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Brazil

svetlich@mat.puc-rio.br http://mat.puc-rio.br/∼svetlich



2



Contents

1 Preliminaries 9

2 The Category of Convex Sets 21

3 The Canonical Vector Space Duality of a Statistical Triple 31

4 A More Extensive Formalism 33

5 Idealizations 51

6 The Category of Statistical Triples 55

7 On the Complexity of States 69

8 On Lattices of Propositions in Statistical Theories 101

3



4



PREFACE

The many attempts at trying to explain the extreme regularity of the set
of propositions referring to physical systems, exemplified by the Boolean al-
gebra of subsets of phase space of classical systems, and the orthomodular
lattice of projections in a Hilbert space of quantum systems, has resulted in
various axiomatic foundations [1, 2, 3]. To a large extent, these have not been
totally satisfactory seeing that in all of them some of the axioms seem very ad

hoc and removed from any operational or phenomenological interpretation.
Rather than attempt yet a different formulation, we investigate the proper-
ties that can be expected of a completely general statistical theory without
trying to impose assumptions that would lead to one of the standard physical
examples. The hope is that by understanding better the general theories, we
can perhaps see better what is so special about the special ones. Following
one line of investigation, we find that statistical theories can be manipulated
rather freely, being objects of a bicomplete monoidally closed category. In
a sense this provides more machinery than we use but it’s unsuspected ma-
chinery with much potential. Another line of study leads to what is probably
the main result of this work: the identification of those measuring procedures
that cannot be interpreted as involving ad hoc interferences by the experi-
menter. This leads to the result that theories with only two pure states can
be imbedded in Boolean theories with restriction on state production, adding
yet another example of statistical theories with a natural associated lattice
of propositions, a Boolean algebra in this case.

Our studies were originally motivated by physical examples, especially
by the challenging and deceitful guide of the foundations of quantum me-
chanics, but the formalism is purposefully general, and we interpret many
of the objects in terms of other types of experiments. Mathematical mod-
elling in biology and psychology should be quite different from either Boolean
or quantum modelling, and it is these sciences that we eventually hope to
benefit.
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A brief description of the content of each chapter is as follows:
In Chapter 1 we set the stage by presenting mostly already well known

material, formalizing the notion of state and yes-no observation in terms of a
certain duality of convex sets. Nothing is really new except for some exam-
ples and possibly some of the commentary. We follow this in Chapter 2 by a
presentation of convex set theory from the point of view of universal algebra.
This allows us to view convex sets as objects of a bicomplete monoidally
closed category. In Chapter 3 we imbed the convex set duality introduced
in the first chapter into a canonical vector space duality following a pattern
already established in the literature. Chapter 4 goes beyond the first chapter
in introducing into the formalism simultaneous measurements and many-exit
operations on states. We follow an axiomatic approach, introducing these as
primitive entities and axiomatizing all the properties they should have based
on their phenomenological interpretation. This is the essential formalism of
this work. The short Chapter 5 briefly deals with the introduction of ideal
objects in statistical theories, that is, objects that are not physically real-
izable, but arbitrarily well approximated by physically realizable ones. We
use this notion mainly to be able to assume in subsequent chapters that
all convex sets are algebraically closed, although the notion of idealization
naturally appears in various other places. Chapter 6 returns to the simple
statistical theories introduced in Chapter 1 and using the categorical ma-
chinery of the second chapter shows that these theories form a bicomplete
monoidally closed category. This is a calculus of statistical theories. We also
introduce another category of theories, with not so many nice properties,
but one more realistically reflecting the intuitive notion of strength of theo-
ries and providing for the formalization of localization. Chapter 7 contains
the most important results. we identify, by an analysis of the complexity of
states, those measuring procedures that cannot be interpreted as containing
interferences by the experimenter that would produce spurious complexity in
the observed data. In parallel with this we explore the notion of an entropy
function, stopping somewhat short however of a fully satisfying treatment.
The chapter also contains various passages related to quantum mechanical
models, pointing out the special nature of these. The last Chapter 8 takes
up the theme of lattices of propositions using the concepts of the previous
chapter. Scratching only the surface, we discover a Boolean algebra of propo-
sitions in theories with only two pure states, and include some commentary
on the general case.

We diagram below the logical interdependence of the chapters. Dotted
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lines mean minimal dependence that can be successfully handled by recourse
to the indices of symbols and definitions provided at the end.
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Chapter 1

Preliminaries

In this work we consider the formal foundations of statistical experimental
sciences. Such a science involves the following type of experimentation: by
certain well defined procedures, we prepare a state of affairs for study, and
at some later time, according to other well defined procedures, we observe
whether the so obtained state of affairs possesses or not a gives property.
What interests a statistical science is the asymptotic frequency with which
repeated preparations yield a given observation. We shall not here go into the
problem of bow we identify repeated executions of experimental procedures as
being a repetition of the same experiment. Such an identification is necessary
in order to make valid sense of the frequency of occurrence of some property
and we suppose this problem is solved in some manner. A science may not
be wholly statistical. Psychology for example builds models of behavior on
other than statistical grounds, yet part of psychology can be handled by a
statistical theory. It has only to be recalled that the multivariate statistical
approach known as factor analysis was developed primarily by psychologists
of human behavior. In animal psychology also, the frequency of a particular
type of behavior is often the subject of research, as in learning for example.
Thus a given non-statistical science can have a statistical theory associated
with it and a quantitative model can be built for this part. Certain properties
of this statistical part can be ascertained directly from experimental data,
independently of what model one uses for the presumed mechanisms by which
the data is produced. Such experimentally determinable properties should
shed light not only on the problem of model construction but also on the non-
statistical aspects as well. It is these properties that we wish to investigate.

At the minimum, we can say that any formalization of a statistical science
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must begin by introducing two sets S and O and a partial function 〈·, ·〉 with
domain D ⊂ S × O and with values in the interval [0, 1]. Each σ ∈ S is
interpreted as a preparation procedure and each p ∈ O as an observation
procedure. If (σ, p) ∈ D then p is applicable to σ and 〈σ, p〉 is the asymptotic
frequency of times the given property is observed under repeated preparations
of σ and observations of p. While strictly speaking, and according to this
formalism, not every observation procedure is applicable to every preparation
procedure (confronting a hungry rat with an optical collimator rather than
a T maze is not likely to be considered a legitimate experiment), we shall
immediately sidestep this issue by formally setting 〈σ, p〉 = 0 if (σ, p) 6∈ D,
thus not bothering to formalize the notion of applicability. From now on 〈·, ·〉
is a total function.

We call S the set of states and O the set of observations. It should be
stressed from the outset that every state should be considered as representing
an ensemble, that is, a hypothetical population that we can realize practi-
cally only in part by repeated preparations. In what follows a preparation
procedure shall be, at a convenient point in the discussion, identified with
the ensemble it is hypothetically capable of generating, identifying thus pro-
cedures that generate the same ensemble. The state of affairs resulting from
each particular preparation we shall call a copy of the state. Similar state-
ments hold for the observations. Each particular realization of a preparation
of a state a followed by a realization of an observation p, we call an execution

of the experiment (σ, p). Only by a repetition of a large number of such exe-
cutions can the number 〈σ, p〉 be computed since with a single execution the
result is simply yes or no. Each triple (S,O, 〈·, ·〉 we shall call a statistical

system or system for short.
It may well happen that different procedures yield the same state of af-

fairs. In such cases it must be true that if σ1 and σ2 really produce the same
state of affairs, then within experimental error 〈σ1, p〉 = 〈σ2, p〉 for all p ∈ O.
Similarly different observation procedures can be connected with the same
property, and if p1, and p2 are two such, then again within experimental
error, 〈σ, p1〉 = 〈σ, p2〉 for all σ ∈ S. The notion of same state and property
generally come from extrastatistical grounds. Thus in flipping a coin there
is only one preparation: flip; there are two observations: heads (H) and tails
(T). Thus S can be taken as the one point set {∗} and O as the two point
set {H,T} and if the coin is fair we have 〈∗,T〉 = 〈∗,H〉 = 1/2. Statistically
heads and tails are the same, but phenomenologically different. At this stage
of the discussion however, we shall identify statistically equivalent elements,
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for the simplicity so obtained compensates for the loss of certain distinctions
which however we shall later to a large extent recover by a more thorough
formalism. In any case if (S,O, 〈·, ·〉) is a system as introduced above, we
define an equivalence relation in S and O as follows:

σ ∼ σ′ ⇔ ∀p ∈ O, 〈σ, p〉 = 〈σ′, p〉;

p ∼ p′ ⇔ ∀σ ∈ S, 〈σ, p〉 = 〈σ, p′〉.

Of course if S, O, and 〈·, ·〉 are experimentally determinable objects,
such equalities hold only up to a certain error. We do not enter here into
the investigation of how to test hypotheses of the form 〈σ, p〉 = 〈σ′, p〉. In
any case, once these relations are introduced, we can pass to the quotient
sets S/∼, O/∼ and the corresponding function, still denoted by the same
symbol, 〈·, ·〉 : S/∼ ×O/∼→ [0, 1] defined by 〈[σ], [p]〉 = 〈σ, p〉 where from
now on we use the bracket to denote equivalence classes of elements. We
call (S/∼,O/∼, 〈·, ·〉) the reduced system of (S,O, 〈·, ·〉). We say that a
statistical system is separated if the families of functions {〈·, p〉 | p ∈ O} and
{〈σ, ·〉 | σ ∈ S} separate points of S and O respectively. The reduced sys-
tem is always separated. In a separated system states and observations are
determined entirely by their statistical behavior. Phenomenologically this
is not always the case as the coin tossing example shows. For rich systems
with complicated S and O we may encounter empirical separated systems.
This is believed to be the case of quantum mechanics for example, where in
principle only statistical behavior is observable. However, we have no means
of knowing when this should be the case, and should not make a principle of
it.

Once we are working with a separated system it is advantageous to intro-
duce further structure in the sets S and O. It makes sense to assume they
are convex in the sense that if σ1, σ2 ∈ S and 0 < λ < 1 we can talk of the
element λσ1 +(1−λ)σ2 ∈ S. Given procedures for the preparation of σ1 and
σ2 this new state is prepared by the following procedure: choose a number
ξ randomly in [0, 1] from a uniformly distributed population (by a random
number table say); if it turns out that ξ < λ prepare σ1 if ξ > λ prepare σ2.
Certainly this is a practical procedure and we can assume S is closed under
convex combinations. As before, we here gloss over some facts: in practice λ
is a rational number while we are assuming the above can be carried out for
any λ. Similar convex combinations can be introduced in O and we assume
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they have been. Remembering that we are in a reduced triple we should note
that what is of practical importance is to able to identify a given state a as
being a mixture λσ1 + (1 − λ)σ2, 0 6= λ 6= 1 even though the preparation
leading to σ may not involve such deliberate mixing procedures. An example
of this is furnished by physics of molecular beams. A beam of molecular hy-
drogen consists of a certain fraction f of orthohydrogen and a fraction 1− f
of parahydrogen . Hence we can write σ = fσortho + (1 − f)σpara, yet the
preparation of σ involved no random number table contingent decisions. Of
course it’s possible to build apparatus to prepare pure orthohydrogen and
pure parahydrogen and these can be used along with a random number gen-
erator to recreate a state having identical statistical properties as σ above.
This is not the main point, the main point is the importance of identifying
mixed states, as this implies a simplification of the study of their statistical
behavior, the problem passing on to the components of the mixture. The
present work has to a large extent been influenced by the prototype of the
statistical behavior of beams of physical particles applying the ideas however
to far removed contexts. A “beam” then becomes simply an ensemble of pre-
pared states be they physical, biological, psychological or otherwise. In such
a way we propose to unify the study of statistical sciences, physics becoming
simply a particular case.

It should now be noted that by the frequentistic interpretation of 〈·, ·〉
this function is biaffine. That is:

〈λσ1 + (1 − λ)σ2, p〉 = λ〈σ1, p〉 + (1 − λ)〈σ2, p〉,

〈σ, λp1 + (1 − λ)p2〉 = λ〈σ, p1〉 + (1 − λ)〈σ, p2〉

for all λ, σ, σ1, σ2, p1, p2. To see this, consider the first expression. Sup-
pose that we have made a large number N of repetitions of the experiment
(λσ1 + (1 − λ)σ2, p). In terms of mean expected behavior of these N repeti-
tions, λN correspond to copies of σ1 and (1 − λ)N to copies of σ2. Of these
λN instances of σ1 we obtain λN〈σ1, p〉 positive observations of p, and of the
(1 − λ)N instances of σ2 we obtain (1 − λ)N〈σ2, p〉 positive observations of
p. Thus the total number of positive responses is λN〈σ1, p〉+(1−λ)N〈σ2, p〉
meaning that the frequency is λ〈σ1, p〉 + (1 − λ)〈σ2, p〉. By the frequentistic
interpretation this frequency is precisely 〈λσ1 + (1 − λ)σ2, p〉 demonstrating
the first equality. A similar argument works for the second equality.

In addition to the convex structure we can assume further additional
structure for O. Since each p ∈ O corresponds to a yes-no observation we can
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consider the observation ¬p obtained by interchanging yes and no. We thus
assume that O is provided with the map ¬ : O → O. By the frequentistic
interpretation we find, using the same methods as in the previous paragraph,
that

〈σ,¬p〉 = 1 − 〈σ, p〉,

¬(λp1 + (1 − λ)p2) = λ¬p1 + (1 − λ)¬p2

for all λ, σ, p, p1, p2. From this it is also clear using the fact that the system
is separated that

¬¬p = p.

Thus ¬, which is called negation, is an affine involution of O.
We further assume that O is provided with a distinguished element 1

having the property that 〈σ, 1〉 = 1 for all σ. We interpret 1 as being the
observation of a tautological property, or simply the observation that a state
has been prepared. The negation ¬1 of 1 we denote by 0 and this corresponds
to an observation of a contradictory property, and as an element of O satisfies
〈σ, 0〉 = 0 for all σ.

We are thus able at this point to make a formal definition:

Definition 1.1 A statistical triple is a separated statistical system (S,O, 〈·, ·〉)
where S and O are convex sets and 〈·, ·〉 : S × O → [0, 1] is a biaffine map,

such that the following axioms are satisfied:

1. ∀p ∈ O, ∃¬p ∈ O such that ∀σ ∈ S, 〈σ,¬p〉 = 1 − 〈σ, p〉,

2. ∃1 ∈ O such that ∀σ ∈ S, 〈σ, 1〉 = 1.

We note that an easy consequence of (1) and separatedness is that ¬p
is unique and that the map ¬ : O → O is affine. We likewise deduce, as
has already been mentioned, the existence of the element 0 ∈ O such that
∀σ ∈ S, 〈σ, 0〉 = 0.

We have deliberately avoided mentioning the vector spaces in which S
and O are to be considered as convex subsets. For our immediate purposes
it doesn’t matter, and since we shall in the next chapter firstly dispense with
them by an intrinsic axiomatization of convex sets and secondly reinstitute
them in a canonical manner, we gloss over the problem here, pausing only to
introduce the following terminology.
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The extreme points of S are called pure states, and the extreme points of
O, pure observations. States and observations that are not pure are called
mixed . We shall also at times refer to S as the state figure and to O as the
observation figure.

We now present a few examples of statistical triples that have traditionally
been considered and a few that haven’t.

Example 1.1 Kolmogorov Probability

Let (Ω,Σ) be any measurable space, where Σ is a σ-algebra of subsets of
Ω. Let S be the set of all probability measures in (Ω,Σ) and O be the set of
all measurable functions f : Ω → [0, 1]. We define 〈·, ·〉 by 〈µ, f〉 = µ(f) =
∫
f(w)dµ(w). The set of extreme points of S are the dichotomous measures,

that is, such that for all A ∈ Σ, µ(A) is always either 0 or 1. There is a
map which associates to each point ω ∈ Ω an extreme point of S given by
ω 7→ δω where δω is the Dirac measure defined by 〈δω, f〉 = f(ω). In general
this map is neither injective nor surjective. In many important cases though
it is bijective. The pure observations of any Kolmogorov triple are precisely
the characteristic functions χA of measurable subsets. The elements 0 and 1

are the constant functions 0 and 1 respectively, and ¬f = 1 − f .
If µ is a pure state then 〈µ, χA〉 = µ(A) is either 0 or 1; in other words, a

pure state has a pure property either certainly or certainly not. This is the
intuitive content of sharply defined states and sharply defined measurements.

In mechanics, Ω is taken to be the phase space of the physical system.
Statistical mechanics deals with certain canonically defined measures in Ω
such as the Gibbs and the microcanonical ensembles, classical mechanics
restricts itself to Dirac states, other measures are introduced only as auxiliary
objects.

An important difference between our viewpoint and the usual one is the
introduction of mixed observations. We have been motivated by reference [5]
in this regard.

if Ω = {ω1, . . . , ωk} is finite, then we can take for Σ the algebra of all
subsets of Ω. Now every probability measure can be written as µ =

∑

imiδωi

where mi = µ({ωi}) ≥ 0 and
∑
mi = 1. Thus S can be identified with the

n − 1 simplex {m ∈ Rn |mi ≥ 0,
∑
mi = 1} and identifying 〈·, ·〉 with the

usual Euclidean inner product in Rn we see that O is identifiable with the
cube {p ∈ Rn | 0 ≤ pi ≤ 1}. In this case 1 is the point (1, 1, . . . , 1) and 0 is
the origin; negation is given by ¬(p1, p2, . . . , pk) = (1−p1, 1−p2, . . . , 1−pk).
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We can think of this system as that of infinite messages in an alpha-
bet on k letters σ1, σ2, . . . , σk which can be identified as copies of the pure
states. A pure observation consists of verifying whether an instance of one
of the letters falls within a predetermined subset of letters. We assume the
asymptotic frequency of such events exists. Such messages are produced by
the outcomes of Bernoulli trials. As every cryptanalyst knows, natural lan-
guages approximate such behavior, even though natural languages are not
Bernoulli processes. In natural languages, symbols at different positions are
correlated, but for this example, such correlations are not part of the obser-
vation procedures.

Example 1.2 Boolean triples

This is a system closely related to Kolmogorov probability, but with the
measure-theoretic troubles disregarded. Let B be a Boolean algebra. By
Stone’s representation theorem [6], B is identifiable with the algebra of closed-
open subsets of a completely disconnected compact Hausdorff space X. We
let S be the set of all finitely additive measures on B. We.let O be the
set of continuous functions f : X → [0, 1] and we set 〈µ, f〉 =

∫
f dµ.

This is a finitely additive integral and so perhaps deserves some explana-
tion. Consider the set F of simple functions f =

∑

i ciχAi
where the ci

are real and Ai are closed-open sets. Such functions are continuous, and by
the Stone-Weierstrass theorem are dense in C(X) considered as a Banach
space with the supremum norm. For f ∈ F we can define the integral by
∫
f dµ =

∑

i ciµ(Ai). It can be easily checked that this defines a norm con-
tinuous linear functional on cF and so can be extended to the closure C(X).
Hence 〈·, ·〉 is well defined. The extreme points of S are Dirac measures
and the extreme points of O are characteristic functions of closed-open sets.
Negation is given by ¬f = 1−f and 0 and 1 are the constant functions 0 and
1 respectively. When B is a finite Boolean algebra with k atoms, this triple
is isomorphic to the Kolmogorov triple with Ω being a set with k points.

Example 1.3 Two dimensional triples

This is the simplest non-trivial triple, that is one in which S is spanned by
two pure states σ0 and σ1. Thus S is a line segment {σλ = λσ1 + (1 − λ)σ0 |
0 ≤ λ ≤ 1} which we identify with the line segment between (0, 1) and (1, 0)
in R2. Hence now a σλ = (λ, 1 − λ). We consider O ⊂ R2 and if we use the
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normal duality, O must be a subset of the square [0, 1]× [0, 1]. The existence
of negation means that O is symmetric under inversion through the point
(1/2, 1/2) and the separation requirement means that besides the segment
[0, 1] there must be at least one more point in O (and by convexity, many
more). An example of such a set is given by the figure below:

The boundary of O consists of two parts, the upper boundary that lies above
the segment [0, 1] and the lower boundary that lies below. We include 0

and 1 in both parts. In case the upper boundary is the graph of a function
we denote this function by b. This occurs if and only if 0 is the only point
of the form (0, y) on the boundary. If O is all of the square then we have a
Kolmogorov triple on a two point set, or equivalently a Boolean triple with
B having two atoms.

Example 1.4 Hilbert space quantum mechanical triple

Let H be a complex Hilbert space with inner product (·, ·) We let S be the
set of positive trace class operators ρ of trace 1, and let O be the set of
operators A such that 0 ≤ A ≤ I. We define 〈ρ, A〉 = Tr(ρA). The extreme
points of S correspond to pure quantum mechanical states, and these are
operators of the form (φ, ·)φ where ||φ|| = 1, φ ∈ H. Such a φ is defined
only up to a multiplicative constant of modulus 1. The extreme points of
O are orthogonal projections. Negation is given by ¬A = 1 − A, and 0 and
1 are the operators 0 and 1 respectively. It is customary to call elements
of S density matrices. Just as for the Kolmogorov triple in mechanics, this
formalism differs from the usual one in the admission of mixed observations.
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Example 1.5 Stochastic triples

Let (X,X ) and (Ω,Σ) be measurable spaces with σ-algebras X and Σ
respectively. Let Px be a family of probability measures in Ω indexed by X
and such that for all A ∈ Σ, x 7→ Px(A) is a X -measurable function on X.
We let S̃ be the space of probability measures on X, and Õ be the set of mea-
surable functions f : Ω → [0, 1]. We define 〈µ, f〉 =

∫
(
∫
f(ω)Px(dω)) dµ(x).

The system (S̃, Õ, 〈·, ·〉) may not be separated; the stochastic triple is the
corresponding reduced system. This construction corresponds to stochas-
tic processes which of course have additional structure. In such cases Ω is
the path space, X the coordinate space of the process and µ is the initial
distribution.

This triple is closely related to the Kolmogorov triple on (Ω,Σ), and can
be obtained from it by restricting the states to be the measures that can be
written as

∫

X
Px dµ(x).

Example 1.6 Empirical triple

The ideas presented here could be used as a basis for procedures in mul-
tivariate statistics. The sets S and O are experimentally determinable given
the results of observations of particular phenomena. Let thus Y1, Y2, . . . , Ym
be a set of dichotomous random variables with possible values 0 and 1. Let
there be a sample of N observations of the m-tuple (Y1, Y2, . . . , Ym). We
thus have in fact a matrix of observations Yij, i = 1, . . . , m; j = 1, . . . , N .
We wish to interpret the data according to the model that we are dealing
with a statistical triple (S,O, 〈·, ·〉) with the Yi corresponding to points in O
and each empirical observation being performed upon a certain state in S.
Although we have not developed the general statistical procedures to make
such an analysis, there is nothing in principle to prevent any set of data
from being treated in this way. Certain existing procedures can already be
applied if we make some a-priori assumptions about the data. If the sample
can be divided into K sub-samples of nk observations, k = 1, . . . , K, each
one of which can be considered as corresponding to a single state σk, then by
averaging the variables within the subsamples we obtain the following new
sample variables:

Ŷik =
1

nk

∑

j

Yij
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where j runs over the k-th sample. We now consider the Ŷik as components
of a vector Ŷi·. On the basis of these we can perform an oblique axis factor
analysis [7] and fit a model of the form:

Ŷi· =

L∑

ℓ=1

aiℓZℓ· + bi

where the Zℓ· are picked to be certain of the Ŷi· and bi is the coefficient of
the presumably always present factor 1 of mean 1 and variance 0, that is,
the constant 1. Once this is done, consider in RL+1 the convex envelope of
the set of vectors

{(1, 0, . . . , 0), (0, 0, . . . , 0)} ∪ {(bi, ai·), (1 − bi,−ai·) | i = 1, . . . , m}

and also the convex envelope of the set of vectors {(1, Z·k) | k = 1, . . . , K}.
These give the empirically determined sets S and O respectively. If the factor
analysis is well done in that one cannot reduce the number of factors and
preserve goodness of fit, the two sets of vectors {(bi, ai·) | i = 1, . . . , m} and
{(1, Z·k) | k = 1, . . . , K} are entire in RL+1. The empirically determined inner
product that serves to define the duality of the empirical triple is given by:

〈
∑

αk(1, Z·k),
∑

βi(bi, ai·)〉 =
∑

i,ℓ,k

βiaiℓZℓkαk.

Note that even though the sums on the left hand side involve in general sets
that are linearly dependent, the definition is consistent, for if any of the sums
vanish, the right hand side vanishes also. In this triple 1 is (1, 0, . . . , 0), the
origin is 0, and negation is given by ¬p = 1 − p.

More sophisticated statistical analysis must of course be made if we don’t
have a-priori identifications of which observation is done in which state.

