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INTRODUCTION

Let R be a reduced root system in a finite-dimensional space V, M be
the root lattice spanned by the roots in V, N be the dual lattice in the
space V* and W be the Weyl group of R. Each Weyl chamber C is a
polyhedral cone in the space V which is also rational with respect to the
lattice N. The collection ® of all Weyl chambers defines a complete N-
fan in V*, and we denote by X(R) the corresponding complete toric
variety X4 associated to the fan ® (see [O]). Alternatively, X(R) can be
characterized as the closure of a general orbit of the maximal torus T of
a semi-simple simply connected algebraic group of type R in its natural
action on the homogeneous space G/B, where B is a Borel subgroup of
G containing T[A]. The Weyl group W, being the symmetry group of @,
acts naturally on X(R). This defines a representation of W in the graded
space of cohomology H*(X(R)) = H*(X(R), ). In this paper we give a
formula for the corresponding graded character. The essential ingredient
of this formula is a natural resolution of T-equivariant cohomology
H¥(X(R)) which takes place for arbitrary toric varieties with quotient
singularities [BL]. Another formula was proved by Procesi at the 1985
Durham Symposium on the Symmetric Group [P]. The equivalence of the
two formulas was shown by Stembridge [Ste2]. In the cases when R is of
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type A,, B,, or C,, by a purely geometric method, we prove an equivalent
formula in terms of symmetric functions. It is based on a construction of
a W-equivariant birational mapping from the toric space to the projective
space P’ (resp. (P')") which allows one to give a simple recurrent decom-
position of the cohomology. In the case A, this formula was derived by
Stanley (cf. [S], p. 529), who used a formula of Procesi [P], whose proof
uses the same geometric method (suggested by DeConcini). Essentially
the same formula was obtained by Stembridge [Ste 1] for some permutation
representation of S, ., on the set of certain types of Young tableaux with
marked entries proving the isomorphism of the two representations.

It is well-known that the even-dimensional (resp. odd-dimensional) Betti
numbers of smooth projective algebraic varieties provide examples of
symmetric unimodal sequences of positive integers, i.e., sequences (a,

.., a,) with the properties ¢; = a,_, and a; < a,., for i < [n/2]. These
properties of the Betti numbers are easy consequences of the Poincaré
Duality and the Hard Lefschetz theorems. The most notorious example
is the sequence of binomial coefficients realized as the sequence of even-
dimensional Betti numbers of the product of n copies of the projective
line. As was noted by Stanley, more exampies of symmetric unimodal
sequences can be obtained by considering isotypic Betti numbers, i.e.,
the multiplicities of an irreducible representation in the cohomology of a
smooth projective variety on which a finite group acts biregularly. The
interesting combinatorial aspect of this problem is explained by the fact
that in case W = §,,, the kth Betti number of X(R) equals the (kK + 1)th
Eulerian number, i.e., the number of permutations with k descents. Thus
isotypic Betti numbers of X(R) for any root system R give both a general-
ization and a refinement of Eulerian numbers.

A natural problem is to extend the results of this paper to the case of
the torus orbit in any homogeneous space G/P, where P is a parabolic
group containing T (cf. [FH]). The appearance of non-quotient singularities
of the corresponding varieties makes it natural to replace the rational
cohomology by the intersection cohomology. The projection maps
G/B — G/P define some natural direct summands in H*(X(R), Q) which
might lead to interesting recurrent decomposition formulas.

This work was finished almost three years ago; however, we held its
publication until the appearance in print of [BL]. Since that time much
progress has been done in the work of Stembridge [Ste2], making some
of our results almost obsolete. Among his results is an elementary proof
of our formula which can be extended to the case of more general toric
varieties. Also, for the cases A,, B,, and C,, he translates this formula
into the language of symmetric functions without using the geometric
method. Finally, for the root systems of exceptional type, he made our
formula more explicit by calculating its essential ingredients. However,
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it seems that our approach is still the only available one which may lead
to a generalization of our formula to the case of representations of groups
in the intersection cohomology of toric varieties.

1. A RESOLUTION FOR THE EQUIVARIANT COHOMOLOGY

Recali that the rational equivariant cohomology H¥(X) of a space X
acted on by a group T is defined to be the cohomology H*(X x ;ET, Q),
where ET — BT is the universal classifying principal T-bundle. In our
situation when T is an r-dimensional torus, one can take for ET the space
(C*\{0})” with the quotient BT = ET/Tisomorphic to (P*)", where P> is the
“infinite-dimensional’” projective space. The canonical homomorphism
H*(BT, Q) —» H¥(X) corresponding to the fibration X; = X x ;ET 5
ET/T = BT makes H}(X) a module over the ring H*(BT, Q). Put H =
H*(BT, Q). The latter is naturally isomorphic to the polynomial ring

H=H*(P*y, Q)= H*P*, Q% =C(x]® ... ®C[x,] =Clx,, ..., x,].

Here the polynomial ring is graded in such a way that each x;is of degree 2.

One can compute the equivariant cohomology H¥(X) in the following
way. Let C,_ denote the constant sheaf on X;. Consider its direct image
P*(Cx,) (in the derived category) which is a complex of sheaves on BT.
Then H*(X;) equals the hypercohomology H*(BT, p*(CXT)).

In a similar way we can also define the equivariant cohomology with
compact supports H§ (X) (see [BL]). Namely, consider the direct image
with compact supports p(Cy ), and again take the hypercohomology
H*(BT, p(Cy)). Then, by definition, H¥.(X) = H*(BT, p,(Cy,).

In our case X is a projective rationally smooth variety which implies
that H*¥(X) = H¥(X). In this case HF(X) (resp. H} (X)) is a free H-
module (see [BL]), with a basis given by H*(X) (resp. by H,.(X)). Hence
we have also H¥(X) = HF .(X).

Let us recall from [BL] a canonical complex K- which computes
H} (X).

The cohomology ring H can be canonically identified with the graded
ring A of polynomial functions on V*, where linear functions have degree
2. We describe the complex K* using the fan ®. Namely for each cone o
€ @, let A, denote the ring of polynomial functionsono. Let P, = A, e,
be the free A -module with formal generator ¢, in degree 0. Then P is
naturally a graded A-module. Note that the Weyl group W acts naturally
on the ring A.
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THEOREM 1.1.

