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Abstract. When thinking about choice beyond single winners, social pref-

erence functions are natural to study; these are functions where both input

and output are strict rankings of n items (or possibly ties among several such
rankings). Symmetry is one mathematical way to express fairness, so it makes

sense to study the symmetry of these functions carefully.
Such rankings may be viewed as a permutation of the items; since pair-

wise comparison is also important in voting, a natural combinatorial object

for studying such functions is the permutahedron. This paper analyzes a large
class of social preference functions using the representation theory of the sym-

metry group of the permutahedron. The main result identifies the most sym-

metric possible family in this class, which preserves pairwise information fully;
it is the one-parameter family that connects the Borda Count and the Kemeny

Rule.

1. Introduction

1.1. Why Social Preference Functions? Choice questions are typically
about aggregating individual preferences into a ‘societal’ preference. For example,
with n choices, A1, A2, . . . , An, any individual voter’s preference is represented as
a strict transitive ranking such as A1 � A3 � · · · � A2; some mathematical rule
then yields an aggregate result. Different types of outcomes, whether singletons or
choice functions, yield different categories of functions.

In some natural situations the actual outcome should be a ranking, or some
related structure. For instance, a group could choose officers (Chair, Secretary, and
Treasurer) from three candidates a nominating committee gives them. The offices
might have a priority order (like for succession), but their priority status is not
the only point. Even more interesting, one might have a list of factories to inspect
for an internal audit. Here, the cyclic order of a visiting schedule likely is more
important than which factory actually is the first one visited in the year.

In any similar case, it is reasonable to assume that the output of the function is
one or more strict rankings, just as in a voting function the output is one or more
candidates. We call such a function a social preference function. The most famous
s.p.f. is probably the Kemeny Rule.
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A special class of social preference functions has been receiving some attention
in recent work, especially in the two pairs of articles [23, 29] and [34, 35]. This
class, called simple ranking scoring functions (SRSFs – see section 2.1), fills exactly
the same role in the class of social preference functions as the usual positional
scoring rules do in the class of voting rules1.

The point is that in many situations where choice matters we may wish to
consider not just the relative rank of the candidates, but where they fit into the
overall order. So one goal of this paper is to introduce an interesting generalization
of several well-known procedures of value in contexts beyond single-winner elections.

1.2. Symmetry. Since individual preferences may be represented as combina-
torial objects, the symmetries of such objects are often of interest. Though they do
not use the same formal language, all the foundational papers (e.g., [2, 25, 4, 10])
constantly refer to such symmetry2. For instance, one might think of rankings as
permutations of the set of candidates {1, 2, . . . , n}, and seek information about per-
mutations which yields information about different procedures. For a game theory
example, coalitions on up/down votes (ignoring abstentions) in the United Nations
Security Council are simply subsets of the power set of the set of voters.

Many ‘natural’ fairness requirements in social choice can be thought of in terms
of a natural group action on such combinatorial structures. Put another way,
invariance of a procedure under a group action could be considered more equitable.

Indeed, symmetry under the action of the symmetric group on n candidates
{Ai}ni=1 (denoted throughout by Sn) is usually known as neutrality ; the idea is
that no candidate has an unfair advantage3. The same action on the set of voters
is usually useful in a game theory context; the Security Council does not have this
symmetry, due to the five members with veto power.

It is fruitful to study a large range of rules to see how they behave with regard to
various symmetries; over time, the field of social choice has moved in this direction
from a more axiomatic approach. Structural papers like [18, 19] and the social
preference function papers cited above are solidly within this tradition; another
goal of this paper is to add to this classification literature.

1.3. Context for this work. Within the last few years, representation the-
ory has become a tool to reframe and powerfully extend previous classifications.
Orrison and his students [7] have done so in voting theory, while work of Hernández-
Lamoneda, Juárez, and Sánchez-Sánchez [12] gives similar results in cooperative
game theory. These techniques are also used in work of Bargagliotti and Orrison
in nonparametric statistics [3].

In these papers, representations of Sn allow generalization with fewer technical
challenges, with more insight into why the results are true. But there is more to
combinatorics than permutations, and more to fairness than the symmetric group.
Pairwise comparisons between candidates have been a cornerstone of voting theory

1We note that [15] and some recent preprints by Pivato and Nehring address an even more
general group of functions.

2For instance, in [25] it is crucial that every possible set of preferences be in the domain of
their functions; in [4], a major assumption is that voters’ preferences of subsets of candidates obey

various (anti-)symmetric partial orders.
3Party primary systems are not neutral; over the whole election cycle, a candidate in an

uncontested primary has (at least in principle) an advantage in winning the whole thing.
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analysis since Condorcet, and one may note that a ranking of candidates is not
simply a permutation, but an ordering.

The permutahedron has the right amount of structure for analyzing social pref-
erence functions while keeping pairwise behavior in mind. Its symmetry group sheds
light on the structure of neutral SRSFs. The ‘extra’ symmetry of the permutahe-
dron corresponds precisely to the well-known concept of reversal symmetry (see
section 2.3). So the third goal of this paper is to prove significant results about
neutral SRSFs utilizing the basic representation theory of the symmetry group of
the permutahedron (summarized in the Appendix).

The most important result in this classification is an explicit characterization of
the most symmetric possible rules in this family – a characterization which connects
the two most important members of it.

Main Theorem. If a neutral SRSF is compatible with pairwise information
and fully preserves this information, then it is a rule along the one-parameter family
of procedures connecting the Borda Count and the Kemeny Rule.

‘Pairwise information’ means information about head-to-head comparisons be-
tween alternatives; see [7], Definition 4.6, and Theorem 5.12 for full details. By
adding one final symmetry, one can characterize the Borda Count among SRSFs
in the same way as is usually done among positional scoring rules, or rules relying
only on pairwise information. Conversely, one can start moving beyond the ‘Borda
versus Condorcet’ ways of thinking and start to explore how much of each behavior
one might want in a choice procedure.

The remainder of the paper addresses the goals as follows:

• Review social choice definitions and introduce the permutahedron
• Motivate machinery with explicit statements and examples for n = 3
• Introduce all remaining needed concepts, and prove theorems for all n
• Look forward to questions opened up by this work, including other discrete

structures of interest in social choice

2. Social Choice and Symmetry

2.1. General Definitions. We begin with relevant voting theory definitions,
mostly using notation from the most relevant references ([27, 5, 16, 17, 30]).

Let A = {A1, A2, . . . , An} be a set of n candidates/alternatives; generic alter-
natives are given by capital letters such as A,B,C or X,Y, Z. Let L(A) be the
set of (strict) linear rankings of those alternatives, such as A1 � A2 � · · · � An.
Rankings correspond to permutations of the n elements of A, and we will often
identify L(A) and Sn by abuse of notation; it should always be clear which is in-
tended. Given a ranking r, if X � Y in the order implied by r, we say that X �r Y .
Likewise, for any 1 ≤ i ≤ n the ith ranked alternative in r is denoted r(i).

A profile p is a vector-valued function p : L(A) → Q, where one interprets
each value as the number of voters4 who prefer a given ranking in L(A). Under this
interpretation, the notation

∑
v∈L(A) p(v)f(v) signifies evaluating some function f

over each ranking v ∈ L(A) with multiplicity p(v), the ‘number of voters preferring
v in p’. As an example, let f(v) = 1 if v(1) = A and 0 otherwise; then this sum
simply counts the number of voters putting A in first place.

4Although applications may have only integer numbers of voters, it is common practice to
use Q to have a vector space, which also enables normalization, if desired.
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A social preference function is a function from the set of all (finite) profiles
to the power set of L(A) (excepting the empty set). One might think of a social
preference function as taking an electorate’s set of preferences and yielding some
nonempty set of rankings. The simplest social preference functions are obtained by
taking a social welfare function or voting rule F , and then returning the set of all
full rankings which do not disagree with the outcome of F .

Definition 2.1. Let a weighting vector be an arbitrary5 w ∈ Rn. Given a
profile p, we say an alternative X receives the score

∑n
i=1

∑
v∈L(A), v(i)=X p(v)w(i)

from the weighting vector; the set of alternatives with the maximum such score is the
set of winners. The positional scoring rule associated to w is the social preference
function which associates to each profile p all rankings r in which all winners are
ranked above all non-winners.

Even viewed as preference functions, positional scoring rules are familiar. The
vector w = (1, 0, 0, · · · , 0) gives the plurality vote, and w = (n− 1, n− 2, . . . , 1, 0)
yields the Borda Count (BC).

2.2. Neutral Simple Ranking Scoring Functions. Our main objects of
study are functions which essentially give scores to full rankings rather than indi-
vidual candidates. The following definition is due to Conitzer et al. [5], though it
is very similar to a roughly contemporaneous definition of generalized scoring rules
in Zwicker [35] (in the case I = O = L(A))6.

Definition 2.2. A social preference function f is a simple ranking scoring
function (SRSF) if there exists a function s : L(A) × L(A) → R such that for all
votes v, f(v) is the ranking(s) r which maximizes

∑
v∈L(A) p(v)s(v, r). The function

f is neutral if s is neutral; that is, if for any σ ∈ SA = Sn, s(v, r) = s(σ(v), σ(r)).

If an SRSF is neutral, then s(v, r) = s(r, v), because we could have σ = π∗,
where π∗(v) = r and vice versa. For example, one could have s defined so that
s(v, r) = 1 if r = v and s(v, r) = 0 otherwise; in this case, we have the s.p.f. anal-
ogous to plurality, where the most popular ranking (or rankings) in the profile is
the winning one.

The neutral SRSF concept is powerful, as it generalizes two otherwise disparate
systems. One of these is the following often-studied (though less often used in
practice) rule, as in Proposition 2 of [5].

Definition 2.3. Let v and r be rankings, and A,B ∈ A; then the following
function measures agreement between v and r on the candidates A and B:

δ(v, r, A,B) =

{
1, A �r B and A �v B
0, otherwise

.

The Kemeny Rule (KR) is the neutral SRSF with s(v, r) =
∑
A,B∈A δ(v, r, a, b).

This definition is notationally dense (see [14] for the original, in terms of met-
rics). One should interpret this as saying that the Kemeny Rule evaluates a vote
for the ranking v by assigning

(
n
2

)
points to the ranking v,

(
n
2

)
− 1 points to any

5Usually one requires the entries to be nonincreasing as a function of index, but a priori this

need not be so.
6Conitzer introduces these to study ‘maximum likelihood estimators’, while Zwicker puts

them in a more general (and geometric) context.
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ranking r differing by one switch of places from v (i.e. switching v(i) and v(i+1) for
some i), and so on, down to no points to the ranking which reverses v completely.
Then one adds up points as usual to determine the ‘winning’ ranking(s). KR is
considered to be particularly important because it is the unique preference function
which is a neutral and consistent Condorcet extension (see [30]).

Example 2.4. Let’s use the KR for a profile p for n = 3 with p(ABC) = 4
(four voters choose ABC), p(BCA) = 3, and no one chooses any other rankings
(p(r) = 0 for other rankings r). The maximum number of votes for a ranking is(
n
2

)
= 3. In Figure 1 we can see how far distant each ranking is from the two with

actual votes (for example, ACB is adjacent to ABC and CAB, even though the
latter would seem far away in a single-winner context).

