
BORDISM: OLD AND NEW

DANIEL S. FREED

What follows are lecture notes from a graduate course given at the University of Texas at Austin

in Fall, 2012. The first half covers some classical topics in bordism, leading to the Hirzebruch

Signature Theorem. The second half covers some more recent topics, leading to the Galatius-

Madsen-Tillmann-Weiss theorem and the cobordism hypothesis. The only prerequisite was our

first year course in algebraic and differential topology, which includes some homology theory and

basic theorems about transversality but no cohomology or homotopy theory. Therefore, the text

is somewhat quirky about what is and what is not explained in detail. While bordism is an

organizing principle for the course, I include basics about standard topics such as classifying spaces,

characteristic classes, categories, Γ-spaces, sheaves, etc. Many proofs are missing; perhaps some

will be filled in if these notes are distributed more formally. I sprinkled exercises throughout the

first part of the text, but then switched to writing problem sets during the second half of the

course; these are included at the end of the text. I warmly thank the members of the class for their

feedback on an earlier version of these notes.
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Lecture 1: Introduction to bordism
sec:1

Overview

Bordism is a notion which can be traced back to Henri Poincaré at the end of the 19th century, but

it comes into its own mid-20th century in the hands of Lev Pontrjagin and René Thom [T]. Poincaré

originally tried to develop homology theory using smooth manifolds, but eventually simplices were

used instead. Recall that a singular q-chain in a topological space S is a formal sum of continuous

maps ∆q → S from the standard q-simplex. There is a boundary operation ∂ on chains, and a

chain c is a cycle if ∂c = 0; a cycle c is a boundary if there exists a (q + 1)-chain b with ∂b = c. If

S is a point, then every cycle of positive dimension is a boundary. In other words, abstract chains

carry no information. In bordism theory one replaces cycles by closed1 smooth manifolds mapping

continuously into S. A chain is replaced by a compact smooth manifold X and a continuous

map X → S; the boundary of this chain is the restriction ∂X → S to the boundary. Now there is

information even if S = pt. For not every closed smooth manifold is the boundary of a compact

smooth manifold. For example, Y = RP2 is not the boundary of a compact 3-manifold. (It is

the boundary of a noncompact 1-manifold with boundary—which? In fact, show that every closed

smooth manifold Y is the boundary of a noncompact manifold with boundary.)

A variation is to consider smooth manifolds equipped with a tangential structure of a fixed type.

One type of a tangential structure you already know is an orientation, which we review in Lecture 2.

We give a general discussion in a few weeks.

One main idea of the course is to extract various algebraic structures of increasing complexity

from smooth manifolds and bordism. Today we will use bordism to construct an equivalence

relation, and so construct sets of bordism classes of manifolds. We will introduce an algebraic

structure to obtain abelian groups and even a commutative ring. These ideas date from the 1950s.

The modern results concern more intricate algebraic gadgets extracted from smooth manifolds and

bordism: categories and their more complicated cousins. Some of the main theorems in the course

identify these algebraic structures explicitly. For example, an easy theorem asserts that the bordism

group of oriented 0-manifolds is the free abelian group on a single generator, that is, the infinite

cyclic group (isomorphic to Z). One of the recent results which we state in the last lecture, the

cobordism hypothesis [L1, F1], is a vast generalization of this easy classical theorem.

We will also study bordism invariants. These are homomorphisms out of a bordism group or

category into an abstract group or category. Such homomorphisms, as all homomorphisms, can be

used in two ways: to extract information about the domain or to extract information about the

codomain. In the classical case the codomain is typically the integers or another simple number

system, so we are typically using bordism invariants to learn about manifolds. A classic example

of such an invariant is the signature of an oriented manifold, and Hirzebruch’s signature theorem

1The word ‘closed’ modifying manifold means ‘compact without boundary’.
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equates the signature with another bordism invariant constructed from characteristic numbers. On

the other hand, a typical application of the cobordism hypothesis is to use the structure of manifolds

to learn about the codomain of a homomorphism. Incidentally, a homomorphism out of a bordism

category is called a topological quantum field theory [A1].

subsec:1.7

(1.1) Convention. All manifolds in this course—except for a transient exception in the next

section—are smooth, or smooth manifolds with boundary or corners, so we omit the modifier

‘smooth’ from now on. In bordism theory the manifolds are almost always compact, though we

retain that modifier to be clear.

Review of smooth manifolds

thm:1 Definition 1.2. A topological manifold is a paracompact, Hausdorff topological space X such that

every point of X has an open neighborhood which is homeomorphic to an open subset of affine

space.

Recall that n-dimensional affine space is

eq:1 (1.3) An = {(x1, x2, . . . , xn) : xi ∈ R}.

The vector space Rn acts transitively on An by translations. The dimension dimX : X → Z≥0

assigns to each point the dimension of the affine space in the definition. (It is independent of

the choice of neighborhood and homeomorphism, though that is not trivial.) The function dimX

is constant on components of X. If dimX has constant value n, we say X is an n-dimensional

manifold, or n-manifold for short.

subsec:1.1

(1.4) Smooth structures. For U ⊂ X an open set, a homeomorphism x : U → An is a coordinate

chart. We write x = (x1, . . . , xn), where each xi : U → R is a continuous function. To indicate

the domain, we write the chart as the pair (U, x). If (U, x) and (V, y) are charts, then there is a

transition map

eq:2 (1.5) y ◦ x−1 : x(U ∩ V ) −→ y(U ∩ V ),

which is a continuous map between open sets of An. We say the charts are C∞-compatible if the

transition function (1.5) is smooth (=C∞).

thm:2 Definition 1.6. Let X be a topological manifold. An atlas or smooth structure on X is a collection

of charts such that

(i) the union of the charts is X;

(ii) any two charts are C∞-compatible; and

(iii) the atlas is maximal with respect to (ii).

A topological manifold equipped with an atlas is called a smooth manifold.

We usually omit the atlas from the notation and simply notate the smooth manifold as ‘X’.
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subsec:1.3

(1.7) Empty set. The empty set ∅ is trivially a manifold of any dimension n ∈ Z≥0. We use ‘∅n’
to denote the empty manifold of dimension n.

subsec:1.2

(1.8) Manifolds with boundary. A simple modification of Definition 1.2 and Definition 1.6 allow

for manifolds to have boundaries. Namely, we replace affine space with a closed half-space in affine

space. So define

eq:3 (1.9) An
− = {(x1, x2, . . . , xn) ∈ An : x1 ≤ 0}

and ask that coordinate charts take values in open sets of An
−. Then if p ∈ X satisfies x1(p) = 0 in

some coordinate system (x1, . . . , xn), that will be true in all coordinate systems. In this way X is

partitioned into two disjoint subsets, each of which is a manifold: the interior (consisting of points

with x1 < 0 in every coordinate system) and the boundary ∂X (consisting of points with x1 = 0 in

every coordinate system).

thm:3 Remark 1.10. I remember the convention on charts by the mnemonic ‘ONF’, which stands for

’Outward Normal First’. The fact that it also stands for ‘One Never Forgets’ helps me remember!

An outward normal in a coordinate system is represented by the first coordinate vector field ∂/∂x1,

and it points out of the manifold at the boundary.

subsec:1.8

(1.11) Tangent bundle at the boundary. At any point p ∈ ∂X of the boundary there is a canonical

subspace Tp(∂X) ⊂ TpX; the quotient space is a real line νp. So over the boundary ∂X there is a

short exact sequence

eq:21 (1.12) 0 −→ T (∂X) −→ TX −→ ν −→ 0

of vector bundles. In any boundary coordinate system the vector ∂/∂x1(p) projects to a nonzero

element of νp, but there is no canonical basis independent of the coordinate system. However, any

two such vectors are in the same component of νp \ {0}, which means that ν carries a canonical

orientation. (We review orientations in Lecture 2.)

thm:4 Definition 1.13. Let X be a manifold with boundary. A collar of the boundary is an open

set U ⊂ X which contains ∂X and a diffeomorphism (−ϵ, 0] × ∂X → U for some ϵ > 0.

thm:5 Theorem 1.14. The boundary ∂X of a manifold X with boundary has a collar.

This is not a trivial theorem; you can find a proof in [Hi]. We only need this result when X, hence

also ∂X, is compact, in which case it is somewhat simpler.

thm:6 Exercise 1.15. Prove Theorem 1.14 assuming X is compact. (Hint: Cover the boundary with a

finite number of coordinate charts; use a partition of unity to glue the vector fields −∂/∂x1 in each

coordinate chart into a smooth vector field; and use the fundamental existence theorem for ODEs,

including smooth dependence on initial conditions.)
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subsec:1.5

(1.16) Disjoint union. Let {X1,X2, . . . } be a countable collection of manifolds. We can form a

new manifold, the disjoint union of X1,X2, . . . , which we denote X1 ⨿X2 ⨿ · · · . As a set it is the

disjoint union of the sets underlying the manifolds X1,X2, . . . . One may wonder how to define the

disjoint union. For example, what is X⨿X? This is ultimately a question of set theory, and we will

meet such problems again. One solution is to fix an infinite dimensional affine space A∞ and regard

all manifolds as embedded in it. (This is no loss of generality by the Whitney Embedding Theorem.)

Then we can replace Xi (embedded in A∞) by {i}×Xi (embedded in A∞ = A1 ×A∞) and define

the disjoint union to be the ordinary union of subsets of A∞. Another way out is to characterize

the disjoint union by a universal property: a disjoint union of X1,X2, . . . is a manifold Z and a

collection of smooth maps ιi : Xi → Z such that for any manifold Y and any collection fi : Xi → Y

of smooth maps, there exists a unique map f : Z → Y such that for each i the diagram

eq:6 (1.17) Xi
ιi

fi

Z

f

Y

commutes. (The last statement means f ◦ ιi = fi.) If you have not seen universal properties before,

you might prove that ιi is an embedding and that any two choices of
(
Z, {ιi}

)
are canonically

isomorphic. (You should also spell out what ‘canonically isomorphic’ means.) We will encounter

such categorical notions more later in the course.

subsec:1.4

(1.18) Terminology. A manifold is closed if it is compact without boundary. By contrast, many

use the term ‘open manifold’ to mean a manifold with no closed components.n

Bordism

We now come to the fundamental definition. Fix an integer n ≥ 0.

thm:7 Definition 1.19. Let Y0, Y1 be closed n-manifolds. A bordism
(
X , p , θ0 , θ1

)
from Y0 to Y1 con-

sists of a compact (n+ 1)-manifold X with boundary, a partition p : ∂X → {0, 1} of its boundary,

and embeddings

θ0 : [0,+1) × Y0 −→ Xeq:4 (1.20)

θ1 : (−1, 0] × Y1 −→ Xeq:5 (1.21)

such that θi(0, Yi) = (∂X)i, i = 0, 1, where (∂X)i = p−1(i).

Each of (∂X)0, (∂X)1 is a union of components of ∂X; note that there is a finite number of

components since X, and so too ∂X, is compact. The map θi is a diffeomorphism onto its image,

which is a collar neighborhood of (∂X)i. The collar neighborhoods are included in the definition

to make it easy to glue bordisms. Without them we could as well omit the diffeomorphisms and

give a simpler informal definition: a bordism X from Y0 to Y1 is a compact (n + 1)-manifold with

Dan Freed
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Figure 1. X is a bordism from Y0 to Y1 fig:1

boundary Y0 ⨿ Y1. But we will keep the slightly more elaborate Definition 1.19. The words ‘from’

and ‘to’ in the definition distinguish the roles of Y0 and Y1, and indeed the intervals in (1.20)

and (1.21) are different. But not that different—for the moment that distinction is only one of

semantics and not any mathematics of import. For example, in the informal definition just given

the manifolds Y0, Y1 play symmetric roles. We picture a bordism in Figure 1. In the older literature

a bordism is called a “cobordism”. If the context is clear, we notate a bordism
(
X , p , θ0 , θ1

)
as ‘X’.

thm:8 Definition 1.22. Let
(
X , p , θ0 , θ1

)
be a bordism from Y0 to Y1. The dual bordism from Y1

to Y0 is
(
X∨ , p∨ , θ∨0 , θ∨1

)
, where: X∨ = X; the decomposition of the boundary is swapped, so

p∨ = 1− p; and

eq:7 (1.23)
θ∨0 (t, y) = θ1(−t, y), t ∈ [0,+1), y ∈ Y1,

θ∨1 (t, y) = θ0(−t, y), t ∈ (−1, 0], y ∈ Y0.

More informally, we picture the dual bordism X∨ as the original bordism X “turned around”.

thm:9 Remark 1.24. We should view the dual bordism as a bordism from Y ∨
1 to Y ∨

0 where for naked

manifolds we set Y ∨
i = Yi. When we come to manifolds with tangential structure, such as an

orientation, we will not necessarily have Y ∨
i = Yi.

We use Definition 1.19 to extract our first algebraic gadget from compact manifolds: a set.

Namely, define closed n-manifolds Y0, Y1 to be equivalent if there exists a bordism from Y0 to Y1.

thm:10 Lemma 1.25. Bordism defines an equivalence relation.



