/wt(1/2)(z/w)
o(z;7) =2 H (1 w> e .
weL—{0}

Note that g(z;7) is an odd function in z. We will usually write ¢(z;7) more
simply as d(z). The o-function is not periodic, but there are complex num-
bers 7, and 72, depending only on 7, such that

o(z +7) = —eM*t7/g(2)
o(z + 1) = —eMEtIg(7),

and the numbers 7; and 7, satisfy the Legendre relation 7,7 — 1y = 271 (see
Exercise 12.10). The o-function is related to the p-function by the formula

o(z+w)o(z—w)

P(2) —pw) =— 02(2)02(W)
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whenever z and w do not lie in L (see Exercise 12.11). Since e; = p(7/2),
e2 = p(1/2) and e3 = p((T + 1)/2), it follows easily that

2(r+1)
o 5
er—ey=e MT/2 ( )

e2 — e3 = en2(r+1)/2

=
2
T
2

*(3)
" (3)
*(z)*(F)
*(3)

o* (Tzl)” (2)
(see Exercise 12.12).

There is also the following g-product expansion for the o-function:

e3 —_ el — enl(r+1)/2

1 - (1- )1—-4g7/qz)
mnzt 20 ,1/2 1/2 qrql T
it I A-qp

where ¢, = e’™" and g, = €™ (see Exercise 12.13). Using this product
expansion, we obtain
e om/852(7)° (1)
2 27r (1)

T 2/ _1/8f (7')
) = emT /8,—1/8 11\ )
0( ) 27r 1

o(z;7)=

n=1

2 n(T)
g T+l = 1 en2(r+1)2/8q—1/8 —._f(T)z
2 27 n(T)?

(see Exercise 12.14). It is now straightforward to derive the desired formu-
las (12.18) for e; —e; (see Exercise 12.14).

To relate this to A(7), recall from (10.6) that A(7) = 16(e2 —e1)%(e2 —
e3)’(e3 —e1)?. By (12. 18), it is now easy to express A(T) in terms of the
n-function:

A(T) = 16(ez — e1)2(e2 — e3)2(e3 — e1)2
= 16m () (7)1, (r) (7"
= (2m) (T,
where the last line follows by (12.16).
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Turning to 79,(7), we know that

7(r) = /() = 12%5’;

where the cube root is chosen to be real-valued on the imaginary axis. Using
what we just proved about A(T), this formula can be written

3
1) =

since 7)(7) is real valued on the imaginary axis. Thus, to express 72(7) in
terms of Weber functions, we need to express g2(7) in terms of 5(7), f(7),

fy(7) and ().

The idea is to write g2(7) in terms of the e; — e;’s. Recall from the proof
of Proposition 10.7 that the e;’s are the roots of 4x3 — g,(7)x — g3(7), which
implies that g2(7) = —4(e1e2 + e1e3 + eze3) (see Exercise 10.8). Then, using
e1 + ez + e3 = 0, one obtains

3g2(7) = 4((e2 — 1)’ — (e2— e3)(e3 — €1))
(see Exercise 12.15). Substituting in the formulas from (12.18) yields

3g2(7) = 4n*p(T)’(F(7)' — f1(T)’Fo(7)%),
so that

Ya(T) = §(7) 1 (1) (7)°

16
= f(1)! - P
_f(r)*-16
G

where we have again used the basic identity (12.16). The other two formu-
las for 72(7) are proved similarly and are left to the reader (see Exercise
12.15). This completes the proof of the theorem. Q.E.D.

Using these formulas it is easy to show that the g-expansions of y,(7)
and j(7) have integer coefficients (see Exercise 12.16), and this proves The-
orem 11.8. We can also use Theorem 12.17 to study the transformation

properties of n(7), f(7), §1(7) and f,(7):

Corollary 12.19. For a positive integer n, let {, = e*™/". Then

(T +1) = (un(7)
n(=1/7) = V=iTy(7),
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where the square root is chosen to be positive on the imaginary axis. Further-
more,

f(r +1) = (g (1)
fu (T +1) = (' f(7)
R(T +1) = Gufa(7),
and
f(=1/7)=i(7)
f1(=1/7) = f2(7)
f2(=1/7) = f1(7).
Proof. The definition of 7(7) makes the formula for 5(7 + 1) obvious. Turn-
ing to 7(—1/7), first consider A(7) = (2r)?n(7)*. For a lattice L, we

know
A(L) = ga(LY — 27g3(L)%.

In (10.10) we showed that gy(AL) = A"%g;(L) and g3(AL) = A~Sg3(L),
which implies that
AAL) = A"2A(L).

This gives us the formula
A(-1/7) = A([1,-1/7]) = A1, 7)) = 2A([1, 7)) = TRA(T),
and taking 24th roots, we obtain
N(—1/7) = ev/~itn(7)

for some root of unity €. Both sides take positive real values on the imag-
inary axis, which forces € to be 1. This proves that 7(7) transforms as de-
sired.

Turning to the Weber functions, their behavior under 7+— 7 + 1 and 7 —
—1/7 are simple consequences of their definitions and the transformation
properties of (1) (see Exercise 12.17). Q.E.D.

We will make extensive use of these transformation properties in the
latter part of this section.

C. j-Invariants of Orders of Class Number 1

Using the properties of the Weber functions, we can now compute the j-
invariants for orders of class number 1. In §7 we saw that there are exactly
13 such orders, with discriminants

-3, —4, -7, -8, —11, -16, —19, —27, —28, —43, —67, —163
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(we will prove this in Theorem 12.34 below). The j-invariants of these or-
ders are integers, and if we restrict ourselves to those where 3 doesn’t di-
vide the discriminant (10 of the above 13), then Theorem 12.2 tells us that
the j-invariant is a cube. So in these cases we need only compute 72(7o),
where 7, is an appropriately chosen element of the order. Rather than com-
pute 7(79) directly, we will use the Weber functions to approximate its
value to within +.5. Since (79) is an integer, this will determine its value
uniquely. This scheme for computing these j-invariants is due to Weber

[102, §125].
The ten j-invariants we want to compute are given in the following table:
dx To Y2(7o) J(O) = j(m)
—4 i 12=22.3 123
~7 | B+vV=-7)/2 —15=-3-5 —153
-8 -2 20=122.5 203
—11 | B++/-11)/2 —32=-2 —323
(12.20) —16 2i 66=2-3-11 66°
~19 | B+V/-19)/2 | -96=-2°.3 —96°
—28 V=1 255=3-5-17 2553
—43 | (3++/—43)/2 | -960 = -2%-3.-5 —960°
—67 | (3++/—-67)/2 —5280 = —5280°
—2°.3.5-11
—163 | 3++/—163)/2| —640320 = —640320°
—26.3.5.23-29

For completeness, here are the j-invariants of the orders of discriminant
divisible by 3:

dk o J(O) = j(70)

—3 | (1+vV-3)/2 0
—12 V=3 54000 =24.33.53
—27 | (1+3v/-3)/2 —12288000 = —215.3.53

We computed j((1++v/—=3)/2) =0 in §10, and we will prove j(v/-3)=
54000 in §13. As predicted by Theorem 12.13, the last two entries are not
perfect cubes.

To start the computation, first consider the case of even discriminant.
Here, 7o = /—m, where m =1, 2, 4 or 7. Setting q = 2™V~ = =27V
we claim that

(12.21) Yo(v/—m) = [[256q2/3 + q—1/3II,

where [ ] is the nearest integer function (i.e., for a real number x ¢ Z + %,
[ x] is the integer nearest to x).
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To prove this, we will write y2(7) in terms of the Weber function f,(7):

16
(12.22) Y2(vV—m) = f,(v/=m)16 + Py

Using g = e~2"V™ as above, (12.15) gives us
f(V=m) =V2q'* T[A + ¢™),
n=1

and to estimate the infinite product, we use the inequality 1+ x < e* for
x > 0. This yields

n=1 n=1

and we can simplify the exponent by noting that q/(1—q) < q/(1—e~2%™)
< 1.002q since q <e~2". Thus we have the following inequalities for

f2(v/=m):
V2q1% < fo(vV=m) < V2qH % el %2,
and applying this to (12.22), we get upper and lower bounds for y,(/—m):
(1223)  256¢%3 + g~ 138960 < o,(\/“m) < 2567316934 4 g=1/3,
To see how sharp these bounds are, consider their difference
E = 256q*/3 (69324 _ 1) 4 g=1/3(1 — 80164y

Using the inequality

1-e* <« , O<x<l,

1—x
one sees that

E < 2564*/3(e'%24 _ 1) + q~1/38.016¢ /(1 — 8.0169)
= 2564*/3(e1%9%24 _ 1) + 8.016¢4%/% /(1 — 8.0169).

The last quantity is an increasing function in ¢, and then g < e™27 easily
implies that E < .25. Since 7y2(y/—m) is an integer, this means that [ x] =
72(v/—m) for any x lying between the upper and lower limits of (12.23). In
particular, 256¢%/* + q=1/3 lies between these limits, which proves (12.21).
Using a hand calculator, it is now trivial to compute the corresponding
entries in table (12.20) (see Exercise 12.18).

Turning to the case of odd discriminant, let 79 = 3+ /-m)/2, m =17,
11, 19, 43, 67 or 163, and we again want to compute

16

12(10) = 2(70)"® + e
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Our previous techniques won’t work, for g = e2™G+vV=)/2 = —e~ VM s
negative in this case. But Weber uses the following clever trick: from
(12.16), we know that

V2

fi(270)’
and then the transformation properties from Corollary 12.19 imply
f1(270) = 13 + V=m) = (& (2 + V=m)
= (g i1+ v=m) = (Ff(vV=m).
Combining the above equations implies that

V2(6
f(v=m)’

f2(10) =

f2(10) =

and thus
256

Y2(To) = = f(v=m)®.

From here, our previous methods easily imply that if m =7, 11, 19, 43,
67 or 163, and q = e 2™Vm then

1B +V-m)/2) = [-q7 '/ +256¢' ],

where [ ] is again the nearest integer function. Using a hand calculator, we
can now complete our table (12.20) of singular j-invariants (see Exercise

12.18).

D. Weber’s Computation of j(v/—14)

We next want to compute some singular j-invariants when the class num-
ber is greater than 1. There are several ways one can proceed. For example,
when the class number is 2, the Kronecker Limit Formula gives an elegant
method to determine the j-invariant, and this method generalizes to the
case of orders with only one class per genus. (Recall from §3 that for dis-
criminants —4n, this condition means that n is one of Euler’s convenient
numbers.) For example, when n = 105, Weber [102, §143] shows that

f(V=105)¢ = V2-B(1 + V3P (1 + V5 (V3 + VT (V5 + VT),

which would then allow us to compute 7,(v/—105) and hence j(v/—105).
(The radicals appearing in the above formula are not surprising, since in
this case the Hilbert class field equals the genus field, which we know by
Theorem 6.1—see Exercise 12.19.) Other examples may be found in Weber
[102, pp. 721-726] or [103], and a modern treatment of the Kronecker Limit
Formula is in Lang [73, Chapter 20].
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We will instead take a different route and compute j(v/—14), an ex-
ample particularly relevant to earlier sections. Namely, K (j(v/—14)) is the
Hilbert class field of K = Q(v/—14) since Ok = [1,/—14]. We determined
this field in §5, so that finding j(v/—14) will give us a second and quite
different way of finding the Hilbert class field of Q(v/—14). Our exposition
will again follow Weber [102, §144], using ideas from Schertz [87] to give a
modern proof.

A key fact we will use is that in many cases, one can generate ring class
fields using small powers of the Weber functions. Weber gives a long list of
such theorems in [102, §§126-127], and modern proofs have been given by
Birch [7] and Schertz [87]. We will discuss two cases which will be useful to
our purposes:

Theorem 12.24. Given a positive integer m not divisible by 3, let O =
[1,/—m)], which is an order in K = Q(v/—m). Then:

(i) For m = 6 mod 8, f,(v/—m)? is an algebraic integer and K (f,(~/—m)?)
is the ring class field of O.

(ii) For m =3 mod 4, §f(/=m)? is an algebraic integer and K (f(/—m)?) is
the ring class field of O.

Proof. We begin with (i). Multiplying out the identity

“m)4 3
/=) = vy = (B2

it follows that f,(v/—m)? is a root of a monic polynomial with coefficients
in Z[j(v/—m)]. But j(/—m) is an algebraic integer, which implies that the
same is true for f;(v/—m)?.

We know that L = K(j(/—m)) is the ring class field of [1,\/—m],
and since j(v/—m) is a polynomial in f;(v/—m)?*, we need only show that
fi(v/=m)? lies in L. Actually, it suffices to show that f,(~/—m)® lies in L.
This is a consequence of Theorems 12.2 and 12.17, for since 3} m, we
have 7,(v/—m) € L, and we also know that

— _ h(/=m)* +16
72(\/_”—1) fl(\/:ﬁ)s .

When §,(~/=m)® lies in L, so does f,(v/—m)*. The above equation implies
f,(v/=m)® € L, and then §,;(~/—m)? € L follows immediately.
The next step in the proof is to show that f,(87)% is a modular function:

Proposition 12.25. f,(87)% is a modular function for the group Ty(32).
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Proof. We first study the transformation properties of f;(7)°. Consider the

group
a b
I‘o(2)'={( ):bEOmodZ}.
c d

In Exercise 12.4, we will show that the matrices

(50w (M) v (1))

generate Iy(2)' . Using Corollary 12.19, f;(7)® transforms under U and V as
follows:

fL(UT)® = —ify(7)°
VT = —ify(1)°

(see Exercise 12.20.). Then we get the general transformation law for f, (7)°:

a b
(1226) ) = im0 e,y = (1) ency.
4

This can be proved by induction on the length of y as a word in —1, U and
V. A more enlightening way to prove (12.26) is sketched in Exercise 12.21.
Now consider the function f,(87)%, and let 4 € Ty(32). Then

a b a 8b
87'r=8( )'r=( )87='787.
32c d 4¢ d

Since 4 € Ty(2), it follows easily from (12.26) that f,(8y7)® = f,(787)° =
f,(87)%, which proves that f,(87)% is invariant under Ty(32). To check the
cusps, take v € SL(2,Z). Under the correspondence between cosets of T(8)
and matrices in C(8) given by Lemma 11.11, there is 0 € C(8) and ¥ €
SL(2,Z) such that

8T = qoT.
0-1

Writing 4 as a product of various powers of (1) and (] 75), the transfor-
mation properties of Corollary 12.19 imply that

(81T)° = f1(FoT)° = €f(aT)°, €1 (07)°, or €fy(0T)’

for some root of unity €. Since ¢ = (45), where ad = 8, we have

: 2
e27rw'r — qua/d — Cs(ql/S)a ,

and consequently, the product expansions for the Weber functions imply
that f,(8y7)® is meromorphic in ¢'/8. This proves that §,(87)° is a modular
function for IyH(32). Q.E.D.
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The next step in proving Theorem 12.24 is to determine some field
(not necessarily the smallest) containing f,(+/—m)®. The key point is that
f1(87)% is not only a modular function for Iy(32), it’s also holomorphic
and its g-expansion is integral. Thus Proposition 12.7 tells us that f,(87)% =
R(j(7),j(327)) for some rational function R(X,Y) € Q(X,Y). We will write
this in the form

(12.27) f(r)° = R(j(7/8),j(47)).
Using Lemma 12.11 with m = 32 and s = 8, we see that
0®3; . :
5 U@V=m), j(V=m/8)) #0,

and thus, by Proposition 12.7, we conclude that

(12.28)
f1(v/=m)® = R(j(v/=m/8), j(4/=m)) = R(j([8,v/=m)), j([1,4v/—m])).

To identify what field this lies in, let L' denote the ring class field of the
order O' = [1,4\/—m]. Since [8,\/—m)] is a fractional proper ideal for O
(this uses Lemma 7.5 and m = 6 mod 8—see Exercise 12.22), it follows that
fil(v/—m) e L'

We want to prove that f;(+/—m)® lies in the smaller field L. This is the
situation that occurred in the proof of Theorem 12.2, but here we will need
more than just a degree calculation. The crucial new idea will be to relate
Galois theory and modular functions.

Let’s first study the Galois theory of L € L'. The orders ©' and O have
discriminants —64m and —4m respectively, so that Corollary 7.28 implies
that h(—64m)) = 4h(—4m). Thus L' has degree 4 over L. Furthermore, the
isomorphisms C(0')~ Gal(L'/K) and C(O) ~ Gal(L/K) imply that

Gal(L'/L) ~ ker(C(O') — C(O)).

In Exercise 12.22 we show that [4,1+ \/—m] is a proper O'-ideal which
lies in the above kernel and has order 4. It follows that L C L' is a cyclic
extension of degree 4.

The goal of the remainder of the proof will be to compute o(f,(v/=m)®)
for some generator o of Gal(L'/L). At the end of §11 we described an
isomorphism

C(O")~Gal(L'/K)

as follows. Given a class [a] € C(O'), let the corresponding automorphism
be 0, € Gal(L'/K). If we write L' = K(j(b)) for some proper fractional
O'-ideal b, then Corollary 11.37 states that

7a(j(b)) = j(ab).
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To exploit this, let b = [8,/—m] = 8[1,/—m/8], so that (12.28) can be

written
f1(vV=m)® = R(j(b),j(O")).

Now let a = [4,1 + /—m], and let the corresponding automorphism be ¢ =
0, € Gal(L'/L). Note that ¢ is a generator of Gal(L'/L), and hence to
prove that §;(v/—m)® lies in L, we need only prove that it is fixed by o.
Using the above formula for f,(v/—m)®, we compute

a(i(v=m)®) = R(o(j(b)),0(j(O"))) = R(j(ab), j(@)).
Since m = 6 mod 8, one easily sees that

ab = [8, -2 ++/—m)], a=[4,-1++—m]
(see Exercise 12.22), and hence o(f,(v/—m)®) can be written

(12.29)
o(f1(v/=m)®) = R(([8,—2 + vV=m)), j([4,—1 + /—m])).

Now let 7 = (1 7%) € [y(2)'. If we substitute 47 for 7 in (12.27), we get

i (rm)® = R(i(y7/8),j(4y7)).
Since 91 = (7 — 2)/(T — 1), one sees that
[1,97/8] is homothetic to [8(7 —1),7 —2] = [8,-2+ 7]
[1,4y7] is homothetic to [7—1,4(7 —2)] = [4,—-1+ 7],

and thus
() = RG(8, -2+ 71), j([4,—1 + 7))

Evaluating this at 7 = v/—m and using (12.29), we see that
o(fy(V=m)) = f(yv/=m)".

However, (12.26) shows that f,(y7)® = f,(7)® for all 7, which proves that
fi(/=m)® is fixed by o and hence lies in the ring class field L. This com-
pletes the proof of (i).

The equation o(f;(v/—m)®) = §,(yv/—m)® used above is significant, for
it allows us to compute the action of ¢ € Gal(L'/K) using the matrix 7 €
SL(2,7Z). This correspondence between Galois automorphisms and linear
fractional transformations is not unexpected, for the f;(y7)%s are the con-
jugates of §,(7)® over Q(j(7)), hence when we specialize to T = /—m, the
conjugates of f;(v/—m)® should lie among the f;(yv/—m)®s. What’s surpris-
ing is that there’s a systematic way of finding . This is the basic content
of the Shimura Reciprocity Law. A complete statement of the theorem re-
quires the adeles, so that we refer the reader to Lang [73, Chapter 11] or
Shimura [90, §6.8] for further details.
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The proof of (ii) is similar to what we did for (i), though this case is a
little more difficult. We will sketch the main steps of the proof in Exercise
12.23. This completes the proof of Theorem 12.24. Q.E.D.

We can now begin Weber’s computation of j(v/—14) from [102, §144].
Let K = Q(v/—14). Since Ok = [1,v/—14], L = K(j(+/—14) is the Hilbert
class field of K. As we saw in §5, Gal(L/K)~ C(Ok) is cyclic of order
4. Furthermore, we can use the results of §6 to determine part of this ex-
tension. Recall that the genus field M of K is the intermediate field K C
M C L corresponding to the subgroup of squares. When K = Q(v/—14),
Theorem 6.1 tells us that M = K (v/=7) = K(v/2). Thus

KCcK(W2)CL.

We will compute f,(v/—14)?, which lies in the Hilbert class field L since
m = 14 satisfies the hypothesis of the first part of Theorem 12.24. Let ¢ be
the unique element of Gal(L/K) of order 2, so that the fixed field of ¢ is
the genus field K (v/2). The key step in the computation is to show that

(12.30) o(f,(V=14)") = f(V-14/2)%.
We start with the equation
f(v=m)® = R(j(b),j(O"))

from Theorem 12.24, where O' = [1,4v/—14] and b = [8,1/—14]. If O' and
L' are as in the proof of Theorem 12.24, then b determines a class in C(O")
and hence an automorphism o, € Gal(L'/K). It is easy to check that b
maps to the unique element of order 2 in C(Ok) (see Exercise 12.24), and
consequently, the restriction of o to L is the above automorphism . By
abuse of notation, we will write ¢ = ¢, . Then, using Corollary 11.37, we
obtain

a(§1(V-18)°) = R(j(bb), j(B)) = R(j(O"),j(b))
since b = b and bb = [2,8y/—14] = 20'. Thus
(12.31) o (7 (vV=14)°) = R(j([1,4V-14)), j([8,V—14])).