(ACB)

(CAB) (CBA)

(BCA)

(BAC)(ABC)

Figure 1

Put it together, and the winning ranking under KR is ABC:
ABC 4 · 3 + 3 · 1 = 15
BAC 4 · 2 + 3 · 2 = 14
BCA 4 · 1 + 3 · 3 = 13

CBA 4 · 0 + 3 · 2 = 6
CAB 4 · 1 + 3 · 1 = 7
ACB 4 · 2 + 3 · 0 = 8

On the other hand, every positional scoring rule is a neutral SRSF as well
(Proposition 1 of [5]). Given a vote v and a candidate A, let t(v,A) be the number
of points that A gets if someone votes v. Then if we denote the ith-place candidate
in a ranking r by r(i), the function

s(v, r) =

n∑
i=1

(n− i)t(v, r(i))

turns a positional scoring rule into an SRSF. Intuitively, the SRSF score for v with
respect to a ranking r is the sum of points each candidate in ranking r gets for vote
v in the scoring rule, weighted by the position of the candidate in the ranking r.

We can make all this quite concrete with three candidates. For a positional
scoring rule, if v = XY Z and r = ABC, then

s(v, r) =

3∑
i=1

(3− i)t(XY Z, r(i))

= 2 · t(XY Z,A) + 1 · t(XY Z,B) + 0 · t(XY Z,C)

= 2t(XY Z,A) + t(XY Z,B) ,

so if we have a system with w = (u,w, 0), then this yields

v ABC ACB CAB CBA BCA BAC
s(v,ABC) 2u+ w 2u 2w w u 2w + u
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Figure 2 gives a visualization using a Saari-like triangle, where each separating
line defines the border between rankings with X � Y and vice versa. To use it for
other v′ 6= v, one would permute the whole triangle with the permutation σ such
that σ(v) = v′. Then computing the SRSF for each r = XY Z can be done visually
as well, by taking the dot product of the profile and the weighting triangle with
ABC on the XY Z spot.

(ACB)

(ABC) (BAC)

(BCA)

(CBA)(CAB)

A B

C

w

2w+u

2u

2u+w

2w

u

Figure 2. Visualizing positional scoring rules as SRSFs

Example 2.5. It is instructive to see what plurality looks like as an s.p.f. Since
t(v, r(i)) = 0 unless r(i) = v(1), in which case we get s(v, r) = n− i, the score for
r is

∑
v∈L(A) p(v)s(v, r), which is the sum of n− 1 points for each voter who ranks

r(1) first, n− 2 points for each one who ranks r(2) first, and so forth.
For n = 3, with the profile from Example 2.4, we see that ABC is again the

aggregate preference.

r
∑
v∈L(A) p(v)s(v, r)

ACB 4 · 2 + 3 · 0 = 8
ABC 4 · 2 + 3 · 1 = 11
BAC 4 · 1 + 3 · 2 = 10
BCA 4 · 1 + 3 · 0 = 4

Example 2.6. On the other hand, the Borda Count gives BAC as the winning
ranking. Putting u = 2 and w = 1 gives the following SRSF-style scores.

r
∑
v∈L(A) p(v)s(v, r)

ACB 4 · 4 + 3 · 1 = 19
ABC 4 · 5 + 3 · 2 = 26
BAC 4 · 4 + 3 · 4 = 28
BCA 4 · 2 + 3 · 5 = 23

Just as the analysis of [7, 18, 19] considers the point totals to be vital infor-
mation in understanding voting function symmetry, we consider the point totals
for SRSFs to be vital to unlocking the structure of social preference functions.

2.3. The Permutahedron and Reversal Symmetry. The input profiles
and output scores of SRSFs are both essentially elements of an n!-dimensional
vector space over Q. Since we identify rankings with permutations, we identify this
space with the group ring QSn, which is the set of all formal Q-sums

∑
σ∈Sn qσσ.

To be specific, we are equating σ with the ranking r such that r(σ(i)) = Xi.
7 In

7For instance, σ = (1 2 3) will correspond to r(1) = r(σ(3)) = X3, r(2) = r(σ(1)) = X1, and
r(3) = r(σ(2)) = X2, or X3 � X1 � X2.
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addition, neutral SRSFs have all their s(v, r) given by one vector in this same
space, since s(σ(v), r) = s(v, σ−1(r)). Hence, to analyze neutral SRSFs, we will
want to look at this structure. See Section 3 for concrete examples when n = 3.

It is time to introduce the other major player in our story. Traditional analyses
of both positional scoring rules and the Kemeny rule involve yet another symmetry
– the concept that if everyone reverses all their preferences, then the final outcome
should be reversed as well.

Let ρ = (1, n)(2, n− 1) · · · be the so-called ‘reversal’ element of Sn. Then the
ranking corresponding to ρσ is the one such that r(ρσ(i)) = r(n+1−σ(i)) = Xi, or
in other words the strict reversal of the ranking corresponding to σ (like A � B � C
is the reversal of C � B � A). For a general ranking v, we denote its reversal by
vρ; we will use the same notation for the operation of reversing all rankings in a
set or changing p(v) to p(vρ) for all v in a profile.

Definition 2.7. We say a social preference function f has reversal symmetry
if [f(p)]

ρ
= f (pρ) for all profiles p.

Not all SRSFs observe this symmetry, not even simple ones like plurality. Any
profile p with 25% each preferring A � B � C, A � C � B, C � B � A, and
B � C � A suffices, as with plurality the winning rankings are ABC and ACB
whether one uses p or pρ. Examples of rules which do have reversal symmetry
are BC and KR. They are symmetric with respect to the following combinatorial
object.

Definition 2.8. The n-permutahedron Πn is the graph with n! vertices, in-
dexed by permutations of the set {1, 2, . . . , n} (or elements of Sn, as preferred), and
with an edge connecting permutations σ and σ′ if and only if σ′ = (i, i + 1)σ for
some 1 ≤ i < n. (See [32] for more details.) We call its symmetry group Pn.

Another way to say this same definition is that the permutahedron is the Cayley
graph of the symmetric group Sn for the neighbor-swap generating set

{(1, 2), (2, 3), . . . , (n− 1, n)} .
Since ρ simply changes i to n + 1 − i in a permutation, a neighbor-swap (i, i + 1)
will become (n + 1 − i, n + i), so all edges are preserved by ρ, which means this
graph is just the tool for looking at reversal symmetry.

The 3-permutahedron is in fact the (graph associated to the) regular hexagon,
where the vertices are labeled by permutations of {1, 2, 3}, written as reduced words.
Just in the case of dimension three this also works by labeling edges instead, so we
do this in Figure 3 because of the useful analogies with the representation triangle
and Figure 1. This helps visualize neutral SRSFs which satisfy reversal symmetry.
Think of the score for a ranking r as being a sort of ‘dot product’ of the profile with
the hexagon, except that rankings the same distance from r get the same score.

For example, Figure 4 gives the vector of weights and the profile for Example
2.4. Imagine rotating the XY Z hexagon so that XY Z is on each ranking on the
right; the sum of the products of each region will be the same as before.

Figure 5 shows the 4-permutahedron (where vertices are again labeled).
Reversal symmetry is important, but to ensure no symmetries are missed, one

needs the overall symmetry group – that is, what is Pn? The answer is more
mathematical folklore8 than otherwise, but it turns out that Pn ∼= Sn × C2, where

8See [31, 9, 6] for proofs and discussion.
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e

(12)(23)(12)=(13)=(23)(12)(23)

(12)

(23) (23)(12)=(132)

(12)(23)=(123)

Figure 3. The 3-permutahedron

3 2

01

12

(XYZ) (YXZ)

(YZX)

(ZYX)(ZXY)

(XZY)

0

(ABC) (BAC)

(BCA)

(CBA)(CAB)

(ACB) 3

4 0

0

0

Figure 4. Visualizing the scoring of the Kemeny Rule

( )

(1 2)

(3 4)

(2 3)

(1 2)(3 4)

(1 3 2)

(1 3)

(1 4 3 2)

(1 4 2)(1 2 3)

(1 3 4 2)

(2 4 3)

(2 4)

(2 3 4)
(1 2 3 4)

(1 2 4)

(1 3 2 4)

(1 4)(2 3)

(1 4 2 3)

(1 4 3)

(1 3)(2 4)

(1 4)

(1 3 4)

(1 2 4 3)

Figure 5. The 4-permutahedron

Cn is the cyclic group of order n. The C2 subgroup is precisely9 that given by ρ,
the reversal symmetry!

9Since it has index two, it is clear that Sn / Pn. In particular, if one thinks of Sn as acting

by right multiplication on the permutahedron, this provides a natural inclusion inside Pn. Then,

since we already saw that ρ acts on the left on the permutahedron, the action given by reversal
symmetry defines exactly the subgroup C2 which gives a direct product, since left and right

multiplication will commute.
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3. Decompositions and Voting

The full power of representation theory for analyzing neutral SRSFs requires
enough machinery that we postpone it to Section 4. In this section, we use this
power implicitly, and motivate our theorems with detailed examples, preliminary
assertions, and informal proofs when n = 3.

Recall that the profile space in question is isomorphic to QS3, a six-dimensional
space. Importantly, the image of an SRSF also will be a subspace of QS3. That
means the decomposition of the profile space into Basic/Borda, Reversal, Con-
dorcet, and Kernel components, first fully introduced in [17], can be given an
explicit basis in QS3.

K (1, 1, 1, 1, 1, 1) S(3)

BA (2, 2, 0,−2,−2, 0) S
(2,1)
1

BB (0,−2,−2, 0, 2, 2)

RA (1, 1,−2, 1, 1,−2) S
(2,1)
2

RB (−2, 1, 1,−2, 1, 1)

C (1,−1, 1,−1, 1,−1) S(1,1,1)

We use group elements in the order e, (2 3), (1 2 3), (1 3), (1 3 2), (1 2)10. The
representation-theoretic notation for the subspaces is in the right column; this no-
tation makes it clear the Reversal and Borda components, whose basis elements are
not orthogonal to each other, must be considered as inherently two-dimensional.
(The use of BX and C to indicate profiles should not cause ambiguity with generic
candidate names.) Finally, note that the sum of the entries of each vector (except
the first) is zero; such a vector is called sum-zero, and such profiles are called profile
differentials, inasmuch as they do not represent actual voters.

Let f be a neutral SRSF. Recall (Subsection 2.2) that f is uniquely defined by
all its s(·, r), which we may consider to be a vector of weights s; we will call the
function fs to indicate this fact. Thus the scores for all rankings r are simply the
dot products σ(s) · p from before, so fs gives a linear transformation from QS3 to
itself. This is given by the scores for each ranking as in the previous section11.

But fs is not just any linear transformation. Since we pointed out earlier that
s(v, r) = s(σ(v), σ(r)) for any permutation σ ∈ Sn, fs must preserve all group
symmetries; so, fs is what is called an S3-module homomorphism (see Section 4.1
for more detail). This means SRSFs are subject to the following basic fact:

Schur’s Lemma for n = 3. The image of any of K, B, R, or C under a
neutral SRSF will only be a (possibly zero) multiple of itself, except BX and RX
may be sent to linear combinations of each other12.

10Corresponding to the usual voting theory order ABC, ACB, CAB, CBA, BCA, BAC.