10 D. S. FREED

Proof. For any closed manifold Y , the manifold X = [0, 1]×Y determines a bordism from Y to Y :

set (∂X)0 = {0} × Y , (∂X)1 = {1} × Y , and use simple diffeomorphisms [0, 1) → [0, 1/3) and

(−1, 0]→ (2/3, 1] to construct (1.20) and (1.21). So bordism is a reflexive relation. Definition 1.22

shows that the relation is symmetric: if X is a bordism from Y0 to Y1, then X∨ is a bordism from Y1

to Y0. For transitivity, suppose
(
X , p , θ0 , θ1

)
is a bordism from Y0 to Y1 and

(
X ′ , p′ , θ′0 , θ

′
1

)
a

bordism from Y1 to Y2. Then Figure 2 illustrates how to glue X and X ′ together along Y1 using θ1
and θ′0 to obtain a bordism from Y0 to Y2. !

Figure 2. Gluing bordisms fig:4

thm:11 Exercise 1.26. Write out the details of the gluing argument. Show carefully that the glued space

is a manifold with boundary. Note that θ1
(
{0}× Y1

)
= θ′0

(
{0}× Y1

)
is a submanifold of the glued

manifold, and the maps θ1 and θ′0 combine to give a diffeomorphism (−1, 1) × Y1 onto an open

tubular neighborhood. This is sometimes called a bi-collaring.

thm:32 Exercise 1.27. Show that diffeomorphic manifolds are bordant.

Let Ωn denote the set of equivalence classes of closed n-manifolds under the equivalence relation

of bordism. We use the term bordism class for an element of Ωn. Note that the empty manifold ∅0

is a special element of Ωn, so we may consider Ωn as a pointed set.

thm:12 Remark 1.28. Again there is a set-theoretic worry: is the collection of closed n-manifolds a set?

One way to make it so is to consider all manifolds as embedded in A∞, as in (1.16). We will not

make such considerations explicit at this point, but we will use such embeddings to construct a

category of bordisms in Lecture 20.

Disjoint union and the abelian group structure

Simple operations on manifolds—disjoint union and Cartesian product—give Ωn more structure.
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thm:13 Definition 1.29.

(i) A commutative monoid is a set with a commutative, associative composition law and iden-

tity element.

(ii) An abelian group is a commutative monoid in which every element has an inverse.

Typical examples: Z≥0 is a commutative monoid; Z and R/Z are abelian groups.

Disjoint union is an operation on manifolds which passes to bordism classes: if Y0 is bordant

to Y ′
0 and Y1 is bordant to Y ′

1 , then Y0 ⨿ Y1 is bordant to Y ′
0 ⨿ Y ′

1 . So (Ωn,⨿) is a commutative

monoid.

thm:14 Lemma 1.30. (Ωn,⨿) is an abelian group. In fact, Y ⨿ Y is null-bordant.

The identity element is represented by ∅n. A null bordant manifold is one which is bordant to ∅n.

Proof. The manifoldX = [0, 1]×Y provides a null bordism: let p ≡ 0 and define θ0, θ1 appropriately.

!

Figure 3. 1 point is bordant to 3 points fig:2

It is also true that the abelian group (Ωn,⨿) is finitely generated, though we do not prove that

here. It follows that it is isomorphic to a product of cyclic groups of order 2. We denote this abelian

group simply by ‘Ωn’.

thm:15 Proposition 1.31. Ω0
∼= Z/2Z with generator pt.

Proof. Any 0-manifold has no boundary, and a compact 0-manifold is a finite disjoint union of

points. Lemma 1.30 implies that the disjoint union of two points is a boundary, so is zero in Ω0. It

remains to prove that pt is not the boundary of a compact 1-manifold with boundary. That follows

from the classification theorem for compact 1-manifolds with boundary [M3]: any such is a finite

disjoint union of circles and closed intervals, so its boundary has an even number of points. !

The bordism group in dimensions 1,2 can also be computed from elementary theorems.

thm:16 Proposition 1.32. Ω1 = 0 and Ω2
∼= Z/2Z with generator the real projective plane RP2.

Proof. The first statement follows from the classification theorem in the previous proof: any closed

1-manifold is a finite disjoint union of circles, and a circle is the boundary of a 2-disk, so is

null bordant. The second statement follows from the classification theorem for closed 2-manifolds.

Recall that there are two connected families. The oriented surfaces are boundaries (of 3-dimensional

handlebodies, for example). Any unoriented surface is a connected sum2 of RP2’s, so it suffices to

2The connected sum is denoted ‘#’. We do not pause here to define it carefully. The definition depends on choices,
but the diffeomorphism class, hence bordism class, does not depend on the choices.
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prove that RP2 does not bound and RP2#RP2 does bound. A nice argument emerged in lecture

for the former. Namely, if X is a compact 3-manifold with boundary ∂X = RP2, then the double

D = X∪RP2 X has Euler characteristic 2χ(X)−1, which is odd. But D is a closed odd dimensional

manifold, so has vanishing Euler characteristic. This contradiction shows X does not exist. We

give a different argument in the next lecture. For the latter, recall that RP2#RP2 is diffeomorphic

to a Klein bottle K, which has a map K → S1 which is a fiber bundle with fiber S1. There is an

associated fiber bundle with fiber the disk D2 which is a compact 3-manifold with boundary K. !

Figure 4. Constructing the Klein bottle by gluing fig:3

Recall that we can construct K by gluing together the ends of a cylinder [0, 1]×S1 using a reflection

on S1. Then projection onto the first factor, after gluing, is the map K → S1. The disk bundle is

formed analogously starting with [0, 1] ×D2. This is depicted in Figure 4.

Cartesian product and the ring structure

Now we bring in another operation, Cartesian product, which takes an n1-manifold and an

n2-manifold and produces an (n1 + n2)-manifold.

thm:17 Definition 1.33.

(i) A commutative ring R is an abelian group (+, 0) with a second commutative, associative

composition law (·) with identity (1) which distributes over the first: r1 · (r2 + r3) =

r1 · r2 + r1 · r3 for all r1, r2, r3 ∈ R.

(ii) A Z-graded commutative ring is a commutative ring S which as an abelian group is a direct

sum

eq:8 (1.34) S =
⊕

n∈Z

Sn

of abelian subgroups such that Sn1
· Sn2

⊂ Sn1+n2
.

Elements in Sn ⊂ S are called homogeneous of degree n; the general element of S is a finite sum of

homogeneous elements.
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The integers Z form a commutative ring, and for any commutative ring R there is a polynomial

ring S = R[x] in a single variable which is Z-graded. To define the Z-grading we must assign an

integer degree to the indeterminate x. Typically we posit deg x = 1, in which case Sn is the abelian

group of homogeneous polynomials of degree n in x. More generally, there is a Z-graded polynomial

ring R[x1, . . . , xk] in any number of indeterminates with any assigned integer degrees degxk ∈ Z.
Define

eq:9 (1.35) Ω =
⊕

n∈Z≥0

Ωn.

We formally define Ω−m = 0 for m > 0. The Cartesian product of manifolds is compatible with

bordism, so passes to a commutative, associative binary composition law on Ω.

thm:18 Proposition 1.36. (Ω,⨿,×) is a Z-graded ring. A homogeneous element of degree n ∈ Z is

represented by a closed manifold of dimension n.

We leave the proof to the reader. The ring Ω is called the unoriented bordism ring.

In his Ph.D. thesis Thom [T] proved the following theorem (among many other foundational

results).

thm:20 Theorem 1.37 ([T]). There is an isomorphism of Z-graded rings

eq:10 (1.38) Ω ∼= Z/2Z[x2, x4, x5, x6, x8, . . . ]

where there is a polynomial generator of degree k for each positive integer k not of the form 2i− 1.

Furthermore, Thom proved that if k is even, then xk is represented by the real projective mani-

fold RPk. Dold later constructed manifolds representing the odd degree generators: they are fiber

bundles3 over RPm with fiber CPℓ.

thm:21 Exercise 1.39. Work out Ω10. Find manifolds which represent each bordism class.

Thom proved that the Stiefel-Whitney numbers determine the bordism class of a closed manifold.

The Stiefel-Whitney classes wi(Y ) ∈ H i(Y ;Z/2Z) are examples of characteristic classes of the

tangent bundle. Any closed n-manifold Y has a fundamental class [Y ] ∈ Hn(Y ;Z/2Z). If x ∈
H•(Y ;Z/2Z), then the pairing ⟨x, [Y ]⟩ produces a number in Z/2Z.

thm:22 Theorem 1.40 ([T]). The Stiefel-Whitney numbers

eq:11 (1.41) ⟨wi1(Y )⌣ wi2(Y )⌣ · · ·⌣ wik(Y ) , [Y ]⟩ ∈ Z/2Z,

determine the bordism class of a closed n-manifold Y .

3They are the quotient of Sm × CPℓ by the free involution which acts as the antipodal map on the sphere and
complex conjugation on the complex projective space.
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That is, if closed n-manifolds Y0, Y1 have the same Stiefel-Whitney numbers, then they are bordant.

Notice that not all naively possible nonzero Stiefel-Whitney numbers can be nonzero. For example,

⟨w1(Y ), [Y ]⟩ vanishes for any closed 1-manifold Y . Also, the theorem implies that a closed n-

manifold is the boundary of a compact (n+1)-manifold iff all of the Stiefel-Whitney numbers of Y

vanish. If it is a boundary, it is immediate that the Stiefel-Whitney numbers vanish; the converse

is hardly obvious.

thm:19 Remark 1.42. The modern developments in bordism use disjoint union heavily, so generalize the

study of classical abelian bordism groups. However, they do not use Cartesian product in the same

way.



Lecture 2: Orientations, framings, and the Pontrjagin-Thom construction

sec:2

One of Thom’s great contributions was to translate problems in geometric topology—such as the

computation (Theorem 1.37) of the unoriented bordism ring—into problems in homotopy theory.

The correspondence works in both directions: facts about manifolds can sometimes be used to

deduce homotopical information. This lecture ends with a first instance of that principle. The

geometric side is the set of framed bordism classes of submanifolds of a fixed manifold M ; the

homotopical side is the set of homotopy classes of maps from M into a sphere. The theorem gives

an isomorphism between these two sets. (For framed manifolds it is due to Pontrjagin; Thom’s

more general statement appears in Lecture 10.) Here we introduce the basic idea; the proof will be

given in the next lecture. We will build on these ideas in subsequent lectures and so translate the

computation of bordism groups (Lecture 1) into homotopy theory.

Before getting to framed bordism we give a reminder on orientations and introduce the oriented

bordism ring. Orientations are an example of a (stable) tangential structure; we will discuss general

tangential structures in Lecture 9.

Orientations
subsec:2.4

(2.1) Orientation of a real vector space. Let V be a real vector space of dimension n > 0. A

basis of V is a linear isomorphism b : Rn → V . Let B(V ) denote the set of all bases of V . The

group GLn(R) of linear isomorphisms of Rn acts simply transitively on the right of B(V ) by compo-

sition: if b : Rn → V and g : Rn → Rn are isomorphisms, then so too is b ◦ g : Rn → V . We say that

B(V ) is a right GLn(R)-torsor. For any b ∈ B(V ) the map g 1→ b ◦ g is a bijection from GLn(R)
to B(V ), and we use it to topologize B(V ). Since GLn(R) has two components, so does B(V ).

thm:23 Definition 2.2. An orientation of V is a choice of component of B(V ).

subsec:2.5

(2.3) Determinants and orientation. Recall that the components of GLn(R) are distinguished by

the determinant homomorphism

eq:12 (2.4) det : GLn(R) −→ R ̸=0;

the identity component consists of g ∈ GLn(R) with det(g) > 0, and the other component consists

of g with det(g) < 0. On the other hand, an isomorphism b : Rn → V does not have a numerical

determinant. Rather, its determinant lives in the determinant line DetV of V . Namely, define

eq:13 (2.5) Det V = {ϵ : B(V )→ R : ϵ(b ◦ g) = det(g)−1ϵ(b) for all b ∈ B(V ), g ∈ GLn(R)}.

thm:24 Exercise 2.6. Prove the following elementary facts about determinants and orientations.
15
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(i) Construct a canonical isomorphism DetV
∼=−−→

∧nV of the determinant line with the highest

exterior power. The latter is often taken as the definition.

(ii) Prove that an orientation is a choice of component of Det V \{0}. More precisely, construct

a map B(V )→ DetV \ {0} which induces a bijection on components.

(iii) Construct the “determinant” of an arbitrary linear map b : Rn → V as an element of DetV .

Show it is nonzero iff b is invertible.

(iv) More generally, construct the determinant of a linear map T : V → W as a linear map

detT : Det V → DetW , assuming dimV = dimW .

(v) Part (ii) gives two descriptions of a canonical {±1}-torsor4 (=set of two points) associated

to a finite dimensional real vector space. Show that it can also be defined as

eq:17 (2.7) o(V ) = {ϵ : B(V )→ {±1} : ϵ(b ◦ g) = sign det(g)−1ϵ(b) for all b ∈ B(V ), g ∈ GLn(R)}.