Normal factor analysis techniques usually confine themselves to the elab-
oration of a factor model, and after appropriate coordinate changes to the
identification of the factors with some naturally interpretable variables. Lit-
tle, if any, attention is paid to the geometrical shapes of the sets of empirical
points in the various spaces involved. A study of these shapes should give
clues as to the underlying mechanisms that could be involved in producing
the observed data. To illustrate these remarks, consider the physics of a light
bench. The polarization states of light are well modelled by a Hilbert space
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triple with H = C2. If we use Pauli spin matrices :

σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)

σ3 =

(
1 0
0 −1

)

we can write any 2 × 2 matrix m as m = αI + ~β · ~σ. We find that hermi-
tian matrices correspond to α, and ~β real. Now S is defined by α = 1/2,

|~β| ≤ 1/2, and O by |~β| ≤ min(α, 1 − α) which is a four dimensional convex

region. Furthermore, Tr((αI + ~β · ~σ)(γI + ~δ · ~σ)) = 2(αγ + ~β · ~δ). Now if
the above mentioned factor analysis were done on a large number of opti-
cal bench experiments, the above convex figures and duality, up to an affine
isomorphism, would be found. With sufficient knowledge on our part, we
would recognize them as coming from a Hilbert space model. Empirical data
can therefore in some systematic way call for certain model types. Now the
freedom to choose our coordinates arbitrarily implies that only the affine in-
variants of the sets S and O and of the pairing 〈·, ·〉 : S × O → [0, 1] are
intrinsic to the data. Based on this observation we now prepare to formulate
the study of convex sets independent of their possible imbeddings in linear
spaces and of any possible coordinate systems therein.
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Chapter 2

The Category of Convex Sets

Because of the role that convex sets play in the previous discussion, we
propose here to give a condensed development of convex set theory from an
intrinsic viewpoint. We want to consider a convex set as an object existing
apart from any vector space in which it may be embedded. To be able to do
this the best procedure is to develop convex set theory as an algebraic theory
and to investigate the category that is so formed.

Definition 2.1 An abstract convex set C is a set endowed with the following

additional algebraic structure: To each n ≥ 1, and to each n-tuple Λ =
(λ1, λ2, . . . , λn), of real numbers such that 0 ≤ λi ≤ 1 and

∑

i λi = 1 there

is given an n-ary operation ΦΛ : Cn → C where for intuitive we write
∑
λixi

instead of ΦΛ(x1, x2, . . . , xn). These operations are subject to the following

axioms:

1. 1 · x = x.

2.
∑

j λj(
∑

i µjixi) =
∑

i(
∑

j λjµji)xi.

3.
∑

j λj(
∑

i µjixji) =
∑

ij(λiµji)xji.

4. If 0 6= λ 6= 1 and λx+ (1 − λ)y = λx+ (1 − λ)z, then y = z.

Easy consequences of these axioms are: (a) 1 · x+ 0 · y = x which implies
that in any expression of the form

∑
λixi we can simply drop any term with

λi = 0; and (b) that in order to define the operations ΦΛ we need only know
how to form λx+ (1 − λ)y for any x, y and 0 ≤ λ ≤ 1.
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Given two convex sets C and D a morphism φ : C → D is a set map that
is a homomorphism of the algebraic system; that is:

φ(
∑

i

λixi) =
∑

i

λiφ(xi).

We shall call such a φ an affine map.
We denote by Conv the category whose objects are convex sets and whose

morphisms are affine maps. The set of morphisms φ : C → D we denote by
Conv (C,D). The empty set and any singleton set are obvious objects of this
category.

Given any convex set C a subset D ⊂ C is called a convex subset if
x, y ∈ D, 0 ≤ λ ≤ 1 ⇒ λx + (1 − λ)y ∈ D. The intersection of any family
of convex subsets is a convex subset, hence given any subset S ⊂ C we can
define its convex envelope conv(S) as being the intersection of all the convex
subsets that contain S. This is the smallest convex subset that contains S
and consists of points of the form

∑

i λisi with si in S.
A subset F of a convex set C is called a face of C if x ∈ F, y, z ∈ C, 0 ≤

λ ≤ 1, x = λy + (1 − λ)z ⇒ y, z ∈ F . Clearly C is a face of C. A point x
such that the singleton set {x} is a face is called a pure, or extreme point .
All other points are called mixed . If φ : C → D is a morphism and G is a
face of D then φ−1(G) is a face of C.

The aim of this chapter is to show that Conv is a bicomplete monoidally
closed category [8]. To achieve this we must first construct an equivalent
category which is also of great utility because it interprets each convex set as
being canonically imbedded as a base of a cone in a functorially dependent
seminormed vector space.

We first note that Conv (C,D) can itself be considered as an object in
Conv by defining

∑

i λiφi by the formula:

(
∑

i

λiφi)(x) =
∑

i

λiφi(x).

We shall write Ĉonv (C,D) for this object in Conv.
We further note that if Lin is the category of real linear spaces with

linear maps as morphisms, then there exists a functor Lin → Conv which
interprets each linear space as a convex set in the obvious manner.

To simplify notation, we give no names to the various identification func-
tors that we are about to start using, letting the context supply the nec-
essary information. Note that if V is a real linear space, then Conv (C, V )
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can also be thought of as a real linear space; namely, define aφ + bψ by
(aφ+ bψ)(x) = aφ(x) + bψ(x) for a, b real.

Let C now be a nonempty convex set. We show that Conv (C,R) separates
points in C; that is, given x, y ∈ C, x 6= y there is an affine map φ : C → R

such that φ(x) 6= φ(y). To show this we first imbed C by a rather laborious
construction into a real vector space VC in a way that the convex structure
of C becomes part of the linear structure of VC In this way any affine map
C → R will have an extension to a linear map VC → R, and conversely, the
restriction of any such linear map to the imbedded image of C provides an
affine map C → R. Thus using the fact that Lin (VC ,R) separates points of
VC we will conclude the needed result.

In order to understand the construction that follows, think of VC as being
formed by formal differences of the form ax−by; x, y ∈ C; a, b ∈ R; a, b > 0.

Consider the set of all quadruples of the form (x, y, a, b) ∈ C×C×(0,∞)×
(0,∞) and for intuitive reasons write such a quadruple as ax− by. Introduce
now an equivalence relation ax − by ∼ a′x′ − b′y′ by firstly requiring that
a+ b′ = a′ + b; call this number D; and secondly by requiring

a

D
x+

b′

D
y′ =

a′

D
x′ +

b

D
y

where of course the symbolic sums now refer to the algebraic operations
performed in the convex set C. Let VC be the set of equivalence classes
[ax− by] of these quadruples. We now define a linear structure in VC . First,
we define, choosing any x0 ∈ C:

0 = [1x0 − 1x0].

Given r ∈ R, we define scalar multiplication by:

r[ax− by] =







[(ra)x− (rb)y] if r〉0
0 if r = 0

[(−rb)y − (−ra)x] if r〈0

and we define addition by:

[ax− by] + [a′x′ − b′y′] =
[

(a+ a′)

(
a

a + a′
x+

a′

a+ a′
x′
)

− (b+ b′)

(
b

b+ b′
y +

b′

b+ b′
y′
)]
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where the sums a + a′ and b + b′ are to be interpreted in R, and the other
two as standing for the operations in C.

A tedious and totally unenlightening verification shows that VC as so
defined is in fact a real vector space.

We now define an imbedding jC : C → VC by:

jCx = [2x− 1x].

To see that jC is injective suppose that [2x − 1x] = [2y − 1y], then by the
definition of equivalence we must have (2/3)x + (1/3)y = (2/3)y + (1/3)x
which by the axioms of convex sets is easily shown to be equivalent to x = y.
A further tedious verification shows that jC is affine, hence we can identify
the convex structure in C as being induced by the linear structure in VC .
Let now φ : C → R be any affine map, we define Vφ : VC → R by setting
Vφ[ax−by] = aφ(x)−bφ(y). We have φ = Vφ ◦ jC . We conclude finally, using
the argument already presented, that Conv (C,R) separates points in C.

Having established this, we can proceed in a more canonical fashion.
Consider the set C∗∗ = Conv (Ĉonv (C,R),R). There is a natural affine map
jC : C → C∗∗ given by

(jCx)(φ) = φ(x)

for φ ∈ Ĉonv (C,R), x ∈ C. By the previous discussion we now know that jC
is injective. In what follows, we drop the subscript in jC whenever convenient.

Since C∗∗ is naturally a vector space, we define V (C) as being the vector
space spanned by the image of C by j. An element v of V (C) is therefore of
the form,

∑
rijxi. Let I be the set of indices i such that ri > 0, and let K

be the set of indices k such that rk < 0. Let D+ = 1 +
∑

{ri | i ∈ I}, and
D− = 1 −

∑
{rk | k ∈ K}. Let x0 ∈ C be arbitrary. We have:

v = D+

(

1

D+
jx0 +

∑

I

ri
D+

jxi

)

−D−

(

1

D−
jx0 +

∑

K

−rk
D−

jxk

)

which being of the form D+jx+ −D−jx−; D+, D− > 0; x+, x− ∈ C, is now
identifiable with the element [D+x+ − D−x−] of the vector space VC con-
structed earlier. We thus recover our previous construction. We furthermore
note that any element of V (C) can be written as ajx1 − bjx2; x1, x2 ∈ C
and a, b > 0. We can clearly allow a or b to be zero, though in the above
manipulations we avoided this to be able to relate V (C) to VC .
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The space V (C) has considerable additional structure. Let K(C) be
the cone of elements of the form ajx, a ≥ 0, x ∈ C; thus jC is identified
with the base of this cone and we have V (C) = K(C) − K(C). Given
v = ajx − bjy ∈ V (C) we can define the linear functional τC(v) = a − b.
Note that τ is positive on K(C). We now define the functional

pC(v) = inf{a+ b | v = ajx− bjy; a, b ≥ 0}

or better

pC(v) = inf{τ(v1) + τ(v2) | v = v1 − v2, vi ∈ K(C)}.

One verifies that pC is a seminorm that coincides with τ on K(C); fur-
thermore τC ◦ jC(x) = 1. Let now φ : C → D be an affine map. Define
V (φ) : V (C) → V (D) by:

V (φ)(ajx− bjy) = ajφ(x) − bjφ(y).

One checks that V (φ ◦ ψ) = V (φ) ◦ V (ψ), V (1C) = 1V (C), and that the
diagram

V (C)
V (φ) - V (D)

@
@

@τC R 	�
�

�

τD
R

commutes.
For the omitted case C = ∅ we set V (C) = {0}, the zero dimensional

vector space. The rest of the structure can now be easily identified.
We are now ready to define Bsn , the category of based seminormed linear

spaces. The objects of this category are real vector spaces W endowed with
the following additional structure: a proper convex cone K such that W =
K−K (proper means that −K∩K = {0}) and a positive linear functional τ
such that x ∈ K, τ(x) = 0 ⇒ x = 0. Morphisms in this category are positive
linear maps φ : W → Z such that the diagram

W
φ - Z

@
@

@τW R 	�
�

�

τZ
R
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commutes (positive means φ(K(W )) ⊂ K(Z)). Now Conv and Bsn are
equivalent categories. We have already exhibited a functor C 7→ V (C);
φ 7→ V (φ) from Conv to Bsn . The functor in the other direction which
establishes the equivalence is: W 7→ {v ∈ K(W ) | τ(v) = 1}; φ 7→ φ|W .

Just as for the category Conv we shall identify Bsn (W,Z) with an object
of Bsn . Now Bsn (W,Z) is a convex subset of Lin (W,Z) since τ ◦ φ = τ
and τ ◦ ψ = τ imply τ ◦ (λφ + (1 − λ)ψ) = τ and φ, ψ positive imply
λφ + (1 − λ)ψ positive. We thus define B̂sn (W,Z) = V (Bsn (W,Z)) think-
ing of Bsn (W,Z) as a convex set. Now by equivalence we have a natural
bijection Bsn (V (C), V (D)) ≃ Conv (C,D) which is readily seen to be an iso-
morphism of convex sets. Thus V (Ĉonv (C,D)) ≃ V (Bsn (V (C), V (D)) ≃
B̂sn (V (C), V (D)) a fact that will be useful later so we dignify it to be a
lemma.

Lemma 2.1 There is a naturalism Bsn isomorphism:

V (Ĉonv (C,D)) ≃ B̂sn (V (C), V (D)).

We also need the following technical result in a subsequent demonstration.

Lemma 2.2 Let φ ∈ B̂sn (W,Z) then we have the equality

τZ(φ(w)) = τ
B̂sn (W,Z)

(φ) · τW (w).

Proof: Suppose φ = aα− bβ; a, b ≥ 0; α, β ∈ B̂sn (W,Z), then τZ(φ(w)) =
τZ(aα(w) − bβ(w)) = aτZ ◦ α(w) − bτZ ◦ β(w) = aτW (w) − bτW (w) = (a −
b)τW (w) = τ

B̂sn (W,Z)
(φ) · τW (w). Q.E.D

The advantage of using Bsn instead of Conv is that we can use the linear
structure to manipulate the convex structure.

Theorem 2.1 Conv is a bicomplete monoidally closed category.

The proof will proceed by stages. To show bicompleteness we need to
prove the existence of products, equalizers, coproducts, and coequalizers. To
prove monoidal closure we will exhibit a tensor product C⊗D of convex sets
and a natural bijection Conv (C ⊗D,E) ≃ Conv (C, Ĉonv (D,E)).
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1. Existence of products

Let Cα be a family of convex sets and let C =
∏
Cα be the set theoretic

product and πβ : C → Cβ be the set theoretic projections. We furnish
C with the following convex structure: λ(xα) + (1 − λ)(yα) = (λxα +
(1 − λ)yα). To show that C is the product in Conv is now trivial.

2. Existence of equalizers

Let φ1, φ2 : C → D be two affine maps. Consider the subset E =
{x ∈ C |φ1(x) = φ2(x)}. Now E is a convex subset and the inclusion
map ι : E → C is the set theoretic equalizer, which being affine is easily
seen to be the equalizer in Conv.

3. Existence of coproducts

Let Cα, be a family of convex sets. Consider the family V (Cα) of the
corresponding vector spaces. Let V =

∏
V (Cα) be the vector space

coproduct, that is, the subspace of the vector space product defined
by (vα) ∈ V ⇔ vα ∈ V (Cα) and vα = 0 for all but a finite number of
indices. We define ρα : Cα → V by: ρα(x) = (yβ) where

yβ =

{
jCα

x if β = α
0 if β 6= α.

Let C = conv(
⋃

α ρα(Cα)) be the convex envelope of the union of the
images of all the Cα, by the maps ρα. Continue to call by ρα the
injections Cα → C. We show that C is the coproduct in Conv. Clearly
each ρα is affine. Let φα : Cα → D be a family of affine maps. Now
each x ∈ C can be uniquely written as x =

∑
{λαρα(xα) |α ∈ F} where

F is a finite set of indices, λα ≥ 0,
∑
λa = 1, and xα ∈ Cα. We wish

to establish the existence of a unique affine map ψ : C → D such that
ψ ◦ ρα,= φα but by affinity and the factorization requirement we see
that ψ must be given by ψ(x) =

∑

F λαφα(xα) which is readily shown
to satisfy the requirements.

4. Existence of coequalizers

Let φ1, φ2 : C → D be two morphisms in Conv. Consider the convex set
D×D. An equivalence relation R ⊂ D×D is said to be convex if it is a
convex subset of D×D. Seeing that the total relation D×D is a convex
equivalence relation, and that an intersection of an arbitrary family of
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convex equivalence relations is also a convex equivalence relation, we
conclude that the set of convex equivalence relations is a complete
lattice. The smallest element is equality E = {(x, y) | x = y}. Thus,
let R be the smallest convex equivalence relation containing all pairs of
the form (φ1(x), φ2(x)), x ∈ C. The passage to the quotient space D/R
is compatible with the convex structure in D; and we can introduce a
convex structure in the quotient by setting λ[x] + (1 − λ)[y] = [λx +
(1 − λ)y]. The set theoretic canonical map κ : D → D/R is easily
seen to be affine. Let now ψ : D → F be a morphism such that
ψ ◦ φ1 = ψ ◦ φ2; we note that (ψ × ψ)−1(E) is a convex equivalence
relation in D, and since it contains all pairs of the form (φ1(x), φ2(x)),
it contains R. Thus ψ is constant on the equivalence classes of R and
so there is a unique factorization ψ = ψ̂ ◦ κ; ψ̂ is easily shown to be
affine showing that K is the coequalizer.

5. Existence of tensor product

To show that Conv has a tensor product, its enough to show that
the equivalent category Bsn has a tensor product. Let V and W be
based seminormed vector spaces and consider the linear space tensor
product V ⊗W . Define a cone in this space as being the convex cone
K generated by elements of the form v ⊗ w, v ∈ K(V ), w ∈ K(W ).
Since any element of V ⊗W has a representation

∑
xi ⊗ yi and since

we can write xi = vi− v′i; yi = wi−w′
i; vi, v

′
i ∈ K(V ); wi, w

′
i ∈ K(W );

we conclude that V ⊗W = K − K. Define τ : V ⊗W → R by the
universal diagram:

V ×W
· ⊗ · - V ⊗W

@
@

@θ R 	�
�

�

τ
R

where θ(x, y) = τV (x)τW (y). If τ(v) = 0 for v ∈ K, then v =
∑
xi⊗yi;

xi ∈ K(V ), yi ∈ K(W ) and
∑
τ(xi)τ(yi) = 0. Since each term is

positive we have τ(xi)τ(yi) = 0 for all i, that is, for all i, either xi = 0
or yi = 0, hence v = 0. We conclude that K is a proper cone and that
V ⊗W has a natural Bsn structure. We now show there is a natural
bijection

Bsn (V, B̂sn (W,Z)) ≃ Bsn (V ⊗W,Z).
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A Bsn morphism φ : V → B̂sn (W,Z) coincides with a Lin morphism
φ̂ : V → Lin (W,Z) which in turn defines a unique Lin morphism
φ§ : V ⊗ W → Z. We need show that φ§ is a Bsn morphism. Let
x⊗ y ∈ V ⊗W then φ§(x⊗ y) = (φ̂x)(y) so τZφ

§(x⊗ y) = τZ((φ̂x)(y))
which by Lemma 2.2 is equal to τ

B̂sn
(W,Z)(φ̂x)τW (y) which in turn

is equal to τV (x)τW (y) since φ̂ is actually a Bsn morphism. As this
last number is τV⊗W (x ⊗ y) we conclude that τZ ◦ φ§ = τV⊗W . Fur-
thermore, if x ∈ K(V ), y ∈ K(W ), then φ§(x ⊗ y) = φ(x)(y), but
since φ(x) ∈ Bsn (W,Z) we have φ(x)(y) ∈ K(Z), showing that φ§ is
positive. We conclude from all this that φ§ is a Bsn morphism. We
have established one side of the bijection however, using the same equa-
tions the argument is reversible and we conclude that Bsn has a tensor
product. Returning to Conv we define C ⊗ D to be the base of the
cone in the Bsn tensor product V (C)⊗ V (D), establishing thus a nat-
ural isomorphism V (C ⊗D) ≃ V (C) ⊗ V (D). Therefore C ⊗D is the
convex envelope of the set of points of the form jCx ⊗ jDy; x ∈ C,
y ∈ D. We now have using Lemma 2.1, Conv (C, Ĉonv (D,E)) ≃
Bsn (V (C), B̂sn (V (D), V (E))) ≃ Bsn (V (C) ⊗ V (D), V (E)) ≃
Bsn (V (C ⊗D), V (E)) ≃ Conv (C ⊗D,E) where each bijection is nat-
ural. Thus Conv is a monoidally closed category and we conclude the
proof of our theorem. Q.E.D.

The tensor product of two convex sets is generally hard to compute.
For example [0, 1]⊗ [0, 1] is affinely isomorphic to the tetrahedron, but
this requires some work to establish.

As a final observation on the theorem we note that the initial object in
Conv is the empty set ∅ where the unique initial morphism ∅ → C is the
empty map. As has already been noted V (∅) = {0} is the initial object in
Bsn . The final object in Conv is any singleton set {∗}. Note that V ({∗}) ≃ R

where j∗ = 1.
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Chapter 3

The Canonical Vector Space

Duality of a Statistical Triple

By a statistical pairing , or pairing for short, we shall mean a system
(C,D, 〈·, ·〉) where C and D are convex sets and 〈·, ·〉 : C × D → [0, 1] is
biaffine. Given a pairing, we can imbed C in its Bsn space V (C). We
can now think of each d ∈ D as defining a linear map V (C) → R by
αjc−βjc′ 7→ α〈c, d〉−β〈c′, d〉. Thus D is mapped to a subset of the algebraic
dual of V (C). Let V0(D) be the subspace of this dual spanned by the image
of D. Thus we have a pairing of V (C) with V0(D) and we continue to write
〈·, ·〉 for the bilinear form defining this pairing. Note that if P = (C,D, 〈·, ·〉)
is a pairing, then so is JP = (D,C, 〈·, ·〉J) where 〈d, c〉J = 〈c, d〉. Hence we
can also pair V (D) with V0(C) defined analogously.

In case a pairing is separated, we call it a statistical duality , or duality for
short. In this case the correspondences d 7→ 〈·, d〉 and c 7→ 〈c, ·〉 imbed D as a
subset of Conv (C, [0, 1]) and C as a subset of Conv (D, [0, 1]), identifications
that we will normally use without mention.

A statistical triple (S,O, 〈·, ·〉) is clearly a duality, and in this case we
note that 0 is mapped to the origin of V0(O). We have in this case:

Theorem 3.1 The pairing of V (S) with V0(O) is separated.

Proof: Suppose first that 〈ajσ − bjσ′, r〉 = 0 for all r ∈ V0(O), then in
particular for r = 1 we conclude a = b. Thus if a 6= 0 we have that for all
p ∈ O, 〈jσ− jσ′, p〉 = 0, or 〈σ, p〉 = 〈σ′, p〉 and hence σ = σ′ since triples are
separated. In any case therefore ajσ − bjσ′ = 0 and the pairing separates
points of V (S).
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Suppose now 〈jσ,
∑
ripi〉 = 0 for all σ ∈ S, then as before we can write

∑
ripi = ap − bq; p, q ∈ O, a, b > 0. Thus we have a〈σ, p〉 = b〈σ, q〉.

One of the ratios a/b or b/a must lie in [0, 1], say b/a. Hence 〈σ, p〉 =
(b/a)〈σ, q〉 = 〈σ, (b/a)p + (1 − b/a)0〉. Since triples are separated we have
p = (b/a)q + (1 − b/a)0 but then in V0(O), ap − bq = (a − b)0 = 0, and so
the pairing separates points of V0(O). Q.E.D

We note that in five of the examples in the first chapter, the statistical
triples were thought of as being already within their respective linear duali-
ties. For example, in quantum mechanics, V (S) is the space of all trace class
matrices, and V0(O) the space of all self adjoint bounded operators with the
pairing given by Tr(PA) where P is trace class and A is bounded and self
adjoint.



Chapter 4

A More Extensive Formalism

Various experiences in trying to develop the formal foundations of quantum
mechanics [9] have demonstrated that the scheme so far introduced is too
restrictive in two aspects. We rarely perform simply a single yes-no ob-
servation, we generally observe several properties at the same time, or use
instruments with scales whose response is some real number and is not re-
stricted to merely registering yes-no alternatives. Furthermore, the act of
observation does not normally mean the end of experimentation; observation
could be part of preparation of the state. That is, some state is prepared,
then observed, and if it satisfies certain conditions it’s kept for further ob-
servations, and if not, it’s rejected and the state preparation procedure is
aborted and considered a failure. An example of such a procedure would be
an initial screening of subjects for a psychology experiment by administering
certain tests.

In previous works these two amplifications of the formalism has been done
within an already existing statistical triple (S,O, 〈·, ·〉). That is, instruments
and operations were defined within an already mounted formalism and then
their properties studied.

The point of view we shall follow here is to introduce these notions as
primitive, to formalize the properties that we intuitively feel they have in
their concrete realizations in experiments, and to show that in doing so, we
can, under certain phenomenological assumptions, construct in the end a
statistical triple (S,O, 〈·, ·〉) within which the given structure can be repre-
sented.

Consider a measuring instrument with a scale, such as a voltmeter, a
balance, a yardstick, or an apparatus for measuring visual thresholds. Such
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an instrument does not provide us with a yes-no alternative but with a family
of such. We think of the scale as an abstract set X such that each point
x ∈ X represents a possible reading of the instrument. If A ⊂ X is in some
sense a sufficiently regular subset, we can associate to A a yes-no observation
described by: the reading of the instrument fell within A. If it is meaningful
to attach such yes-no observations to the sets A, B ⊂ X, then it’s equally
meaningful to attach them to X \A, A∪B, and A∩B. Thus we can assume
these subsets form a Boolean algebra.

Without further ado we introduce a set I of instruments. To each I ∈ I
is associated a certain Boolean algebra BI the algebra of events in the scale

of the instrument. (For the scale we can take the Stone representation space
of BI) We still assume that we have a convex set S of states. Given σ ∈ S,
I ∈ I, and A ∈ BI we denote by 〈σ, I(A)〉 the asymptotic frequency that in
the state σ the instrument has a reading in the event A of the scale. We must
assume by the frequentistic interpretation that for each σ ∈ S, A 7→ 〈σ, I(A)〉
is a measure on BI Of special interest are the instruments in which B is finite,
say a Boolean algebra with n atoms. In practice, due to technical limits on
resolution of observations, we can always assume the scale of an instrument
to be divided into a finite number of mutually disjoint subsets. Other types of
scales are idealizations introduced for ease in theoretical investigations. It’s
easier in physical theories for example, to talk about an abstract length with
values in [0,∞) instead of actual metersticks, microcalipers, interferometers,
planetary orbits, and other length measuring instruments and methods as
mathematical objects formalized within the theory. For foundation studies
however, these generalizations to infinite algebras are cumbersome to handle,
and we shall therefore assume for the rest of this work that B is always a finite
Boolean algebra. If now B has n atoms, we can assume it to be the Boolean
algebra of subsets of the set {1, 2, . . . , n}. This latter set we denote by n. and
the associated Boolean algebra by Bn. The trivial algebra {∅} we denote by
B0. For ease of notation, we denote the atom {k} of Bn simply by k. We can
now think of I as being the simultaneous observation of n mutually exclusive
properties. We shall refer to these properties as the atomic observations,
or simply atoms of I. A copy of a state can posses only at most one of
these properties, which one however, can vary from copy to copy. In these
circumstances we can also introduce the property which is the conjunction of
the negations of the given set of properties. That is, we can add to B one more
atom and now assume that in addition to having a set of mutually exclusive
properties we also have a set of mutually exhaustive ones. This procedure
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we call exhaustion of the instrument I. If we denote by $ the largest element
of B then we say that I is exhaustive if 〈σ, I($)〉 = 1 for all σ ∈ S. The
exhaustion of any instrument is clearly exhaustive. A final convenient way
of intuitively thinking of I with B finite with n atoms is the following: think
of I as an apparatus with a panel of n lights, when applied to a copy of the
state σ any one of the lights may register, but never more than one. When I
is exhaustive then there is always some light that does register. Every event
A ⊂ B is a subset of lights, and 〈σ, I(A)〉 is the asymptotic frequency with
which a light registers within the subset A when applied to a state σ. Let
now Al, A2, . . . , Ak be a set of k mutually disjoint subsets of the atoms of Bn.
We can now consider the instrument J on Bk defined as follows: if S ⊂ k,
then 〈σ, J(S)〉 =

∑
{〈σ, I(Aj)〉 | j ∈ S}. We call J a condensation of I and

I a refinement of J . In terms of properties, the j-th atomic property of J is
the logical disjunction of the atomic properties of I that lie in the subset Aj .
In terms of a panel of lights we consider the event of any light registering in
the subset Aj as triggering of the registration of the j-th light on the panel of
J . For each Aj that is empty we therefore have a dummy light on the panel
of J that never registers. Note that the union of the Aj is not necessarily all
the atoms of Bn, certain atoms may thus be simply ignored. Such a situation
may turn an exhaustive instrument into one which is not.

