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Abstract

If A is a set of natural numbers containing 0, then there is a unique
nonempty “reciprocal” set A−1 of natural numbers such that every posi-
tive integer can be written in the form a+ a′, where a ∈ A and a′ ∈ A−1,
in an even number of ways. It is straightforward to see that the generating
functions of (the characteristic functions of) A and A−1 over F2 are recip-
rocals in F2[[q]]. Let Σ denote the set containing 0 and all positive integers
such that σ(n) is odd, where σ(n) is the sum of all the positive divisors of
n. Euler showed that σ(n) satisfies an almost identical recurrence as that
given by his Pentagonal Number Theorem, a corollary of which is that
the set P of natural numbers n so that the partition function p(n) is odd
is the reciprocal of the set of generalized pentagonal numbers (integers
of the form k(3k + 1)/2, where k is an integer). Therefore, motivated
by the 1967 Parkin-Shanks Conjecture that the density of P is 1/2, we
analyze the density ρ of Σ−1, conjecturing that ρ = 1/32 and proving that
0 ≤ ρ ≤ 1/16. We also discuss a few surprising connections between Σ
and certain so-called “Beatty sequences”.

∗This work is funded in part by NSF grant DMS-1001370.
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1 Introduction

For any sets containing nonnegative integers A and B, the asymmetric additive
representation function is defined by

R(n) = # {(a, b) : n = a+ b, a ∈ A, b ∈ B}

Alternatively, we can define R(n) as(∑
a∈A

qa

)(∑
b∈B

qb

)
=

∞∑
n=0

R(n)qn

We are interested in the case where R(n) ≡ 0 (mod 2) for n ≥ 1 and R(0) = 1
which is illustrated in the power series ring F2[[q]]. Here, A and B are called
reciprocals. For a set A, we write its reciprocal as A. Given A, we focus on the
relative density of A,

δ
(
A,n

)
=

∣∣A ∩ [0, n]
∣∣

n+ 1

and natural density δ
(
A
)

= limn→∞ δ
(
A,n

)
. Consider the following statement

of Euler’s Pentagonal Number Theorem:( ∞∑
n=−∞

(−1)nq
n(3n−1)

2

)( ∞∑
n=0

p(n)qn

)
= 1, (1)

where p(n) is the partition function of n, i.e., the number of ways to write n as
an unordered sum of positive integers. If we rewrite (1) mod 2, the result is( ∞∑

n=−∞
q

n(3n−1)
2

)( ∞∑
n=0

p(n)qn

)
= 1,

where the power series are now elements of the ring F2[[q]]. In this sense, P , the
set of integers with an odd number of partitions (including 0), is the reciprocal
of the set of generalized pentagonal numbers G, i.e., G = P . A well-known and
difficult conjecture of Parkin and Shanks states that δ(P ) = 1/2. The current
best lower bounds on the density of P still tend towards 0 [1, 6].

The paper which precedes this attempts to shed light on the question by
studying reciprocals mod 2 in general. In particular, the authors found that a
loosely-defined “typical” reciprocal set has density 1/2 [4]. With this in mind, we
continue the line of work by studying the analogous reciprocal for the function
σ(n), the sum-of-divisors function defined as

σ(n) =
∑
d|n

d.

The motivating connection between p(n) and σ(n) is the fact that they satisfy
almost identical recurrences [2]

p(n) =

∞∑
n=−∞

(−1)np

(
n− k(3k − 1)

2

)
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and

σ(n) =

∞∑
n=−∞

(−1)nσ

(
n− k(3k − 1)

2

)
with the only difference being that σ(n−n) is interpreted to mean n (since σ(0)
is undefined, whereas p(0) = 1). The reciprocal sets G and P = G have densities
0 and, assuming the Parkin-Shanks Conjecture, 1/2, respectively. Then letting
Σ denote the set containing 0 and all positive integers n such that σ(n) ≡ 1
(mod 2), we ask, what are δ(Σ) and δ(Σ)?

Throughout this sequel, we use the following notation.

Definition 1.1. For any set containing nonnegative integers F , we write F (q)
for the ordinary generating function over F2 of (the indicator function of) F .
In other words,

F (q) =
∑
f∈F

qf .

Furthermore, for a set of nonnegative integers F , we write F k for the set of
indices of nonvanishing monomials in F (q)k.

Definition 1.2. For any set F ⊆ N with 0 ∈ F , let F be the unique set obtained
from F (q) by defining F (q)F (q) = 1.