Lety = (‘1) "(}) , and note that §,(7) = f;(y7) by Corollary 12.19. Combining
this with (12.27), we get

R(r)° = f1(y7)° = R(j(y7/8), j(477))
= R(j([1,87]), j([4,7]))-
Evaluating this at 7 = /—14/2 and using (12.31), we obtain
o(f1(V-14)°) = fo(vV-14/2)°.
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If we take the cube root of each side, we see that
o (f,(V=14))) = (3f,(V-14/2)?

for some cube root of unity (;. It remains to prove that the cube root is 1.
From (12.16) we know that §,(7)f,(7/2) = V2, so that

(1232)  fi(vV=T4Y0(F(V=14/2)%) = (31 (V=14 fo(V~14/2)" = 2(;.

Since (v —14)2?1(\/—14)2) is fixed by o, it lies in K(v2), and hence
¢t € K(V2) = Q(v2,v/-7). This forces the root of unity to be 1, and
(12.30) is proved.

Now let a = fi(v/—14)?. From (12.32) we see that ao(a) =2, so that
a + (@) = a +2/a lies in K(V2). But a is clearly real, so that a +2/a €
Q(v/2), and furthermore, a and 2/a = o(a) are algebraic integers by The-
orem 12.24. It follows that

(12.33) a+ % =a+bvV2, abel.

We will use a wonderful argument of Weber to show that a and b are both
positive. Namely, (12.33) gives a quadratic equation for «, and since a is
real and positive (see the product formula for f;(7)), the discriminant must
be nonnegative, i.e.,

(a + bV2)* > 8.

Let 0y be a generator of Gal(L/K) (so o = ¢3). Then 01(v2) = —Vv/2, and
hence 5
o1(a) + =a—bV2.
1) o1 (a)

But ¢,(a) cannot be real, for then LN R = Q(a) would be Galois over Q,
which contradicts Gal(L/Q) ~ Dg (see Lemma 9.3). Thus the discriminant
of the resulting quadratic equation must be negative, i.e.,

(a —bV2)? < 8.

Subtracting these two inequalities gives
4abV'2 > 0,

so that a and b are positive since a > 0.
As a and b range over all positive integers, the resulting numbers a +
bv/2 form a discrete subset of R (by contrast, Z[v/2] is dense in R). Thus we

can compute a and b by approximating a + 2/a sufficiently closely. Setting
g = e~™14 (12.15) implies

_2__ _ 2 _ 1/1200 ny2
~ = (V=14/2)" = 24 E(Hq)-
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Applying the methods used in our class number 1 calculations, we see that
2qM/12 < 2 < 2g1/122002
a

and thus
q—l/lze—z.oozq <ca< q—1/12_

These inequalities imply that
2
@+ = g 12 + 2q'/1% ~ 2.6633 + .7509 = 3.4142,

with an error of at most 10~*. Compare this to the smallest values of a +
bv2, a,b > 0:
1+ V2224142 <2+ V2~ 3.4142 < 1+ 2v/2 ~ 3.8284.
It follows that & + 2/a = 2 + /2, and then the quadratic formula implies
o 2+\/2'12\/4—\/§——2= \/§+1i\}/27'E.
2

Since a & 2.6633 is the larger root, we have

o = fy(V-T4)? = ﬁ“*f; V21

and we can now compute 7,(v/—14):
16
(V=14 = ,(V=19)° +

(V=148
=a8+i—?=a8+(§-)4
_(V2Z+1+v2/-1 8+ Vitl-vava—1\'
V2 V2

=2 (323 +228V2 + (231 + 161v2)\/2v2 — 1) ,

where the last step was done using REDUCE. Cubing this, we get the for-
mula for j(v/—14) given in (12.1).

One corollary is that L = K(1/2v/2 — 1) is the Hilbert class field of K =
Q(v—14). This method of determining L is more difficult than what we did
in §5, but it’s worth the effort—the formulas are simply wonderful! These
same techniques can be used to determine j(v/—46) and j(v/—142) (see
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Exercise 12.25), and in [102, §144] Weber does 7 other cases by similar
methods.

The examples done so far represent only a small fraction of the singular
j-invariants computed by Weber in [102]. He uses a wide variety of methods
and devotes many sections to computations—the interested reader should
consult §§125, 128, 129, 130, 131, 135, 139, 143, and 144 for more examples.
We should also mention that in 1927, Berwick [4] published the j-invariants
(in factored form) of all known orders of class number < 3. For a modern
discussion of how to compute singular moduli, see Herz [55].

E. Imaginary Quadratic Fields of Class Number 1

We will end this section with another application of the Weber functions:
the determination of all imaginary quadratic fields of class number 1.

Theorem 12.34. Let K be an imaginary quadratic field of discriminant dg.
Then

h(dg) =1« dg = —3,—4,—7,-8,—11,-19,—43,—67,—163.

Remark. As we saw in Theorem 7.30, this theorem enables us to determine
all discriminants D with h(D) = 1.

Proof. This theorem was first proved by Heegner [52] in 1952, but his proof
was not accepted at first, partly because of his heavy reliance on Weber.
In 1966 complete proofs were found independently by Baker [3] and Stark
[96], which led people to look back at Heegner’s work and realize that he
did have a complete proof after all (see Birch [6] and Stark [98]). We will
follow Stark’s presentation [98] of Heegner’s argument.

The first part of the proof is quite elementary. Let dg be a discriminant
such that A(dg) = 1. Recall from Theorem 2.18 that A(—4n) = 1 if and only
if —4n = —4, —8, —12, —16 or —28. Thus, if dx =0 mod 4, then dg = —4
or —8 since dg is a field discriminant. So we may assume dg =1 mod 4,
and then Theorem 3.15 implies that there are 2#~! genera of forms of dis-
criminant dg , where p is the number of primes dividing dk . Since h(dk) =
1, it follows that g = 1, so that dx = —p, where p = 3 mod 4 is prime.

If p =7 mod 8, then Theorem 7.24 implies that

h(—4p) = 2h(-p) (1 - (:{3) %) =h(-p)=1,

and using Theorem 2.18 again, we see that p = 7.
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We are thus reduced to the case p =3 mod 8, and of course we may
assume that p # 3. Then Theorem 7.24 tells us that

h(~4p) = 2h(-p) (1 - (:213) %) = 3h(-p) =3.

This implies that Q(j(,/—p)) has degree 3 over Q. By the second part of
Theorem 12.24, we know that f(/=p)? € K(j(v/=p)), and since f(/=p)*
is real, we see that f(\/—Tﬁ)2 generates a cubic extension of Q.

Let 79 = (3 ++/=p)/2, and set a = (;3f,(79)>. We can relate this to
f(v/=P)? as follows. We know from (12.16) that

f1(270)f2(70) = V2,
and Corollary 12.19 tells us that

f1(210) = 1,3 + vV=p) = (& i (V=P) = (6 F(V=DP)-

These formulas imply that @ = 2/f(,/=p)?, and hence a generates the cu-
bic extension Q(f(y/—p)?). Note also that a* generates the same cubic ex-
tension.

Let’s study the minimal polynomial of a*. Since O = [1,79] and A(—p) =
1, we know that j(79) is an integer, and then 72(79) is also an integer by

Theorem 12.2. Since o4
_ fz('r()) + 16
72 (TO) fz (7-0)8 ’

it follows that a* = —f,(79)® is a root of the cubic equation
(12.35) x3 — 43 (19)x — 16 = 0.

This is the minimal polynomial of a* over Q.
However, a is also cubic over @, and thus satisfies an equation of the
form
x3+ax’+bx+c=0,

where a, b and c lie in Z since « is an algebraic integer. Heegner’s insight
was that this equation put some very strong constraints on the equation
satisfied by a*. In fact, moving the even degree terms to the right and
squaring, we get

(x3 + bx)? = (—ax? - ¢)?,

so that a satisfies
x® + (2b — a®)x* + (b? — 2ac)x* —c* =0,
Hence a? satisfies the cubic equation

X}text+fx+g=0, e=2b—a? f=0b—-2ac, g=-c?
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and repeating this process, we see that a! satisfies the cubic equation
X3+ 2f —e®)x? + (f? —2eg)x — g2

By the uniqueness of the minimal polynomial, this equation must equal
(12.35). Comparing coefficients, we obtain

2f —e?=0
(12.36) f*—2eg = —72(m0)
g? = 16.
The third equation of (12.36) implies g = 4, and since g = —c?, we have
g = —4 and ¢ = £2. However, changing @ to —a leaves a* fixed but takes

a,b,c to —a,b,—c. Thus we may assume ¢ = 2, and it follows that
72(70) = —f% — 8e = —(b* — 4a)’ — 8(2b—a?).

It remains to determine the possible a’s and b’s.
The first equation 2f = e? of (12.36) may be written

2(b? - 4a) = (2b— a?)’,

which implies that a and b are even. If we set X = —a/2 and Y = (b—
a?)/2, then a little algebra shows that X and Y are integer solutions of the

Diophantine equation
2X(X3+1)=Y?

(see Exercise 12.26). This equation has the following integer solutions:

Proposition 12.37. The only integer solutions of the Diophantine equation
2X(X3+1)=Y?are (X,Y) = (0,0), (—1,0), (1,£2), and (2,£6).

Proof. Let (X,Y) be an integer solution. Since X and X 3 + 1 are relatively
prime, the equation 2X (X3 + 1) = Y? implies that +(X3 + 1) is a square
or twice a square. Thus (X,Y) gives an integer solution of one of four Dio-
phantine equations. These equations, together with some of their obvious
solutions, may be written as follows:

() X3+1=2% (X,Z)=(-10), (0,£1), (2,13).

(i) X3+1=-2%2, (X,Z)=(-1,0).
(i) Wé+1=22%, (W,Z)=(1,%1).
(iv) X3+1=-22%, (X,2)=(-10).
To explain (iii), note that if X3 + 1 =222, then 2X (X* + 1) = Y? implies
that X = W2 for some W, which by substitution gives us Wé+1=2Z2.In
Exercises 12.27-12.29, we will show that the solutions listed above are all
integer solutions of these four equations. Once this is done, the proposition
follows easily.
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The integer solutions of equations (ii)—(iv) are relatively easy to find.
We need nothing more than the techniques used when we considered the
equation Y2 = X3 — 2 in Exercises 5.21 and 5.22. See Exercise 12.27 for the
details of these three cases.

The integer solutions of equation (i) are more difficult to find, and the
elementary methods used in (ii)-(iv) don’t suffice. Fortunately, we can turn
to Euler for help, for in 1738 he used Fermat’s technique of infinite descent
to determine all integer (and rational) solutions of (i) (see [33, Vol. I, pp.
56-58]). A version of Euler’s argument may be found in Exercises 12.28
and 12.29. This completes the proof of the proposition. Q.E.D.

Once we know the solutions of 2X (X3 + 1) = Y2, we can compute a, b
and hence 7,(79). This gives us the following table:

X |Y |a==-2X | b=4X%242Y | 12(m0) =
~(b? — 4a)* — 8(2b — a?)
0| 0 0 0 0
-1 0 2 4 —96
1] 2 -2 8 —5280
1| -2 -2 0 32
2| 6 —4 28 —640320
2| -6 —4 4 —960.

Note that these 42(79)’s are among those computed earlier in table (12.20).
Since j(Og) determines K uniquely (see Exercise 12.30), it follows that we

now know all imaginary quadratic fields of class number 1. This proves the
theorem. Q.E.D.

Note that Heegner’s argument is clever but elementary—the hard part
is proving that f(,/=—p)? lies in the appropriate ring class field. Thus Weber
could have solved the class number 1 problem in 1908! We should also
mention that there is a more elementary version of the above argument
which makes no use of the Weber functions (see Stark [98)).

F. Exercises

12.1. Show that g,(7), g3(7) and A(7) are real-valued when 7 is purely
imaginary. Hint: use Exercise 11.1.

12.2. Let F(q) =1+ ,2,a,q" be a power series which converges in a
neighborhood of the origin.

(a) Show that for any positive integer m, there is a unique power
series G(q), converging in a possibly smaller neighborhood of 0,
such that F(q) = G(q)™ and G(0) = 1.
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(b) If in addition the coefficients of F(q) are rational numbers,
show that the power series G(q) from part (a) also has ratio-
nal coefficients.

In this exercise we will prove that § = (¢ ~1) and T = (; ) generate

SL(2,Z). To start, let I be the subgroup of SL(2,7) generated by S
and T.

(a) Show that every element of SL(2,Z) of the form (25) or (25)

0d cd
lies in I'.
(b) Fix 7p € SL(2,Z), and choose 7y € T so that yy = (2 2) has the
minimal |c|.

(i) If a = 0 or ¢ = 0, then use (a) to show that 5y € T'.

(i) If ¢ # 0, then, of the 4's that give the minimal |c|, choose
one that has the minimal |a|. Use

Til(a b)=(aic *)
c d C *
to show that |a| > |c|, and then use
a b —C %
(e a)= (0 0)
c d a *
to show that a = 0. Conclude that 7 € T'.

(c) Use (a) and (b) to show that S and T generate SL(2,7).

In this exercise we will give generators for the following subgroups
of SL(2,7Z):

To(2) = {(Z Z) €SL(2,7): ¢ = 0 mod 2}
L2 = {(z Z) € SL(2,Z): b= 0 mod 2}

rQ2) = {(Z Z) ESL(Z,Z):bECEOmOdZ}.

Let I = (p7), A= (1) and B = (7).

(a) Modify the argument of Exercise 12.3 to show that —I, A% and
B generate Ty(2). Hint: let T be generated by —I, A% and B.
Given 7o € [y(2), choose 7 € T so that yyo = (*5) is minimal in

the sense of Exercise 12.3. If ¢ # 0, show that |a| < |c|, and then

use b
a a *
(0 )= (eaza )
c d ct2a x
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to prove that a = 0, which is impossible in this case.

(b) Show that —I, A and B? generate Ty(2)’. In the text, these gen-
erators are denoted —/7, U and V respectively.

(c) Adapt the argument of (a) to show that —I, A* and B? generate
I'(2).

12.5. This exercise is concerned with the properties of 72(7).

12.6.

12.7.

12.8.

12.9.

(a) Prove (12.6) by induction on the length of (4 Z) as a word in the
matrices S and T of Exercise 12.3.

(b) Use (12.6) to show that y2(7) is invariant under the group

f‘(3)={(z Z) :bECEOmOd3}.

- (2 o} )

and conclude that 9,(37) is invariant under Iy(9).

(d) Use (12.6) to show that the exact subgroup of SL(2,Z) under
which 7,(7) is invariant is

(c) Show that

b
{(a d) ESL(Z,Z):aEdEOmod3orbzcmod3}.
c

Complete the proof of part (ii) of Proposition 12.7 using the hints
given in the text.

Let O = [1,79] be an order of discriminant D in an imaginary qua-
dratic field, and assume that 79 = \/—m or (3 + \/—m)/2, depending
on whether D = 0 or 1 mod 4. Let O' = [1,37¢] be the order of index
3 in O. If 3}/ D, then prove that [1,7¢/3] is a proper fractional O'-
ideal. Hint: use Lemma 7.5.

Adapt the argument of Lemma 12.11 to show that

0P9 . ... ..
— 0.
2 (j(31),j(/3) #

Hint: it suffices to show that (12.12) cannot hold.

This exercise is concerned with the elementary properties of the We-
ber functions.

(a) Prove the product expansions (12.15).

(b) Prove the top line of (12.16). Hint: use the product exansions to
show that

(T (T)F(T) = V2n(7).
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(c) Prove the bottom line of (12.16). Hint: use the definitions.

12.10. Exercises 12.10, 12.11 and 12.13 are concerned with the Weierstrass
o-function. The basic properties of o(z; ) will be covered, though
we will neglect the details of convergence. For careful treatment
of this material, see Chandrasekharan [16, Chapter 1V}, Lang [73,
Chapter 18], and Whittaker and Watson [109, Chapter XX]. As in
the text, the o-function is defined by

oz;)=z [] (1_ i) 2/ w1/ /W)
weL-{0} w

where L = [1,7]. Note that g(z; 7) is an odd function in z. We will
write 0(z) instead of a(z; 7).
(a) Define the Weierstrass (-function ((z) (not to be confused with
Riemann’s) by ,
7'(2)

C(Z) = O'(Z) *

Using the definition of ¢(z), show that
1 1 1 =z
C(z)_'2+ Z (—_—z—w+5+ﬁ)'
(b) Show that the (-function is related to the p-function by the

formula
p(z) = —('(2).

(c) By (b), it follows that if w € L, then ((z + w)—((z) is a con-
stant depending only on w. Since L = [1,7], we define 7; and
72 by the formulas

=z +7)—-((2)
T2 =((z + 1)~ ((2).
Then prove Legendre’s relation
NaT — 1M = 27i.

Hint: consider [.((z)dz, where T' is the boundary, oriented
counterclockwise, of the parallelogram P used in the proof of
Lemma 10.4. By standard residue theory, the integral equals
27i by (a). But the defining relations for #; and 7, allow one
to compute the integral directly.

(d) We can now show that
0(z +7) = —eMC*T)g(2)

o(z+1) = —em@*Dg(2),
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(i) Show that
do(z+71) o(z+7)
dz o(z) " o(z) ’

and conclude that for some constant C,
0(z +7)= Ce"*g(2).

(ii) Determine the constant C in (i) by evaluating the above
identity at z = —7/2. This will prove the desired formula
for o(z + 7). Hint: recall that ¢(z) is an odd function.

(iii) In a similar way, prove the formula for o(z + 1).
12.11. The goal of this exercise is to prove the formula

o(z+w)o(z—w)

p(Z) - p(W) = 0'2(2)0'2(W)

Fix w ¢ L = [1,7], and consider the function

o(z+w)o(z—w)

1= = a2@ew)

(a) Show that f(z) is an even elliptic function for L. By Lemma
10.17, this implies that f(z) is a rational function in p(z2).

(b) Show that f(z) is holomorphic on C — L and that its Laurent
expansion at z = 0 begins with 1/22.

(¢) Conclude from (b) that f(z) = p(z) + C for some constant C,

and evaluate the constant by setting z = w. This proves the
desired formula.

12.12. Use the previous exercise to show that

"(7)

e, — ey =e MT/2

e2 — e3 — en2(7+1)/2

1
*(3)
e3 —_ el = enl(7+1)/2 2
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Hint: for e; — e, use the fact that

- (1;”) — (_ 1 “; T, 1) = M=+ 241/2) (__ 1 ;T)
— —m7)2 T+1
e 0'( 2 ).

The final fact we need to know about the o-function is its g-product
expansion

1 - (1-479.)(1 - q7/9:)
. — Tz /2 1/2 1/2 q'rql T
7= o II -g@

2mi
where ¢, = €2™" and q, = ¢*™2. To prove this, let f(z) denote the
right-hand side of the above equation.

(a) Show that the zeros of f(z) and g(z) are exactly the points of
L. Thus o(z)/f(z) is holomorphic on C - L.

(b) Show that o(z)/f(z) has periods L = [1,7].

(c) Show that ¢(z)/f (z) is holmorphic at z = 0 and takes the value
1 there.

(d) Conclude that 0(z) = f(z). Hint: use Exercise 10.5.

This exercise will complete the proof of the formulas (12.18) ex-
pressing e; — e in terms of 7(7) and the Weber functions.

(a) Use the product expansion from Exercise 12.13 to show that
o _]; 7]2/ 8 fZ(T)
2 27r (T

- (I_) _ emr’/8g—1/811(T) f1(1)?

2 e 77(7)2
T+1 1 2 f()?
— 1 me+reys,—1/81(7T)"
“( 2 ) 21 ¢ ETCoca

(b) Use (a) and the formulas from Exercise 12.12 to prove
ez —e1 = (1) (1)°
ez — ey = wn(7)*f;(1)°
e3 — ey = mon(1)*f(1)%.
This proves (12.18). Hint: use (12.16).

In this exercise we will complete the proof of Theorem 12.17. Re-
call from Exercise 10.8 that g2(7) = —4(e1e2 + e1e3 + eze3) and e
+ey; +e3=0.
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(a) Show that
3g2(T) = 4((e2 — €1)* — (e2 — e3)(e3 — e1)).

(b) The identity of part (a), together with the formulas for e¢; — ¢,
were used in the text to derive a formula for y,(7) in terms
of f(7). Find two other identities for 3g,(7) similar to the one
given in part (a), and use them to derive formulas for y,(7) in
terms of f;(7) and §,(7).

Use the formulas for y,(7) given in Theorem 12.17 to show that the
g-expansion of the j-function has integral coefficients. This proves
Theorem 11.8.

Complete the proof of Corollary 12.19.
Verify the calculations made in table 12.20.

Use Theorem 6.1 to determine the Hilbert class field of K =
Q(v/—105), and show that its maximal real subfield is Q(\/g, VS,
V7). Hint: use Theorem 3.22 to show that the genus field equals
the Hilbert class field in this case.

This exercise i1s concerned with the properties of the Weber func-
tion fi(7). Let I = (39), U= (7)) and V = (}3).
(a) Use Corollary 12.19 to show f(UT)® = f,(V'1)® = —if,(7)°.

(b) In Exercise 12.4 we proved that —/, U and V' generate [(2)".
Use induction on the length of v = (?5) € T)(2)" as a word in
—1I, U and V to show that

. _ 2
fl(,y,r)é — j—ac (1/2)bd +(1/2)b Cfl(,r)é'
In this exercise we will show how to discover the transformation

law for f;(7) proved in part (b) of Exercise 12.20. Let —/, U and
I be as in Exercise 12.20. We will be using the groups

rQ) = {(Z 2) €SL(2,7): b =c =0 mod 2}

F(8)={<Z Z) ESL(Z,Z):bECEOmod8}.

Note that I'(8) C T'(2) C Ty(2)*, and recall from Exercise 12.4 that

—I,U? and V generate ['(2).

