
for any even n the maximal length of a centrally symmetric inscribed n-gon in E
having a given point P of E as a vertex is independent of P . Theorem 2 can be
proved and generalized along the same lines. The generalization reads as follows: if
E1, . . . , Ek are confocal ellipses, then the maximal length of a centrally symmetric
2k-gon (P1, . . . , Pk, −P1, . . . , −Pk) with Pi in Ei , as P2, . . . , Pk vary with P1 fixed,
is independent of P1.
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4. , Geometry and Billiards, American Mathematical Society, Providence, RI, 2005.
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An Elementary Proof of the
Wallis Product Formula for pi

Johan Wästlund

1. THE WALLIS PRODUCT FORMULA. In 1655, John Wallis wrote down the
celebrated formula

2

1
· 2

3
· 4

3
· 4

5
· · · = π

2
. (1)

Most textbook proofs of (1) rely on evaluation of some definite integral like

∫ π/2

0
(sin x)n dx

by repeated partial integration. The topic is usually reserved for more advanced cal-
culus courses. The purpose of this note is to show that (1) can be derived using only
the mathematics taught in elementary school, that is, basic algebra, the Pythagorean
theorem, and the formula π · r 2 for the area of a circle of radius r .

Viggo Brun gives an account of Wallis’s method in [1] (in Norwegian). Yaglom and
Yaglom [2] give a beautiful proof of (1) which avoids integration but uses some quite
sophisticated trigonometric identities.

2. A NUMBER SEQUENCE. We define a sequence of numbers by s1 = 1, and for
n ≥ 2,

sn = 3

2
· 5

4
· · · 2n − 1

2n − 2
.
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The partial products of (1) with an odd number of factors can be written as

on = 22 · 42 · · · (2n − 2)2 · (2n)

1 · 32 · · · (2n − 1)2
= 2n

s2
n

, (2)

while those with an even number of factors are of the form

en = 22 · 42 · · · (2n − 2)2

1 · 32 · · · (2n − 3)2 · (2n − 1)
= 2n − 1

s2
n

. (3)

Here e1 = 1 should be interpreted as an empty product. Clearly en < en+1 and on >

on+1, and by comparing (2) and (3) we see that en < on . Therefore we must have

e1 < e2 < e3 < · · · < o3 < o2 < o1.

Thus if 1 ≤ i ≤ n,

2i

s2
i

= oi ≥ on

and

2i − 1

s2
i

= ei ≤ en,

from which it follows that

2i − 1

en
≤ s2

i ≤ 2i

on
. (4)

It will be convenient to define s0 = 0. Notice that with this definition, (4) holds
also for i = 0. We denote the difference sn+1 − sn by an . Observe that a0 = 1, and for
n ≥ 1,

an = sn+1 − sn = sn

(
2n + 1

2n
− 1

)
= sn

2n
= 1

2
· 3

4
· · · 2n − 1

2n
.

We first derive the identity

ai a j = j + 1

i + j + 1
ai a j+1 + i + 1

i + j + 1
ai+1a j . (5)

Proof. After the substitutions

ai+1 = 2i + 1

2(i + 1)
ai

and

a j+1 = 2 j + 1

2( j + 1)
a j ,

the right hand side of (5) becomes

ai a j

(
2 j + 1

2( j + 1)
· j + 1

i + j + 1
+ 2i + 1

2(i + 1)
· i + 1

i + j + 1

)
= ai a j .
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If we start from a2
0 and repeatedly apply (5), we obtain the identities

1 = a2
0 = a0a1 + a1a0 = a0a2 + a2

1 + a2a0 = · · ·
= a0an + a1an−1 + · · · + ana0. (6)

Proof. By applying (5) to every term, the sum a0an−1 + · · · + an−1a0 becomes

(
a0an + 1

n
a1an−1

)
+

(
n − 1

n
a1an−1 + 2

n
a2an−2

)
+ · · · +

(
1

n
an−1a1 + ana0

)
. (7)

After collecting terms, this simplifies to a0an + · · · + ana0.

3. A GEOMETRIC CONSTRUCTION. We divide the positive quadrant of the xy-
plane into rectangles by drawing the straight lines x = sn and y = sn for all n. Let Ri, j

be the rectangle with lower left corner (si , s j ) and upper right corner (si+1, s j+1). The
area of Ri, j is ai a j . Therefore the identity (6) states that the total area of the rectangles
Ri, j for which i + j = n is 1. We let Pn be the polygonal region consisting of all
rectangles Ri, j for which i + j < n. Hence the area of Pn is n (see Figure 1).

0

1

3/2

15/8

35/16

...

0 1 3
2

15
8

35
16 · · ·

R0,0

R0,1

R1,0

R1,1

R2,0

R0,2

R3,0

R2,1

R1,2

R0,3

Figure 1. The region P4 of area 4.

The outer corners of Pn are the points (si , s j ) for which i + j = n + 1 and 1 ≤
i, j ≤ n. By the Pythagorean theorem, the distance of such a point to the origin is

√
s2

i + s2
j .
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By (4), this is bounded from above by√
2(i + j)

on
=

√
2(n + 1)

on
.

Similarly, the inner corners of Pn are the points (si , s j ) for which i + j = n and 0 ≤
i, j ≤ n. The distance of such a point to the origin is bounded from below by√

2(i + j − 1)

en
=

√
2(n − 1)

en
.

Therefore Pn contains a quarter circle of radius
√

2(n − 1)/en, and is contained in
a quarter circle of radius

√
2(n + 1)/on . Since the area of a quarter circle of radius r

is equal to πr 2/4 while the area of Pn is n, this leads to the bounds

(n − 1)π

2en
< n <

(n + 1)π

2on
,

from which it follows that

(n − 1)π

2n
< en < on <

(n + 1)π

2n
.

It is now clear that as n → ∞, en and on both approach π/2.
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Automorphisms of Finite Abelian Groups

Christopher J. Hillar and Darren L. Rhea

1. INTRODUCTION. In introductory abstract algebra classes, one typically en-
counters the classification of finite Abelian groups [1]:

Theorem 1.1. Let G be a finite Abelian group. Then G is isomorphic to a product of
groups of the form

Hp = Z/pe1Z × · · · × Z/pen Z,

in which p is a prime number and 1 ≤ e1 ≤ · · · ≤ en are positive integers.
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