11So that for KR we would have the matrix



3 2 1 0 1 2
2 1 0 1 2 3

1 0 1 2 3 2
0 1 2 3 2 1

1 2 3 2 1 0
2 3 2 1 0 1

.

12The X basis vector of these components must go to a linear combination of the X vectors

(or their orthogonal complements within the B and R modules). This is because these vectors
have symmetry under any σ which switches alternatives Y and Z, while the others do not, and
fs is an S3-module homomorphism.
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The projections of any profile onto these subspaces also are constrained by
Schur’s Lemma. So if we count dimensions, that means a general neutral SRSF has
six degrees of freedom, which makes sense since s has six independent entries.

01

1

4

3

3

(XYZ)

(XZY)

(ZXY) (ZYX)

(YZX)

(YXZ)

01

1

2

2

3

(XYZ)

(XZY)

(ZXY) (ZYX)

(YZX)

(YXZ)

1

(XYZ)

(XZY)

(ZXY) (ZYX)

(YZX)

(YXZ)

0

0 1

22

(XYZ) (YXZ)

(YZX)

(ZYX)(ZXY)

(XZY) 1

4 2

3

1 0

Figure 6. Various SRSFs – Borda, Kemeny, ‘Nonsense’, Borda Variant

Example 3.1. Figure 6 shows a few examples of weighting vectors. The first
two are the BC (rescaled) and the KR, which have already been met before.

The third appears to be an amusing nonsense procedure where s = (2, 0, 0, 1, 1, 2).
Here, fs(BA) = −2RA; that is, a voter profile which overwhelmingly approves of
rankings with A first ahead of other rankings would have a result overwhelmingly
favoring any ranking with A in second place!

On the other hand, the last procedure (with s = (4, 3, 1, 0, 1, 2)) is a ‘reasonable’
variant on the Borda Count which is trying to imitate plurality a little bit by
deemphasizing Y XZ as an outcome by voters who chose XY Z – perhaps with a
view toward making sure ACB is the outcome more often with profiles like the one
from Example 2.4. (It is not a positional scoring rule.)

Nonetheless, this s has a nonzero dot product with the s in the third procedure,
so for some profiles with a large BA component relative to the others, it will exhibit
much the same bizarre behavior and should also be called into question.

Our main interest is in decomposing the images of SRSFs, but the algebra also
identifies building blocks for sensible procedures. The following table gives basis
vectors for s which send each component (subspace) only to a scalar multiple of
itself and kill everything else.

K (1, 1, 1, 1, 1, 1)
C (1,−1, 1,−1, 1,−1)
B (2, 1,−1,−2,−1, 1)
R (2,−1,−1, 2,−1,−1)

The other two dimensions’ worth of s are not reasonable – for instance, the
third procedure in Example 3.1 is a basis for any procedure which behaves like it.

Notice that simply rescaling the Borda Count weighting vector so it is sum-
zero gives the prototype for methods which preserve only the Basic component, as
expected from [18]. In fact, by ignoring the part of fs coming from K above in a
systematic way (because it will always add the same amount to each ranking r),
we can reduce our attention to sum-zero s. Likewise, we only care about relative
scores, which leads to the following definition (as in [7], [17], and elsewhere).
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Definition 3.2. We consider two procedures fs and fs′ with sum-zero weight-
ing vectors s, s′ to be equivalent if s = ks′, which we will indicate by s ∼ s′. We
will say that two neutral SRSFs are essentially different if they are not equivalent
in this way.

Proposition 3.3. The space of essentially different neutral SRSFs for n = 3
is four dimensional.

Informal Proof. There are six total dimensions. Taking the quotient by K
to get a sum-zero weighting vector removes one; unscaling removes another. �

In this case, plurality has s ∼ (1, 1,−1,−1, 0, 0). We will consider the ‘reversed’
plurality s′ ∼ (−1,−1, 1, 1, 0, 0) to be equivalent, since it will literally have a re-
versed outcome which can be derived from plurality – even though it looks quite
different to the voter. (We are intentionally ignoring issues such as unanimity to
get the broadest possible result at this point.)

Many theorists argue that the Condorcet (C profile) component should be ig-
nored (or, what is equivalent, considered a complete tie). The idea is that any pro-
file non-orthogonal to this component runs the risk of giving credence to subspaces
where each candidate appears in each position in the ranking an equal number of
times. If we do ignore it, we lose another dimension:

Proposition 3.4. The space of neutral SRSFs for n = 3 which ignore the
Condorcet component is three dimensional.

In the contexts mentioned in the introduction, insisting on this restriction does
not always make sense. The famous Condorcet example of p with p(ABC) =
p(BCA) = p(CAB) = 1, p(XY Z) = 0 otherwise need not be a paradox in the
committee example; there, it is plausible that the voters would prefer to have a
random tiebreaker among just these three rankings (as opposed to all six), guaran-
teeing at least one of their succession preferences.

Naturally, not every application will demand preserving the Condorcet compo-
nent, and we are not arguing that the Condorcet criterion or Condorcet extensions
are always appropriate. Rather, it seems reasonable that in situations where the
overall ranking matters more than the winner, or where there is potential for the
ranking to influence (or even determine) a cycle of events, it is advantageous to
keep this component13.

One of the ways in which we can ensure that we do not throw away this infor-
mation is by means of the concept of being compatible with pairwise information.
Definition 4.6 gives a full account, but for n = 3 it is sufficient to remark that such
an fs kills everything from R and K; the intuition is that only B and C preserve the
information we get from tallying all the head-to-head pairwise matchups between
candidates. By counting dimensions once again one can compute that, modulo
equivalence:

Proposition 3.5. The space of neutral SRSFs for n = 3 which are compatible
with pairwise information is two dimensional.

Unfortunately, the procedure with s = (2, 0, 0, 1, 1, 2) (recall, where fs(BA) =
−2RA) is in this space. So this is not a panacea.

13We briefly mention cyclic orders in Example 6.1.
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Now we bring in the permutahedron, with its reversal symmetry. All of the
components of the decomposition of QS3 have a natural action of ρ as well (so
they are “P3-modules”). It is not hard to see that (BX)

ρ
= −BX while (RX)

ρ
=

RX , so although B and R are equivalent under S3, they are not equivalent under
reversal. The implication in the social preference function context is that with
reversal symmetry, BX and RX must not go to each other. Thus we have:

Proposition 3.6. The space of essentially different neutral SRSFs for n = 3
which obey reversal symmetry is two dimensional.

Informal Proof. There are six total dimensions, and as usual we eliminate
two by considering sum-zero essentially different procedures. Ordinarily, a basis
element BX of the basic subspace could be sent to some element of the reversal
space, and vice versa, but if not, then quotienting out eliminates two additional
dimensions. �

The bizarre SRSF s = (2, 0, 0, 1, 1, 2) is not allowed, nor is anything which
shares a nontrivial piece of it. However, SRSFs having reversal symmetry lead to
the same problems one gets from positional scoring procedures which do not ignore
the reversal component. Here is a somewhat subtle example – again, this is not a
positional scoring procedure.

Example 3.7. The weighting vector s = (15, 2, 0, 11, 0, 2) puts appropriately
heavy weight on XY Z and some weight on its neighbors. Consider the profile
p = (9, 6, 6, 3, 0, 6) with these weights; ABC (the first ranking in the profile) will
be given 15 · 9 + 2 · 6 + 0 · 6 + 11 · 3 + 0 · 0 + 2 · 6 = 192 points, while BAC (the last
ranking in the profile) receives 15 · 6 + 2 · 0 + 0 · 3 + 11 · 6 + 0 · 6 + 2 · 9 = 174.

The final score vector is (192, 120, 174, 156, 84, 174); note that ACB loses by
a significant margin, even to CBA, despite the pairwise tally showing A the clear
victor and B tied with C.

With counterintuitive results coming no matter what restrictions we place on
the symmetry, what happens if we demand maximum symmetry from a neutral
SRSF?

Proposition 3.8. The space of essentially different neutral SRSFs for n = 3
which obey reversal symmetry and are compatible with pairs is a one-dimensional
family of procedures.

For n = 3, one may think of this as giving the space of fs of the sum-zero
vectors of weights in Figure 7.

(ACB)

(CAB) (CBA)

(BCA)

(BAC)(ABC)

a

1

1

-1

-1 -a

Figure 7. The continuum of weights for Borda-Kemeny line, n = 3
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Clearly both BC (a = 2) and KR (a = 3) are part of this continuum; since it is
one-dimensional, they define it as well. This is our main result in the case n = 3.

Using a vector of weights from Figure 7 alone can still lead to a nonsense
method; for example, letting a = 0 gives something less than useful. However, it
is very hard to decide what sort of other, non-algebraic, conditions are natural.
One can impose unanimity-style conditions such as a ≥ 1, under which any profile
in which all voters have the same preference yields that preference as a winning
ranking. Nonetheless, even then it is possible for SRSFs in this space to give actual
outcomes (winning preference orders) which are different from both BC and KR.

Example 3.9. The profile p = (1, 2, 5, 0, 0, 0) only has non-zero preference for
half the rankings (ABC, ACB, and CAB). For a given a, this means the scores
for the relevant potential winning rankings will be:

Computation BC KR a = 1.5
ABC +a · 1 + 1 · 2− 1 · 5 0 -1 -1.5
ACB +1 · 1 + a · 2 + 1 · 5 12 10 9
CAB −1 · 1 + 1 · 2 + a · 5 16 11 8.5
CBA −a · 1− 1 · 2 + 1 · 5 0 1 2

The Kemeny Rule and Borda Count both give CAB as the winning outcome, but
with a = 1.5 the result is ACB.

However, it turns out that if 2 < a < 3, this is not possible – all SRSFs of this
type will have the same outcome as KR or BC (or both). Demonstrating this is a
standard and tedious chase of inequalities to yield contradictions from other cases,
so we omit the proof.

For the reader who enjoys an exercise, here is an unscaled, non-zero-sum (and
hence more intuitive to the layman) example of an SRSF ‘between’ the most familiar
examples.

Example 3.10. The procedure in Figure 8 yields a tie between ABC and ACB
(the BC and KR outcomes, respectively) on the profile p = 6BA + 2BB − 7C −
3RC + 12K.

(XYZ) (YXZ)

(YZX)

(ZYX)(ZXY)

(XZY) 1

1 0

21
331

3

21
3

Figure 8. A procedure between Borda and Kemeny

Hints: which 2 < a < 3 would this correspond to? What contribution will K
make in the finally tally? What about C? Can you now reconstruct the relevant
part of the profile and finish the computations as in Example 3.9?

These examples show that there is real depth in the concept of simple ranking
scoring functions. In order to avoid the problem in Example 3.9, we must use
algebra – for instance, we could send the profile differential C to a positive scalar
multiple of itself. To ensure that the outcome is ‘between’ those of the well-known
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methods (if this is even a good idea), we must come up with appropriate Pareto-type
conditions.

It is by no means obvious how much weight to give the C component, but once
one bothers with the pairwise information, its effects must be considered. If there is
some dissatisfaction in the community about the Borda Count completely ignoring
this information, there is also dissatisfaction with methods that give it as much
weight as the Kemeny Rule does, frequently exhibiting paradoxes as the no-show
paradox.

With this spectrum, each potential ‘customer’ of methods on this ‘Borda-
Kemeny spectrum’ can decide this for themselves how much or how little to take this
into account; the algebraic access to these procedures makes this analysis possible.