(a) Show that I'(2) has index 2 in Ip(2)" with I and U as coset
representatives.
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(b) Show that ['(8) is normal in SL(2,7) and that the quotient
['(2)/T(8) is Abelian. Hint: compute [U?,V].
(c) We can now discover how f;(7)° transforms under y = (4 Z) €
I'(2). Write
A
v=x[JUu*v?,
i=1
andset A=Y ;_,a;and B=5Y;_ b;.
(i) Show that f,(y7)® = i=24-Bf,()°.
(i) Use (b) to show that 7 = U?4V® mod I'(8), which means

that
a b 1 2B .
= mod I'(8).
c d 2A 1+4AB

(iii) Use (ii) to show that ac =24 mod 8 and bd = 2B mod 8.
(iv) Conclude that for all vy € I'(2),

fl (,77.)6 _ i—ac—(1/2)bd f1(7)6-

(d) Now take 7= (?5) € [u(2)', 7 ¢ I'(2). By (a), we can write
v = U% for some 4 € I'(2). Then use (c) to show that

. e 2
(g7 = iac— (/Db +A/DE s (146,

Hint: observe that a> = 1 mod 4 in this case.
(e) To unify the formulas of (c) and (d), take 7 = (*}) € Ly(2)".
Show that
12, 0 mod4 7 €T'(2)
2 1P2mod4 ¢ T(2).
From here, it follows immediately that
fy (,77.)6 _ i—ac—(1/2)bd+(1/2)b2ch(,r)6

for all v € TH(2) .

12.22. Let O =[1,/—m] and O’ = [1,4/—m], where m > 0 is an integer
satsifying m = 6 mod 8. Note that O’ is the order of index 4 in O.
Let a=[4,1++/—m] and b = [8,\/—m].
(a) Show that a and b are proper fractional O’'-ideals. Hint: use
Lemma 7.5.

(b) Show that the class of a has order 4 in C(O’') and is in the
kernel of the natural map C(O') — C(O).

(c) Verity that ab = [8,—-2++/—m] and @ = [4,—-1 + /—m].
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12.23. In this exercise we will prove part (ii) of Theorem 12.24. We are
thus concerned with §f(/—m)?, where m =3 mod 4 is a positive
integer not divisible by 3. Let L denote the ring class field of the
order O = [1,y/—m].

(a) Show that §(/=m)® € L implies that L = K (§(~/—m)?).

(b) By Corollary 12.19, we have §(7)° = (3 f;(7 + 1)6. Use this to
prove that f(87)% is a modular function for Iy(64). Hint: show
that f,(7)® is invariant under

I(8) = {(Z Z) € SL(2,2): (Z Z) = ((1) (1)) mod 8}.

Since I'(8) is normal in SL(2,Z), this implies that f(7)° is also
invariant under I'(8).
(c) Use Proposition 12.7 and Lemma 12.11 to show that

f(V/=m)® = S(j([8,v—m]),j([1,8/=m]))

for some rational function S(X,Y) € Q(X,Y).

(d) Let O’ be the order [1,8,/—m]. Show that a = [8,2 + \/—m]
and b = [8/—m] are proper fractional O'-ideals. Then use
(c) to conclude that f(,/=m)® lies in the ring class field L'
of O'.

(e) Show that the extension L C L' has degree 8 and that under
the isomorphism C(O') ~ Gal(L'/K), the classes of the ideals
a and b map to generators g1 and g, of Gal(L'/L). Thus we
need to prove that f(,/—m)® is fixed by both ¢; and 0;.

(f) Using (c) and Corollary 11.37, show that

o1(f(vV=m)®) = S(j([4,3 + vV=m]),j([8,6 + V=m]))
oo(f(v=m)’) = S(((1,8V=m)), j([8, V=)
(this is where m = 3 mod 4 is used).
(8) Let 11 = (34) and 1, = (Y 7}). Then show that
fn)" = S(i((4,3 +71),j((8,6 + 1))
f(rr)® = SG((1,871),j([8,71))-

(h) Use Corollary 12.19 to show that f(7)° is invariant under both
71 and 7. Then (f) and (g) imply that f(y/=m)® is fixed by o
and o5, which completes the proof.

12.24. Let O =[1,v/—14] and O’ = [1,4/—-14]. By part (a) of Exercise
12.22, we know that b = [8 1/—14] is a proper fractional O’ ideal.
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Under the natural map C(O') — C(O), show that b maps to the
unique element of order 2 of C(O).

Compute j(v/—46) and j(v/—142). Hint: in each case the class
number is 4. Note also that 46 = 142 = 6 mod 8, so that part (i)
of Theorem 12.24 applies.

Let (a,b) be a solution of the Diophantine equation 2(b* — 4a) =
(2b — a?)*.

(a) Show that a and b must be even.

(b) If we set X = —a/2 and Y = (b — a®)/2, then show that X and

Y are integer solutions of the Diophantine equation 2X (X3 +
1)=Y2.

This exercise will discuss three of the Diophantine equations that
arose in the proof of Proposition 12.37. In each case, the meth-
ods used in Exercises 5.21 and 5.22 are sufficient to determine the
integer solutions.

(a) Show that the only integer solutions of X3+ 1= —Z 2 are
(X,Z) = (—1,0). Hint: work in the ring Z[i].

(b) Show that the only integer solutions of W®+1=2Z% are
(W,Z) = (+1,+1). Hint: work in the ring Z[w], w = €2™/3. The
fact that 3/ W2 + 1 will be useful.

(c) Show that the only integer solutions of X3+1=-2Z2 are
(X,Z) = (—1,0). Hint: work in the ring Z[v/-2].

Exercises 12.28 and 12.29 will present Euler’s proof [33, Vol. II, pp.
56-58] that the only rational solutions of X3 + 1 = Z? are (X,Y) =
(—1,0), (0,41) and (2,43). In this exercise we will show that there
are no relatively prime positive integers ¢ and b such that bc(c? —
3bc + 3b%) is a perfect square when ¢ # b and 3)c. The proof will
use infinite descent. Then Exercise 12.29 will use this result to study
X3+1=22
(a) Assume that ¢ and b are positive relatively prime integers such
that bc(c? —3bc + 3b%) is a perfect square, and assume also
that ¢ # b and 3fc. Show that b, ¢ and ¢ — 3bc + 3b* are rel-
atively prime, and conclude that each is a perfect square. Then
write ¢ —3bc + 3b%* = (2b—c)®, where n>0, m>0 and
gcd(m,n) = 1. Show that this implies

b _ 2mn-—3n

C m2 —3n2 °

There are two cases to consider, depending on whether 3/ m or
3| m.
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(b) Preserving the notation of (a), let’s consider the case 3/ m.
(i) Show that b = 2mn —3n? and ¢ = m? — 3n2.
(ii) Since c is a perfect square, we can write m?—3n2 =
Zn—m)?, where p>0, ¢>0 and ged(p,q) = 1.
(tlnow that p and ¢ may be chosen so that 3f p, and show
also that 2 2
m _ p°+3q
n 2pq

iii) Prove that

(i) P " b _ p?>-3pq+3q?

n? pqa
and conclude that pq(p% —3pq + 3¢?) is a perfect square.
Show also that p # q. Hint: use (i) and (ii) to show that
P = q implies ¢ = 3.

(iv) By (ii) and (iii) we see that p and ¢ satisfy the same con-
ditions as ¢ and b. Now prove that g < b, which shows
that the new solution is “smaller”. Hint: note that q | b, so
that ¢ < b unless ¢ = n = b. Use (i) and (ii) to show that
¢ = 3 in this case.

(c) With the same notation as (a), we will now consider the case
3| m. Then m = 3k, so that by (a),

b n? —2nk

c n2-3k2

Since 3)’ n, the argument of (b) implies that b = n? — 2nk and
¢ = n? 3k2 and since c is a perfect square, we can write n? —
3k? —( ~k — n)2 where p >0, ¢ >0 and ged(p,q) = 1. As in
(b), we may assume 3/ p, and we also have

n_p +3q

k 2pq
(i) Show that

b _p*-4pq+34 _ (p—q)(p—3q)
n2 p2 + 3q2 p2 + 3q2

9

and conclude that (p — q)(p —3q)(p? + 3¢?) is a perfect
square.

(ii) Let ¢ = |p — q| and u = |p — 3q|. Show that
(P — 9)(p - 39)(P* + 3¢%) = tu(u? - 3tu + 3¢2).

Show also that 3fu and that ¢t and u are positive and un-
equal.
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(iii) It follows from (i) and (i1) that u and ¢, divided by their
greatest common divisor, satisfy the same conditions as ¢
and b. Now prove that ¢t < b, so that the new solution 1S
“smaller”. Hint: consider the cases t=g—p andt = p —
g separately. In the latter case, note that p ln+vn*—3k2,
and that p = n + Vv n?> —3k? implies ¢ = k.

Thus, given ¢ and b satisfying the above conditions, we can always
produce a pair of integers satisfying the same conditions, but with
strictly smaller b. By infinite descent, no such ¢ and b can exist.

12.29. We can now show that the only rational solutions of X3+1=2°
are (X,Y) =(-1,0), (0,£1) and (2,£3). Let (X,Y) be a rational
solution, and write X = a/b, where b> 0 and ged(a,b) = 1. As-
sume in addition that a/b# —1, 0 or 2, and set ¢ =a +b. Our
goal is to derive a contradiction.

(a) Show that b(a> + b*) = be(c* —3bc + 3h%) is a perfect square
and that b and ¢ are relatively prime, positive, and unequal.

(b) It follows from Exercise 12.28 that 3 | c. Then ¢ = 3d and 3/b.
Show that bd(b*> — 3bd + 3d*) is a perfect square, and use Ex-
ercise 12.28 to show that b =d. This implies b =d =1, and
hence ¢ = 3. Then a/b =2, which contradicts our initial as-
sumption.

12.30. If K and K' are imaginary quadratic fields and j(Ok) = j(Ok'),
then prove that K = K'. Hint: use Theorem 10.9.

§13. THE CLASS EQUATION

Now that we have discussed singular j-invariants and computed some exam-
ples, it is time to turn our attention to their minimal polynomials. Given an
order O in an imaginary quadratic field K, Ho(X) will denote the monic
minimal polynomial of j(O) over Q. Note that Ho(X) has integer coetfi-
cients since j(©) is an algebraic integer. The equation Ho(X) = 01is called
the class equation, and by abuse of terminology we will refer to Hp (X)) as
the class equation. Since O is uniquely determined by its discriminant D,
we will often write Hp(X) instead of Ho(X).

For an example of a class equation, consider the order Z[v/—14] of dis-
criminant —56. It’s j-invariant is j(v/—14), which we computed in (12.1).
Thus the minimal polynomial of j(v/—14) is

(13.1)
H_ss(X) = X*—28.19.937.3559 X% + 2" 251421776987 X *

+2%.3.11°.19.21323 X + (25 112-17-41)’,
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where the coefficients have been factored into primes. Note that the con-
stant term, being the norm of j(v/—14) = 12(v/—14)?, is a cube by Theorem
12.2.

The first part of §13 will describe an algorithm for computing the class
equation Hp(X) for any discriminant D. We have a special reason to be
interested in this question, for by Theorem 9.2, the polynomlal H_4,(X)
gives us the criterion for when a prime is of the form x2 + ny?. Thus our
algorithm will provide a constructive version of Theorem 9.2. In the second
part of §13, we will discuss some more recent work of Deuring, Gross and
Zagier on the class equation. We will see that there are strong restrictions
on primes dividing the discriminant and constant term of the class equation.
The small size of the primes appearing in the constant term of (13.1) is thus
no accident.

A. Computing the Class Equation

We will begin by giving a more precise description of the class equation:

Proposition 13.2. Let O be an order in an imaginary quadratic field K, and
let a;, i = 1,...,h be ideal class representatives (so that h is the class number).
Then the class equation is given by the formula

h
Ho(X) = [J(X - j(a)).
i=1

Proof. This result is an easy consequence of Corollary 11.37 (see Exercise
13.1), but there is a more elementary argument which we will now give.
By Theorem 11.1, K(j(0O)) is the ring class field of O. Thus [K(j(O)):
K] = h, and since j(O) is real, it follows that [Q(j(O)): Q] = h. This shows
that Ho(X) has degree h. Now let a be a root of Ho(X), and let o be an
automorphism of C that takes j(O) to a. In the proof of Theorem 10.23
we showed that ¢(j(O)) = j(a) for some proper fractional O-ideal a (see

(10.26)). Hence every root of Ho(X) is also a root of H; (X — j(a;)), and
since both polynomials are monic of degree h, they must be equal. Q.E.D.

An important consequence of this proposition is that Ho(X) is the min-
imal polynomial of j(a), where a is any proper fractional O-ideal.

The algorithm we will present for computing Ho(X) uses the theory
of complex multiplication, and in particular, the polynomial &,,(X, X ob-
tained by setting X =Y in the modular equation plays an important role.
The reason for this is the following observation:

Lemma 13.3. Let m > 1. If O has a primitive element of norm m, then the
class equation Hy(X) is an irreducible factor of ®,(X,X). Furthermore,
every irreducible factor of ®,,(X,X) arises in this way.
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Proof. Let a € O be a primitive element of norm m. Corollary 11.27 tells
us that a©® C O is a cyclic sublattice of index m, and it follows that

0 = &,,(j(a0),j(0)) = ®m(j(O), j(0)).

Thus j(O) is a root of ®,,(X,X ), which implies that its minimal polynomial
Ho(X) is a factor of &,(X,X).

To show that every irreducible factor of ®,(X,X) is a class equation,
suppose that &,,(3,8) = 0. Then Theorem 11.23 implies that § = j(L) =
j(L"), where L' C L is a cyclic sublattice of index m. By Theorem 10.9,
L' = aL for some complex number «, and then « is primitive of norm m
by Corollary 11.27. Thus a ¢ Z, so that L has complex multiplication by a.
By Theorem 10.14, this means that up to homothety, L is a proper frac-
tional O-ideal for some order O in an imaginary quadratic field. Then § =
j(L) has Ho(X) as its minimal polynomial, and hence Ho(X) is the corre-
sponding irreducible factor of ®,,(X,X). This proves the lemma. Q.E.D.

The next question is, what power of Ho(X) appears in the factorization
of ®,(X,X)? The answer involves the number r(O, m), which is defined
as follows: given an order O in an imaginary quadratic field and a positive
integer m, set

r(O,m) = |{a € O : a is primitive, N(a) = m}/O%|

where the units O* act by sending a to ea for € € O*. It is easy to see that
r(O, m) is finite, and for a given m, there are only finitely many orders with
r(O, m) > 0 (see Exercise 13.2). Then the following theorem tells us how to
factor ¢,,(X,X):

Theorem 13.4. If m > 1, there is a constant c,, € C* such that

B(X,X) = cm | [ Ho(X)©™.
o

Proof. Fix an order O, and pick a number 7y in the upper half plane such
that O = [1,79]. To prove the theorem, it suffices to show that j(O) = j(7o)
is a root of ®,,(X, X) of multiplicity r(O,m).

We begin by studying the multiplicity of j(7o) as a root of ®,.(X, j(70))-
Using the standard factorization

®m(X,j(10)) = H (X — j(070)),
geC(m)
we see that

Em(X,j()) = (X —jm) I X -,

j(aT0)#j(T0)
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where

(13.5) r=|{od € C(m):j(or) = j(10)}|

Thus j(79) is a root of multiplicity r of ®,,(X,j(70)).

We will next show that the number r of (13.5) is the multiplicity of j(7o)
as a root of &,(X,X). To see what’s involved, suppose that we have a
polynomial F(X,Y) and a number X, such that F(Xy,Xo) = 0. Then X is
a root of both F(X,X) and F(X,Xy), but in general, the multiplicities of
these roots are different (see Exercise 13.3 for an example). So it will take
a special argument to show that j(7p) has the same multiplicity for both
®,,(X,X) and ®,,(X, j(70)). The basic idea is to show that

lim —m(h¥)
u—j(r0) ®m (U, j(10))

is nonzero, which will force the multiplicities to be equal (see Exercise
13.3). To study this limit, note that

. Pm(uu) . Pwm(j(7),)(7))
u—lg'](nro) @, (1, j(70)) A, ®m(Jj(7),J(T0))

. i = j(oT)
71‘_‘330061;{”) i) = j(omo)

It suffices to compute the limit of each factor individually, and note that
if j(70) # j(0T), then the limit of the corresponding factor is 1. Thus it
remains to study the limit

=)
(136) A S = i(omo)

when o € C(m) satisfies j(79) = j(o7o).

The equality j(79) = j(o79) implies that there is some 7 € SL(2,Z) such
that 079 = y79. If we set & =y~ 1, then & fixes 7o. Note also that det(d) =
m and that the entries of ¢ are relatively prime. Using 7, the limit (13.6)
can be written

j(n)— (@)
A T = (o)

Consider the Taylor expansion of j(7) about 7 = 7y:

M) =j@m)+ar(T -7 +---, ar#0.
Substituting 7 for 7, we get the series

j(@T) = j(10) + ar (67 —To)k + .-,
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and then one computes that

J(1)—j(@T) _ ak((T—To)" —(67—10)") + ...
J(1)—j(70) ap(T—To) + -

Since

it follows that the limit (13.6) equals 1—'(79)*, and thus we need to prove
that

(13.7) &' (ro)* # 1,

where k is the order of vanishing of j(7)— j(7o) at 7.
If we write & = (“5), then an easy computation shows that

! _ m
7= Crrdp

Note also that ¢ # 0 since ¢ fixes 79 (see Exercise 13.4). Now suppose that
j(10) # 0 or 1728. Then, by part (iv) of Theorem 11.2, it follows that k =1,

so that (13.7) reduces to
1,
(CT() + d)?' 7
which is obvious since ¢ # 0 and 7 is not a real number. When j(7o) =

1728, we can assume that 79 = i (recall that j(i) = 1728), and then Theorem
11.2 tells us that & = 2. Thus if (13.7) failed to hold, we would have

m?

(ci + )}

which implies that ¢ = £1/m and d = 0 (see Exercise 13.4). Then (i) =i
tells us that a = 0 and b = Fy/m. So either ¢ doesn’t have integer entries
(when m is not a perfect square), or the entries are integers with a common
divisor (since m > 1). Both cases contradict what we know about 4, so that
(13.7) holds when j(7y) = 1728. The case when j(7o) = 0 is similar and is
left to the reader (see Exercise 13.4).

We should mention that the standard treatment of (13.6) in the litera-
ture (see Deuring [24, §12] or Lang [73, Appendix to §10]) seems to be
incomplete.

We have thus shown that the multiplicity of j(79) as a root of &,,(X,X)
is

=1,

r=\|{oceC(m):jlor) = j(70)};
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and it remains to show that r = r(O,m), where
r(O,m) = |{a € O : «a is primitive, N(a) = m}/O"|.

To prove the desired equality, we will construct a map a+— ¢. Namely,
if a € O is primitive of norm m, then by Corollary 11.27, aO is a cyclic
sublattice of O of index m, and since O =[1,79], Lemma 11.24 implies
that there is a unique ¢ = (&%) € C(m) such that a© = d[1,07]. Then o
satisfies j(079) = j(70), and note also that if € € O*, then €a maps to the
same ¢ that a does. Thus we have constructed a well-defined map

{a € O:a is primitive and N(a) = m}/O*
— {0 € C(m): j(om) = j(70)}-

This map is easily seen to be bijective (see Exercise 13.5), which proves that
r = r(O,m). This completes the proof of Theorem 13.4. Q.E.D.

Besides knowing the factorization of ®,,(X,X), its degree is easy to
compute:

Proposition 13.8. If m > 1, then the degree of ®,,(X,X) is

$(ged(a, m/a)) + p(v/m),

2 Z gcd(a m/a)

ajm

a>\/m

where ¢ is the Euler ¢-function and ¢p(/m) =0 when m is not a perfect
square.

Proof. The proof of this proposition is given in Exercise 13.6. Q.E.D.

If we write r(O,m) as r(D,m), where D is the discriminant of O,
then Proposition 13.8 and Theorem 13.4 allow us to express the degree of
®,,(X,X) in two ways. This gives us the following corollary, which is one
of Kronecker’s class number relations:

Corollary 13.9. If m > 1, then

> r(D,mi(D) =2 Z gcd(a iy P ed(@m/ ) + ¢(/m).

D a|m

a>/m

Q.E.D.

To illustrate the above theorems, let’s study the case m = 3. There are
only four orders with primitive elements of norm 3, namely Z[w], Z[v 3],
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Z[v-2] and Z[(1 + +/—11)/2], and the corresponding r(D,3)’s are 1, 1, 2
and 2 respectively (see Exercise 13.7). Then Theorem 13.4 tells us that

(13.10) ®3(X,X) = +H_3(X)H_12(X)H_g(X Y H_11(X)?,

and since ®3(X, X ) has degree 6 by Proposition 13.8, we get the following
class number relation:

6 = h(—3) + h(—12) + 2h(—8) + 2h(—11).

This equation implies that all four class numbers must be one.
We can work out (13.10) more explicitly, for we know ®3(X,Y) from
(11.22). Setting X =Y gives us

®3(X,X) = —XC + 4464 X3 + 2585778176 X * + 17800519680000 X >
— 769939996672000000 X % + 3710851743744000000000,

and factoring this over Q, we obtain
®3(X,X) = —X (X — 54000)(X — 8000)*(X + 32768)°.

However, in §§10 and 12, we computed the j-invariants j((1+v—-3)/2) =
0, j(v—2) = 8000 and j((1+ v—11)/2) = —32768. Thus we recognize three
of the above four factors, and it follows that the fourth must be H_12(X),
ie.,

H_13(X)= X — j(vV-3) = X — 54000.

This proves that j(v/—3) = 54000.

