
MATHEMATICAL MINIATURE 14

Sums of two squares revisited

I was at one time an amateur numerical analyst; then I found, almost by chance, that I could make a living
out of it. However, I am still an amateur number theorist with no expectation of ever getting anything from
it except sheer enjoyment. Hence, I am displaying my arrogance by again letting number theory find its way
into these Miniatures. However, my lack of any deep knowledge will force me to stick to questions accessible to
other amateurs. In Miniature number 7, I showed using a pigeon-hole proof, that primes of the form 4n+1 can
be written as sums of two squares. Today I will give a constructive argument drawn to my attention by Alf van
der Poorten of Macquarie University. But is the ‘Hermite-Serret’ algorithm, as it is known, really constructive?
It depends on whether you regard the discovery of an x ∈ {1, 2, . . . , p− 1} such that x2 ≡ −1 (mod p) to be
a trival problem or not, because this is the starting point for the construction. Start with two relatively prime
positive integers, a0 and a1 with a0 > a1 and with the property that there exists b1 such that a0b1 = a2

1 + 1.
Of course a0 has the role of p, but is not necessarily assumed to be prime, and a1 has the role of x. In this
slightly generalized version of the Hermite-Serret construction, use the Euclidean algorithm to form a sequence
a0, a1, a2, . . ., am+1 and identify the first two members of the sequence, say ak, ak+1 which are each less than√

a0. Then the theorem belonging to the algorithm, states that a2
k + a2

k+1 = a0. Let n1, n2, . . ., nm denote the
quotients arising in the Euclidean algorithm so that

ai+1 = ai−1 − niai, i = 1, 2, . . . , m.

Along with the a sequence, introduce a b sequence that satisfies exactly the same relationship between successive
members, starting with b0 = a1 and with the b1 already introduced. Thus, we have[

ai ai+1

bi bi+1

]
=

[
ai−1 ai

bi−1 bi

][
0 1
1 −ni

]
, i = 1, 2, . . . ,

which we will write in the form Xi = Xi−1Ni. Because det(Ni) = −1 and det(X0) = a0b1−a1b0 = a0b1−a2
1 = 1,

it follows that aibi+1 − ai+1bi = det(Xi) = (−1)i. Coming back to the n sequence we see that

a0

a1
=

a0

b0
=

[
n1, n2, . . . , nm

]
= n1 +

1
n2+

1
n3+

· · · 1
nm

,

where we can force the length m of the continued fraction to be even because if nm > 1 then[
n1, n2, . . . , nm

]
=

[
n1, n2, . . . , nm − 1, 1

]
.

Let k = m/2. We will show that ak−1 >
√

a0 > ak and that a2
k + a2

k+1 = a0, thus justifying the Hermite-Serret
algorithm.

It is useful to look at the reversed continued fraction
[
nm, nm−1, . . . , n1

]
. The numerator and denominator

of convergent number m are the elements in the first row of the matrix product[
nm 1
1 0

][
nm−1 1

1 0

][
nm−2 1

1 0

]
· · ·

[
n1 1
1 0

]
.

Thus, if convergent number m is N/D, then[
N D

]
=

[
1 0

]
N−1

m N−1
m−1N

−1
m−2 · · ·N−1

1 ,

or, what is equivalent, [
1 0

]
=

[
N D

]
N1N2N3 · · ·Nm,

implying that N = a0 and D = a1. Thus, the value of
[
nm, nm−1, . . . , n1

]
is a0/a1 and the reversed sequence

is identical to the forward sequence. Now calculate a2
k + a2

k+1. We find

a2
k + a2

k+1 =
[

ak ak+1 v
][

ak ak+1

]T =
[

a0 a1

]
N1N2 · · ·NkNT

k NT
k−1 · · ·NT

1

[
a0 a1

]T
.

Because each of the N matrices is symmetric and because the sequence of such matrices is palandromic, this
expression can be written as[

a0 a1

]
N1N2 · · ·NkNk+1Nk+2 · · ·Nm

[
a0 a1

]T =
[

1 0
][

a0 a1

]T = a0.

The inequality
√

a0 > ak is an immediate consequence and ak−1 >
√

a0 follows from a2
k−1 = (nkak + ak+1)2 >

a2
k +a2

k+1 = a0. There is room for a single example: a0 = 29, a1 = 17. The continued fraction is
[
1, 1, 2, 2, 2

]
,

which is stretched to the palandromic sequence of even length
[
1, 1, 2, 2, 1, 1

]
. The a and b sequences are[

29, 17, 12, 5, 2, 1, 1, 0
]

and
[
17, 10, 7, 3, 1, 1, 0, 1

]
, giving a sequence of approximations to 29/17 and

the solution to the sum of squares problem: 29 = 52 + 22.
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