(1) There exists a natural complex of graded A-modules
K 0-KSKLK 5. K0

with the following properties:
i) K= & P,
codim(o)=i
(i) K is acyclic except in degree 0;
(iii) Ker(d®) = H} (X)) as graded A-modules.
(2) The complex K* is W-equivariant in the following sense:
(i) W acts naturally on each A-module K' and differentials d'
commute with this action;
(i) the W-action is compatible with the A-module structure,
that is,

gla-k)=glay-glh), gEW, a€EAKkEK',

Part 1 of the theorem is a result of [BL]. So it remains to prove part (2).
This is done in the Appendix. The action of W on each module K’ is
described in Lemma 3.1 below, which is also proved in the Appendix.

2. THE FormMuLA

Since the complex K* is a W-resolution of the equivariant cohomology
module Hjf .(X) we can express the character of W on H¥ .(X) as the
alternating sum of the characters on each K'. Finally, since H}.(X) is a
free A-module, we will be able to compute the character of W on the non-
equivariant cohomology H*(X) = H*(X) (see Theorem 2.1 below).

Let us introduce some notation.

The Weyl group W acts on the real vector space V* as well as on the
space A' = V of complex linear functions on V*. Let s(w) be the linear
operator on A' corresponding to an element w of W. Consider the subspace
V*¥ C V*of vectors fixed by w, and let V,, = (V**) * C A' be its annihilator.
Denote by 5(w) the restriction of s(w) to V. Let d(w) = codim V, =
dim V**. For each w € W we introduce the characteristic polynomial
det(1 — S(w)?) in the variable ¢. Note that

det(1 — s(w)t) = (1 — )¥™det(1 — S(w)r). (1)
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The intersection of V** with the fan ® defines a fan ®* in V**¥ which
corresponds to some toric variety X(R; w).
Denote by

d(w)

P()= X by(X(R; wht'
i=0
the usual Poincaré polynominal of X(R; w), and let
x(w) = X, Trigw)r’
i=0

be the graded character of w € W on the cohomology H*(X(R)) of X(R).
Here Tri(w) is the trace of w of its action on H*(X(R)).
Our main result is the following:

THEOREM 2.1. With the above notation, we have

x(w) = P, (1) - det(1 — 5(w)n).

3. PrRoOOF oF THEOREM 2.1

Let s (w) be the operator on the nth symmetric power A” = Sym”"(A")
of the space A' corresponding to an element w € W. Recall the following
formula for the graded character of w on A, ((Bol, Chap. V, Section 5,
no. 3, Lemma 4.3):

= 1
) P = n n_—- _____
Xs(w): "§=0 Tr(s™(w))t deti = somn)” 2)

Set

XegW) = 2 Tri (w)#
j=0

to be the graded character of w in the equivariant cohomology Hf (X (R)).
Since the latter is a free A-module with a basis given by H}(X(R)),
we obtain:

X(W) X (W) = Xeg(W). (3)
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Therefore, using formulas (1)-(3), our theorem is equivalent to the follow-
ing formula

Pw(t)
Xeq(W) = a= o (4)

which we shall now prove.
Let

x'w) = Tria(w)t
j=0

be the graded character of w in its action on the ith component K' of the
complex K°. In view of the discussion in the beginning of Section 2,
we have

Xeg(W) = ZO (— 1) xi(w).

So we have to prove the following identity

C i 1 Pw(t)
,_:ZO(—])'X'(W) T *)

Let us analyze the representation of W on a fixed module K'. Again this
is a graded representation which is a sum of induced representations in
the following way.

Fix a Weyl chamber C; in ®. The Weyl group acts on ® by permuting
cones o, and each W-orbit contains a unique cone which lies in the closure
of C,. Choose a cone o C C,, and let W be its stabilizer subgroup. We
have the following formula for the W-module K

K= @ ind¥ P_. )]
aC(y -
codim(o) =i

Recall that P, = A -e,. The action of W, on A, is trivial (since W,
acts trivially on the cone o). It remains to describe the one-dimensional
representation of W, on C-e, .

LEMMA 3.1. The representation of W, on C- e, is the sign represen-
tation:

w-e, = det(w)-e,, we W,
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Proof. See Appendix.

We claim that for each w € W there is the following equality of the
power series in ¢

i — __.*__l ’
x‘(w) = 0; = det(w).
codim(o)={

This formula follows immediately from the formula for the character of
an induced representation. Indeed each cone o C V** of codimension
i contributes to the graded character the term det(w)/(1 — ¢)™/, where
1/(1 — )"~ is the Hilbert series of A, (cf. [St], Section 9). In particular,
x'(w) = 0if dim V*¥ < r — i, Taking the alternating sum of terms as in
(*), we find

z(—n"x"(w)=det(w)( S -y 3 __L._) ©)
<o i=r—d(w) ey 1-n
codim(a)={

Note that det{w) = (—1)"4*), hence the last sum is equal to

r . ]
_1yitr—dw) —
2 ( l) 2 (1 - t)r~i

i=r—dw) acy
codim(a)=1

d(w) ) 1
Sl = g o

aC v+
codim(o)=i+d{w)

We claim that (7) is the Poincaré series of the T*-equivariant cohomology
H% (X(R;w)). Indeed, this last cohomology may again be computed using
the corresponding complex K(w)* constructed for the toric variety X(R;
w), and (7) is the alternating sum of the terms of this complex. But again

¥ (X(R;, w)) is a free module over the ring of functions on V** with
the basis H¥(X(R; w)) = H*(X(R; w)). Hence from (6) we infer

4 o P.(t
> (= 1xOw) =(—l—_—§—)(% (8)

i=0

This proves (*) and Theorem 2.1.

Remark 3.2. Our formula is quite explicit. For each conjugacy class of
w in W the polynomial det(1 — s(w)7) is computed in [Ca]. The Poincaré
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polynomial P, (r) of X(R; w) can be computed by applying the following
formula of Ehlers,

d(w) .
by(X(R;w)) = ;) (- l)i_j(})di

for the Betti numbers of any non-singular toric variety [E], where d; is
the number of cones of codimension i in V**, In the next section we will
carry out the explicit computations for the root systems of types A, B,
and C. The computations for other series are more involved.

ExaMpLE 3.3. Take R = A,, then V* = R, The fan & has 3 cones:
the positive ray o, , the negative ray o _, and the origin ¢, . The associated
toric variety X(R) is isomorphic to the projective line P'. The Poincaré
polynomial of X(R)is | + ¢ (deg(r) = 2). The Weyl group W has 2 elements
W = {1, s}, where s interchanges o, and o_.