Let’s now turn to the general problem of computing a given class equa-
tion Hp(X). Since ¢,,(X,X) will have many factors, we need to know
which one is the particular Hp(X) we’re interested in. The basic idea is to
use multiplicities to distinguish the factors we seek. In particular, the fac-
tors of multiplicity one play an especially important role. Let’s define the
polynomial

Emi(X,X)= [ Ho(X).
r(D,m)=1

By Theorem 13.4, we know that ®,, (X, X) is the product of the multiplic-
ity one factors of &,,(X,X). We can describe ®,,1(X, X) as follows:
Proposition 13.11. If m > 1, then ®,,1(X, X ) equals

H_4(X)H_g(X), if m=2
Hom(X)H-sm(X), if m=3mod4and m # 3k2, k > 1
H_im(X), ifm>2 m#3mod4or m=3k? k> 1
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Proof. Let’s first show that the Hp(X)’s listed above are factors of mul-
tiplicity one of ¢,,(X,X). Since ++/—m are the only primitive norm m
elements of Z[\/—m], it follows that H_4,,(X) is a factor of multiplicity 1.
When m = 2, the elements of norm 2 in Z[i] are £1 % i, which are all asso-
ciate under Z[i]*. Thus H_4(X) is also a factor of multiplicity one. Finally,
when m = 3 mod 4 and m # 3k?, k > 1, we need to consider the multiplic-
ity of H_,,(X). The order Z[(1 + \/—m)/2] has at least two primitive norm
m elements, namely ++/—m. To see if there are any others, suppose that
a+b(l1++/—m)/2 is also primitive of norm m. Then b # 0 and, taking
norms,
4m = (2a + b)* + mb*.

Thus b= +1 or £2, and b = £2 leads to the solutions we already know.
So what happens if b = £1? This clearly implies 3m = (2a + b)?, so that
m = 3k?, and since k > 1 is excluded by hypothesis, we see that m =3,
Here, b = 1 leads to 4 more solutions, but since |Z[(;]*| = 6, we still get
a multiplicity one factor.

The next step is to show that these are the only factors of multiplicity
one. So suppose that r(O,m) =1 for some order O. For simplicity, let’s
also assume that O* = {£1}. Given a € O primitive of norm m, note that
+a and +a are also primitive of the same norm. Then r(O,m) = 1 implies
that @ = +a. But @ = «a is easily seen to be impossible (a is primitive and
m > 1), so that @ = —a. This means that a is a rational multiple of VD,
where D is the discriminant of O. The argument now breaks up into two
cases.

If D =0mod 4, then O =[1,v/D/2], so that a, being primitive, must
be +v/D/2. This implies that m = N(a) = —D/4, hence D = —4m. The
corresponding factor is thus H_4,(X), which is one of the ones we know.

If D = 1 mod 4, then O = [1,(1 + vD)/2], so that a = a + b(1 + VD)/2.
Since « is a multiple of /D, we have 2a + b =0, and since a and b are
relatively prime («a is primitive), we have b = £2. This means that a =
++/D, so that m = N(a) = —D. Thus D = —m, and this will be the other
case we know once we prove that m # 3k?, k > 1. So suppose that m has
this form.. Then D = —3k?, which means that © is the order of conductor
k in Z[(;]. Note that O* = {£1} since kK > 1. One easily computes that
+k+/-3 and +k(1-(;) are primitive elements of O of norm 3k% = m,
which contradicts our assumption that r(O,m) = 1.

It remains to consider the case when O* # {£1}. We leave it to the
reader to check that when O = Z[(;] (resp. O = Z[i]), r(O,m) = 1 implies
that m = 3 (resp. m = 2) (see Exercise 13.8). This completes the proof of
Proposition 13.11. Q.E.D.

It is now fairly easy to compute Hp(X) using the &,,(X,X)’s. In the
discussion that follows, m will denote a positive integer, and for simplicity
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we will assume m > 3. It turns out that there are three cases to con-
sider.
If m # 3 mod 4 or m = 3k?, then Proposition 13.11 tells us that

H—4m(X) = (I’m,l(X,X),

so that once we factor &,,(X, X) into irreducibles, we know H_4,,(X).
Next, if m =3 mod8 and m # 3k?, then Proposition 13.11 tells us
that

(13.12) Hem(X)H-tm(X) = ®m1(X, X).

However, since m > 3 and m = 3 mod 8, it follows from Corollary 7.28 that
h(—4m) = 3h(—m), so that H_4,(X) has greater degree than H_, (X).
Thus, factoring $,,(X, X ) determines both H_,,(X) and H_4,,(X).

Finally, if m = 7 mod 8, then (13.12) still holds, but this time more work
is needed since H_,,(X) and H_4,,(X) have the same degree by Corollary
7.28. We claim that

(13.13) H_py(X) = ged(@m1(X, X ), & +1y/4(X, X))

To see this, first note that H_,,(X) divides @, +1)/4(X, X) since in the or-
der of discriminant —m, (1++/—m)/2 is primitive of norm (m + 1)/4. If
we turn to the order of discriminant —4m, there are no primitive elements
of norm (m + 1)/4 (see Exercise 13.9), and (13.13) follows. Thus, to de-
termine H_,,(X) and H_4,(X), we need to factor both ¢,,(X,X) and
(I’(m +1)/4(X,X) into irreducibles.

Using the above process, it is now easy to compute any Hp(X), as-
suming that we know the requisite modular equation (or equations). Some
simple examples are given in Exercise 13.10.

B. Computing the Modular Equation

To complete our algorithm for finding the class equation, we need to know
how to compute the modular equation &,,(X,Y) = 0. This turns out to
be the weak link in our theory, for while such an algorithm exists, it is so
cumbersome that it can be implemented only for very small m.

The first step in computing ®,,(X,Y) is to reduce to the case when m is
prime. This is done by means of the following proposition:

Proposition 13.14. Let m > 1 be an integer, and set ¥(m)=m]],,,(1+
1/ p), which is the degree of ®,,(X,Y) as a polynomial in X .
(i) If m = mymy, where my and mj are relatively prime, then

\I’(mz)

(I’m(X,Y)= H @ml(X,fi),
i=1
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where X = §; are the roots of ®,,,(X,Y) = 0.
(ii) If m = p®, where p is prime and a > 1, then

¢ a-1
L (8 .,
@pa—Z(X, Y)p ’
®,,(X,Y) =« o
[ (X =Y)pt1l >’ ’
where X = ¢; are the roots of ®,.-1(X,Y) = 0.
Proof. See Weber [102, §69]. Q.E.D.

Now let p be a prime. To compute ®,(X,Y), we will follow Kaltofen
and Yui [66] and Yui [110]. First note by parts (iii) and (v) of Theorem
11.18, we have

P,(X,Y)=2,(Y,X)
®,(X,Y)=(XP-Y)(X -YP)mod pZ[X,Y],

and we also know that ®,(X,Y) is monic of degree ¥(p)=p+1 as a
polynomial in X . Thus we can write ®,(X,Y) in the following form:

(13.15)
(XP-Y)X-YP)+p > X'Yi+p > X'V +xiyh),
0<i<p 0<i<j<p

where the coefficients ¢;;’s are integers. We will use the g-expansion of the
Jj-function to obtain a finite system of equations that can be solved uniquely
for the ¢;;’s.

By the definition of the modular equation, we have the identity

@,(j(p7),Ji(1)) = 0.

Substituting the g-expansions for j(7) and j(pT) into this equation and us-
ing (13.15), we obtain

(13.16)
0=3j(pT)? — j(TNU(pT) = Ji(T)F)
+p ) caj(pryiaY +p Y G iy + j(pr) j(r)).

0<i<p 0<i<j<p
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If we equate the coefficients of the different powers of g, we get an infinite
number of linear equations in the variables c;j. We can reduce to a finite
number of equations as follows:

Proposition 13.17. The finite system of linear equations obtained by equating
coefficients of nonpositive powers of q in (13.16) has a unique solution given
by the coefficients c;j of the modular equation.

Proof. Since the modular equation provides one solution, it suffices to
prove uniqueness. Using (13.15), a solution of these equations gives a poly-
nomial F(X,Y) with the following three properties:

(i) F(X,Y) is monic of degree p+1in X.

(i) F(X,Y)=F(Y,X).
(iii) limimr 0 F(j(p7),j(7)) = 0.
To explain the last property, note that the g-expansion of F(j(p7),
j(7)) contains no nonpositive powers of g since F(X,Y) comes from a
solution of our finite system of equations. Since ¢ — 0 as Im7 — oo, (iii)
follows.

We claim these properties force F(X,Y) = ®,(X,Y), which will prove
uniqueness. The idea is to study F(j(pT7),j(7)), which is a modular function
for Ty(p). We will first show that F(j(pT),j(7)) vanishes at the cusps, which
means that

(13.18) : lim F(j(py7),j(y7))=0  for all y € SL(2,2).
m7-—00
Using (11.12), this is equivalent to showing
1 lim F(j(o7),j(t))=0  for all ¢ € C(p).
m7T-—00
When o = (£9), we’re done by (iii), and when ¢ # (£ 1), o must be of the

form ((1”‘,) since p is prime. If we set u =07 = (7 +i)/p, then 7 = pu— i,
and

lim_F(j(or),j(r) = lim _F(j(w),i(pu— D)
= lim_F(j(u),i(pw)
= _lim_F(j(pu),j(w)) =0,

where we used (ii) and (iii) above. This proves (13.18).

Thus F(j(pT),j(7)) is a holomorphic modular function for Ij(p) which
vanishes at the cusps. In the case of modular functions for SL(2,7), we
proved in Lemma 11.10 that such a function is zero, and the proof ex-
tends easily to the case of Iy(p) (see Exercise 13.11). This shows that
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F(j(pT1),j(1))=0,s0 that j(pT) is a root of F(X,j(7)) and ®,(X, j(7)).
Since the latter is irreducible over C(j(7)), it must divide F(X,j(7)). Both
F(X,Y) and ®,(X,Y) are monic of the same degree, and hence they must
be equal. Q.E.D.

Looking at the q-expansions for j(7) and j(pT), the most negative power

of g in (13 16) is q -P'~P and it fo]lows that the system of equatlons de-
scribed in Proposition 13 17 has p? + p + 1 equations in the (p +3p +
2)/2 unknowns c;;. With some cleverness, one can reduce to p® + p equa-
tions in (p? + 3p)/2 unknowns (see Yui [110]). These equations have been
written down explicitly by Yui [110], though the resulting expressions are
extremely complicated. For a discussion of the computational aspects of
these equations, see Kaltofen and Yui [66].

We are not quite done, for our equations for ¢,(X,Y) involve the g-
expansions of j(7) and j(p7). Hence we need to calculate those coefficients
of the g-expansions which contribute to negative powers of ¢ in (13.16). It
suffices to do this for j(7), and because the most negative power of ¢
in (13.16) is q‘PZ‘P , we need only the first p? + p coefficients of the g-
expansion of the j-function. In §21 we found some nice formulas for

g2(7)?
j(r)=1728 A('r)

but to get the g-expansion, we need series expansions of the numerator and
denominator. For g,(7), we use the classical formula

212 (1+Za (n)q" )

where o3(n) = d|n d? (see Lang [73, §4.1] or Serre [88, §VI1.4.2]), and for
A(T), we know from Theorem 12.17 that

g27) =

A(r) = 2m)2q [J(1 - ¢™)*.
n=1

This is still not a series, but if we use Euler’s famous identity

H(l q )_ Z qn(3n+1)/2

n=—00

(see Hardy and Wright [48, §19.9]), then it becomes straightforward to write
a program to compute the g-expansion of j(7). A description of how to do
this is in Hermann [53] (he also gives an alternate approach to calculating
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the modular equation), and one finds that the first few terms of the g-
expansion are

j(r) = % + 744 + 196884 q + 21493760 ¢* + 8642999704>

+ 20245856256 ¢* + 333202640600g° + - - - .

These formulas also give a second proof that the g-expansion of j(7) has
integer coefficients (see Exercise 13.12).

The conclusion of this rather long discussion is that for any integer m >
0, we can compute ®,,(X,Y), which then gives us ®,,(X,X) by setting
X =Y. There are known algorithms for factoring ®,,(X,X) into irreduc-
ibles, and then the discussion following Proposition 13.11 shows how to
compute Hp(X). We have thus proved the following theorem:

Theorem 13.19. Given an order O in an imaginary quadratic field, there is
an algorithm for computing the class equation Ho(X). Q.E.D.

The problem with this theorem is that our algorithm for computing
Ho(X) requires knowing ®,,(X,Y). Modular equations are extremely com-
plicated polynomials and are difficult to compute. We saw in (11.22) that
®3(X,Y) is very large, and things get worse as m increases. For example,
the printout of ®11(X,Y) takes over two single-spaced pages, and some
of the coefficients have over 120 digits (see Kaltofen and Yui [66]). In
general, Cohen [18] proved that the maximum of the absolute values of
the coefficients of ®,,(X,Y) is asymptotic to exp(6¥(m)log(m)), where
¥(m)=m]],,,(1+1/p), so that the growth is exponential in m. Hence
the above algorithm is not a practical way to compute class equations.

Recently, a more efficient approach to computing Hp(X) has been de-
veloped by Kaltofen and Yui [65]. The basic idea is to compute Hp(X)
directly from the formula

h
Hp(X) = [[(X - j(a:)).
i=1

We know how to find the £ = h(D) reduced forms of discriminant D, and
then the a;’s can be taken to be the proper O-ideals corresponding to the
reduced forms via Theorem 7.7. Since Hp(X) has integral coefficients, we
need only compute j(a;) numerically to a sufficiently high degree of preci-
sion, and the formulas for j(7) given in §12 are ideal for this purpose. For
an example of how this works, consider the case of discriminant D = —71.
Here, the class number is A(—71) = 7, and the above process shows that
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the minimal polynomial of j((1 ++/—71)/2) is
H_n(X)=X"+5-7-31-127-233-9769 X

—2.5.7-44171287694351 X
+2-3.7-2342715209763043144031 X *

(13.20) —3.7-31-1265029590537220860166039 X 3
+2-7-113. 67-229- 17974026192471785192633 X 2
—7-11%-17° . 1420913330979618293 X
+(113-172.23-41-47.53)°

(This example was taken from the preliminary version of [65]—all primes
< 1000 were factored out of the coefficients.) Note that the constant term
is a cube, as predicted by Theorem 12.2.

We can apply the algorithm of Theorem 13.19 to give a constructive ver-
sion of Theorem 9.2, but before we do this, we need to learn about some
of the recent work of Deuring, Gross and Zagier on the class equation.

C. Theorems of Deuring, Gross and Zagier

In 1946 Deuring [25] proved a remarkable result concerning prime divisors
of the difference of two singular moduli. To state Deuring’s theorem pre-
cisely, let @1 and O, be orders in imaginary quadratic fields K; and K,
respectively, and for i =1, 2, let a; be a proper fractional O;-ideal. Then
we have:

Theorem 13.21. Let L be a number field containing j(a1) and j(az), and let
‘B be a prime of L king over the prime number p. When K, = K,, assume
in addition that p divides neither of the conductors of Oy and O,. If j(a;) #
j (az), then

. . p splits completely
j(a1) = j(az) mod P = {

in neither K, or K,.

Proof. The proof uses reduction theory of elliptic curves. See Deuring [25]
or Lang [73, §13.4]. Q.E.D.

We can use this theorem to study the constant term and discriminant of
the class equation:

Corollary 13.22. Let D < 0 be a discriminant, and let p be prime.

(i) If p divides the constant term of Hp(X) and Q(VD) # Q(V/=3), then
(D/p) # 1 and either p =3 or p =2 mod 3.
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(ii) If p divides the discriminant of Hp(X), then (D/p) # 1.

Proof. Let ay,...,a5, h = h(D), be ideal class representatives for the order
of discriminant D. To prove (i), note that the constant term of the class
equation is

h
C = £][[i(a)
=1

If p| C, then in some number field L, there is a prime P containing p that
divides some j(a;). Since

j(ai) = j(a:) = 0= j(a:) = j((1+ V=3)/2),

we know by Theorem 13.21 that p splits in neither Q(v'D) nor Q(v/=3),
and (i) follows immediately.
To prove (ii), note that the discriminant of Hp(X) is

disc(Hp(X)) = [ [((a:) - j(aj))*.

i<j

Thus, if p | disc(Hp(X)), then some P lying over p divides some j(a;)—
j(a;). If pf D, then Theorem 13.21 implies that p doesn’t split in Q(v/D),
and (D/p) = —1 follows. If p|D, then (D/p) =0, so that (D/p)# 1 in
either case. Q.E.D.

One of our original motivations for studying complex multiplication
came from the question of when a prime can be written in the form x2 +
ny?. Using the class equation, we can now prove a constructive version of
our basic result, Theorem 9.2:

Theorem 13.23. Let n be a positive integer. Then there is a monic irreducible
polynomial f,(X) of degree h(—4n) such that for an odd prime p not dividing
n,
) ) (-n/p)=1and f,(X)=0mod p
p=Xx°+ny* <
has an integer solution.

Furthermore, there is an algorithm for finding f,(X).

Proof. The order of discriminant —4n is O = [1,./—n], so that by Theo-
rem 11.1, j(v/—n) is a real algebraic integer and is a primitive element
of the ring class field of O. Since H_4,(X) is the minimal polynomial of
j(v/—n), we can set f,(X) = H_4(X) in Theorem 9.2, and then the de-
sired equivalence holds for primes dividing neither —4n nor the discrim-
inant of H_4,(X). But when a prime divides the discriminant, Corollary
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13.22 tells us that (—4n/p) # 1. Since both sides of the desired equiva-
lence imply (—n/p) = 1, the discriminant condition is superfluous. Finally,
by Theorem 13.19, there is an algorithm for finding H_4,(X), and the the-
orem is proved. Q.E.D.

From a computational point of view, this result is not ideal. The polyno-
mials H_4,(X) are difficult to compute, and as indicated by H_s¢(X) and
H_7 (X)) (see (13.1) and (13.20)), they are excessively complicated. The real
value of Theorem 13.23 is the way it links the ideas of class field theory and
complex multiplication to the elementary question of when a prime can be
written in the form x2 + ny?2.

Deuring’s study of j(a;) — j(a;) has prompted some recent work of Gross
and Zagier [46] which determines exactly which primes divide such a dif-
ference. Their results apply only to field discriminants, but one gets very
complete information in this case. Let di and d; be the discriminants of
imaginary quadratic fields K; and K, respectively. We will assume that d;
and d; are relatively prime. Then set

hy Ry 4/wiwy
J(d1,d2) = (H [1G@) - f(bj))) ,

i=1j=1

where ay,...,a;, are ideal class representatives of Ok, by,...,b,, are ideal
class representatives of Ok,, and wy = |O% |, w2 = |Ok,|. Note that J(d,,

d) is an integer when di,d; < —4, and that J (dl,dz)2 is always an integer
(see Exercise 13.13).

To state Gross and Zagier’s formula for J(d1,d;)?, we will need functions
€(n) and F(m), which are defined as follows. First, if p is a prime, we set

(0) = { (di/p) if pfdy
(d2/p) if pfda.

The reader can check that this is well-defined whenever (di1d2/p) # —1 (see
Exercise 13.14). Then, if n = [];_, p¥, we set

e(n) = H e(pi)*,
i=1

where we assume that (d1dz/p;) # —1 for all i. Finally, F(m) is defined by

the formula ,
F(m) = H n€n),

nn =m

nn! >0

This is well-defined when all primes p dividing m satisfy (d1d>/p) # —1.
We can now state the main theorem of Gross and Zagier [46]:
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Theorem 13.24. With the above notation,

d1d2 - x2
—-———4 .

Jdn,d)y =+ ][] F(

x2<dydy
x2=dydymod4

Proof. First note that F((d;d, — x2)/4) is always defined since any prime
p dividing (d1d, — x*)/4 satisfies (d1d2/p) # —1 (see Exercise 13.14). The
paper [46] contains two proofs of this theorem, one algebraic and one an-
alytic. The algebraic proof, which uses reduction theory of elliptic curves,
is given only for the case of prime discriminants. A general version of this
proof appears in Dorman [30]. Q.E.D.

This theorem gives the following corollary:

Corollary 13.25. Let p be a prime dividing J(dy,d,)*. Then:

(i) (d1/p) # 1 and (d2/p) # 1.
(i) p divides a positive integer of the form (d1d, — x*)/4.
(iii) p < did2/4.

Proof. If p divides J(dy,d2)?, it must divide some F((did, — x*)/4), and
the formula for F(m) then shows that p divides (d1d, — x?)/4. This easily
implies parts (ii) and (iii) of the corollary.

It remains to prove part (i). We will first consider the following lemma
which tells us how to compute F(m):

Lemma 13.26. Let m be a positive integer of the form (did, — x?)/4. Then
F(m) = 1 unless m can be written in the form

m = ptiplh... plrgh... gk,
where €(p) = €(p1)=---=€(p,)=—1 and €(q1)=---=€(qs) = 1. In this

case,
F(m) = p(a+1)(b1+1)---(b,+1).

In particular, p | F(m) means that p is the only prime dividing m with an
odd exponent and €(p) = —1.

Proof. See Exercises 13.15 and 13.16. Q.E.D.

We can now complete the proof of Corollary 13.25. The above lemma
shows that €(p) = —1 for any prime p dividing F(m). It is easy to see that

e(p) = —1 implies (d1/p) # 1 and (d2/p) # 1 (see Exercise 13.14), and the
corollary is proved. Q.E.D.
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Note that this corollary implies Deuring’s theorem in the case of rela-
tively prime field discriminants. We should also mention that when did; =
1 mod 8, one gets better upper bounds on p (see Exercise 13.17).

