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1. INTRODUCTION

On a number theory day held at the University of Utrecht in the spring of
1987, the Belgian mathematician M. Coppens came with the following prob-
lem:

‘A greengrocer wanted to attract customers by displaying a huge pyramid
built from oranges in front of his shop. Unfortunately he and his wife
disagreed on the form of this pyramid; one of them thought that the base of it
should be a square while the other argued that a triangular base would have
much more effect. At last they decided to buy an amount of oranges such that
it would be possible to build either the square or the triangular pyramid out of
it. How many oranges should this greengrocer buy?

It is easily seen that this question leads to the problem of finding all integral
points on a certain smooth plane cubic curve. In general this is a very hard
problem: as far as we know there isn’t even an algorithm which determines
whether a given curve of this kind has any rational points. In our situation
however there are rational (and even integral) points, for instance the point
corresponding to a pyramid consisting of only one orange. This makes it possi-
ble to regard the curve in question as an elliptic curve. The rational points on
any elliptic curve are known to constitute a finitely generated abelian group
(Mordell-Weil theorem); in our situation it turns out that this is an infinite
cyclic group. We even know a generator of this group. Unfortunately, even
with this knowledge it is not at all obvious how to find all integral points on
our model of this elliptic curve; on the one hand it is not given by a Weier-
strass equation; on the other hand, even for Weierstrass equations it is quite
hard (see e.g. [5]).

* Supported by NWO.
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It turns out that in the case we are dealing with there exists a second, more
successful approach to the problem. One can show that each integral solution
of the equation we are dealing with gives rise to an integral solution of the ine-
quality |x*®—2y%<30. This inequality can be solved completely using a
theorem of D. Easton [2] apd the remark that any solution yields a very good
rational approximation to V2.

With regard to the greengrocer, we have the following rather unpleasant
fact:

THEOREM 1. No integer greater than 1 equals both the number of oranges in a
pyramid with a square base and the number of oranges in a pyramid with a tri-
angular base.

In the next section of this paper the diophantine equation corresponding to
this problem is given; it is transformed into a Weierstrass equation and some
results from the arithmetic theory of elliptic curves are used in order to deter-
mine the group of rational points on the curve given by it. The only reason to
include this here is that it provides a nice example how certain aspects of this
theory work; it is not used in Section 3 where the proof of our theorem will be
given.

We like to thank Herman te Riele for checking some computer calculations
we used and for pointing out an error which occurred in an earlier version of
this paper.

2. THE ELLIPTIC CURVE INVOLVED
The problem stated in Section 1 is that of finding a (non-trivial) pair (x,y) of
positive integers satisfying

$2=3Lii+y (1)
i=1 i=1

or, equivalently,
@ + Dy +1)y = x(x +1)x +2). Q)

It is easily verified that the corresponding homogeneous equation defines a
smooth complete curve of genus 1 in P2 (even in all characteristics different
from 3 and 5). Any curve C of this type is isomorphic to a curve given by an
equation

y2 + ayxy + azy = x> + ax? + agx + ag

where everything can be defined over any field K for which the set C(K) of K-
rational points on C is not empty (see e.g. [3], Chapter III, Proposition 3.1).
This is done by first choosing a K-rational point P on C, then choosing
rational functions x,y on C defined over K having a pole of order 2, 3 respec-
tively in P and no other poles and using these to define an embedding of C in
P2. After some rescaling this yields the desired model of C. This method works
by virtue of the Riemann-Roch theorem which implies in our situation that the
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vector space over K of rational functions on C defined over K having a pole in
the point P of order at most n>0 and no other poles, has dimension ».

In case the curve of genus 1 is given by a plane model it is quite easy to give
such functions needed to find a Weierstrass equation explicitly. For the curve
we are dealing with the following trivial lemma can be used:

LEMMA 1. The point with coordinates (x,y)=(—1, —%—) is a flex on the curve

given by equation (2). The tangent line to the curve through this point is given by
4x —2y +3=0.

. N __ X~y _ x
This lemma implies that ¢ ax—2y 13 and n e —"y
wanted. What remains to be done is finding a relation of the form

7+ amé + an = A + .8 + ang

between them (there is no constant term because both functions are zero in the
point (0,0) of the original curve). This Il)oils down to writing the occurring
(4x —2p + 3y
y and substituting this in a relation as above. One then solves the system of
linear equations in the ;s and A obtained by comparing coefficients of the
occurring monomials in x and y. The result of this computation is:

are functions as

monomials in £ and 7 in the form times a polynomial in x and

PROPOSITION 1. The functions §:—x—2y— and 1=

X
4x—2y +3 Tax 53 e
curve given by equation (2) are related by
2y 2 2. 204, 135, 2
nt 36— =G 5 & T3¢ )

The equation we just found can be transformed into a Weierstrass equation by
replacing § and n by X =20£—4 and Y =60n+20£—20, respectively. One finds
that X and Y satisfy the simple relation

Y2 = X3 — 48X + 272,

In fact we have shown:

PROPOSITION 2. The curve given by equation (2) is isomorphic over Q to the
elliptic curve given by y? =x3—48x +272.

