[go: up one dir, main page]

Items tagged with ai

Feed App Center

As AI becomes increasingly relevant in the tech world, Maplesoft has taken steps to integrate AI into our products. We recently launched two new features: Ask AI in Maple Learn and Word Problem Solver in Maple Calculator. 

 

Ask AI - Maple Learn

As a Math Content Creator at Maplesoft, sometimes I find myself in a creative rut. What documents would be engaging for students? How can I address certain math topics in a fun and interactive way?

I've had the pleasure of creating several collections during my time, including Extreme Value Theorem, Intermediate Value Theorem, and Polynomial Long Division. Nonetheless, each collection took a lot of storyboarding and creativity before I even began drafting them, and I've missed out on creating so many more collections because of this long idea generation process. Having a tool in my back pocket to reignite those creative juices would make it so much easier and faster to create new and exciting Maple Learn documents. 

Luckily, our new Ask AI feature in Maple Learn can help with that! 

Whenever you enter text into a Maple Learn document, a new Context Panel operation called "Ask AI" will pop up. Simply click that button to receive an AI response related to your prompt.

One of my favourite uses of Ask AI is to pick a random subject or phrase and see what the AI responds with. The Ask AI feature is designed to respond with a mathematics-centric answer so it will twist even the least mathematical of concepts into a math problem! The prompt "tacos" resulted in some formulas about sharing tacos with friends, and a prompt of "celebrity gossip" introduced statistical functions to compute the number of celebrity mentions per day

I also found that completing part of a tongue twister will result in some funny AI responses!

Here are a couple of my favorites below:

"She sells sea shells..."

Ask AI completes this tongue twister, then offers some formulas to compute the profit of selling S shells!

"How much wood..."

After relating that this tongue twister is not a mathematical problem, Ask AI then builds a simple formula for computing how much wood a woodchuck would (hypothetically) chuck.

There are many more applications of this feature, and I hope you all enjoy exploring them as you create documents on Maple Learn. If you're having trouble inputting text into your documents, or looking for a quick introduction to Maple Learn, check out the Walkthrough Tutorial. Beginner Tutorial (slide 8) addresses adding text to your document. Check out this blog post if you aren't sure how to access the Walkthrough Tutorial. 

 

Word Problem Solver - Maple Calculator

Maple Calculator now offers support for word problems by leveraging AI. Simply take a picture of your word problem and Maple Calculator will provide a solution generated by AI.

Here is a quick example:

I wrote on paper, “Alice and Bob have 17 apples total. Alice has double the number of apples as Bob plus two. How many apples does Bob have?”. Then I took a picture of this in Maple Calculator, and it gave me a breakdown of the problem using linear equations. See screenshots of my Maple Calculator below.

         

 

 

     

 

AI can be an amazing tool, but it can also make mistakes. We ensure that all our tools that incorporate AI clearly indicate its use, so that our users can know when AI is used and choose whether to use it. We're committed to remaining transparent about AI as our journey continues and we are always open to feedback. 

For our community of educators, a valuable exercise for students might be to show examples where AI makes mistakes and encourage students to find and explain the errors.

As an example, here is an algebra problem answered by Ask AI in Maple Learn – but it made a mistake! See if your students can spot where it went wrong and explain what should happen instead.

Building these skills will translate into good critical thinking skills that will benefit students inside and outside the classroom. For example, these exercises aim to help students identify their own mistakes in math and critically evaluate online sources. We would love to hear feedback about these exercises if you try them.

We hope these features will come in handy next time you use Maple Learn and Maple Calculator! 

 

 

 Introduction
Maple Coding Expert is a GPT-based AI tool designed to assist with various mathematical tasks using Maple software. It offers step-by-step guidance and detailed explanations for a range of functions, making it a valuable resource for students, educators, and professionals.

 Core Features and Functions

1.Graph Creation:

   - Function Plotting: Users can plot a wide range of mathematical functions. For instance, to plot the function y = x2, the user would input the command `plot(x^2, x = -10..10);` in Maple. The expert helps in setting up the plotting parameters to visualize the function effectively.
   - Advanced Graphing: Beyond simple functions, the expert can guide users through plotting more complex functions and customizing plots with labels, legends, and different styles.