Let us compute the T-equivariant cohomology HF (X(R)). Let A = C[x]
be the ring of polynomial functions on V* where deg(x) = 2 (so that
Cix) = H*(BT, C)). Then the complex K" is

K:0—Clx] e, DClx]-e_ LN C-e,—0,

where ¢, , e_, e, are formal generators in degree 0, and d; is a map of
degree 0. The kernel of d° is a free C[x]-module with generators in degrees
0 and 2. Denote by e its generator in degree 0. This module is canonically
isomorphic to the equivariant cohomology H} (X(R)) which, by the gen-
eral result, is a free C[x]-module with a basis given by the usual cohomol-
ogy H¥X(R)) = H*(X(R)). The reflection s € W induces an algebraic
automorphism of X = P!, hence its graded character on the cohomology
of X(R) is

x(s) = Tro(s) + Tri(sy = 1 + ¢.

We wish to verify this using the complex K* as in the theorem.
By Lemma 3.1 we have

seep= (=1, = —g.

The trace of s on K° = C[x] - ¢,BC[x] - e_ is zero since s interchanges the
two summands. Since d° is W-equivariant

sce=0—-(-1)e=e
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so Tr%(s) = 1. The trace Tr'(s) is equal to the trace of s on the quotient space
C-xe . BC-xe_/C-xe. (*)

However, s(x) = —x, hence s(xe) = (—=1)x+1+-e¢ = —x-¢, so the trace
of son(®isTri(s) =0 — (—-1) = 1.

4. ExprLiciT COMPUTATIONS

To compute explicitly the values of the character x(w) we need to know
the Poincaré polynomials of the varieties X(R; w). We start with the
following general result about the Betti numbers of the toric varieties X(R).

THEOREM 4.1 ([K], [Bj]). Let X = X(R) be the toric variety associated
with a root system R. Let B = {«,, ..., a,,} be a root basis of R. Then the
odd Betti numbers of X are zero, and its even Betti numbers are given
by the formula:

by(X) = #{w € W: #{j: wlay) <0} = i},
Remark 4.2. By the Ehlers formula the sequence (by(X), ..., b,,(X))

is the h-vector of the simplicial Coxeter polytope P(R) associated with
Weyl chambers. By definition,

}_:0 b (X1 = Zz,f“’(’ -1,

where (f;, ..., f,-)) is the f-vector of P(R) defined by setting f; equal to
the number of i-dimensional faces of P(R), f_, = 1. The interpretation of
the h-vector of the Coxeter polytope as in Theorem 4.1 is well-known for
combinatorialists (cf. [Bj, Thm. 2.1]).

Case A,. The set R of roots of type A, can be identified with the set
of vectorse; —¢;, 1 =i#j<n+ lin

V=i, o, X, ER"™Mx; + ...+ x,,, = O}

The Weyl group is the symmetric group S ,. | that acts on R"*! by permuting
the coordinates. The fan ®(A,) in the dual space V* consists of the Weyl
chambers and its faces. Each Weyl chamber is equal to w(C), w € W,
where C is given by the inequalities

where {a,, ..., a,} = {e, — e;, ..., €, — ¢,.,} is the root basis.
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LEMMA 4.3,

X(A, w) = X(Ay)-

Proof. Fix a fundamental chamber C in V*, and let o be the face of
C* of maximal dimension which is contained in V**. Let I C {1, ..., n} be
such that o is given by the equalities o, = 0, i € I. [t is clear that #/ =
n — d(w). Then V** is given by the equalities a; = 0, { € I. We may
identify it with the dual space of the factor space

V/Z,E,Rai = 2,¢IR(1; = {(x‘ 5 ean xd(“‘H,‘) (S R(I(M')-H: xl + ...+ xd(u')f} = 0},

and the images of the roots & € & in this subspace form a root system
of type A,,,. The maximal cones of $(w) are connected components
of V*'\U, co(H(a) N V*¥), where H(a) denotes the hyperplane a = 0.
We have

Ha)NV*=Ha)NV*Sa—-a €3 Ra;.

This easily implies that the fan ®(w) is combinatorially isomorphic to the
fan @ corresponding to the root system A,,. This proves the assertion.

Forevery w € §,,, let des(w) denote the number of descents in w, i.e.,
des(w) = #{i: w(i) > w(i + 1)},
Since a root e; — ¢; is positive if and only if i > j, we have
des(w) = #{i: wla,) = e, — €.+, < 0},
and, by Theorem 4.1,
b (X(A)) = #{w € W: des(w) = &}
This number is known to combinatorialists as the Eulerian number

Aln + 1,k + 1),
Applying Theorem 2.1, we immediately get

COROLLARY 4.4,
diw)

P)= > A+ 1i+ D,

i=0
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Instead of using a somewhat inexplicit formula from Theorem 9.1 one
may compute the Betti numbers of varieties X by using directly the Ehl-
ers formula

by (X(A,)) = ;O (=1y* (/:) d{n),

where d(n) is the number of cones of codimension i. This aliows one to
deduce an explicit formula for the Eulerian numbers certainly known to
combinatorialists. It is given in Proposition 4.7 below.

Let S(N, m) denote the Stirling numbers of the second kind defined as
the number of equivalence relations with m equivalence classes defined
on a set of cardinality N. The next lemma collects some of the well-known
properties of Stirling numbers of the second kind:

LeEMMA 4.5.
(i) SIN, m) = S(N — I, m — 1) + mS(N — 1, m);
(i) SN, m) = S, (N s =
(i) x¥ = 2, SIN, Dx),, where (x); = x(x — 1) ... (x — i + 1),
(x) = 1.
Proof. See [Co, pp. 208, 209].

LEMMA 4.6. Let d,(n) denote the number of cones of codimension k
in the fun ®(A,). Then

dmy=n—-k+DSn+1,n+1-k).

Proof. We shall give two proofs. One is an inductive proof that may
be applied to any root system. The other due to Stembridge, is a direct
one that uses the specific combinatorics of 4,,.

Ist proof. Each cone of codimension & is W-equivalent to a unique
face of the fundamental chamber given by a subset I of the root basis S.
The isotropy subgroup of this face is the Weyl group W, of the root system
defined by the Dynkin subdiagram associated to the subset I. Therefore

di(n)y= >, [W: W,].

#1=k
Let T(k) be the set of subsets / of § of cardinality &. Then

Tk) = {1 € Tk): o, € BU{T € Th): ay €1, an € I} 11 ... [1{I € T(K):
a, ..., €1}
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For every I from the first set, W, is a subgroup of the Weyl group of type
A, _, associated with the root basis S — {«,}. So

[(W: W, = [W(A,): WA, )] d(n— 1) = (” : ') dy(n - 1).