If we apply Corollary 13.25 when d; = —3, then we can strengthen Deur-
ing’s result about the constant term of the class equation:

Corollary 13.27. Let dx be the discriminant of an imaginary quadratic field
K, and assume that 3fdg. If p is a prime dividing the constant term of
Hy (X)), then (dx/p) # 1 and either p =3 or p =2 mod p. Furthermore,
p < 3|dk|/4.

Proof. If ay,...,a, are ideal class representatives of Ok, then

h 4/3w
J(dg,~3)* = (Hi(ai)) ,
i=1

where w = |O%|. Thus the primes dividing J(dk,—3)? are the same as the
primes dividing the constant term of Hy,(X), and we are done by the
previous corollary. Q.E.D.

For an example of how good these estimates are, consider H_s6(X). We
know from (13.1) that the constant term is

(28-112.17-41)%.

Corollary 13.27 gives us the estimate p < 3| — 56|/4 = 42, which is as good
as one can get. The reader should also check the constant term of H_7(X)
given in (13.20)—the estimate is again as good as possible. Of course, one
could use Theorem 13.24 to compute these constant terms directly (see
Exercise 13.18).

Gross and Zagier also have similar theorems for primes dividing the dis-
criminant of the class equation. Rather than give the formula for the mul-
tiplicities of the primes, we will just state the following corollary of their
result:

Theorem 13.28. Let d be the discriminant of an imaginary quadratic field
K, and let p be a prime dividing the discriminant of Ha, (X ). Then (dk/p)
7é 1 and P < IdKI

Proof. In the case of prime discriminants, this is proved by Gross and Za-
gier in [46], and the general case is in Dorman [29]. Q.E.D.

This theorem strengthens Deuring’s result about the discriminant of the
class equation. For an example of the bound p < |dk|, consider H_s¢(X).
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One computes that its discriminant is

—2116 713 1110 176.29% . 312.372. 412. 432 . 472 . 532,

Theorem 13.28 gives the bound p <56 on the primes that can appear,
which again is the best possible.

D. Exercises

13.1.
13.2.

13.3.

13.4.

13.5.

Use Corollary 11.37 to prove Proposition 13.2.

If O is an order in an imaginary quadratic field and m is a positive

integer, then we define r(O,m) = |{a € O: a is primitive and N(a)

= m}/O*|, where O* acts by multiplication.

(a) Prove that r(O,m) is finite.

(b) For fixed m, prove that there are only finitely many orders O
such that r(O,m) > 0.

Let F(X,Y) e C[X,Y], and suppose that F(Xy, Xo) = 0. Then Xj is
a root of both F(X,Xy) and F(X,X).

(@) If F(X,Y)=X3+Y3+ XY, then show that 0 is a root of
F(X,0) and F(X,X) of different multiplicities. Note that the
polynomial F(X,Y) is symmetric.

(b) If F(X,Y) and X satisfy the additional condition that

lim F(X, X)
X —Xo F(X, X())

exists and is nonzero, then show that X, is a root of F(X,Xj)
and F(X,X) of the same multiplicity.

This exercise is concerned with the proof of (13.7). Recall that ()

= 79, where & = (*5) has relatively prime entries and determinant
m > 1.

(a) Prove that ¢ # 0.

(b) When j(79) = 1728, we can assume Ty =i. Show that m? =
(ci +d)* implies ¢ = +1/m and d = 0. Since (i) = i, conclude
that @ = 0 and b = 4+v/m, and derive a contradiction.

(c) When j(79) = 0, argue as in (b) to complete the proof of (13.7).

Let m > 1, and let O = [1,79] be an order in an imaginary quadratic
field. Consider the sets

A= {a € O:ais primitive and N(a) = m}/O*
B = {0 € C(m): j(om) = j(o)}.
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13.6.

13.7.

13.8.
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In the proof of Theorem 13.4, we showed how an element [a] € A

determines a unique o € B. Prove that the map [a] — o defines a

bijection A 5 B.

The goal of this exercise is to prove the formula for the degree N of

®,,(X,X) given in Proposition 13.8.

(a) Prove that g~ is the most negative power of g in the g-expan-
sion of ®,,(j(7),j(T)).

(b) Ifo = (§ Z) € C(m), then use (11.19) to show that the g-expan-
sion of j(7)— j(oT) is

g l—(%g=e/d ...  whena<d
—¢%g=a/d y g14 ...  whena>d
(l_cslb)q—l + ... when a =d,

where (,, = e2™/™_ The last possibility can occur only when m
is a perfect square, and in this case, (%% # 1 since o € C(m).

(¢) Given a, we know that d = m/a. In part (a) of Exercise 11.9 we
showed that the number of possible o € C(m) with this a and d
was

%pce)

where e = gcd(a,d). Use this formula and (b) to show that the
degree N of ®,,(X,X) equals

Y Lo+ 2 Lo+ (v

alm alm

aly/m a>\/m

(d) Show that the first two sums in the above expression are equal.
This proves the formula for N given in Proposition 13.8.

This exercise is concerned with some examples of Theorem 13.4.

(a) Verify that r(-3,3)=r(-12) =1, r(-8,3) =r(-11,3) = 2, and
also show that r(D,3) =0 for all other discriminants. This
proves that

$3(X,X) = +H_3(X)H_12(X)H_s(X )*H-11(X)*.
(b) Use the method of (a) to write down the factorization of
d5(X,X).

The proof of Proposition 13.11 requires the following facts about the
orders of discriminant —3 and —4 (Z[w] and Z[i] respectively).

(a) If m > 1, show that r(—3,m) =1 if and only if m = 3.
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(b) If m > 1, show that r(—4,m) =1 if and only if m = 2.

13.9. Let m =3 mod 4 be an integer > 3. Show that the order Z[\/—m] of
discriminant —4m has no primitive elements of norm (m + 1)/4.

13.10. In this exercise we will illustrate the algorithm given in the text for
computing Hp(X).
(a) Show that H_s¢(X) is determined by knowing ®14(X, X).
(b) Show that H_;1(X) and H_4(X) are determined by knowing
®11(X,X).
(c) Show that H_7(X) and H_23(X) are determined by knowing
®7(X,X) and (X, X).
13.11. Let f(7) be a modular function for Ty(m) which vanishes at the

cusps.
(a) If i, i = 1,...,|C(m)| are coset representatives for Io(m) C
SL(2,Z), then show that

IC(m))
II rom
i=1

is a modular function for SL(2,Z) which vanishes at infinity.

(b) If in addition f(7) is holomorphic on ), then show that f(7) is
identically zero. Hint: use (a) and Lemma 11.10.

13.12. Use the formulas

4 o0
g2(7) = (217;) <1 +2. "3(n)qn>
n=1

A(r)=(2m)2q [J(1-4")
n=1

to show that the coefficients of the g-expansion of j(7) are integral.
This is the classical method used to prove Theorem 11.8.

13.13. Let J(dy,d>) be as defined in the text.
(a) If d, d2 < —4, then show that J(d1,d;) is an integer. Hint: use
Galois theory.

(b) Show that J(dy,d;)? is always an integer. Hint: when d; or d,
is —3, recall that j((1++/—-3)/2) = 0. Theorem 12.2 will be
useful.

13.14. Let ¢(m) and F(n) be as defined in the text, and let p be a prime
number.

(a) Show that ¢(p) is defined whenever (did,/p) # —1.
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(b) If p divides a number of the form (d;d, — x?)/4, then show
that (d1d2/p) # —1.
(c) Show that €(p) = —1 implies that (d,/p) # 1 and (d,/p) # 1.

Exercises 13.15 and 13.16 will prove Lemma 13.26. In this exercise
we will show that any positive integer of the form m = (did; —
x?)/4 satisfies €(m) = —1. We will need the following extension of
the Legendre symbol. Let D = 0,1 mod 4, and let x:(Z/DZ)* —
{£1} be the homomorphism from Lemma 1.14 (so that y([p]) =
(D/p) when p is a prime not dividing D). Then for any integer m
relatively prime to D, set

(2) = xm.

(a) Show that (D/m) is multiplicative in D and m and depends
only on the congrunce class of m modulo D. Also, when m =
pi -+ p¥ is positive, show that

(=)-11()"

where (D/p;) is the usual Kronecker symbol. Thus, when m
is odd and positive, (D /m) is just the Jacobi symbol. Finally,
show that (D/—1) = sgn(D). Hint: see Lemma 1.14.

(b) We will need the following limited version of quadratic reci-
procity for (D /m). Namely, if D = 1 mod 4 is relatively prime
to m = 0,1 mod 4, then prove that (D/m) = (m/|D]). Further-
more, if D and m have opposite signs, then prove that (D/m)
= (m/D).

(c) Let m be a positive integer such that e(m) is defined. If m is
relatively prime to dy, then show that e(m) = (d1/m).

(d) Now we can prove that ¢(m) = —1 when m = (d;d; — x*)/4.
We can assume di =1mod4, and write m = ab, where a |
dy, a=1mod 4 and gcd(dy,b) = 1. Then d; = ad, where d =
1 mod 4.

(i) Show that e(m) = (d,/a)(d1/b).

(i) Show that (d;/b) = (a/d2)(d/—1). Hint: (d;/b) = (d,/4b)
= (a/4b)(d /4b). Then use 4ab = d1d; — x* and quadratic
reciprocity. Remember that a and d have opposite signs
and that a has no square factors.

(iii) Use quadratic reciprocity to prove that ¢(m) = —1. Hint:
remember that d; < 0.
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Let m be a positive integer such that ¢(m) = —1. The goal of this
exercise is to compute F(m). We will use the function s(m) defined
by

s(m) = Ze(m).

n|m

n>0

Note that s(m) is defined whenever ¢(m) is. Given a prime p, let

vp(m) be the highest power of p dividing m.

(a) If m; and m; are relatively prime integers such that ¢(m;) and
e(m2) are defined, then prove that

F(mymy) = F(my)* ™) F (my)* ™.

(b) Suppose that m = p{*--- p;"qf’---qf*, where €(p;) = -1 and
€(qi) = 1 for all i. Prove that

(m) 0 some a; is odd
s(m) =
Hf:l(bi +1) all a;’s are even.

(c) If ¢(m) = —1, show that there is at least one prime p with
é(p) = —1 and vp(m) odd. Conclude that s(m) = 0.

(d) Suppose that ¢(m) = —1, and that m is divisible by two primes
p and g with €(p) =€(q) = —1 and vp(m) and v,(m) odd.
Prove that F(m) = 1. Hint: write m = p?*1¢?®*1m' and use
(@)—c).

(e) Finally, suppose that m is divisible by a unique prime p with
e(p) = 1 and v,(m) odd. Then m can be written m = p***! p{"
;"qf‘--- b. . where €(p) = e(pi) = —1 and €(g;) = 1 for all
i. Prove that

F(m) = p@+tDeit)-G:+D),

Hint: show that F(p?**!) = p?*! and use (a)-(c).

By (d) and (e), we see that when ¢(m) = —1, F(m) is computed
by the formulas given in Lemma 13.26. Thus Lemma 13.26 is an
immediate corollary of this exercise and the previous one.

Let p be a prime dividing J(d;,d>)?. In Corollary 13.25, we showed

that p < did,/4. In some cases, this estimate can be improved.

(a) If did,=1mod 8, then prove that p < did,/8. Hint: use
p | (did; — x*)/4. When p =2, note that did> = 1mod 8 im-
plies dyd, > 33.

(b) If di = d, =5 mod 8, then prove that p < d1d>/16. Hint: when
p is odd, we have p | (d1dz — x?)/8. To rule out the case 2p =
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(d1d, — x*)/4, use Exercise 13.15 and Lemma 13.26. When p =
2, see (a).

13.18. Use Theorem 13.24 to compute the constant terms of H_sq(X ) and
H_71(X), and compare your results with (13.1) and (13.20). Hint:
use Lemma 13.26 to compute F(m).

§14. ELLIPTIC CURVES

The theory of complex multiplication has enabled us to prove some won-
derful results, but our treatment is still far from complete. In particular,
we need to acquaint the reader with the more modern form of the theory,
where elliptic functions are replaced by elliptic curves. Thus, in this last
section of the book, we will give some of the basic definitions and theo-
rems concerning elliptic curves, and we will discuss complex multiplication
and elliptic curves over finite fields. Then, to illustrate the power of what
we’ve done, we will examine two recent primality tests that involve ellip-
tic curves, one of which makes use of the class equation. Our treatment of
these topics will not be self-contained, for our purpose is mostly to entice
the reader into learning more about this lovely subject. Excellent introduc-
tions to elliptic curves are available, notably the books by Huseméller [58],
Koblitz [67] and Silverman [93], and more advanced topics are discussed in
the books by Lang [73] and Shimura [90].

A. Elliptic Curves and Weierstrass Equations

Given a field K of characteristic different from 2 or 3, an elliptic curve E
over K is an equation of the form

(14.1) y? =4x> —gax — g3,

where
g,83€K and A=g3-27g}+#0.

For reasons that will soon become clear, this equation is called the Weier-
strass equation of E. When K has characteristic 2 or 3, a more complicated
defining equation is needed (see Silverman [93, Appendix A]).
Given an elliptic curve E over K, we define E(K) to be the set of solu-
tions
EK)={(x,y) €K xK :y*> =4x>—gox — g3} U{o0}.

The symbol co appears because in algebraic geometry, it is best to work
with homogeneous equations in projective space. Equation (14.1) defines a
curve in the affine space K2, but in the projective space P2(K ) there is an
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extra “point at infinity” (see Exercise 14.1 for the details). Given a field
extension K C L, we can also define E(K) C E(L) in an obvious way.
Over the complex numbers C, the Weierstrass p-function gives us elliptic
curves as follows. Let L C C be a lattice, and let p(z) = p(z; L) be the
corresponding p-function. Then we have the differential equation

p'(2)* = 4p(2)’ - g2(L)p(2) - g3(L)
of Theorem 10.1, which gives us the elliptic curve
y?=4x* - go(L)x — gs(L).

If z¢ L, then p(z) and p'(z) are defined, and the differential equation
shows that (p(2),'(2)) is in E(C). Since p(z) and p'(z) are also periodic
for L, we get a well-defined mapping

(C—-L)/L — E(C)— {oo}.

It is easy to show that this map is a bijection (see Exercise 14.2), and con-
sequently we get a bijection

(14.2) C/L ~ E(C)

by sending 0 € C to oo € E(C). Both C/L and E(C) have natural structures
as Riemann surfaces, and it can be shown that the above map is biholomor-
phic.

The unexpected fact is that every elliptic curve over C arises from a
unique Weierstrass p-function. More precisely, we have the following result:

Proposition 14.3. Let E be an elliptic curve over C given by the Weierstrass
equation

y2 = 4x3 — 82X — g3, 82,83 € Ca 823 - 2781% ?é Oa
then there is a unique lattice L C C such that

82 = 82(L)
g3 = g3(L)
Proof. The existence of L was proved in Corollary 11.7, and the unique-

ness follows from the from the proof of Theorem 10.9 (see Exercise 14.3).
Q.E.D.

Proposition 14.3 is often called uniformization theorem for elliptic
curves. Note that it is a consequence of the properties of the j-function.
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The mention of the j-function prompts our next definition: if an elliptic
curve E over a field K is defined by the Weierstrass equation (14.1), then
the j-invariant j(E) is defined to be the number

j(E) = 172882 = 1188 c k.
g3 —27g? A
Note that j(E) is well-defined since A # 0, and the factor of 1728 doesn’t
cause trouble since K has characteristic different from 2 and 3 (the defini-
tion of the j-invariant is more complicated in the latter case—see Silverman
[93, Appendix A]). Over the complex numbers, notice that

J(L) = j(E)
whenever E is the elliptic curve determined by the lattice L C C.
To define isomorphisms of elliptic curves, let E and E’ be elliptic curves
over K, defined by Weierstrass equations y? = 4x3—g,x —g3 and y? =

4x3 — g5 x — g} respectively. Then E and E' are isomorphic over K if there
is a nonzero ¢ € K such that

g =c'g
g3 = c°gs.
In this case, note that the map sending (x,y) to (cx,c3y) induces a bijec-
tion
E(K)~ E'(K).
It is trivial to check that isomorphic elliptic curves have the same j-invari-
ant.

Over the complex numbers, isomorphisms of elliptic curves are related
to lattices and j-invariants as follows:

Proposition 14.4. Let E and E' be elliptic curves corresponding to lattices
L and L' respectively. Then the following statements are equivalent:

(i) E and E' are isomorphic over C.
(ii) L and L' are homothetic.

(iii) j(E) = J(E").

Proof. This follows easily from Theorem 10.9. We leave the details to the
reader (see Exercise 14.4). Q.E.D.

What is more interesting is that part of this proposition generalizes to
any algebraically closed field:

Proposition 14.5. Let E and E' be elliptic curves over a field K .
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(i) E and E' have the same j-invariant if and only if they are isomorphic
over a finite extension of K.

(ii)) If K is algebraically closed, then E and E' have the same j-invariant if
and only if they are isomorphic over K .

Proof. The proof is basically a transcription of the algebraic part of the
proof of Theorem 10.9—see Exercise 14.4. Q.E.D.

Over nonalgebraically closed fields, nonisomorphic elliptic curves may
have the same j-invariant (see Exercise 14.4 for an example over Q). Later,
we will discuss the isomorphism classes of elliptic curves over a finite field.

Finally, we need to discuss the group structure on an elliptic curve. The
basic idea is to translate the addition law for the Weierstrass p-function into
algebraic terms. To see how this works, let E be an elliptic curve over K,
and let P; and P, be two points in E(K). Our goal is to define P; + P, €
E(K). If Pi = oo, we define

P+ P, =00+ P, = P>,

and the case P, = oo is treated similarly. Thus co will be the identity el-
ement of E(K). For the remaining cases, we may write P; = (x1,y1) and
P> = (x2,y2). If x1 # x2, then we define

Py + Py = (x3,y3),

where x3 and y3 are given by

1/y1-y2\°
X3=—XI—x2—Z(X1—X2)

y3 = ——y1——(X3——X1)(y1—y2).

(14.6)

X1 — X2

These formulas come from the addition laws for p(z + w) and p'(z + w)
(see Theorem 10.1 and Exercise 14.5).

We still need to consider what happens when x1 = x;. In this case, the
Weierstrass equation implies that y; = +y,, so that there are two cases to
consider. When y;, = —y,, we define

P + P = oo.

This formula tells us that the inverse of (x,y) € E(K) is (x,—y). Finally,
suppose that Py = P,, where y; = y; # 0. Here, we define

Pi+ P, =2P = (X3,y3),
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where x3 and y3 are given by

12x2 — g, \ -
x3=_x1_x2_i(_ﬂ__gz)

16
(14.7) n
_ 12X1 — 82
y3_—h—(x3_x1)( 2y1 )

These formulas come from the duplication laws for p(2z) and p'(2z) (see
(10.13) and Exercise 14.5). The major fact is that we get a group:

Theorem 14.8. If E is an elliptic curve over a field K, then E(K) is a group
(with oo as identity) under the binary operation defined above.

Proof. See Husemoller [58], Koblitz [67] or Silverman [93] for a proof.
These references also explain a lovely geometric interpretation of the above
formulas. Q.E.D.

If E is an elliptic curve over K and K C L is a field extension, then it is
easy to show that E(K) is a subgroup of E(L).

Over the complex numbers, we saw in (14.2) that there is a bijection
C/L ~ E(C). Notice that both of these objects are groups: C/L has a natu-
ral group structure induced by addition of complex numbers, and E(C) has
the group structure defined in Theorem 14.8. It is immediate that the map
C/L ~ E(C) is a group isomorphism.

B. Complex Multiplication and Elliptic Curves

The next topic to discuss is the complex multiplication of elliptic curves.
The idea is to take the theory developed in §§10 and 11 and translate lat-
tices into elliptic curves. The crucial step is to get an algebraic description
of complex multiplication, which can then be used over arbitrary fields.

Let’s start by describing the endomorphism ring of an elliptic curve E
over C. Namely, if E corresponds to the lattice L, we define

Endc(E)={a€eC:aL C L}.

This is clearly a subring of C, and note that Z C Endc(FE). Then we say
that E has complex multiplication if 7 # End¢c(E). From Theorem 10.14, it
follows that E has complex multiplication if and only if L does, and in this
case, End¢(FE) is an order O in an imaginary quadratic field.

Given a € O, the inclusion aL C L gives us a group homomorphism
a:C/L - C/L. Combined with (14.2), we see that a € End¢c(FE) induces
induces a group homomorphism

a: E(C)— E(C).
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In terms of the x and y coordinates of a point in E(C), this map can be
described as follows:

Proposition 14.9. Given a # 0 € Endc(E), there is a rational function R(x)
€ C(x) such that for (x,y) € E(C), we have

o(x.y) = (R(x), - R(x)y),

where R'(x) = (d/dx)R(x).

Proof. Given aL C L, we saw in Theorem 10.14 that there is a rational
function R(x) such that p(az) = R(p(z)). Differentiating with respect to z
gives p'(az)a = R'(p(2))p'(z), and thus p'(az) = (1/a)R'(p(2))p'(2)-
Since a:E(C)— E(C) comes from a:C/L — C/L via the map z—
(p(2),9'(2)), the proposition follows. Q.E.D.

Because of the algebraic nature of a € End¢(E), we write a: E — E in-
stead of a : E(C) — E(C). When a # 0, we say that a is an isogeny from
E to itself. The most important invariant of an isogeny is its degree deg(a),
which is defined to the the order of its kernel. More precisely, if E corre-
ponds to the lattice L, then it is easy to see that the kernel of a : E(C) —
E(C) is isomorphic to L/aL (see Exercise 14.6). Thus, by Theorem 10.14,
it follows that

deg(a) = |L/aL| = N(a),

where N(a) is the norm of a € O = End¢(E).
For an example of complex multiplication, consider the elliptic curve E
defined by

y? = 4x3 - 30x - 28.

