
T L  C S C


Y G

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

W S?

Andreas Blass∗ Yuri Gurevich

Abstract

Sets play a key role in foundations of mathematics. Why? To what ex-
tent is it an accident of history? Imagine that you have a chance to talk to
mathematicians from a far away planet. Would their mathematics be set-
based? What are the alternatives to the set-theoretic foundation of math-
ematics? Besides, set theory seems to play a significant role in computer
science, in particular in database theory and formal methods. Is there a good
justification for that? We discuss these and some related issues.

1 Sets in Computer Science

Quisani: I wonder why sets play such a prominent role in foundations of mathe-
matics. To what extent is it an accident of history? And I have questions about the
role of sets in computer science.
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Authors: Have you studied set theory?

Q: Not really but I came across set theory when I studied discrete mathematics
and logic, and I looked into Lévy’s book [38] years ago. I remember that ZFC,
first-order Zermelo-Fraenkel set theory with the axiom of choice, became for all
practical purposes the foundation of mathematics. I can probably reconstruct the
ZFC axioms.

A: Do you remember the intuitive model for ZFC.

Q: Let me see. You consider the so-called cumulative hierarchy of sets. It is a
transfinite hierarchy, so that you have levels 0,1, . . . , ω, ω + 1, . . . On the level
zero, you have the empty set and possibly some atoms. On any other levelα you
have the sets of objects that occur on levels< α. Intuitively the process never
ends. To model ZFC, you just go far enough in this hierarchy so that all axioms
are satisfied. Is that correct, more or less?

A: Yes.

Q: This morning I read at the Z users website [50] the following: “The for-
mal specification notation Z (pronounced “zed”), useful for describing computer-
based systems, is based on Zermelo-Fraenkel set theory and first order predicate
logic.” And I was somewhat surprised.

A: Were you surprised that they use the ZF system rather than ZFC, the Zermelo-
Fraenkel system with the axiom of choice? As long as we consider only finite
families of sets, the axiom of choice is unnecessary. That is, one can prove in
ZF that, if X is a finite family of nonempty sets, then there is a function assign-
ing to each setS ∈ X one of its members. Furthermore, there is a wide class
of statements, which may involve infinite sets, but for which one can prove a
metatheorem saying that any sentence in this class, if provable in ZFC, is already
provable in ZF; see [44, Section 1] for details. This class seems wide enough to
cover anything likely to arise in computer science, even in its more abstract parts.

Q: That is an interesting issue in its own right, but I was surprised by something
else. Set theory wasn’t developed to compute with. It was developed to be a
foundation of mathematics.

A: There are many things that were developed for one purpose and are used for
another.

Q: Sure. But, because set theory was so successful in foundations of mathematics,
there may be an exaggerated expectation of the role that set theory can play in
computing. Let me try to develop my thought. What makes set theory so useful in
foundations of mathematics? I see two key aspects. One aspect is that the notion
of set is intuitively simple.



A: Well, it took time and effort to clarify our intuition about sets and to deal with
set-theoretic paradoxes; see for example [21] and [30]. But we agree that the
notion of set is intuitively simple.

Q: The other aspect is that set theory is very expressive and succinct: mathemat-
ics can be faithfully and naturally translated into set theory. This is extremely
important. Imagine that somebody claims an important theorem but you don’t
understand some notions involved. You can ask the claimer to define the notions
more and more precisely. In the final account, the whole proof can be reduced to
ZFC, and then the verification becomes mechanical.

Can sets play a similar role in computing? I see a big difference between the
reduction to set theory in mathematics and in computing. The mathematicians do
not actually translate their stuff into set theory. They just convince themselves that
their subject is translatable.

A: Bourbaki [10] made a serious attempt to actually translate a nontrivial portion
of mathematics into set theory, but it is an exception.

Q: Right. In computing, such translations have to be taken seriously. If you want
to use a high-level language that is compiled to some set-theoretic engine, then
a compiler should exist in real life, not only in principle. I guess all this boils
down to the question whether the datatype of sets can be the basic datatype so that
everything else is interpreted in set theory.

A: There has been an attempt made in this direction [49].

Q: Yes, and most people remained unconvinced that this was the way to go. Se-
quences, or lists, are appropriate as the basic datastructure.

A: We know one example where sets turned out to be more succinct than se-
quences as the basic datastructure.

Q: Tell me about it.