Summary: An orientation of V is a point of o(V ).

subsec:2.6

(2.8) Orienting the zero vector space. There is a unique zero-dimensional vector space 0 consisting

of a single element, the zero vector. There is a unique basis—the empty set—and so by (2.5) the

determinant line Det 0 is canonically isomorphic to R and o(V ) is canonically isomorphic to {±1}.
Note that

∧0(0) = R as
∧0V = R for any real vector space V . The real line R has a canonical

orientation: the component R>0 ⊂ R ̸=0. We denote this orientation as ‘+’. The opposite orientation

is denoted ‘−’.

thm:25 Exercise 2.9 (2-out-of-3). Suppose

eq:14 (2.10) 0 −→ V ′ i−→ V
j−→ V ′′ −→ 0

is a short exact sequence of finite dimensional real vector spaces. Construct a canonical isomorphism

eq:15 (2.11) DetV ′′ ⊗DetV ′ −→ DetV.

Notice the order: quotient before sub. If two out of three of V, V ′, V ′′ are oriented, then there is a

unique orientation of the third compatible with (2.11). This lemma is quite important in oriented

intersection theory.

subsec:2.7

(2.12) Real vector bundles and orientation. Now let X be a smooth manifold and V → X a finite

rank real vector bundle. For each x ∈ X there is associated to the fiber Vx over x a canonical

{±1}-torsor o(V )x—a two-element set—which has the two descriptions given in Exercise 2.6(ii).

thm:26 Exercise 2.13. Use local trivializations of V → X to construct local trivializations of o(V )→ X,

where o(V ) =
∐

x∈X o(V )x.

The 2:1 map o(V ) → X is called the orientation double cover associated to V → X. In case

V = TX is the tangent bundle, it is called the orientation double cover of X.

4{±1} is the multiplicative group of square roots of unity, sometimes denoted µ2.
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thm:27 Definition 2.14.

(i) An orientation of a real vector bundle V → X is a section of o(V )→ X.

(ii) If o : X → o(V ) is an orientation, then the opposite orientation is the section −o : X → o(V ).

(iii) An orientation of a manifold X is an orientation of its tangent bundle TX → X.

Orientations may or may not exist, which is to say that a vector bundle V → X may be orientable

or non-orientable. The notation ‘−o’ in (ii) uses the fact that o(V )→ X is a principal {±1}-bundle:
−o is the result of acting −1 ∈ {±1} on the section o.

thm:28 Exercise 2.15. Construct the determinant line bundle DetV → X by carrying out the determi-

nant construction (2.5) (cf. Exercise 2.6) pointwise and proving local trivializations exist. Show

that a nonzero section of Det V → X determines an orientation.

Our first bordism invariant

This subsection is an extended exercise in which you construct a homomorphism

eq:16 (2.16) φ : Ω2 −→ Z/2Z

and prove that it is an isomorphism. (Recall that we computed Ω2
∼= Z/2Z in Proposition 1.32,

and the proof depends on the fact that RP2 is not a boundary. In this exercise you will give a

different proof of that fact.) An element of Ω2 is represented by a closed 2-manifold Y . We must

(i) define φ(Y ) ∈ Z/2Z; (ii) prove that if Y0 and Y1 are bordant, then φ(Y0) = φ(Y1); (iii) prove

that φ is a homomorphism; and (iv) show that φ(RP2) ̸= 0. Here is a sketch for you to complete. It

relies on elementary differential topology à la Guillemin-Pollack and is a good review of techniques

in intersection theory as well as the geometry of projective space.

(i) Choose a section s of DetY → Y , where DetY = DetTY is the determinant line bundle

of the tangent bundle. Show that we can assume that s is transverse to the zero section

Z ⊂ DetY , where Z is the submanifold of zero vectors. Show that s−1(Z) is a 1-

dimensional submanifold of Y . Define φ(Y ) as the mod 2 intersection number of s−1(Z)

with itself. Prove that φ(Y ) is independent of the choice of s.

(ii) If X is a bordism from Y0 to Y1, show that DetX → X restricts on the boundary to the

determinant line of the boundary. You may want to use Exercise 2.9 and (1.12). Extend

the section s constructed in (i) (for each of Y0, Y1) over X so that it is transverse to the

zero section. What can you say now about the inverse image of the zero section in X and

about its self-intersection?

(iii) This is easy: consider a disjoint union.

(iv) Since RP2 is the manifold of lines (= one-dimensional subspaces) in R3, there is a canonical

line bundle L → RP2 whose fiber at a line ℓ ⊂ R3 is ℓ. Show that the determinant line

bundle of RP2 is isomorphic to L → RP2. (See (2.17) below.) Now fix the standard

metric on R3 and define s(ℓ) to be the orthogonal projection of the vector (1, 0, 0) onto ℓ.

What is s−1(Z)?
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subsec:2.8

(2.17) The tangent bundle to projective space. In (iv) you are asked to “Show that the determinant

line bundle of RP2 is isomorphic to L → RP2.” For that, let Qℓ denote the quotient vector

space R3/ℓ for each line ℓ ⊂ R3. The 2-dimensional vector spaces Qℓ fit together into a vector

bundle Q→ RP2, and there is a short exact sequence

eq:18 (2.18) 0 −→ L −→ R3 −→ Q −→ 0

of vector bundles over RP2, where U denotes the vector bundle with constant fiber the vector

space U . Claim: There is a natural isomorphism

eq:19 (2.19) T (RP2)
∼=−−→ Hom(L,Q).

(There are analogous canonical sub and quotient bundles for any Grassmannian, and the analog

of (2.19) is true.) To construct the isomorphism (2.19), fix ℓ ⊂ R3 and a complementary sub-

space W ⊂ R3. Let ℓt, −ϵ < t < ϵ, be a curve in RP2 with ℓ0 = ℓ. For |t| sufficiently small

we can write ℓt as the graph of a unique linear map Tt ∈ Hom(ℓ,W ). Note T0 = 0. The tangent

vector to this curve of linear maps at time 0 is Ṫ0 ∈ Hom(ℓ,W ), and its image in Hom(ℓ,R2/ℓ) after

composition with the isomorphismW ↪→ R3 " R3/ℓ is independent of the choice of complement W .

For the rest of (iv) I suggest tensoring (2.18) with L∗ and applying the 2-out-of-3 principle

(Exercise 2.9). You may also wish to show that the tensor square of a real line bundle is trivializable.

Oriented bordism

We repeat the discussion of unoriented bordism in Lecture 1, beginning with Definition 1.19, for

manifolds with orientation. So in Definition 1.19 each of Y0, Y1 carries an orientation, as does the

bordism X, and the embeddings θ0, θ1 are required to be orientation-preserving.

Figure 5. Some oriented bordisms of 0-manifolds fig:5

Figure 5 illustrates four different bordisms in whichX is the oriented closed interval. The pictures

do not explicitly indicate the decomposition ∂X = (∂X)0 ⨿ (∂X)1 of the boundary into incoming

and outgoing components, nor do we make explicit the collarings θ0, θ1. We make the convention

that we read the picture from left to right with the incoming boundary components on the left.

Thus, in the first two bordisms the incoming boundary (∂X)0 and outgoing boundary (∂X)1 each

consist of a single point. In the third bordism the incoming boundary (∂X)0 consists of two points

and the outgoing boundary (∂X)1 is empty. In the fourth bordism the situation is reversed. Check
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carefully that (1.20) and (1.21) are orientation-preserving. You will need to think through the

orientation of a Cartesian product of manifolds, which amounts to the orientation of a direct sum

of vector spaces, which is a special case of Exercise 2.9. (You will also need (2.8).)

subsec:2.10

(2.20) Dual oriented bordism. There is an important modification to Definition 1.22. Namely,

the dual Y ∨ to a closed oriented manifold Y is not equal to Y , as in the unoriented case (see

Remark 1.24). Rather,

eq:20 (2.21) Y ∨ = −Y,

where −Y denotes the manifold Y with the opposite orientation (Definition 2.14(ii)). The reversal

of orientation ensures that θ∨0 and θ∨1 in (1.23) are orientation-preserving.

Exercise: Construct the dual to each bordism in Figure 5.

subsec:2.11

(2.22) Oriented bordism defines an equivalence relation. Define two closed oriented n-manifolds Y0, Y1

to be equivalent if there exists an oriented bordism from Y0 to Y1. As in Lemma 1.25 oriented bor-

dism defines an equivalence relation. There is one small, but very important, modification in the

proof of symmetry: if X is a bordism from Y0 to Y1, then −X∨ is a bordism from Y1 to Y0. (The

point is to use the orientation-reversed dual.)

subsec:2.12

(2.23) The oriented bordism ring. We denote the set of oriented bordism classes of n-manifolds

as ΩSO
n . As in (1.35) there is an oriented bordism ring ΩSO.

I will now summarize some facts about ΩSO; see [St, M1, W], [MS, §17] for more details.

thm:29 Theorem 2.24.

(i) [T] There is an isomorphism

eq:22 (2.25) Q[y4, y8, y12, . . . ]
∼=−−→ ΩSO ⊗Q

under which y4k maps to the oriented bordism class of the complex projective space CP2k.

(ii) [Av, M2, W] All torsion in ΩSO is of order 2.

(iii) [M2, No] There is an isomorphism

eq:24 (2.26) Z[z4, z8, z12, . . . ]
∼=−−→ ΩSO/torsion.

(iv) [W] The Stiefel-Whitney numbers (1.41) and Pontrjagin numbers

eq:23 (2.27) ⟨pj1(Y )⌣ pj2(Y )⌣ · · · ⌣ pjk(Y ) , [Y ]⟩ ∈ Z,

determine the oriented bordism class of a closed oriented manifold Y . In particular, Y is

the boundary of a compact oriented manifold iff all of the Stiefel-Whitney and Pontrjagin

numbers vanish.

The generators in (2.26) are not complex projective spaces, but can be taken to be certain complex

manifolds called Milnor hypersurfaces. The Pontrjagin classes are characteristic classes in integral

cohomology, and they live in degrees divisible by 4. The Pontrjagin numbers of an oriented manifold

are nonzero only for manifolds whose dimension is divisible by 4.

We will sketch a proof of (i) in Lecture 12 and use it to prove Hirzebruch’s signature theorem.
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subsec:2.13

(2.28) Low dimensions.

ΩSO
0
∼= Z. The generator is an oriented point. Recall from (2.8) that a point has two canonical

orientations: + and −. For definiteness we take the generator to be pt+, the positively oriented

point.

ΩSO
1 = 0. Every closed oriented 1-manifold is a finite disjoint union of circles S1, and S1 = ∂D2.

ΩSO
2 = 0. Every closed oriented surface is a disjoint union of connected sums of 2-tori, and such

connected sums bound handlebodies in 3-dimensional space.

ΩSO
3 = 0. This is the first theorem which goes beyond classical classification theorems in low

dimensions. The general results in Theorem 2.24 imply that ΩSO
3 is torsion, but more is needed to

prove that it vanishes.

ΩSO
4
∼= Z. The complex projective space CP2 is a generator. We will see in a subsequent lecture

that the signature of a closed oriented 4-manifold defines an isomorphism ΩSO
4 → Z.

ΩSO
5
∼= Z/2Z. This is the lowest dimensional torsion in the oriented bordism ring. The nonzero

element is represented by the Dold manifold Y 5 which is a fiber bundle Y 5 → RP1 = S1 with

fiber CP2. (See the comment after Theorem 1.37.)

ΩSO
6 = ΩSO

7 = 0.

ΩSO
8
∼= Z⊕ Z. It is generated by CP2 × CP2 and CP4.

More fun facts: ΩSO
n ̸= 0 for all n ≥ 9. Complex projective spaces and their Cartesian products

generate ΩSO
4 ,ΩSO

8 ,ΩSO
12 but not ΩSO

16 .

thm:45 Remark 2.29. The cobordism hypothesis, which is a recent theorem about the structure of multi-

categories of manifolds, is a vast generalization of the theorem that ΩSO
0 is the free abelian group

generated by pt+.

Framed bordism and the Pontrjagin-Thom construction

Some of this discussion is a bit vague; we give precise definitions and proofs in the next lecture.

Fix a closed m-dimensional manifold M . Let Y ⊂M be a submanifold. Recall that on Y there

is a short exact sequence of vector bundles

eq:25 (2.30) 0 −→ TY −→ TM
∣∣
Y
−→ ν −→ 0

where ν is defined to be the quotient bundle and is called the normal bundle of Y in M .

thm:30 Definition 2.31. A framing of the submanifold Y ⊂M is a trivialization of the normal bundle ν.

Recall that a trivialization of ν is an isomorphism of vector bundles Rq → ν, where q is the

codimension of Y in M . Equivalently, it is a global basis of sections of ν.

Framed submanifolds of M of codimension q arise as follows. Let N be a manifold of dimension q

and f : M → N a smooth map. Suppose p ∈ N is a regular value of f and fix a basis e1, . . . , eq
of TpN . Then Y := f−1(p) ⊂ M is a submanifold and the basis e1, . . . , eq pulls back to a basis of
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the normal bundle at each point y ∈ Y . For under the differential f∗ at y the subspace TyY ⊂ TyM

maps to zero, whence f∗ factors down to a map νy → TpN . The fact that p is a regular value

implies that the latter is an isomorphism.