We claim that Endc(E) = Z[V-2], and that for (x,y) € E(C), complex
multiplication by /=2 is an isogeny of degree 2 given by the formula

2x2+4x+9 1 2x2+8x—-1
14.10 V=2 = |- — )

It turns out that the major work of this claim was proved in §10 when we
considered the lattice L = [1,4/—2]. Namely, in the discussion surrounding
(10.21) and (10.22), we showed that for some A,

5.27
g2(AL) = 5
7-27
g3(AL) = ——.

2
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If we set A’ = 1/3/2A, then it follows that
g2(A"'L) =30
g3(A'L) = 28,

which implies that £ has complex multiplication by +/—2. Furthermore,
the formula for p(v/—2z) given in (10.21) and (10.22) easily combines with
Proposition 14.9 to prove (14.10) (see Exercise 14.7).

For an elliptic curve E over an arbitrary field K, we can’t use lattices to
define complex multiplication. But as indicated by Proposition 14.9, there
is a purely algebraic definition of the endomorphism ring Endg(E) that
depends only on the defining equation of E (see Silverman [93, Chapter
III]). Because of the group structure of E, Endg(E) always contains 7,
and if K has characteristic zero, we say that E has complex multiplication
if End(E) # Z, where K is the algebraic closure of K (thus the complex
multiplications may only be defined over finite extensions of K). When K
is a finite field, we will see below that Endg is always bigger than 7. For
this reason, the term “complex multiplication” is rarely used when K has
positive characteristic.

When K C C, we can describe the endomorphism ring Endg (E) as fol-
lows. Namely, let a € End¢(E), and use Proposition 14.9 to write a(x, y) =
(R(x),(1/@)R'(x)y) for (x,y) € E(C). Then

a € Endg(E) < R(x), éR’(x) € K(x).

Another interesting case is when K = F, is a finite field. Here, the map
sending (x,y) to (x4,y?) clearly defines a group homomorphism E(L)—
E(L) for any field L containing K (see Exercise 14.8). This gives an ele-
ment Frob, € Endg(E), which is called the Frobenius endomorphism of E.
It will play an important role later on. Notice that this map is not of the
form (R(x),(1/a)R'(x)y).

In this abstract setting, one can still define the degree of an isogeny a #
0 € Endg(E). When K C C, the degree of a is again the order of ker(a):
E(C) — E(C), while over a finite field, the degree is more subtle to define.
For example, the Frobenius isogeny Frob, always has degree g even though
Frobg: E(L) — E(L) is injective for any field K C L. See Silverman [93,
§II1.4] for a precise definition of the degree of an isogeny.

Besides isogenies from E to itself (which are recorded by Endg (E)), one
can also define the notion of an isogeny a between different elliptic curves
E and E' over the same field K . For simplicity, we will confine our remarks
to the case K = C. In this situation, E and E’ correspond to lattices L and
L'. If a # 0 is a complex number such that aL C L', then multiplication by

a induces a map
a: E(C)— E'(C)
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with kernel L'/aL, and we say that « is an isogeny from E to E'. As in
Proposition 14.9, one can show that « is essentially algebraic in nature (see
Exercise 14.9), so that we can write a as a: E — E', and we say that « is
an isogeny from E to E'.

The notion of isogeny has a close relation to the modular equation. We
define an isogeny a : E — E' to be cyclic if its kernel L'/aL 1s cyclic. Then
we have:

Proposition 14.11. Let E and E' be elliptic curves over C. Then there is
a cyclic isogeny a from E to E' of degree m if and only if ®,,(j(E),j(E"))
= 0.

Proof. This follows easily from the analysis of ®,,(u,v) = 0 given in Theo-
rem 11.23 (see Exercise 14.10). Q.E.D.

For a more complete treatment of these topics, see Lang [73, Chapters
2 and 5] and Silverman [93, Chapter III].

C. Elliptic Curves over Finite Fields

So far, we’ve translated concepts about lattices into concepts about elliptic
curves. If this were all that happened, there would be no special reason to
study elliptic curves. The important point is that the algebraic formulation
allows us to state some fundamentally new results, the most interesting of
which involve elliptic curves over a finite field F,. As usual, we will assume
that F, has characteristic greater than 3, i.e, g = p?, p > 3.

When E is an elliptic curve over F,, the group of solutions E(F4) is a
finite Abelian group, and it is easy to see that its order |E(F4)| is at most
2q + 1 (see Exercise 14.11). In 1934, Hasse proved the following stronger
bound conjectured by Artin:

Theorem 14.12. If E is an elliptic curve over 4, then
q+1-2/G<|E(Fg)<q+1+2yq.

Proof. We will discuss some of the ideas used in the proof. The key ingre-
dient is the isogeny Frob, € Endg, (E) defined by Frob,(x,y) = (x9,y7).
We can form the isogeny 1— Frob,, and it follows easily that if Fy is the
algebraic closure of F,, then
E(F,) =ker(1- Frobg : E(F4) — E(Fy))

(see Exercise 14.12). The next step is to show that 1 — Frob, is a separable
1sogeny, which implies that

(14.13) |E(F,)| = deg(1— Froby).
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From here, the proof is a straightforward consequence of the basic proper-
ties of isogenies (see Silverman [93, Chapter V, Theorem 1.1)). Q.E.D.

In 1946, Weil proved a similar result for algebraic curves over finite
fields, and in 1974, Deligne proved a vast generalization (conjectured by
Weil) to higher dimensional algebraic varieties. For further discussion and
references, see Ireland and Rosen [59, Chapter 11] and Silverman [93, §V.2].

Elliptic curves over finite fields come in two types, ordinary and super-
singular, as determined by their endomorphism rings:

Theorem 14.14. If E is an elliptic curve over ¥, then the endomorphism
ring Endz (E) is either an order in an imaginary quadratic field or an order
q9

in a quaternion algebra.

Remarks.

(i) We say that E is ordinary in the former case and supersingular in the
latter.

(ii) Notice that for elliptic curves over a finite field K, End¢(E) is always
larger than Z.

Proof. See Silverman [93, Chapter V, Theorem 3.1]. Q.E.D.

There are many known criteria for E to be supersingular (see Husemol-
ler [58, p. 258] for an exhaustive list). Over a prime field F,, there is a
special criterion which will be useful later on:

Proposition 14.15. Let E be an elliptic curve over F,. If p >3, then E is
supersingular if and only if

EFp)l=p+1L
Proof. See Silverman [93, Chapter V, Exercise 5.10]. Q.E.D.

It is interesting to note that |E(F,)| = p +1 is the center of the range
p+1-2/p<|EF,) <p+1+2,/pallowed by Hasse’s theorem.

From the point of view of endomorphisms, ordinary elliptic curves over
finite fields behave like elliptic curves over C with complex multiplication,
since in each case, the endomorphism ring is an order in an imaginary
quadratic field. This suggests a deeper relation between these two classes,
which leads to our next topic, reduction of elliptic curves.

The basic idea of reduction is the following. Let K be a number field,
and let £ be an elliptic curve defined by

yi=4xX—gx—g,  gngeK.
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If p is prime in Ok, we want to “reduce” E modulo p. This can’t be done
in general, but suppose that g; and g3 can be written in the form a/f,
where a, 8 € Ok and 3 ¢ p. Then we can define [g2] and [g3] in Ok /p. If
in addition, we have

A = [g2] — 27[gs]* # 0 € Ok /¥,
then

y? =4x —[ga]x — [g3]

is an elliptic curve E over the finite field Og/p. In this case we call E the
reduction of E modulo p, and we say that E has good reduction modulo p.

When E has complex multiplication and good reduction, Deuring, draw-
ing on examples of Gauss, discovered an astonishing relation between the
complex multiplication of E and the number of points in E(Ok/p). Rather
than state his result in its full generality, we will present a version that con-
cerns only elliptic curves over the prime field F .

To set up the situation, let O be an order in an imaginary quadratic field
K, and let L be the ring class field of O. Let p be a prime in Z which
splits completely in L, and we will fix a prime ‘P of L lying above p, so
that OL/P~F, Fmally, let E be an elliptic curve over L which has good
reduction at ‘B. Wxth these hypotheses, the reduction E is an elliptic curve
over F,. Then we have the following theorem:

Theorem 14.16. Let O, L, p and ‘B be as above, and let E be an elliptic
curve over L with Endc(E) = O. If E has good reduction modulo ‘B, then
there is m € O such that p = 7w and

|E(F,)|=p+1—(m+T).

Furthermore, Endg (E) = O, and every elliptic curve over F , with endomor-

phism ring (over F ) equal to O arises in this way.

Proof. The basic idea is that when the above hypotheses are fulfilled, re-
duction induces an isomorphism

Endc(E) — Endg (E)

that preserves degrees. The proof of this fact is well beyond the scope of
this book (see Lang [73, Chapter 13, Theorem 12]).

From the above isomorphism, it follows that there is some 7 € End¢c(E)
which reduces to Frob, € Endg (E) Since Frob, has degree p, so does
w. Over the complex numbers we know that the degree of m€ O =

Endc(E) is just its norm, so that N(7) = p. Thus we can write p = 7T
in O.
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It is now trivial to compute the number of points on E. As we noted in
(14.13), B
|E(F )| = deg(1— Frob,).

Since the reduction map preserves degrees, it follows that
deg(l1—Froby)=deg(1-m)=NQA-m)=(1-7m)(1-7)
=p+1—-(m+7)

since p = 7. This proves the desired formula for [E(F )|
For a proof of the final part of the theorem, see Lang [73, Chapter 13,
Theorems 13 and 14]. Q.E.D.

The remarkable fact is that we’ve already seen two examples of this theo-
rem. First, in (4.24), we stated the following result of Gauss: if p = 1 mod 3
is prime, then

(14.17) If 4p = a®> +27b% and a = 1 mod 3, then N = p+a—2, where
. N is the number of solutions modulo p of x> — y3 =1 mod p-

We can relate this to Deuring’s theorem as follows. The coordinate change
(x,y) (Bx/(1+y),9(1—y)/(1+ y)) transforms the curve x> = y3 + 1 into
the elliptic curve E defined by y% = 4x3 — 27 (see Exercise 14.13). Gauss
didn’t count the three points at infinity that lie on x3 = y3 + 1, and when
these are taken into account, then (14.17) asserts that |E(F,)| = p + 1 +a.
Since p =1 mod 3, we can write p = 77 in Z[w], w = e2mi/3 ] In §4, we saw
that @ may be chosen to be primary, which means 7 = +1 mod 3. Thus
we may assume 7 = 1 mod 3, so that 1 = A + 3Bw, A=1mod p. Then an
easy calculation shows that

4p = (—(2A - 3B))* + 27B2.

Since 24 —-3B =7 +7T and —(24 —3B)=1mod 3, it follows that (14.17)
may be stated as follows:

If p =77 in Z[w] and 7 = 1 mod 3, then |E(F,)| = p +1— (7 + 7).

Since E is the reduction of y2 = 4x3 — 27, which has complex multiplication
by Z[w] (see Exercise 14.13), Gauss’s observation (14.17) really is a special
case of Deuring’s theorem.

Similarly, one can check that Gauss’s last diary entry, which concerned
the number of solutions of x2 + y2 + x2y2 =1 mod p, is also a special case
of Deuring’s theorem. See the discussion following (4.24) and Exercise
14.14.

As a application of Deuring’s theorem, we can give a formula for the
number of elliptic curves over F, which have a preassigned number of
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points. We first need some notation. Given an order O in an imaginary
quadratic field K, we define the Hurwitz class number H(O) to be the
weighted sum of class numbers

HO)= ) | 02, |h(o').

OCO'COk

We also write H(O) as H(D), where D is the discriminant of ©O. Then we
have the following theorem of Deuring:

Theorem 14.18. Let p > 3 be prime, and let N = p +1—a be an integer,
where —2./p < a <2,/p. Then the number of elliptic curves E over F)
which have |[E(Fp)|=N=p+1-ais

pT_lH(az —4p).

Proof. Let w be a root of x>—ax + p. Since —2,/p <a <2,/p, the qua-
dratic formula shows that O, = Z[r] is an order in an imaginary quadratic
field K. One can also check that p doesn’t divide the conductor of O, (in
fact, it doesn’t divide the discriminant), and hence the same is true for any
order O' containing O, (see Exercise 14.15).

We will start with the case a # 0, which by Proposition 14.15 means that
all of the elliptic curves involved are ordinary. Given an order O’ containing
O, and a proper ('-ideal a, we will produce a collection of elliptic curves
E. with good reduction modulo p. Namely, let L' be the ring class field
of O'. Since p =77 in O, C O, it follows from Theorem 9.4 that p splits
completely in L'. Thus, if B is any prime of L’ containing p, then O, /B
~F,.

F’irst, assume that O’ # Z(i) or Z[w], w = €™/, and which implies that
j(a) # 0,1728. If we let

I = 27j(a)
j(a)— 1728
then we define the collection of elliptic curves E. over L' by the Weier-

strass equations
y2 =4x3 —kc?x —kc3,

where ¢ € Oy — ‘B is arbitrary. A computation shows that j(E) = j(a). We
can reduce k modulo L provided that j(a)— 1728 ¢ PB. Since 1728 = j(i),
Theorem 13.21 implies that

j(a)= 1728 mod B = p does not split in K or Q(i)

(when K = Q(i), note that the conductor condition of Theorem 13.21 is
satisfied). However, p splits in K, and thus j(a)— 1728 ¢ ‘B, as desired.
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Then one computes that in O/ /P ~ Fp,

273 (ay?
A = 213 312 = 6 .
[kc“] —27[kc’])" = 1728[c] (j(a) - 17287
By the argument used to prove j(a)— 1728 ¢ ‘B, Theorem 13.21 and j(w) =
0 show that j(a) ¢ PB. It follows that E, has good reduction modulo ‘B since
c¢P.

If O' =1[i] or Z[w], then L' = K. Here, we will use the collection of
elliptic curves E. defined by

y?=4x3 - cx, c ¢ wl[i]
y2=4x3—-c, c¢nlw].

One easily checks that these curves have good reduction modulo 7 and O
as their endomorphism ring.

Theorem 14.16 assures us that every ordinary elliptic curve E over F)
arises from reduction of some elliptic curve with complex multiplication.
Given this, it follows without difficulty that E is in fact the reduction of one
of the E.’s constructed above (see Exercise 14.16).

Given ', there are h(Q') distinct j-invariants j(a), and hence for a

fixed a, we have
> MO
0,Co’

distinct collections of elliptic curves E.. Furthermore, another application
of Theorem 13.21 shows that different collections reduce to curves with
different j-invariants. Since each collection E. gives us p — 1 curves over
Fp, we get

(p-1) Y hO"

0,CO’

elliptic curves over F,. But which of these have p + 1—a points on them?
The problem is that Theorem 14.16 implies that |E.(F )| is determined by
some element of @' of norm p, but it need not be w! All curves in a given
collection have the same j-invariant, but they need not be isomorphic over
F,, and hence they may have different numbers of points. In fact, this is
always the case:

Proposition 14.19. Let E and E' be elliptic curves over F,. If E is ordi-
nary, then E and E' are isomorphic over F, if and only if j(E) = j(E') and
|E(Fp)| = |E'"(Fp)|.

Proof. One direction of the proof is obvious, but the other requires some
more advanced concepts. We will give the details since this result doesn’t



C. ELLIPTIC CURVES OVER FINITE FIELDS 321

appear in standard references. The key ingredient is a theorem of Tate,
which asserts that curves with the same number of points over a finite
field K are isogenous over K (see Husemoller [58, §13.8]). Applying this
to |E(Fp)| = |E'(Fp)|, we get an isogeny A : E — E' defined over F,. Re-
placing A by 1— X if necessary, we may assume that A is separable. Smce
E and E' have the same j-invariant, we can also find an isomorphism
¢ : E' — E defined over some extension F . (see Proposition 14.5). Thus
¢o X € Endg (E) Since E is ordinary, the endomorphism ring is an or-

der in an 1magmary quadratic field, and it follows that Z[Frob,] has finite
index in Endg (E) In Exercise 14.15, we saw that p does not divide the

conductor of Z[7r] Z[Frobp], and it follows that p does not divide the
index m of Z[Frobp] C End—P(E) Thus m¢o A € Z[Frobp], which implies

that m¢o A = ¢ o mA is defined over F,. Since mA is separable, the stan-
dard properties of isogenies imply that ¢ is defined over F, (see Silverman
[93, Chapter III, Corollary 4.11]). Q.E.D.

We claim that the collection E. contains exactly (p — 1)/|O"*| curves
with p + 1—a points. This will immediately imply our desired formula.
Let’s first consider the case when E. corresponds to a j-invariant j(a) # 0
or 1728. Here, the only solutions of N(a) = p in O' are a« = &7 and &7
(see Exercise 14.17). Thus, for each ¢, Deuring’s theorem tells us that

IFC(FP)I =p+1+ta.

However, the curves E. fall into two isomorphism classes, each consisting
of (p — 1)/2 curves, corresponding to whether [c] € F*2 or not (see Exercise
14.18). By the above proposition, nonisomorphic curves have a different
number of elements, and hence we see that exactly half of the E.’s have p +
1— a elements. Since @'* = {+1}, we get (p —1)/2 =(p — 1)/|0""| curves
with p + 1 — a points.

When j(a) = 1728, things are a bit more complicated. Here, O' = Z[i],
and p = 77 implies that p = 1 mod 4. The only solutions of N(a) = p are
a = +m,+7,+iw, and +in (see Exercise 14.17), and thus there are at most
four possibilities for |E(F,)|. But there are four isomorphism classes of
curves with j = 1728 in this case, each consisting of (p —1)/4 curves (see
Exercise 14.18). It follows that there are exactly (p — 1)/|O0""| curves with
p +1—a points. The case j = 0 is similar and is left to the reader.

It remains to study the case a = 0, which concerns the number of super-
singular curves over F,. Since Theorem 14.16 doesn’t apply to this case,
we will take a more indirect approach. Given any a in the range 2\/ﬁ <
a <2,/p, we just proved that when a # 0, there are (p — 1)/2H(a? - 4p)
elliptic curves over F, with p + 1— a points. Let $S denote the number of
supersingular curves. Since there are p(p — 1) elliptic curves over F, (see
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Exercise 14.19), it follows that
(14.20) p(p—-1) =85+ > PT_lH(a2 —4p).
0<|a|<2y/P
However, we claim that there is a class number formula
(14.21) 2p= )  H(@-4p)
0<|a|<2/P

Since (14.20) and (14.21) imply that $S = (p —1)/2H(—4p), we need only
prove (14.21).

To prove this, note that H(a? —4p) = H(O,), so that by definition, the
right-hand side of (14.21) equals

> Z h((’)’
0<|a|<2\/F O. co'
If we define the function y(a) by
1 if O, c O
x(a) = .
0 otherwise,
then the above sum can be written as

E(IO%*I > x(a)) WO").

o' 0<a|<2/F

It is easy to prove that the quantity in parentheses is r(O', p), which we
defined in §13 to be |[{r € O': N(7) = p}/O'"| (see Exercise 14.20). Thus
the right-hand side of (14.21) becomes

> (@', p(O).

OI

In Corollary 13.9 we proved that this quantity equals 2p, and (14.21) is
proved. This completes the proof of Theorem 14.18. Q.E.D.

Recall that Corollary 13.9 was part of our study of the polynomial
®,(X,X). It is rather unexpected that the modular equation has a connec-
tion with supersingular curves over F,. This is just more evidence of the
amazing richness of the study of elliptic curves. To pursue these topics fur-
ther, the reader should consult Lang [73] and Shimura [90]. Also, see the
monographs by Cassou-Nogues and Taylor [15] and by Gross [45] for an
introduction to some of the current research concerning elliptic curves and
complex multiplication.
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D. Elliptic Curve Primality Tests

In the past few years, there have been some surprising applications of el-
liptic curves to problems involving factoring and primality. In 1985, Lenstra
announced an elliptic curve factoring method [76], and a year later, Gold-
wasser and Kilian adapted Lenstra’s method to obtain an elliptic curve pri-
mality test [43]. Both methods use the properties of elliptic curves over
finite fields. We will concentrate on the Goldwasser—Kilian Test and its re-
cent variation, the Goldwasser—Kilian—Atkin Test. This last test is especially
interesting, for it uses the class equations studied in §13. Thus, the polyno-
mial H_4,(X ), which appears in our critierion for when p is of the form
x2 + ny?, can actually be used to prove that p is prime! Our treatment of
these tests will not be complete, and for further details, we refer the reader
to the articles by Goldwasser and Kilian [43], Lenstra [76] and Morain [79].

Given a potential prime /, the goal of these tests is to prove the primality
of / by considering elliptic curves over the field Z//7. Since we don’t know
that / is prime, we must treat Z/I7Z as a ring, and thus we need a theory of
elliptic curves over rings. Fortunately, the basic ideas carry over quite easily.
Let R be any commutative ring with identity where 2 and 3 are units. Then
an elliptic curve E over R is a Weierstrass equation of the usual form

y2 = 4x3 — 82X — &3, 82,83 € R7

where we now require that

(14.22) A =g3-27g} e R".

Note that since A is a unit in R, the j-invariant
g3

J(E) = 1728-Al €R

is defined.
Given an elliptic curve E over R, we set

Ey(R) = {(x,y) ERx R:y*> =4x> —grx — g3} U {o0}.