#1=Ka\ &1

For every I from the second set, W, is a subgroup of the Weyl group of
type A, X A,_, associated with the root basis S-{a,} that is the product
of the Weyl group generated by the simple reflection associated with «,
and the Weyl subgroup generated by & — 1 simple reflections associated
toa;, i >2. So

(W: W,] = [W(A4,): WA, X WA, )d, (n—2)

#1=k,aElor§]
+1
- (” ) ) d,_(n—1).

Continuing in this way, we find

k+1
d(n) = Z (n * 1) dii—i(n—1).

i=1 !

By induction on n, using Lemma 4.5, we can write this as

k+1

("?1)(n—k)!S(n—i+l,n—k)=(n—k)! D (n+1)S(i,n—k)

i=1 i=n-k ]

n+l1
=(n—k)!< > (”“I,LI)S(i,n—k)—smﬂ,n—k))
i=n—k
=(m—kS(n+2,n—k)—S(n+1,n— k)
=(mn—kn—k+DS+1,n—k+1
=(n—k+ DS+ 1,n~k+1).

This proves the claimed formula.

2nd proof. There is a bijection between the set of cones in ®(A4,) of
codimension 0 and the Weyl group S,,,. Each w € §,., defines the
corresponding translate w(C), of the fundamental chamber C. It is given
by the inequalities:

W(C): €ty ™ €02y > " > Couury -
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So the formula is obviously true for k = 0. A face of w(C) of codimension
k is a w-translate of some face of C. It is given by a choice of a subset
I ={a, ..., &} of the set {a, ..., a,}. The corresponding face C; is
determined by the following system of inequalities and equalities:

€17 € T € > e T > > ey,

iy

So, each cone of codimension k is given by a system of inequalities
between ¢,, where exactly n + 1 — k are strict inequalities. It defines an
equivalence relation in the set {1, ..., n + 1}: i ~ j iff e, = ¢; in this set
of inequalities. There are exactly n + 1 — k equivalence classes and
they come with a natural order. So the total number of such faces is
m+1—-KSn+1,n+1-%k).

PROPOSITION 4.7.

n

}i by (XA =S (n—i+ DS+ 1,n—i+ 1)t — 1.
i=0

i=0

Proof. This is known as the Frobenius theorem for the Eulerian numbers
({Co, p. 244]). We shall deduce it from the Ehlers formula and Lemma 4.6:

S by XA =S tii (=1t (’:) (n—k+1DISn+1,n—k+1)
i=0 i=0 k=0
S S (-1 (’f) fin—k+DIS+1,n—k+1)
k=0i=0
S = Din—k+ IS0+ L=k + 1).

k=0

I

It remains to change the summation index & to i.

Now everything is ready to give an explicit formula for x (w). It is well
known that there is a bijective correspondence between the conjugacy
classes in §,,, and partitions A of number n + L. If A = (A, ..., Ap) is
such a partition, i.e., n + 1L = A) + -« + N, Ay = N = oo =2 7 > 0,
then the conjugacy class C(A) corresponding to this partition consists of
all permutations which can be written as the product of cycles of length
A;. Computing the characteristic polynomial of a cyclic permutation, we
easily obtain for any w € C(A)

dw) =k — 1
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and

A=
det(1 = 5w =[] —

i=1 -
Collecting everything together we get:

THEOREM 4.8. Let R be of type A,,, and let w correspond to a partition
A=, ... \)of n+ 1. Then

k

-1 APLEN TN k=1
Atk i+ 1):') I1 = (2 (i + ISk, i+ 1)
=0

=1 =1 i=0
k
; 1 —
& 1)):'-1 -t

x{w) = <

This is the formula from Proposition 3.3 of [Ste 1].

Cases B,, C,. In these cases the root system consists of vectors
re, i =1, ..., n, e, £ ¢, 1 =i <j=n, (Case B,) and *+2e,,
i=1,...n, %e,x e | =i<j=n,(Case C,) in R". We consider only
the Case B, ; the other case is no different and leads to the same results.
The root basis is the set of vectors @, = ¢, — €,, ..., a,_, = e,_, — e,,
a, = e,. Positiveroots are ¢; * ¢;,, | =i <j=mn,e,i=1,.., n The
Weyl group is the semi-direct product of S, and the group (Z/27)" that
acts by permuting the coordinates and multiplying them by =1.

LEMMA 4.9. Letw € W, then
X(B,: w) = X(By,).
Proof. 1tis similar to the proof of Lemma 4.3 and is left to the reader.

Theorem 4.1 gives a formula for the Betti numbers of the varieties X(B,)
in terms of the Eulerian B-numbers:

by (X(B,)) = Bn, k + 1) = #{w € W: #{i: w(e,) < 0} = k}.
If w acts as the composition of a permutation o = (o((1), ..., o(n)) and
the transformation e, — (—1)*P¢;, where e(i) = 0 or 1, then it is easy to
compute #{i: w(a) < 0} = k. For i # n, we have

wia) = wle; — €)= (- I)E(am)eam - (= l)s'wﬂneauﬂ)

is negative if and only if the following conditions are satisfied:
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(i) if o has descent at i/, i.e., (i) > o(i + 1), then e(a(i + 1)) = 0;
(i1) if o has no descent at i, then e(o(i)) = 1.

Since
wla,) = wie,) = (—=1)*"e_ < 0& elo(n) =1,

this case can be included in (ii) (by definition, ¢ has no descent at n).

We shall give an explicit formula for the Betti numbers in terms of
modified Stirling numbers S(N, m). They will be referred to as Stirling
numbers of type B. _

Let (S, #) be a set of cardinality N + 1 with a marked element *. We set
S(N, m) = #{equivalence relations in § with m + 1 equivalence classes
together with a choice of a subset in each equivalence class except the
one containing the element *+}.We immediately observe that

SINNY=2N S(N,0)=1,8(N.m)=0 ifN<m.

One computes the numbers S(N, m) in terms of ordinary Stirling numbers
by using the following inductive formula:

Lemma 4.10.

N-m

SIN,m)y= Y, 2V (M)S(N — i, m)).

i=0

Proof. Each summand counts the part of the number S(NV, m) which
is responsible for the equivalence relations that contain i elements in the
equivalence class of *.

Other properties of S(N, m) are similar to the properties of the ordinary
Stirling numbers:
LeEmMa 4.11.
(i) SN, m) =S8N — 1, m) + XL 2%V HSG, m — 1));
(i) SIN,m)=2S(N-1,m— 1)+ @2m+ DSIN - 1, m);
(iii) each S(N, m) is divisible by 27". If we write S(N, m) =

2"S(N, m),, then
N -~
xN = I;)S(N. K)o((X)) s

where (x)),, = (x = D(x = 3) -~ (x = 2Zm + 1), ((x)), = 1.