Least the reader be led terribly astray, we must warn him or her that the
above notion of simultaneous observations is rather different from the same
called notion as is commonly considered in quantum mechanics. The actual
physical mechanism that leads to the assignment of one of the properties
of an instrument to a copy of a state could involve interactions with the
copy over a prolonged time interval. What is essential is that only one of the
properties is affirmed of the copy in the end. We shall explore in Chapter 7 the
relationship that our notion has to the one of the usual quantum mechanical
models.

Consider now an operation, that is, an observation followed by either
rejection or an acceptance as a new state. Given such an operation θ and
a further observation p, we can consider the situation from two points of
view, as diagrammed below (note that p is not the observation involved in
the mechanism of the operation, it is a subsequent one):
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σ θ p- -

︸ ︷︷ ︸

new prepartion
procedure

new state
θ∗σ

@
@

@I

σ θ p- -

︸ ︷︷ ︸

new observation
θp

The two viewpoints are equivalent, though for certain purposes the sec-
ond is more convenient, for if θ rejects every copy of σ, then θ∗σ strictly
speaking doesn’t exist, yet θp continues to make sense. Now this type of
reasoning, though extensively treated in the literature on the foundations of
quantum mechanics, suffers from the same defects that lead to the consider-
ation of instruments instead of isolated observations. If we now admit that
the observation needed to define an operation can be performed by an in-
strument, then instead of rejecting or accepting, we can classify according to
the response of the instrument. A more adequate reflection of actual practice
would be diagrammed as follows:

θ-σ

-
-

-

1

2

...

k

That is, a copy of a state is prepared and observed with an instrument; on
the basis of the result, the copy is either rejected or is classified as belonging
to one of k possible new states. We say the operation has k exits . In terms
of beam physics parlance, θ is a beam splitter, for other situations however
this is merely a metaphor. In a psychological experiment for instance, the
subject can be given a preliminary test, and on the basis of the result he
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or she is classified within any one of k categories. Note that we are not
assuming that after such a classification the subject continues to be a copy
of the original state; the fact of having been tested could certainly influence
subsequent behavior, and such influences must be part of the formalism.

Note that outputs of operations can be inputs to others so that a com-
plicated array can be constructed. For example:

θ1

θ2

θ3

θ4

-

-

-

-

-

- -

- -
-
-

-

In terms of a collection of tests, we can consider such an array as a system
comprising an initial test and contingent subsequent tests by which a subject
is prepared for final observations in any one of the six categories at the
end. Furthermore, anywhere along the line any one of the operations could,
depending on its functioning, reject the subject from the system. Note that
in the above diagram, the double entries in θ3 and θ4 are merely apparent,
since a given copy of the state makes its way only along one route, and by
the very interpretation of the formalism, there is never any simultaneous
entries or exits. We can think of the whole array above as itself being a
single operation with six exits.

Given an operation θ with k exits, we can place a different instrument at
each exit:

θ-

-
-

-

I1
I2

...

Ik

︸ ︷︷ ︸

new instrument
θ(I1, I2, . . . , Ik)
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If each Ii is based on Bni
, the combined system is now a new instrument

θ(I1, I2, . . . , Ik) based on Bn, n =
∑
ni. Of course even if each Ii is exhaus-

tive, the new instrument may not be, since θ may reject some copies.
We must now introduce into our scheme something that would corre-

spond to the convex combinations of observations introduced in the first
chapter. Let Λ = (λl, λ2, . . . , λn), λi ≥ 0,

∑
λi = 1 be a probability mea-

sure on n points. We define an operation θΛ that functions according to
the following prescription: Divide the unit interval [0, 1] into the following
subintervals [0, λ1), [λ1, λ1 + λ2), [λ1 + λ2 + · · · + λj , λ1 + λ2 + · · · + λj+1),
[λ1 + λ2 + · · ·+ λn−1, λ1 + λ2 + · · ·+ λn] There are n such intervals, some of
which may be empty. Whenever a copy of a state σ is presented to θΛ pick
a number randomly in [0, 1] from a uniform distribution there and classify
the copy of σ as belonging to class i if this number fell within the i-th inter-
val. Since the operation θΛ does not involve any interaction with the copy of
σ, and in fact the result can be decided even before that particular copy is
prepared, we must admit that at each one of the exits of θΛ the given copy
continues to be a copy of the same state. In other words θΛ simply classifies
a-priori in a random manner a fraction λi of the population σ as belonging
to class i without basing the classification on any characteristics of σ at all.
We call θΛ a stochastic splitter .

There is yet another sort of operation that must be introduced into any
formalism because it can always be performed in practice. Let I be an
instrument with n atoms and τ1, τ2, . . . , τn ∈ S. We can define and operation
as follows: Observe a state σ with I, if I does not register, destroy the copy
of the state, if the k-th property of I registers, destroy the copy of the state
and prepare state τk considering this as the outcome of the operation. Notice
that here the transformed copy of the state τk could have absolutely nothing
to do with the original copy of σ since the preparation can be performed
independently of anything to do with σ. We call this operation a substitution

operation and denote it by θIτ where τ = (τ1, τ2, . . . , τn). It could better
be called a sleight of hand operation being a type of operation by which a
magician puts a bottle of champagne in a hat and then pulls out a rabbit.
We use both names in this work.

Now except for sleight of hand operations, we shall usually in what fol-
lows abandon all mention or investigation of the instrument needed in the
mechanism of the operation. All that matters are the results of applying the
operation to a state σ. In fact in many operations, such as light filters for
example, the instrument is not made accessible to the experimenter, the oper-



A More Extensive Formalism 39

ation performs its classifications automatically, making the said instruments
something that is only virtually present.

We now formally define a statistical theory:

Definition 4.1 A statistical theory consists of the following:

1. A convex set S called the set of states.

2. A set I called the set of instruments. This set is a disjoint union of

subsets In, n = 1, 2 . . . where if I ∈ In we say n is the sort of I and

call it the number of its atomic observation, or atoms for short.

3. A set R called the set of operations. This set is a disjoint union of

subsets Rn, n = 1, 2 . . . where if θ ∈ Rn we say n is the sort of θ and

call it the number of exits of the operation.

These objects are subject to the following laws:

Axiom 4.1 Each I ∈ Inis a function I(·) : Bn → Conv (S, [0, 1]). We call

I(A) the property of the reading of I to fall within A. The number 〈σ, I(A)〉
has the frequentistic interpretation of being the asymptotic frequency with

which the event A occurs in the state σ when viewed with I. According to

this interpretation we must assume that 〈a, I(·)〉 is a measure on Bn for all

σ.

Axiom 4.2 Each θ ∈ Rk is a map θ : Ik − I. We call θ(I1, I2, . . . , Ik) the

instrument constructed by placing Ij on the j-th exit of θ. If nj is the sort of

Ij, then the sort of θ(I1, I2, . . . , Ik) is n =
∑
nj. We identify Bn with ⊕Bnj

via the injections Bnj
→ Bn that sends the atom m of Bnj

into the atom

m+
∑j−1

i=1 ni of Bn.

Axiom 4.3 For any k ≥ 1 and any k-tuple Λ = (λ1, . . . , λk) of numbers

such that λi ≥ 0,
∑
λi = 1; there is an operation θλ ∈ Rk such that

〈σ, θΛ(I1, I2, . . . , Ik)(A)〉 =
∑
λi〈σ, Ii(A ∩ Bni

)〉 where A ∩ Bni
is the pro-

jection of A ∈ Bn onto the summand Bni
. We call θΛ a stochastic splitter.

For k = 1 we have θ1(I) = I and we call θ1 by Id being the identity map

I → I.
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Axiom 4.4 For any I ∈ Ik and any τ = (τ1, τ2, . . . , τk) ∈ Sk there is an

operation θIτ such that 〈σ, θIτ (I1, . . . , Ik)(A)〉 =
∑

i〈σ, I({i})〉〈τi, Ii(A ∩ Bni
)〉

with the same notation as in axiom 4.3. We call θIτ a substitution or sleight
of hand operation.

Axiom 4.5 The set R is closed under compositions. That is, given θ ∈ Rm

and ψ1, . . . , ψm in Rn1 , . . . ,Rnm
respectively, there is an operation θ{ψ1, . . . , ψm}

in Rn1+···+nm
which satisfies:

θ{ψ1, . . . , ψm}(I
(1)
1 , . . . , I(1)

n1
, I

(2)
1 , . . . , I(2)

n2
, . . . , I

(m)
1 , . . . , I(m)

nm
) =

θ(ψ1(I
(1)
1 , . . . , I(1)

n1
), ψ2(I

(2)
1 , . . . , I(2)

n1
), . . . , ψm(I

(m)
1 , . . . , I(m)

nm
)).

This allows us to form systems of operations. For example, the system shown
on page 37 is

θ1{θ2{Id, θ3{Id, θ4}}, θ3{Id, θ4}, θ4, Id}.

Axiom 4.6 We assume I is closed under condensation. That is, if I ∈ Im
and φ : Bn → Bm is a lattice morphism, then I ◦ φ ∈ In. We call I ◦ φ the

condensation of I along φ. The condensation defined by the map ι : B1 → Bm

which sends the only atom 1 of B1 into the largest element $ of Bm is called

a total or full condensation of I. It corresponds to forming the conjunction

of all the atomic properties of I.

Axiom 4.7 We assume R is closed under condensations of exits, that is any

subset of exits can be considered as a single exit. Let θ ∈ Rn and φ : n → m

be any map. Then we must have φ∗θ ∈ Rm where

φ∗θ(I1, . . . , Im) = θ(Iφ(1), . . . , Iφ(n)) ◦ φ
§

and where φ§ : ⊕m
j=1Bnj

→ ⊕n
i=1Bnφ(i)

is the lattice morphism defined by

φ§(A ∩ Bnj
) =

⋃

i{A ∩ Bnφ(i)
| j = φ(i)}.

Hence to condense the first two exits of a three exit operation we must define
what would happen if we place an instrument I on the condensation of the
two exits an instrument J on the third. Place therefore a copy of I on the
first two exits, J on the third, and condense the corresponding atoms of the
two copies of I.
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We also include under this axiom the act of ignoring an exit, which we
consider as a type of condensation. Thus we assume that if θ ∈ Rn then
κθ ∈ Rn−1 where κθ(I1, I2, . . . , In−1) is that condensation of θ(I1, I2, . . . , In)
which ignores all the atoms of In. Operationally this corresponds to rejecting
every copy of a state that leaves by the last exit.

Axiom 4.8 We assume that I is closed under exhaustion. If I ∈ In, then

its exhaustion Î ∈ In+1 is defined on say Bn ⊕ B1 by:

〈σ, Î(A)〉 =

{
〈σ, I(A)〉 if A ∩ B1 = ∅
〈σ, I(A ∩ Bn)〉 + 1 − 〈σ, I($)〉 otherwise.

For any instrument I consider now the total condensation of Î This is an
instrument 1 of sort 1 with the property that 〈σ, 1〉 = 1 for all σ. Consider
now 1̂ and condense by ignoring the first atom; this is now an instrument 0

of sort 1 such that 〈σ, 0〉 = 0 for all σ. With these two special instruments
we can now proceed with the axiomatization.

Axiom 4.9 We assume that the exits of an operation can be viewed as new

state preparations if when applied to a state σ, a positive fraction of times

the particular exit is used. Let θ ∈ Rn and consider those i for which νi(σ) =
〈σ, θ(0, 0, . . . , 0, 1, 0, . . . , 0) 6= 0 where 1 stands in the i-th place. We must

now allow that there exists a state θ
(i)
∗ σ such that for all I1, I2, . . . , In;

〈σ, θ(I1, . . . , In)(A)〉 =
∑

{νi(σ)〈θ(i)
∗ σ, Ii(A ∩ Bni

)〉 | νi(σ) 6= 0}.

Note that νi(σ) is the fraction of times a new state exits through i when θ
is applied to σ. By convention we will write sums of the form above ranging
over all i having it understood that if νi(σ) = 0, the corresponding term is
not present since no state leaves by that exit.

We have in particular for θ = θIτ that νi(σ) = 〈σ, I({i})〉 and θ
(i)
∗ σ = τi,

and for θ = θΛ that νi(σ) = λi, θ
(i)
∗ σ = σ.

Axiom 4.10 Instruments separate states. That is, if 〈σ, I(A)〉 = 〈σ′, I(A)〉
for all I and A, then σ = σ′.

We note that defining I ∈ In as a map Bn → Conv (S, [0, 1]) and θ ∈ Rn

as a map In → I we are a already identifying as being n identical any two
realizable instruments or operations that have identical statistical behavior.
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This is similar to the assumption previously made about the sets S and O, but
now that we have a greater variety of mathematical objects we recover certain
distinctions that previously we lost. For example, for tossing a balanced coin,
we can introduce the instrument that looks at the two exclusive possibilities
of heads and tails, though we still can’t tell which is which.

The complexity of the above formalization is its major drawback, fortu-
nately some simplification is possible. We proceed to reformulate the theory
to make it more manageable.

Having a statistical theory, we define O as being a subset of Conv (S, [0, 1])
consisting of the union of all images of I ∈ I:

O =
⋃

{I(A) |A ∈ BI , I ∈ I}.

Proposition 4.1 O is identifiable with I1 that is with the instruments of

sort 1.

Proof: If I ∈ I1 then we identify I with the image I(1) of the only atom
1 of B1. If now p = I(A), I ∈ In, A ∈ Bn, then condensing along the map
φ : B1 → Bn defined by 1 7→ A we obtain an instrument of sort 1 which
corresponds exactly to p. Q.E.D

Proposition 4.2 O is a convex subset of Conv (S, [O, 1]).

Proof: Let p1, p2 ∈ I1 be two elements of O and 0 ≤ λ ≤ 1. Con-
sider the stochastic splitter θ(λ,1−λ) and let q be the total condensation of
θ(λ,1−λ)(p1, p2). Then q = λp1 + (1 − λ)p2 Q.E.D

Proposition 4.3 O is closed under negation, that is, if p ∈ O then there is

a ¬p ∈ O such that 〈σ,¬p〉 = 1 − 〈σ, p〉 for all σ.

Proof: Let p ∈ I1 and let I be the exhaustion of p; then ¬p is the image
of the new atom of I. Q.E.D

We have already shown on page 41 the following:

Proposition 4.4 O contains an element 1 such that for all σ, 〈σ, 1〉 = 1.

We have thus shown that (S,O, 〈·, ·〉) is a separated statistical triple where
〈·, ·〉 is the restriction of the natural duality between S and Conv (S, [0, 1])
to S × O.
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We can now consider each I ∈ In as being a map I : Bn → O and thus
interpret each instrument within the triple (S,O, 〈·, ·〉) as is usually done.

There is still a more cogent way of viewing In; it can be interpreted as a
subset of On by the identification I 7→ (I(1), I(2), . . . , I(n)).

Proposition 4.5 In is a convex subset of On.

Proof: Let 0 ≤ λ ≤ 1; I, J ∈ In. As an element of On, λI + (1 − λ)J
is equal to the condensation of θ(λ,1−λ)(I, J) which identifies corresponding
atoms of I and J . Q.E.D

Let now φ : n → m be any partial map and consider the induced map
φ∗ : V0(O)n → V0(O)m given by φ∗(a1, . . . , an) = (b1, . . . , bm) where bj =
∑

{ai |φ(i) = j}. The condensation axiom for instruments now becomes:

Proposition 4.6 φ∗(In) ⊂ Im.

Here of course we identify Inwith its corresponding subset of V0(O)n.
Consider now the map e : V0(O)n → V0(O)n+1 given by e(a1, . . . , an) =

(a1, . . . , an, 1−a1 −a2 + · · ·−an) The exhaustion axiom for instruments now
becomes:

Proposition 4.7 e(In) ⊂ In+1.

We now proceed to interpret each operation θ within the triple. Let
θ ∈ Rn and define θ(i) : O → O by the following formula: given p

〈σ, θ(i)p〉 = νi(σ)〈θ(i)
∗ σ, p〉

where in case νi(σ) = 0, the right hand side is by convention zero. We
first need to show that θ(i)p ∈ O. But we have from axiom 4.9 that θ(i)p is
the total condensation of θ(0, . . . , 0, p, 0, . . . , 0) where p is in the i-th place.
Furthermore, axiom 4.9 shows that O is completely determined by the θ(i)

since the equation there can be written as:

〈σ, θ(I1, . . . , Ik)(A)〉 =
∑

〈σ, θ(i)Ii(A ∩ Bni
)〉.

Let Q be the set of all θ(i) for all θ ∈ R.

Proposition 4.8 Q is identifiable with R1.
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Proof: Clearly if θ ∈ R1, then θ is immediately identifiable with θ(1) ∈ Q.
Let therefore θ ∈ Rn, n > 1, and consider the condensation of θ obtained by
rejecting all exits other than i. As an element of R1 this operation is now
identifiable with θ(i). Q.E.D

With obvious changes in notation we proceed.

Proposition 4.9 Each θ ∈ Q is an affine map.

Proof: For each σ ∈ S, 〈σ, θ(λp + (1 − λ)q)〉 = ν(σ)〈θ∗σ, λp + (1 − λ)q〉 =
λν(σ)〈θ∗σ, p〉 + (1 − λ)ν(σ)〈θ∗σ, q〉 = λ〈σ, θp〉 + (1 − λ)〈σ, θq〉 =
〈σ, λθp+ (1 − λ)θq〉. Hence θ(λp+ (1 − λ)q) = λθp+ (1 − λ)θq Q.E.D

We have immediately from the definitions.

Proposition 4.10 ν(σ) = 〈σ, θ1〉.

In particular we see that in all cases 〈σ, θp〉 ≤ 〈σ, θ1〉.
If now θ, θ′ ∈ R1 then θθ′ corresponds exactly to the operation θ{θ′}.

Hence we have:

Proposition 4.11 If θ, θ′ ∈ Q, then θθ′ ∈ Q.

We thus see that Q is a semigroup; in fact it is a monoid with zero, since
Id is the identity and the map p 7→ 0, the zero, can be identified with the
condensation of the stochastic splitter θ(0,1) obtained by ignoring the second
exit.

Proposition 4.12 Q is a convex set.

Proof: If θ1, θ2 ∈ Q and 0 ≤ λ ≤ 1, then λθ1 + (1 − λ)θ2 is the full
condensation of θ(λ,1−λ){θ1, θ2}. Q.E.D

We can now identify Rk with a subset of Qk by the map θ 7→ (θ(1), . . . , θ(k))
Since every θ ∈ Q has an obvious extension, still called θ, to a linear map
V0(O) → V0(O) we can thus also think of Qk as a subset of (Lin (V0(O), V0(O)))k.

Proposition 4.13 Rk is a convex subset of Qk.

Proof: If θ, θ′ ∈ Rk and 0 ≤ λ ≤ 1, then λθ+ (1− λ)θ′ can be identified
with the condensation of θ(λ,1−λ){θ, θ′} which identifies corresponding atoms
of θ and θ′. Q.E.D

The existence of stochastic splatters now becomes:
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Proposition 4.14 If 0 ≤ λi,
∑k

i=1 λi = 1, then (λ1Id, λ2Id, . . . , λkId) ∈ Rk.

The existence of substitution operations now becomes:

Proposition 4.15 Let I = (p1, . . . , pk) ∈ Ik and τ = (τ1, . . . , τk) ∈ Sk, then

(〈τ1, ·〉p1, . . . , 〈τk, ·〉pk) ∈ Rk

The axiom of composition now becomes:

Proposition 4.16

If (θ1, . . . , θm) ∈ Rm and (ψj1, . . . , ψ
j
nj

) ∈ Rnj
; j = 1, . . . , m then

(θ1ψ
1
1 , θ1ψ

1
2, . . . , θ1ψ

1
n1
, θ2ψ

2
1, . . . , θ2ψ

2
n2
, . . . , θmψ

m
1 , . . . , θmψ

m
nm

) ∈ Rn

where n = n1 + · · · + nm.
Let now φ : n → m be any partial map and consider the induced map

φ0 : (Lin (V0(O), V0(O)))n → (Lin (V0(O), V0(O)))m given by φ0(A1, . . . , An) =
(B1, . . . , Bm) where Bj =

∑
{Ai |φ(i) = j}. The condensation axiom for op-

erations now becomes:

Proposition 4.17 φ0(Rn) ⊂ Rm.

The fact that operations act on instruments to produce other instruments is
now expressed by:

Proposition 4.18 If (θ1, . . . , θk) ∈ Rk and Ij = (pj1, . . . , p
j
nj

) ∈ Inj
,

j = 1, . . . , k then (θ1p
1
1, . . . , θ1p

1
n1
, . . . , θkp

k
1, . . . , θkp

k
nk

) ∈ In where n =
n1 + · · ·+ nk.

In view of the above propositions we now redefine a statistical theory as
follows:

Definition 4.1′ A statistical theory T is a statistical triple (S,O, 〈·, ·〉)
endowed with the following additional structure:

1. For each n ≥ 0 there is given a convex subset In ⊂ On.

2. There is given a convex subsemigroup Q of Ĉonv (O,O) containing
Id and 0.

3. For each n ≥ 1 there is given a convex subset Rn ⊂ Qn.
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This collection of objects satisfies the following axioms:

Axiom 4.2′ The statement of Proposition 4.18

Axiom 4.3′ The statement of Proposition 4.14

Axiom 4.4′ The statement of Proposition 4.15

Axiom 4.5′ The statement of Proposition 4.16

Axiom 4.6′ The statement of Proposition 4.6

Axiom 4.7′ The statement of Proposition 4.17

Axiom 4.8′ The statement of Proposition 4.7

Axiom 4.9′ Given σ ∈ S and θ ∈ Q, then:

1. If 〈σ, θ1〉 6= 0, ∃ θ∗σ ∈ S such that ∀ p ∈ O, 〈σ, θp〉 = 〈σ, θ1〉〈θ∗σ, p〉.

2. If 〈σ, θ1〉 = 0 then ∀ p ∈ O, 〈σ, θp〉 = 0.

We note that there is no axiom correspondent to Axiom 4.1 since the
content of that axiom is already implied in the definition; likewise for Axiom
4.10.

Let (θ1, θ2, . . . , θk) ∈ Qk be any k-tuple. Given instruments I1, I2, . . . , Ik,
with Ii based on Bn, consider the map I : ⊕Bni

→ Conv (S, [0, 1]) given by

〈σ, I(A)〉 =
∑

〈σ, θiIi(A ∩ Bni
)〉. (4.1)

This map may or may not be an instrument. If for every set of instruments
I1, I2, . . . , Ik; I is an instrument, we say that (θ1, . . . , θk) is consistent .

The question now arises whether given a consistent k-tuple (θ1, θ2, . . . , θk)
if there is an operation θ ∈ Rk such that θi = θ(i). Given instruments
(I1, . . . , Ik) the existence of the instrument I above means operationally that
it can be physically realized to any degree of approximation. The ability to
do so by means other than the existence of an operation θ with θi = θ(i) is
hard to imagine but is not to be excluded. We thus propose to introduce
a simplifying assumption at this level of our formalization, noting however
that it is a phenomenological assumption.
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We say that a statistical theory is operational if every consistent k-tuple
(θ1, θ2, . . . , θk) is of the form θi = θ(i) for some θ ∈ Rk. Noting that for
any such θ the k-tuple (θ(1), . . . , θ(k)) is always consistent we see that in an
operational theory the sets Rk are completely determined by the sets I and
Q.

We note that the basic phenomenological assumption which distinguishes
operational theories from more general ones is the following: If instruments
exist whose behavior in relation to other existing instruments and to exist-
ing operations is given by formula (4.1), then it’s possible to construct a
many exit operation such that placing I1, . . . , Ik on the exits we obtain the
instrument I. The introduction of this hypothesis rests on certain concep-
tual distinctions. We can conceive of two types of operations, those that are
immediately followed by observations at each exit and which are so tightly
bound to their observing instruments that it doesn’t make sense to detach
them, and those in which we can effect further operations at the exits by de-
taching the instruments. We can conceive that the first type be possible and
the second type not. The first type is not essentially distinguishable from
just another type of instrument and it only effectively acts as an operation
with instruments on the exits. Saying that an actual operation exists means
that we allow for the possibility of removing some of the exit instruments
and substituting them by others or by further operations. Of course, there
is no reason why a statistical science be operational in these terms. It seems
to us though that operational statistical theories is the next simplest level of
formalism beyond statistical triples.

