
MATHEMATICAL MINIATURE 7

Quadratic residues and sums of two squares

When can a positive square-free integer be written as a sum of just a few squares? The answer for four
squares is “All” and for three squares “All that are not congruent to 7 (mod 8)”. In this miniature we look at
the positive square-free integers that can be written as the sum of two squares. We will also dally for a few lines
with quadratic residues, partly to prepare us for one of the great gems of mathematics, the quadratic reciprocity
theorem, to be discussed in a later miniature. In this single page there is room only for a brief outline and some
details are left unjustified. The reader is invited to treat as exercises the remarks numbered as (1), (2) etc.

Given an odd prime p, and an integer x relatively prime to p, we consider the question of whether or not
there exists an integer y such that y2 ≡ x (mod p). If the answer is “Yes” then x is said to be a quadratic
residue, otherwise it is a non-residue. (1) Amongst the set {1, 2, . . . , p− 1}, exactly half are quadratic residues
and half are non-residues. Furthermore, (2) the product of two residues or (3) two non-residues is a quadratic
residue and (4) the product of a residue and a non-residue is a non-residue. Since xp−1 ≡ 1 (mod p), by the
(little) Fermat theorem, (5) x(p−1)/2 ≡ ±1 (mod p). (6) This can be used to distinguish quadratic residues
from non-residues (+1: residues, −1: non-residues). Another criterion is given by
Gauss’s lemma: Let P = {1, 2, . . . , p−1

2 }. Multiply all members of P by x and let µ be the number of these
that are not congruent to a member of P . Then µ is even for x a quadratic residue and odd for a non-residue.
Proof: Let Q = {−1,−2, . . . ,− p−1

2 }, then for every y ∈ P , xy is either in P or Q. Furthermore, (7) xy1 ≡ −xy2

is not possible for y1, y2 ∈ P . Hence,

(x) · (2x) · (3x) · · · · ·
(
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2 x

)
≡ (±1) · (±2) · (±3) · · · · ·

(
± p−1

2

)
,

where µ is the number of − signs in the last product. Cancel out the factors 2, 3, . . ., p−1
2 from both sides and

we see that x(p−1)/2 ≡ (−1)µ (mod p).
One consequence of this lemma is that −1 is a quadratic residue for an odd prime p if and only if p−1

2 is even;
that is, if and only if p ≡ 1 (mod 4).

Return now to the question of which positive square-free integers n can be written as n = x2 + y2. This
is clearly impossible if n is a multiple of p ≡ 3 (mod 4), because this would mean that (8) z2 = −1 (mod p),
where x ≡ yz (mod p). Hence the only possibility is that either n or n/2 is the product of primes of the form
p ≡ 1 (mod 4). Consider first the case of n prime. The special case n = 2 is dealt with by 2 = 12 + 12. For
the case where p ≡ 1 (mod 4), let m denote the smallest integer satisfying

√
p < m and multiply each member

of the set S = {1, 2, . . . , m − 1} by t satisfying t2 ≡ −1 (mod p). Let η1, η2, . . ., ηm−1 denote the remainders
when these products are divided by p. Assume these quantities are numbered in increasing order and denote
the members of S by ξ1, ξ2, . . ., ξm−1, numbered in such a way that tξi ≡ ηi (mod p), for i = 1, 2, . . . , m− 1.
Also write ξ0 = ξm = η0 = 0 and ηm = p. There exists i ∈ {1, 2, . . . , m} such that ηi−ηi−1 < m, since otherwise

p = ηm − η0 = (ηm − ηm−1) + (ηm−1 − ηm−2) + · · ·+ (η1 − η0) ≥ m2 > p.

With this choice of i, write x = |ξi − ξi−1|, y = ηi − ηi−1 so that y ≡ ±tx (mod p), implying that x2 + y2 ≡
x2(1 + t2) ≡ 0 (mod p). But 0 < x2 + y2 < 2(m− 1)2 < 2p, so that x2 + y2 = p.

We next establish that a square-free integer n is the sum of two squares if and only if none of its prime
divisors is ≡ 3 (mod 4), generalising the case when n is prime. The extension to the more general case is easily
dealt with using the identity (x2 + y2)(u2 + v2) = (xu∓ yv)2 + (xv± yu)2, which shows how to write mn as the
sum of two squares if each of m and n can be written this way. It actually does more, because there are two
solutions to this problem, if neither m nor n equals 2, even though (9) there cannot be more than one solution
to p = x2 + y2.

Finally, we illustrate some of these results with examples. For the prime p = 89, it can be checked that
342 ≡ −1 (mod p). The value of m is 10 and the products of {1, 2, 3, 4, 5, 6, 7, 8, 9} by t = 34 reduced (mod 89)
are {34, 68, 13, 47, 81, 26, 60, 5, 39}. Sort these into increasing order and we find the values

{ξ0, ξ1, ξ2, . . . , ξ10} = { 0, 8, 3, 6, 1, 9, 4, 7, 2, 5, 0 },
{η0, η1, η2, . . . , η10} = { 0, 5, 13, 26, 34, 39, 47, 60, 68, 81, 89 }.

Choose i = 1, because η1 − η0 < 10, and we arrive at the solution to the two-squares problem: 89 = 52 + 82.
(10) A similar calculation shows that 73 = 82 + 32 and we arrive at (11) the two solutions to 73 × 89 as the
sum of two squares:

6497 = 162 + 792 = 642 + 492.

John Butcher, butcher@math.auckland.ac.nz

1