Figure 6. A framed bordism in M fig:7

Of course, regular values are not unique. In fact, Sard’s theorem asserts that they form an open

dense subset of N . If N is connected, then we will see that the inverse images Y0 := f−1(p0)

and Y1 = f−1(p1) of two regular values p0, p1 ∈ N are framed bordant in M . (See Figure 6.) This

means that there is a framed submanifold with boundary X ⊂ [0, 1]×M such that X∩
(
{i}×M

)
=

Yi, i = 0, 1, where the framings match at the boundary. While we can transport the framing at p0
to a framing at p1 along the path, at least to obtain a homotopy class of framings, we need an

orientation of N to consistently choose framings at all points of N . In other words, f determines a

framed bordism class of framed submanifolds of M of codimension p as long as N is oriented (and

connected). Denote the set of these classes as Ωfr
m−q;M . We will also show that homotopic maps

lead to the same framed bordism class, so the construction gives a well-defined map

eq:26 (2.32) [M,N ] −→ Ωfr
m−q;M .

Here [M,N ] denotes the set of homotopy classes of maps from M to N .

From now on suppose N = Sq. Then we construct an inverse to (2.32): Pontrjagin-Thom

collapse. Let Y ⊂ M be a framed submanifold of codimension q. Recall that any submanifold Y

has a tubular neighborhood, which is an open neighborhood U ⊂ M of Y , a submersion U → Y ,

and an isomorphism ϕ : ν → U which makes the diagram

eq:27 (2.33) ν
ϕ

U

Y

commute. The framing of ν then leads to a map h : U → Rq. The collapse map fY : Y → Sq is

eq:28 (2.34) fY (x) =

⎧
⎨

⎩

h(x)

ρ
(
|h(x)|

) , x ∈ U ;

∞, x ∈ N \ U.
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Here we write Sq = Rq ∪ {∞} and we fix a cutoff function ρ as depicted in Figure 7. We represent

a collapse map in Figure 8.

Figure 7. Cutoff function for collapse map fig:6

Figure 8. Pontrjagin-Thom collapse fig:8

thm:31 Theorem 2.35 (Pontrjagin-Thom). There is an isomorphism

eq:29 (2.36) [M,Sq] −→ Ωfr
m−q;M

which takes a map M → Sq to the inverse image of a regular value. The inverse map is Pontrjagin-

Thom collapse.

There are choices (regular value, tubular neighborhood, cutoff function) in these construction. Part

of Theorem 2.35 is that the resulting map (2.36) and its inverse are independent of these choices.

We prove Theorem 2.35 in the next lecture.

The Hopf degree theorem

As a corollary of Theorem 2.35 we prove the following.
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thm:33 Theorem 2.37 (Hopf). Let M be a closed connected manifold of dimension m.

(i) If M is orientable, then there is an isomorphism

eq:30 (2.38) [M,Sm] −→ Z

given by the integer degree.

(ii) If M is not orientable, then there is an isomorphism

eq:31 (2.39) [M,Sm] −→ Z/2Z

given by the mod 2 degree.

By Theorem 2.35 homotopy classes of maps M → Sm are identified with framed bordism classes

of framed 0-dimensional submanifolds of M . Now a 0-dimensional submanifold of M is a finite

disjoint union of points, and a framed point is a point y ∈M together with a basis of TyM .

We apply an important general principle in geometry: to study an object O introduce the moduli

space of all objects of that type and formulate questions in terms of the geometry of that moduli

space. In this case we are led to introduce the frame bundle.

subsec:2.14

(2.40) The frame bundle. For any smooth manifold M , define

eq:32 (2.41) B(M) = {(y, b) : y ∈M, b ∈ B(TyM)}.

Recall from (2.1) that b is an isomorphism b : Rm → TyM . There is an obvious projection

eq:33 (2.42)
π : B(M) −→M

(y, b) 1−→ y

We claim that (2.42) is a fiber bundle. (See the appendix for a rapid review of fiber bundles.)

There is more structure. Recall that each fiber B(M)y = B(TyM) is a GLn(R)-torsor. That is, the
group GLn(R) acts simply transitively (on the right) on the fiber. So (2.42) is a principal bundle

with structure group GLn(R).

thm:39 Exercise 2.43. Prove that (2.42) is a fiber bundle. You can use the principal bundle structure

to simplify: to construct local trivializations it suffices to construct local sections. Use coordinate

charts to do so.

Each fiber of π has two components. Since M is assumed connected, the following is immediate

from Definition 2.14 and covering space theory.

thm:40 Lemma 2.44. If M is connected and orientable, then B(M) has 2 components. If M is connected

and non-orientable, then B(M) is connected.
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Proof. Let ρ : B(M) → o(M) be the map which sends a basis of TyM to the orientation of TyM

it determines. By Definition 2.2 ρ is surjective. We claim that ρ induces an isomorphism on

components, and for that it suffices to check that if oy0 and oy1 are in the same component of o(M),

and if b0, b1 are bases of Ty0M,Ty1M which induce the orientations oy0 , oy1 , then b0 and b1 are in

the same component of B(M). Let γ : [0, 1]→M be a smooth path with γ(0) = y0 and γ(1) = y1.

Lift the vector field ∂/∂t on [0, 1] to a vector field on π′ : γ∗B(M) → [0, 1], which we can do using

a partition of unity since the differential of π′ is surjective. Find an integral curve of this lifted

vector field with initial point b0. The terminal point of that integral curve lies in the fiber B(M)y1
and is in the same component of the fiber as b1, by the assumption that oy0 and oy1 are in the same

component of B(M). !

thm:42 Lemma 2.45. If Y0 = (y0, b0) and Y1 = (y1, b1) are in the same component of B(M), then the

framed points Y0 and Y1 are framed bordant in M .

One special case of interest is where y0 = y1 and b0, b1 belong to the same orientation.

Proof. Let γ : [0, 1]→ B(M) be a smooth path with γ(i) = (yi, bi), i = 1, 2. Let X ⊂ [0, 1]×M be

the image of the embedding s 1→
(
s,π ◦γ(s)

)
. The normal bundle at

(
s, (π ◦γ)(s)

)
can be identified

with Tγ(s)M , and we use the framing γ(s) to frame X. !

thm:43 Lemma 2.46. Let B ⊂ M be the image of the open unit ball in some coordinate system on M .

Let Y = {y0} ⨿ {y1} be the union of disjoint points y0, y1 ∈ B and choose framings which lie in

opposite components of B(B). Then Y is framed bordant to the empty manifold in B.

Proof. We may as well take B to be the unit ball in Am, and after a diffeomorphism we may assume

y0 = (−1/2, 0, . . . , 0) and y1 = (1/2, 0, . . . , 0). We may also reduce to the case where the framings

are ∓∂/∂x1, ∂/∂x2, . . . , ∂/∂xm; see the remark following Lemma 2.45. Then let X ⊂ [0, 1] ×B be

the image of

eq:34 (2.47) s 1−→
(
s(1− s); s− 1

2
, 0, . . . , 0

)

where the framing at time s is

eq:35 (2.48) s(1− s)
∂

∂t
+ (2s − 1)

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xm

Here t is the coordinate on [0, 1]. The m vectors in (2.48) project onto a framing of the normal

bundle to X in [0, 1] ×M , as is easily checked. !

thm:44 Exercise 2.49. Assemble Lemma 2.44, Lemma 2.45, and Lemma 2.46 into a proof of Theorem 2.37.

thm:38 Exercise 2.50. Use Theorem 2.35 to compute [S3, S2] and [S4, S3]. As a warmup you might start

with [S2, S1], which you can also compute using covering space theory.



Lecture 3: The Pontrjagin-Thom theorem

sec:3

In this lecture we give a proof of Theorem 2.35. You can read an alternative exposition in [M3].

We begin by reviewing some definitions and theorems from differential topology.

Neat submanifolds

Recall the local model (1.8) of a manifold with boundary. We now define a robust notion of

submanifold for manifolds with boundary.

thm:46 Definition 3.1. Let M be an m-dimensional manifold with boundary. A subset Y ⊂ M is a

neat submanifold if about each y ∈ Y there is a chart (φ, U) of M—that is, an open set U ⊂ M

containing y and a homeomorphism φ : U → An in the atlas defining the smooth structure—such

that φ(Y ) ⊂ Am−q ∩ Am
− , where Am

− is defined in (1.9) and

eq:36 (3.2) Am−q = {(x1, x2, . . . , xm) ∈ Am : xm−q+1 = · · · = xm = 0}.

 

Figure 9. fig:9

The local model induces a smooth structure on Y , so Y is a manifold with boundary, ∂Y = ∂M∩Y ,

and Y is transverse to ∂M .

subsec:3.1

25
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(3.3) Normal bundle to neat submanifold. The neatness condition gives rise to the following dia-

gram of vector bundles over ∂Y :

eq:37 (3.4) 0 0

0 T (∂Y ) TY
∣∣
∂Y

µY

∼=

0

0 T (∂M) TM
∣∣
∂Y

µM 0

ν∂
∼=

ν
∣∣
∂Y

0 0

In this diagram the line bundles µY , µM , defined as the indicated horizontal quotients, are the nor-

mal bundles to the boundaries of the manifolds Y,M , and the diagram determines an isomorphism

between them. Similarly, the vector bundles ν∂ , ν, defined as the indicated vertical quotients, are

the normal bundles to ∂Y ⊂ ∂M and Y ⊂ M , respectively; the diagram determines isomorphism

between ν∂ and the restriction of ν to the boundary of ∂Y .

This shows that there is a well-defined normal bundle ν → Y to the neat submanifold Y ⊂M .
subsec:3.2

(3.5) Tubular neighborhood of a neat submanifold. The tubular neighborhood theorem extends to

neat submanifolds.

thm:47 Definition 3.6. Let M be a manifold with boundary, Y ⊂M a neat submanifold, and ν → Y its

normal bundle. A tubular neighborhood is a pair (U,ϕ) where U ⊂M is an open set containing Y

and ϕ : ν → U is a diffeomorphism such that ϕ
∣∣
Y
= idY , where we identify Y ⊂ ν as the image of

the zero section.

thm:48 Theorem 3.7. Tubular neighborhoods exist.

The proof is easier if Y is compact. In either case one can use Riemannian geometry. Choose

a Riemannian metric on M which is a product metric in a collar neighborhood of ∂M . Use the

metric to embed ν ⊂ TM
∣∣
Y

as the orthogonal complement of TY . Then for an appropriate

function ϵ : TY \ Y → R>0 we define ϕ(ξ) to be the time ϵ(ξ) position of the geodesic with initial

position π(ξ) and initial velocity ξ/|ξ|. Here π : ν → Y is projection and ξ is presumed nonzero.

Proof of Pontrjagin-Thom

thm:49 Definition 3.8. Let f0, f1 : M → N be smooth maps of manifolds. A smooth homotopy F : f0 →
f1 is a smooth map F : ∆1 × M → N such that for all x ∈ M we have F (0, x) = f0(x) and

F (1, x) = f1(x).
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Here∆1 = [0, 1] is the 1-simplex. Smooth homotopy is an equivalence relation; the set of equivalence

classes is denoted [M,N ]. This is also the set of homotopy classes of continuous maps under

continuous homotopy, which can be proved by approximation theorems which show that C∞ maps

are dense in the space of continuous maps.

Recall the definition of Ωfr
n;M from (2.32); it is the set of framed bordism classes of normally

framed n-dimensional closed submanifolds of a smooth manifold M .

thm:50 Theorem 3.9 (Pontrjagin-Thom). For any smooth compact m-manifold M there is an isomor-

phism

eq:38 (3.10) φ : [M,Sq] −→ Ωfr
n;M , n = m− q.

The forward map is the inverse image of a regular value; the inverse map is the Pontrjagin-Thom

collapse, as illustrated in Figure 8.

Proof. Write Sq = Aq ∪ {∞} (stereographic projection) and fix p ∈ Aq. Given f : M → Sq use the

transversality theorems from differential topology to perturb to a smoothly homotopy f0 : M → Sq

such that p is a regular value. Define φ
(
[f ]

)
=

[
(f0)−1(p)

]
, where [f ] is the smooth homotopy

class of f and
[
(f0)−1(p)

]
is the framed bordism class of the inverse image. Note that (f0)−1(p) is

compact since M is. To see that φ is well-defined, suppose F : ∆1×M → Sq is a smooth homotopy

from f0 to f1, where p is a simultaneous regular value of f0, f1. The transversality theorems imply

there is a perturbation F ′ of F which is transverse to {p} and which equals F in a neighborhood

of {0, 1} ×M ⊂ ∆1 ×M . Then5 (F ′)−1(p) is a framed bordism from (f0)−1(p) to (f1)−1(p).