We close this chapter with the demonstration that a statistical triple
(S,O, 〈·, ·〉) has associated to it a canonical operational statistical theory that
in a certain sense admits the maximum family of instruments and operations.

Let (S,O, 〈·, ·〉) be given. We define In as the set of all maps of the form
I : Bn → O where n ≥ 1, and 〈σ, I(·)〉 is a measure on Bn. For further
use we enlarge on this. The Boolean algebra Bn can be viewed as the set
of characteristic functions on n. That 〈σ, I(·)〉 is a measure for all σ means
that we can extend I by convexity to the set of all functions f : n → [0, 1]
by setting I(f) =

∑
f(i)I({i}). Thus an instrument can be viewed as an

affine map from the set of observations O(Bn) of the Boolean triple based
on Bn to O with the two absurd observations corresponding. We shall thus
also consider I as an affine map O(Bn) → O. Let now Q be the set of all
affine maps θ : O → O that satisfy axiom 4.9′ . We reinterpret In now as
being a subset of On and one easily shows that In is convex and Axioms 4.6
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′ and 4.8′ are satisfied. We define Rn ⊂ Qn as consisting of consistent
n-tuples (θ1, . . . , θn). We first show that Q is convex and that Axiom 4.9′ is
satisfied. To do so we first establish a lemma.

Lemma 4.1 Let θi ∈ Q; ri ≥ 0, i = 1, . . . , k; σ ∈ S. Interpret each θi as a

linear transformation of V0(O). Then if D =
∑
riνθi

(σ) 6= 0 there is a state

σ∗ ∈ S such that for all p ∈ O, 〈σ,
∑
riθip〉 = D〈σ∗, p〉.

Proof: We have: 〈σ,
∑
riθip〉 =

∑
ri〈σ, θip〉 =

∑
riνθi

(σ)〈θi∗σ, p〉. Hence
we can take for σ∗ the state

∑
(riνθi

(σ)/D)θi∗σ. Q.E.D
To establish convexity of Q we need only note that if θ, θ′ ∈ Q; 0 ≤ λ ≤ 1;

then clearly λθ+(1−λ)θ′ ∈ Conv (O,O). Lemma 4.1 now shows that Axiom
4.9′ is satisfied by this convex combination.

To establish Axiom 4.7′ let (θ1, . . . , θn) be consistent and φ : n → m be a
partial map. We can always assume that φ is surjective, since (φ0θ)j = 0 for j
not in the image of φ and hence doesn’t contribute. Since φ can be factored
into a product of surjections, each one of which is injective except on a
single pair of points, we can reduce the probem by induction and relabelling
to showing that θ1 + θ2 ∈ Q and that (θ1 + θ2, θ3, . . . , θn) is consistent.
Now consistency will follow from the axiom on condensations of instruments,
which already has been established. We first show therefore that θ1 + θ2
maps O into O. Let p ∈ I1, by definition of consistency, θ(p, p, 0, . . . , 0) is an
instrument, and its total condensation gives θ1p+θ2p. Hence θ1+θ2 : O → O.
Lemma 4.1 now establishes Axiom 4.9′ and the condensation axiom for
operations is proved.

Let θ, θ′ ∈ Q and assume 〈σ, θ1〉 6= 0. We have 〈θ∗σ, θ′p〉〈σ, θ1〉 =
〈σ, θθ′p〉. Set p = 1 and we have

〈θ∗σ, θ
′1〉〈σ, θ1〉 = 〈σ, θθ′1〉.

Suppose 〈σ, θθ′1〉 6= 0 then 〈θ∗σ, θ′1〉 6= 0 and so 〈θ∗σ, θ′p〉 = 〈θ′∗θ∗σ, p〉〈θ∗σ, θ′1〉
hence 〈θ′∗θ∗σ, p〉〈θ∗σ, θ′1〉〈σ, θ1〉 = 〈σ, θθ′p〉 or 〈θ′∗θ∗σ, p〉〈σ, θθ′1〉 = 〈σ, θθ′p〉
which means that in this case (θθ′)∗σ = θ′∗θ∗σ. Now under the hypoth-
esis that 〈σ, θ1〉 6= 0 we see from the displayed equation above that if
〈σ, θθ′1〉 = 0 then 〈θ∗σ, θ′1〉 = 0 hence for all p, 〈θ∗σ, θ′p〉 = 0 which amounts
to 〈σ, θθ′p〉 = 0. Suppose now 〈σ, θ1〉 = 0 then by definition 〈σ, θθ′1〉 = 0
and still by definition we have for all p, 〈σ, θθ′p〉 = 0. We have thus shown
that θθ′ ∈ Q, and so Q is a semigroup. Clearly the maps Id and 0 : p 7→ 0

belong to Q and these serve as the identity and zero of the semigroup.
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The other axioms are now easily established. Axiom 4.3′ is true since
if λi ≥ 0,

∑
λi = 1; i = 1, . . . , n; then (λ1Id, . . . , λnId) is consistent. Axiom

4.2′ follows directly from the definition of consistency. To establish Axiom
4.4′ , let I = (p1, . . . , pk) be an instrument, τ = (τ1, . . . , τk) ∈ Sk , and
Ij = (pj1, . . . , p

j
nj

) be any instrument for j = 1, . . . , k. We must show that

〈τ1, p
1
1〉p1, . . . , 〈τ1, p

1
n1
〉p1, 〈τ2, p

2
1〉p2, . . . , 〈τ2, p

2
n2
〉p2, . . .

. . . , 〈τk, p
k
1〉pk, . . . , 〈τk, p

k
nk
〉pk

are atoms of an instrument. Consider I as an affine map O(Bk) → O and let
ψ : O(⊕Bni

) → O(Bk) be the affine map given by sending the characteristic
function of {m} into 〈τa, pab〉 times the characteristic function of {a} where
n1 + · · · + na−1 < m ≤ n1 + · · · + na and b = m − (n1 + · · · + na−1). It is
readily checked that ψ is indeed well defined and that I ◦ ψ defines as an
instrument precisely the set of atomic observations displayed above.

To show Axiom 4.5′ , let θ = (θ1, . . . , θm) and ψj = (ψj1, . . . , ψ
j
nj

); j =
1, . . . , m be consistent. Placing any instruments of the exits of the ψj we
obtain by consistency instruments Ij, placing these now on the exits of θ we
obtain by consistency of θ an instrument I which however is the instrument
obtained by placing the original instruments on the exits of θ{ψ1, . . . , ψm}
showing the consistency of this last combination.

The statistical theory that we constructed above from a statistical triple,
we call the canonical statistical theory associated to the triple. It is the most
generous theory that a triple can possess.

We have thus introduced the following levels of generality: 1) Statistical
triples, 2) Operational statistical theories, and 3) Statistical theories. We
have also shown that each type can be taken to be a particular case of the
higher type. Each new type introduces distinctions which the earlier one
ignores. An operational statistical theory does not admit that any map
I : Bn → O for which for all σ, 〈σ, I(·)〉 is a measure, is necessarily a
realizable measuring process. It does however admit that the realizability of
certain instruments implies the realizability of certain many exit operations.
General theories remove this final assumption.
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Chapter 5

Idealizations

Mathematical models of phenomena generally have a great difficulty con-
structing mathematical objects that correspond to actual phenomenal rela-
tions. Models generally give simple relations among idealized objects, and
these in turn can only be approximated by actual situations. In quantum
mechanics, for example, we formalize the possibility of precise measurements,
that is we assume that to a certain projection P corresponds a certain ob-
servation procedure. Now actually, the physically realizable observation pro-
cedure does’t correspond to P due to inherent errors and ambiguities in the
construction of the apparatus. The projection is an idealized measurement.
The actual measuring apparatus would,within a Hilbert space model appear
as an operator A, 0 ≤ A ≤ 1, but which particular operator this is, is not
at all easily determinable. We must admit therefore that a phenomenolog-
ically constructed statistical theory could for theoretical reasons be looked
upon as beng imbedded within another in which ideal objects can appear,
and whose appearance is justified by the relative ease by which they can be
treated mathematically. To formalize this notion we first make the following
observation: Given a statistical theory, we can place on S the initial topology
with respect to a family of functions of the form: σ 7→ 〈σ, p〉. Dually, we can
place on O the initial topology with respect to some family of functions of
the form: p 7→ 〈σ, p〉. Since each In can be considered as a subset of On we
can place on In the topology induced by the product topology on On, and I
can be considered as a topological sum of the In. Finally on Rn we can place
the topology of pointwise convergence on In seeing that Rn is a set of maps
In → I. We now view R as the topological sum of the Rn. Let there now be
two statistical theories T = (S, I,R) and T ′ = (S ′, I ′,R′). we say that T ′
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is an idealization of T if there are given inclusions S ⊂ S ′, I ⊂ I ′, R ⊂ R′

such that in T ′ both 〈σ, I(A)〉 and θ(I1, . . . , In) coincide with their values in
T when all objects belong to T , and such that S, I, and R are dense in S ′, I ′,
and R′ in the following topologies: the topology on S ′ is the initial one with
respect to the family {σ′ 7→ 〈σ′, p〉 | p ∈ O}, and the topology on O′ is the
initial one with respect to the family {p′ 7→ 〈σ, p′〉 | σ ∈ S}. The topologies
on I ′ and R′ are then constructed as explained above. The intuitive content
of this density requirement is that ideal objects can be approximated by real
ones to any degree of approximation that can be defined by a finite number of
real objects. Stronger criteria of approximation can of course be considered.
The study of the class of all idealizations of a given theory is an important
undertaking since it should provide us with a way of conceiving all possible
ideal theoretical frameworks for a given empirical situation. we don’t pursue
this question further, but point out that except for the explicitly empirical
triple discussed in the first chapter, all of the examples so far considered
should be thought of as already being idealizations of some unspecified but
more phenomenological theories.

One idealization that can always be carried out is to assume each of
the convex sets S, In, Rn to be algebraically closed. We call a convex set
Calgebraically closed if each morphism φ : [0, 1) → C can be extended to a
morphism φ̄ : [0, 1] → C. Each convex set is contained in an algebraically
closed set C̄ such that if D is any algebraically closed set, and ψ : C → D
is a morphism, then there is a unique extension ψ̄ : C̄ → D. To see this
we note that the Conv inclusion ι : [0, 1) ⊂ [0, 1] is a bimorphism, for as a
Set map we can identify V (ι) : V ([0, 1)) → V ([0, 1]) with R2 ≃ R2 which
certainly gives a bimorphism in Bsn. This means that any two extensions
of φ : [0, 1) → C to [0, 1] are equal. From this we can conclude that the
intersection of any family of algebraically closed sets is algebraically closed.
Thus let C̄ be the intersection of all algebraically closed sets containing jC in
V (C). We see that C̄ ⊂ {x ∈ V (C) | τ(x) = 1} since the latter hyperplane is
algebraically closed. If ψ : C → D is a morphism into an algebraically closed
convex set D we have by the fact that V (C) is algebraically closed that given
any morphism φ : [0, 1) → V (ψ)−1jD there is a commutative diagram:
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[0, 1]
φ̄2 - V (C)

�
�

�
�

�
ι

�

�
�

�
�

�
��

[0, 1]
φ - V (ψ)−1jD V (D)

V (ψ)

?

�
�

�
�

�
�

ιD

�

[0, 1]

ι

? φ̄1 - jD

V (ψ)

?

Now V (ψ) ◦ φ̄2 ◦ ι = ιD ◦ φ̄1 ◦ ι ⇒ V (ψ) ◦ φ̄2 = ιD ◦ φ̄1 since ι is an epi-
morphism. This shows that φ̄2([0, 1]) ⊂ V (ψ)−1jD, that is, that V (ψ)−1jD
is algebraically closed, hence C̄ ⊂ V (ψ)−1jD and V (ψ)C̄ ⊂ jD, proving the
claim.

The reader can now straightforwardly, though laboriously, check that
replacing S, In, and Rn by their algebraic closures we can uniquely extend
all of the defining morphisms of a statistical theory to act within the algebraic
closures, thus passing to an idealization where all of the defining convex sets
are algebraically closed.
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Chapter 6

The Category of Statistical

Triples

Any statistical theory embodies only a partial knowledge of the world. As
we pursue our investigation of phenomena, we may embody our knowledge in
various separate statistical theories. Assuming a certain fundamental unity
in nature, we expect that this fragmented knowledge can be combined into a
unified viewpoint. Thus we expect a certain calculus of statistical theories by
which they can be related and combined. The main result of this chapter is
that statistical triples form a certain bicomplete monoidally closed category,
providing us therefore with some of the necessary operations for such a cal-
culus. Because of the complexities involved, we’ve not investigated whether
statistical theories as defined in Chapter 4 form a similar category in any
natural way. If so, it would be a strong argument for the adequacy of the
concepts, and if not it should be cause for a search for modifications.

To prove our result we first establish a more general one and then spe-
cialize to statistical triples.

Let P = (C,D, 〈·, ·〉) and P ′ = (C ′, D′, 〈·, ·〉′) be two dualities and f :
C → C ′ and affine map. We then have an induced morphism f ∗ : D′ →
Ĉonv (C, [0, 1]) given by (f ∗d′)c = 〈fc, d′〉′. In case f ∗D′ ⊂ D we say f is
a morphism of dualities and we have: 〈fc, d′〉′ = 〈c, f ∗d′〉. We denote by
Dual the category whose objects are dualities and whose morphisms are the
maps just described. Note that a Dual morphism f : P → P ′ is also a Conv

morphism f : C → C ′ and also a Set morphism of the underlying sets. The
context will generally supply the needed interpretation. We also have two
functors C, D : Dual → Conv which using the above notation are defined as
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follows: C(P ) = C, C(f) = f ; D(P ) = D, D(f) = f ∗. Of these functors C is
covariant and D is contravariant. We also have the contravariant involution
J : Dual → Dual already defined on page 31; clearly J(f) = f ∗.

We denote by Trip the full subcategory of Dual of statistical triples.

Theorem 6.1 Dual is a bicomplete monoidally closed category.

Proof: Let ∆ be a diagram in Dual with a typical arrow δij : Pi → Pj.
We are then provided with two diagrams C∆ and D∆ in Conv with typical
arrows δij : Ci → Cj and δ∗ij : Dj → Di respectively. Since Conv is bicomplete
consider the limit C of C∆ with projections δi : C → Ci and the colimit D∆

of D∆ with injections δi : Di → D∆ Let now c ∈ C and define the morphism
ΨC : D∆ → [0, 1] by universality from the following diagram:

Di

δi - D∆

@
@

@〈δic, ·〉i R 	..
..
..
.

ΨC

[0, 1]

and let 〈·, ·〉∆ : C × D∆ → [0, 1] be given by 〈c, d〉∆ = Ψc(d). We must
show that 〈·, ·〉∆ is biaffine. The affinity in d is trivial, we show affinity in
c: Ψλc1+(1−λ)c2 ◦ δ

i = 〈δi(λc1 + (1 − λ)c2), ·〉i = λ〈δic1, ·〉i + (1 − λ)〈δic2, ·〉 =
λΨc1 ◦ δ

i + (1 − λ)Ψc2 ◦ δ
i = (λΨc1 + (1 − λ)Ψc2) ◦ δ

i which by universality
implies Ψλc1+(1−λ)c2 = λΨc1 + (1 − λ)Ψc2

We now make a few observations. Since δi : C → Ci, we have a map
δπ : C →

∏
Ci. As this map is injective as a map of sets whenever C is

a product of equalizer, we see that it’s injective for any diagram. Likewise
from δi : Di → D∆ we obtain a map δ

∐

:
∐
Di → D∆ and as this is surjective

as a map of sets when D∆ is a coproduct or coequalizer, it’s surjective for
any diagram.

Assume now that Ψc1 = Ψc2 thus Ψc1 ◦δ
i = 〈δic1, ·〉i = 〈δic2, ·〉i = Ψc2 ◦δ

i.
Since each Pi is separated we have δic1 = δic2 for all i and hence δπc1 =
δπc2 ⇒ c1 = c2 since δπ is injective.

On the other hand 〈·, ·〉∆ may not separate points of D∆. Let P =
(C,D, 〈·, ·〉) be the reduced system associated to (C,D∆, 〈·, ·〉∆). We show
that P is the limit of ∆. Let ρ : D∆ → D be the canonical morphism
and define γi = ρ ◦ δi. We first show that γi = δ∗i ; this is equivalent to
〈δic, di〉i = 〈c, γidi〉, but γidi = [δidi] so 〈c, γidi〉 = 〈c, [δidi]〉 = 〈c, δidi〉∆ =
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Ψc(δ
idi) = 〈δic, di〉i. Thus δi : P → Pi is a morphism in Dual with δ∗i = γi.

By construction the diagram below commutes

Pi

P
�����δi

*

HHHHHδj j
Pj

δij

?

Let now ηi : P0 → Pi be any family of morphisms compatible with ∆. We
have the diagrams:

C
δi - Ci

I
..........η �

�
�

�

ηi

�

C0

Di

δi - D∆
� δ

∐

∐

Di

	..
..
..
..
..
..
..

φ0

D0

η∗i

?
�...................

φ
D

ρ

?

By universality η and φ0 exist and are unique. To show the existence and
uniqueness of φ we must show that if d1 ∼ d2 in D∆ then φ0(d1) = φ0(d2) and
thus defining φ[d] by φ0(d). Since δ

∐

is surjective, we have for d ∈ D∆ a rep-
resentation d =

∑
λiδ

idi; thus, φ0(d) =
∑
λiφ0δ

idi =
∑
λiη

∗
i di. For c0 ∈ C0

then 〈ηc0, d〉∆ =
∑
λi〈ηc0, δidi〉∆ =

∑
λi〈δiηc0, di〉i =

∑
λi〈ηic0, di〉i =

∑
λi〈c0, η∗i di〉0 = 〈c0, φ0d〉0. On the other hand if d1 ∼ d2 have 〈ηc0, d1〉∆ =

〈ηc0, d2〉∆ ⇒ 〈c0, φ0d1〉0 = 〈c0, φ0d2〉0 ⇒ φ0d1 = φ0d2 since P0 is sepa-
rated. Hence φ exists and is unique. We now have 〈ηc0, [d]〉 = 〈ηc0, d〉∆ =
〈c0, φ0d〉0 = 〈c0, φ[d]〉0 establishing that φ = η∗. Clearly by construction the
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diagram

P0

P
�����η *

HHHHHηi j
Pi

δi

?

commutes and so P is indeed the limit of ∆.
The colimit of ∆ is now clearly J lim J∆ and so Dual is bicomplete.
We now proceed to monoidal closure. Consider the set Dual (P, P ′), this

is canonically identified with a subset of Conv (C,C ′). Let now f1, f2 ∈
Dual (P, P ′), then it’s easy to see that (λf1 + (1− λ)f2)

∗ = λf ∗
1 + (1− λ)f ∗

2 ,
hence by convexity of D, (λf ∗

1 + (1 − λ)f ∗
2 )(D′) ⊂ D or in other words

Dual (P, P ′) as a subset of Ĉonv (C,C ′) is convex. Let f ∈ Dual (P, P ′) and
(c, d′) ∈ C × D′; then we have a map C × D′ → [0, 1] given by (c, d′) 7→
〈fc, d′〉′ = 〈c, f ∗d′〉. Being biaffine it defines a morphism Ψf : C⊗D′ → [0, 1]
such that c⊗ d′ 7→ 〈fc, d′〉. The map 〈·, ·〉× : Dual (P, P ′)× (C ⊗D′) → [0, 1]
given by 〈f, r〉× = Ψf(r) is biaffine and defines a pairing (Dual (P, P ′), C ⊗
D′, 〈·, ·〉×). Now 〈·, ·〉× clearly separates points of Dual (P, P ′) but may not
separate points of C ⊗ D′. We let D̂ual (P, P ′) be the associated reduced
system (Dual (P, P ′), C ⊗ D′/∼, 〈·, ·〉⊗). It’s easy to see that it defines a
contra-covariant functor Dual × Dual → Dual . We now exhibit a tensor
product ⊗ in Dual and a natural bijection

Dual (P1, D̂ual (P2, P3)) ≃ Dual (P1 ⊗ P2, P3).

we thus define C = C(P1 ⊗ P2) to be C1 ⊗ C2 and D = D(P1 ⊗ P2) to be
the set of those morphisms f : C1 ⊗ C2 → [0, 1] such that for all c1 ∈ C1,
and all c2 ∈ C2 we have f(· ⊗ c2) ∈ D1, and f(c1 ⊗ ·) ∈ D2; of course
〈r, f〉 = f(r). Now 〈·, ·〉 separates points of D by definition. To show
separation in C it is enough to note that there is a canonical injection
D1 ⊗D2 → D defined by means of: 〈c1 ⊗ c2, d1 ⊗ d2〉 = 〈c1, d1〉〈c2, d2〉. Now
Dual (P1, D̂ual (P2, P3)) ⊂ Conv (C1, Ĉonv (C2, C3)) = Conv (C1 ⊗ C2, C3) so
we have a natural injection U : Dual (P1, D̂ual (P2, P3)) → Conv (C1⊗C2, C3).
If now φ ∈ Dual (P1, D̂ual (P2, P3)) we must show that Uφ ∈ Dual (P1⊗P2, P3)
which amounts to showing that if d ∈ D3 then (Uφ)∗d ∈ D. We have
〈c1 ⊗ c2, (Uφ)∗d〉 = 〈(Uφ)c1 ⊗ c2, d〉 = 〈(φc1)(c2), d〉 = 〈c2, (φc1)∗d〉, also
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〈(φc1)(c2), d〉 = 〈φc1, [c2 ⊗ d]〉 = 〈c1, φ∗[c2 ⊗ d]〉. From these equations
we see that ((Uφ)∗d)(c1 ⊗ ·) = 〈·, (φc1)∗d〉 ∈ D2 and ((Uφ)∗d)(· ⊗ c2) =
〈·, (φ)∗[c2 ⊗ d]〉 ∈ D1 hence Uφ ∈ Dual (P1 ⊗ P2, P3). Reciprocally consider
now ψ ∈ Dual (P1⊗P2, P3) thus ψ : C1⊗C2 → C3 and this defines canonically
(W ∗ψ) : C1 → Ĉonv (C2, C3) by ((Wψ)(c1))(c2) = ψ(c1 ⊗ c2). We must show
that (Wψ)(C1) ⊂ Dual (P2, P3) and that (Wψ) ∈ Dual (P1, D̂ual (P2, P3)).
Let c ∈ C1, then 〈c2, ((Wψ)(c1))

∗d〉 = 〈((Wψ)(c1))c2, d〉 = 〈ψ(c1 ⊗ c2), d〉 =
〈c1⊗c2, ψ∗d〉 = (ψ∗d)(c1⊗c2). Since ψ∗d ∈ D(P1⊗P2) then (ψ∗d)(c1⊗·) ∈ D2

which means that ((Wψ)(c1))
∗d ∈ D2 and so (Wψ)(c1) ∈ Dual (P2, P3). Let

now [c′⊗d] ∈ D(D̂ual (P2, P3)) ; we have 〈c, (Wψ)∗[c′⊗d]〉 = 〈((Wψ)c)c′, d〉 =
〈ψ(c⊗c′), d〉 = 〈c⊗c′, ψ∗d〉. Since (ψ∗d)(·⊗c′) ∈ D1 we have (Wψ)∗[c′⊗d] ∈
D1 and so (Wψ) ∈ Dual (P1, D̂ual (P2, P3)) establishing finally a bijection
and proving the theorem. Q.E.D

Theorem 6.2 Trip is a bicomplete monoidally closed category.

Proof: Let ∆ be a nonempty diagram in Trip ; it has a limit and colimit
in Dual . It only remains to show that these objects belong to Trip . To do
so we must exhibit a negation for the observations and the existence of an
absurd observation 0. We borrow notation from the proof of the previous
theorem. Let f : T → T ′ be a morphism in Trip where T = (S,O, 〈·, ·〉)
and T ′ = (S ′,O′, 〈·, ·〉′). We have 〈σ, f ∗¬p〉 = 〈fσ,¬p〉′ = 1 − 〈fσ, p〉′ =
1 − 〈σ, f ∗p〉 = 〈σ,¬f ∗p〉 hence f ∗ commutes with negation; furthermore,
〈σ, f ∗0′〉 = 〈fσ,0′〉′ = 0 hence f ∗0′ = 0. Let now T = (S,O, 〈·, ·〉) be the
limit of ∆ in Dual . In this case O = O∆/∼ where O∆ is the colimit of D∆.
Since δ∗ij commutes with negation we have by universality a unique morphism
¬ : O∆ → O∆ which renders commutative the diagram

Oi

δi- O∆

ρ- O

Oi

¬
? δi- O∆

¬
? ρ- O

We show that ¬ can be defined in O. If p ∈ O∆ then by surjectivity of
δ
∐

we can write p =
∑
λiδ

ipi and by the diagram ¬p =
∑
λiδ

i¬pi. Thus
Ψσ(p) =

∑
λi〈δiσ, pi〉i and so Ψσ(¬p) =

∑
λi〈δiσ,¬pi〉i = 1−

∑
λi〈δiσ, pi〉i =

1 − Ψσ(¬p). From this we conclude that if p is equivalent to q, then so is
¬p to ¬q, and ¬ can be defined by ¬[p] = [¬p] , and furthermore 〈σ,¬[p]〉 =
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〈σ, [¬p]〉 = 〈σ,¬p〉∆ = Ψσ(¬p) = 1 − Ψσ(p) = 1 − 〈σ, p〉∆ = 1 − 〈σ, [p]〉
showing that ¬ is indeed a negation.