We write E for the elliptic curve given by y?=x>—48x +272. The set of
points on E with coordinates in @ will be regarded in the usual way (see e.g.
[3], Chapter 111, §2) as an abelian group denoted by E(Q). A simple search for
integers m such that m® —48m +272 is a square yields the following elements
PeE(Q): P\=(—8,12),P,=(—420), P;3=(1,15), P4=(4,12), Ps=(8,20)
and Ps=(16,60). To find relations between the points P; one may look for
lines intersecting E in at least two of them. For example, the line given by
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y =12 intersects E in P, and is tangent to E in P,; this gives the relation
P, +2P4=0. Computing like this for some time one finds that every P; is a
multiple of P6I P1:—4P6, P2:3P6, P3:“5P6, P4=2P6 and P5:_6P6.
By trying more multiples of P¢ it turns out that there are even more integral
points on E:7P¢=(76, —660) and 8P¢=(52,372). The next 4 multiples of P
don’t give integral points. This can be verified by a trivial computation. For
11Pg¢ it also follows by remarking that Ps and — P define the same point in
characteristic 7. Because our equation also defines a smooth curve modulo 7 it
follows that 11P¢= —P3—Ps is the trivial point there. This implies that over
Q the coordinates of 11P¢ have a denomunator divisible by 7 (unless Pg
should have order 11 which 1t has not since 5P¢%—6P; see also [3], Chapter
VIII, Theorem 7.5).

The computation of generators for such a group E(Q) in specific examples
is usually lengthy and not very illuminating. In fact it is not even known
whether a method exists which is guaranteed to give generators in a finite
amount of time. In our case we are lucky since the curve we are looking at
already appears in the literature.

PROPOSITION 3. The group E(Q) of Q-rational points on the elliptic curve E
given by the equation

yi=x3 — 48x + 272
is an infinite cyclic group generated by the point with coordinates (x,y)=(16,60).

T(l) prove this we only have to remark that the transformation
n=73y —73,£="7X puts our equation in the form

n2+n=€3—3§+4

which defines the elliptic curve listed as 135A in [1]. We read from the tables
that its group of rational points is generated by (§,m)=(4,7) which corresponds
to (x,y)=(16,60). The fact that the torsion subgroup of E(Q) is trivial can be
seen from these tables; it also follows from the fact that reduction modulo
prime numbers defines an injective homomorphism

E(Q)iors > E(F)

unless p =2 in which case the kernel may contain points of order 2 (see [3],
Chapter VII, Theorem 3.4). Using the model E,; defined by the equation in §
and 7 one computes # E,(F,)=5 and #E(F;)=11, so the fact above implies
that E(Q) contains no non-trivial points of finite order.

3. THE SOLUTION OF THE ORANGE PROBLEM
As stated in the beginning of Section 2 we have to find non-trivial solutions in
positive integers of the equation

Qy + D) + 1)y =x(x +1)x +2).
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ProposITION 4. From any pair of integers satisﬁu'ng @Q+Iy+1ly=
x(x +1)(x +2) one can derive an integral solution of X°—2Y*e {—2, —6,
—10, —30}.

PROOF. Writing 2y +1=k and x + 1=n the equation becomes

k —4n® = k — 4n
which must be solved with k odd. It is now natural to look at / =k —4n. Sub-
stituting k =/ +4n one is left with

(I +4ny — 4n’ = |

The following lemma can be applied.

LEMMA 2. Suppose | and n are integers satisfying (I +4n) —dn® =1 Then
1/ged(60,1) is a perfect cube.

PROOF OF THE LEMMA. Given / and n as in the lemma, write d = ged(60,/). Let
p be a prime number and write v, for the valuation at p. It follows by reduc-

tion modulo / that 60n3 =(4n)—4n>=0 (mod /), so é divides n*. In fact the

equation implies that 6—£n3 Z%(l —I? —12In—48n?); hence, if vp(é)>0 then

vp(ﬁ) =v,(n)=3v,(n).

By the lemma, )given a solution of (/ +4n)* —4n® =1, one can find an integer

u such that u’. In the proof of the lemma we also saw that u>

gcd(60,7)
divides n*; hence, we can write n =uv for an integer v. Rewriting everything in
terms of u and v we obtain

(ged(60,u® +4uvy — 4uv? = ged(60,u.