Definition 1.3. For any set F ⊆ N, let the set of even elements of F be denoted
Fe and the odd elements Fo, so that F (q) = Fe(q) + Fo(q).

We repeatedly employ the following result, sometimes known as the “Children’s
Binomial Theorem”.

Theorem 1. For any f , g ∈ F2[[q]], (f + g)2 ≡ f2 + g2.

2 The Sum of Divisors Function

Definition 2.1. Let Σ(q) be the binary generating function for σ(n) for non-
negative integers n. By definition, Σ is the set containing nonnegative integers
n with σ(n) odd.

Σ(q) =

∞∑
n=0

σ(n)qn

In order to find the density of Σ, we need a description of those integers that
have an odd divisor sum. Let n be a positive natural number. Then σ(n) is
defined to be the sum of all (positive) divisors of n, including n itself, i.e.,

σ(n) =
∑
d|n

d.
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We can write the prime factorization of n as

n =

k∏
i=1

peii

where the pi are distinct primes and ei is a positive integer. Clearly, d ∈ N
divides n if and only if it can be written in the form

d =

k∏
i=1

pfii

where 0 ≤ fi ≤ ei for each i. Therefore,

σ(n) =
∑
d|n

d

=

e1∑
f1=0

· · ·
ek∑

fk=0

k∏
i=1

pfii

=

k∏
i=1

ei∑
fi=0

pfii . (2)

This product is odd precisely when all of its factors
∑

fi
pfii are odd.

Lemma 2. For an odd prime p, the quantity
∑e

f=0 p
f is odd precisely when e

is even.

Proof. If e is even, we may write

e∑
f=0

pf = (1 + p)(1 + p2 + p4 + · · ·+ pe−2) + pe.

Since p is odd, 1+p is even, so the first summand is even. The second summand,
being a nonnegative power of an odd integer, is odd. Therefore, the sum is odd.
If e is odd, we may write

e∑
f=0

pf = (1 + p)(1 + p2 + p4 + · · ·+ pe−1).

Again, 1 + p is even, so the sum is even.

Lemma 3. The quantity
∑r

k=0 2r is odd for any natural number r.

Proof. This follows immediately from the observation that

r∑
k=0

2r = 2r+1 − 1.
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Theorem 4. The quantity σ(n) is odd if and only if the odd part of n is a
square, i.e., if n = 2r · pe11 · · · p

ek
k is the prime factorization of n, then ei is even

for each i, 1 ≤ i ≤ k.

Proof. By (2), we may write

σ(n) =

 r∑
j=0

2j

 ·
 k∏

i=1

ei∑
j=0

pji

 .

The left-hand factor is always odd, by Lemma 3. The right-hand factor is odd
if and only if all of the sums

∑
j p

j
i are odd. By Lemma 2, this occurs if and

only if each of the ei is even. Therefore, σ(n) is even if and only if its odd part
is a square.

Definition 2.2. Let S(q) be the power series with positive squares as the expo-
nents of q:

S(q) =

∞∑
n=1

qn
2

Lemma 5. Σ(q) = 1 + S(q) + S(q)2

Proof. The power series S(q) has a nonzero coefficient for qn if and only if n is
a positive integer of the form k2. By the Children’s Binomial Theorem, S(q)2

has exactly the positive integers of the form 2k2 as exponents of q. By adding
1, S(q), and S(q)2 together, we obtain a power series whose nonzero monomials
are all the nonnegative integer powers of q of the form k2 or 2k2. By Theorem 4,
Σ(q) has a nonzero coefficient of qn if and only if the odd part of n is a square,
i.e., n is any nonnegative integer of the form k2 or 2k2. The claimed equality
follows immediately.

Corollary 6. δ(Σ) = 0.

Proof. The relative density of Σ, δ(Σ, n), is just the number of nonnegative
integers less than or equal to n that are either a square or twice a square,
divided by n+ 1, so

δ(Σ, n) =
1 + b

√
nc+

⌊√
n/2

⌋
n+ 1

Taking the limit as n tends to infinity yields

δ(Σ) = 0.
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3 The Reciprocal

Definition 3.1. Let D denote the odd (positive) squares, i.e.,

D(q) =

∞∑
n=0

q(2n+1)2

Lemma 7. S(q) =
∑∞

n=0D(q)4n

.

Proof. Consider the set of all odd squares, D. If we quadruple the members
of D, we obtain those even squares divisible by 4, but not divisible by 16. If
we quadruple again, we obtain the even squares divisible by 16, but not 64.
Applying the Children’s Binomial Theorem,

S(q) =

∞∑
n=0

D(q)4n

.