A: OK, but bear with us as we explain the background. We consider computations
where inputs are finite structures, for example graphs, rather than strings.

Q: Every such structure can be presented as a string.

A: That is true. But we restrict attention to computing properties that depend only
on the isomorphism type of the input structure. For example, given a bipartite
graph, decide whether it has a matching. Call such propertiesinvariant queries.

Q: Why the restriction?

A: Because we are interested in queries that are independent from the way the
input structure is presented. Consider, for example, a database query. You want
that the result depends on the database only and not on how exactly is it stored.



Q: Fine, what is the problem?

A: The original problem was this: Does there exist a query languageL such that

(Restrained) every query that can be formulated inL is an invariant query com-
putable in polynomial time, and

(Maximally expressive) every polynomial-time computable invariant query can
be formulated inL.

Q: How can one ensure that allL-queries are invariant?

A: Think about first-order logic as a query language. Every first-order sentence
is a query. First-order queries arepure in the sense that they give you no means
to express a property of the input structure that is not preserved by isomorphisms.
Most restrained languages in the literature are pure in that same sense.

Q: But, in principle, can a restrained language allow you to have non-invariant in-
termediate results? For example, can you compute a particular bipartite matching,
throw away the matching and return “Yes, there is a bipartite matching”?

A: Yes, a restrained language may have non-invariant intermediate results. In
fact, Ashok Chandra and David Harel, who raised the original problem in [11],
considered Turing machinesM that are invariant in the following sense: IfM
accepts one string representation of the given finite structure then it accepts them
all. They asked whether there is a decidable setL of invariant polynomial time
Turing machines such that, for every invariant polynomial time Turing machine
T1, there is a machineT2 ∈ L that computes the same query asT1 does. In the case
of a positive answer, such anL would be restrained and maximally expressive.

Q: Hmm, a decidable set of Turing machines does not look like a language.

A: One of us conjectured [25] that there is no query language, even as ugly a
decidable set of Turing machines, that is restrained and maximally expressive.

Q: But one can introduce, I guess, more and more expressive restrained languages.

A: Indeed. In particular, the necessity to deal with invariant database queries led
to the introduction of a number of restrained query languages [1] including the
polynomial-time version of the languagewhile new. In [8], Saharon Shelah and
the two of us proposed a query language, let us call it BGS, that is based on set
theory. BGS is pure in the sense discussed above. A polynomial time bounded
version of BGS, let us call it Ptime BGS, is a restrained query language.

Q: In what sense is BGS set-theoretic?

A: It is convenient to think of BGS as a programming language. A state of a BGS
program includes the input structureA, which is finite, but the state itself is an



infinite structure. It contains, as elements, all hereditarily finite sets built from the
elements ofA. These are sets composed from the elements ofA by repeated use
of the pairing operation{x, y} and the union operation

⋃
(x) = {y : ∃z(y ∈ z ∈ x)}.

BGS uses standard set theoretic operations and employs comprehension terms
{t(x) : x ∈ r ∧ ϕ(x)}. In any case, to make a long story short, it turned
out that Ptime BGS was more expressive than the Ptime version of the language
while new that works with sequences; see [9] for details. For the purpose at hand,
sets happened to be more efficient than sequences.

Q: I don’t understand this. A sets can be easily represented by a sequence of its
elements?

A: Which sequence?

Q: Oh, I see. You may have no means to define a particular sequence of the ele-
ments ofs and you cannot pick an arbitrary sequence because this would violate
the purity of BGS.

A: Right. You may want to consider all|s|! different sequences of the elements of
s. This does not violate the purity of BGS. But, because of the polynomial time
restriction, you may not have the time to deal with|s|! sequences.

On the other hand, a sequence [a1,a2, . . . ,ak] can be succinctly represented by
a set{[i,ai] : 1 ≤ i ≤ k}. Ordered pairs have a simple set-theoretic representation
due to Kuratowski: [a,b] = {{a,b}, {a}}.

Q: I agree that, in your context, sets are more appropriate than sequences.

A: It is also convenient to have the datatype of sets available in software specifi-
cation languages.

Q: But closer to the hardware level, under the hood so to speak, we cannot deal
with sets directly. They have to be represented e.g. by means of sequences.

A: You know hardware better than we do. Can one build computers that deal with
sets directly?

Q: A good question. The current technology would not support a set oriented
architecture.

A: What about quantum or DNA-based computing?