The inverse map

eq:39 (3.11) ψ : Ωfr
n;M −→ [M,Sq]

is described in (2.34). That construction depends on a choice of tubular neighborhood (U,ϕ) and

cutoff function (Figure 7). To see it is well-defined, supposeX ⊂ ∆1×M is a framed bordism, which

in particular is a neat submanifold. We use the existence of tubular neighborhoods (Theorem 3.7)

to construct a Pontrjagin-Thom collapse map ∆1 ×M → Sq, which is then a smooth homotopy

between the Pontrjagin-Thom collapse maps on the boundaries. (We need to know that if we have

a tubular neighborhood of ∂X ⊂ ∂M we can extend that particular tubular neighborhood to one

of X ⊂M . If we construct tubular neighborhoods using geodesics, as indicated in (3.5), then this

is a simple matter of extending a Riemannian metric on ∂M to a Riemannian metric on M .)

The composition φ ◦ ψ is clearly the identity. To show that ψ ◦ φ is also the identity, note

that if f0 : M → Sq has p as a regular value and we set Y = (f0)−1(p), then the map f1 : M →
Sq representing (ψ ◦ φ)(f0) also has p as a regular value and (f1)−1(p) = Y . Furthermore, by

construction df0
∣∣
Y
= df1

∣∣
Y
. The desired statement follows from the following lemma.

thm:51 Lemma 3.12. Let M be a closed manifold, Y ⊂M a normally framed submanifold, and f0, f2 : M →
Sq such that (f0)−1(p) = (f2)−1(p) = Y and df0

∣∣
Y
= df2

∣∣
Y
, where p ∈ Aq ⊂ Sq. Then f0 is

smoothly homotopic to f2.

5This relies on the following theorem: If W is a compact manifold with boundary, F : W → S a smooth map to a

manifold S, and p ∈ S is a regular value of both F and F
∣

∣

∂W
, then F−1(p) ⊂ W is a neat submanifold.
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Proof. We first make a homotopy of f0 localized in a neighborhood of Y to make f0 and f2 agree in a

neighborhood of Y . For that choose a tubular neighborhood (U,ϕ) of Y such that neither f0 nor f2
hits∞ ∈ Sq in U . The framing identifies U ≈ Y ×Rq, and under the identification f0, f2 correspond

to maps g0, g2 : Y ×Rq → Aq. For a cutoff function ρ of the shape of Figure 7 define the homotopy

eq:40 (3.13) (t, y, ξ) 1−→ g0(y, ξ) + tρ(|ξ|)
(
g2(y, ξ)− g0(y, ξ)

)
.

Let g1 be the time-one map; it glues to f0 on the complement of U to give a smooth map f1 : M →
Sq. Then f1 = f2 in a neighborhood V ⊂ U of Y, and f1 = f0 on the complement of U . I leave as a

calculus exercise to prove that we can adjust the cutoff function (sending it to zero quickly) so that

f1 does not take the value p in U \ V . This uses the fact that (dg0)(y,0) = (dg1)(y,0) for all y ∈ Y .

The second step is to construct a homotopy from f1 to f2. For this write Sq = Aq ∪ {p}, use the
fact that both f1 and f2 map to the affine part of this decomposition on the complement of V , and

then average in that affine space to make the homotopy, as in (3.13). !

!

thm:52 Exercise 3.14. Fill in the two missing details in the proof of Lemma 3.12. Namely, first show how

to construct a cutoff function ρ so that f1(x) ̸= p for all x ∈ U \ V . Construct an example (think

low dimensions!) to show that this fails if the normal framings do not agree up to homotopy on Y .

Then construct the homotopy in the second step of the proof.

thm:53 Exercise 3.15. Show by example that Theorem 3.9 can fail for M noncompact.

thm:54 Exercise 3.16. A framed link in S3 is a closed normally framed 1-dimensional submanifold L ⊂ S3.

What can you say about these up to framed bordism, i.e., can you compute Ωfr
1;S3? Is the framed

bordism class of a link an interesting link invariant? How can you compute it?

thm:55 Exercise 3.17. A Lie group G is a smooth manifold equipped with a point e ∈ G and smooth

maps µ : G × G → G and ι : G → G such that (G, e, µ, ι) is a group. In other words, it is the

marriage of a smooth manifold and a group, with compatible structures. Prove that every Lie

group is parallelizable, i.e., that there exists a trivialization of the tangent bundle TG→ G. In fact,

construct a canonical trivialization.

thm:56 Exercise 3.18. Show that the complex numbers of unit norm form a Lie group T ⊂ C. What is

the underlying smooth manifold? Do the analogous exercise for the unit quaternions Sp(1) ⊂ H.

The notation Sp(1) suggests that there is also a Lie group Sp(n) for any positive integer n. There

is! Construct it.



Lecture 4: Stabilization
sec:4

There are many stabilization processes in topology, and often matters simplify in a stable limit.

As a first example, consider the sequence of inclusions

eq:41 (4.1) S0 ↪→ S1 ↪→ S2 ↪→ S3 ↪→ · · ·

where each sphere is included in the next as the equator. If we fix a nonnegative integer n and

apply πn to (4.1), then we obtain a sequence of groups with homomorphisms between them:

eq:42 (4.2) πnS
0 −→ πnS

1 −→ πnS
2 −→ · · · .

Here the homotopy group πn(X) of a topological space X is the set6 of homotopy classes of

maps [Sn,X], and we must use basepoints, as described below. This sequence stabilizes in a

trivial sense: for m > n the group πnSm is trivial. In this lecture we encounter a different sequence

eq:43 (4.3) πnS
0 −→ πn+1S

1 −→ πn+2S
2 −→ · · ·

whose stabilization is nontrivial. Here ‘stabilization’ means that with finitely many exceptions

every homomorphism in (4.3) is an isomorphism. The groups thus computed are central in stable

homotopy theory: the stable homotopy groups of spheres.

One reference for this lecture is [DK, Chapter 8].

Pointed Spaces

This is a quick review; look in any algebraic topology book for details.

thm:57 Definition 4.4.

(i) A pointed space is a pair (X,x) where X is a topological space and x ∈ X.

(ii) A map f : (X,x) → (Y, y) of pointed spaces is a continuous map f : X → Y such that

f(x) = y.

(iii) A homotopy F : ∆1× (X,x)→ (Y, y) of maps of pointed spaces is a continous map F : ∆1×
X → Y such that F (t, x) = y for all t ∈ ∆1 = [0, 1].

The set of homotopy classes of maps between pointed spaces is denoted
[
(X,x), (Y, y)

]
, or if base-

points need not be specified by [X,Y ]∗.

thm:58 Definition 4.5. Let (Xi, ∗i) be pointed spaces, i = 1, 2.

6It is a group for n ≥ 1, and is an abelian group if n ≥ 2.

29
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(i) The wedge is the identification space

eq:44 (4.6) X1 ∨X2 = X1 ⨿X2
/
∗1 ⨿ ∗2.

(ii) The smash is the identification space

eq:45 (4.7) X1 ∧X2 = X1 ×X2
/
X1 ∨X2.

(iii) The suspension of X is

eq:46 (4.8) ΣX = S1 ∧X.

 

Figure 10. The wedge and the smash fig:10

For the suspension it is convenient to write S1 as the quotient D1/∂D1 of the 1-disk [−1, 1] ⊂ A1

by its boundary {−1, 1}.

 

Figure 11. The suspension fig:12

thm:59 Exercise 4.9. Construct a homeomorphism Sk ∧ Sℓ ≃ Sk+ℓ. You may find it convenient to write

the k-sphere as the quotient of the Cartesian product (D1)×k by its boundary.
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thm:60 Exercise 4.10. Suppose fi : Xi → Yi are maps of pointed spaces, i = 1, 2. Construct induced

maps

eq:47 (4.11)
f1 ∨ f2 : X1 ∨X2 −→ Y1 ∨ Y2

f1 ∧ f2 : X1 ∧X2 −→ Y1 ∧ Y2

Suppose all spaces are standard spheres and the maps fi are smooth maps. Is the map f1 ∧ f2
smooth? Proof or counterexample.

Note that the suspension of a sphere is a smooth manifold, but in general the suspension of a

manifold is not smooth at the basepoint.

thm:61 Definition 4.12. Let (X, ∗) be a pointed space and n ∈ Z≥0. The nth homotopy group πn(X, ∗)
of (X, ∗) is the set of pointed homotopy classes of maps

[
(Sn, ∗), (X, ∗)

]
.

If we write Sn as the quotient Dn/∂Dn (or as the quotient of (D1)×n by its boundary), then it has

a natural basepoint. We often overload the notation and use ‘X’ to denote the pair (X, ∗). As the
terminology suggests, the homotopy set of maps out of a sphere is a group, except for the 0-sphere.

Precisely, πnX is a group if n ≥ 1, and is an abelian group if n ≥ 2. Figure 12 illustrates the

composition in πnX, as the composition of a “squeezing map” Sn → Sn∨Sn and the wedge f1∨f2.
 

Figure 12. Composition in πnX fig:11

We refer to standard texts for the proof that this composition is associative, that the constant map

is the identity, that there are inverses, and that the composition is commutative if n ≥ 2.

Stabilization of homotopy groups of spheres

We now study the Pontrjagin-Thom Theorem 3.9 in case M = Sm is a sphere. First apply

suspension, to both spaces and maps using Exercise 4.9 and Exercise 4.10, to construct a sequence

of group homomorphisms

eq:48 (4.13) [Sm, Sq]
Σ−−→ [Sm+1, Sq+1]

Σ−−→ [Sm+2, Sq+2]
Σ−−→ · · · ,

where m ≥ q are positive integers.
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thm:62 Theorem 4.14 (Freudenthal). The sequence (4.13) stabilizes in the sense that all but finitely many

maps are isomorphisms.

The Freudenthal suspension theorem was proved in the late ’30s. There are purely algebro-

topological proofs. We prove it as a corollary of Theorem 4.44 below and the Pontrjagin-Thom

theorem.

subsec:4.3

(4.15) Basepoints. We can introduce basepoints without changing the groups in (4.13).

thm:66 Lemma 4.16. If m, q ≥ 1, then

eq:54 (4.17) [Sm, Sq]∗ = [Sm, Sq].

Proof. There is an obvious map [Sm, Sq]∗ → [Sm, Sq] since a basepoint-preserving map is, in

particular, a map. It is surjective since if f : Sm → Sq, then we can compose f with a path Rt of

rotations from the identity R0 to a rotation R1 which maps f(∗) ∈ Sq to ∗ ∈ Sq. It is injective

since if F : Dm+1 → Sq is a null homotopy of a pointed map f : Sm → Sq, then we precompose F

with a homotopy equivalence Dm+1 → Dm+1 which maps the radial line segment connecting the

center with the basepoint in Sm to the basepoint; see Figure 13. !

 

Figure 13. Homotopy equivalence of balls fig:13

So we can rewrite (4.13) as a sequence of homomorphisms of homotopy groups:

eq:55 (4.18) πmSq Σ−−→ πm+1S
q+1 Σ−−→ πm+2S

q+2 Σ−−→ · · ·

subsec:4.1

(4.19) A limiting group. It is natural to ask if there is a group we can assign as the “limit”

of (4.18). In calculus we learn about limits, first inside the real numbers and then in arbitrary

metric spaces, or in more general topological spaces. Here we want not a limit of elements of a set,

but rather a limit of sets. So it is a very different—algebraic—limiting process. The proper setting

for such limits is inside a mathematical object whose “elements” are sets, and this is a category.

We will introduce these in due course, and then the limit we want is, in this case, a colimit.7 We

simply give an explicit construction here, in the form of an exercise.

7Older terminology: direct limit or inductive limit.
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thm:63 Exercise 4.20. Let

eq:49 (4.21) A1
f1−−→ A2

f2−−→ A3
f3−−→ · · ·

be a sequence of homomorphisms of abelian groups. Define

eq:50 (4.22) A = colim
q→∞

Aq =
∞⊕

q=1

Aq
/
S

where S is the subgroup of the direct sum generated by

eq:99 (4.23) (fℓ ◦ · · · ◦ fk)(ak) − ak, ak ∈ Ak, ℓ ≥ k.

Prove that A is an abelian group, construct homomorphisms Aq → A, and show they are isomor-

phisms for q >> 1 if the sequence (4.21) stabilizes in the sense that there exists q0 such that fq is

an isomorphism for all q ≥ q0.

thm:88 Definition 4.24. The limiting group of the sequence (4.13) is denoted

eq:97 (4.25) πsn = colim
q→∞

πn+qS
q

and is the nth stable homotopy group of the sphere, or nth stable stem.

Colimits of topological spaces

Question: Is there a pointed space Q so that πsn = πnQ?

There is another construction with pointed spaces which points the way.

thm:64 Definition 4.26. Let (X, ∗) be a pointed space. The (based) loop space of (X, ∗) is the set of

continous maps

eq:51 (4.27) ΩX = {γ : S1 → X : γ(∗) = ∗}.

We topologize ΩX using the compact-open topology, and then complete to a compactly generated

topology.

thm:90 Definition 4.28. A Hausdorff topological space Z is compactly generated if A ⊂ Z is closed iff

A ∩ C is closed for every compact subset C ⊂ Z.

Compactly generated Hausdorff spaces are a convenient category in which to work, according

to a classic paper of Steenrod [Ste]; see [DK, §6.1] for an exposition. A Hausdorff space Z has a

compactly generated completion: declare A ⊂ Z to be closed in the compactly generated completion

iff A ∩C ⊂ Z is closed in the original topology of Z for all compact subsets C ⊂ Z.
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thm:65 Exercise 4.29. Let X,Y be pointed spaces. Prove that there is an isomorphism of sets

eq:52 (4.30) Map∗(ΣX,Y )
∼=−−→ Map∗(X,ΩY ).