481/168/3-5



756 DOLGACHEV AND LUNTS

Proof. (i) Choose an arbitrary element x, # *. Then S(N — 1, m)
counts the part of S(NV, m)_ responsible for the equivalence relations with
x, ~ *. Each summand 2V (Y7 1)S(i, m — 1) is the number which is responsi-
ble for the equivalence relations with x, + *and # {x € §: x ~ x;} =
N -1

(i) We use (i) where we replace (M) by (¥71) + (¥7'). After some
obvious simplifications we obtain the needed formula.

(iii) Since S(m, m) = 2™, by induction, the divisibility property
follows immediately from (ii). The latter implies also that

SIN.m)y=S(N — 1, m — 1)y + 2m + DS(N — 1, m),.

The set of polynomials ((x)),,, m = 0, ..., N, form a basis in the space of
polynomials of degree = N. Write

N
XN =xxN-i=x Y, alN, m)((x)),,
m=0
for some coefficients a(N, m). Then use that

N-1
N=xx¥1=xY alN -1, m)((x),
m=0

N
= > N, m)x —2m— 1+ 2m + 1)((x)),

2 3
- o

N-1

&N, (1 + 3, @+ DalN, m(),

l

3
i
(=

I
M=z

aN-1,m—-1)+(2m+ Da(N — 1, m)((x)),,.
0

Ji}

m

This shows that (N, m) satisfy the same recurrency relation as S(N, m),.
They also satisfy the same initial conditions showing that a(N, m) =
S(N, m), for all N and m.

PROPOSITION 4.12.  Let di(n) denote the number of k-dimensional faces
in the fan ®(B,). Then

din) = (n — k)!S(n, n ~ k) = (n — k12" *S(n, n — k).
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Proof. This is similar to the proof of Proposition 4.7. The fundamental
chamber C is given by the inequalities:

e >e> >, >0
Applying w = &5 we obtain that w(C) is defined by the inequalities:
(_ l)‘“)e_y“) >l > (_ I)E(H)es(n) > 0.

Its codimension k faces are obtained by converting exactly k of these
inequalities into the equalities. We define the corresponding equivalence
relation on the marked set (8, *) = {1, ..., n}, {0}) by setting

i~j if i,j # 0and (—1)*; = (= 1),
i~0 if (—1)*%e; = 0.
Each equivalence class different from the equivalence class of 0 contains
a subset of elements with e(i) = 1. The number of such equivalence classes
equals the number of the strict inequalities, that is n — k. This explains
the factor S(n, n — k) in the formula. Also, there is a natural order on the
subset of equivalence classes not containing 0 that explains the factor
(n = k).
CoROLLARY 4.13. Let
d .
Pg (=2 by(X(B))I.
i=0
Then

PB"(t) = i (n— )I1Sn, n — k)t — 1).
i=0

Proof. It is similar to the proof of Proposition 4.7 by using the Ehlers
formula and the formula for d,(n).

COROLLARY 4.14.

by(X(B,)) = (2n — 2i + Db, (X(B,)) + i + Db(X(B,_,)).
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Proof. Applying Lemma 4.11 (i) we obtain after simple transforma-
tions:

Py (1) = i (n = D!Sn, n— k)t~ 1y

i=0

il
=

n—-NQ2Sn—1t,n—k-1
i=0

+@2n-2k+ DS(r—=1,n~-k)(t - 1)
=2nPy (1) = 2Py () +@2n— D= DPy (1) = 21~ 1)*Py (1)

=(@n—Dt+ DPg (1) = 2> = 0Py _(1).

It remains to compare the coefficients.

The conjugacy classes in the Weyl groups of type B, or C, are described
as follows. Let w be represented by a permutation o = (i}, ..., i,) followed
by a homothety e; — e(i)e;. Write o as the product of cycles. Let (5, ...,
Ji) be one of these cycles. Then £(i) has the same sign for all i = j,, ...,
Ji» so that w assigns a sign for any cycle. Let A,, ..., A, be the positive
lengths of ‘‘positive’” cycles and y,, ..., u, be the lengths of ‘‘negative”’
cycles. They define a pair of partitions A = (A, ..., A, and u = (u,, ...,
u,) with [A| + |ul = n. We have (see [Ca)):

dw)y=n—-(AN-D——=A-D—pg — -~ un =5

§

det(l = 5(w)1) = (H L= ’A') [Tas+ ).
i=1

i -t

This gives an explicit formula for the character x(w):

THEOREM 4.15. Let R be a root system of type B, or C,. Then

d(w) r

. A S 1 — N
x(w) = 5_}0 (d(w) = D)1S(d(w), d(w) — i)t — wH (% + 1) H. 'l _’t )

Remark 4.16. The fans obtained by restricting a Coxeter arrangement
to the subspace invariant under some Weyl group element were first
studied in [OS]. In particular, Propositions 2.1 and 2.2 of {OS] are easily
seen to be equivalent to our Lemmas 4.3 and 4.9. In the case of root
systems of type D, it is not true anymore that the fan ®(w) in V** is
always combinatorially isomorphic to the fan of type D,,. The correct
analogue for Lemmas 4.3 and 4.9 for the D, case is treated in Proposition
2.3 of [OS].
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5. A RECURRENT FOrRMULA (CASE A,)

The formula is based on the following well known geometric fact (cf.

[P]):

LEMMA 5.1.  There exists a W-equivariant birational morphism of toric
varieties w: X(A,) — P", where W acts naturally on P" by permuting
projective coordinates. It is equal to the composition

X(A,) = X, —5 Xy— o s X, —5 X, = P,

where each m,; is the blowing up of the proper inverse transform under
Myoy © ... © Wi_y:Xioy — X, of the union of the subspaces defined by
vanishing of i + 1 projective coordinates. This proper inverse transform
is isomorphic to X(A,_;).

Proof. Recall that X(A,) is given by the fan ® = &, whose cones are
S, + -translates of the faces of the fundamental chamber

61 > e > en+|.

We consider the fans ®;, i = 1, ..., n, formed by the cones whose faces
are S, -translates of the faces of the cone C, given by the following in-
equalities:

[ > €y > €iyn > e > €hily k= 1, iey i.