Corollary 8. Σ(q) = 1 +
∑∞

n=0D(q)2n

Proof. Substituting the equation in the statement of Lemma 7 into the expres-
sion in Lemma 5 and applying the Children’s Binomial Theorem once again, we
obtain the desired statement.

The next results will allow us to decompose Σ into congruence classes, so
that we are able to analyze δ

(
Σ
)

“piecewise”.

Lemma 9.

Σ(q) =

∞∑
n=0

D(q)2n−1

Proof. We begin by squaring Σ(q) and rewriting:

Σ(q)2 =

(
1 +

∞∑
n=0

D(q)2n

)2

= 1 +

∞∑
n=1

D(q)2n

.

If we add D(q), we have

Σ(q)2 +D(q) = Σ(q),

or
D(q) = Σ(q) + Σ(q)2,

which we can divide by D(q)Σ(q) to obtain

Σ(q) =
1 + Σ(q)

D(q)
=

∞∑
n=0

D(q)2n−1 (3)

by Corollary 8.

6



Definition 3.2. Let Σk denote the subset of Σ of integers congruent to k
(mod 8), i.e., Σk = Σ ∩ (8Z + k).

Lemma 10. Using the above definition, the following hold:

i. Σ0(q) = 1, i.e., Σ0 = {0}.

ii. Σ1(q) = D(q), i.e., Σ1 =
{

(2k + 1)
2 | k ∈ N, k ≥ 0

}
.

iii. Σ3(q) = D(q)3.

iv. Σ7(q) = D(q)7 +D(q)15 +D(q)31 + · · · .

Proof. The proof proceeds as follows. For any F (q) ∈ F2[[q]], F (q)k is the power
series whose exponents are those integers that can be represented as a sum of
k of F (q)’s monomial exponents in an odd number of ways. Note that the
exponents of q accompanying nonzero coefficients in D(q) are congruent to 1
(mod 8). Therefore, when D(q) is raised to a power congruent to k (mod 8),
the exponents of the resulting series are all congruent to k (mod 8). Proceeding
from (3), then, we may write

Σ = Σ0 ∪ Σ1 ∪ Σ3 ∪ Σ7,

because the powers of D(q) on the right-hand side of (3) are congruent only to
0, 1, 3, and 7 (mod 8). Indeed, by examining those exponents which appear in
the terms of (3), it is straightforward to see the above lemma holds.

Our next steps concern further classifications of Σ3 and Σ7. For now, we put
Σ3 aside until the next section. Presently, we provide the following definition
and lemma.

Definition 3.3. Let ∆ denote the set of triangular numbers, i.e.,

∆(q) =

∞∑
n=0

qn(n+1)/2.

Lemma 11. The following identities hold:

i. Σ(q)− 1−D(q)−D(q)3 = D(q)7Σ(q)8

ii. q∆(q)8 = D(q)

Proof. By Corollary 8,

Σ(q) =

∞∑
n=0

D(q)2n−1.

Therefore,

Σ(q)− 1−D(q)−D(q)3 =

∞∑
n=0

D(q)2n+3−1
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= D(q)7
∞∑

n=0

D(q)2n+3−8

= D(q)7Σ(q)8,

which is claim (i). Now, observe that multiplying a triangular number n(n+1)/2,
n ≥ 0, by 8 and adding 1 yields an odd positive square, and, in fact, every odd
positive square can be uniquely obtained in this manner. Therefore,

q∆(q)8 = q

( ∞∑
n=0

q
n(n+1)

2

)8

= D(q),

yielding claim (ii).

The following result is [8, Theorem 357] reduced modulo 2.

Theorem 12.
∆(q) =

∏
n≥1

(1 + qn)
3

We believe the following theorem, though strictly speaking is not needed in
its full generality for our main result, holds some independent interest.

Theorem 13. Let k ∈ Z and G(q) =
∏

n≥1(1 + qn). Then, if k is odd,

Σ(q)Gk(q) = Gk
e(q).

In particular, since G3(q) = ∆(q) and G−1(q) = P (q), we have ∆(q)Σ(q) =
∆e(q), P (q)Σ(q) = Pe(q), and ∆(q)Σ(q) = ∆e(q).