2. Equation Definition and Manipulation:

   - Defining Equations: The tool assists in defining equations for various calculus operations. For example, to differentiate a function, the command might be `diff(f(x), x);`. This helps in accurately modeling the equations necessary for solving real-world problems.
   - Solving Integrals: For integral calculus, users can get assistance in setting up both definite and indefinite integrals. Commands like `int(f(x), x);` are used to perform integration in Maple.

3. Calculus Problem Solving:
   - Differentiation and Integration: The expert provides guidance on solving derivatives and integrals, which are fundamental operations in calculus. It supports both symbolic and numerical methods, allowing users to choose the best approach for their problem.
   - Differential Equations: Users can solve ordinary and partial differential equations using commands like `dsolve({equations}, {variables});`. The expert offers advice on choosing solution methods and interpreting results.

I recently tried using the Maple Coding Expert for solving some calculus problems. It worked well overall and provided detailed solutions, though sometimes it approached the problems in a more complicated way than expected. Despite this, the accuracy and depth of the explanations were impressive and very helpful for understanding the underlying concepts.

 

Maple Coding Expert stands out as a comprehensive tool for anyone involved with Maple software for mathematical computing. It enhances learning, supports professional tasks, and aids in solving complex mathematical problems with ease.

For more information, you can explore the Maple Coding Expert on [GPTs Hunter](https://www.gptshunter.com/gpt-store/MzExMzI2MzYyMzJlNTAxMjM2) and [YesChat.ai](https://www.yeschat.ai).

 

Every last query I make in the AI Formula Assistant returns this message...

This happens even when I use a basic canned query shown in use-case examples (e.g., surface area, sphere).

I have accepted the Terms of Use.  Is there some other setting I need to enable? Thanks.

Is there a way to disable Maples AI Formula Assistant? This could be relevant when using Maple for a test.

I just discoverd today the step solutions for series in Student package 

Now i try to solve this with my own steps here ..

Note: SummationSteps(Sum(1/n^2, n = 1 .. infinity))was not capable to get a closed form?

"maple.ini in users"

(1)

NULL

Euler's Basel Problem
In the Student Basics package, there is a command :

 

SummationSteps

generate steps for evaluating summations

NULL

help("SummationSteps")

The SummationSteps command accepts an expression that is expected to contain summations and displays the steps required to evaluate each summation given.

2024

with(Student[Basics])

 

" restart; with(Student[Basics])"

"maple.ini in users"

 

[CompleteSquareSteps, CurveSketchSteps, ExpandSteps, FactorSteps, FractionSteps, GCDSteps, LCMSteps, LinearSolveSteps, LongDivision, ModuloSteps, OutputStepsRecord, PartialFractionSteps, PowerSteps, PracticeSheet, SimplifySteps, SolveSteps, SummationSteps, TrigSteps]

(2)

Try this out this SummationStepscommand for the Basel problem series  ( p-series example)

SummationSteps(Sum(1/n, n = 1 .. infinity))

"[[,,[]],["&bullet;",,"Apply the P-test on" (1)/(n)", which shows the summation diverges if" p<=1 "for" (&sum;)1/((n)^p)],[,,p=1],["&bullet;",,"Since" 0<1 "and" 1<=1", we get that the summation diverges"],[,,([[(&sum;)(1)/(n)" diverges"]])],["&bullet;",,"We know the summation diverges, so now we should find what it diverges to"],[,,[]],["&bullet;",,"Evaluate sum" (&sum;)1/n],[,,infinity]]"

(3)

Now the Basel Problem from Euler

SummationSteps(Sum(1/n^2, n = 1 .. infinity))

"[[,,[]],["&bullet;",,"Apply the P-test on" (n)^(-2)", which shows the summation diverges if" p<=1 "for" (&sum;)1/((n)^p)],[,,p=2],["&bullet;",,"Since" 1<2", we get that the summation converges"],[,,([[(&sum;)(n)^(-2)" converges"]])]]"

(4)

f := sum(1/n^2, n = 1 .. infinity)

(1/6)*Pi^2

(5)

How do we get this value from Euler ( The Basel Problem)

# Step 1: Define the series f
f := sum(1/n^2, n = 1 .. infinity);

# Step 2: Write the series as a product of terms (1 - 1/p)
g := convert(product(1 - 1/p, p = primes), hypergeom);

# Step 3: Compare with the Taylor series of the sine function
h := series(sin(x), x = 0, 10);

# Step 4: Set up equations between corresponding terms
eq := seq(coeff(h, x, 2*k)/k!, k = 1 .. 5) =
      seq(coeff(g, x, k), k = 1 .. 5);