4. Representations

Let A be a set of n candidates, Sn be the symmetric group on n elements, and
so forth. Our results for n ≥ 3 may be summarized as follows.

• The space of essentially different neutral SRSFs which are compatible with
pairs is 1

2 (n+ 1)(n− 2) = 1
2 (n2 − n+ 2) dimensional (Theorem 5.1).

• If these also have reversal symmetry, we are reduced to 1
4 (n2 − 5) or

1
4 (n2−4) dimensions for odd and even n, respectively, which is about half
as many (Theorem 5.4).

• Unsurprisingly, there are n dimensions of positional scoring rules,
⌊
n
2

⌋
of

which obey reversal symmetry (Theorems 5.5 and 5.6).
• An SRSF which is a scoring rule and is pairwise compatible is essentially

the same as the Borda Count or its reversal (Corollary 5.9).
• Consider SRSFs which are pairwise compatible and preserve the infor-

mation from pairwise matchups as fully as possible. There is just one
dimension of essentially different neutral SRSFs in this family, and it is
defined by the continuum connecting the Borda Count and the Kemeny
Rule (Theorem 5.12).

The main importance of most of these theorems is to emphasize how many
different SRSFs there are if we only use some symmetry. The number grows as
O(n2) for most – the curious reader may also skip ahead to Theorem 7.1 for full,
precise details and tables of the dimensions of the decompositions. Given that the
number of pairwise votes that can happen grows at this rate as well, this is not
surprising; nonetheless, it serves to highlight the surprising parsimony of Theorem
5.12 and Corollary 5.9.

In order to explain these theorems in full generality in Section 5, we will first
give a brief review of how representation theory, modules, and voting theory can
interact, then give the relevant parts of the representation theory of the permuta-
hedron for all n.

4.1. Representation Theory, Modules, and Voting. For SRSFs, recall
that we may consider both the domain and target of a given function fs to be a
vector space of dimension n!. Because of the role of permutations in the voting
context, we will in fact consider the vector space to be the group ring QSn; this has
a natural Sn action by concatenating permutations. To keep notation consistent
with [7], we will also often call this vector space M1,1,··· ,1 = M1n ; for any partition
λ of n, there is a corresponding module Mλ of profiles of preferences on n candidates
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with ties, but here we will only consider ones with no ties, coming from the maximal
partition λ = (1, 1, · · · , 1).

As before, for any neutral SRSF f , we can let s be the vector of all s(·, r) and
specify f = fs; then fs is really a linear transformation fs : M1n → M1n . Is there
any group structure here? The answer is yes.

• By definition, SRSFs only depend on the number of each ranking in the
profile p (they are anonymous). Hence if we define σ(p(v)) = p

(
σ−1(v)

)
,

the outcome of the SRSF will change according to σ as well. That is, the
profile space M1n is a QSn-module. The same is true for the outcome
space.

• But by having neutral SRSFs with s(v, r) = s(σ(v), σ(r)), we see that the
action of σ propagates from profiles to outcomes. That is, for each r,

σ

 ∑
v∈L(A)

p(v)s(v, r)

 =
∑

v∈L(A)

p(σ−1(v))s(σ−1(v), σ−1(r)) ,

which is the same as the effect of σ on the final ranking, so fs is a QSn-
module homomorphism, essentially by definition. Every single voting pro-
cedure under discussion is a group-theoretic object.

• We have even more; by exactly the same argument as in [7], since p ∈
M1n ∼= QSn, a neutral SRSF is the result of the profile acting on s, so
that fs(p) = ps, in the sense of the group rings.

Once we know that fs is a QSn-module homomorphism, we can use represen-
tation theory to find out things about it. Our main tool will be decomposition into
irreducible submodules, and the following well-known result:

Schur’s Lemma. Let G be a group. If M and N are irreducible G-modules
and g : M → N is a G-module homomorphism, then either g = 0 or g is an
isomorphism.

Thus far, G = Sn for us. It is a classical result in representation theory of the
symmetric group that the irreducible modules of Sn are indexed by the partitions
of n; see the Appendix for more details and their dimensions. More importantly,
the irreducible decomposition of QSn = M1n is given by the sum of a number of
each of these irreducible modules, k for a k-dimensional one. For n = 3, this was

M (1,1,1) ∼= S(3) ⊕ 2S(2,1) ⊕ S(1,1,1)

and corresponded directly with the K, B, R, and C components.
Let’s use this to further justify some of the claims in Section 3. Since any fs is

a S3-module homomorphism, Schur’s Lemma tells us that S(3) (K) and S(1,1,1) (C)
go to themselves in any neutral SRSF. In both cases this will be by multiplication
by some scalar. On the other hand, each S(2,1) can go to any linear combination of
the two S(2,1) components – that is, BA could go to any combination xBA + yRA.

However, these spaces are also Pn-modules, provided we restrict to procedures
with reversal symmetry. Schur’s Lemma now distinguishes between the two copies
of S(2,1) given by B and R, because (BX)

ρ
= −BX while (RX)

ρ
= RX .

4.2. Voting-Theoretic Decompositions for General n. We now move
to the decomposition of the profile space M1n ∼= QSn as Sn- and Pn-modules.
Referring to the Appendix, we note that the canonical irreducible decomposition
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of M1n has n − 1 copies of S(n−1,1) and
(
n−1
2

)
copies of S(n−2,1,1). These are the

only ones we will need to deal with.
There are various ways to think of (n − 1)S(n−1,1), but the classification in

[18, 19] as the Borda (B), Alternating (Alt), and Symmetric (Sym) components
is most useful. As with our n = 3 example, these are profile differentials (i.e. they
are sum-zero), since they are orthogonal to S(n).

We summarize them in the following table, with unmentioned values being zero.
Each irreducible component is the direct sum of one-dimensional vector spaces given
by BX , Altj,X , or Symj,X (for any given j) for all candidates X.

BX BX(r) = n+ 1− 2k if r(X) = k
Altj,X Altj,X(r) = n− 1 if r(X) = j
2 ≤ j ≤ n

2 Altj,X(r) = 1− n if r(X) = n+ 1− j
Altj,X(r) = 2j − n− 1 if r(X) = 1
Altj,X(r) = 1 + n− 2j if r(X) = n

Symj,X Symj,X(r) = 1 if r(X) = j or n+ 1− j
2 ≤ j < n+1

2 Symj,X(r) = −1 if r(X) = 1 or n
Symn+1

2 ,X Symn+1
2 ,X(r) = 2 if r(X) = n+1

2

Symn+1
2 ,X(r) = −1 if r(X) = 1 or n

For example, when n = 4, the Borda component for A has 3, 1,−1,−3 voters for
rankings with A in first through fourth place respectively. That is, BA is a profile
(differential) with 3 voters each for ABCD, ABDC, ACBD, ACDB, ADBC, and
ADCB, but −1 votes each for BCAD, BDAC, CBAD, etc., and so forth. The
profile Alt2,A has −1, 3,−3, 1 for the same places14; the analogous symmetric profile
grants −1, 1, 1,−1 votes, respectively, to rankings with A in first through fourth
places.

In all cases, these have the structure that the sum over all candidates of each
of these profiles is zero, so that each component, as a vector space, is (n − 1)-
dimensional. We can start to see what role these play with the following examples.

Example 4.1. Let’s see what happens to the Borda and Sym components
under plurality for n = 4. Recall that if r = XY ZW , plurality is the SRSF with
s = s(·, r) giving 3 weighting points for any ranking with X in first place, 2 for Y
in first, 1 for Z and 0 for W .

What happens to BA under this system? Any ranking r of the form AY ZW will
have 18 total compatible voters in BA (three each of the six possible permutations
with A in first place) giving 3 points each. How many voters will give 2, 1, or 0
points to r? Once we pick Y , Z, or W to be in first place, there are two of each kind
of those voters with A in second, third, and fourth place, respectively, weighted by
1,−1,−3 in the profile – giving 2(1 − 1 − 3) ‘total voters’ giving each 2, 1, and 0
points. Subtracting this from 54 yields 36 points for r of the form AY ZW .

In the same manner, any r of the form XAZW has the same 18 voters giving
two points each, and the rest giving 3, 1, and 0 points each, for 12 points per
this type of ranking r; by symmetry, we see that BA will be sent to 12BA by the
plurality function.

Example 4.2. Using the same strategy, the symmetric component SA has −6
(= −1 · 6) voters granting 3 points each to r = AY ZW . Considering again the two

14So −1 votes for ABCD, ABDC, ACBD, ACDB, ADBC, and ADCB, . . .
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rankings each with Y , Z, or W first and A in the other spots, we have 2(1 + 1− 1)
voters giving 2, 1, and 0 points, for a total of −12 points. One can compute that
rankings of the form r = XAZW will receive −4 points each, and by symmetry we
see that SA is sent to −4BA by plurality.

But theB, Alt, and Sym components also happen to be irreducible Pn-modules!
It is not hard to see that under reversal symmetry the B and Alt components reverse
sign, while the Sym components are unchanged, so we use the notation S(n−1,1),+

for the isomorphism class of the Sym modules, while the B and Alt components
are called S(n−1,1),−.

What about generalizing the discussion for n = 3 to the components of S(n−2,1,1)?
Most of these vanish under even the weakest symmetry we’ll discuss, so the final
component to describe corresponds to (1,−1, 1,−1, 1,−1) when n = 3.

Definition 4.3. For each pair {X,Y } of candidates, we will define CXY , the
Condorcet component, as follows15:

Let {XY 1} denote the set of all rankings which begin X � Y , let {XY 2}
denote the set of all rankings which begin with X � ? � Y , and continue up
through {XY (n− 1)}. Then CXY is the profile where, for all cyclic permutations
of the elements in {XY i} (such as ABC,BCA,CAB for three candidates), we
assign n− 2i voters to those rankings.

Notice that {XY i} is simply the reversal of all {XY (n− i)}, so there is redun-
dancy. For n = 3, this does give the usual Condorcet component, while for n = 4
it gives the Condorcet component in the form of the CXY s of Saari, as for i = 2 we
get zero voters. A convenient basis of dimension

(
n−1
2

)
is given by

CA1A2
, CA1A3

, · · · , CA1An−1
, CA2A3

, · · · , CA2An−1
, · · · , CAn−2An−1

where one notes that holding X or Y constant and summing over all candidates in
the other variable gives zero.

4.3. Pairwise Compatibility. In order to pursue the finest-grained results,
we need one last set of concepts. The first three are directly from [7].

Definition 4.4. We define the pairs map P : M1n → M1n to be the linear
transformation that sends a basis vector of M1n to the sum of all such vectors
whose top two candidates are in the same order as in the input vector.

For instance, if p(BACD) = 1 and p(XY ZW ) = 0 for all other rankings,
P (p)(XY ZW ) = 1 if XY is one of the (ordered) pairs BA,BC,BD,AC,AD,CD
and P (p)(XY ZW ) = 0 otherwise. This naturally encodes all the usual information
we associate with comparing candidates on a pairwise basis – for instance, in the
Borda Count and Kemeny Rule.

Definition 4.5. The effective space of a linear transformation T is the or-
thogonal complement to the kernel of T . This determines what will not be in the
kernel.