Proof. Over F2, the derivative with respect to q of qn is 0 if n is even and qn−1

if n is odd. Taking the derivative of the expression Gk(q) =
∏

n≥1(1 + qn)k

where k is odd, we obtain

d

dq
(Gk(q)) = Gk(q)

∑
n≥1

nqn−1

1 + qn
,

which simplifies to
Gk

o(q)

q
= Gk(q)

∑
n≥0

q2n

1 + q2n+1
.

This may be rewritten as

Gk
o(q)

Gk(q)
=
∑
n≥0

q2n+1

1 + q2n+1
.

If we add Gk(q)/Gk(q) to the left and 1 to the right, we obtain

Gk
e(q)

Gk(q)
= 1 +

∑
n≥0

q2n+1

1 + q2n+1
. (4)
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The right-hand side of (4) has monomial terms 1 and qn for all positive
integers n which are divisible by exactly an odd number of odd numbers. Note
that, if r is the largest integer so that 2r|n, then

σ(n) = (2r+1 − 1)
∑
2-d|n

d

=
∑
2-d|n

1

=

{
1 if n has an odd number of odd divisors;

0 otherwise.

The desired conclusion is then the reciprocal of (4).

Corollary 14. Σ(q) = ∆(q)/∆e(q).

Definition 3.4. Let V (q) be the power series such that Σ7(q) = q7V (q)8.

This definition is meaningful because Σ7(q) has only monomial terms of the
form qk where k ≡ 7 (mod 8).

Definition 3.5. Let T (q) = ∆(q)4√
∆e(q)

.

The square root and the fraction make sense because ∆e(q) has only even
exponents and

√
∆e(q) has a 1 term since ∆e(q) has a 1 term (0 is an even

triangular number).

Theorem 15. Σ7(q) = q7T (q)16.

Proof. We begin by combining Lemma 9 and Lemma 10 (iv):

Σ(q) = 1 +D(q) +D(q)3 + Σ7(q). (5)

Applying part (i) of Lemma 11 to Definition 3.4,

D(q)7Σ(q)8 = q7V (q)8,

which, using part (ii) of Lemma 11, becomes(
q∆(q)8

)7
Σ(q)8 = q7V (q)8.

Finally, a bit of simplification yields

V (q) = ∆(q)7Σ(q). (6)

If we substitute Lemma 14 into (6),

V (q) =
∆(q)8

∆e(q)
,

which is exactly T (q)2 on the right-hand side. Substituting into Definition 3.4,
we have our proof.
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Theorem 16. δ(Σ) = δ(Σ7)

Proof of Theorem 16. To show that δ(Σ) = δ(Σ7), we recall

Σ = Σ0 ∪ Σ1 ∪ Σ3 ∪ Σ7.

Since each Σk is disjoint, δ(Σ) = δ(Σ0) + δ(Σ1) + δ(Σ3) + δ(Σ7). Because

Σ0 = {0} and Σ1 =
{

(2k + 1)
2 | k ∈ N, k ≥ 0

}
, δ(Σ0) + δ(Σ1) = 0. We devote

the following section to describing Σ3 and computing its density. As seen later,
δ(Σ3) = 0.

Corollary 17. 0 ≤ δ(Σ) ≤ 1/16.

Proof. We begin with Theorem 15, Σ7(q) = q7T (q)16. By the Children’s Bino-
mial Theorem, if n is a monomial exponent of q on the right-hand side of the
preceding equation, then n ≡ 7 (mod 16). (Also, for n ≡ 15 (mod 16), n /∈ Σ7.)
Thus, 0 ≤ δ

(
Σ7

)
≤ 1/16 and by Theorem 16, 0 ≤ δ

(
Σ
)
≤ 1/16.

Conjecture 18. δ(Σ) = 1/32.

4 The 3 (mod 8) Case

We note a few well-known facts which will be used in the course of the proof.

Proposition 19. Z[
√
−2] is a unique factorization domain.

Proposition 20. An odd prime p can be written as p = x2 + 2y2 for integers
x and y if and only if p ≡ 1 or 3 (mod 8).

For proofs of the preceding propositions, we refer the reader to common
texts on number theory [5, 8].

Proposition 21. For an integer n ≡ 3 (mod 8), the factorizations of n as
(a+ b

√
−2)(a− b

√
−2) with a, b > 0 are in bijection with the representations of

n as c2 + 2d2 for some odd c, d > 0.