Here ‘Map∗’ denotes the set of pointed maps. If X and Y are compactly generated, then the

map (4.30) is a homeomorphism of topological spaces, where the mapping spaces have the compactly

generated completion of the compact-open topology. Metric spaces, in particular smooth manifolds,

are compactly generated. You can find a nice discussion of compactly generated spaces in [DK,

§6.1].

Use (4.30) to rewrite (4.18) as

eq:53 (4.31) πn(S
0) −→ πn(ΩS

1) −→ πn(Ω
2S2) −→ · · ·

This suggests that the space Q is some sort of limit of the spaces ΩqSq as q →∞. This is indeed

the case.

subsec:4.4

(4.32) Colimit of a sequence of maps. Let

eq:93 (4.33) X1
f1−−→ X2

f2−−→ X3
f3−−→ · · ·

be a sequence of continuous inclusions of topological spaces. Then there is a limiting topological

space

eq:94 (4.34) X = colim
q→∞

Xq =
∞∐

q=1

Xq
/
∼

equipped with inclusions gq : Xq ↪→ X. Here ∼ is the equivalence relation generated by setting

xk ∈ Xk equivalent to (fℓ ◦ · · · ◦ fk)(xk) for all ℓ ≥ k. We give X the quotient topology. It is the

strongest (finest) topology so that the maps gq are continuous. More concretely, a set A ⊂ X is

closed iff A ∩Xq ⊂ Xq is closed for all q. Then X is called the colimit of the sequence (4.33).

thm:86 Exercise 4.35. Construct S∞ as the colimit of (4.1). Prove that S∞ is weakly contractible: for

n ∈ Z≥0 any map Sn → S∞ is null homotopic.

thm:91 Exercise 4.36. Show that if each space Xq in (4.33) is Hausdorff compactly generated and fq is a

closed inclusion, then the colimit (4.34) is also compactly generated. Furthermore, every compact

subset of the colimit is contained in Xq for some q.
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Figure 14. The inclusion X ↪→ ΩΣX fig:15

subsec:4.5

(4.37) The space QS0. Now apply (4.32) to the sequence

eq:95 (4.38) S0 −→ ΩS1 −→ Ω2S2 −→ · · ·

This is, in fact, a sequence of inclusions of the form X ↪→ ΩΣX, as illustrated in Figure 14. The

limiting space of the sequence (4.38) is

eq:96 (4.39) QS0 := colim
q→∞

ΩqSq

and is the 0-space of the sphere spectrum.

thm:87 Proposition 4.40. πsn = πn(QS0).

Proof. More generally, for a sequence of closed inclusions of compactly generated Hausdorff spaces (4.33)

we prove

eq:98 (4.41) πn(colim
q→∞

Xq) ∼= colim
q→∞

πnXq.

Let X = colimq→∞Xq. A class in πnX is represented by a continuous map f : Sn → X, and by

the last assertion you proved in Exercise 4.36 f factors through a map f̃ : Sn → Xq for some q.

This shows that the natural map colimq→∞ πnXq → πnX is surjective. Similarly, a null homotopy

of the composite Sn f̃−→ Xq ↪→ X factors through some Xr, r ≥ q, and this proves that this natural

map is also injective. !

Stabilization of framed submanifolds

By Theorem 3.9 we can rewrite (4.13) as a sequence of maps

eq:56 (4.42) Ωfr
n;Sm

σ−→ Ωfr
n;Sm+1

σ−→ Ωfr
n;Sm+2

σ−→ · · ·

Representatives of these framed bordism groups are submanifolds of Sm. Write Sm = Am ∪ {∞},
and recall from the proof in Lecture §3 that each framed bordism class is represented by a framed

submanifold Y ⊂ Am; we can arrange∞ /∈ Y . This is the analog of passing to a sequence of pointed

maps, as in Lemma 4.16.
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We make two immediate deductions from the identification with (4.13). First, we must have

that each Ωfr
n;Sm is an abelian group. The abelian group law is the disjoint union of submanifolds

of Am, effected by writing Am = Am ⨿ Am (similar to the collapse map in Figure 12). Second, the

stabilization map σ in (4.42) is the map

eq:57 (4.43) (Y ⊂ Am) 1−→ (0× Y ⊂ A1 × Am)

and the new normal framing prepends the constant vector field ∂/∂x1 to the given normal framing

of Y .

We can now state the stabilization theorem.

thm:67 Theorem 4.44. The map σ : Ωfr
n;Sm → Ωfr

n;Sm+1 is an isomorphism for m ≥ 2n+ 2.

As a corollary we obtain a precise estimate on the Freudenthal isomorphism, using the Pontrjagin-

Thom identification.

thm:68 Corollary 4.45. The map Σ : πmSq → πm+1Sq+1 is an isomorphism for m ≤ 2q − 2.

We will not prove the precise estimate in Theorem 4.44, and so not the precise estimate in

Corollary 4.45 either. Rather, we only prove Theorem 4.44 for sufficiently largem, where sufficiently

large depends on n. This suffices to prove the stabilization.

thm:92 Exercise 4.46. Show that the bound in Theorem 4.44 is optimal for n = 1.

The proof of Theorem 4.44 is based on the Whitney Embedding Theorem. We restrict to compact

manifolds. Recall that for compact manifolds embeddings are easier to handle since they are

injective immersions. An isotopy of embeddings Y ↪→ AN is a smooth map

eq:100 (4.47) ∆1 × Y −→ AN

so that the restriction to {t} × Y is an embedding for all t ∈ ∆1. In other words, an isotopy of

embeddings is a path of embeddings.

thm:69 Theorem 4.48. Let Y be a smooth compact n-manifold.

(i) There exists an embedding i : Y ↪→ A2n+1. Furthermore, if i : Y ↪→ AN is an embedding

with N > 2n + 1, then there is an isotopy of i to an embedding into an affine subspace

A2n+1 ⊂ AN .

(ii) If i0, i1 : Y ↪→ A2n+1 are embeddings, then their stabilizations

eq:101 (4.49)
ı̃k : Y −→ A2n+1 ×A2n+1

y 1−→
(
0, ik(y)

)

(k = 0, 1) are isotopic.

(iii) Let X be a compact (n+1)-manifold with boundary. Then there is an embedding X ↪→ A2n+3
−

as a neat submanifold with boundary.
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Assertion (i) is the easy Whitney Embedding Theorem, and we refer to [GP] for a proof. The

second statement in (i) follows from the proof, which uses linear projection onto an affine subspace

to reduce the dimension of the embedding. Statement (iii) is stated as [Hi, Theorem 4.3]; perhaps

in the mythical next version of these notes I’ll supply a proof. [do it!] In any case we do not need⇒
the statement with ‘neat’, and without ‘neat’ the proof is essentially the same as that of (i). We

remark that the hard Whitney Embedding Theorem asserts that there is an embedding Y ↪→ A2n.

Proof. We prove (ii). The desired isotopy ı̃0 → ı̃1 is constructed as the composition in time of three

isotopies:

eq:102 (4.50)

(t, y) 1−→
(
t i0(y) , i0(y)

)
, 0 ≤ t ≤ 1;

(t, y) 1−→
(
i0(y) , (2− t) i0(y) + (t− 1) i1(y)

)
, 1 ≤ t ≤ 2;

(t, y) 1−→
(
(3− t) i0(y) , i1(y)

)
, 2 ≤ t ≤ 3;

! ⇐
thm:94 Exercise 4.51. [not an embedding? if i0(y) = 0 in first guy] Check that the map [0, 3] × Y → A4n+2

defined by (4.50) is an embedding. Now use the technique of the Whitney Embedding Theorem to

project onto a subspace of dimension 2n+2 so that the composition is still an embedding. Can you

use this to prove that, in fact, the stabilizations of i0, i1 to embeddings Y ↪→ A2n+2 are isotopic?

(That statement can be proved using an approximation theorem; see Exercise 10 in [Hi, p. 183].)

thm:93 Exercise 4.52. A parametrized knot is an embedding i : S1 → A3. Exhibit two parametrized knots

which are not isotopic. Can you prove that they are not isotopic? The proof above shows that

they are isotopic when stabilized to embeddings ı̃ : S1 → A6. Prove that they are isotopic when

stabilized to embeddings ı̃ : S1 → A4.

Sketch proof of Theorem 4.44. To show that σ : Ωfr
n;Sm → Ωfr

n;Sm+1 is surjective, suppose i0 : Y ↪→
Am+1 is an embedding. By Theorem 4.48(i) there is an isotopy ∆1 × Y → Am+1 to an embedding

i1 : Y ↪→ Am ⊂ Am+1. To show that σ is injective, suppose j0 : Y ↪→ Am is an embedding and

k0 : X ↪→ Am+1 is a null bordism of the composition Y
j0−→ Am ⊂ Am+1. Then Theorem 4.48(iii)

implies there is an isotopy kt : ∆1 ×X −→ Am+1 with k1(X) ⊂ Am a null bordism of j0. !

There is one problem: we have not discussed the normal framings. Briefly, in both the surjectivity

and injectivity arguments there is an isotopy ∆1 × Z → Am+1, a normal bundle ν → ∆1 × Z, and

a framing of ν
∣∣
{0}×Z

. We need two general results to get the desired framing of ν
∣∣
{1}×Z

. First, we

can extend the given framing over {0}×Z to the entire cylinder ∆1×Z, for example using parallel

transport of a connection (so solving an ODE). Second, the restriction of ν to {1} × Z splits off

a trivial line bundle, and we can homotop the framing to one which respects this splitting. This

follows from a stability statement for homotopy groups of the general linear group. Perhaps these

arguments will appear in that mystical future revision. . . [do it!]. ⇐



Lecture 5: More on stabilization
sec:5

In this lecture we continue the introductory discussion of stable topology. Recall that in Lec-

ture §4 we introduced the stable stem πs•, the stable homotopy groups of the sphere. We show

that there is a ring structure: πs• is a Z-graded commutative ring (Definition 1.33). The stable

Pontrjagin-Thom theorem identifies it with stably normally framed submanifolds of a sphere. Here

we see how stable normal framings are equivalent to stable tangential framings, and so define a

ring Ωfr
• of stably tangentially framed manifolds with no reference to an embedding. The image of

the J-homomorphism gives some easy classes in the stable stem from the stable homotopy groups

of the orthogonal group. We describe some low degree classes in terms of Lie groups.

A reference for this lecture is [DK, Chapter 8].

Ring structure

Recall that elements in the abelian group πsn are represented by homotopy classes πq+nSq for

q sufficiently large. The multiplication in πs• is easy to describe. Suppose given classes a1 ∈ πsn1

and a2 ∈ πsn2
, which are represented by maps

eq:59 (5.1)
f1 : S

q1+n1 −→ Sq1

f2 : S
q2+n2 −→ Sq2

Then the product a1 · a2 ∈ πsn1+n2
is represented by the smash product (Exercise 4.10)

eq:60 (5.2) f1 ∧ f2 : S
q1+n1 ∧ Sq2+n2 −→ Sq1 ∧ Sq2 .

Recall that the smash product of spheres is a sphere (Exercise 4.9), so f1 ∧ f2 does represent an

element of πsn1+n2
.

There is a corresponding ring structure on framed manifolds, which we will construct in the next

section.

Tangential framings

subsec:5.1

(5.3) Short exact sequences of vector bundles. Let

eq:61 (5.4) 0 −→ E′ i−−→ E
j−−→ E′′ −→ 0

38
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be a short exact sequence of vector bundles over a smooth manifold Y .8 A splitting of (5.4) is a

linear map E′′ s−→ E such that j ◦ s = idE′′ . A splitting determines an isomorphism

eq:66 (5.5) E′′ ⊕ E′ s⊕i−−−→ E.

thm:70 Lemma 5.6. The space of splittings is a nonempty affine space over the vector space Hom(E′′, E′).

Let’s deconstruct that statement, and in the process prove parts of it. First, if s0, s1 are splittings,

then the difference φ = s1− s0 is a linear map E′′ → E such that j ◦ φ = 0. The exactness of (5.4)

implies that φ factors through a map φ̃ : E′′ → E′: in other words, φ = i ◦ φ̃. This, then, is the

affine structure. But we must prove that the space of splittings is nonempty. For that we use a

partition of unity argument. Remember that partitions of unity can be used to average sections

of a fiber bundle whose fibers are convex subsets of affine spaces. Of course, an affine space is a

convex subset of itself.

I outline some details in the following exercise.

thm:71 Exercise 5.7.

(i) Construct a vector bundleHom(E′′, E′)→ Y whose sections are homomorphisms E′′ → E′.

Similarly, construct an affine bundle (a fiber bundle whose fibers are affine spaces) whose

sections are splittings of (5.4). You will need to use local trivializations of the vector

bundles E,E′, E′′ to construct these fiber bundles.

(ii) Produce the partition of unity argument. You should prove that if A → Y is an affine

bundle, and E → Y is a fiber subbundle whose fibers are convex subsets of A, then there

exist sections of E → Y . Even better, topologize9 the space of sections and prove that the

space of sections is contractible.