15This is obviously indebted to Saari’s original Condorcet component and Zwicker’s ‘spin’

component [33] as well as Saari’s CXY in Section 6 of [18]. Indeed, the spaces only differ when
n ≥ 5, which is probably why they are first completely described here. See also Sections 4.4.3 and

4.5 of [20] where they are implicit in a discussion about the ‘old’ Condorcet components.
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In essence, this is the subspace of elements of the domain of T (and in our
context, f) which have no part simply sent to zero (in our context, a complete tie).
Since we can often compute the dimension of this space, it will help us compute
the dimensions of the sets of procedures. In particular (see the discussion before
Theorem 6 of [7]), the effective space of P is isomorphic as an Sn-module to S(n)⊕
S(n−1,1)⊕S(n−2,1,1). In a moment, this space will be decomposed into components
we already know about.

Definition 4.6. We say that any procedure whose kernel contains the kernel
of P (or, what is the same, its effective space is contained in the effective space of
P ) is compatible with pairs.

Any SRSF compatible with pairs will automatically send all complete head-to-
head tie portions of the profile to zero. For n = 3, we saw that this meant it sent
R and K to zero.

But which SRSFs are compatible with pairs? Certainly BC and KR are. But
there are other schemes compatible with pairs (like the Condorcet, Simpson, Dodg-
son, and Copeland rules) which are not SRSFs; they are not even the same as
‘composite ranking scoring functions’, which take SRSFs and break ties with other
SRSFs (see [5] for details on Copeland, for instance). The next example shows a
simple example which does fall in this category.

Example 4.7. In Figure 9 recall the rule from Example 3.10, now with sum-
zero s. This vector of weights has rotational anti -symmetry, but RA has 180 degree

(XYZ) (YXZ)

(YZX)

(ZYX)(ZXY)

(XZY) -1

12.5

1

-2.5-1

Figure 9. A procedure between Borda and Kemeny

rotational symmetry; hence, the procedure sends RA = (1, 1,−2, 1, 1,−2) to zero.

Definition 4.8. We say that a neutral SRSF fs fully preserves pairs if, as a
linear transformation, it sends the subspace S(n−1,1) ⊕ S(n−2,1,1) from pairs com-
patibility to exactly the same subspace.

The subspace in the definition must be sent to an isomorphic subspace (or zero),
by Schur’s Lemma. However, in general it can be sent to any isomorphic component
– for instance, the basis vector of a Borda component could be sent to some unusual
linear combination of basis vectors of Alternating and Symmetric components. But
such components are themselves full pairwise ties. So if a procedure fully preserves
pairs, then the pairwise information from the Borda component is in some sense
not ‘wasted’ – a key ingredient in the statement of Theorem 5.12.

Example 4.9. There are rules which fully preserve pairs while not in fact
being compatible with pairs, such as any positional scoring rule other than the
Borda Count. Using plurality in Example 4.1, the Sym component was not killed;
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still, the Borda component is sent to a scalar multiple of itself (and the Condorcet
component to zero).

Example 4.10. Using the same s as in Example 4.7, we can explicitly compute
where B and C are sent. In fact, this SRSF happens to send C to itself, not even to
a scalar multiple; KR doubles the influence of the Condorcet component. Similarly,
the influence of BX is multiplied by seven (by eight for BC and by six for KR).

In general, an s from the general continuum in Figure 7 sends BX to (2a+2)BX
and sends C to (2a− 4)C.

5. Theorems and the Borda-Kemeny Spectrum

5.1. Statements of Theorems. We are now ready to state our results.
The first theorem is analogous to Theorem 5 in [22], and generalizes Theorem

6 of [7].

Theorem 5.1. The effective space of any neutral SRSF which is compatible with
pairs is S(n)⊕B⊕C, where the latter two are the Borda and Condorcet spaces defined
above. Its image might lie in any piece of S(n) ⊕ (n− 1)S(n−1,1) ⊕

(
n−1
2

)
S(n−2,1,1),

however.

This can be proved most easily by noting that the KR and BC both kill complete
head-to-head ties, but take B and C to multiples of themselves (hence B and C
must be the specific copies of S(n−1,1) and S(n−2,1,1) in question).

Proposition 5.2. The BC sends any Borda component BX to a multiple of
BX .

Proposition 5.3. The KR sends any Condorcet component CXY to a multiple
of CXY .

Recall from Section 4.2 (see also Theorem 7.1) that the irreducible isomorphism
classes S(n−1,1),± and S(n−2,1,1),± are Pn-modules, essentially differing in the same

way that S
(2,1)
1,2 differed in Proposition 3.8. So if we look up the size of these pieces in

the decomposition of Theorem 7.1 (in the Appendix) and note that B ∼= S(n−1,1),−

and C ∼= S(n−2,1,1),− in that notation, we have:

Theorem 5.4. With reversal symmetry obeyed, however, the image of a neutral
SRSF compatible with pairs must be in a space isomorphic to

S(n) ⊕ 1
2

(
n− 1 +

(
1+(−1)n

2

))
S(n−1,1),− ⊕ 1

2

((
n−1
2

)
+
⌊
n−1
2

⌋)
S(n−2,1,1),−.

What about positional scoring rules? We state the SRSF analogue of the
remark before Theorem 4 in [7] (the proof is essentially the same).

Theorem 5.5. The effective space of any SRSF which is a positional scoring
rule (unless its vector of weights is sum-zero) is isomorphic to S(n)⊕S(n−1,1), where
the S(n−1,1) component may be any piece of the whole (n−1)S(n−1,1) piece of QSn.

In fact, the copy of S(n−1,1) will depend on the structure of s, as pointed out
there. Nonetheless, the SRSF point of view is quite enlightening.

Theorem 5.6. With reversal symmetry obeyed, a positional scoring rule must
have its effective space be S(n) ⊕ S(n−1,1),−.
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This certainly makes sense, and this would also directly impact s, as the weights
w(i) + w(n + 1 − i) must be invariant with respect to i in that case, or to equal
zero if S(n) → 0.

In the next few more propositions, these techniques reprove that scoring rules
using pairwise information must essentially be the Borda Count – a now-standard
result.

Proposition 5.7. Any profile orthogonal to S(n) ⊕ (n − 1)S(n−1,1) has the
property that it is sum-zero not just as a whole, but also for the subset of rankings
r such that r(j) = X, for any j and any X.

Proof. The structure of the S(n−1,1) components are such that each has a
basis of vectors p such that p(v) is the same for all v with v(j) = X (this follows
immediately from the table in Section 4.2). Any vector which has value 1 for all
v(j) = X and zeros elsewhere is in the subspace given by the sum of the (one-
dimensional) S(n) subspace and the right S(n−1,1) component. A profile orthogonal
to this subspace must necessarily fulfill both requirements of the proposition. �

As a result, the score allocated to ranking r from any profile orthogonal to
S(n) ⊕ (n− 1)S(n−1,1) will be

n∑
k=1

n−1∑
i=1

(n− i)
∑

v(k)=X

t(v, r(i))


where the innermost sum is counted with (possibly negative) multiplicity, and hence
must be zero by the proposition. This leads us to the generalization of what we
discovered for plurality with n = 4 in Example 4.1:

Proposition 5.8. The image of any positional scoring rule will be in S(n)⊕B.

Just as moving to the algebraic viewpoint gives us cardinal, not just ordinal,
information, this gives us more information than before. Namely, positional scoring
rules are extremely limited in their outcome potential; depending on your point of
view, this might be good or bad. It certainly limits the types of ties one can have,
for instance; it also means a lot of complete pairwise tie information (such as the
Sym components!) is being interpreted dubiously.

Since the intersection of (n − 1)S(n−1,1) and B ⊕ C is B, we now have the
following, which extends Theorem 6 of [7] (itself an extension of various results of
Saari) to the SRSF context.

Corollary 5.9. An SRSF which is both a scoring rule and relies only on
pairwise information has an effective space and image of S(n) ⊕ B. This must be
essentially the same as the Borda count (or its reversal).

We are now ready to state and prove the main theorem.

5.2. The Borda Count and the Kemeny Rule. Even if a neutral SRSF
has lots of nice properties, there are still weird things that can happen, as the
following two examples demonstrate.

Example 5.10. Assume n = 4, and create the reversal-symmetry-obeying
SRSF which sends BX to AltX . AltX has −1 voters for each ranking with X
first, +1 voters for each with X last, +3 for each ranking with X second, and
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−3 for each ranking with X third. Given that BX expresses very strong support
for X, a procedure which interprets this as support for X in second place seems
problematic.

Example 5.11. Perhaps a procedure which kills off the Condorcet component
and obeys reversal symmetry would be better. But with n = 4, one can construct
just such an SRSF which sends BA to −40AltA, going from overwhelming approval
for A over all others to overwhelming approval for any profile with A in third
place, some for ones with A in first, but the least for those with A in second!
The vector s would have s(ABCD,ABCD) = 0, s(BACD,ABCD) = −2, but
s(ACBD,ABCD) = 3, and s(BDAC,ABCD) = −5.

Given the vector of weights s, this is not a procedure one would actually use –
but that is not the point. Just as in Saari’s papers [18, 19], the point is that any
neutral, reversal-symmetric SRSF fs′ such that s′ had a component of this s in it
would incorporate some of that strange behavior.

Given the desire to avoid the behavior in the preceding examples, one must
seriously consider the remaining alternatives; this is the essence of the algebraic
point of view of voting theory. Once we have bothered to get a reasonable effective
space of profiles by relying only on pairwise information, we will probably want to
send that effective space to itself. This is the point of combining compatibility with
pairs with the property of fully preserving pairs, and of the main theorem of the
paper.

Theorem 5.12. Suppose a neutral SRSF is compatible with pairs and fully
preserves pairs. Then (up to essential difference) this SRSF is on a one-dimensional
continuum of procedures; this is precisely the continuum of procedures given by the
Borda Count and Kemeny Rule.

If in addition the Condorcet component goes to zero, the rule is the Borda
Count.

We call this continuum the Borda-Kemeny Spectrum.
To prove Theorem 5.12 is mostly computation. By applying the additional

hypotheses to Theorem 5.1 (which kills S(n)), we see that such an SRSF must go
from B⊕C to itself, hence the space is one-dimensional up to essential difference. To
prove that the BC and KR are in fact on this continuum, simply collate Propositions
5.2 and 5.3, Corollary 5.9, and the following result.

Proposition 5.13. The KR sends any Borda component BX to a multiple of
BX .

5.3. The Borda-Kemeny Spectrum. Why might one be interested in such
methods and procedures? Let’s begin with some fairly concrete computations.

For convenience, we take s(r, r) = 1 and s(r, ρ(r)) = −1. For n = 3 the
continuum with parameter t takes the shape16 (1, t,−t,−1,−t, 1), with t = 1/3
being Kemeny and t = 1/2 being Borda.

For n = 4 the continuum is more subtle. Assuming again that s(r, r) = 1 and
s(r, ρ(r)) = −1, for a ranking r which is one neighbor swap away from v (as in the
comment after Definition 2.3), we would have s(v, r) = 2t. For most r at distance
two we would have t points, but s(XY ZW,Y XWZ) = 4t − 1. We would have

16This presentation differs slightly from before so it is easier to compare with n = 4.
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s(XY ZW,YWXZ) = s(XY ZW,ZXWY ) = 0, but the others at distance three
having ±(3t−1), and those further away having negative points. The Kemeny Rule
is at t = 1/3, the Borda Count at t = 2/5.