Q: I doubt that these new paradigms will allow us to deal with sets directly but
your guess is as good as mine.

2 Sets in Mathematics

Q: Let me return to the question why sets play such a prominent role in the foun-
dation of mathematics. But first, let me ask a more basic question: Why do we



need foundations at all? Is mathematics in danger of collapsing? Most math-
ematicians that I know aren’t concerned with foundations, and they seem to do
OK.

A: Well, you already mentioned the fact that an alleged proof can be made more
and more detailed until it becomes mechanically verifiable.

Q: Yes, but I’d hope that this could be done with axioms that talk about all the dif-
ferent sorts of objects mathematicians use — real numbers, functions, sequences,
Hilbert spaces, etc. — and that directly reflect the facts that mathematicians rou-
tinely use. What’s the advantage of reducing everything to sets?

A: We see three advantages. First, people have already explicitly written down
adequate axiomatizations of set theory. The same could probably be done for the
sort of rich theory that you described, but it would take a nontrivial effort. Second,
the reduction of mathematics to set theory means that the philosopher who wants
to understand the nature of mathematical concepts needs only to understand one
concept, namely sets. Third, when proving that a statement is consistent with
ordinary mathematics, one only has to produce a model of set theory in which
the statement is true. Without the set theoretic foundation, one would have to
construct a model of a much richer theory.

Q: These advantages make sense but they also show why a typical mathematician
never has to use the reduction to set theory. Actually, the second advantage is
not entirely clear to me; it seems that by reducing mathematics to set theory the
philosopher can lose some of its semantic or intuitive content. Consider a proof
that complex polynomials have roots, and imagine a set-theoretic formalization of
it.

A: It’s not a matter of the philosopher’s understanding particular mathematical
results or the intuition behind them, but rather understanding the general nature of
abstract, mathematical concepts.

Q: Anyway, granting the value of a reduction of mathematics to a simple founda-
tion, why should it be set theory? For example, since sequences are so important
in computing, it’s natural to ask whether they could replace sets in the foundations
of mathematics.

A: We don’t know of any attempts in this direction. Transfinite sequences are
a messy business. Nor do we know of attempts to use multisets, which are also
computationally useful, for foundational purposes.

2.1 Non-ZF sets

Q: Concerning the intuitive idea of sets, is ZFC still the only game in town?



A: It’s the biggest game, but there are others. For example, there are theories
of sets and proper classes which extend ZFC. The most prominent ones are the
von Neumann-Bernays-Gödel theory (NBG) and the Morse-Kelley theory (MK).
In both cases the idea is to continue the cumulative hierarchy for one more step.
The collections created at that last step are called proper classes.

Q: Wait a minute! The cumulative hierarchy is supposed to continue forever. How
can there be another step? And if there is one more step, why not two or many?

A: We admit that this extra step doesn’t quite make sense philosophically, but it is
convenient technically. Consider some property of sets, for example the property
of having exactly three members. It is convenient to refer to the multitude of the
sets with this property as a single object. If this object isn’t a set then it is a proper
class.

There is also a less known but rather elegant extension of ZFC due to Ack-
ermann [2]. It uses a distinction between sets and classes, but not the same dis-
tinction as in NBG or MK. For Ackermann, what makes a class a set is not that it
is small but rather that it is defined without reference to the totality of all sets. It
turns out [37, 46] that, despite the difference in points of view, Ackermann’s set
theory plus an axiom of foundation is equivalent to ZF in the sense that they prove
the same theorems about sets. Lévy [37] showed how to interpret Ackermann’s
axioms by taking an initial segment of the cumulative hierarchy as the domain of
sets and a much longer initial segment as the domain of classes.

Q: Are there set theories that contradict ZFC?

A: Yes. One is Quine’s “New Foundations” (NF), named after the article [45]
in which it was proposed. Another is Aczel’s set theory with the anti-foundation
axiom [3, 6].

Quine’s NF is axiomatically very simple. It has the axiom of extensionality
(just as in ZF) and an axiom schema of comprehension, asserting the existence of
{x : ϕ(x)} wheneverϕ(x) is a stratified formula. “Stratified” means that one can
attach integer “types” to all the variables so that, ifv ∈ w occurs inϕ(x), then
type(v) + 1 = type(w), and ifv = w occurs then type(v) = type(w).

Q: This looks just like simple type theory.