To show the existence of 0 in O, let 0i ∈ Oi be its absurd observation.
Then γi0i ∈ O and for σ ∈ S we have 〈σ, γi0i〉 = 〈σ, δi0i〉∆ = 〈δiσ, 0i〉i = 0.
Hence any γi0i is the absurd observation of O.

Remembering now that the colimit is computed as J lim J , and using
when necessary an appropriate notation, we now assume that T = (S,O, 〈·, ·〉)
is the colimit in Dual of ∆ with injections δi : Oi → O. Since δ∗ij commutes
with negation, we are given by universality an affine isomorphism ¬ : O → O
commuting with the δi∗. Now Ψ¬p◦δi = 〈·, δ∗i¬p〉i = 〈·,¬δ∗i p〉 = 1−〈·, δ∗i p〉 =
1−Ψp◦δi = (1−Ψp)◦δi and so by universality Ψ¬p = 1−Ψp . Since S = S∆/∼,
〈[σ],¬p〉 = 〈σ,¬p〉∆ = Ψ¬p(σ) = 1 − Ψp(σ) = 1 − 〈σ, p〉∆ = 1 − 〈[σ], p〉 and
so ¬ is indeed a negation. Consider now the morphism ωi : {∗} → Oi given
by ∗ 7→ 0i. Universality provides a map ω : {∗} → O which determines an
element ω(∗) = 0. Since Ψ0 ◦ δ

i = 〈δi·, 0i〉i. we see by universality that 0 is
the absurd observation of O.

To complete the proof of bicompleteness we must exhibit a final and initial
object which correspond to the limit and colimit of an empty diagram. It’s
immediately apparent that the initial object is (∅, {∗}, ∅) where ∅ : ∅×{∗} →
[0, 1] is the empty morphism. The final object is ({∗}, [0, 1], 〈·, ·〉) where
〈∗, λ〉 = λ. Note that this is different from the final object in Dual which is
({∗}, ∅, ∅).

We now proceed to monoidal closure.
Consider now D̂ual (T, T ′) for two statistical triples T, T ′. We have the

map 1S × ¬ : S × O′ → S × O′ which being an isomorphism induces an
isomorphism ¬ : S ⊗O′ → S⊗O′, such that ¬(σ⊗p′) = σ⊗¬p′. One easily
sees that this map is compatible with the equivalence relation in S ⊗O′ and
since 〈f,¬(σ ⊗ p′)〉× = 〈f, (σ ⊗ ¬p′)〉× = 〈fσ,¬p′〉′ = 1 − 〈fσ, p′〉′ = 1 −
〈f, (σ ⊗ p′)〉× the map is a negation. Since 〈f, [σ ⊗ 0′]〉 = 〈f, σ ⊗ 0′〉× =
〈fσ,0′〉× = 0 we see that 0 = [σ ⊗ 0′] is the absurd observation. Thus
D̂ual (T, T ′) is a statistical triple and we can thus identify it with an object
in Trip which we denote by T̂rip (T, T ′).

Consider now the tensor product in Dual of two statistical triples: T⊗T ′.
If f ∈ D(T ⊗T ′), then for all σ ∈ S, σ′ ∈ S ′; f(·⊗σ′) ∈ O and f(σ⊗·) ∈ O′;
thus 1 − f(· ⊗ σ′) ∈ O and 1 − f(σ ⊗ ·) ∈ O′, and so defining ¬f by
〈r,¬f〉 = 1 − 〈r, f〉 we obtain ¬f ∈ D(T ⊗ T ′) and so ¬ is a negation.
Clearly the map that sends S⊗S ′ to 0 in [0, 1] belongs to D(T⊗T ′) and is the
absurd observation of D(T ⊗T ′). We can now consider T ⊗T ′ as an object of
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Trip . Since Trip is a full subcategory of Dual and since the tensor products
coincide in Dual and Trip , and D̂ual (T, T ′) coincides with T̂rip (T, T ′) we
still maintain a natural bijection Trip (T1, T̂rip (T2, T3)) = Trip (T1 ⊗ T2, T3)
showing that Trip is monoidally closed. Q.E.D

For the sake of gaining some familiarity we cite a few examples

1. Product T × T ′ = (S × S ′, (O
∐

O′)/∼, 〈·, ·〉)) where 〈(σ, σ′), [λp +
(1−λ)p′]〉 = λ〈σ, p〉+(1−λ)〈σ′, p′〉′ and we have λp+(1−λ)p′ ∼ µq+(1−
µ)q′ if and only if in V0(O

∐

O′) of the pairing (S × S ′,O
∐

O′, 〈·, ·〉)∆)
they differ by α1 − α1′ for a real α. Operationally, the experiment
((σ, σ′), [λp + (1 − λ)p′]) is performed as follows: prepare simultane-
ously copies of σ and σ′ in a way that they don’t interfere with each
other; toss a coin with head-tail probabilities (λ, 1− λ), if the result is
heads, observe p on the copy of σ, if tails, observe p′ on the copy of σ′.

The product is an operation that has not been usually considered. For
example, the product of two Kolmogorov, or two quantum triples is
not one of these again, nor readily related to one.

2. Coproduct T
∐

T ′ = (S
∐

S ′,O×O′, 〈·, ·〉)) where 〈λσ+(1−λ)σ′, (p, p′)〉
= λ〈σ, p〉 + (1 − λ)〈σ′, p′〉′. The experiment (λσ + (1 − λ)σ′, (p, p′)) is
performed as follows: toss a coin with head-tail probabilities (λ, 1−λ);
if the result is heads, perform the experiment (σ, p), if tails, perform
(σ′, p′).

If T and T ′ are two quantum triples within Hilbert spaces H and H′

respectively, then we can identify S
∐

S ′ as being those density matrices
that are of the form λρ⊕ (1−λ)ρ′, ρ ∈ S,ρ′ ∈ S ′; and O×O′ with the
set of operators of the form A⊕ A′, A ∈ O, A′ ∈ O′. This means that
T
∐

T ′ is a quantum theory with H and H′ as superselection sectors.
A coproduct decomposition of a theory can therefore be viewed as
generalizing the notion of decomposition into superselection sectors.

For two Kolmogorov triples based on measurable spaces (X,Σ) and
(X ′,Σ′), the coproduct is the Kolmogorov triple based on
(X

∐

X ′,Σ
∐

Σ′).

3. Tensor product Consider the canonical map O × O′ → D(T ⊗ T ′)
defined by 〈σ ⊗ σ′, p ⊗ p′〉 = 〈σ, p〉〈σ′, p′〉 To perform the experiment
(σ ⊗ σ′, p⊗ p′) we must simultaneously prepare copies of σ and σ′ in a
way that they do not interfere with each other, and observe p on σ and
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p′ on σ′ with the final result being the conjunction of the two separate
observational results. The generic experiment in the tensor product is
in general an idealized one.

For two Kolmogorov triples in measurable spaces (X,Σ), (X ′,Σ′), the
Kolmogorov triple in (X × X ′,Σ × Σ′) is an idealization of T ⊗ T ′.
Likewise for two quantum triples in H and H′, the quantum triple in
H ⊗H′ is an idealization of T ⊗ T ′. In the first case this idealization
becomes identity if X or X ′ is finite and in the second case if H or H′

is finite dimensional.

Though we have established the existence of a natural category of sta-
tistical triples, it must be noted that the morphisms of this category don’t
represent in a totally satisfactory way our notions of comparing two sys-
tematizations of partial knowledge. Each statistical triple T systematizes a
set of procedures for the preparation of copies of states, and procedures for
observations of properties. Suppose on T ′ we embody more descriptions of
state preparations than in T , but both theories embody the same procedures
for observation of properties. Then every operation in T is the result of re-
stricting ones in T ′ to the fewer states of T . Hence we have an inclusion
i : S ⊂ S ′ with i∗O′ ⊂ O and the possibility that different observations
in T ′ can become identified in T . On the other hand if T ′ embodies more
procedures for observation or properties than T but both theories embody
the same procedures for state preparation, then one must have an inclusion
j∗ : O ⊂ O′ and a corresponding surjection j : S ′ → S. In this case state
preparations statistically indistinguishable in T may become distinguishable
in T ′. Thus in both cases T ′ should be considered a stronger theory than
T but in the first case we have i : T → T ′ and in the second j : T ′ → T
which are arrows with different directions. Under more complicated condi-
tions the situation cannot be represented by a morphism in Trip . Consider
for instance when T ′ is an idealization of T , then S ⊂ S ′ and O ⊂ O′ and
under most circumstances this corresponds to neither a morphism from T to
T ′ nor to one from T ′ to T .

To analyze these more complex situations consider the following parable.
Suppose a master experimenter E ′ who systematizes the world according to
T ′ hires an apprentice E whose presumably weaker power of systematization
is given by a triple T . If E prepares a copy of a state σ for E ′, the latter
notices, by his greater power of observation that somewhat different prepa-
rations, though for E would be just as good for preparing σ would in fact
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prepare different states for E ′. We must thus assume that a subset S0 ⊂ S ′

corresponds in a many-one fashion to S. On the other hand anything E
can observe about S, E ′ can also, hence to every p ∈ O there must be a
p′ ∈ O′ which gives 〈σ, p〉 on any element of S0 that corresponds to σ. Thus
O′ restricted to S0 must be able to embody O. We must thus posit a diagram

T � s
T0

i - T ′

where T0 is the reduced triple of (S0,O′, 〈·, ·〉′) and as maps of sets s : S0 →
S is a surjection and i : S0 → S ′ is an injection. Furthermore i∗O′ ⊃
s∗O. Reciprocally given such a diagram with s and i satisfying the stated
properties we see that S0 can be considered a subset of S ′ that corresponds
to a set theoretic epimorphic image of S and since one readily checks that
s∗ : O → O0 is a monomorphism, O is embedded in O0, but s∗O ⊂ i∗O′

hence O can be executed in T ′.

Let us now define a new category Sta whose object class is that of Trip

but whose morphisms φ : T → T ′ are equivalence classes of ordered triples
(s, T0, i) where the Trip morphism s : T0 → T is a set epimorphism, the Trip

morphism i : T0 → T ′ is a set injection, and s∗O ⊂ i∗O′. The equivalence
relation (s1, T1, i1) ∼ (s2, T2, i2) holds when there is a Trip isomorphism
λ : T1 → T2 such that the diagram below commutes:

T1

	�
�

�s1 @
@

@
i1
R

T T ′

I@
@

@s2 �
�

�

i1

�

T2

λ

?

We must show that an associative composition law can be defined for
these morphisms. Let therefore φ : T1 → T2 and ψ : T2 → T3 be two such
morphisms represented by (sφ, Tφ, iφ) and (sψ, Tψ, iψ) respectively. We then
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have the diagram:

T

	�
�

�s @
@

@
i
R

Tφ Tψ

	�
�

�sφ @
@

@
iφ
R 	�

�
�sψ @

@
@
iψ
R

T1 T2 T3

where the square is defined to be a pull-back. We now show that (sφs, T, iψi)
represents a morphism from T1 to T3 that we call ψφ.

We must have in Conv a pull-back

C - Cψ

Cφ
?

- C2

?

and since Conv limits and Set limits coincide in the underlying sets and
morphisms, we can take C = {(cφ, cψ) ∈ Cφ×Cψ | iφcφ = sψcψ} with s and i
as the restrictions of the corresponding canonical projections. It’s immediate
that s is a surjection and i an injection. But then sφs is a surjection and iψi
an injection. We also have in Conv the diagram

O

I@
@

@
@

YHHHHHHHHHH

i∗
KA
A
A
A
A
A
A
A
A
A

s∗
O∆

� Oψ

Oφ

6

�
i∗φ

O2

s∗ψ

6

where the square is a push-out. Now s∗φO1 ⊂ i∗φO2 hence s∗s∗φO1 ⊂ s∗i∗φO2 ⇒
s∗sφ∗O1 ⊂ i∗s∗ψO2. On the other hand s∗ψO2 ⊂ i∗ψO3 and thus s∗s∗φO1 ⊂
i∗i∗ψO3 and so (sφs, T, iψi) is indeed a morphism representative. We must
now show that the morphism is well defined; that is, if we choose other
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representatives (s′φ, T
′
φ, i

′
φ) and (s′ψ, T

′
ψ, i

′
ψ) of φ and ψ respectively, with iso-

morphisms λφ : Tφ → T ′
φ, λψ : Tψ → T ′

ψ then the resulting composition lies
within the same equivalence class as the previous one. We have the diagram:

T

	�
�

�
�

s
@

@
@

@

i

R

Tφ Tψ

	�
�

�
�

sφ
@

@
@

@

iφ

R 	�
�

�
�

sψ
@

@
@

@

iψ

R

T1 T2 T3

I@
@

@
@s′φ �

�
�

�

i′φ

� I@
@

@
@s′ψ �

�
�

�

i′ψ

�

T ′
φ

λφ

?
T ′
ψ

λψ

?

I@
@

@
@s′ �

�
�

�

i′

�

T ′

Since T ′ is a pullback, we have a unique map λ : T → T ′ such that s′ ◦ λ =
λφ ◦ s and i′ ◦ λ = λψ ◦ i. Now using the same argument seeing that T is
also a pullback we get a map in the opposite direction which by universality
must be inverse to λ. Thus λ is an isomorphism and by commutativity of
the diagram we must have s′φ ◦ s

′ ◦ λ = sφ ◦ s, i′ψ ◦ i′ ◦ λ = iψ ◦ i and so the
composition is well defined.

To prove associativity let φ : T1 → T2, ψ : T2 → T3 and θ : T3 → T4 be
represented by (sφ, Tφ, iφ), (sψ, Tψ, iψ) and (sθ, Tθ, iθ) respectively. Consider
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the diagram

T ′′

	�
�

�s′′ @
@

@
i′′

R

T T ′

	�
�

�s @
@

@
i
R 	�

�
�s′ @

@
@
i′

R

Tφ Tψ Tθ

	�
�

�sφ @
@

@
iφ
R 	�

�
�sψ @

@
@
iψ
R 	�

�
�sθ @

@
@
iθ
R

T1 T2 T3 T4

where each square is a pull-back. By general category theory, the two rect-
angles

T ′′ - T ′ - Tθ

T
?

- Tψ - T3

?

and

T - T ′

T
?

Tψ
?

Tφ
?

- T2

?

are both pullbacks. Hence we see that (sφss
′′, T ′′, iθi

′i′′) represents both
θ(ψφ) and (θψ)φ and the associative law is proved.

A morphism φ : T → T ′ in Sta represents a way of subsuming the
knowledge systematized in T within T ′; hence T ′ must be a stronger theory.
Note now that an idealization is given by a Sta morphism, for if i : S ⊂ S ′,
j : O ⊂ O′ we can take for T0 the reduced triple of (S,O′, 〈·, ·〉′) and so
define the morphism (1S , T0, j) : T → T ′. Our scientific life would be greatly
simplified if Sta were a cocomplete category, for this would mean we could
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always by universal systematic procedures combine fragmented knowledge
into a coherent whole. However this is not the case and unfortunately not
too much can be said about this category. One can view now however certain
existing formalisms in this light. Consider for instance local quantum theory
in the C∗ algebra formulation. Here to each bounded open region G of space
time we have a C∗ algebra A(G) which can be assumed to be a subalgebra of
the algebra of all bounded operators for some fixed Hilbert space. If G ⊂ G′

we have an inclusion A(G) ⊂ A(G′). The global theory has the C∗ algebra
A given by the norm closure of ∪A(G). Let S be the set of states of A and
let O be the elements of A such that 0 ≤ a ≤ 1. To each G we associate the
local statistical triple T (G) which is the reduced triple of (S,O∩A(G), 〈·, ·〉).
Each restriction morphism of T = (S,O, 〈·, ·〉) to T (G) therefore corresponds
to a Sta morphism T (G) → T and T is an idealization of the Trip limit of
the T (G) and this Trip limit coincides with a colimit in that subcategory of
Sta where i is an isomorphism. The notion of localizability assumes that the
global theory is loosely speaking a colimit of its localizations, implying thus
a categorical idea in its very conception.
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Chapter 7

On the Complexity of States

Consider a state a of a general statistical theory. Intuitively we expect to be
able to define a measure of the unpredictability of the state, a measure of
the complexity of its repertoire of behavior. Thus if we view a state with an
exhaustive instrument I = (p1, p2, . . . , pn) the classical entropy

h(σ, I) = −
∑

〈σ, pi〉 log〈σ, pi〉

is a measure of the unpredictability of observing the state by the instrument
I. There are many difficulties however in attributing this entropy wholly to
the state. Consider the instrument ((1/2)1, (1/2)1); every state has entropy
1 bit. One could have obtained the same observational result by observing
1 and then flipping a coin considering heads and tails as our observational
outcomes. Thus the entropy we are seeing here can be wholly interpreted as
being due to a stochastic mechanism in the observation process itself rather
than in the complexity of the state observed. Suppose more generally that
we are observing with an instrument J = (q1, q2, . . . , qm) and then follow this
observation with a stochastic process with n possible outcomes where the
process is defined by giving transition probabilities p(i, j); i = 1, . . . , n; j =
1, . . . , m that the i-th outcome of the process will be realized if the j-th
property of J was observed. The matrix p is stochastic in that

∑n
i=1 p(i, j) =

1 for all j. The probability that the i-th outcome of the process be realized
in a state σ is

∑n
j=1 p(i, j)〈σ, qj〉.

Lemma 7.1 Given a stochastic matrix and an instrument J as above, if we

set I = (p1, p2, . . . , pn) where pi =
∑n

j=1 p(i, j)qj then I is an instrument.

69
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Proof: Represent each probability measure p(·, j) by the partition

0,p(1, j),p(1, j) + p(2, j), . . . ,p(1, j) + · · ·+ p(n− 1, j), 1

of [0, 1]. The union over j of all of all of these partitions results in a partition
s0, s1, . . . , sk with s0 = 0 < s1 < s2 < · · · < sk−1 < 1 = sk Let λr =
sr − sr−1; r = 1, . . . , k; then λr ≥ 0 and

∑
λr = 1. We can express each

p(i, j) as a sum of the λr: p(i, j) =
∑

{λr |, r ∈ Lij} where Lij ⊂ {1, . . . , k}
and for each j the Lij; i = 1, . . . , n form a partition of {1, . . . , k}. Consider
the instrument K = θ(λ1,λ2,...,λk)(J, . . . , J). To obtain pi we include in a
condensation the j-th atom in the r-th copy of J if and only if r ∈ Lij . Since
the Lij form a partition as described above, no atom gets included in more
than one condensation and so I is in fact a condensation of K and so by
axiorm 4.6′ is an instrument. Q.E.D

Lemma 7.2 Given a stochastic matrix and an instrument as in the previous

lemma, let πi = {Qi,1, . . . , Qi,ν(i)} be an arbitrary partition of {1, . . . , m} for

each i. Define pik =
∑

{p(i, j)qj | j ∈ Qik}, then the pik; i = 1, . . . , n; k =
1 . . . ν(i) are atoms of an instrument.

Proof: We define a new stochastic matrix t by

t(i, k; j) =

{
p(i, j) if j ∈ Qik

0 otherwise

where the rows are labelled by the double index (i, k), i = 1, . . . , n; k =
1 . . . ν(i). Now apply Lemma 7.1. Q.E.D

The instrument obtained by this last lemma we call a stochastic con-

densation of J by means of p and the πi or simply a stochastic conden-
sation. Ordinary condensations that ignore no atoms are particular cases.
Stochastic condensations given by Lemma 7.1 we call full ; they correspond
to πi = {{1, . . . , m}} for all i.

We shall at a certain point also consider similar constructions, still called
stochastic condensations, but with substochastic matrices, that is matrices
s(i, j) with s(i, j) > 0, and

∑n
i=1 s(i, j) ≤ 1.

Lemma 7.3 Without altering the conclusions, one can replace in Lemmas

7.1 and 7.2 the stochastic matrix p with a substochastic matrix s.
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Proof: We only show that the conclusion of Lemma 7.1 is unchanged,
since the proof of the altered Lemma 7.2 follows almost verbatim the proof
of the original. Introduce now a new row in the matrix s, labelled by 0 and
with elements

s̃(0, j) = 1 −
n∑

i=1

s(i, j)

where s̃ is the matrix s with this added row. We see that s̃ is stochastic, and
the instrument obtained by a full stochastic condensation of J by means of
s̃ is

Ĩ = (1 −
n∑

i=1

pi, p1, p2, . . . , pn)

where pi =
∑m

j=1 s(i, j)qj . Condensing Ĩ by eliminating the first atom we
obtain an instrument I = (p1, . . . , pn). Q.E.D

Lemma 7.4 Let J = (q1, . . . , qm) be an instrument and s a substochastic

matrix. If I = (p1, . . . , pn) where pi =
∑m

j=1 s(i, j)qj is an exhaustive instru-

ment then for all j either qj = 0 or
∑n

i=1 s(i, j) = 1

Proof: Since
∑
pi = 1 we have

∑

i,j s(i, j)qj = 1 Let ωj =
∑n

i=1 s(i, j) ≤
1. Thus

∑
ωjqj = 1. Since J is an instrument this is only possible if

∑
qj = 1

and qj = 0 whenever ωj 6= 1. In fact if
∑
qj 6= 1, there is a state σ such

that 1 > 〈σ,
∑
qj〉 =

∑
〈σ, qj〉 but then as ωj ≤ 1 we have 1 >

∑
ωj〈σ, qj〉 =

〈σ,
∑
ωjqj〉 which contradicts

∑
ωjqj = 1. If now qa 6= 0 and ωa 6= 1 we

have a state σ such that 〈σ, qa〉 6= 0 and we have 1 = 〈σ,
∑
qj〉〉

∑

j 6=a〈σ, qa〉+
ωa〈σ, qa〉 ≥

∑
ωj〈σ, qj〉 = 〈σ,

∑
ωjqj〉 = 1, an absurdity. Q.E.D

This last lemma shows that whenever we obtain an exhaustive instrument
I by means of a fill stochastic condensation with a substochastic matrix s

from an instrument J , then eliminating the zero atoms of J and the corre-
sponding columns of s we obtain a stochastic matrix and I as a full stochastic
condensation by means of this stochastic matrix from an instrument with
nonzero atoms.

For a stochastic matrix p(i, j), each p(·, j) is a probability measure on
a finite set and we can consider its classical entropy h(p(·, j)) and we set
h(p) = supj h(p(·, j)). If now J = (q1, . . . , qm) is an instrument with nonzero
atoms, and I is the stochastic condensation of J by means of p with h(p) > 0,
then we can attribute the entropy h(σ, I) of a state o as being partially due to
the stochastic process described by p and thus not completely intrinsic to the



72

state. We say that an exhaustive instrument is stochastically factorizable if it
can be written as a full stochastic condensation of an exhaustive instrument
J with nonzero atoms by means of a stochastic matrix with positive entropy.
We must eliminate such instruments from any computation of entropies of
states.

This however doesn’t finish the story. Consider an instrument I =
θ(λ,1−λ)(I1, I2) with Ii exhaustive. This is a stochastic splitter followed by
instruments at each exit. The entropy of this arrangement in the state a is
easily computed to be

h(σ, I) = λh(σ, I1) + (1 − λ)h(σ, I2) − λ log λ− (1 − λ) log(1 − λ).

Here the quantity −λ log λ−(1−λ) log(1−λ) can be interpreted as the entropy
due to the action of the stochastic splitter and must not be counted as belong-
ing to the state, but attributed to the intervention of the experimenter. We
now generalize this. Given an operation Ψ = (ψ1, . . . , ψm) and a stochastic
matrix p we can consider the n-tuple Θ = (θ1, . . . , θn) with θi =

∑
p(i, j)ψj .

By an argument exactly parallel to the one used in Lemma 7.1 θ is a conden-
sation of an operation of the form θ(λ1,...,λk){Ψ, . . . ,Ψ} and is thus an oper-
ation. It is also easy to see that θ is a condensation of Ψ{θp(·,1), . . . , θp(·,m)}
giving an independent proof that it is an operation. As before we say θ is
a full stochastic condensation of Ψ. We call an operation nondestructive if
∑
θi1 = 1 (no copy is rejected) and we say that a nondestructive operation

is stochastically factorizable if it is a full stochastic condensation of a nonde-
structive operation Ψ with no dummy exits by means of a stochastic matrix
p with h(p) > 0. Now if an exhaustive instrument I is stochastically factor-
izable being a stochastic condensation of J , then we can interpret the action
of I as being that of observing J followed by a stochastic process applied to
the result and independent of the state being observed. On the other hand
if I is of the form θ(J1, . . . , Jm) with θ stochastically factorizable being a
stochastic condensation of Ψ its action can be interpreted as operating with
Ψ, applying a stochastic process at the exits by which states get reclassified
into new categories independently of the actual copies that may appear and
prior to observing with the array (J1, . . . , Jm) in a way conditioned to the
outcomes of the process. Again, this introduces entropy due solely to the ex-
perimenter and this type of instrument must also be excluded from entropy
calculations.

Under a more careful analysis we may say that an instrument I should not
be allowed in entropy calculations if it can be interpreted as a construction
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using the means supplied to us by the axioms of Chapter 4 and which contains
stochastic elements interpretable as being due to the experimenter. There
is a difficulty in this, for consider the instrument obtained by condensing
corresponding atoms of the two copies of I in θ(1/2,1/2)(I, I). This gives us
I again but constructed with the obvious stochastic element θ(1/2,1/2). What
happened is that the condensation eliminated the influence of this stochastic
element. Essentially θ(1/2,1/2) is not there and in fact we can change (1/2, 1/2)
to any other two point probability (λ, 1 − λ) without changing the result.