Notice that this spectrum already has more complexity; for instance, 4t − 1
could be greater than or less than t depending on whether t was greater than
1/3 or not. As a result, it is much more difficult combinatorially to obtain sharp
outcomes; here is a useful one based on a weak Pareto-type condition.

Proposition 5.14. If we assume that the partial order on the permutahedron
is respected by s, then we must have 1/4 ≤ t ≤ 1/2.

Example 5.15. What is particularly interesting about this is that there are
reasonable (from this point of view) methods both ‘between’ KR and BC, but also
on either side of them along the continuum! For instance, if t = 1/4, the partial
order is respected but the CXY Condorcet components are sent to (small scalar
multiples of) −CXY . This is an intriguing possibility if one wanted a procedure
that intentionally controverted the expectations of cyclic profiles slightly.

Those who have studied voting methods from the linear-algebraic or geometric
perspective have usually advocated for real-life use of the Borda Count based on its
intense symmetry – especially since it takes cycles like A � B � C � A and treats
them as complete ties. For instance, [7] was motivated by trying to find analogues
to BC for partial ranking information. For methods intended to provide a winner
or set of winners, this seems reasonable to do, even if it might violate the Condorcet
criterion.

Theorem 5.12 is significant because we now have a broader range of options
for the Condorcet component in symmetric procedures. The Borda Count is the
dividing line between Condorcet components being sent to themselves or their neg-
atives, so one might reject social preference functions ‘beyond’ it (for n = 4, with
t < 2/5) like the one in Example 5.15. But for procedures ‘beyond’ KR, it is not
clear that there is an upper bound on how much influence should be given to the
Condorcet components; one might want to approximate voting on a cyclic order
itself. The end of Section 4 of [35] reports that when n = 8 the KR and BC give
radically different outcomes; so the spectrum gains even more importance.

The spectrum (and these methods) should be useful in considering manipula-
tion. It is ‘classical’ (originally due independently to Gibbard and Satterthwaite;
see [27] for a comprehensive survey) that situations exist in nearly any choice sys-
tem where a voter can cast a vote other than his or her actual preference and
come out with a more preferred result. Geometric-algebraic methods have been of
use in analyzing BC and KR (see for instance [21]); a taste of similar analysis is
demonstrated next. (The proof is exceedingly tedious, but straightforward.)

Proposition 5.16. Given a Borda-Kemeny spectrum method with vector of
weights s = (1, t,−t,−1,−t, t) and a profile aBA + bBB + cC (a, b, c constants),
the precise border where manipulation can happen is not just when a = 2b (between
ABC and BAC), but also when b = − 1−2t

t+1 c (between ABC and ACB) (The no-

show paradox can occur when − 1
2 < 2a− 2b+ c < 0 with KR.)

Let us return to the ideas of Section 1.1. Choice theory is about choice, not
just winners. In a situation of a board of directors, it is entirely reasonable for
voters for ABCD to say that they would prefer BCAD to ADCB as an outcome;
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with BCAD at least most of the succession is preserved, whereas with ADCB their
first-choice candidate wins but the rest of it is counter to their preference. We’ve
already mentioned why it might be appropriate to leave a component of a profile
which looks like (1, 0, 1, 0, 1, 0) as a tie between the rankings ABC,BCA,CAB
rather than a tie between candidates A,B,C.

There is one additional possible interpretation of this worth considering. The
permutahedron is an abstract combinatorial object, but it may be embedded con-
sistently in space in many ways. Zwicker has pointed out (in [35]; see also [24]) that
one of the equivalent weighting vectors s for both KR and BC come from square
distances between its vertices in different embeddings. Might there be a way to
think of some of the other methods along this spectrum as part of the continuum
stretching (for n = 3) the regular hexagon to the permutahedral vertices of the
cube? (And if so, can we find a geometric interpretation of t > 1/2?) Ideally,
this would give a natural connection to the representation theory as well – and the
combinatorial structure has given us the tools.

6. Looking Forward

6.1. Algebra in the Service of Choice. Although it is a highlight, the
Borda-Kemeny Spectrum is only part of the story; the SRSFs discussed are a good
starting point, but not an end in themselves. Where might the types of thinking
in this paper lead us?

Example 6.1. Suppose that the objects of voting really are cyclic orders; that
is, each voter is allowed to select a cycle such as A � B � D � C � A. Natural
contexts for this include:

• Seating preferences around a round table
• Rotating long-term site visit schedules for observation or inspection
• Scheduling space in a 24-hour facility

The combinatorial object which represents these in the same way the permu-
tahedron represents rankings is called the cyclic-order graph17. With only three
objects, it is nearly trivial (the only cyclic orders are A � B � C � A and
A � C � B � A, and these are equivalent if we add rotational/reversal symmetry).
However, even with four ‘candidates’, there are six configurations – see Figure 10.

ABDCA

ACDBA

ACBDA

ADCBA

ABCDA

ADBCA

Figure 10. The cyclic order graph CO4

This graph is the skeleton of the octahedron, which has symmetry group S4 ×
C2 (for reasons unrelated to the permutahedron symmetry group). The ‘profile
space’ is only six-dimensional, though, not even close to the size of the order of the

17See [28].
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symmetry group. As a result, the irreducible components of the profile space are
quite different.

One is the trivial component where all orders receive the same number of votes.
There is also a two-dimensional one, roughly equivalent to the Sym component for
SRSFs, which is generated by a profile differential with two votes for ABCDA and
its reversal, and −1 votes for each of the others. The third component is three-
dimensional and is reminiscent of the Borda component – it is generated by profile
differentials with one voter for a cyclic order, and minus one voter for its reversal.

If we focus on keeping only the ‘Borda-like’ component, we discover the space
of possible procedures does not have symmetry around any square (4-cycle) in the
graph. Instead, the weighting vectors look like (a, b, c,−b,−c,−a), where the −a is
at the reversal of the cyclic order for a.

This example exemplifies our point of view in this paper. It is not possible
to justify the more obvious sum-zero vectors (a, 0, 0, 0, 0,−a) without introducing
additional arguments – just like we had to introduce compatibility with pairs to
focus attention on the most interesting procedures. The voting theory informed the
algebra.

At the same time, there is some real voting theory, not just algebra, waiting
to be done! What are natural non-algebraic conditions for ‘nice’ voting systems
on cyclic orders? How do people really choose to sit around a table? And does
person X really care if person Y is at her right or left, as long as they are sitting
close together? (In this context, it does matter – a different graph would ask what
happens if it doesn’t matter.) These are all questions that require input from the
choice community – just as finding new, appropriate questions to ‘ask’ the Borda-
Kemeny spectrum SRSFs will take some time.

6.2. Future Work and Acknowledgements. There are many opportuni-
ties for further work here.

• What are the natural generalizations of Pareto and unanimity in the con-
text of the permutahedron, and what properties would they imply? (This
is not obvious.)

• The continuum of procedures can be different from BC and KR – how
different? To what extent do they share desirable properties – especially
for n ≥ 5 (see [35])?

• What about truncated, tied, or incomplete preferences in this context?
• Cyclic order graphs, let alone representations of their automorphism groups,

have not been studied much beyond [28]; what can we learn about voting
in this context?

• What about voting with respect to the symmetries of some arbitrary graph
on a set of alternatives?

• Can one give an explicit geometric model for the spectrum, as toward the
end of Section 5.2?

6.2.1. Acknowledgements. Before acknowledging humans, I wish to explicitly
point out that mathematical software (I used Sage [26]) was essential to discov-
ering these rather subtle patterns, particularly when it came to more than n = 4
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candidates. As Archimedes pointed out18, it is much easier to prove something once
you know what to prove! Thanks also go to:

• The organizers of a session where a very early version of this work was
presented.

• Bill Zwicker for pointing out the connection to the Kemeny Rule and the
Borda Count, and for many valuable references and discussion.

• Mike Orrison for enthusiastic support and references.
• The Gordon College Faculty Development Committee for the sabbatical

leave during which much of this research took shape.
• Readers of preprints, the referee, and the editor for conscientious com-

ments, structural ideas, and very helpful improvements in exposition.

7. Appendix

7.1. Representations of the Permutahedron. Our main goal for this sec-
tion is stating and proving Theorem 7.1 about precise irreducible decompositions
of QX. We also collate several results about the representation theory of Pn and
Sn, providing proofs where these are not well-known. The book [13] is a canonical
reference, but we echo the notation from the more closely related [8].

It is classical that the irreducible representations of Sn (over a field of charac-
teristic zero) are classified by partitions λ of n, each called Sλ. For instance, for
n = 4 there are precisely five, labeled S(1,1,1,1), S(2,1,1), S(2,2), S(3,1), and S(4). The
regular representation QSn decomposes, as a Sn-module, as

⊕
λ dim(Sλ)Sλ.

The regular representation of Sn is given by the action of Sn on the vector
space QX, where X is the set of permutations of {1, 2, . . . , n}. But considered as
the set of vertices of the permutahedron, there will be a Pn ∼= Sn × C2 action on
X, giving QX a Pn-module structure as well.

Since Pn has such a nice structure, we know (see e.g. [1], Example 15.2) that
each Sλ will be isomorphic (as an Sn-module) to two different irreducible Pn-
modules, which we will call Sλ,+ and Sλ,− to indicate how ρ acts on them (namely,
ρSλ,+ = Sλ,+ but ρSλ,− = −Sλ,−).

It turns out that most of this decomposition of QX lies in the kernel from the
perspective of voting theory. The important pieces are the S(n−1,1) and S(n−2,1,1)

components, which are the ones pairwise-respecting procedures and points-based
procedures are affected by.

Theorem 7.1. For n > 3, the decomposition of QX as a Pn-module includes
exactly the following number of copies of these irreducible submodules:

Irreducible Number

S(n−1,1),+ 1
2

(
n− 1−

(
1+(−1)n

2

))
S(n−1,1),− 1

2

(
n− 1 +

(
1+(−1)n

2

))
S(n−2,1,1),+ 1

2

((
n−1
2

)
−
⌊
n−1
2

⌋)
S(n−2,1,1),− 1

2

((
n−1
2

)
+
⌊
n−1
2

⌋)
This result is allf the theorems need; these numbers are given for small n in

the following table.

18With respect to both Democritus and Eudoxus deserving credit for showing that a cone or
pyramid has one-third the volume of the respective cylinder, see e.g. [11] for discussion.
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n #S(n−1,1),+ #S(n−1,1),− #S(n−2,1,1),+ #S(n−2,1,1),−

3 1 1 0 1
4 1 2 1 2
5 2 2 2 4
6 2 3 4 6
7 3 3 6 9
8 3 4 9 12
9 4 4 12 16

Hence the decomposition of M (n−1,1) is into n−1
2 Symmetric components and

n−1
2 Borda/Alternating components when n is odd, and n

2 − 1 and n
2 when n is

even. And the decomposition of M (n−1,1,1) similarly has
(
n−1
2

)
total components

with
⌊
n−1
2

⌋
more of the ‘minus’ component.

Let π be the character of the Pn-module QX; these steps prove Theorem 7.1.