# Step 5: Solve the equations to find the value of the series
sol := solve({eq, seq(coeff(g, x, k) = 0, k = 6 .. 10)});

# Step 6: Replace x with pi/2 to find the value
sol_pi := subs(x = Pi/2, sol);

# Step 7: Compute the value of the series
value := sol_pi[1][2];

value;

(1/6)*Pi^2

 

1-1/primes

 

series(x-(1/6)*x^3+(1/120)*x^5-(1/5040)*x^7+(1/362880)*x^9+O(x^11),x,11)

 

(0, 0, 0, 0, 0) = (0, 0, 0, 0, 0)

 

Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, rtable, algebraic, relation(algebraic), relation({rtable, algebraic}), {list, set}({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received {0 = 0, (0, 0, 0, 0, 0) = (0, 0, 0, 0, 0)}

 

sol

 

Error, attempting to assign to `value` which is protected.  Try declaring `local value`; see ?protect for details.

 

value

(6)

NULL

Download Het_Basel_Probleem_van_Euler.mw

I have here a function  
                           "sin(x)/x"

and suppose sin(x)/x = 0 
Can I now use MapleAI to retrieve the correct command for this in Maple..could I?

The intersection points with the x-axis are positive and negative multiples of Pi
I have put these in an ordered list, but Maple gives this:
For x domain = -20...20 
X := {x = Pi}, {x = 2*Pi}, {x = 3*Pi}, {x = 4*Pi}, {x = 5*Pi}, {x = 6*Pi}, {x = -6*Pi}, {x = -5*Pi}, {x = -4*Pi}, {x = -3*Pi}, {x = -2*Pi}, {x = -Pi};

 
X := sort(eval~(x, [X]));
 X := [, -6 Pi, -5 Pi, -4 Pi, -3 Pi, -2 Pi, -Pi, 2 Pi, 3 Pi, 4 Pi, 5 Pi, 6 Pi]


A strange ranking that Maple comes up with ? 

with(NaturalLanguage);
        [Explain, GetCommand, GetMath, Query, RawQuery]



GetCommand("give for Maple solve command all options?");
            "solve(equations, variables, options);"

Explain("give for Maple solve command all options?");

"Maple is a symbolic and numeric computing environment. Its 

   "solve" command is used to find solutions (roots) of a given 

   equation or a system of equations.
  

  There are a number of options (or "parameters") which can be 

   specified in this command to alter its behavior:

  

  1. `Allsolutions`: This option makes Maple to generate all 

   possible solutions of an equation.

  

  2. `Real`: This option only provides the real solutions. If 

   equations do not have real solutions, it will return an 

   empty set.

  

  3. `Positive`: It only includes positive solutions in the 

   output.

  

  4. `explicit`: If specified, Maple attempts to isolate roots 

   and provide an explicit solution for each variable.

  

  5. `assume = real`: This option restrict the solutions to 

   only real numbers.

  

  6. `parametric`: This option allows Maple to write the 

   solutions in a parametric form. 

  

  7. `avoid ={x = a}`: This option makes solve exclude the 

   possibility `x = a` as a solution.

  

  8. `MaxDegree = d`: This option allows you to limit the 

   degree of the polynomial equations to be considered.

  

  9. `maxdepth = d`: This sets a limit on recursive depth to 

   which the computation should go to seek a solution.

  

  10. `multiplicities`: This option reports multiplicity of the 

   roots.

  

  11. `solutions = vars`: This option tells Maple to look for 

   solutions for specific variables.

  

  12. `numeric`: This option makes solve find a numeric 

   solution to the equation.

  

  13. `symbolic`: This option makes solve find a symbolic 

   solution to the equation.

  

  14. `simplify`: This option simplifies the solutions returned 

   by solve.

  

  15. `sqrt`: This option allows square roots in the output.

  

  It is important to note that not all options are suited for 

   use with all types of equations. Also, the "solve" command 

   in Maple can be occasionally limited by the complexity of 

   the equation, and may sometimes fail to find solutions that 

   more specialized software or methods can find."



 

 

Page 1 of 1