Proof. It is clear that, if n = c2 + 2d2, then c and d must be odd, since n ≡ 3
(mod 8) implies c2 ≡ 1 (mod 8) and d2 ≡ 1 (mod 8). If n = (a + b

√
−2)(a −

b
√
−2) for a, b > 0, then n = a2 + 2b2; by the preceding sentence, a and b

are odd and positive. Conversely, if n = a2 + 2b2 for a, b > 0, then n =
(a+ b

√
−2)(a− b

√
−2).

Theorem 22. If n ≡ 3 (mod 8), then n ∈ Σ3 if and only if we can write
n = pek2 for some prime p ≡ 3 (mod 8), e ≡ 1 (mod 4), k an odd integer, and
p - k.
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Proof. Lemma 10 showed us that Σ3(q) = D(q)D(q)2. Using the Children’s
Binomial Theorem, we see that n ∈ Σ3 if and only if the number of representa-
tions of n as a2 + 2b2, a and b positive, is odd. Let n = a2 + 2b2 be one such
representation. Then, n ≡ 3 (mod 8) if and only if a and b are odd. Suppose n
can be factored over Z as

n = pe11 · · · perr q
f1
1 · · · qfss

with pj ≡ 1 or 3 (mod 8) for each j ∈ [r] and qj ≡ 5 or 7 (mod 8). If pj ≡ 1, 3
(mod 8), then factoring p over R = Z[

√
−2] yields pj = (aj + bj

√
−2)(aj +

bj
√
−2) for some R-primes aj ± bj

√
−2. This factorization is unique up to

multiplication by units and switching the order of the factors. However, a2 +
2b2 = 1 has only the solutions (a, b) = (±1, 0), so we may simply assume that
a and b are positive to ensure uniqueness. (a cannot be 0, since p is an odd
prime.) Then the factorization of n over R has the form

n =

r∏
j=1

(aj + bj
√
−2)ej (aj − bj

√
−2)ej

s∏
j=1

q
fj
j .

Grouping terms on the right-hand side yields a product
n = (a+ b

√
−2)(a− b

√
2), where

a+ b
√
−2 =

r∏
j=1

(aj ± bj
√
−2)Aj

r∏
j=1

p
(ej−Aj)/2
j

s∏
j=1

q
fj/2
j

for some (A1, . . . , Ar) ∈ {0, . . . , e1}× · · · × {0, . . . , er}. Since each such product
gives a positive b if and only if the same product with all the ±’s switched with
∓’s gives a negative b, the number of representations of n as a2 + 2b2, a and
b positive, is half the number of choices for the Aj ’s and the ±’s. If r = the
number of pj ’s, s = the number of even ej ’s, and t = the number of nonzero
Aj ’s among those j so that ej is even, then the number of representations of n
is found with the nested sums

R(n) =
∑

{j1,...,jt}⊆[s]

∑
Aj1=ej1 ,ej1−2,...,2

...
Ajt=ejt ,ejt−2,...,2

∑
As+1=es+1,es+1−2,...,1

...
Ar=er,er−2,...,1

2r−s+t−1.

For R(n) to be odd, t = 1 − (r − s). Clearly, r − s, the number of odd ej ’s, is
either 0 or 1. If r − s is 0, then n is a square which is a contradiction because
n ≡ 3 (mod 8). The fact that r − s = 1 implies that n has only one pj such
that ej is odd. Without loss of generality, we choose it to be p1. Clearly p1 ≡ 3
(mod 8) because n ≡ 3 (mod 8) and the other factors of n produce a square
term. This can be used to show that

R(n) =
∑

A1=e1,e1−2,...,1

1

11



which reduces to
R(n) =

⌈e1

2

⌉
.

Now, R(n) ≡ 1 (mod 2) only when e1 ≡ 1 (mod 4).

Corollary 23. δ(Σ3) = 0.

Proof. Let Op denote the set of positive integers which are not divisible by p.
By the Prime Number Theorem and Theorem 22, the number of elements of Σ3

less than or equal to n is

∑
prime p≤n

p≡3 (mod 8)

b
√

n/pc∑
k=1

χ(k ∈ Op) ≤
∑

prime p≤n

b
√

n/pc∑
k=1

1

≤
∑

prime p≤n

√
n

p

=

∫ n

2

√
n

x
· 1

log x
(1 + o(1)) dx

= O
(√
n
) ∫ n

2

1√
x log x

dx

= O
(√
n
) ∫ √n

2

1

log u
du by letting u =

√
x

= O

(√
n ·
√
n

log n

)
= O

(
n

log n

)
= o(n).

5 Appendix

We conclude the paper with a few observations about the indices of elements of
Σ corresponding to certain well-studied integer sequences.