It is easy to see that S, stabilizes C; and hence its orbit under S, consists
of [S,.,:S;] cones of maximal dimension n of ®;. One immediately recog-
nizes the fan @, as the standard fan of the toric variety P". Let X, be the
toric variety associated with the fan ®,. Since each C, is a convex hull of
a basis of the lattice N, all X; are non-singular varieties. Obviously each
cone of ®; is a subset of a cone of @, ;, and each cone of ®,,, is the union
of cones from ®;. The standard technique of toric varieties gives us a
proper birational morphism of toric varieties #;: X; = X,,,. Recall that
for any face o of ®,,, the closure 5° of the orbit o“ is isomorphic to the
toric variety X, associated with the fan St(o) in the space V/Ro with the
lattice N/Zo whose cones are the images of the cones 1 € ®,, | containing o
({O], p. 11). Its inverse image of 07 in X, is equal to the union of the
closures of the orbits %', where o' are minimal elements (with respect
to the order defined by the closure relation) in the fan ®; that are contained
in o. Let us see what we have in our situation. We rewrite the chamber
C; in the form

K ok * % * % *
Ci—<a], ) +a2,..., a,-_l+a,-,a,-+|,...,a,,>.
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where {af, ..., a¥} is the basis dual to the basis {«/, ..., a,}. It is immedi-
ately seen that

af  Efaf, —af t af, ..., —af + o} )
so that o’ = (& |) € @, is contained in ¢ = {af, ~af + af, ..., —af +
al ) € ®,,,. We have 07 = X.S"”” and.is given by the §,.,_-translates
of the cone (af,, ..., af) and its faces in the space Re;,; + ... + Ra,.

Also, 07" = Xgy, is associated with the fan in Ra; + - Rey + Re;,, +
-« + Ra, whose faces are S; X §,,,_,-translates of the faces of the cone

X % * % % *
<a|, x; +a2,..., O +ai,ai+2,...,a”>

={af, —af + of, ..., —a} |+ of) X (a},, ..., aF).

It is clear that this toric variety is isomorphic to P X X(A,_,), where the
projection Xy, = Xsy, corresponds to the second projection P’ X
X(A,_ ) — X(A,_). This verifies the assertion.

Remark 5.2. Observe that

¢.= | wo,

WwES;

where §,C §,C ... CS§,CS,,,is the standard inclusion of the permutation
groups. According to [FH] this implies that each X; is equal to the closure
of the generic torus orbit in the homogeneous space SL(n + 1)/P;, where
P, is the parabolic subgroup of SL(n + 1) corresponding to the partition
(, ..., 1, i) of n + 1. The projection SL(n + 1)/P;—~ SL(n + 1)/P,,,is a
Pi-bundle, and induces, by restriction to X;, our morphism ;.

Let Rep(S,) be the Grothendieck group of isomorphism classes of finite-
dimensional complex representations of the symmetric group S, and

R = &,., Rep(S;)
be the graded ring whose composition law is defined by the formula

freg=indgs (f®e),

where f € Rep(S,), g € Rep(S,). This is an associative commutative graded
ring to which we add formally the multiplicative unity.
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We denote by 6, , the element in R corresponding to the representation
of S,., on HYX(A,), C). Set

Chy =3 6,.9" € RIq]
k=0
Ch* =1+ Y, Chpt*' € RlqlilA,

n=0

H(ty= D hyot™,

n=0
where A,,,, is the isomorphism class of the trivial representation of S,,. ;.
THEOREM 5.3.

(1 — q)H@)

hA =
"= Fan - qi0

Proof. Consider the composition

X(A,) =X1”II‘*X2”'"’ "'—'—)Xn-lj;l-)Xn =P,

from Lemma 5.1. For every subset ] of {0, ..., n} let L, denote the projective
subspace of P" given by vanishing of the coordinates x; with i € /. Let
L, be the proper transform of L; in X,, k = #I. Let

m E, = w (L) — L,

be the restriction of ,_, to the exceptional locus of 7,_, over L,. It is a
P*~-bundle (see (GH], p. 605). It follows from loc cit that the cohomology
ring H*(E)) is a free w}H*(L;)-module of rank k generated by powers of
an element (/) € H*E,;). In other words, there is an isomorphism of
graded modules

k-1

HYE) = E__]% arH*E,)(—1),

where we use the customary notation for the shifting of the grading. The
cohomology of X can be computed inductively by using

HYX,_ ) = mF(H*X,) ® SBk HHED mHH*T)).
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By Lemma 5.1, each L, with #I = k is isomorphic to X(4,_,). The group
W = §,., acts transitively on the set of subspaces L, with the isotropy
subgroup W;isomorphicto S, X §,,,_,. The group W, acts on the cohomol-
ogy of L, = X(A,_,) via S,.,_,. This shows that there is a natural isomor-
phism of S, ,-modules:

_ A-t
D HeEmin @) = 3 indyss,

#1=k

(X HHX(A, - )N=1)).

k
Therefore we obtain the recurrency relation in the ring R:
k=1 _
(H' (XDl = [H (Xl + ] Z [H(X(A,_)).
i1

This yields

n k=1
6, = (XA = PO + 3, 5 s

From this we get

Chi =3, 8,,q9" = h,. (1 + -+ g") + hqChj_, + h,(q + -+ + ¢g" "YCh}
r=0

n

— agntl — 42 —
-1-g oy + (q 1 ) Chyshy + - + (q

A
— - =) fcng.

Multiplying both sides by "*! we obtain:

ntl __ n+t 2 2
Chpert = fy ot + 91907 (Z’) s + (—————‘1’ _(Z’) ) Chi_yt!

Setting

qH(t) — H(gt)

&) = =4

’
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and adding up, we get
Ch* = (1 + ®)Ch* + H(),

which gives us the asserted formula.

Remark 5.4. As was shown in [Stel] the graded representation
H*(X(A,). C) of §,., is isomorphic to a permutation representation. The
proof of Theorem 5.3 provides a geometric explanation of this fact.

Let A be the ring of symmetric functions in countable number of vari-
ables ¢;, i € N. There is a ring homomorphism

ch:R—> AR Q
defined by the formula

ch(f) = (kY1 D x(Dwhp(w),

weSs,

where f € Rep(S,), x(f) is its character function, and y((w) is the symmetric
function defined as follows. Let A = (A, ..., A,) be the partition of k
corresponding to writing w as a product of cyclic permutations. For each
i we define p; as the sum of ith powers of the variables. Then we put

Y(w) = p, =Dy P,

r

1t follows from this definition that the character polynomial of the trivial
one-dimensional representation 1, of §; is equal to

ch(l) = (k)7 2 x(1)w)(w) = ; z'pys
A=k

wES,
where for each partition A of £ we set

= Hi'"'m,-!.

i=1

where m; is the number of parts of A equal to i. Equivalently, z, is the
order of the S;-centralizer of any w € §, of cycle type A. By formula
(2.14) of [M] we have

ch(1,) = h; := sum of monomials of total degree k.
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We set

H(1) = D ht* € All1]].
k=0
COROLLARY 5.5.