• Compute π.
• Compute the inner product (π, χ) on the space of class functions for a

general character χ of an irreducible Pn-module.
• Compute (π, χ) for the specific χ we care about for the theorem.
• Apply those computations to the size of S(n−1,1) and S(n−2,1,1) to get the

theorem.

For a given g ∈ Pn, the value π(g) of the character π of QX is the number of
fixed points of X under that element (conjugacy class) of Pn ([1], Example 15.4).
We write a generic element g as either g = (σ, e) or g = (σ, ρ), where σ ∈ Sn and ρ
is the reversing element mentioned earlier.

All vertices are fixed under the identity, so π(e, e) = n!. Since the action of a
group on itself is transitive, π(σ, e) = 0 if σ 6= e.

For the action of the other elements of Pn, we will look more closely at what
is going on. Pick an arbitrary vertex p of the permutahedron; for the purposes
of the action (left or right), this should be thought of as a permutation of the
set {1, 2, . . . , n}. For p to be a fixed point for g = (σ, ρ), it must be the case
that (as permutations) p = ρpσ. That is, for each 1 ≤ i ≤ n, we must have that
p(i) = n+1−p(σ(i)), or p(σ(i)) = n+1−p(i). But then p(σ(i)) = n+1−p(σ(σ(i)))
as well, so that p(i) = p(σ(σ(i))), which by transitivity means σ(σ(i)) = i for all i,
which means σ has order two.

This narrows σ down to permutations made up of disjoint transposes (j, k).
Further, since p(i) + p(σ(i)) = n + 1, if σ(i) = i for some i, then p(i) = n+1

2 , and
there can be only one such i. Hence σ is a permutation made up of as many disjoint
transposes as possible, which is the cycle decomposition type of ρ; since the cycle
decomposition type determines the conjugacy class of a permutation, σ must be in
the conjugacy class of ρ! Otherwise there are no fixed points at all.

To simplify the computation if there are, assume σ = ρ. Then any p which
has p(i) + p(n + 1 − i) = n + 1 for all i will work. Once we have chosen p(i) for
1 ≤ i ≤

⌊
n
2

⌋
, that fixes the others. We can choose p(1) to be anything except n+1

2

(if that is an integer), which is 2
⌊
n
2

⌋
choices, and which then removes p(n) from

consideration; then p(2) can be any of the remaining 2
(⌊
n
2

⌋
− 1
)

choices, and so

on. Thus the number of fixed points for g = (ρ, ρ) is 2b
n
2 c (⌊n

2

⌋
!
)
.
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To summarize, π(e, e) = n!, π(ρ, ρ) =
(⌊
n
2

⌋
!
)

2b
n
2 c, and π(g) = 0 for all other

elements of the group. Let f(g) be the size of the conjugacy class of g. The
conjugacy class of the identity is always just itself, while the conjugacy class of
(ρ, ρ) is the set of all (σ, ρ) where σ have the same cycle type as ρ. The easiest
way to think of such a σ is as a permutation which then has parentheses every two
entries, yielding

⌊
n
2

⌋
pairs; then we divide by the number of symmetries, of which

there are 2 for each pair, and then divide by the permutations of the pairs.
Now decomposing the character π with respect to any irreducible character χ

can be done directly:

(π, χ) =
1

2 · n!
(π(e, e) · f(e, e) · χ(e, e) + π(ρ, ρ) · f(ρ, ρ) · χ(ρ, ρ) + 0) =

1

2 · n!

(
n! · χ(e, e) +

(⌊n
2

⌋
!
)

2b
n
2 c · n!(⌊

n
2

⌋
!
)

2b
n
2 c
χ(ρ, ρ)

)
=

1

2
(χ(e, e) + χ(ρ, ρ))

The following two propositions are enough to prove the voting assertions.

Proposition 7.2. If χ = χS(n−1,1),− , then χ(ρ, ρ) =
(

1+(−1)n
2

)
, which is to

say it alternates between 0 and 1 for n odd and even.

Proposition 7.3. If χ = χS(n−2,1,1),− , then χ(ρ, ρ) =
⌊
n−1
2

⌋
, which is to say it

goes through positive integers in order and repeats each value twice, once for n odd
and once for n even.

Before proving these statements, we finish the proof of Theorem 7.1. We al-
ready know that χS(n−1,1),±(e, e) = n− 1 and χS(n−2,1,1),±(e, e) =

(
n−1
2

)
. For the +

components, the theorem is immediate. For same calculation with the − compo-
nents, it suffices to recall that χSλ,−(σ, ρ) = −χSλ,+(σ, ρ).

Proof of Proposition 7.2. We look at the Borda component as being a
typical example of S(n−1,1),−. We know that χ(ρ, ρ) is the trace of the matrix
given by the action of ρ on the right and the left of the permutahedron. We use
the usual basis of BA1

, · · · , BAn−1
.

Conjugation by ρ is the ‘swap’ automorphism. It turns out that this sends a
ranking with Aj in the ith position to one with An+1−j in the (n+1−i)-th position,
as we noted when calculating fixed points, where q(i) = n+1−p(n+1−i). But this
automatically means that BAi is sent under this action to −BAn+1−i . Combining
this with the fact that −BAn =

∑
i6=nBAi , that means the matrix looks like

1 0 0 . . . 0 0
1 0 0 . . . 0 −1
1 0 0 . . . −1 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 −1 . . . 0 0
1 −1 0 . . . 0 0


which will clearly have the correct trace. �

Proof of Proposition 7.3. We look here at the (new) CXY as a typical
example of S(n−2,1,1),−. We will use the basis mentioned above,

CA1A2
, CA1A3

, · · · , CA1An−1
, CA2A3

, · · · , CA2An−1
, · · · , CAn−2An−1

,
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and once again will look at swapping as the action. Using the same argument as
above, we see that if Ai � Aj originally, then after swapping it is the case that
An+1−j � An+1−i, so that CAiAj → CAn+1−jAn+1−i .

The images of the basis are nearly all (different elements) in the basis too, not
contributing to the trace, since our basis involves Ai, Aj where i < j, so n+1− j <
n+ 1− i as well. The only outlier case is when n+ 1− i = n, in which case i = 1,
which only will contribute to the trace is if i = n + 1 − j and j = n + 1 − i (or
i+ j = n+ 1), or possibly if i = 1. Let’s analyze this case.

When i + j = n + 1, it contributes one to the trace. But for 0 < i < j < n,
the only pairs are for i+ j = n+ 1 with i > 1, which means we only have to count
these. So for odd n we get get one pair for each integer 2 ≤ i < n

2 , which leaves⌊
n
2

⌋
− 1 . When i = 1, we need to get CAn+1−jAn in terms of the basis, which can

be rewritten as

−
∑

k 6=n+1−j,n

CAn+1−jAk = −
∑

n+1−j<k<n

CAn+1−jAk +
∑

0<k<n+1−j

CAkAn+1−j .

This sum contributes to the trace precisely if there is a CA1Aj as one of the terms,
which can only happen if n + 1 − j = 1 and k = j, or if k = 1 and n + 1 − j = j.
The first implies that j = n, which was not one of the original basis elements, but
the second option implies that j = n+1

2 . So if n is odd we must add one more.
Thus we arrive at a total trace of

Tr(conj. by ρ) =

{
n
2 − 1 =

⌊
n−1
2

⌋
, n even⌊

n
2

⌋
− 1 + 1 =

⌊
n
2

⌋
=
⌊
n−1
2

⌋
, n odd

=

⌊
n− 1

2

⌋
.

�

7.2. Proofs of Preference Function Properties.

Proof of Proposition 5.2. Consider that BX consists of a profile with n+
1 − 2k voters for each ranking with X in kth place. Recall that the SRSF gives∑
v s(v, r) points to ranking r, where the sum is over the whole profile (in the case

of a differential, we can just subtract the negative v). We will see that the Borda
Count sends BX to a multiple of BX , which by symmetry will mean that this is
the component.

Since BC is a positional scoring rule, for a given r we have that s(v, r) =
(n−1)t(v, r(1))+(n−2)t(v, r(2))+ · · ·+ t(v, r(n−1)). When we break up the sum
over all v into sums over each of the subsets where v(k) = X, we get a double sum

n∑
k=1

 ∑
v(k)=X

(n+ 1− 2k) [(n− 1)t(v, r(1)) + (n− 2)t(v, r(2)) + · · ·+ t(v, r(n− 1))]


which exhibits a very high degree of symmetry.

Assume that X = r(j). Consider the two terms in the double sum above for
some k and the corresponding n+ 1− k (which will have opposite sign). Since BX
has the same number of voters for all rankings with v(k) = X, then for a given
v(i) = r(`), the two sets

{v|v(k) = X, v(i) = r(`), i 6= k, n+ 1− k} and

{v|v(n+ 1− k) = X, v(i) = r(`), i 6= k, n+ 1− k}
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have the same size. That means that the terms in s(v, r) corresponding to these
sets will cancel, since they correspond to (n − `)t(v, r(`)) when r(`) = v(i), and
there are equal numbers of these for k and n+ 1− k as long as i 6= k, n+ 1− k.

So, for each v such that v(k) = r(j) = X and v(n + 1 − k) = r(i) (where
obviously i 6= j), the non-canceling part of the term is

(n+ 1− 2k) [(n− j)t(v, r(j)) + (n− i)t(v, r(i))] ,

which is okay since when k = 1 we correctly get 0 as the inside coefficient in s(v, r).
Sum this back up and substitute in the Borda Count values of t(v, r(j)) = t(v,X) =
n−k
n−1 and t(v, r(i)) = n−(n+1−k)

n−1 = k−1
n−1 to get

n∑
k=1

 ∑
v(k)=X=r(j), v(n+1−k)=r(i)

(n+ 1− 2k)

[
(n− j)n− k

n− 1
+ (n− i)k − 1

n− 1

] .

There are (n− 1)! different v such that v(k) = X, and hence (n− 2)! different
v such that v(k) = X and v(n+ 1− k) = r(i) in the above sum. Then we get

n∑
k=1

(n+ 1− 2k)

(n− 1)! (n− j)n− k
n− 1

+ (n− 2)!
∑
i 6=j

(n− i)k − 1

n− 1

 .

In fact, a little clearing of denominators yields

(n− 2)!

n∑
k=1

(n+ 1− 2k)

(n− j)(n− k) +
∑
i6=j

(n− i)k − 1

n− 1

 .

The reader will notice that the sum only depends on j, as one would hope. If
we increase j by one, the difference between two of these scores is

(n− 2)!

n∑
k=1

(n+ 1− 2k)

(n− j)(n− k) +
∑
i 6=j

(n− i)k − 1

n− 1

−
(n− 2)!

n∑
k=1

(n+ 1− 2k)

(n− (j + 1))(n− k) +
∑
i 6=j+1

(n− i)k − 1

n− 1


which can be simplified to a formula not depending on j, as needed:

(n− 2)!

n∑
k=1

(n+ 1− 2k)

(
(n− k)− k − 1

n− 1

)
= (n− 2)!

n2(n+ 1)

6
.