A: Yes, but the types aren’t part of the formula; stratification means only that there
exist appropriate types. The point is that this restriction of comprehension seems
sufficient to avoid the paradoxes.

Q: I see that it avoids Russell’s paradox, since¬(x ∈ x) isn’t stratified, but how
do you know that it avoids all paradoxes?

A: We only said it seems to avoid paradoxes. Nobody has yet deduced a contra-
diction in NF, but nobody has a consistency proof (relative to, say, ZFC or even



ZFC with large cardinals). But Jensen [28] has shown that NF becomes consistent
if one weakens the extensionality axiom to allow atoms. Rosser [47] has shown
how to develop many basic mathematical concepts and results in NF. For lots of
information about NF and (especially) the variant NFU with atoms, see Randall
Holmes’s web site [26].

Q: How does NF contradict the idea of the cumulative hierarchy?

A: The formulax = x is stratified, so it is an axiom of NF that there is a universal
set, the set of all sets. No such thing can exist in the cumulative hierarchy, which
is never completed.

Q: And what about anti-foundation?

A: This theory is similar to ZFC, but it allows sets that violate the axiom of foun-
dation. For example, you can have a setx such thatx ∈ x; you can even have
x = {x}.

Q: And you could havex ∈ y ∈ x and evenx = {y} ∧ y = {x}, right?

A: Yes, but the anti-foundation axiom imposes tight controls on these things.
There is only onex such thatx = {x}. Using thatx as the value of bothx and
y you getx = {y} ∧ y = {x}, and this pair of equations has no other solutions.
The axiom says, very roughly, that if you propose some binary relation to serve
(up to isomorphism) as the membership relation in a transitive set, then, as long
as it’s consistent with the axiom of extensionality, it will be realized exactly once.
It turns out that this axiomatic system and ZFC, though they prove quite different
things, are mutually interpretable. That is, one can define, within either of the two
theories, strange notions of “set” and “membership” that satisfy the axioms of the
other theory.

2.2 Categories

Q: What about possible replacements for sets as the fundamental concept for
mathematics? For example, I’ve heard people say that category theory could re-
place set theory as a foundation for mathematics. But I don’t understand them.
A category consists of a set (or class) of objects, plus morphisms and additional
structure. So category theory presupposes the notion of set. How can it serve as a
foundation by itself?

A: The idea that the objects (and morphisms) of a category must be viewed as
forming a set seems to be an artifact of the standard, set-theoretic way of present-
ing general structures, namely as sets with additional structure. One can write
down the axioms of category theory as first-order sentences and then do proofs
from these axioms without ever mentioning sets (or classes).



Q: Sure, but unless you’re a pure formalist, you have to wonder what these first-
order sentences mean. How can you explain their semantics without invoking the
traditional notion of structures for first-order logic, a notion that begins with “a
non-emptysetcalled the universe of discourse (or base set) . . . ”?

A: This seems like another artifact of the set-theoretic mind-set, insisting that the
semantics of first-order sentences must be expressed in terms of sets. People un-
derstood first-order sentences long before Tarski introduced the set-theoretic def-
inition of semantics. Think of that set-theoretic definition as representing, within
set theory, a pre-existing concept of meaning, just as Dedekind cuts or Cauchy
sequences represent in set theory a pre-existing concept of real number.

Q: Hmmm. I’ll have to think about that. It still seems hard to imagine the mean-
ing of a first-order sentence without a set for the variables to range over. But let’s
suppose, at least for the sake of the discussion, that the axioms of category the-
ory make sense without presupposing sets. Those axioms seem much too weak
to serve as a foundation; after all, they have a model with one object and one
morphism.

A: That’s right. For foundational purposes, one needs axioms that describe not just
an arbitrary category but a category with additional structure, so that its objects
can represent the entities that mathematicians study.

Q: That sounds reasonable but vague. What sort of axioms are we talking about
here?

A: There have been two approaches. One is to axiomatize the category of cate-
gories and the other is to axiomatize a version of the category of sets.

Q: The first of these sounds more like a genuinely category-theoretic foundation;
the second mixes categories and sets.

A: Yes, but the first has had relatively little success.

Q: Why? What’s its history?