Consider therefore an instrument I ∈ In that can be written as a construc-
tion in terms of operations and other instruments using the means given us
by the axioms of Chapter 4. Assume that in this construction there is an oc-
currence of a stochastic splitter θΛ0 with h(Λ0) > 0. Let now IΛ be the instru-
ment resulting from replacing that occurrence of θΛ0 by θΛ where Λ is a mea-
sure absolutely continuous with respect to Λ0 (If it were not, new operative
exits will be created for which no provision has been taken). We say that the
given occurrence of the splitter is inessential if IΛ = IΛ0 = I. Now the map
Λ 7→ IΛ is affine and so in the case of essentiality this map is not constant on
{Λ |Λ ≪ Λ0}, and since Λ0 is an interior point of this set, I cannot be
an extreme point of In. We are thus led to consider that pure exhaustive
instruments are the ones that cannot be interpreted as having state indepen-
dent experimenter determined positive entropy stochastic processes in their
construction. That is, the entropy they see would be intrinsic to the state.
Reciprocally, suppose I = (1/2)I1 + (1/2)I2, I1 6= I2; then we can view I
as a condensation of θ(1/2,1/2)(I1, I2) and the essentiality of θ is interpreted
as saying that the condensations did not completely eliminate the effects of
the splitter. We now show that this point of view is consistent with our pre-
vious decision to eliminate instruments interpretable in terms of stochastic
factorizability.

Lemma 7.5 An exhaustive instrument I is stochastically factorizable if and

only if there is an observation q 6= 0 and two atoms of I which we call p1 and

p2 after reordering, such that p1 − (1/2)q, q, p2 − (1/2)q, p3, . . . , pn is also an

instrument.

Proof: Suppose such q, p1, p2 exist, then we see that

(
p1

p2

)

=

(
1 1/2 0
0 1/2 1

)




p1 − (1/2)q
q

p2 − (1/2)q




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and this can be extended to a stochastic factorization of I. Suppose con-
versely that I is a full stochastic condensation of an exhaustive instrument
J = (q1, . . . , qm), qj 6= 0; pi =

∑

j p(i, j)qj ; h(p) > 0. Then there are indices
a, b, c such that 0 < p(a, c) < 1 and 0 < p(b, c) < 1. By renumbering we
set a = 1, b = 2. Calling the two numbers above by ν1 and ν2 respectively
we can perform a stochastic condensation of J as in Lemma 7.2 to get an
instrument p1 − ν1qc, ν1qc, ν2qc, p2 − ν2qc, p3, . . . , pn. Assume ν1 ≤ ν2 so we
can write ν1 = βν2, 0 < β ≤ 1. We then have

(
ν1qc

p2 − ν1qc

)

=

(
β 0

1 − β 1

)(
ν2qc

p2 − ν2qc

)

and so by a further stochastic condensation we obtain an instrument
p1 − ν1qc, ν1qc, ν1qc, p2 − ν1qc, p3, . . . , pn and setting q = 2ν1qc a final con-
densation results in p1 − (1/2)q, q, p2 − (1/2)q, p3, . . . , pn. Q.E.D

Corollary 7.1 If I is stochastically factorizable then I is mixed.

Proof: By Lemma 7.5 there is a q ∈ O, q 6= 0 and two atoms pi, pj of I
such that J : q, p1, . . . , pi − (1/2)q, . . . , pj − (1/2)q, . . . , pn is an instrument.
By condensing we get two distinct instruments

I1 : p1, . . . , pi + (1/2)q, . . . , pj − (1/2)q, . . . , pn,

I2 : p1, . . . , pi − (1/2)q, . . . , pj + (1/2)q, . . . , pn,

and so I = (1/2)I1 + (1/2)I2 is mixed. Q.E.D
We observe that we could have proved the corollary without recourse to

Lemma 7.5 by arguing that p 7→ full stochastic condensation of J , is affine
and if h(p) > 0, then p lies on a segment on which the map is not constant.
However, Lemma 7.5 is useful for other purposes.

By an argument totally parallel to the above, we can also prove:

Lemma 7.6 An operation θ = (θ1, . . . , θn) is stochastically factorizable if

and only if there are two exits, say 1 and 2 after renumbering, and a one

exit operations ψ 6= 0 such that θ1 − (1/2)ψ, ψ, θ2 − (1/2)ψ, θ3, . . . , θn is an

operation.

Suppose now that θ is stochastically factorizable and I = θ(J1, . . . , Jn).
By condensing the operation θ1 − (1/2)ψ, ψ, θ2 − (1/2)ψ, θ3, . . . , θn in two
ways we obtain the distinct operations

Ξ1 : θ1 + (1/2)ψ, ψ, θ2 − (1/2)ψ, θ3, . . . , θn,
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Ξ2 : θ1 − (1/2)ψ, ψ, θ2 + (1/2)ψ, θ3, . . . , θn,

and we find that I = (1/2)Ξ1(J1, . . . , Jn) + (1/2)Ξ2(J1, . . . , Jn) = (1/2)I1 +
(1/2)I2 Now if I1 = I2 then (θ1 + (1/2)ψ)(J1) = (θ2 − (1/2)ψ)(J1) or,
ψ(J1) = 0. Supposing J1 exhaustive, we have ψ1 = 0 which by axiom
4.9′ implies ψ = 0 contradicting the construction. Thus we conclude the
following corollary.

Corollary 7.2 If I = θ(J1, . . . , Jn) with θ stochastically factorizable and Ji
exhaustive, then I is mixed.

We dignify the following obvious fact to a lemma for future reference:

Lemma 7.7 If every atom of an instrument is pure, then the instrument is

pure.

To complete our argument that interprets pure instruments as those free
of ad-hoc interventions by the experimenter, we must counter a possible
objection that sleight of hand operations must be taken into account. If a
given instrument can be constructed by the means of Chapter 4 with the use
of substitution operations one can argue that these represent interventions of
the experimenter by means of which the original copy of the state is destroyed
and arbitrary others are substituted so that the final observations do not
entirely refer to the original state but also incorporate the structure of ad
hoc states introduced by the experimenter. We now proceed to explain that
in case the final instrument is pure, the presence of possible sleight of hand
operations is innocuous. Consider schematically such an instrument I which
we first assume can be written as θ(I1, . . . , Im) where θ is itself a construct
involving the sleight of hand operation θJτ ; J = (q1, . . . , qn), τ = (τ1, . . . , τn)

θJτ-
-

-
-

-

-
-

-

-

-

...
... ...

Im

I2

I1

Since the entry of a state into θJτ leads to its observation by J and to
a subsequent preparation of one of the states τ1, . . . , τn , we can consider
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all subsequent events as being a stochastic data analysis performed on the
outcomes of J . This analysis becomes systematically incorporated into the
pattern of final observations by the array I1, I2, . . . , Im. Such incorporation
would be innocuous if no real stochastic elements are introduced. Consider
now the operation Ψ obtained by direct entry into θJτ bypassing the original
entrance:

θJτ-

6

-

?

- -

-
-

-

-

-

... ...

and the operation Ξ obtained by excising θJτ and leading every state that
would normally enter θJτ out to a new exit labelled by 0:

-
- ���
- XXX
- HHH

6
q

-

-

-

-

... ...

0

We now see that the instrument I can be given the following schematic
description:

Ξ-

-0 Ψ
@

@@

�
��

@
@@

�
��@
@@

�
��

-q

-q

-q

...

...

...
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which is a condensation of the instrument

Ξ{Ψ; Id, . . . , Id}(I1, . . . , Im; I1, . . . , Im).

Let us now examine the action of Ψ. Let p1, . . . , pr be the atoms of
(I1, . . . , Im). Clearly 〈σ, pi〉 depend affinely on 〈σ, qj〉 and we can write

〈σ, pi〉 =

n∑

j=1

s(i, j)〈σ, qj〉 + ci.

We proceed to show that s(i, j) is a substochastic matrix and ci = 0. Consider
the operation Υj defined by feeding directly into the j-th exit of θJτ in Ψ
bypassing the original entrance:

θJτ j-

6

-

?
q

-

-
-
...

-

-

-
-

-

-

-

...

...
...

In a state σ we have that Υ
j(i)
∗ τj appears at exit j of Ψ exactly a fraction

〈σ, qj〉〈τj,Υj(i)1〉 times, and so 〈σ,Ψ(i)p〉 =
∑

〈σ, qj〉〈τj ,Υj(i)1〉〈Υj(i)
∗ τj , p〉 =

∑
〈τjΥj(i)p〉〈σ, qj〉 that is,

Ψ(i)p =
∑

j

〈τj ,Υ
j(i)p〉qj.

If now pi corresponds to atom rab of Ia we have

pi =
∑

j

〈τj,Υ
j(i)rab〉qj

and so ci = 0 and
s(i, j) = 〈τj ,Υ

j(i)rab〉 ≥ 0.

Let ra =
∑

b rab we then have

∑

i

s(i, j) =
∑

i

〈τj ,Υ
j(i)rab〉 =

∑

i

〈τj ,Υ
j(i)ri〉.
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Now Υj(1)r1, . . . ,Υ
j(m)rm is an instrument and so rj =

∑

i Υ
j(i)ri ∈ O and we

have
∑

i〈τj ,Υ
j(i)ri〉 = 〈τj, rj〉 ≤ 1, and s is substochastic. We now see that

I is a condensation of (Ξ(0)Ψ(I1, . . . , Im),Ξ(1)I1, . . . ,Ξ
(m)Im) and in which

Ξ(0)Ψ(I1, . . . , Im) is a stochastic condensation of Ξ(0)J by means of a sub-
stochastic matrix. Thus I is a stochastic condensation of (Ξ(0)J,Ξ(1)I1, . . .
. . . ,Ξ(m)Im) by means of a substochastic matrix s̃(i, j). If now we assume
that I is an exhaustive extreme instrument then by Lemma 7.4 and Corol-
lary 7.2 we conclude that

∑

i s̃(i, j) = 1 unless Ξ(0)qj = 0 and eliminating
these atoms of Ξ(0)J we obtain I as a stochastic condensation by means of
a stochastic matrix, which by extremity of I must be trivial entropically.
Thus the presence of θJτ in the construction of I is innocuous, seeing that
the data processing that is effected by subsequent passages of the state is
non stochastic in character and does not contribute to the complexity of the
final observations. To complete the analysis we remark that any construc-
tion of an instrument by the axioms of Chapter 4 is a (possible) exhaus-
tion of a (possible) condensation of an instrument of the form θ(I1, . . . , Im).
Since exhaustions and condensations cannot introduce any new stochastic
elements into any previous data analysis, performing the above analysis on
θ(I1, . . . , Im) we reach the same conclusion.

We thus assume the following basic thesis for the rest of this work: pure

instruments are those that cannot be interpreted as incorporating any essen-

tial ad hoc interferences of the experimenter, and the complexity they exhibit

when applied to a state can be attributed entirely to the state.

In order to be assured of sufficiently many pure instruments one must
generally place the theory within an appropriate idealization. We shall always
suppose, according to Chapter 5, that all of the defining convex sets of a
statistical theory are algebraically closed. For finite dimensional state figures
this is sufficient to assure enough pure instruments that they determine all
others.

We can now consider the entropy of a state a as being the supremum of
h(σ, I) over pure exhaustive instruments, since this roughly speaking is the
maximum complexity exhibited by a state that can be intrinsically attributed
to it. We shall come to realize that there is still more involved in the notion
of entropy, but this quantity is certainly an important one and we call it the
instrumental entropy of the state and denote it by H(σ):

H(σ) = sup{h(σ, I) | I pure and exhaustive}.
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Before proceeding with our investigation we need an elementary technical
result.

Given two probability measures s and s′ on two finite sets X and X ′

respectively, we say s is a condensation of s′ (and s′ is a refinement of s) if
there is a map φ : X → X ′ such that s′(φ−1(A)) = s(A) for all A ⊂ X. The
classical entropy of s is of course given by h(s) = −

∑

X s(x) log s(x).

Lemma 7.8 Let s′ be a refinement of s, then h(s′) ≥ h(s) and equality holds

if and only if s′ is also a condensation of s.

Proof: By induction we need only show that if 0 ≤ a, 0 ≤ b, 0 ≤ a+b ≤ 1
then −a log a− b log b ≥ −(a+ b) log(a+ b) with equality holding if and only
if at least one of the numbers is zero. The case a + b = 0 is trivial and so
consider a + b 6= 0and the two point probability measure s1 = a/(a + b),
s2 = b/(a + b). Now h(s) ≥ 0 with equality holding if and only if one of the
si is zero. Thus we have

−
a

a + b
log

a

a + b
−

b

a+ b
log

b

a+ b
≥ 0

or equivalently, multiplying by a+b and expanding

−a log a− b log b+ (a+ b) log(a+ b) ≥ 0

with equality holding if and only if one of the numbers is zero. This is what
we need. Q.E.D

We see in particular that h(σ, I) increases with refinements of I, a useful
fact for computation.

We proceed to discuss the instrumental entropy function in each of the
following theories: (1) Kolmogorov probability (2) Boolean triples (3) Two
dimensional triples, and (4) Quantum mechanics.

1. Consider a Kolmogorov triple based on a measurable space (Ω,Σ).
We associate with the triple the canonical operational statistical theory.

Theorem 7.1 In a Kolmogorov triple an exhaustive instrument is stochas-

tically non factorizable if and only if it is pure, which happens if and only if

each atom is a characteristic function.
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Proof: Let I = (f1, . . . , fn) and suppose not all fi are extreme. Renum-
bering the functions if necessary we can assume 0 < f1(x0) < 1, and 0 <
f2(x0) < 1 for some point x0. Let α be such that 0 < α < fi(x0), i = 1, 2 and
set g = αχx0. Then f1 − (1/2)g, g, f2 − (1/2)g, f3, . . . , fn is an instrument
and so by Lemma 7.5 is stochastically factorizable and by Corollary 7.1 is
mixed. Conversely, if each fi is pure then by Lemma 7.7, I is pure. Q.E.D

Theorem 7.2 Consider a Kolmogorov triple. Let σ be a state that is a sum

of Dirac measures: σ =
∑∞

i=1 νiδxi
, xi distinct. Then H(σ) = −

∑
νi log νi.

Proof: If I = (χA1, . . . , χAn
) is a pure instrument corresponding to the

partition Ω = ∪Ai then h(σ, I) = −
∑
σ(Ai) log σ(Ai) is equal to

−
∑

i(
∑

j{νj | xj ∈ Ai}) log(
∑

k{νk | xk ∈ Ai}). Now any partition can be
refined to contain the first N singletons {xi}, i = 1, 2, . . . , N . Since h(σ, I)
increases with refinements we have H(σ) = −

∑
νi log νi which is the classical

formula. Q.E.D

2. Consider a Boolean triple. Associate with it the canonical operational
statistical theory.

Theorem 7.3 An exhaustive instrument in a Boolean triple is stochastically

nonfactorizable if and only if it is pure, and this occurs if and only if each

atom is a characteristic function.

Proof: LetI = (f1, . . . , fn) and suppose as in the proof of Theorem 7.1
that 0 < α < fi(x0), i = 1, 2. The same inequalities can now be affirmed
in a closed-open neighborhood U of x0. Let g = αχU , then f1 − (1/2)g, g,
f2 − (1/2)g, f3, . . . , fn is an instrument and by Lemma 7.5 and Corollary 7.1
is mixed. Conversely if each fi is pure, by Lemma 7.5, I is pure. Q.E.D

Theorem 7.4 Consider a Boolean triple. Let σ be a state that is a sum of

Dirac measures: σ =
∑∞

i=1 νiδxi
, xi distinct. Then H(σ) = −

∑
νi log νi.

Proof: Let the pure instrument I correspond to a partition X = ∪Ai of
the Stone’s space of the Boolean algebra, into closed open sets. Now any
such partition can be refined to a partition by closed open sets such that the
first N points xi, i = 1, . . . , N lie in different elements of the partition. The
conclusion follows as in Theorem 7.2. Q.E.D
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3. Let (S,O, 〈·, ·〉) be a two dimensional triple. Associate with it the
canonical operational statistical theory,.

For a non zero pair of real numbers q = (q1, q2) we define the slope
m(q) = q2/q1.

Lemma 7.9 Let 1 =
∑n

i=1 pi be a decomposition of 1 ∈ O by non zero

elements pi of V0(O) arranged in the order m(p1) ≥ m(p2) ≥ · · · ≥ m(pn).
This decomposition defines an instrument if and only if all of the following

partial sums belong to O): p1, p1 + p2, p1 + p2 + p3, p1 + p2 + · · ·+ pn−1.

Before giving the proof we remark that we can identify the above partial
sums with the vertices of a convex polygonal line obtained by placing the pi
tail to head in the given order.

Proof: Consider the partial sums in increasing slopes: pn, pn + pn−1,
pn+pn−1+pn−2, . . . , pn+ · · ·+p2. Each element in these sums is the negation
of an element in the original sums. Thus if the first ones lie in O so do the
second ones. By the slope condition, any other partial sum has to lie within
the convex figure bounded by the two polygonal lines, hence if the upper line
lies in O so do all the partial sums, and the decomposition is an instrument.
Conversely, suppose some partial sum is outside O then since it is within
the convex polygon formed by the upper and lower lines, some point of the
boundary of this polygon must lie outside O and since the upper line is paired
to the lower by negation, some point of the upper line lies outside O. By
convexity of O some vertex of the upper line now lies outside O. Q.E.D

We see from this lemma that if we take a convex polygonal line joining 0

to 1 and lying within O, above or on the segment [0, 1], then by taking for
pi the sides of this line we obtain an instrument and conversely. Instruments
are thus in one to one correspondence with convex polygonal lines joining 0

to 1, lying within O and above or on the segment [0, 1].

Lemma 7.10 Suppose I = (p1, . . . , pn); pi 6= 0 is an instrument in a general

statistical theory. If some two atoms are proportional, then I is stochastically

factorizable and hence mixed.

Proof: Suppose, by reordering if necessary, that p1 = αp2, 0 < α ≤ 1. Let
J = (p1 + p2, p3, . . . , pn) be a condensation.

(
p1

p2

)

=





α

1 + α
1

1 + α



 (p1 + p2)
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showing that I is stochastically factorizable and so by Corollary 7.1 is mixed.
Q.E.D

Theorem 7.5 An exhaustive instrumentI = (p1, . . . , pn) with pi 6= 0 in a

two dimensional triple is stochastically non factorizable if and only if it is

pure and this occurs if and only if every node of the upper polygonal line of

I is an extreme point of O.

Proof: By Lemma 7.10 we can suppose all slopes are distinct. Let
m(p1) > m(p2) > · · · > m(pn) and suppose the first mixed partial sum is p1+
p2 +
+ · · ·+pa. Consider the parallelogram formed by the vertices p1 + · · ·+pa−1,
p1 + · · ·+ pa, p1 + · · ·+ pa−1 + pa+1, p1 + · · ·+ pa+1. Call these points r, s, t,
u respectively. We argue that there is a line segment lying within O, having
s in its interior, and of slope m satisfying m(pa) ≥ m ≥ m(pa+1). Since s
is mixed, there is at least a line segment lying within O and containing s in
its interior. If its slope already satisfies the condition we look no further, if
not, then by nature of its slope, the segment is partly in the interior of the
parallelogram. Assume the segment is of the form [x, y] with [x, s) outside,
and (s, y] within the parallelogram. But now the triangle r, x, u has s in its
interior and so contains a segment with the desired property.

Now there is a vector q in O of slope m since m(pa) ≥ m ≥ m(pa+1).
Furthermore we can choose q small enough that if placed at its midpoint at
the vector s = p1 + · · ·+ pa it would lie wholly in O. Making q yet smaller if
need be, we can have m(pa−1) > m(pa − (1/2)q) > m(pa) ≥ m ≥ m(pa+1) >
m(pa+1 + (1/2)q) > m(pa+2). By the correspondence between exhaustive
instruments and polygonal lines joining 0 to 1, we thus have and instrument

p1, . . . , pa−1, pa − (1/2)q, q, pa+1 + (1/2)q, pa+2, . . . , pn

and by Lemma 7.5, I is stochastically factorizable and so by Corollary 7.1 is
mixed.

Suppose now that every vertex of the upper polygonal line is pure, and
suppose I = (1/2)I1 + (1/2)I2. Now each such vertex is a partial sum of
atoms of I and so is a convex combination of partial sums of atoms of I1 and
I2. By the purity assumption all three of these partial sums coincide. Since
the atoms of the instruments can be uniquely recovered from these partial
sums, the atoms of all three instruments coincide and I is pure. Q.E.D
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Corollary 7.3 The pure exhaustive instruments for a two dimensional figure

form a filtered set under refinement.

Proof: The pure exhaustive instruments are in one to one correspondence
with finite subsets of the extreme points of the upper boundary of O with
0 and 1 deleted: we simply identify these with the vertex set of the upper
polygonal line of the instrument. For any two such sets, their union gives a
common refinement. Q.E.D

Corollary 7.4 In a two dimensional triple

H(σ) = lim
I
{h(σ, I) | I pure, exhaustive}.

Proof: We use Corollary 7.3 and the remark that the entropy increases with
refinements of instruments. Q.E.D

Corollary 7.5 The two dimensional instrumental entropy is concave:

H(λσ + (1 − λ)σ′) ≥ λH(σ) + (1 − λ)H(σ′).

Proof: We use Corollary 7.4 and the concavity of the classical en-
tropy: H(λσ + (1 − λ)σ′) = limI h(λσ + (1 − λ)σ′, I) ≥ limI(λh(σ, I) +
(1 − λ)h(σ′, I)) = λH(σ) + (1 − λ)H(σ′). Q.E.D

Hence if one pure state has infinite instrumental entropy, then so does
every mixed state.

We see that if the observation figure is a polygon, then the entropy H(σ)
is given by h(σ, I0) where I0 is the instrument corresponding to the upper
polygonal boundary of O. In this case it is always finite. The entropy could
very well be infinite if O is not a polygon. Suppose the upper boundary of O
is such that the projection onto the first component of the set of pure points
contains a closed interval β. By convexity of O the same is then true for the
projection onto the second component. Let us take a partition of β into n
subintervals giving rise to an instrument containing at least the corresponding
vectors (∆xi,∆yi). Thus h(σ1, I) ≥ −

∑
∆xi log ∆xi and if we take the ∆xi

all equal to some ∆x the right hand side becomes −n∆x log ∆x. As n→ ∞,
n∆x remains constant and so this term becomes infinite, and h(σ1, I) = ∞.
A similar reasoning shows h(σ0, I) = ∞ and by Corollary 7.5 h(σλ, I) = ∞.

In such cases it may happen that certain natural constructions can still
be finte. Suppose the upper boundary is the graph of a C1 function b and



84

that all of its points are pure. Let I be a pure exhaustive instrument, and
then using the obvious notation we can write I = ((∆xi,∆bi))i. If we now
compute h(σλ, I) − λh(σ1, I) − (1 − λ)h(σ0, I) then after rearrangement we
have

−λ
∑

∆xi log(λ+ (1 − λ)∆bi/∆xi)+

−(1 − λ)
∑

(∆bi/∆xi)∆xi log(λ(∆xi/∆bi) + (1 − λ))

which in the limit goes over to

−λ

∫ 1

0

log(λ+ (1 − λ)b′(x)) dx− (1 − λ)

∫ 1

0

b′(x) log(1 − λ+ λ/b′(x)) dx

and this may very well be finite depending of the function b′(x). We may
symbolically write the result as H(σλ) − λH(σ1) − (1 − λ)H(σ0) and this
corresponds to the removal of the infinite contributions to the entropy by the
pure states.

Under the same hypotheses, the limit of discrimination entropies could
also be finite. The discrimination entropy of two probability measures s
and r on {1, . . . , n} is defined as h(s, r) = −

∑
si log(si/ri). Thus if σ, σ′

are two states and I an exhaustive instrument, we can define H(σ, σ′; I) =
h(〈σ, I(·)〉, 〈σ′, I(·)〉). Making a calculation similar to the above, we find that
in our case H(σλ, σµ; I) in the limit approaches

−

∫ 1

0

(λ+ (1 − λ)b′(x)) log
λ+ (1 − λ)b′(x)

µ+ (1 − µ)b′(x)
dx

which again could be finite depending on b′(x).
That entropies could be infinite in such seemingly simple situations as

two dimensional observation figures should not be considered unnatural as
the following considerations suggest.

Every polygonal two dimensional observation figure O can be obtained
by restricting from a larger finite dimensional Boolean system. Let the upper
polygonal boundary of 0̧ be represented by the instrument I = (p1, . . . , pn).
Consider the n-point Boolean probability triple (Sn,On, 〈·, ·〉) and the instru-
ment J = ((1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1)) in it. A state σ ∈ Sn
is given by an n-tuple of numbers 0 ≤ si ≤ 1,

∑
si = 1. Consider now

the two states τ0 = (pi,2), τ1 = (pi,1) where pi,2 and pi,1 are the second and
first components of pi ∈ O. Restrict now the system to the production only
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of states in the segment [τ0, τ1]. The reduced system of ([τ0, τ1],On, 〈·, ·〉)
is now precisely the given two dimensional triple with the two instruments
above corresponding atom by atom. The high entropy of the pure states for a
polygonal observation figure thus can be interpreted as arising from the for-
mal identification of these as highly mixed states in a larger Boolean model.
This larger model may or may not have phenomenological significance. The
pure components of σi in the formal mixture τ0 =

∑
pi,2σi could correspond

to unrealizable situations. In the case of organisms for example the formal
pure states could correspond to conditions under which the organism would
be dead, in which case the organism would in a certain sense be always in-
trinsically mixed though phenomenologically it could be a pure state in the
statistical theory adapted to it. If the observation figure is not a polygon,
then to interpret a oure state as a formal mixture in a Boolean system we
must go to infinite Boolean algebras and hence should not be surprised that
the entropy could be infinite. We pursue these ideas further in the next
chapter.