Similarly, we need that j = 1 and j = n are opposites, and indeed

(n− 2)!

n∑
k=1

(n+ 1− 2k)

(n− 1)(n− k) +
∑
i 6=1

(n− i)k − 1

n− 1

+

(n− 2)!

n∑
k=1

(n+ 1− 2k)

(n− n)(n− k) +
∑
i 6=n

(n− i)k − 1

n− 1


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simplifies to

(n− 2)!

n∑
k=1

(n+ 1− 2k)

(
(n− 1)(n− k) +

k − 1

n− 1

(
(n− 1) + (n− n) + 2

n−1∑
i=2

n− i

))

=(n− 2)!

n∑
k=1

(n+ 1− 2k)

(
(n− 1)(n− k) +

k − 1

n− 1

(
n(n− 1)

2
+

(n− 1)(n− 2)

2

))

=(n− 2)!(n− 1)2
n∑
k=1

(n+ 1− 2k) = 0 .

�

Proof of Proposition 5.3. For the Kemeny Rule, recall that the SRSF
function is given by s(v, r) =

∑
a,b∈A δ(v, r, a, b), where δ is 1 if a � b by both

rankings v and r, and is 0 otherwise; clearly this relies only on pairwise informa-
tion. Let us see where it sends the (new) Condorcet components.

Using the notation above for {XY i} we see that for a given ranking r (with
r ∈ {XY j}) the score for r is

n−1∑
i=1

(n− 2i)
∑

v∈{XY i}

∑
a,b∈A

δ(v, r, a, b) .

This depends only on j since the sums are over all v ∈ {XY i}. For each v ∈ {XY i}
such that a �v b and a �r b, reversing r will cause δ to go from 1 to 0, but will
send δ from 0 to 1 for the reversal of v; since this reversal is in {XY (n − i)}, the
score for the reversal of r is

n−1∑
i=1

(n− 2i)
∑

v∈{XY (n−i)}

∑
a,b∈A

δ(v, r, a, b) =

n−1∑
k=1

(2k − n)
∑

v∈{XY k}

∑
a,b∈A

δ(v, r, a, b)

which is a change of sign, as expected.
Furthermore, if r changes from {XY j} to {XY (j+1)} via a one-position swap,

then all δ values will be the same except ones concerning that pair. So each v with
that pair as in r loses 1, while each with the pair as in r′ gains one.

If such a swap changes things, it must involve X or Y ; we will suppose it is
Y changing to Y (other possibilities are very similar). The number of potential
places for the candidate to occur after Y in a ranking in the set {XY i} varies
from zero to n−2, but there will be two potential ones of type n−1− i (such as, for

i = 2, X Y . . . and Y . . . X). Hence there are, for {XY i}, n−1− i+
∑n−2
i=0 i =

n− 1− i+ (n−1)(n−2)
2 possibilities out of a total of n(n− 2) total; the difference is

n− 1− i+
(n− 1)(n− 2)

2
−
(
n(n− 2)−

(
n− 1− i+

(n− 1)(n− 2)

2

))
=

2

(
n− 1− i+

(n− 1)(n− 2)

2

)
−n2+2n = 2n−2−2i+(n−1)(n−2)−n2+2n = n−2i

The other n − 3 spots have (n − 3)! different possibilities, so there are (n −
2i)(n − 3)! net rankings v in {XY i} which will lose δ = 1 (which, for i for which
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this is negative, correspond to gaining δ = 1). Thus the difference in the scores

n−1∑
i=1

(n− 2i)
∑

v∈{XY i}

∑
a,b∈A

δ(v, r, a, b)

will be
n−1∑
i=1

(n− 2i) [(n− 2i)(n− 3)!] = (n− 3)!

n−1∑
i=1

(n− 2i)2 =
n!

3

�

Proof of Proposition 5.13. We use the same decomposition as above for
the Borda Count, over v(k) = X = r(j). As above,

n∑
k=1

 ∑
v(k)=X

(n+ 1− 2k)
∑
a,b∈A

δ(v, r, a, b)

 .

This also only depends on j (here, r is a fixed ranking with r(j) = X, but nothing
else known) because of the sum over all v with each v(k) = X. However, it is useful
to focus on a specific r for proving this sends Borda to Borda.

First let us observe what happens to the score when r is reversed. For each v
such that a �v b and a �r b, we will get +(n + 1 − 2k), depending on v(k) = X.
But if r is reversed, these go away, and the reversal of v will have δ = 1. This will
exactly give the negative of the original score, because if v(k) = X, then the reversal
v′ has v′(n+ 1− k) = X, which means it will contribute +(n+ 1− 2(n+ 1− k)) =
−n− 1 + k = −(n+ 1− k) to the score.

We also need to have a fixed change in score when r changes. Let r′ be the
same ranking as r but with r′(j + 1) = X. As with the CXY components, we will
suppose the change is X changing to X. The number of potential places for the
candidate to occur after X in a ranking in the set {v(i) = X} is n − i, and the
number of places before is i− 1, so the difference is n+ 1− 2i. For the remaining
spots there are (n− 2)! possibilities, so there are (n+ 1− 2i)(n− 2)! net rankings
v in {v(i) = X} which will lose δ = 1 (or, if (n+ 1− 2i)(n− 2)! < 0, gain δ = 1).

Thus the difference in the scores given by

n∑
k=1

 ∑
v(k)=X

(n+ 1− 2k)
∑
a,b∈A

δ(v, r, a, b)


will be

n∑
k=1

(
(n+ 1− 2k)2(n− 2)!

)
= (n− 2)!

n∑
k=1

(n+ 1− 2k)2 =
(n+ 1)!

3

�

Proof of Proposition 5.8. Let us see what happens to the profile p which
has value p(v) = 1 for v(j) = X and zeros otherwise. In this case,

n∑
k=1

 ∑
v(k)=X

(
n−1∑
i=1

(n− i)t(v, r(i))

) =
∑

v(j)=X

(
n−1∑
i=1

(n− i)t(v, r(i))

)
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Now suppose that r(`) = X; then it makes sense to rewrite this as

∑
v(j)=X

(n− `)t(v, r(`)) +

n−1∑
i=1, i 6=`

(n− i)t(v, r(i))

 .

Call the weighting vector w. Then note that in the second sum inside the paren-
theses, for a given i, v(k) = r(i) the same number of times (to be precise, (n− 2)!
times), other than v(j), of course. So we can rewrite this

∑
v(j)=X

(n− `)w(j) +
∑

v(j)=X

n−1∑
i=1, i 6=`

(n− i)t(v, r(i))

 =

(n− 1)!(n− `)w(j) +

n−1∑
i=1, i 6=`

(n− i)(n− 2)!

n∑
k=1, k 6=j

w(k) =

(n− 2)!

(n− 1)(n− `)w(j) +

n∑
k=1, k 6=j

n−1∑
i=1, i 6=`

w(k)(n− i)


It is easy to see that the difference in this caused by changing r(`) = X to

r(`+ 1) = X is (n− 2)!
[
(n− 1)w(j)−

∑n
k=1, k 6=j w(k)

]
, which does not depend on

`. Likewise, adding the cases for ` = 1 and ` = n gives

(n− 2)!

(n− 1)2w(j) +

n∑
k=1, k 6=j

w(k)

(
n−1∑
i=1

n− i+

n−1∑
i=2

n− i

) =

(n− 1)!(n− 1)

n∑
k=1

w(k)

so that it goes to the Borda component alone if the weighting vector is sum-zero,
otherwise it is ‘shifted’ by a multiple of the sum of the weights. �
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12. L. Hernández-Lamoneda, R. Juárez, and F. Sánchez-Sánchez, Dissection of solutions in co-

operative game theory using representation techniques, Internat. J. Game Theory 35 (2007),
no. 3, 395–426. MR MR2304546 (2008e:91008)

13. Gordon James and Adalbert Kerber, The representation theory of the symmetric group, En-

cyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co.,
Reading, Mass., 1981, With a foreword by P. M. Cohn, With an introduction by Gilbert de

B. Robinson. MR MR644144 (83k:20003)
14. John G. Kemeny, Mathematics without numbers, Daedalus 88 (1959), 571–591.

15. Roger B. Myerson, Axiomatic derivation of scoring rules without the ordering assumption,

Soc. Choice Welf. 12 (1995), no. 1, 59–74. MR 1321126 (96h:90040)
16. Donald G. Saari, Geometry of voting, Studies in Economic Theory, vol. 3, Springer-Verlag,

Berlin, 1994.

17. , Basic geometry of voting, Springer-Verlag, Berlin, 1995.
18. , Mathematical structure of voting paradoxes. I. Pairwise votes, Econom. Theory 15

(2000), no. 1, 1–53. MR MR1731508 (2001e:91063)

19. , Mathematical structure of voting paradoxes. II. Positional voting, Econom. Theory
15 (2000), no. 1, 55–102. MR MR1731509 (2001e:91064)

20. , Disposing dictators, demystifying voting paradoxes, Cambridge University Press,
Cambridge, 2008, Social choice analysis. MR MR2449532 (2009h:91001)

21. Donald G. Saari and Vincent R. Merlin, Changes that cause changes, Soc. Choice Welf. 17

(2000), no. 4, 691–705. MR MR1778699 (2001g:91047)
22. , A geometric examination of Kemeny’s rule, Soc. Choice Welf. 17 (2000), no. 3,

403–438. MR MR1762588 (2001g:91046)

23. Tuomas Sandholm and Vincent Conitzer, Common voting rules as maximum likelihood esti-
mators, UAI, 2005.

24. J. Santmyer, For all possible distances look to the permutohedron, Math. Mag. 80 (2007),

120–125.
25. Amartya Sen, The impossibility of a paretian liberal, The Journal of Political Economy 78

(1970), no. 1, 152–157.

26. W. A. Stein, M. Hansen, et al., Sage Mathematics Software (Version 4.0), The Sage Devel-
opment Team, 2009, http://www.sagemath.org.

27. Alan D. Taylor, Social choice and the mathematics of manipulation, Outlooks, Cambridge
University Press, Cambridge, 2005. MR MR2157533 (2006f:91004)

28. D. R. Woodall, Cyclic-order graphs and Zarankiewicz’s crossing-number conjecture, J. Graph

Theory 17 (1993), no. 6, 657–671. MR 1244681 (94j:05050)
29. Lirong Xia and Vincent Conitzer, Finite local consistency characterizes generalized scoring

rules, IJCAI, 2009.

30. H. P. Young and A. Levenglick, A consistent extension of Condorcet’s election principle,
SIAM J. Appl. Math. 35 (1978), no. 2, 285–300. MR MR0504073 (58 #20635)

31. Zhao Zhang and Qiong-xiang Huang, Automorphism groups of bubble-sort graphs and mod-

ified bubble-sort graphs, Adv. Math. (China) 34 (2005), no. 4, 441–447. MR MR2182393
(2006j:05094)

32. Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-

Verlag, New York, 1995. MR MR1311028 (96a:52011)
33. William S. Zwicker, The voters’ paradox, spin, and the Borda count, Math. Social Sci. 22

(1991), no. 3, 187–227. MR MR1149504 (93f:90017)
34. , A characterization of the rational mean neat voting rules, Math. Comput. Modelling

48 (2008), no. 9-10, 1374–1384. MR MR2459707 (2009m:91050)

35. , Consistency without neutrality in voting rules: When is a vote an average?, Math.
Comput. Modelling 48 (2008), no. 9-10, 1357–1373. MR MR2459706 (2010d:91047)



34 KARL-DIETER CRISMAN

Gordon College, 255 Grapevine Road,, Wenham, MA 01984

E-mail address: karl.crisman@gordon.edu