(iii) This is a good time to review the partition of unity argument for the existence of Riemannian

metrics. Phrase it in terms of sections of a fiber bundle (which?). More generally, prove

that any real vector bundle ν → Y admits a positive definite metric, i.e., a smoothly varying

inner product on each fiber.

subsec:5.4

(5.8) Stable framings. Let E → Y be a vector bundle of rank q. A stable framing or stable

trivialization of E → Y is an isomorphism φ : Rk+q ∼=−−→ Rk ⊕ E for some k ≥ 0. A homotopy of

stable framings is a homotopy of the isomorphism φ. We identify φ with

eq:71 (5.9) idRℓ ⊕φ : Rℓ+k+q ∼=−−→ Rℓ+k ⊕ E

for any ℓ. With these identifications we define a set of homotopy classes of stable framings.

8These can be real, complex, or quaternionic.
9The topological space of a smooth manifold is metrizable; one can use the metric space structure induced from

a Riemannian metric, for example. Then you can topologize the space of sections using the topology of uniform
convergence on compact sets. One needn’t use the metrizability and can describe this as the compact-open topology.
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subsec:5.2

(5.10) The stable tangent bundle of the sphere. Let Sm ∈ Am+1 be the standard unit sphere,

defined by the equation

eq:62 (5.11) (x1)2 + (x2)2 + · · · + (xm+1)2 = 1.

Then the vector field

eq:63 (5.12)
∑

i

xi
∂

∂xi
,

restricted to Sm, gives a trivialization of the normal bundle ν to Sm ⊂ Am+1. Recall that the

tangent bundle to Am+1 is the trivial bundle Rm+1 → Am+1. Then a splitting of the short exact

sequence

eq:64 (5.13) 0 −→ TSm −→ Rm+1 −→ ν → 0

over Sm gives a stable trivialization

eq:65 (5.14) R⊕ TSm ∼= Rm+1

of the tangent bundle to the sphere.

subsec:5.3

(5.15) Stable normal and tangential framings. Now suppose Y ⊂ Sm is a submanifold of dimen-

sion n with a normal framing, which we take to be an isomorphism Rq ∼=−→ µ, where µ is the

rank q = m− n normal bundle defined by the short exact sequence

eq:67 (5.16) 0 −→ TY −→ TSm
∣∣
Y
−→ µ −→ 0

This induces a short exact sequence

eq:68 (5.17) 0 −→ TY −→ R⊕ TSm
∣∣
Y
−→ R⊕ µ −→ 0

Choose a splitting of (5.17) and use the stable trivialization (5.14) and the trivialization of the

normal bundle µ to obtain an isomorphism

eq:69 (5.18) Rq+1 ⊕ TY
∼=−−→ Rm+1

of vector bundles over Y . This is a stable tangential framing of Y , and is one step in the proof of

the following.

thm:72 Proposition 5.19. Let Y ⊂ Sm be a submanifold. Then there is a 1:1 correspondence between

homotopy classes of stable normal framings of Y and stable tangential framings of Y .
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Proof. The argument before the proposition defines a map from (stable) normal framings to stable

tangential framings. Conversely, if Rk ⊕ TY
∼=−−→ Rk+n is a stable tangential framing, with k ≥ 1,

then from a splitting of the short exact sequence

eq:70 (5.20) 0 −→ Rk ⊕ TY −→ Rk ⊕ TSm
∣∣
Y
−→ µ −→ 0

we obtain a stable normal framing µ⊕Rk+n ∼=−−→ Rk+m. I leave it to you to check that homotopies

of one framing induce homotopies of the other, and that the two maps of homotopy classes are

inverse. !

Application to framed bordism

Recall the stabilization sequence (4.42) of normally framed submanifolds Y ⊂ Sm. The stabi-

lization sits Sm ⊂ Sm+1 as the equator and prepends the standard normal vector field ∂/∂x1 to

the framing. By Proposition 5.19 the normal framing induces a stable tangential framing of Y , and

the homotopy class of the stable tangential framing is unchanged under the stabilization map σ

in the sequence (4.42). Conversely, if Y n has a stable tangential framing, then by the Whitney

embedding theorem we realize Y ⊂ Sm as a submanifold for some m, and then by Proposition 5.19

there is a stable framing Rq+k ∼=−−→ µ of the normal bundle. This is then a framing of the normal

bundle to Y ⊂ Sm+k, which defines an element of Ωfr
n;Sm+k . This argument proves

thm:73 Proposition 5.21. The colimit of (4.42) is the bordism group Ωfr
n of n-manifolds with a stable

tangential framing.

A bordism between two stably framed manifolds Y0, Y1 is, informally, a compact (n+1)-manifold X

with boundary Y0 ⨿ Y1 and a stable tangential framing of X which restricts on the boundary to

the given stable tangential framings of Yi. The formal definition follows Definition 1.19.

The following is a corollary to Theorem 3.9.

thm:74 Corollary 5.22 (stable Pontrjagin-Thom). There is an isomorphism

eq:72 (5.23) φ : πsn −→ Ωfr
n

for each n ∈ Z≥0.

subsec:5.5

(5.24) Ring structure. Letting n vary we obtain an isomorphism φ : πs• → Ωfr
• of Z-graded abelian

groups. We saw at the beginning of this lecture that the domain is a Z-graded ring. So there is a

corresponding ring structure on codomain. It is given by Cartesian product. For recall that we may

assume that the representatives f1, f2 of two classes a1, a2 in the stable stem (see (5.1)) are pointed,

in the sense they map the basepoint ∞ to ∞, and then these map under φ to the submanifolds

Y1, Y2 defined as the inverse images of pi ∈ Sqi , where pi ̸= ∞. Then Y1 × Y2 is the inverse image

of (p1, p2) ∈ Sq1 ∧ Sq2 .
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!

Figure 15. Ring structure on Ωfr
• fig:14

J-homomorphism

subsec:5.6

(5.25) Twists of framing. Let Y ⊂M be a normally framed submanifold of a smooth manifold M ,

and suppose its codimension is q. Denote the framing as φ : Rq → ν, where ν is the normal bundle.

Let g : Y → GLqR = GL(Rq) be a smooth map. Then φ ◦ g is a new framing of ν, the g-twist of φ.

thm:75 Remark 5.26. As stated in Exercise 5.7(iii), there is a positive definite metric on the normal bundle

ν → Y , and the metric is a contractible choice. Furthermore, the Gram-Schmidt process gives a

deformation retraction of all framings onto the space of orthonormal framings. Let

eq:73 (5.27) O(q) = {g : Rq → Rq : g is an isometry}

denote the orthogonal group of q× q orthogonal matrices. Then we can twist orthonormal framings

by a map g : Y → O(q).

thm:76 Exercise 5.28. Construct a deformation retraction of GLq(R) onto O(q). Start with the case q = 1

to see what is going on, and you might try q = 2 as well. For the general case, you might consider

the Gram-Schmidt process.

thm:77 Exercise 5.29. Is the space of maps Y → O(q) contractible? Proof or counterexample.

subsec:5.7

(5.30) The unstable J-homomorphism. Specialize to M = Sm and let Y = Sn ⊂ Sm be an

equatorial n-sphere with the canonical normal framing. Explicitly, write Sm = Am∪ {∞} as usual,

introduce standard affine coordinates x1, . . . , xm, and let Sn be the unit n-sphere

eq:74 (5.31) Sn = {(x1, . . . , xm) : x1 = · · · = xq−1 = 0, (xq)2 + · · ·+ (xm)2 = 1}.

We use the framing ∂/∂r, ∂/∂x1, . . . , ∂/∂xq−1, where ∂/∂r is the outward normal to Sn in the affine

subspace An+1 defined by x1 = · · · = xq−1 = 0. Then restricting to pointed maps g : Sn → O(q)

we obtain a homomorphism

eq:75 (5.32) J : [Sn, O(q)]∗ −→ Ωfr
n;Sm.
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Applying Pontrjagin-Thom we can rewrite this as

eq:76 (5.33) J : πnO(q) −→ πn+qS
q.

This is the unstable J-homomorphism.

thm:80 Exercise 5.34. Show that the normally framed Sn in (5.31) is null bordant: it bounds the unit

ball Dn+1 in An+1 with normal framing ∂/∂x1, . . . , ∂/∂xq−1. Then show that (5.32) is indeed a

homomorphism.

thm:81 Exercise 5.35. Work out some special cases of (5.32) and (5.33) explicitly. Try n = 0 first. Then

try n = 1 and m = 2, 3. You should discover that there is a nontrivial map S3 → S2, “nontrivial” in

the sense that it is not homotopic to a constant map. Here is one explicit, geometric construction.

Consider the complex vector space C2, and restrict scalars to the real numbers R ⊂ C. Show that

the underlying vector space is isomorphic to R4. Each unit vector ξ ∈ S3 ⊂ R4 ∼= C2 spans a

complex line ℓ(ξ) = C · ξ ⊂ C2. The resulting map S3 → P(C2) = CP1 ≃ S2 is not null homotopic.

Prove this by considering the inverse image of a regular value.
subsec:5.9

(5.36) The stable orthogonal group. There is a natural sequence of inclusions

eq:77 (5.37) O(1)
σ−−→ O(2)

σ−−→ O(3)
σ−−→ · · ·

At the end of this lecture we construct the limiting space

eq:78 (5.38) O = colim
q→∞

O(q).

As a set it is the union of the O(q). Its homotopy groups are the (co)limit of the homotopy groups

of the finite O(q). More precisely, for each n ∈ Z≥0 the sequence

eq:79 (5.39) πnO(1) −→ πnO(2) −→ πnO(3) −→ · · ·

stabilizes.

thm:78 Exercise 5.40. Prove this. One method is to use the transitive action of O(q) on the sphere Sq−1.

Check that the stabilizer of a point (which?) is O(q − 1) ⊂ O(q). Use this to construct a fiber

bundle with total space O(q) and base Sq−1. In fact, this is a principal bundle with structure

group O(q − 1). Now apply the long exact sequence of homotopy groups for a fiber bundle (more

generally, fibration), as explained for example in [H1, §4.2].

The stable homotopy groups of the orthogonal group (as well as the unitary and symplectic

groups) were computed by Bott in the late 1950’s using Morse theory. The following is known as

the Bott periodicity theorem.

thm:79 Theorem 5.41 (Bott). For all n ∈ Z≥0 there is an isomorphism πn+8O ∼= πnO. The first few

homotopy groups are

eq:81 (5.42) π{0,1,2,3,4,5,6,7}O ∼= {Z/2Z , Z/2Z , 0 , Z , 0 , 0 , 0 , Z}.

A vocal rendition of the right hand side of (5.42) is known as the Bott song.
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subsec:5.10

(5.43) The stable J-homomorphism. The (co)limit q →∞ in (5.33) gives the stable J-homomorphism

eq:80 (5.44) J : πnO −→ πsn.

Lie groups

thm:82 Definition 5.45. A Lie group is a quartet (G, e, µ, ι) consisting of a smooth manifold G, a base-

point e ∈ G, and smooth maps µ : G×G → G and ι : G → G such that the underlying set G and

the map µ define a group with identity element e and inverse map ι.

It is often fruitful in mathematics to combine concepts from two different areas. A Lie group, the

marriage of a group and a smooth manifold, is one of the most fruitful instances.

If you have never encountered Lie groups before, I recommend [War, §3] for an introduction to

some basics. We will not review these here, but just give some examples of compact Lie groups.

subsec:5.11

(5.46) Orthogonal groups. We already introduced the orthogonal group O(q) in (5.27). The iden-

tity element e is the identity q × q matrix. The multiplication µ is matrix multiplication. The

inverse ι(A) of an orthogonal matrix is its transpose. You can check by explicit formulas that

µ and ι are smooth. The orthogonal group has two components, distinguished by the determinant

homomorphism

eq:82 (5.47) det : O(q) −→ {±1}.

The identity component—the kernel of (5.47)—is the special orthogonal group SO(q).

subsec:5.12

(5.48) Unitary groups. There is an analogous story over the complex numbers. The unitary group

is

eq:83 (5.49) U(q) = {g : Cq → Cq : g is an isometry},

where we use the standard hermitian metric on Cq. Again µ is matrix multiplication and now ι is

the transpose conjugate. The unitary group U(1) is the group of unit norm complex numbers,

which we denote ‘T’. The kernel of the determinant homomorphism

eq:84 (5.50) det : U(q) −→ T

is the special unitary group SU(n).

thm:83 Exercise 5.51. Work out the analogous story for the quaternions H. Define a metric on Hq

using quaternionic conjugation. Define the group Sp(q) of isometries of Hq. Now there is no

determinant homomorphism. Show that the underlying smooth manifold of the Lie group Sp(1) of

unit norm quaternions is diffeomorphic to S3. Note, then, that O(1), U(1), Sp(1) are diffeomorphic

to S0, S1, S3, respectively.
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subsec:5.13

(5.52) Parallelization of Lie groups. Let G be a Lie group. Then any g ∈ G determines left

multiplication

eq:85 (5.53)
Lg : G −→ G

x 1−→ gx

which is a diffeomorphism that maps e to g. Its differential is then an isomorphism

eq:86 (5.54) d(Lg)e : TeG
∼=−−→ TgG.