The trivial solution u =0 is of no interest since it leads to / =0 which does not
give an integral solution of our original equation. Hence, division by u? is
allowed; what is left is an equation

(2cd(60,))u? +4vy — 4v3 = ged(60,1).

If we write X =2v and Y =gcd(60,/)u? +4v and use that / must be odd, so that
ged(60,/)e{1,3,5,15}, it follows that any integral solution of the equation we
started with leads to a pair of integers (X,Y) satisfying X3—2Y3e
{—2,—6,—10,—30}, which is the assertion of our proposition.

We will be looking for all integral solutions of |x* —2y3|<30.

LEMMA 3. If a pair of integers (x,y) satisfies |x* —2y3|<30, then either ly| <300

X . . . . . 3
or = is a convergent in the continued fraction expansion of V2.
Y
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PROOF. Suppose |x? —2y3|<30 and |y|>300. It follows that
ly—|>| —2|—|——\/’|(( P+ V25 + VA

5. 1105 we have >1 2599; hence the inequality ( )2 + \/_( =)

+ \/_>4 7622 holds. This unphes that
1
\/_l 4. 7622 [y|3

e theory of continued fractions asserts that such a good approximation of
2 must be a convergent (see €.g. [4], Theorem 7.19).

Since | |<

What remains to be done is finding an upperbound for the number of con-
vergents one has to compute. This is provided by

LEMMA 4. Suppose that a pair of integers (x,y) satisfy |x*—2y% <30 and
ly|>300. Then one has |p|<10%.

PrOOF. Apply a theorem of D. Easton which says that for integers x and y the
inequality

x 3 2.2 1

|7 - \/5|>E§'X 7%

holds (see [2], p. 614, Corollary). Combining this with the inequality derived in
the proof of the previous lemma we obtain
0205 30 107 10°
476227 22

From this the lemma follows.

At first sight the practical value of this lemma may not be apparent. The rea-
son why it really helps is that the numerators and denominators of the conver-
gents of any irrational number grow exponentially: writing the n-th convergent

as P one has g,>=¢, ) +¢, -, (see e.g. [4], Theorem 7.7). To compute these
convergents for V2 one may use the following prescription:
*%k Put .

V2 = by + ——t— = [by,b,,..] and %"— = [bo,rby]

1 n
byt by+...

**  One has
b0=1,b1=3,p0 = l,Pl = 4,q0 = 1 and q1 = 3.
The p; and ¢; satisfy p;=p; .2 +b;p;—1 and g; =g, 2 +b;g; 1.
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** The number ; is the largest number a for which the sign of

@i—2tapi1) — 2gi-2+ag 1)
is the same as the sign of p}_, —2¢7_,.
Using a computer it is very easy to obtain lots of convergents of V2. It

turns out that we only need the first 82 of them:

P31 _ 11417896481733258063546721914876072708558976077
9 906239044318368876405588750186156684296322081

is the last convergent with a denominator smaller than 10%°. As a result of the
computation one has:

PROPOSITION 5.  Only the first three convergents % of V2 satisfy
lp? —2%|<30. The continued fraction expansion of \/2 begins as
[1,3,1,51,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,2,1,3,4,1,1,2,14,

3,12,1,15,3,1,4,534,1,1,5,1,1,121,1,2,2,4,10,3,2,2,41,1,1,

1,3,7,2,2,9,4,1,3,7,6,1,1,2,2,9,3,1,1,69,4,4,5,12,1,1,5,15,1, ... ].

The problem of finding all integral solutions of |X> —2Y3|<30 is now reduced
to searching for solutions with |Y|<300; by performing this search it follows
that in fact all solutions satisfy |Y|<8. With regard to the orange problem,
the only solutions in (X, Y) are (0,1),(—2,—1),(—4, —3) and (—2,1). By trac-
ing through all the transformations this implies:

PROPOSITION 6. The following list contains all pairs of integers (x,y) satisfying
the equation 2y +1)(y + 1)y =x(x +1)x +2):

If one wants to think of all transformations given in the beginning of this sec-
tion in a geometric way, it works as follows. Let C, be the family of curves of
arithmetic genus 10 parametrized by ¢, given by the equation

v) — 2ut+4vy = -2

This family maps via X =2v, Y =mu?+4v down to a family of curves of genus
1 (and constant j-invariant) given by X> —2Y?=—2r. The substitution tu®=/
and wv =n we used means that we also have a map from C, to the curve D
given by (/ +4n)* —4n®=I. Every integral point on D can be lifted to an
integral point on some fiber of C, and is then mapped to an integral point in a
fiber of the given family of curves of genus 1. By trivial considerations it turns
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out that it is possible to limit the number of fibers in which our integral point
could land.
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