Wl H i1 — (= @H)
.',%0 ch(HAX(A D't H(gt) — qH(1)"

For every irreducible representation 8 of the Weyl group W(R) let

Prolq) = 20 by X(R))oq',

where b,,(X(R)), denotes the multiplicity of 8 in H(X(R), C). Since every
representation of S, is isomorphic to its dual, the Poincaré Duality yields
the symmetry property of the numbers b,,(X(R)),;

b (X(R))g = by, 2{X(R),.

By averaging we can find a §,,-invariant ample divisor class on X(R).
Applying the Hard Lefschetz Theorem, we obtain the unimodality prop-
erty of the numbers b,,(X(R)),:

b2ir2(X(R))y = by(X(R))y,  i<n.

An explicit computation of these numbers using Theorem 2.1 and the
character tables of W is a hard computational problem. In the Case A,
we can employ the theory of symmetric functions.

Recall that there is a bijective correspondence between partitions A of
n + 1 and irreducible representations of §,.,. Let x* denote the corre-
sponding representation. The symmetric function ch(x*) is denoted by s,
and is called the Schur function of type A. Applying Theorem 5.3, we get

CorOLLARY 5.6 [Stanley [S]). For every partition \ of some number
n = |\ let P\(q) = P4, \(q). Then

212() hi
=21+ .+ g D

EPA(CI)SA: 1 _qE

The ring of symmetric functions A has an inner product such that Schur
functions s, form an orthonormal basis. This allows one to compute P,(g)
for some small values of n.
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6. A RECURRENCY FORMULA (CASES B, AND C))

The following lemma is an analogue of Lemma 5.8 in Case B,(C,):

LeEMMA 6.1.  There exists a W-equivariant birational morphism of toric
varieties w: X(B,) — (P")", where W(B,) acts via its quotient S, on (P')"
by permuting the factors. It is equal to the composition

T~y

X(B,) = X, il X, X, X, =@®"H,

where each w; is the blowing up of the proper inverse transform under
Ty © ... 0wy X;o — X, of the union of the subvarities defined by
vanishing of a projective coordinate in one of i + 1 factors. This proper
inverse transform is isomorphic to X(B,_;).

Proof. Recall that X(B,) is given by the fan ® = &, whose cones are
W-translates of the faces of the fundamental chamber

e > >e,>0.

We consider the fans ®,,i = 1, ..., n, formed by the cones whose faces are
W-translates of the faces of the cone C; given by the following inequalities:

e, > e, e >e,>0,k=1,...1.

It is easy to see that §; C W stabilizes C; and hence its orbit under W
consists of [ W: §;] cones of maximal dimension n of ®,. One immediately
recognizes the fan &, as the standard fan of the toric variety (P')". The
rest of the assertions are verified similarily to Case A,, and we leave it
to the reader to fill the details.

Remark 6.2. Observe that

C = w(C),

w&

1%}

i

where §; C §, C --- C §, C Wis the standard inclusion of the permutation
groups. According to [FFH] this implies that each X is equal to the closure
of the generic torus orbit in the homogeneous space Spin (2n + 1)/P;,
where P, is the parabolic subgroup of Spin(2n + 1) corresponding to the
subset {e,, ..., a;_) of the root basis a; = ¢, ~ €5, ..., a,_; = €,_;, a, =
e,. The projection Spin(2n + 1)/P; — Spin(2n + 1)/P,,, is a P'-bundle,
and induces, by restriction to X;, our morphism ;.
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Let Rep(W(B,)) be the Grothendieck group of isomorphism classes of
finite-dimensional complex representations of the group W(B,) and

R? =®,.,Rep(W(B,))
be the graded ring whose composition law is defined by the formula
frg=indygdwe (@ 8),

where f € Rep(S,), ¢ € Rep(S,). Here we fix an embedding of W(B,)
(resp. W(B,)) into W(B,,,) as the subgroup of permutations and sign
changes of the first £ numbers {1, ..., &} (resp. the last r numbers).
This is an associative commutative graded ring with the multiplicative
unit defined by the trivial representation of W(B,) = {1}.

We denote by 8%, the element in R corresponding to the representation
of W(B,) in H*(X(B,), C). Set

Ch8 = kZU 9%,q" € Rlql,

Ch? =1+ 2 ChPr" € Rylqllln]],

=0

HE(y =D hirm,

n=0

Git) = 2, g,t"

n=0

where A2 is the isomorphism class of the trivial representation of W(B,),
and g, is the isomorphism class of the representation obtained by inducing
the trivial representation of S, C W(B,).

THEOREM 6.3.

cnp = L= QR (W) HP(g1)
G(gt) — qG(1)

Proof. Consider the composition

1 Tn

X(B") = Xl i X2 o Xn—l - Xn = (Pl)n,

from Lemma 6.1. For every subset / of {I, ..., n} and a binary vector
e = (&), ..., &) € {0, 1}" let L,, denote the subvariety of (P')" given by
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vanishing of the projective coordinate x, in the ith factor, where i runs
through the set /. Let L, , be the proper transform of L,,inX,. k=#I.Let

e E[.l»? - 77/:—1 ] (Zl,ﬁ) - ZI.«:

be the restriction of 7,_, to the exceptional locus of 7,_, over L;,. As in
Case A,, we obtain an isomorphism of graded modules

k-1
H(E,,) = Dt (T,
Now the cohomology of X can be computed inductively by using

H*(X,_ ) = 7} (H*X,) ® ER HYE)/mr(H*L).

By Lemma 6.1, each L, , with #/ = k is isomorphic to X(B,_,). The group
W(B,) acts transitively on the set of subvarieties L;, with the isotropy
subgroup W, isomorphic to S, X W(B,_,). The group W, acts on the
cohomology of L;, = X(B,_,) via W(B,_,). This shows that there is a
natural isomorphism of W(B,)-modules:

k=1

D HHE)mHAT) = Z ind{ (1% HNX(B,_))(=i).