A: The idea was introduced by Lawvere in [34]. He proposed axioms, in the
first-order language of categories, to describe the category of categories, and to
provide tools adequate for the formalization of mathematics. But three problems
arose. First, as pointed out by Isbell in his review [27], the axioms didn’t quite
accomplish what was claimed for them. That could presumably be fixed by modi-
fying the axioms. But there was a second problem: Although some of the axioms
were quite nice and natural, others were rather unwieldy, and there were a lot of
them. As a result, it looked as if the axioms had just been rigged to simulate
what can be done in set theory. That’s related to the third problem: The repre-
sentation of some mathematical concepts in terms of categories was done by, in



effect, representing them in terms of sets and then treating sets as discrete cate-
gories (categories in which the only morphisms are the identity morphisms, so the
category is essentially just its set of objects). This third point should not be over-
emphasized; some concepts were given very nice category-theoretic definitions.
For example, the natural number system is the so-called coequalizer of a pair of
morphisms between explicitly described finite categories. But the use of discrete
categories for some purposes made the whole project look weak.

Q: So what about the other approach, axiomatizing the category of sets?

A: That approach, also pioneered by Lawvere [33], had considerably more suc-
cess, for several reasons. First, many of the basic concepts and constructions of set
theory (and even of logic, which underlies set theory) have elegant descriptions in
the language of categories; specifically, they can be described as so-called adjoint
functors. In the category of sets, adjoint functors provide definitions of disjoint
union, cartesian product, power set, function set (i.e., the set of all functions from
X to Y), and the set of natural numbers, as well as the logical connectives and
quantifiers.

Q: That covers quite a lot. What other advantages does the category of sets have
— or provide?

A: There is a technical advantage, namely that the axioms admit a natural weak-
ening that describes far more categories than just the category of sets. These
categories, called topoi or toposes, resemble the category of sets in many ways
(including the availability of all of the constructions listed above, except that the
existence of the set of natural numbers is usually not included in the definition of
topos) but also differ in interesting ways (for example, the connectives and quanti-
fiers may obey intuitionistic rather than classical logic), and there are many topoi
that look quite different from the category of sets (not only non-standard models
of set theory but also categories of sheaves, categories of sets with a group acting
on them, and many others). As a result, set-theoretic arguments can often be ap-
plied in topoi in order to obtain results about, for example, sheaves. These ideas
were introduced by Lawvere and Tierney in [36]; see [29] and [39] for further
information.

Q: I don’t know what sheaves are. In any case, I care mostly about foundations,
so this technical advantage doesn’t do much for me. What more can the category
of sets do for the foundations of mathematics?

A: One can argue that the notion of abstract set described in this category-theoretic
approach is closer to ordinary mathematical practice than the cumulative hierarchy
described by the Zermelo-Fraenkel axioms.

Q: What is this notion of abstract set? The ZF sets look pretty abstract to me.



A: The phrase “abstract set” refers (in this context) to abstracting from any internal
structure that the elements of a set may have. A typical set in the cumulative
hierarchy has, as elements, other sets, and there may well be membership relations
(or more complicated set-theoretic relations) between these elements. Abstract set
theory gets rid of all this. As described in [35], an abstract set “is supposed to have
elements, each of which has no structure, and is itself to have no internal structure,
except that the elements can be distinguished as equal or unequal, and to have no
external structure except for the number of elements.”

Q: How is this closer to ordinary mathematical practice than the cumulative hier-
archy view of sets?

A: One way to describe the difference is that the abstract view gets rid of unnec-
essary structure. For example, in any of the usual set-theoretic representations of
the real numbers, the basic facts aboutR depend on information about, say, mem-
bers of members of real numbers — information that mathematicians would never
refer to except when giving a lecture on the set-theoretic representation of the real
numbers. The abstract view discards this sort of information. Of course, some
structural information is needed — unlike abstract sets, the real number system
has internal structure. But the relevant structure is postulated directly, say by the
axioms for a complete ordered field, not obtained indirectly as a by-product of
irrelevant structure.

Q: So if an abstract-set theorist wanted to talk about a set from the cumulative
hierarchy, with all the structure imposed by that hierarchy, he would include that
structure explicitly, rather than relying on the hierarchy to provide it.

A: Exactly. If x is a set in the cumulative hierarchy, then one can form its transitive
closuret, the smallest set containingx and containing all members of its members.
Thent with the membership relation∈ (restricted tot) is an abstract representation
of t. It no longer matters what the elements oft were, because any isomorphic
copy of the structure (t, ∈) contains the same information and lets you recoverx.