4. Consider a quantum triple in a Hilbert space H of dimension N <∞.
Now the canonical operational theory associated to the triple is not what is
normally considered as being the statistical theory of quantum mechanics.
The canonical theory contains instruments that normally one does not admit.
According to the usual interpretation two operators represent observables
that can be simultaneously measured if and only if they commute. Thus if
I = (A1, . . . , An) is an instrument we should have AiAj = AjAi This view, as
has already been remarked, does not exactly correspond to our idea of what
constitutes an instrument; for example, if I and J are two instruments with
some atom of I not commuting with some atom of J , then θ(1/2,1/2)(I, J) is
a perfectly realizable instrument with noncommuting atoms.

Let us consider then the statistical theory Tc(H) generated by using the
constructions of Chapter 4 and starting from instruments with commuting
atoms. Let Icn be the set of n atom instruments of Tc(H) with commuting
atoms.

Lemma 7.11 Tc(H) = conv(Icn).

Proof: In(Tc(H)) is an algebraically closed subset of a finite dimensional
space, thus each point is a finite convex combination of extreme points.
It thus suffices to show that each extreme point of In(Tc(H)) belongs to
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conv(Icn). Now I(Tc(H)) can be built up recursively by means of instru-
ments constructed in previous steps and using condensations, exhaustions,
stochastic splatters, and sleight of hand operations whose instruments are
also constructed in previous recursive steps. The recursion initiates with Icn.
By analysis made on the effects of the presence of substitution operations on
pages 75-78, where θ(I1, . . . , Im) was replaced by a stochastic condensation
of (Ξ(0)J,Ξ(1)I1, . . . ,Ξ

(m)ImJ) we see that by allowing stochastic condensa-
tions we can forgo using sleight of hand operations in the construction. Since
stochastic condensations can be effected by stochastic splatters and ordinary
condensations, as was done in the proof of Lemma 7.1, we see that in con-
structing I(Tc(H)) we can forgo completely the substitution operations. In
constructing an extreme instrument I though, each statistical splitter must
be inessential, thus replacing each splitter by an appropriate one with only
one certain exit and the rest dummy, we see that I must be an exhaustion
of a condensation of an element of Ic. But this leads again to an element of
Ic. Thus I ∈ Icn. Q.E.D

Lemma 7.12 The extreme points of In(Tc(H)) are instruments with projec-

tions for atoms.

Proof: Suppose I is an extreme point of In(Tc(H)). Then as was shown
in the proof of Lemma 7.11, I ∈ Icn. Thus there is a spectral measure E of
a finite set X such that Ai =

∫
ai(x)E(dx) where ai : X → [0, 1]. Now each

instrument F = (f1, . . . , fn) in the Boolean triple based on B = P(X) defines
and instrument in Icn by ψ : F 7→ (B1, . . . , Bn) where Bi =

∫
fi(x )E(dx).

Now ψ−1(I) must be a face of In(B) seeing that I is extreme. Thus there
is an extreme point of In(B) whose image by ψ is I. But extreme points
of In(B) are defined by n-tuples of characteristic functions whose spectral
integrals are projections. Thus I has projections as atoms. Q.E.D

Now Tc(H) is a perfectly acceptable fragment of quantum mechanics,
though as we shall see it doesn’t incorporate all of the normally acceptable
ideas.

Theorem 7.6 The instrumental entropy function in Tc(H) is constant: H(ρ) =
logN .

Proof: We have, by definition,

H(ρ) = sup{h(ρ, I) | I pure and exhaustive}.
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Now by Lemma 7.12, I has projections for atoms, and as the entropy in-
creases with refinement we can assume that these atoms are one dimensional
Projections (ψi, ·)ψi for some orthonormal basis ψi, i = 1, . . . , N . Thus
h(ρ, I) = −

∑
(ψi, ρψi) log(ψi, ρψi) which is the entropy of the diagonal ele-

ments of the matrix of ρ in the orthonormal basis ψi, i = 1, . . . , N . Consider
now a 2 by 2 hermitian matrix A, then we can write A = α1 + ~β · ~τ where
~τ is the usual vector of Pauli spin matrices. The diagonal entries of A are
λ1 = α+β3 and λ2 = α−β3. Assume say that λ1 ≥ λ2. A unitary transform
of A corresponds to a rotation of ~β and so for any µ ≤ λ1 − λ2 the diagonal
elements can be changed to λ1 − µ, λ2 + µ by a unitary change of basis.
Applying this reasoning now to the matrix of ρ, we can, by unitary trans-
formations in two dimensional subspaces, bring closer together by any given
amount any pair of diagonal entries. Apply now the following procedure:
if there is an entry less that 1/N , then by the fact that Tr(ρ) = 1, there
must be one larger that 1/N . By narrowing the difference between these
two entries, one of them can be brought to coincide with 1/N . After a finite
number of steps therefore all the entries are 1/N and for this particular basis
ψ′
i, and the corresponding instrument I ′ = ((ψ′

1, ·)ψ
′
1, . . . , (ψ

′
N , ·)ψ

′
N) we have

h(ρ, I ′) = logN . Since this number is the maximum that h(ρ, I) can achieve
in a pure instrument, we have H(ρ) = logN . Q.E.D

We have here our first major contrast between quantum theory and the-
ories of a more classical nature as in our first three examples. In Tc(H) each
state can appear maximally chaotic if the instrument is appropriately cho-
sen. Note that each basis provides a maximal instrument, thus in contrast
to finite Boolean schemes and polygonal two dimensional triples, no instru-
ment exists that completely determines the state. A state reveals its true
nature only if we compare its behavior with respect to instruments that are
incompatible, in the sense that one has an atom that never appears with an
atom of the other in yet a third instrument.

To understand the situation better, we must now consider operations.
As before, we consider a finite dimensional Hilbert space H of dimension
N . According to the standard interpretation of quantum mechanics, if B
is any observable with spectral measure E: B =

∑N
i=1 λiEi, then if we ob-

serve B the result is one of the numbers λi. If before observation the state
was ρ, then the new state immediately after having observed the value λi
is EiρEi/Tr(EiρEi) provided Tr(EiρEi) 6= 0. The frequency with which λi
is observed as the value of B is precisely this latter number Tr(EiρEi) =
Tr(ρEi). Thus B can be thought of as describing an n-exit operation θB
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in which θ
(i)
B∗ρ = EiρEi/Tr(EiρEi), νi(ρ) = Tr(EiρEi); but this means that

θ
(i)
B (A) = EiAEi. We now make a slight modification of this idea, namely,

we allow for the possibility that observing some of the λi may involve a
destruction of the state. For instance, in determining linear polarization
of a beam of light we place a polarizer in the beam represented by a one
dimensional projection P in C2. If a photon in a state ρ passes through,
we have a copy of the the exit state PρP/Tr(PρP ), but if the photon
is absorbed, we do not have access to a copy of the corresponding state
(1 − P )ρ(1 − P )/Tr((1 − P )ρ(1 − P )). We thus admit the following: A
quantum mechanical statistical theory is a statistical theory generated by the
constructions of Chapter 4 and starting with instruments with commuting
atoms and a family F of operations θE where each E is an n-tuple of orthog-
onal projections E1, . . . , En such that PE = E1 + · · · + En ≤ 1, and where
θ

(i)
E (A) = EiAEi. Note that from the inequality we get by multiplying by Ej

on the right and left that
∑

k 6=j EjEkEj ≤ 0 ⇒ EjEkEj = 0 ⇒ EkEj = 0
for each k 6= j. Thus E is part of a spectral measure. Let TF (H) be the
statistical theory so defined. Now there is no simple and reasonable way to
choose the family F . The usual way to avoid this problem is to accept any
θE as a possible operation. In this case we call the resulting theory TQ(H)
and call it the quantum mechanical theory associated to H. We also consider
this theory in cases when the dimension of H is infinite.

In TQ(H) we have instruments with noncommuting atoms that do not
come about via stochastic splitters. Consider the theory of a free parti-
cle in one dimension as formalized in L2(R). Let E and F be the spectral
measures of the momentum operator and the position operator respectively.
If we first prepare a state that lies in E(A)H, A ⊂ R, E(A) 6= 0, 1, at
t = 0 and at t = t1 > 0 observe with the instrument F (B1), . . . , F (Bn)
where the Bi form a partition of R, then in terms of H we are making
a simultaneous observation of properties represented by A1, . . . , An where
Ai = E(A)U(t1)F (Bi)U(t1)

∗E(A) and U is the unitary group of time trans-
lation. Of course, this really involves measurements at different times, yet
even for t1 near zero, [Ai, Aj ] is still appreciably different from zero. Ac-
cording to our formalizm there is no way of denying that this is a bona fide
instrument, so one can ask just what does the normal interpretation require
when it insists on commutativity of the operators that correspond to simulta-
neous observations. One can argue that what is hidden in the above example
is that the F (Bi) in fact commute and it just happens that we are restricting
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our states to be inE(A)H which is a proper subspace of H. Thus we’ve placed
our preparations as being part of the observation. One could try to say that
only the so called ultimate instruments, those that do not involve previous
preparations must be commutative. This idea is in fact somewhat incorpo-
rated in the very definition of TQ(H) whose ultimate instruments come from
Ic. Now whether phenomenologically speaking an instrument is ultimate or
not is certainly hard to define. It’s hard to see how measurements can be
done without preparation except in the extreme cases of either not interacting
with the state or destroying it instantly. In terms of our formalism, suppose
I = (A1, . . . , An) is an instrument in TQ(H) with commuting atoms, and for
simplicity assume the spectrum of each Ai is finite. Then as before, there is
a finite set X, a spectral measure E on X, and functions ai : X → [0, 1] such
that Ai =

∫
ai(x)E(dx). We can think of the family of functions ai as an

instrument J in the Boolean triple based on B = P(X). We can then write J
as a convex combination of extreme instruments J =

∑k
1 λiJi. The spectral

integrals of the Ji provide instruments Ii in TQ with projections for atoms and
I is thus a condensation of θ(λ1,...,λk)(I1, . . . , Ik). We can thus assume ultimate
instruments have projections for atoms. If now however I = (E1, . . . , En) has
projections for atoms, then I = θE(1, . . . , 1) where E = (E1, . . . , En) so the
only ultimate instrument is 1, and the commutativity requirement cannot
be explained by any notion of ultimate instrument. Commutativity seems to
be the result of attributing self adjoint operators to observables. Now if B is
an observable with finite spectrum λ1, . . . , λn and E is its spectral measure,
then we can consider the result of observing B as that of observing with
the instrument I = (E1, . . . , En) where Ei = E({λi}) and assigning value λi
to the observation if the i-th property of I is realized. We see in this case
that I is an exhaustive instrument with commuting atoms. Suppose now
I = (A1, . . . , An) is any exhaustive instrument of TQ(H) and suppose each
time the i-th property of I is realized we assign the value λi to our observa-
tion. In general this doesn’t correspond to any observable B for then we must
have for some spectral measure (E1, . . . , En) that Tr(ρAi) = Tr(ρEi) for all
ρ and so Ai = Ei . So I in general cannot be used to construct observables
as understood by the standard interpretation, though there is nothing wrong
operationally with the procedure just described. This we must understand
by realizing that the standard model describes somehow ideal measurements,
and so our procedure must correspond to an imprecise observation. We may
thus remark in our example of the free particle that the simultaneous observa-
tion of the Ai are not ideal position measurements, for before measuring, the
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instrument projects into the momentum subspace E(A)H. Commutativity
seems to involve the notion of ideal measurement.

This raises now two questions of consistency. First of all we had pre-
viously considered an operator A with 0 ≤ A ≤ 1 as a possibly non-ideal
measurement of a yes-no property. By the above discussion this non-ideal
measurement should correspond to a two atom instrument I = (A1, A2) with
‘yes’ attributed to the realization of the first property. This is totally consis-
tent if we take A1 = A. It must be emphasized at this point that the atoms
of an instrument I must not be treated as observables, even though they are
represented by self adjoint operators. Observing with I one of the atoms is
realized, that is achieves the value ‘yes’ and all the others ‘no’; we do not
observe the eigenvalue of any of them. Each instrument defines any number
of not necessarily ideal observables by assigning values to each atom.

The second point of consistency is that we have already argued, by a
different route, that ideal observables would correspond to pure instruments,
whereas the standard quantum mechanical interpretation would say that they
correspond to self adjoint operators, that is instruments with projections as
atoms. This is consistent in Tc(H) by Theorem 7.12 but as we shall see
shortly in TQ(H) there are pure instruments with atoms that are not projec-
tions. This apparent inconsistency can be resolved by noting that the notion
of ideal observable in quantum mechanics means a bit more than purity of
the instrument. Ideality in quantum mechanics also means repeatability of
the measurement and the preservation of purity of states. Thus observing B
again, after having observed the eigenvalue λ leads again to the same eigen-
value now with certainty, and the exit state after the second measurement
coincides with the one after the first. Moreover, observing with B, pure states
are transformed into pure states. How do we repeat a non-ideal observation?
We must determine what happens to a state after a non-ideal measurement.
This in principle is not uniquely determined by the corresponding instrument
I = (A1, . . . , An) as occurs in the ideal case. However, in TQ(H), as we shall
briefly show, we can always write I as θ(1, . . . , 1) for some operation θ. Now
θ is not uniquely determined by I, but if we shift our attention to θ we can
talk about its repeatability properties. What we want is that if a state leaves
by the i-th exit of θ, then applying θ again, it leaves again by the i-th exit
now with certainty and unchanged. We call such a θ repeatable. If in addition
θ

(i)
∗ σ is pure whenever it is defined and σ is pure, we call θ ideal . In our
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formalism, leaving again by the i-th exit with certainty means

〈σ, θ(i)1〉 6= 0 ⇒ 〈θ(i)
∗ σ, θ

(j)1〉 = δij,

and leaving unchanged means

(θ(i)
∗ )2σ = θ(i)

∗ σ.

This in turn implies 〈(θ(i)
∗ )2σ, p〉 = 〈θ(i)

∗ σ, p〉 but 〈(θ(i)
∗ )2σ, p〉〈θ(i)

∗ σ, θ(i)1〉 =

〈θ(i)
∗ σ, θ(i)p〉 which using the first equation now leads to 〈θ(i)

∗ σ, p〉 = 〈θ(i)
∗ σ, θ(i)p〉.

This now is equivalent to 〈σ, θ(i)p〉〈σ, θ(i)1〉 = 〈σ, (θ(i))2p〉〈σ, θ(i)1〉 which by
Axiom 4.9′ implies 〈σ, θ(i)p〉 = 〈σ, (θ(i))2p〉 which finally says (θ(i))2 = θ(i).

Now for i 6= j, 〈θ(i)
∗ σ, θ(j)1〉 = 0 ⇒ 〈σ, θ(i)θ(j)1〉〈σ, θ(i)1〉 = 0 and again by

Axiom 4.9′ we conclude that θ(i)θ(j) = 0. Repeatability is thus equivalent
to θ(i)θ(j) = δijθ

(i)

We now show that every instrument in TQ(H) is of the form θ(1, . . . , 1).
By definition of TQ every instrument is a (possible) exhaustion of a (possible)
condensation of a θ(I1, . . . , Im) where Ii ∈ Ic. As was already show, each Ii
can be written as a convex combination of instruments with projections for
atoms and these convex combinations can be obtained by condensing from
stochastic splitters with the given instruments with projections for atoms
at the exits. An instrument with projections for atoms can be written as
θE(1, . . . , 1). Thus we can replace θ(I1, . . . , Im) above by a θ(1, . . . , 1) where
of course we now use θ to mean a different operation. A condensation of such
an instrument can be obtained by first condensing exits of θ and again placing
1 on the new exits. Any instrument I is therefore a (possible) exhaustion
of a θ(1, . . . , 1). If now somewhere in the construction of θ, state destroying
elements occurred, these are of two possible types: either condensations that
ignore exits or operators θE where E = (E1, . . . , Ek) is not a full spectral
measure and pE = E1 + · · · + Ek < 1. Introduce now a new exit labelled by
0. For each ignored exit in any condensation involved in the construction of
θ, allow this ignored exit to lead now to exit 0. For each θE with pE < 1
introduce a θÊ with Ê = (I1, . . . , Ik; 1−pE) and lead the new exit so obtained
to exit 0. The new resulting operation θ′ has one more exit and θ′(1, . . . , 1) is
the exhaustion of θ(1, . . . , 1). Hence every instrument in TQ can be written
as θ(1, . . . , 1).

For ease in the following computation let us make the inessential assump-
tion that dimH = N < ∞. We claim that every one exit operation Ψ in
TQ (and subsequently every θ(i) of an n-exit operation θ) can be written as
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Ψ(A) =
∑
µiC

∗
i ACi. where µi ≥ 0 We prove this by recursion. Suppose Ψ

is an exit of a many exit operation each exit of which has the above form.
Condensing with other exits corresponds to summing with other expressions
of the same form, which preserves the form. Suppose now we place at the
exit of Ψ one of the generating operations: a stochastic splitter θΛ, a θE or a
sleight of hand operation θJτ Let us examine the j-th exit of the composite;
we have:

(Ψ{θΛ})
(j)(A) =

∑

i

λjµiC
∗
i ACi,

(Ψ{θE})
(j)(A) =

∑

i

µiEjC
∗
i ACiEj ,

(Ψ{θJτ })
(j)(A) = Tr(ρj

∑

i

µiC
∗
i ACi)Bj ,

where J = (B1, . . . , Bn) and τ = (ρ1, . . . , ρn). Of these the first two expres-
sions are certainly of the given form, to see that the third one is also, let us
introduce the spectral decompositions of ρj and Bj with respect to bases of
eigenvectors:

ρj =
N∑

k=1

λk(φk, ·)φk,

Bj =

N∑

m=1

βm(ψm, ·)ψm.

Now we see that the third expression above can be written as:
∑

i,k,m

λkµiβm((ψm, ·)φk)
∗C∗

i ACi((ψm, ·)φk)

which again is of the claimed form. Since every operation of TQ is built up
using these steps starting from the operation Id, which clearly has the given
form, our claim is justified. We thus have

Ψ∗ρ =

∑
µiCiρC

∗
i

Tr(
∑
µiCiρC∗

i )

provided the denominator is not zero. The requirement that pure states
transform into pure states means that

∑

µiCi(ψ, ·)ψC
∗
i =

∑

µi(Ciψ, ·)Ciψ
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must be of the form (φ, ·)φ for all ψ. Since each summand is positive, this
means that in particular Ciψ = αiφ for each i, hence Ci = γiC for some fixed
C and we have:

Ψ(A) = (
∑

µi|γi|
2)C∗AC.

Incorporating the square root of the numerical factor into C, we can write
Ψ(A) = C∗AC. Idempotency now implies that (C∗)2AC2 = C∗AC for all A.
Now this holding for all self adjoint operators A with 0 ≤ A ≤ 1 implies that
it holds for all bounded operators and in particular for (φ, ·)ψ which means
that (C∗2φ, ·)C∗2ψ = (C∗φ, ·)C∗ψ which in turn implies that C∗2ψ = αψC

∗ψ
and ᾱφαψ = 1 unless C∗φ or C∗ψ is zero. This can only be satisfied if αψ is
independent of ψ whenever C∗ψ 6= 0 and we can now write C∗2ψ = αC∗ψ
with |α| = 1. But now (αC)∗2 = ᾱ2C∗2 = ᾱ2αC∗ = ᾱC∗ = (αC)∗ and (αC)∗

is an idempotent. Since multiplying C by a phase factor doesn’t change Ψ
we can write Ψ(A) = P ∗AP where P is an idempotent. Taking A = 1 we
must have Ψ(1) = P ∗P ≤ 1 ⇒ ‖P‖ ≤ 1, but a Hilbert space projection with
norm not exceeding one is necessarily orthogonal so in fact Ψ(A) = EAE
for an orthogonal projection E. An ideal operation therefore has the form
θ(j)(A) = EjAEj with EiEj = δijEi, that is θ = θE and its instrument
θ(1, . . . , 1) has projections for atoms. Instruments corresponding to ideal
measurements in TQ therefore have projections for atoms and thus commute.

We conclude from the above analysis that the condition of commutativity
in quantum mechanics corresponds to more than just commensurability, but
incorporates in addition repeatability and the preservation of purity of states.

Before exploring further the structure of TQ(H), we remark that repeata-
bility and preservation of purity of states are rather stringent conditions and
a general statistical theory should not have any ideal operations other than
the ones that are always present, such as 0, Id, and certain sleight of hand
operations. Consider a two dimensional statistical triple and an idempotent
purity preserving one exit operation θ, which would be given by a 2×2 matrix(
a b
c d

)

. Now θ∗σλ = σµ where µ = (λa+(1−λ)c)/(λ(a+b)+(1−λ)(c+d)) .

So [σ0, σ1] gets transformed into [σc/(c+d), σa/(a+b)] unless c+d = 0 or a+b = 0.
If (c+ d)(a+ b) = 0 but θ 6= 0, then the image interval is degenerate and θ∗
is undefined on one of the pure states, if θ = 0 then θ∗ is totally undefined.
By preservation of purity, there are four possibilities for the image: [σ0, σ0],
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[σ0, σ1], [σ1, σ0] and [σ1, σ1] and these correspond to θ of the form
(

0 b
0 d

)

,

(
a 0
0 d

)

,

(
0 b
c 0

)

and

(
a 0
c 0

)

respectively. Imposing idempotency results finally in the following four pos-
sibilities: (

0 0
0 0

)

,

(
1 0
0 1

)

,

(
0 b
0 1

)

and

(
1 0
c 0

)

.

Now in general the last two don’t exist unless b = 1 and c = 1, since applying
them to 1 results in (b, 1) and (1, c) which cannot be assumed to be in O

unless b = c = 1. We have however

(
0 1
0 1

)

= θ1σ0
,

(
1 0
1 0

)

= θ1σ1
which

certainly must always be present.
This points out yet another essential difference between general theo-

ries on the one hand, and quantum mechanics and Boolean theories on the
other hand. The latter are completely determined by their ideal operations,
whereas general theories have a scarcity of them.

We resume now the study of TQ(H) and assume now that dimH = ∞ and
let K ⊂ H be a finite dimensional subspace. Suppose now that A1, . . . , An are
positive operators in K such that A1 + · · ·An ≤ 1K. By [10] it is now possible
to find a finite dimensional Hilbert space K+ ⊃ K with projection P+ : K+ →
K and a spectral measure E+

1 , . . . , E
+
n on K+ such that Ai = P+EiP

+. Since
K is infinite dimensional we can consider K+ ⊂ H and so there is a projection
P in H and projections Ei such that E1 + · · ·+En ≤ 1 and Ai = PEiP . Let
Q = E1 + · · · + En, then P ≤ Q. Now if E = {P} and I = (E1, . . . , En),
then θE and I are objects of TQ(Ḩ) and we have θE(I) = (A1, . . . , An). Thus
in TQ(H) with H infinite dimensional the instruments that act on any finite
dimensional subspace can be taken to be those of the canonical operational
statistical theory associated to the quantum triple based on the subspace.
If our quantum mechanical system is described by an infinite dimensional
Hilbert space, and if we admit any self adjoint operator as an observable, then
in any finite dimensional subspace K, given any set of operators A1, . . . , An
that are positive and so that A1 + · · · + An ≤ 1K then there is an ideal
operation in H whose instrument acting on the states in K is represented
by (A1, . . . , An). Admitting TQ(H) as a model implies admitting at least the
instrumental structure of the canonical operational theory associated to a
finite dimensional Hilbert space as a realistic model.

We now return to the investigation of the instrumental entropy function.
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Theorem 7.7 Let TI(H) be a quantum mechanical triple with dimH =
N <∞ and the set of instruments given by the canonical operational theory.

The instrumental entropy function is constant equal to logN2.

Before proving the theorem we shall need a few technical results.
Suppose I = (A1, . . . , An) is not extreme, then I = (1/2)I1 + (1/2)I2

with Ij = (A
(j)
1 , . . . , A

(j)
n ). Let Ci = A

(2)
i − A

(1)
i then we see that the Ci are

self adjoint, not all zero,
∑
Ci = 0, and 0 ≤ Ai + ηCi ≤ 1 for |η| ≤ 1/2.

Conversely, if such Ci existed, then I could not be extreme since then η 7→
(A1 + ηC1, . . . , An + ηCn) would be a nontrivial affine map [−1/2, 1/2] → In
with 0 7→ I.

Suppose we have 0 ≤ A+ ηC ≤ 1 for A and C self adjoint and |η| ≤ 1/2.
Let E = E({0}) + E({1}) be a spectral projection of A and decompose H
into EH⊕ (1 −E)H. In matrix form we have

A =

(
E1 0
0 B

)

C =

(
C1 C2

C∗
2 C3

)

where E1 = E({1}) and B, C1 and C3 are self adjoint. From the inequality
we obtain in particular that 0 ≤ E1 + ηC1 ≤ 1 which by the extremality of
E1 implies C1 = 0. Applying now A+ ηC to x⊕ y we get

0 ≤ ‖x‖2 + 2ηRe(x, C2y) + (y, (B + C3)y) ≤ ‖x‖2 + ‖y‖2 ⇔

⇔ 0 ≤ 2ηRe(x, C2y) + (y, (B + ηC3)y) ≤ ‖y‖2.

If C2 6= 0 then we can find a y and an x such that (x, C2y) is real and
different from zero. Picking η 6= 0 we can then multiply x by a real constant
in such a way as to contradict the inequality, thus C2 = 0 and we conclude
that the null space of C contains EH. Conversely if C is self adjoint and
contains EH in its null space, then for some R > 0, |C| ≤ RE((0, 1)) and so
0 ≤ A+ η(2/R)C ≤ 1 for |η| ≤ 1/2.