Definition 5.1. Let c(n) = b
√
nc+ b

√
n/2c, the number of positive integers of

the form k2 or 2k2 less than or equal to n.

Definition 5.2. Let {ςn}∞n=1 be the monotone increasing sequence comprised of
all positive elements of Σ.

Proposition 24. For all n ≥ 1, c(ςn) = n.

Proof. For any n ≥ 1, n is the number of elements of {ςn}∞n=1 less than or equal
to ςn. Since {ςn}∞n=1 is each positive integer of the form k2 or 2k2 in monotone
increasing order, c(ςn) = n.
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Definition 5.3. Below, we define six (non-homogeneous) Beatty sequences for
k ≥ 1:

i. Let wk be the k-th winning positions in the 2-Wythoff game (OEIS A001954).

ii. Let αk = bk(2 +
√

2)c (OEIS A001952).

iii. Let βk = bk(2 +
√

2)/2c (OEIS A003152).

iv. Let γk = b(k − 1/2)(2 + 2
√

2)c (OEIS A215247).

v. Let δk = bk(2 + 2
√

2)c (OEIS A197878).

vi. Let εk = bk(1 +
√

2)c (OEIS A003151).

The following is a result in the 2-Wythoff winning positions [3].

Theorem 25. wk = b(k − 1/2)(2 +
√

2)c.

Proposition 26. Let ςn, βn, αn, δn, and γn be defined as above. Then we have
the following.

i. If n = (2k − 1)2 for some positive integer k, then n is the wk-th term in
{ςn}∞n=1.

ii. If n = 4k2 for some positive integer k, then n is the αk-th term in {ςn}∞n=1.

iii. If n = k2 for some positive integer k, then n is the βk-th term in {ςn}∞n=1.

iv. If n = 2(2k − 1)2 for some positive integer k, then n is the γk-th term in
{ςn}∞n=1.

v. If n = 8k2 for some positive integer k, then n is the δk-th term in {ςn}∞n=1.

vi. If n = 2k2 for some positive integer k, then n is the εk-th term in {ςn}∞n=1.

Proof. Let n = (2k − 1)2 be the k-th odd square. By Definition 5.1,

c(n) = b
√

(2k − 1)2c+ b
√

(2k − 1)2/2c

= b2k − 1 + (2k − 1)/
√

2c

= b(2k − 1)(1 + 1/
√

2)c

= b(k − 1/2)(2 +
√

2)c.

Theorem 25 and Proposition 24 complete the proof of (i). Now, let n = 4k2 be
the k-th positive even square. By Definition 5.1,

c(n) = b
√

4k2c+ b
√

4k2/2c

= b2k + 2k/
√

2)c

= bk(2 +
√

2)c.
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Proposition 24 completes the proof of (ii). Let n = k2 be the k-th positive
square. By Definition 5.1,

c(n) = b
√
k2c+ b

√
k2/2c

= bk + k/
√

2)c

= bk(2 +
√

2)/2c.

Again, Proposition 24 completes the proof of (iii). Let n = 2(2k − 1)2 be the
k-th positive twice odd square. By Definition 5.1,

c(n) = b
√

2(2k − 1)2c+ b
√

2(2k − 1)2/2c

= b
√

2(2k − 1) + 2k − 1c

= b(2k − 1)(1 +
√

2)c

= b(k − 1/2)(2 + 2
√

2)c.

Proposition 24 completes the proof of (iv). Let n = 8k2 be the k-th positive
twice even square. By Definition 5.1,

c(n) = b
√

8k2c+ b
√

8k2/2c

= b2
√

2k + 2kc

= bk(2 + 2
√

2)c.

Proposition 24 completes the proof of (v). Finally, let n = 2k2 be the k-th
positive twice-square. By Definition 5.1,

c(n) = b
√

2k2c+ b
√

2k2/2c

= bk
√

2 + kc

= bk(1 +
√

2)c.

Proposition 24 completes the proof of (vi).

Proposition 26(i) may be interpreted in the following somewhat surprising
way. Let W denote the positive natural numbers, i.e., the “whole numbers”.
Define a function L : WW → WW as follows: given a function f ∈ WW which
takes on infinitely many odd values, let L(f) be the function g ∈ WW so that
g(k) is the k-th smallest integer n so that f(n) is odd, i.e., for k ≥ 1,

g(k) = min{n : f(n) ≡ 1 (mod 2) and n > g(k − 1)},

where we take g(0) = −∞ by convention. Then L(L(σ)) = c.
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