Q: Well if this category-theoretic view of abstract sets is so wonderful, why isn’t
everybody using it?

A: There are (at least) four answers to your question. One is a matter of history.
The cumulative hierarchy view of sets has been around explicitly at least since
1930 [52], and Zermelo’s part of ZFC (all but the replacement and foundation
axioms) goes back to 1908 [51]. ZFC has had time to demonstrate its sufficiency
as a basis for ordinary mathematics. People have become accustomed to it as
the foundation of mathematics, and that includes people who don’t actually know
what the ZFC axioms are. There is, however, a chance that the abstract view of
sets will gain ground if students learn basic mathematics from books like [35].



A second reason is the simplicity of the primitive notion of set theory, the
membership predicate. Perhaps, we should say “apparent simplicity,” in view of
the complexity of what can be coded in the cumulative hierarchy. But still, the idea
of starting with just∈ and defining everything else is philosophically appealing.
Another way to say this is that, in developing mathematics, one certainly needs the
concepts of “set” and “membership”; if everything else can be developed from just
an iteration of these (admittedly a transfinite iteration), why not take advantage of
it?

Third, there is a technical reason. Although topos theory provides an elegant
view of the set-theoretic constructions commonly used in mathematics, serious
uses of the replacement axiom don’t look so nice in category-theoretic terms. (By
serious uses of replacement, we mean something like the proof of Borel determi-
nacy [40], which provably [22] needs uncountably many iterations of the power
set operation.) But such serious uses are still quite rare.

Q: OK, what’s the fourth answer to why people aren’t using the category-theoretic
view of abstract sets?

A: The fourth answer is that theyareusing this point of view but just don’t realize
it. Mathematicians talk about ZFC as the foundation of what they do, but in fact
they rarely make explicit use of the cumulative hierarchy. That hierarchy enters
into their work only as an invisible support for the structures they really use —
like the complete ordered fieldR. When you look at what these people actually
say and write, it is entirely consistent with the category-theoretic viewpoint of
abstract sets equipped with just the actually needed structure.

2.3 Functions

Q: The discussion of categories, with their emphasis on morphisms alongside
objects, reminds me of a way in which functions could be considered more basic
than sets.

A: More basic? “As basic” seems reasonable, if one doesn’t insist on representing
functions set-theoretically (using ordered pairs), but in what sense do you mean
“more basic”?

Q: This came up when I was a teaching assistant for a discrete mathematics class.
Sets were one of the topics, and several students had trouble grasping the idea
that, for example, a thinga and the set{a} are different, or that the empty set is
one thing, not nothing. They thought of a set as a physical collection, obtained by
bringing the elements together, not as a separate, abstract entity.

A: Undergraduate students aren’t the only people who had such difficulties; see
[30] for some relevant history. But what does this have to do with functions?



Q: Well, I found that I could clarify the problem for these students by telling them
to think of a setS as a black box, where you can put in any potential elementx and
it will tell you “yes” if x ∈ S and “no” otherwise. So I was explaining the notion
of set in terms of functions, essentially identifying a set with its characteristic
function. The black-box idea, i.e., functions, seemed to be something the students
could understand directly, whereas sets were best understood via functions.

A: It seems that functions are obviously abstract, so the students aren’t tempted to
identify them with some concrete entity, whereas they are tempted to do that with
sets.

Q: That may well explain what happened with my students.
If one takes seriously the idea of functions being more basic than sets, then it

seems natural to develop a theory of functions as a foundation for mathematics.
Has that been tried?

A: Yes, although sometimes the distinction between using sets and using functions
as the basic notion is rather blurred.

Q: Blurred how?

A: Well, the set theory now known as von Neumann-Bernays-Gödel (NBG) was
first introduced by von Neumann [42, 43] in terms of functions. But he minimizes
the significance of using functions rather than sets. Not only do the titles of both
papers say “Mengenlehre” (i.e., “set theory”) with no mention of functions, but
von Neumann explicitly writes that the concepts of set and function are each easily
reducible to the other and that he chose functions as primitive solely for technical
simplicity.1 And when Bernays [7] recast the theory in terms of sets and classes
(the form in which NBG is known today), he described his work as “a modifica-
tion of a system due to von Neumann,” the purpose of the modification being “to
remain nearer to the structure of the original Zermelo system and to utilize at the
same time some of the set-theoretic concepts of the Schröder logic and ofPrin-
cipia Mathematica.” Bernays doesn’t mention that the primitive concept has been
changed from function to set (and class). The tone of Bernays’s introduction gives
the impression that the change is not regarded as a significant change in content
but rather as a matter of connecting with earlier work (Zermelo, Schröder, Russell,
and Whitehead) and of technical convenience (Bernays mentions a “considerable
simplification” vis à vis von Neumann’s system).