The reason for the new notation is that E¢(R) may fail to be a group! To
see this, consider P; = (x1,y2) and P; = (x2,y2) in Eo(R). If x; # x,, then
we would like to define

Pl +P2 = (X3,y3),

where x3 and yj3 are given by the formulas (14.6). The problem comes from
the denominator x; — x5: it is nonzero in R, but it need not be invertible!
For this reason, the binary operation is only partially defined on Ep(R).
Using tools from algebraic geometry, one can define a superset E(R) of
Eo(R) which is a group, but we prefer to use Eo(R) because it is easier to
work with in practice.
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If E is an elliptic curve over Z/IZ, the potentially incomplete group
structure on Ey(Z/IZ) is not a problem. Namely, if we ever found P; and
P, in Eo(Z/1Z) such that P; + P, wasn’t defined, then it would follow au-
tomatically that / must be composite, and the noninvertible denominator
would give us factor of / (just compute the appropriate ged). This observa-
tion is the driving force of Lenstra’s elliptic curve factoring algorithm (see
[76]).

Before discussing the Goldwasser—Kilian Test, let’s review some basic
ideas concerning primality testing. We regard ! as an input of length
[log,!], where [ ] is the greatest integer function. The length is thus
bounded by a constant times In/, which we express by writing [log,,/] =
O(Inl). The most interesting question concerning a primality test is its run-
ning time: given an input /, how long, as a function of In/, does it take a
given algorithm to prove that / is (or is not) prime? The simplest algorithm
(divide by all numbers < /) requires

VI = e1/Dnl

divisions, and hence runs in exponential time. What we really want is a algo-
rithm that runs in polynomial time, i.e., where is running time is O((Inl)?)
for some fixed d. Right now, no polynomial time algorithm is known, al-
though there is a candidate for one—see Wagon [99] for further details.

Another sort of algorithm commonly used is what is called a probabilis-
tic primality test. Such a test has two outputs, “prime” and “composite or
unluckily prime.” In the former case, the program proves the primeness of
[, while in the latter case, it says either that / is composite or that [ is prime
and we were unlucky. A nice discussion of probabilistic primality tests may
be found in Wagon’s article [99]. For our purposes, we will explain this con-
cept by considering the following very special probabilistic primality test.

Let [ be our potential prime, relatively prime to 6, and suppose that we
have an elliptic curve E over Z/IZ with the following two properties:

() 1 +1-2VI<|EyZ/IT)| <1 +1+2V1.
(i) |Eo(Z/1Z)| = 2q, where q is an odd prime.
In certain situations, this setup can be used to prove primality:

Lemma 14.23. Let | and E be as above, and assume 1 > 13. Let P # oo be
in Eo(Z/17). If qP is defined and equal to oo in Eo(Z/1Z), then | is prime.

Proof. Assume that [ is not prime, and let p < /I be a prime divisor of /.
Using the natural map Z/IZ — Z/pZ = Fp, we can reduce the equation of

E modulo p, and by (14.22), we get an elliptic curve E over F . Further-
more, we get a natural map

Eo(Z/17) — E(Fp)
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which takes P = (x,y) # oo in Eo(Z/1Z) to P = (%,¥) # oo in E(F}). Since
this map is also clearly a homomorphism (wherever defined), it follows that
qP = co in E(Fp). But g is prime, so that P is a point of order ¢, and
hence

q<|EFp)|<p+1+2p,

where the second inequality comes from Hasse’s theorem (Theorem 14.12).
Since p < V1, this implies that

g<VIi+1+2V1=1+1)>
However, by assumption, we have
2q = |Eo(Z/1D)| > 1 +1-2V1 = (VI -1)%
Combining these two inequalities, we obtain
VI-1<V2(VT +1),

which is easily seen to be impossible for / > 13. This contradiction proves
the lemma. Q.E.D.

To convert this lemma into a probabilistic primality test, we need one
more observation. Namely, if / is prime and |Ey(Z/IZ)| = 2q, q an odd
prime, then E¢(Z/IZ) must be a cyclic group, and hence exactly g — 1 of
the 2q — 1 nonidentity elements have order q. Thus, the probability that
a randomly chosen P # oo doesn’t prove primality (i.e., has order # q) is
q/(2q — 1)~ 1/2, assuming that g is large.

Now we can state the test. Given E and / be as above, pick k randomly
chosen points Pj,..., P, from Ey(Z/1Z), and then compute qPy,...,qP;. If
any one of these is defined and equals oo, then by the above lemma, we
have a proof of primality. If none of qPi,...,q Py satisfy this condition, then
either / is composite, or / is prime and we were unlucky. To see how un-
lucky, suppose that / were prime. Then our test fails only if all of Py,..., P
have order # q. By the above paragraph, the probability of this happen-

ing is
g \'.1
2q—-1) — 2k°

So we can’t guarantee a proof of primality, but we have to be mighty un-
lucky not to find one.

This test depended on the assumptions (i) and (ii) above. The first as-
sumption is quite reasonable, since by Hasse’s theorem it holds if / is prime.
So if (i) fails, we have a proof of compositeness. But the second assump-
tion, that |E¢(Z/1Z)| is twice a prime, is a very special, and certainly fails
for most elliptic curves. An added difficulty is that |Eo(Z/IZ)| is a very
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large number (by (i), it has the same order of magnitude as /). Thus, even
if |[Eo(Z/1Z)| = 2q were twice a prime, we’d be unlikely to know it, since
we’d have to prove that q, a number roughly the size of //2, is also prime.

To overcome these problems, Goldwasser and Kilian used two ideas. The
first idea is quite simple:

Choose lots of elliptic curves E over Z/IZ at random.
(14.24) If we get one where |E¢(Z/1Z)| = 2q, q a probable prime,
then use the above special test to check for primality.

Notice the word “probable.” Using known probabilistic compositeness tests
(described in Wagon [99]), one can efficiently reduce to the case where
|Eo(Z/1Z))| is of the form 2q, where q is probably prime. If the special test
succeeds, we have proved that / is prime, provided that q is prime. Then
the second idea is

(14.25) Make the above process recursive.

This means proving q is prime by applying the special test to an elliptic
curve over Z/qZ of order 2q', q' a probable prime. In this way the primality
of q' implies the primality of q. Since each iteration reduces the size by a
factor of 2 (i.e., g is about the size of //2, q' is about the size of q/2,
etc.), it follows that in O(Inl) steps the numbers will get small enough that
primality can be verified easily.

The algorithm contained in (14.24) and (14.25) is the heart of the Gold-
wasser—-Kilian primality test (see their article [43] for a fuller discussion).
The key unanswered question concerns (14.24): when / is prime, how many
elliptic curves do we have to choose before finding one where |E(Z/IZ)| is
twice a prime? The following result of Lenstra plays a crucial role:

Theorem 14.26. Let | be a prime, and let
S ={2q:q prime, | +1-V1<2g<1+1+V1}.

Then there is a constant ¢y > 0, independent of | and S, such that the number
of elliptic curves E over F satisfying |E(F;)| € S is at least

NOIEIMIED))
‘1 Inl '

Remark. Notice that the elliptic curves described in this theorem satisfy
I +1—+I1<|E(F))| <1+1+ I, which is more restrictive than the bound
given by Hasse’s theorem. The proof below will explain the reason for this.

Proof. Given 2q € S, write 2q =1 +1—a. Then we proved in Theorem
14.18 that the number of curves with 2q =7/ + 1—a points is (I —1)/2
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x H (a? — 41), where H(a? — 4]) is the Hurwitz class number defined earlier.
Using classically known bounds on class numbers, Lenstra proved in [76]
that for 2q € S, with at most two exceptions, there is the estimate

|a? — 4|
In/

where c is a constant independent of the discriminant (see [76, Proposition
1.8]). We are assuming that |a| < /1, which implies \/]a2 — 4I| > /31, and
consequently

H@*-4l)>c-

%H(dz—ﬂ) >cy-

where ¢; = v/3c/2. The theorem follows immediately. Q.E.D.

’

VIl -1)
Inl

By this theorem, we are reduced to knowing the number of primes
in the interval [(/ +1)/2—+V1/2,(I +1)/2+ /1/2]. By the Prime Number
Theorem, the probability that a number in the interval [0, N] is prime is
1/InN. It is conjectured that this holds for intervals of shorter length. Ap-
plied to the above, we get the following conjecture:

Conjecture 14.27. There is a constant ¢y > 0 such that, for all sufficiently
large primes 1, the number of primes in the interval [(I +1)/2—/1]2,

(I +1)/2+ 1/2] is at least
V1

Cz"i'h—i.

If this conjecture were true, then Theorem 14.26 would imply that when !/
is large, there is a constant c3, independent of /, such that at least

11— 1)
" (Inl)?

elliptic curves E over Z/IZ have order |E(F;)| = 2q for some prime q (see
Exercise 14.21). Since there are /(! — 1) elliptic curves over F;, it follows
that there is a probability of at least

(14.28) c3/(Inl)?

that |[E(F;)| has the desired order.

Now we can explain how many curves need to be chosen in (14.24).
Namely, pick an integer k, and pick k(Inl)?/c3 randomly chosen elliptic
curves over Z/IZ. If | were prime, could all these curves fail to have order
twice a prime? By (14.28), the probability of this happening is less than

C3

[ S S

=gk

__C k(Inl)? /cs 1
(Inl)?2
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It remains to give a run time analysis of the Goldwasser—Kilian Test.
For (14.24), we need to pick O((Inl)?) curves and count the number of
points on each one. By an algorithm of Schoof (see Morain [79, §5.5]),
it takes O((Inl)®) to count the points on each curve. Once a curve with
|Eo(Z/17)| = 2q is found, we then need to pick points P € Eo(Z/IZ) and
compute qP. These operations are bounded by O((In/ )®) (see Goldwasser
and Kilian [43, §4.3]), and thus the run time of (14.24) is O((In/)'°). By
(14.25), we have to iterate this O(Inl) times, so that the run time of the
whole algorithm is O((In/)!1).

The above analysis is predicated on Conjecture 14.27, which may be very
difficult to prove (or even false!). But now comes the final ingredient: using
known results about the distribution of primes, Goldwasser and Kilian were
able to prove that their algorithm terminates with a run time of O(k'!) for
at least

(1— 027"y x 100

percent of the prime inputs of length k (see [43, Theorem 3]). Thus the
Goldwasser—Kilian Test is almost a polynomial time probabilistic primality
test!

In practice, the implementation of the Goldwasser—Kilian Test is more
complicated than the algorithm sketched above. The main difference is that
the order |Eo(Z/1Z)| is allowed to be of the form mgq, where m may be
bigger than 2 but is still small compared to q. This means that fewer elliptic
curves must be tried before finding a suitable one, and thus the algorithm
runs faster. For the details of how this is done, see Goldwasser and Kilian
[43, §4.4] or Morain [79, §§2.2.2 and 7.7].

The most “expensive” part of the Goldwasser—Kilian Test is the O((In/ ®)
spent counting the points on a given elliptic curve. So rather than starting
with E and then computing |Ey(Z /IZ)| the hard way, why not use the theory
developed earlier to predict the order? This is the basis of the Goldwasser—
Kilian—Atkin Test, which we will discuss next.

The wonderful thing about this test is that it brings us back to our topic
of primes of the form x% + ny?. To see why, let / be a prime, and let n be
a positive integer such that / can be written as

I = a? + nb?, a,bel.

We will use this information to produce an elliptic curve over F; with [ +
1— 2a points on it. The basic idea is to use the characterization of primes
of the form x2 + ny? proved in §13:

[ = 52 5 (=n/1)=1and H_4(X)=0mod !
= x* +ny* =
¢ has an integer solution,
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where H_4,(X) is the class equation for discriminant —4n (see the proof
of Theorem 13.23). Thus ! = a® + nb® gives us a solution j of the con-
gruence H_4,(X) =0 mod p, and for simplicity, we will suppose that j #
0,1728 mod /. Define k € F; to be the congruence class
27j
k= [ j— 1728]’

and then consider the two elliptic curves
yi=4x3—kx—k

(14.29)
y? =4x3 - c*kx -k,

where ¢ € F; is a nonsquare. We have the following result:

Proposition 14.30. Of the two elliptic curves over F; defined in (14.29), one
has order | + 1—2a, and the other has order 1 + 1 + 2a, where | = a* + nb?.

Proof. Let L be the ring class field of the order O =Z[/—n], and let
H_4(X) = Hf;l(X — j(a;))be the class equation. If P is prime in L, then
the isomorphism Of, /P ~ Z/IZ = F; shows that our solution j of H_4,(X)
= 0 mod / satisfies j = j(a;) mod ‘P for some i. It follows that the curves
(14.29) are members of the corresponding collection E,. constructed in the

proof of Theorem 14.18, and our proposition then follows immediately since
| = a7 in O, where T = a + b\/—n. Q.E.D.

The curves (14.29) don’t make sense when j =0,1728 mod /, but the
proof of Theorem 14.18 makes it clear how to proceed in these cases.

We can now sketch the Goldwasser-Kilian—Atkin Test. Given a potential
prime /, one searches for the smallest n with / of the form a? + nb®. Once
we succeed, we check if either / + 14 2a is twice a probable prime q. If
not, we look for the next n with / = a2 + nb*. We continue this until / + 1+
2a has the right form, and then we apply the special primality test embodied
in Lemma 14.23, using the two curves given in (14.29). In this way, we can
prove that / is prime, provided that q is prime. Then, as in the regular
Goldwasser—Kilian Test, we make the whole process recursive.

In practice, the implementation of the Goldwasser-Kilian—Atkin Test im-
proves the run time by allowing the order / + 1+ 2a to be more compli-
cated than just twice a prime. The complete description of an implementa-
tion can be found in Morain’s article [79].

For our purposes, this test is wonderful because it relates so nicely to
our problem of when a prime is of the form x? + ny?. But from a prac-
tical point of view, the situation is less than ideal, for the test requires
knowing H_,4,(X), a polynomial with notoriously large coefficients. So in
implementing the Goldwasser—Kilian—-Atkin Test, one of the main goals is
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to avoid computing the full class equation. Different authors have taken dif-
ferent approaches to this problem, but the basic idea in each case is to use
the Weber functions f(7), f;(7) and f,(7) from §12. In [79, §6.2], Morain
uses formulas of Weber, such as the one quoted in §12

(V1) = V2 (1 + V3P + V3P(V3 + VIV + V),

to determine a root of H_4,(X) modulo ! when 7 is one of Euler’s conve-
nient numbers (as defined in §3). Another approach, suggested by Kaltofen,
Valente and Yui [64], is to use the methods of Kaltofen and Yui [65] to
compute the minimal polynomials of the Weber functions. To see the po-
tential savings, consider the case n = 14. We proved in §12 that

 (VTAY = V2+1+v/2v2-1

V2
. _ 16\
/=T = (VT + L)

It is clear which one has the simpler minimal polynomial! The papers by
Kaltofen, Valente and Yui [64] and Morain [79] give more details on the
various implementions of the Goldwasser—Kilian—-Atkin Test.

Primality testing is a good place to end this book, for primes are the ba-
sis of all number theory. We started in §1 with concrete questions concern-
ing p = x? + y2, x> +2y? and x? + 3y?2, and followed the general question
of x? + ny? through various wonderful areas of number theory. The theory
of §8 was rather abstract, and even the ring class fields of §9 were not very
intuitive. Complex multiplication helped bring these ideas down to earth,
and now elliptic curves bring us back to the question of proving that a
given number is prime. Fermat and Euler would have loved it.

E. Exercises

14.1. Let K be a field, and let P>(K) be the projective plane over K,
which is the set K3 — {0}/~, where we set (Ax,Ay,Az) ~ (x,y,2,)
forall A € K*.

(a) Show that the map (x,y)— (x, y,l) defines an injection K? —
P3(K) and that the complement P? (K)— K? consists of those
points with z = 0 (this is called the line at infinity).

(b) Given an elliptic curve E over K defined by the Weierstrass
equation y2 = 4x3 — g, x — g3, we form the equation

y2z = 4x3 —gyx2® — g32’,
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14.3.
14.4.

14.5.

14.6.

14.7.
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which is a homogeneous equation of degree 3. Then we define
E(K) = {(x,y,2) e P*(K): y*z = 4x> —gax2 — g2},
To relate this to E(K'), show that
E(K)={(x,y,1) € PA(K):y?> = 4x’ —gox — g3} U {0,1,0}.

Thus the projective solutions consist of the solutions of the
affine equation together with one point at infinity, (0,1,0). This
is the point denoted oo in the text.

Let L C C be a lattice, and let y? = 4x3 — g,(L)x — g3(L) be the cor-
responding elliptic curve. Then show that the map z — (p(2),p'(2))
induces a bijection

(C—L)/L — E(C)— {oo}.

Hint: use Lemma 10.4 and part (b) of Exercise 10.14. Note also that
©'(2) is an odd function.

Prove Proposition 14.3.

In this exercise we will study elliptic curves with the same j-invari-
ant.

(a) Prove Propositions 14.4 and 14.5.

(b) Consider the elliptic curves y? = 4x* — g3, where g3 is any non-
zero integer. These curves all have j-invariant 0, so that they are
all isomorphic over C. Show that over Q, these curves break up
into infinitely many isomorphism classes.

In this exercise we will study the addition and duplication laws of

p'(2)-

(a) Use formula (14.6) and the addition law for p(z + w) (see Theo-
rem 10.1) to conjecture and prove an addition law for p'(z + w).

(b) Use formula (14.7) and the duplication law for p(2z) (see 10.13)
to conjecture and prove a duplication law for p'(2z).

If L and L' are lattices and aL C L', where a # 0, show that the
kernel of the map a: C/L — C/L' is isomorphic to L'/aL.

Complete the proof (begun in (14.10)) that
(x.7) 2x2+4x+9 1 2x2+8x-1
— | — —
a4 dx+2) V=2 ax+2p

defines the isogeny of y? = 4x3 —30x — 28 given by complex multi-
plication by v/—2. Hint: use the discussion surrounding (10.21) and
(10.22).
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14.8.

14.9.

14.10.
14.11.

14.12.

14.13.

14.14.

§14. ELUPTIC CURVES

Let E be an elliptic curve the finite field F,, and for any extension
Fq C L, define Froby : E(L) — E(L) by Froby(x,y) = (x4,y9).
(a) Show that Frob, is a group homomorphism.

(b) Show that Frob, is not of the form (R(x),(1/a)R'(x)y) for any
rational function R(x).

Formulate and prove a version of Proposition 14.9 that applies to
lattices L and L' such that aL C L' for some a € C*.

Use Theorem 11.23 to prove Proposition 14.11.

If E is an elliptic curve over Fg, then prove that |[E(F,)| < 2q + 1.
Hint: given x, how many y’s can satisfy y? = 4x3 — gy x — g3?

If E is an elliptic curve over F,, then show that
E(Fy) =ker(Froby : E(F4) — E(F,)),

where F, is the algebraic closure of F,. Hint: for x € Fq, recall
that x € F4 if and only if x7 = x.

This exercise is concerned with the relation between Gauss’s claim
(14.17) and Theorem 14.16.

(a) Verify that the transformation (x,y)— (3x/(1+y),9(1—y)/
(1+y)) takes the curve x> = y3+1 into the elliptic curve E
defined by y? = 4x3 —27.

(b) The projective version of (a) is given by (x,y,z)+— (3x,9(1 -
¥)1+y). Check that (0,—1) on x> = y3 +1 is the only point
that maps to oo = (0,1,0) on E.

(c) Check that x> =y3+1 has three points at infinity. Hint: re-
member that p =1 mod 3.

(d) Show that E has complex multiplication by Z[w], w = e2™/3,
Hint: see Exercise 10.17.

The last entry in Gauss’ mathematical diary states that for a prime
p=1mod p,
If p=a®+b®and a+bi is primary, then N = p —2a — 3,
where N is the number of solutions modulo p of
x4+ y? +x2y? = 1mod p.

Show that this is a special case of Theorem 14.16. Hint: use the
change of variables (x,y)— ((1+ x)/2(1—x),(1+ x2)y/(1- x)?)
to transform the curve x2 + y2 + x2y2 =1 into the elliptic curve
y* =4x3+ x. See the discussion surrounding (4.24) for more de-
tails and references.
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Prove that p does not divide the discriminant of the order O, de-
fined in the proof of Theorem 14.18.

Let E be an elliptic curve over a field K, and assume that its j-
invariant j is different from 0 and 1728. Then define k € K to be
the number .

K = 27j

T j—1728

Then show that the Weierstrass equation for E can be written in
the form

y?=4x3—ctkx - c3k
for a unique ¢ € K*. Hint: ¢ = g3/g>.

Let O be an order in an imaginary quadratic field, and let p be a
prime not dividing the conductor of O. If m € O satisfies N () =
p, then prove that all solutions a € O of N(a)= p are given by
a = em or €x for € € O*. Hint: this can be proved using unique
factorization of ideals prime to the conductor (see Exercise 7.26).

Let E. be one of the collections of elliptic curve over F, which ap-
pear in the proof of Theorem 14.18, and let j denote their common
j-invariant. By Exercise 14.16, note that E. consists of all elliptic
curves over F, with this j-invariant.

(a) If j # 0,1728, show that the curves break up into two isomor-
phism classes, each consisting of (p —1)/2 curves. Hint: con-
sider the subgroup of squares in F,.

(b) If j = 1728 and p = 1 mod 4, then show that there are four iso-
morphism classes, each consisting of (p —1)/4 curves.

(c) If j =0 and p =1mod 3, then show that there are six isomor-
phism classes, each consisting of (p —1)/6 curves.

In this exercise, we will sketch two proofs that there are g(q —1)
elliptic curves over the finite field F,. As ususal, g = p%, p>3.