Suppose now I = (A1, . . . , An) is an extreme instrument. By the spectral
theorem we can write for each i, Ai =

∑

j αij(φij, ·)φij where (φij)j=1,...,N is an
orthonormal basis for H. We then have a refinement J =
(αij(φij, ·)φij)i=1,...,n;j=1,...,N of I. We claim that J is pure. If it weren’t, there
would exist self adjoint operators Cij not all vanishing with

∑

ij Cij = 0 and
0 ≤ αij(φij, ·)φij + ηCij ≤ 1 for |η| ≤ 1/2. By our previous paragraph we
conclude that Cij = βij(φij, ·)φij with βij = 0 if αij = 0 or 1. Let now
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Ci =
∑

j Cij =
∑

j βij(φij, ·)φij and since some βij 6= 0 and each (φij)j=1,...,N

is an orthonormal basis, not all the Ci vanish. Now 0 ≤ Ai + ηCi ≤ 1 for
|η| ≤ 1/2 and

∑
Ci = 0 so I is not extreme contrary to the hypothesis.

Since the entropy h(ρ, I) increases with refinements we need only look at
instruments of the form where each atom has rank one.

Lemma 7.13 In TI(H) an instrument I = ((φi, ·)φi)i=1,...,n is extreme if

and only if the operators (φi, ·)φi for ‖φi‖ 6= 0, 1 are linearly independent as

elements of the real vector space of hermitian operators.

Proof: If I is not extreme then there are real numbers βi not all zero such
that 0 ≤ (1 + ηβi)(φi, ·)φi ≤ 1 for |η| ≤ 1/2 and such that

∑
βi(φi, ·)φi = 0.

Now the first inequality implies that βi = 0 if ‖φi‖ = 0 or 1 and so the (φi, ·)φi
for ‖φi‖ 6= 0 or 1 are linearly dependent. Following the argument backwards,
we find a set of real numbers γi not all zero with γi = 0 if ‖φi‖ = 0 or 1 and
such that

∑
γi(φi, ·)φi = 0; setting βi = γi/R for R sufficiently large, the

first inequality is satisfied and we conclude that I is not extreme. Q.E.D

Lemma 7.14 In TI(H) if I is extreme with n rank one atoms, then n ≤ N2

Proof: Consider the (φi, ·)φi with ‖φi‖ = 1, then their sum is a sum of
projections and bounded by 1 and as has already been seen, they must
be orthogonal and sum up to a projection E of dimension k, say. Then
∑

{(φi, ·)φi | ‖φi‖ 6= 1} = 1 − E and by the previous lemma these (φi, ·)φi
are linearly independent operators in (1 − E)H. Since we can have at most
(N − k)2 linearly independent hermitian operators in (1 − E)H we have
n ≤ k + (N − k)2 ≤ N2. Q.E.D

According to the proof of Theorem 7.6 there is an orthonormal basis
φ1, . . . , φN such that (φi, ρφi) = 1/N where ρ is a given state. Consider
now the instrument J with N2 rank one atoms obtained by repeating each
(1/N)(φi, ·)φi, N times. We find h(ρ, J) = logN2. Now J is not extreme
by Lemma 7.13, however by Lemma 7.14, logN2 is the maximum value that
h(ρ, I) can have in a pure instrument. Our theorem would then be proved
once we establish the following result:

Lemma 7.15 There is a pure instrument arbitrarily close to J .

Proof: Consider an instrument I with N2 rank one atoms ((ψi, ·)ψi)i=1,...,N2,
∑

(ψi, ·)ψi = 1. Let ǫa, a = 1, . . . , N be any orthonormal basis and set
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µia = (ψi, ǫa) The N2 × N matrix µ obeys
∑

i µiaµ̄ib = δab. Recipro-
cally, if µia is any such matrix then setting ψi =

∑

a µiaǫa one gets 1 =
∑

(ψi, ·)ψi. Thus the set of exhaustive instruments with rank one atoms is
in one to one correspondence with the set M of N2 × N matrices µ such
that µtµ̄ = 1. Now M ⊂ CN3

and the condition µtµ̄ = 1 imposes 2N2

constraints. The real Frechet derivative of fab(µ) = (µtµ̄)ab =
∑

i µiaµ̄ib is
given by Dfab(µ)h =

∑

i(µiah̄ib + µ̄ibhia). Since µtµ̄ = 1, the real rank of
µ is maximal being 2N , but this implies that the real rank of the deriva-
tive of f = (fab) is likewise maximum being 2N2 so that the set M besides
being a real algebraic subvariety of CN3

is in fact a differentiable subman-
ifold. Let us show that M is connected. If µ1 and µ2 correspond to in-
struments and (ξi, ·)ξi, and (ηi, ·)ηi, i = 1, . . . , N2 respectively, then since
1 =

∑
(ξi, ·)ξi =

∑
(ηi, ·)ηi, N of the ξ, say ξ1, . . . , ξN after renumber-

ing, and N of the η, say η1, . . . , ηN after renumbering, are bases for H.
Thus ξi =

∑N
j=1 tijηj, i = 1, . . . , N . The matrix T = (tij) being invert-

ible possesses a logarithm and defining W (s) = exp(s · logT ) and setting
ζi(s) =

∑N
j=1W (s)ijξj the ζ1(s), . . . , ζN(s) form a base for H with ζi(0) = ξi

and ζi(1) = ηi. For i > N let ζi(·) now be any continuous path from ζi(0) = ξi
to ζi(1) = ηi. Let A(s) =

∑N2

i=1(ζi(s), ·)ζi(s). We see that A(s) is a positive
operator and since ζ1(s), . . . , ζN(s) is a basis for H, A(s) is invertible for all

s. We now have 1 =
∑N2

i=1(A(s)−1/2ζi(s), ·)A(s)−1/2ζi(s) and so provides a
path in M from µ1 to µ2. We conclude therefore that M is an irreducible
algebraic variety. Let us now establish a one to one correspondence between
1, 2, . . . , N2 and pairs (a, b); a, b = 1, . . . , N setting (a(j), b(j)) to be the im-
age of j. For the (ψi, ·)ψi to be linearly independent we must have that the
determinant of the matrix Fij(µ) = Tr((ψi, ·)ψi((ǫb(j), ·)ǫa(j) + (ǫa(j), ·)ǫb(j)))
be different from zero. We have Fij(µ) = µia(j)µ̄ib(j)+µib(j)µ̄ia(j). We now rea-
son by absurdity. Suppose that for a certain neighborhood V of J we had the
implication µ ∈ V ⇒ detF (µ) = 0. Now detF (µ) = 0 defines an algebraic
variety N and if N 6⊂ M we would haveN ∩M of codimension at least one
in M since M is irreducible. But if V ⊂ N then V ∩N = V has codimension
zero in M a contradiction. Thus V ⊂ N ⇒ M ⊂ N . Hence to prove our
lemma we need find one single extreme instrument with N2 rank one atoms.
This is the same as finding N2 linearly independent positive rank one oper-
ators whose sum is 1. Assume we already have m operators (φi, ·)φi where
m ≥ N whose sum is 1. For m = N we can take the φi to form an orthonor-
mal basis. If m < N2 there is a hermitian matrix A linearly independent of
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the (φi, ·)φi. Let now ψ1, . . . , ψN be a basis of H made up of eigenvectors of
A. If each (ψi, ·)ψi were linearly dependent on the (φi, ·)φi we can then write
A =

∑
αi(ψi, ·)ψi as a linear combination of the (φi, ·)φi contradicting the

choice. Thus there is a ψ such that the (φi, ·)φi and (ψ, ·)ψ are all linearly
independent. Since the φi span H we can write ψ =

∑
ciφi. We now want

to find numbers δi and σ such that
∑

(φi + δiψ, ·)(φi + δiψ) + σ(ψ, ·)ψ = 1.
Using the fact that

∑
(φi, ·)φi = 1 we find that we must have

∑

δ̄i(ψ, ·)φi +
∑

δi(φi, ·)ψ + (
∑

|δi|
2 + σ)(ψ, ·)ψ = 0.

Choosing now δi = λci we must have λ + λ̄ + |λ|2
∑

|ci|2 + σ = 0 which
certainly has a solution for λ, given σ. We note that if σ is made sufficiently
small,then λ can also be chosen to be arbitrarily small, but for λ sufficiently
small the operators (φi + λciψ, ·)(φi + λciψ) and are linearly independent.
We have thus found m+ 1 linearly independent positive rank one operators
whose sum is one. Continuing by induction we can finally find N2 such. We
can now conclude that every neighborhood of J contains a pure instrument
I. Q.E.D

With this, Theorem 7.7 is also proved.

We have not been able to calculate the instrumental entropy in TQ(H)
due to the difficulty in identifying the pure instruments, although we suspect
it also to be constant.

It should by now be fairly convincing that the notion of instrumental
entropy is inadequate to give a reasonable justification for the quantum me-
chanical entropy formula −Tr(ρ log ρ) on information theoretic grounds. This
expression has more to do with the way a state is analyzed in terms of other
states than with intrinsic measures of complexity. We shall not persue this
train of thought to any great depth, but end this chapter by introducing a
type of complexity that does reproduce the quantum mechanical formula,
thus giving credence to the basic idea of this paragraph.

Let us consider representations of states as mixtures of other states:
σ =

∑
λiσi suppose the σi are distinct. If one of the σi is not pure, say

a σ1 = (1/2)τ1 + (1/2)τ2, τ1 6= τ2, then substituting this expression for σ1 we
obtain a more refined decomposition and the original expression would not
contain the ultimate ingredients by which σ can be analyzed. Consider now
finite dimensional algebraically closed state figures S. Any state can then be
written as a mixture of pure states, and these correspond to non refinable
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decompositions. We define the decomposition entropy D(σ) of σ as

D(σ) = inf{
∑

λiH(σi) −
∑

λi log λi | σ =
∑

λiσi; σi pure}.

The first term
∑
λiH(σi) is the mean complexity of the constituents σi of

σ and the second term −
∑
λi log λi is the complexity involved in decom-

posing into the constituents. The sum can be interpreted therefore as the
information theoretic effort involved in understanding σ as a mixture of pure
states. Since we want the most economic analysis, we must determine the in-
fimum of the corresponding quantities. We must emphasize however that the
decomposition entropy cannot be the best formalization of the information
theoretic cost of analyzing a state in terms of others, seeing that it involves
only the convex structure of the set S and the instrumental entropy H, and
ignores completely the operational structure of the theory, which by its very
nature should have a role in the process of analysis. We compute now some
decomposition entropies.

Theorem 7.8 Given a Boolean triple based on Bn , and σ = (s1, . . . , sn) a

state, then D(σ) = −
∑
si log si.

Proof: The decomposition into pure states is unique and so we have σ =
∑
siσi where σi = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th place. Since

H(σi) = 0 the result follows. Q.E.D

Theorem 7.9 Consider any quantum mechanical theory in a finite dimen-

sional Hilbert space in which the instrumental entropy is a constant k. If ρ
is a state, then D(ρ) = −Tr(ρ log ρ) + k.

Proof: Consider a decomposition ρ =
∑m

j=1 rj(φj, ·)φj of ρ into pure
states. We assume the φj are different, for if they were not, we could condense
the probability measure r· and lower the entropy. Assume none of the rj are
zero. Consider the two dimensional subspace K spanned by φ1 and φ2 and
define the state ρ1 = (1/(r1+r2))(r1(φ1, ·)φ1+r2(φ2, ·)φ2). If now R = r1+r2
and if ρ1 = s1(ψ1, ·)ψ1 + s2(ψ2, ·)ψ2 is any other decomposition of ρ1 in K we
have

ρ = Rs1(ψ1, ·)ψ1 +Rs2(ψ2, ·)ψ2 +
m∑

j=3

rj(φj , ·)φj.
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The entropy of this new decomposition is found to be

−R logR− R(s1 log s1 + s2 log s2) −
m∑

j=3

rj log rj + k.

Thus if the original entropy were minimum, the entropy of the given coeffi-
cients (r1/R, r2/R) of ρ1 would be minimum. We are thus lead to consider
decompositions of minimum entropy of a state in C2 into two pure states.
Now S(C2) is a solid sphere. Given a point in the interior @welve assumed
r1 6= 0 6= r2 a decomposition into two pure states corresponds to a line seg-
ment through the point and meeting the surface of the sphere in the two pure
states. The coefficients of the decomposition are the two ratios into which the
line segment is divided by the given point, and the minimal entropy of these
coefficients is obtained when the segment passes through the center of the
sphere. This corresponds to a decomposition into two orthogonal states. We
conclude therefore that the minimum entropy of decomposition is obtained
when the φi are pairwise orthogonal. This corresponds to the case where
the rj are the nonzereo eigenvalues of ρ, counting multiplicities, and so the
entropy of such a decomposiotion is −Tr(ρ log ρ) + k. Q.E.D



Chapter 8

On Lattices of Propositions in

Statistical Theories

It is by now notorious that classical mechanics and quantum mechanics each
possess well defined lattices of yes-no propositions. Within our formalism we
see that in these two cases the propositions correspond to pure observations;
characteristic functions for classical mechanics and orthogonal projections
for quantum mechanics. The first form a Boolean algebra and the second an
orthomodular lattice. One can ask then whether one can identify a lattice
structure in a subset of O in a general statistical theory. We give here
a satisfactory answer to this in the case of two dimensional theories, which
also hints at the problems to be faced in the general case. Now the first point
to establish is that we cannot expect the extreme points of O to correspond
to a lattice of propositions. Consider the following hypothetical system: we
take a maze as pictured below

1 2 3

ENTRANCE

and consider a hypothetical rat which has the following behavior. When

101
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placed in a maze and faced with its i-th T intersection it has a probability
(pi, 1 − pi) of a right-left turn where for some θ with −1 ≤ θ ≤ 1:

pi =

{
θ + (1 − θ)pi−1 if the previous turn was right
(1 + θ)pi−1 − θ if the previous turn was left.

Hence each turn reinforces, positively or negatively, the subsequent turn.
Suppose we have a population of these rats. Let σ(θ,λ) be the state prepared
as follows: place a rat of parameter θ and p1 = λ in the above maze. Let p1,
p2, and p3 be the observations of emergence at exits 1, 2, and 3 respectively.
A simple calculation shows:

< σ(θ,λ), p
1 > = λ2 + (1 − λ)θ,

< σ(θ,λ), p
2 > = λ(1 − λ)(1 − θ),

< σ(θ,λ), p
3 > = 1 − λ.

Consider now a subpopulation with λ fixed. Seeing that the above expressions
are affine in θ we see that the states σ(θ,λ), λ fixed, lie on a segment of stats
with the end points given by the extreme values of θ. We identify this segment
with S. Likewise O is a two dimensional observation figure constructed from
p1, p2, and p3 by logical operations and mixtures. We represent the system as
a two dimensional statistical triple in the usual manner. Now unless λ = 1
or 0, p3 is mixed, yet it should be natural to associate with this system
the Boolean algebra of propositions generated by the atomic statements πi:
“the rat appeared at exit i.” Mixed observations must therefore in general
be considered as candidates for a logic of propositions. On the other hand
not every mixed observation should do, only those should be considered that
partake in measurements without ad hoc interferences by the experimenter.
Our discussion of state complexity suggests we look to pure instruments.
We note that in the maze example above (p1, p2, p3) is the maximum pure
instrument provided that θ varies in some interval of positive length. On
the other hand it would still be too restrictive to consider merely atoms
of pure instruments, since logical disjunctions of the properties associated
to atoms correspond to condensations, and these disjunctions must certainly
enter any putative logic of propositions. Let us tentatively call an observation
p ∈ O a statistical proposition if there is a pure refinement of the instrument
(p, 1 − p). Now even with this point of view, there is little chance of seeing
a logic in the set of statistical propositions. To situate the problem better,
we consider first a general two- dimensional triple (S,O, 〈·, ·〉). In this case
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the pure instruments are filtered with respect to refinement. Furthermore if
I is pure and refines a pure instrument J , there is a unique Boolean algebra
monomorphism BJ → BI . We have an increasing filtered family of Boolean
algebras and we can form the limit algebra B with canonical injections φI :
BI → B. Let now (SB,OB, 〈·, ·〉B) be the Boolean triple associated to B. By
universality each σ ∈ S defines a probability measure on B, thus there is a
canonical injection φ : S → SB. We now prove that O is recoverable from
OB.

Theorem 8.1 φ∗OB = O.

Proof: Since every element f of OB can be uniformly approximated by simple
functions h =

∑
ciχAi

∈ OB and since O is closed in R2 and φ∗ continuous,
we need only show that these simple functions are mapped into O to conclude
that φ∗OB ⊂ O. We can assume the Ai disjoint and by construction there
is an instrument I such that Ai ∈ φIBI ; Ai = φI(Di) say. Since the Ai are
disjoint, 0 ≤ ci ≤ 1, and φ∗h is a sum of atoms of I with coefficient ci if the
atom belongs to Di and with coefficient 0 otherwise. Clearly this lies in O
being a stochastic condensation of I. Thus φ∗OB ⊂ O. On the other hand if
p ∈ O is pure, the instrument I = (p, 1 − p) is pure and so p = φ∗χA where
A = φI({1}). Thus φ∗OB contains every extreme point of O. Since any point
of O is a convex combination of at most three extreme points, we’ve proved
the claim. Q.E.D

Thus as was mentioned in the previous chapter, we can view any two
dimensional theory T as being a Boolean theory in which the production of
states is somehow limited to a single interval [σ0, σ1] ⊂ SB and so OB collapses
to its quotient making the reduces triple of ([σ0, σ1],OB, 〈·, ·〉) coincide with
T . The Boolean algebra B should be considered as the lattice of propositions
associated to T , but this lattice is not the set of statistical propositions as
defined above. To see this, consider a two dimensional triple in which O
is defined by its upper polygonal boundary formed by placing tail to head
the following three vectors p1 = (0, 1/2), p2 = (1/2, 1/2), p3 = (1/2, 0). In
this case B = B3. Now p1, p2, p3 are three statistical propositions of this
theory, and let them correspond to atoms 1, 2, and 3 of B3. Now in B3,
1 ∨ 2 = {1, 2} 6= 3, but p1 + p2 = p3 so we cannot claim that B3 is the
Boolean algebra of statistical propositions since the map B3 → O defining
this condensations of the pure instrument of the upper polygonal boundary
is not injective. on the other hand, this triple can be identified with the rat
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maze triple with λ = 1/2 and −1 ≤ θ ≤ 1. Now p1 ∨ p2 means the rat exited
from 1 or 2, and p3 means the rat exited from 3. Though p1 ∨ p2 and p3 are
statistically equivalent, and thus define the same statistical proposition, they
are distinct phenomenologically. We are thus faced with our old enemy of
phenomenological distinctions being abolished by statistical identifications.
It is only the phenomenological propositions that can be expected to form
a lattice. Of course, since our theory formalizes only the statistical aspect
of phenomena, there is no way of identifying these statistical coincidences;
we can expect though to have a systematic way of suspecting them. The
construction of the Boolean algebra B must therefore be viewed as the result
of effecting a separation of all possible coincidences. It is with this idea in
mind that we now proceed to study the general case.

Seeing that pure instruments correspond to those that cannot be inter-
preted as containing ad hoc interferences by the experimenter, we should
expect its atoms to correspond to phenomenological propositions. Now a
condensation of a pure instrument that corresponds to summing together
some of the atoms, replaces the original propositions by logical disjunctions,
and so must also correspond to phenomenological propositions. If a conden-
sation is not pure though, it means that a logical construct starting from a
measuring situation not interpretable as containing ad hoc interferences, is
one that is so interpretable. This can now be viewed as a suspected statis-
tical coincidence. We can try to remove it by introducing new hypothetical
states in the following way. Let A be the set of p ∈ O which are atoms of
pure instruments.

Definition 8.1 An instrument measure µ of a statistical theory is a map

µ : A → [0, 1] such that the following conditions are satisfied:

1. µ(1) = 1,

2. If J = (q1, . . . qm) is a condensation of I = (p1, . . . , pn) by means of a

partial map φ : n → m and both instruments are pure, then µ(qj) =
∑

{µ(pi)|φ(i) = j}.

We note that every state σ ∈ Sdefines an instrument measure µσ defined
by µσ(p) = 〈σ, p〉. Denoting by Ŝ the set of instrument measures we have
a natural inclusion S ⊂ Ŝ. We want to think of Ŝ as the set of states of
a new statistical theory which incorporates new states but retains the same
set of phenomenological propositions. Let us define now the new instrument
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set Î. If I = (p1, . . . , pm) ∈ I is a pure instrument we define the m-tuple
Î = (p̂1, . . . , p̂m) ∈ (Conv (Ŝ, [0, 1]))m by setting p̂i(µ) = µ(pi). We define
În as the convex envelope of the set of n-atom condensations of m-tuples Î
as defined above. Thus Î is the instrument set obtained by maintaining the
same set of phenomenological propositions arrayed in realizable instruments,
but observing now the amplified set of states. In analogy with Theorem
8.1 we see that restricting Î to S we recover I at least in the the case
when each In is finite dimensional. To introduce the new operation set R̂ is
more problematic since it’s not clear how a previously realizable operation
should transform the new states, we thus introduce the largest possible set of
operations that reduce to the old ones when applied to S. First we define the
sets Ŵn as being the set of all consistent n-tuples (θ̂1, . . . , θ̂n) of elements of
Conv (Ô, Ô) satisfying Axiom 4.9′ and such that there is an n-exit operation
θ ∈ R with the property that given any n pure instruments I1, . . . , In ∈ I
the restriction of θ̂1Î1, . . . , θ̂nÎn to S coincides with θ(I1, . . . , In). The set of
operations R̂ is now defined as being generated from the Ŵn by means of the
axioms of Chapter 4 as applied to the already existing sets Ŝ and Î. It is not
clear whether to any θ ∈ Rn a consistent n-tuple such as described above
can be found. It’s not hard to show that T̂ = (Ŝ, Î, R̂) defines a statistical
theory which we call the state extension of the theory T = (S, I,R). Applied
to a two dimensional triple (S,O, 〈·, ·〉) the state extension theory has as its
triple the Boolean triple (SB,OB, 〈·, ·〉) constructed earlier.

Theorem 8.2 For any statistical theory T we have
ˆ̂
T = T̂ .

Proof: If K = (k1, . . . , kn) is a pure instrument of T̂ then by definition of Î
it is either of the form Î where I ∈ I is pure or it is a condensation of one
of these. Now Î itself is pure for if Î =

∑
λiφi∗Îi where the Ii are pure and

the φi define condensations, then this relation holds on S ⊂ Ŝ, and since on
these states, Î and Îi coincide with I and Ii we would have I =

∑
λiφi∗Ii.

By purity of I we have φi∗Ii = I and so φi∗Îi = Î and Î is pure. Thus the
pure instruments of T̂ include Î, I pure in T . If now µ̂ is an instrument
measure in T̂ , defining µ(p) = µ̂(p̂) for p ∈ A we see that µ is an instrument

measure in T . Thus
ˆ̂
S can be identified with Ŝ. Q.E.D

The state extension theory has a certain phenomenological content. Con-
sider for example a theory that is adapted to describing the behavior of
a certain type of organism within an enclosed environment. The organism
along with its environment can be viewed as a copy of a physical state defined
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simply by a certain interval of energy. This new set of energetically defined
states include now besides the original organism-environment combinations
also crystals of iron, gamma radiation, beach sand, pea soup, molten sulphur,
other types of organisms, etc. If we maintain the same set of phenomenolog-
ical propositions as arrayed in a set of realizable instruments, and observe
the new states, these provide us with instrument measures on the set of pure
instruments. Thus in the reduced system corresponding to the enlarged set
of physical states, the set of states is a subset of Ŝ. The new states in T̂ can
be looked upon as resulting from removing any restrictions existing in the
preparation procedures that would lead to the creation of a certain type of
state of affairs. They correspond to any conceivable preparation procedures,
and so T̂ embodies the conceivable universe as seen by a set of propositions
originally designed to study only a part of the real one. Theories for which
T̂ = T we call state complete. They do not contain any statistical coinci-
dences resulting from merely restrictions on state production.

Theorem 8.3 Any Boolean triple is a state complete theory.

Proof: The pure instruments are of the form (χA1 , . . . , χAn
) with Ai disjoint

open-closed sets. Thus A can be identified with B itself. The condensation
Axiom (2) of Definition 8.1 means that if µ is an instrument measure and
A = A1 ∪ · · · ∪Ak, Ai ∈ B, Ai disjoint, then µ(A) =

∑
µ(Ai) which is to say

that µ is a finitely additive measure in B and since 1 is identified to $ in B
we have µ($) = 1 by Axiom (1) of Definition 8.1 and thus µ is in fact a state
of the Boolean triple and Ŝ = S. Q.E.D

Theorem 8.4 If H is a Hilbert space with 3 ≤ dimH = N <∞ then Tc(H)
is state complete.

Proof: This is an immediate corollary of Theorem 7.12 and Gleason’s theo-
rem [11]. Q.E.D

State complete theories are a natural starting point for general statements
about lattices of propositions, since these no longer exhibit certain types of
coincidences. Other coincidences could conceivably still exist, leading still to
impure condensations of pure instruments. This is a totally unexplored area.

Concerning the phenomenal world, we can now ask the following ques-
tions:
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1. Does the phenomenal universe, as viewed by a realizable set of instru-
ments, give rise to a state complete theory; in other words, is the real
world statistically indistinguishable from the conceivable world?

2. In the state extension of any theory adapted to viewing the phenomenal
universe, do there still exist pure instruments with impure condensa-
tions? If so this would mean that there are certain statistical laws of
logic operating in the real world that up to now haven’t been conceived.

Both Boolean triples and Tc(H) come fairly close to being theories that
view the phenomenal universe as a whole, each of course with its particular
set of instruments. Both of these are state complete and with no impure
condensations of pure instruments. Better candidates for real world theories
would be TI(H) and even more so TQ(H). The determination of their state
extensions would be quite illuminating.
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