#I=k i=1

Therefore we obtain the recurrency relation in the ring R2:
k-1 _
[H(X, D] = [H (X)) + g, 2 [H(X(B, ).
i=1
This yields
07, = (H'(X(B,)] = [H' (@) + 2, Zg,ﬁn =t

To compute [H"((P')")] we observe that by the Kunneth formula
H’((P‘)”’ C) = /\rC".

The group W(B,) acts on the left-hand side via the natural permutation
action on C” of its quotient S,,.
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This easily gives the following equality in R?:
[H((P')"] = [ind gz, (1 X D] = hERE .

W(B,)x W(B,_,

From this we get

Chi= 2 6%.4" =2 a'hPh]_,) + gqChl_y + g,(q +  + ¢" )Ch§
r=0 i=0

=S aen s (22E) utag s+ (42L) ont

Multiplying both sides by " we obtain:

n 2 _ 2
ot =3 ekt + g (L90) cat

i=0 1

+otog, <q_t"T—_L;1tX) Ch.

Setting

qG(1) — Gign)

O = 1 =4

L}

and adding up, we get
Ch® = (1 + ®)ChE + HE(HE(q1),

which gives us the asserted formula.

APPENDIX

Here we prove Theorem 1.1 and Lemma 3.1.

We shall begin with the former. Let us recall the geometric description
of the complex K*. For details the reader is referred to [BL].

Let

X=XR)=1]] o

c€ED
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be the decomposition of X into the union of the torus orbits. The correspon-
dence ¢ — OY between the cones in the fan ® and the orbits satisfies the
following properties:

(i) dimcO° = codimyo;
(i) o' C o< 0° CO°, where the bar denotes the closure;
(iii) the linear span of o in V* equals the real part of the Lie algebra
of the stabilizer of O” in T.

Here we identify the root lattice M with the character lattice of 7, the
root lattice N with the lattice of one-parametric subgroups of 7, and the
space V* with the real part of the Lie algebra of 7. Consider the following
filtration of X by open T-invariant subvarieties

Tr=vUrcuU'c--Ccu’=x,
where

vi= [l o°, i=0,..r.

codimo=<i

Let

Z,=U\U"= [] o°

codimo =i

be the T-invariant locally closed subvarieties in X.

Let ET — BT be the universal principal 7-bundle introduced at the
beginning of the paper. For any T-space Y we denote by Y; the quotient
space Y X ;E = Y x E/T (T acts diagonally). Then Y; is a fibre bundle
over BT with the fibre Y. We have the filtration of X; by open subbundles:

urcuy'c--cU%= Xy
Clearly,

Zi=UpUY'= [] 05.

codimo=/

For a subset P C X; we denote its inclusion morphism in X by i,:
P & X;. Let C, be the constant sheaf on P. Denote by i,,C, its extension
by zero to X;. With the above notation we have the following filtration
of the constant sheaf Cy_by subsheaves:

iu”,!' CU;—C.“C’.U?!.CU?CCXT’ (1)
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Note that

iy ik i/ k N , = [ !
’U,!‘CU,/’UT*'!CU‘,+I 'z‘T!Cz‘, ding?:k‘o-cor-

If we apply the cohomological functor H¥ . to the filtered sheaf (1), we
get a spectral sequence whose E;-term is the complex of graded H-modules

0— H7 (Zy)— Hi (Z)1]— - — H} (Z)[r] >0, (2)

where the shifted module M[k] for a graded module M is defined as usually
by M[k], = M,,,. Note that

H* (Z,) = dEB H* (0)

imO=k

so (2) becomes the following complex

0> D Hr. 00— D HEO— > HLOWF—0, )
dimO=0 dimo=1

where the differentials correspond to attaching maps of one orbit to
another. Let o € ® be the cone corresponding to an orbit O C X. It is
shown in [BL] that H} .(O) = P_, and that the complex (3) is the complex
K* of the theorem that satisfies all properties of part [ (after we identify
H and A).

Recall that T is a maximal torus in a semi-simple algebraic group G.
Let N(T) be the normalizer of T in G, so that W = N(T)/T is the Weyl
group. In order to prove part 2 it suffices to show two things:

(i) the normalizer N(T) acts naturally on the fibration X, — BT,
preserving all the structures that led to the filtration (1} (note that the
connected component T of N(T) acts trivially on the cohomology):

(i) the induced action of W on H is compatible with its natural
action on A under the identification of H with A.

Let E be the universal space for (G, and hence also for 7. The group
N(T) then acts on the T-universal fibration E — BT. This induces the
action of W on H = H*(BT, C). On the other hand, W acts naturally on
the ring A of polynomial functions on the Lie algebra of the torus 7, and
hence on its real part V*. It is shown in [B], Section 27 that the two
actions of W agree under the identification # = A. This proves (ii).

The Weyl group W acts on the toric variety X preserving the subspaces
U* and Z* (since it acts on the fan ®). Hence also the normalizer N(T)
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acts on X via the quotient N(T)/T = W. Therefore N(T) acts diagonally
on the product X x E. This action preserves T-orbits. Indeed, for n €
N(T),xeX,e€E, tet

n(tx, te) = (nix, nte) = ((ntn Hnx, (ntn"YHne) = (ntn~')(nx, ne).

Hence N(T) also acts on the quotient space X X ;E = Xy, preserving the
subspaces U* and Z*. The natural map X;— BT commutes with the action
of N(T), which proves (i) and completes the proof of Theorem 1.1.

Proof of Lemma 3.1.  We shall use the notation introduced in the proof
of Theorem 2.1. Let o € ® be a cone and W, C W be its stabilizer. Let
O C X be the T-orbit corresponding to the cone o. Then the A(=H)-module
P, in the complex K" is the equivariant cohomology with compact supports

1 . (O)[r-dimO](see the proof of Theorem I above and [BL]). The stabi-
lizer W, acts on the graded module and we want to determine the action
on the 1-dimensional space H¢ ~(O)[r-dimO). Let us recall how H¥ .(0)
is computed.

Consider the fibration O; = BT with the fibre O, and let a,Cp_be the
direct image with compact supports of the constant sheaf on O,. Then
we have

HH(O)=0 if g <dimQ, and dimH9m0(Q) = 1,
and the spectral sequence
E}Y = HP(BT, H{(0)) > H} (0)
shows that H9(BT, H3™9(0)) maps isomorphically to H¢ (0)) in the limit.
The stabilizer W, acts on the above spectral sequence, hence its action
on H? (0) is isomorphic to its action on H3™9(0). By the Poincaré duality

HE™(0)) = Hyimo(O)*.

Hence it suffices to prove that W acts on the top homology Hg,,(0) by
the sign representation, which is obvious. This proves Lemma 3.1.
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