(a) Adapt the proof of Exercise 14.16 to show that there are
g possible j-invariants for elliptic curves over Fq, and show
that there are g — 1 curves with a given j-invariant. This gives
q(q — 1) elliptic curves.

(b) A second way to prove the formula is to show that there are
exactly g solutions (g2,83) € Ffl of the equation gg —27g; = 0.
We can write this as (g2/3)° = g2, and once we exclude the
trivial solution (0,0) we need to study solutions of u*=v?%in
the group Fj. So prove the following general fact: if G is a
finite Abelian group and a and b are relatively prime integers,
then the equation u® = v® has exactly |G| solutions in G X G.
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14.20.

14.21.

§14. ELLIPTIC CURVES

Let O' be an order in an imaginary quadratic field. Given a integer
m which isn’t a perfect square, show that

{a€O':N(@=m}|=2 Y x(a),
0<lal<2vm

where x(a) is defined by
1 if @' contains a root of x2 —ax + m
x(a) = .
0 otherwise.

Use Theorem 14.26 to show when Conjecture 14.27 is true, there is
a constant c¢3 > 0 such that for all sufficiently large primes /, there
are at least

I(1-1)

" (Inl)?

elliptic curves E over F; with |E(F))| twice a prime.

c3
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First Main Theorem, 199-200, 219,
237-239

relation to elliptic functions, 209-211
relation to ring class fields, 219-220,
236-242
Second Main Theorem, 241-242
Composition, 7-8, 19, 37, 47
definition, 41, 47
direct,47, 49-50
Dirichlet’s theory, 47-51, 54, 67,
139-140
Gauss’ theory, 47, 49-54, 66
genera, 54
Legendre’s theory, 3, 4042, 47,
50-51, 67
Conductor:
of an Abelian extension, 162, 164
of an order, 134
of a ring class field, 192, 195-198
Conductor Theorem, see Class field
theory
Congruence subgroup, 160-162
Continued fractions, 30
Convenient numbers, see Euler; Genus
theory
Cox, D. A, 244
Cubic reciprocity, see Reciprocity, cubic
Cyclotomic equation, 85. See also Field,
cyclotomic

D

Decomposition group, 101-102, 116,
178
Dedekind, R., 88
Dedekind domain, 98-99, 132, 134
Dedekind 7-function, 249, 256, 259-260
Degree:
of an isogeny, 313-314
of a number field, 98
Deligne, P, 316
Descent, method of infinite descent,
8-9, 11
Descent Step, 10-12, 21, 23, 26, 30. See
also Euler
Deuring, M., 4-5, 146, 237, 240, 242,
286, 289, 298, 300, 302, 317-319
Dickson, L. E., 59
Digby, K., 8-9, 38



Dirichlet, P. G. L., 58, 64, 87-88, 190.
See also Composition
comment on genus theory, 62-63
proof for x? + 64y?, 83, 91
theorem on primes in arithmetic
progressions, 18, 39, 56, 159, 170,
177, 192
Dirichlet density, 168-170, 177,
188-189. See also Cebotarev
Density Theorem
Discriminant:
of a field, see Field
of an order, see Order
of a polynomial, 9§, 111, 115, 120,
180, 185, 193, 206, 298-300,
302-303
of a quadratic form, see Quadratic

form
Dorman, D., 301-302

E

Edwards, H., 9, 59, 89
Eisenstein, E G., 87-88
Elliptic curve, 5, 86, 200, 308, 322, 330
in characteristic 2 and 3, 308, 310
with complex multiplication, 312, 314,
316-317, 320
definition:
over a field, 308
over a ring, 323
endomorphism ring, 312
group of solutions, 308, 311-312, 323
isogeny, 313-315
cyclic, 315
degree, 313-314
Frobenius, 314-315, 317-318, 321,
332
over C, 313
over a finite field, 314
over K C C, 314
isomorphism of, 310
over an algebraically closed field,
311
over C, 310
over a finite field, 320
j-Invariant, 310
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over a finite field, 308, 315-316,
319-320
ordinary, 316, 319-320
supersingular, 316, 321-322
reduction of, 240, 316-322
use in primality testing, 308, 323-330
Weierstrass equation, 308, 323, 330
Elliptic function, 5, 199, 211, 308.
See also Complex multiplication;
Weierstrass p-function
definition, 200
even elliptic function, 210, 218
as a function in p and p’, 218
Elliptic integrals, 83
Ellison, E, 89
Ellison, W,, 89
Equivalence:
classes, 65
of quadratic forms, see Quadratic
form, equivalence
R* -equivalence, see Quadratic form,
equivalence
SL(2,Z)-equivalence, 24
Erdos, P, 190
Euclidean ring, 75, 81
Euler, L., 7, 9, 12, 20-21, 29, 32, 37-38,
40, 45, 64, 88, 120, 167, 274, 283,
330
conjectures for p = x2+n yz, 2, 7,
19-20, 24, 33-34, 36-38, 4041, 63,
80, 83, 85, 91
convenient numbers, 59, 61-62, 127,
131
correspondence with Goldbach, 9-11,
13
proof of p = x* + y?, 10-12, 45
proofs of p = x? +2y?, x* +3y?, 12,
15
quadratic reciprocity, 2, 7, 12-19, 64
two-step strategy, 1012, 26, 30. See
also Descent Step; Reciprocity
Step
Existence Theorem, see Class field
theory

F
Fermat, P, 89, 12, 29, 32, 73, 120, 330
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Fermat, P. (Continued)
conjecture concerning x2 + 5y?, 8, 19,
36-37, 4041
descent, 89, 11, 274
letter to Digby, 8-9, 38
Little Theorem, 11, 78, 81, 126
theorems on p = x% + y?, x* + 2y?,
x? +3y?, 1-2, 7-12, 23, 31, 65
Field, see also Class field theory;
Hilbert class field; Ray class field;
Ring class field
cyclotomic, 63, 85, 88-89, 161-164,
174-175, 177
extension:
Abelian, 88, 105-106, 159-160
generalized dihedral, 190-192,
194-195
ramification, 100-101, 161-162, 184
unramified, 105-106
genus, 121, 127-128, 263, 267, 280
number, 3, 98, 159
degree, 98
quadratic, 5, 103-105
discriminant, 59, 103
imaginary, 4, 137
real, 5, 142, 153-156
residue, 100
Flath, D., 30, 51, 53, 64, 69
Fractional ideal, 100, 116, 135
Franz, W., 242
Frei, G., 61
Frobenius:
automorphism, 106
isogeny, see Elliptic curve, isogeny
Fundamental domain, 222-223, 243-244
Fundamental Theorem, see Reciprocity

G

Gauss, C. E, 3, 20, 23, 31, 35, 43, 47,
61-62, 71, 73-74, 93-95, 318, 332.
See also Composition; Genus
theory

biquadratic reciprocity, 20, 63, 83-84,
87, 93

cubic reciprocity, 3, 20, 63, 84, 87

Disquisitiones Arithmeticae, 3, 24, 47,
57, 60, 63-66, 85, 148-149, 337

indefinite forms, 29-30
mathematical diary, 63, 86, 318, 332,
335, 337
quadratic forms, 24, 29, 63-66, 86
quadratic reciprocity, 63, 73
first proof, 64
second proof, 57, 64, 69-70
third proof, 39
sixth proof, 87
Gaussian integers, 81-82, 83-84, 91
Gauss sums, 87
Generalized dihedral extension, see
Field, extension; Ring class field
Genus theory, 2-3, 7-8, 19, 32-37, 97.
See also Field, genus; Hilbert class
field
composition of genera, 54
definition of genus, 33
for field discriminants, 121-127
Gauss’ theory, 47, 53-58, 74
genus of a coset, 35, 53
Lagrange’s theory, 19, 32-36, 38, 58
principal genus, 35, 54, 121
relation to convenient numbers,
60-62, 127-128, 131
relation to p = x* + ny?, 36, 59-63
Goldbach, C,, 9-11, 13
Goldfeld, D., 149
Goldwasser, S., 323, 326, 328
Goldwasser-Kilian—-Atkin Test, see
Primality testing
Goldwasser-Kilian Test, see Primality
testing
Golod, E. S., 105
Gray, J. J, 63
Gross, B., 4-5, 149, 286, 298, 300, 302,
322
Grosswald, E., 5

H

Hardy, G. H., 296

Hasse, H., 128, 132, 168, 315, 325-326

Hasse g-expansion principle, 232,
246-247

Heegner, K., 4, 149, 271-272, 274

Hermann, O., 235, 296



Herstein, 1. N., 75
Herz, C. S, 115, 132, 271
Hilbert class field, 34, 19, 97, 105-109,
159, 163-164, 172, 179-180, 192,
240, 263, 280
Artin Reciprocity Theorem, 108-109,
121
class field theory for, 106, 109
of Q(v—14), 3, 19, 97, 113-115, 128,
264, 267, 270
relation to p = x% + 14y?, 3, 19, 97,
113-115
relation to genus theory, 120-121,
126-128
relation to p = x? + ny?, 3, 97-98
Hilbert symbol, 128, 168, 176
Homothety, see Lattice
Hua, L.-K., 58
Hurwitz, A., 99
Hurwitz class number, 318, 327
Huseméoller, D., 5, 308, 312, 316, 321

Ideal numbers, 88-89
Ideles, S, 172-174
class group, 173
group, 173
Inertia group, 101, 116
Inertial degree, 100
Integrally closed, 99
Invertible ideal, 135
Ireland, K., 68, 74, 76, 78-83, 86, 88,
98-99, 120, 316
Irreducible element in a ring, 76
Ishida, M,, 128
Isogeny, see Elliptic curve, isogeny

J

Jacobi, C. G. J, 39, 64, 87-88

Jacobi symbol, 16-18, 22, 64, 73

Janusz, G., 128, 160-163, 169-170, 173

j-Function, 4, 208, 220-225, 309. See
also j-Invariant

cube root of the j-function, 249
generates ring class fields, 249-250,
255

as a modular function, 250
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j(V=2), 212-214, 218

j(/—14), 4, 249, 263, 268-270,
285-286, 330

as a modular function, 226-228

q-expansion, 225, 229, 259, 296-297,
305

j-Invariant, see also Elliptic curve;

j-Function

of an elliptic curve, 310

generates ring class fields, 220, 237,
240

of an ideal or order, 199, 209,
219-220, 240-242, 248-249, 285
for orders of class number one,

250, 260-263, 274

of a lattice, 199, 205-206, 208

singular j-invariant or singular
modulus, 88, 209, 242, 248, 263,
298

Jones, B. W,, 58-59

K

Kaltofen, E., 235, 294, 296-297, 330
Kilian, J., 323, 326, 328
Koblitz, N., 231, 308, 312
Kronecker, L., 234
class field theory, 8889
complex multiplication, 8889
quadratic reciprocity, 16
Kronecker class number formula, 290,
322
Kronecker congruence, 234, 238-239
Kronecker Limit Formula, 263
Kronecker symbol, 104, 146
Kronecker—-Weber theorem, 88, 159, 163
Kummer, E. E., 88

L

Lagrange, J. L., 3, 8, 19-20, 24, 32-38,
43 45, 47, 65, 88. See also Genus
theory

indefinite forms, 29-30

proof of p = x* + 5y?, 8, 36-37

quadratic forms, 2, 12, 20, 23-29

quadratic reciprocity, 38-40
Landau, E., 31, 61, 150
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Lang, S., 5, 98-102, 146, 225, 231-232,
235, 240, 242, 263, 267, 289, 296,
298, 308, 315, 317-318, 322

Lattice, 199-200. See also j-Invariant

cyclic sublattice, 236

relation to primitive ideal, 236-237
homothetic, 205, 211-212, 221
of an ideal, 208-209

Laurent expansion, 202, 207-208,
213-214, 216, 219. See also
Weierstrass p-function

Legendre, A. M., 3, 24, 38, 40-43, 46,
65, 71. See also Composition

composition, 3, 40-42

observation on reduced forms, 27-28,
37

quadratic forms, 24, 39-42

quadratic reciprocity, 39-40, 64

use of term “quadratic form”,
40

Legendre symbol, see also Jacobi

symbol; Kronecker symbol
biquadratic, 74, 82
cubic, 74, 78-80, 187
nth power, 118-119, 159, 164-165,
167
quadratic, 13, 39

Lenstra, H. W, Jr., 323-324,
326-327

LHopital’s rule, 209

Linneas, C., 65

Liouville’s Theorem, 203-204, 216

L-Series, 88, 149

M

Marcus, D., 98-103, 120, 123, 125, 129,
164, 172
Mathews, G. B,, 53, 58, 64, 69
Meromorphic at the cusps, 225-226. See
also Modular functions
Mersenne, M., 8
Modular equation, 199, 220, 229-236,
286, 315, 322
algorithm for computing, 293-297
for m =3, 234
relation to the class equation,
286-287, 291

Modular functions, 2, 5, 199, 219,
248-249. See also j-Function;
Weber functions

for To(m), 225-231, 248-249, 252-253,
295, 305
generate ring class fields, see Ring
class field
q-expansion, 226, 229. See also Hasse
q-expansion principle
for SL(2,2), 226-228
Modulus, 159, 179, 240
Morain, E, 323, 328-330

N

Neukirch, J., 5, 168-170, 173-174, 180
Noetherian, 99
Norm:

of an element, 74

of an ideal, 99, 134, 172-173

of an idele class, 173

(0

Oesterlé, J., 149, 158
Ono, T., 128
Opolka, H., 6, 9, 28, 38
Orde, H., 149
Order, see also Class number
in a quadratic field, 132-133, 150,
179, 316. See also Class field
theory; Complex multiplication;
Lattice
conductor, 134, 150, 179
discriminant, 134, 150
maximal order, 133, 180, 192,
240
of quadratic forms, 65
in a quaternion algebra, 316
Ordinary elliptic curve, see Elliptic
curve, over a finite field

P

p-Adic field, 176
p-Adic integer, 58
Pascal, B., 8

Pell’s equation, S, 30



Period, 85, 94-95. See also Field,
cyclotomic
p-Function, see Weierstrass p-function
Primality testing, 5, 200, 308, 323-330
Goldwasser-Kilian-Atkin Test, 323,
328-330
Goldwasser=Kilian Test, 323-324, 326,
328
probabilistic primality test, 324-325
relation to p = x% + ny?, 323,
328-330
use of the class equation, 308, 323,
328-330
use of elliptic curves, 308, 323-330
Primary element, 79, 82, 187
Prime:
to the conductor, 143
element, 76
finite, 105
ideal, 76, 99-100
infinite:
complex 105
real 105
Prime Number Theorem, 327
Primitive:
element of an order, 237
ideal, 236
relation to cyclic sublattices, see
Lattice
quadratic form, see Quadratic form,
primitive
Principal:
class, 50
form, 34
fractional ideal, 100
genus, 35, 54, 121
ideal, 76, 136
Principal Ideal Domain (PID), 75-76,
81
Projective space, 308, 330
Proper:
equivalence, see Quadratic form,
equivalence
fractional ideal, 135
ideal, 134-135
representation, see Quadratic form,
represented by
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Properly discontinuous action, 223

p = x*+ny* 1-5,7, 12-13, 18-19, 21,
24, 26, 29-32, 34-36, 38, 4647, 50,
56, 59, 61-62, 73, 97-98, 110, 112,
132, 159, 172, 179-183, 199-200,
220, 286, 299, 323, 328-330. See
also Class equation; Genus theory;
Hilbert class field; Primality testing;
Ring class field

p = x%+y?% 12, 7-8, 10-12, 21, 31, 65,
330

p = x%+2y% 12,78, 12, 21, 31, 45,
65, 85, 93, 330

p = x%+3y?, 1-2, 7-8, 12, 21, 31, 65,
330

p= x2 +5y?, 2, 8, 19, 33, 36-37, 4041,
65

p = x? + 14y?, 34, 19, 33-34, 36-37,
62, 113-115, 128. See also Hilbert
class field

p = x>+ 27y?%, 24, 20, 62-63, 80, 85,
89, 179, 183-184, 186-187. See also
Ring class field

p = x+64y?, 3, 20, 63, 83, 85, 89, 179,
183-184, 186-187. See also Ring
class field

Q

q-Expansion, see j-Function; Modular
functions
Quadratic form, 2, 7, 11-12. See also
Class number; Composition; Gauss;
Genus theory; Lagrange; Legendre
class of, 29, 42, 65
Lagrangian, 51, 67-68
principal, 50
relation to Hilbert class field, 113
determinant, 65
discriminant, 23, 25, 65
equivalence, 23, 41
improper, 24
modulo m, 58
over Q, 59
over a ring, 58
proper, 23-24, 41-42, 65
R*, 243-244
signed, 142, 155-156



350 INDEX

Quadratic form (Continued)
indefinite, 5, 25, 29-30, 44
negative definite, 25
opposite, 50
orders of, 65
positive definite, 2, 11, 23, 25-26
primitive, 24
improperly primitive, 65
properly primitive, 65
principal, 34
reduced, 2, 12, 23, 26-30, 37, 42
represented by, 24
number of representations, 5, 8, 61
properly represented, 24
root, 137-138, 152, 243
Quadratic reciprocity, see Reciprocity,
quadratic

R

Ramification, see Field, extension
ramification index, 100
Ray class field, 164, 175, 241-242
Reciprocity:
Artin Reciprocity Theorem, see Class
field theory
biquadratic, 2-3, 5, 7, 20, 63, 74, 79,
81-82, 87, 97, 179. See also Gauss
fundamental theorem, 84
proof by class field theory, 168,
186187
supplementary laws, 82-83
cubic, 2-3, §, 7, 20, 63, 87, 179. See
also Gauss
proof by class field theory, 168,
176-177, 186-187, 194
supplementary laws, 79-80, 194
higher, 24, 88-89
quadratic, 1-2, 5, 7, 12-19, 21-23,
3740, 63. See also Euler; Gauss;
Lagrange; Legendre
fundamental theorem, 63
proof by class field theory, 166-167,
175-176
supplementary laws, 22-23, 74
Reciprocity Step, 10-13, 15, 21, 23,
30, 45. See also Euler, L.
Shimura Reciprocity Law, 267

Strong Reciprocity, 167-168, 176
Weak Reciprocity, 165-166, 176,
186187
Reduced quadratic form, see Quadratic
form, reduced
Reduction of elliptic curves, see Elliptic
curve
Representations by quadratic forms, see
Quadratic form
Residue:
biquadratic, 20, 82
cubic, 20, 80, 86-87
field, 100
quadratic, 13, 82
Rieger, G. J,, 63
Riemann Hypothesis, 149
Ring class field, 4, 179-181, 187-189,
192, 195-198, 219-220, 240, 330.
See also Complex multiplication
Artin map, 240
conductor of, see Conductor
gencrated by modular functions, 220,
240, 249-250, 255, 264
of Z[v-27), 179, 183-185
relation to cubic reciprocity, 186
relation to p = x? +27y?, 186
of Z[/—64], 179, 183-185
relation to biquadratic reciprocity,
186
relation to p = x” + 64y?, 186
of Z[/—n]), 4, 179, 199
relation to p = x? + ny?, 179-181
relation to generalized dihedral
extensions, see Field, extension
Roquette, P, 85
Rosen, M., 68, 74, 76, 78-83, 86, 88,
98-99, 120, 316

S

Scharlau, W., 5, 9, 28, 38

Schertz, R., 250, 255, 264

Schoof, R. J., 328

Selberg, A., 190

Serre, J.-P, 220, 251, 296

Shafarevich, 1. R., 58, 98, 100-101,
104-105, 132, 142, 149



Shimura, G., §, 231, 240, 267, 308, 322

Shimura Reciprocity Law, see
Reciprocity

Siegel, C. L., 149

o-Function, see Weierstrass o-function

Silverman, J., 5, 308, 312, 314-316

Singular moduli, see j-Invariant

Smith, H. J. S., 58-59, 71, 87-88, 234

Split completely, 101, 109-110, 171-172,
178, 181-183, 238

Stark, H., 4, 149, 212, 271, 277

Supersingular elliptic curve, see Elliptic
curve, over a finite field

T

Tamagawa numbers, 128
Tate, J., 321

Taylor, M. J., 242, 322
Ternary form, 71

Trace of an element, 117

U

Unique Factorization Domain (UFD),
75-76, 81, 99
Unit in a ring, 76

\')
Valente, T., 330

w

Wagon, S., 324, 326
Wallis, J., 9
Watson, G. N., 205, 277
Weber, H., 4, 190, 263, 269, 274, 330
Lehrbuch der Algebra, 249-250, 261,
263-264, 294
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Weber function 7(z; L), 241-242, 248
Weber functions f, f,, f,, 225, 249,
256-260, 274, 276-277, 330
class number one theorem, 272
computations of j-invariants, 261-271
generate ring class fields, 264
as modular functions, 264, 282
Weierstrass equation, see Elliptic curve
Weierstrass p-function, 5, 205, 241, 309
addition law, 201, 204, 217, 311, 331
definition, 200
differential equation, 200, 217, 309
Laurent expansion, 202, 207-208,
213-214, 219
relation to o-function, 257
relation to Weber functions, 257
Weierstrass o-function, 215, 257-258,
277-278
relation to Weber functions, 258, 279
Weil, A., 5-6, 9, 11-12, 16, 19-20, 39,
46, 61, 67, 73, 89, 174, 316
Weinberger, P. J., 62
Whittaker, E. T., 205, 277
Wright, E. M., 296

Y
Yui, N., 235, 294, 296-297, 330

y4

Zagicer, D., 4-5, 30, 128, 142, 148-149,
155, 286, 298, 300, 302
Zeta function:
Dedekind zeta function, 169
of a variety, 86