Q: Von Neumann claimed that functions were technically simpler than sets, and
Bernays claimed the opposite?

1Wir haben statt dem Begriffe der Menge hier den Begriff der Funktion zum Grundbegriffe
gemacht: die beiden Begriffe sind ja leicht aufeinander zurückzuführen. Die technische Durch-
führung gestaltet sich jedoch beim Zugrundelegen des Funktionsbegriffes wesentlich einfacher,
allein aus diesem Grunde haben wir uns für denselben entschieden. [43, page 676]



A: Yes. Of course, the set-based system that von Neumann had in mind for his
comparison may have been more complex than Bernays’s system. Presumably
part of Bernays’s work was to make the set-based approach simpler.

By the way, Gödel [24] modified Bernays’s formulation slightly; in partic-
ular, he used a single membership relation, whereas Bernays had distinguished
between membership in sets and membership in classes. Gödel describes his sys-
tem as “essentially due to P. Bernays and . . . equivalent to von Neumann’s system
. . . .” In the announcement [23], Gödel stated his consistency result in terms of
von Neumann’s system.

Q: So it seems we can think of von Neumann’s function-based axiom system as
being in some sense the same as the set-based system now known as NBG. But
are there function-based foundations that aren’t just variants of more familiar set-
based systems?

A: The lambda calculus [4, 5] and its variations fit that description. The idea here
is that one works in a world of functions, with application of a function to an
argument as a primitive concept. There is also the primitive notion of lambda-
abstraction; given a description of a function using a free variablev, say some
meaningful expressionA involving v, one can produce a termλv A (which most
mathematicians would write asv 7→ A), denoting the function whose value at
anyv is given byA. In the untyped lambda calculus, one takes the functions to be
defined at all arguments. That way, one doesn’t need to specify sets as the domains
of the functions; every function has universal domain. The typed lambda calculus
is less antagonistic to sets; its functions have certain types as their domains and
codomains.

Q: I’ve seen the lambda calculus mentioned in two places in computer science.
First, Church’s original statement of his famous thesis identified the intuitive con-
cept of computability with definability in the lambda calculus. Second, lambda
calculus plays a major role in the domain-theoretic approach to denotational se-
mantics. But how does it relate to foundations of mathematics?

A: Church [12] originally intended the lambda calculus as an essential part (the
other part being pure logic) of a foundational system for mathematics. The other
pioneers of lambda calculus, albeit in the equivalent formulation using combina-
tors, were Schönfinkel [48] and Curry [15, 16, 17], and they also had foundational
objectives. Unfortunately, Church’s system turned out to be inconsistent [31], and
the system proposed by Curry was not strong enough to serve as a general foun-
dation for mathematics. (Schönfinkel’s system was also weak, being intended just
as a formulation of first-order logic.)

Q: So this approach to foundations was a dead end.



A: Not really; the task is neither dead nor ended. The original plans didn’t suc-
ceed, but there has been much subsequent work, which has succeeded to a con-
siderable extent, and which may have more successes ahead of it. Church himself
developed not only the pure lambda calculus [14] (essentially the lambda part of
his earlier inconsistent system, but without the logical apparatus that led to the in-
consistency) but also a typed lambda calculus [13] that is essentially equivalent to
the simple theory of types but expressed in terms of functions and lambda abstrac-
tion instead of sets and membership. The typed lambda calculus also provides a
good way to express the internal logic of topoi (and certain other categories) [32].
It forms the underlying framework of the system developed by Martin-Löf [41]
as a foundation for intuitionistic mathematics. There is also a considerable body
of work by Feferman (for example [18, 19, 20]) on foundational systems that
incorporate versions of the lambda calculus and that have both constructive and
classical aspects.

Q: So if you meet mathematicians from a far away planet, would you expect their
mathematics to be set-based?

A: Not necessarily but we wouldn’t be surprised if their mathematics is set-based.
We would certainly expect them to have a set theory, but it might be quite different
from the ones we know, and it might not be their foundation of mathematics.
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