This defines a parallelism TeG
∼=−−→ TG, a trivialization of the tangent bundle of G. There is a

similar, but ifG is nonabelian different, parallelism using right translation. A parallelism determines

a homotopy class of stable tangential framings. Thus we have shown

thm:84 Proposition 5.55. The left invariant parallelism of a compact Lie group G determine a class [G] ∈
Ωfr
•
∼= πs• in the stable stem.

Low dimensions

The first several stable homotopy groups of spheres are

eq:87 (5.56) πs{0,1,2,3,4,5,6,7,8}
∼= {Z , Z/2Z , Z/2Z , Z/24Z , 0 , 0 , Z/2Z , Z/240Z , Z/2Z⊕ Z/2Z}.

It is interesting to ask what part of this is in the image of the stable J-homomorphism (5.44). Not

much: compare (5.42) and (5.56). Throwing out πs0 we have that J is surjective on πsn for n = 1, 3, 7.

The first class which fails to be in the image of J is the generator of πs2.

We have more luck looking for classes represented by compact Lie groups in the left invariant

framing. Lie groups do represent the generators of the first several groups, starting in degree one:

eq:88 (5.57) T , T× T , Sp(1) , − , − , Sp(1)× Sp(1)

There is no compact Lie group which represents the generator of πs7
∼= Z/240Z, but that class is

represented by a Hopf map

eq:89 (5.58) S15 −→ S8,

analogous to the Hopf map S3 → S2 described in Exercise 5.35.

thm:85 Exercise 5.59. As an intermediary construct the Hopf map S7 → S4 by realizing S7 as the unit

sphere in C4 ∼= H2 and S4 as the quaternionic projective line HP1. Now use the quaternions and

octonions to construct (5.58).

Returning to the stable stem, the 8-dimensional Lie group SU(3) represents the generator of πs8.

For more discussion of the stable stem in low degrees, see [Ho].
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subsec:5.14

(5.60) πs3 and the K3 surface. As stated in (5.57) the generator of πs3
∼= Z/24Z is represented

by Sp(1) ∼= SU(2) in the left invariant framing. Recall that the underlying manifold is the 3-

sphere S3. The following argument, often attributed to Atiyah, proves that 24 times the class of S3

vanishes. It does not prove that any smaller multiple does not vanish, but perhaps we will prove

that later in the course by constructing a bordism invariant

eq:90 (5.61) Ωfr
3 −→ Z/24Z

which is an isomorphism. To prove that 24 times this class vanishes we construct a compact 4-

manifold X with a parallelism (framing of the tangent bundle) whose boundary has 24 components,

each diffeomorphic to S3, and such that the framing restricts to a stabilization of the Lie group

framing. The argument combines ideas from algebraic geometry, geometric PDE, and algebraic

and differential topology. We will only give a brief sketch.

First, let W ⊂ CP3 be the smooth complex surface cut out by the quartic equation

eq:91 (5.62) (z0)4 + (z1)4 + (z2)4 + (z3)4 = 0,

where z0, z1, z2, z3 are homogeneous coordinates on CP3. Then W is a compact (real) 4-manifold.

Characteristic class computations, which we will learn in a few lectures, can be used to prove that

the Euler characteristic of W is 24. Further computation and theorems of Lefschetz prove that W is

simply connected and has vanishing first Chern class. Now a deep theorem of Yau—his proof of the

Calabi conjecture—constructs a hyperkähler metric on W . This in particular gives a quaternionic

structure on each tangent space. In other words, there are global endomorphisms

eq:92 (5.63) I, J,K : TW −→ TW

which satisfy the algebraic relations I2 = J2 = K2 = − idTW , IJ = −JI, etc.
Let ξ : W → TW be a smooth vector field on W which is transverse to the zero section and has

exactly 24 simple zeros. Let X be the manifold W with open balls excised about the zeros of ξ,

and deform ξ so that it is the outward normal vector field at the boundary ∂X. Then the global

vector fields ξ, Iξ, Jξ,Kξ provide the desired parallelism.



Lecture 6: Classifying spaces

sec:6

A vector bundle E →M is a family of vector spaces parametrized by a smooth manifold M . We

ask: Is there a universal such family? In other words, is there a vector bundle Euniv → B such that

any vector bundle E → M is obtained from Euniv → B by pullback? If so, what is this universal

parameter space B for vector spaces? This is an example of a moduli problem. In geometry there

are many interesting spaces which are universal parameter spaces for geometric objects. In this

lecture we study universal parameter spaces for linear algebraic objects: Grassmannians, named

after the 19th century mathematician Hermann Grassmann. We will see that there is no finite

dimensional manifold which is a universal parameter space B. This is typical: to solve a moduli

problem we often have to expand the notion of “space” with which we begin. Here there are several

choices, one of which is to use an infinite dimensional manifold. Another is to use a colimit of finite

dimensional manifolds, as in (4.32). Yet another is to pass to simplicial sheaves, but we do not

pursue that here.

The universal parameter space B is called a classifying space: it classifies vector bundles. Clas-

sifying spaces are important in bordism theory. We use them to define tangential structures, which

are important in both the classical and modern contexts.

For much of this lecture we do not specify whether the vector bundles are real, complex, or

quaternion. All are allowed. In the last part of the lecture we discuss classifying spaces for principal

bundles, a more general notion.

One excellent reference for some of this and the following lecture is [BT, Chapter IV].

Grassmannians

Let V be a finite dimensional vector space and k an integer such that 0 ≤ k ≤ dimV .

thm:95 Definition 6.1. The Grassmannian Grk(V ) is the collection

eq:103 (6.2) Grk(V ) = {W ⊂ V : dimW = k}

of all linear subspaces of V of dimension k. Similarly, we define the Grassmannian

eq:104 (6.3) Gr−k(V ) = {W ⊂ V : dimW + k = dimV }

of codimension k linear subspaces of V .

We remark that the notation in (6.3) is nonstandard. The Grassmannian is more than a set: it can

be given the structure of a smooth manifold. The following exercise is a guide to defining this.

thm:96 Exercise 6.4.
47
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(i) Introduce a locally Euclidean topology on Grk(V ). Here is one way to do so: Suppose W ∈
Grk(V ) is a k-dimensional subspace and C an (n − k)-dimensional subspace such that

W ⊕ C = V . (We say that C is a complement to W in V .) Then define a subset OW,C ⊂
Grk(V ) by

eq:206 (6.5) OW,C = {W ′ ⊂ V : W ′ is the graph of a linear map W → C}.

Show that OW,C is a vector space, so has a natural topology. Prove that it is consistent

to define a subset U ⊂ Grk(V ) to be open if and only if U ∩ OW,C is open for all W,C.

Note that {OW,C} is a cover of Grk(V ). (For example, show that W ∈ OW,C .)

(ii) Use the open sets OW,C to construct an atlas on Grk(V ). That is, check that the transition

functions are smooth. (Hint: You may first want to check it for two charts with the

same W but different complements. Then it suffices to check for two different W which are

transverse, using the same complement for both.)

(iii) Prove that GL(V ) acts smoothly and transitively on Grk(V ). What is the subgroup which

fixes W ∈ Grk(V )?

thm:102 Exercise 6.6. Introduce an inner product on V and construct a diffeomorphismGrk(V )→ Gr−k(V ).

thm:108 Exercise 6.7. Be sure you are familiar with the projective spaces Gr1(V ) = PV for dimV = 2.

(What about dimV = 1?) Do this over R, C, and H.

subsec:6.1

(6.8) Universal vector bundles over the Grassmannian. There is a tautological exact sequence

eq:105 (6.9) 0 −→ S −→ V −→ Q −→ 0

of vector bundles over the Grassmannian Grk(V ). The fiber of the universal subbundle S at W ∈
Grk(V ) is W , and the fiber of the universal quotient bundle Q at W ∈ Grk(V ) is the quotient V/W .

The points of Grk(V ) are vector spaces—subspaces of V—and the universal subbundle is the family

of vector spaces parametrized by Grk(V ).

thm:97 Exercise 6.10. For k = 1 we denote Grk(V ) as PV ; it is called the projective space of V . Construct

a tautological linear map

eq:106 (6.11) V ∗ −→ Γ(PV ;S∗)

where the codomain is the space of sections of the hyperplane bundle S∗ → PV . This bundle is

often denoted O(1)→ PV .

Pullbacks and classifying maps

subsec:6.2

(6.12) Pullbacks of vector bundles. Just as functions and differential forms pullback under smooth

maps—they are contravariant objects on a smooth manifold—so too do vector bundles.
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thm:98 Definition 6.13. Let f : M ′ →M be a smooth map and π : E →M a smooth vector bundle. The

pullback π′ : f∗E →M ′ is the vector bundle whose total space is

eq:107 (6.14) f∗E = {(m′, e) ∈M ′ × E : f(m′) = π(e)};

the projection π′ : f∗E →M ′ is the restriction of projection M ′ × E →M ′ onto the first factor.

So we have a canonical isomorphism of fibers

eq:108 (6.15) (f∗E)p′ = Ef(p′), p′ ∈M ′.

Projection M ′ × E → E onto the second factor restricts to the map f̃ in the pullback diagram

eq:109 (6.16) f∗E
f̃

π′

E

π

M ′ f
M

Quite generally, if E′ →M ′ is any vector bundle, then a commutative diagram of the form

eq:110 (6.17) E′ f̃

π′

E

π

M ′ f
M

in which f̃ is a linear isomorphism on each fiber expresses E′ → M ′ as the pullback of E → M

via f : it defines an isomorphism E′ → f∗E.

Vector bundles may simplify under pullback; they can’t become more “twisted”.

thm:99 Exercise 6.18. Consider the Hopf map f : S3 → S2, which you constructed in Exercise 5.35.

Identify S2 as the complex projective line CP1 = P(C2). Let π : S → P(C2) be the universal

subbundle. It is nontrivial—it does not admit a global trivialization—though we have not yet

proved that. Construct a trivialization of the pullback f∗S → S3. This illustrates the general

principle that bundles may untwist under pullback.
subsec:6.3

(6.19) Classifying maps. Now we show that any vector bundle π : E →M may be expressed as a

pullback of the universal quotient bundle10 over a Grassmannian, at least in case M is compact.

thm:100 Theorem 6.20. Let π : E → M be a vector bundle of rank k over a compact manifold M . Then

there is a finite dimensional vector space V and a smooth maps f, f̃ which express π as the pullback

eq:111 (6.21) E
f̃

π

Q

M
f

Gr−k(V )

10We can use the universal subbundle instead, but the construction we give makes the universal quotient bundle
more natural.
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Proof. Since E → M is locally trivializable and M is compact, there is a finite cover {Uα}α∈A
of M and a basis sα1 , . . . , s

α
k : U

α → E of local sections over each Uα. Let {ρα} be a partition of

unity subbordinate to the cover {Uα}. Then s̃αi = ραsαi extend to global sections of E which vanish

outside Uα. Define V to be the linear span of the finite set {s̃αi }α∈A, i=1,...,k over the ground field.

Then for each p ∈M the linear map

eq:112 (6.22)
evp : V −→ Ep

s̃αi 1−→ s̃αi (p)

is surjective and induces an isomorphism V/ ker evp
∼=−−→ Ep. The inverses of these isomorphisms fit

together to form the map f̃ in the diagram (6.21), where f is defined by f(p) = ker evp. !

Classifying spaces

Theorem 6.20 shows that every vector bundle π : E → M over a smooth compact manifold is

pulled back from the Grassmannian, but it does not provide a single classifying space for all vector

bundles; the vector space V depends on π. Furthermore, we might like to drop the assumption

that M is compact (and even generalize further to continuous vector bundles over nice topological

spaces). There are several approaches, and we outline three of them here. For definiteness we work

over R; the same arguments apply to C and H.

subsec:6.4

(6.23) The infinite Grassmannian as a colimit. Fix k ∈ Z>0 and consider the sequence of closed

inclusions

eq:113 (6.24) Rq −→ Rq+1 −→ Rq+1 −→ · · · ,

where at each stage the map is (ξ1, ξ2, . . . ) 1→ (0, ξ1, ξ2, . . . ). There is an induced sequence of closed

inclusions

eq:114 (6.25) Grk(R
q) −→ Grk(R

q+1) −→ Grk(R
q+2) −→ · · ·

where at each stage the map is W 1→ 0 ⊕W . Similarly, there is an induced sequence of closed

inclusions

eq:115 (6.26) Gr−k(R
q) −→ Gr−k(R

q+1) −→ Gr−k(R
q+2) −→ · · ·

where at each stage the map is K 1→ R⊕K. These maps fit together to a lift of (6.26) to pullback

maps of the universal quotient bundles:

eq:116 (6.27) Qq Qq+1 Qq+2 · · ·

Gr−k(Rq) Gr−k(Rq+1) Gr−k(Rq+2) · · ·
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We take the colimit (see (4.32)) of this diagram to obtain a vector bundle11

eq:117 (6.28) π : Quniv −→ Bk.

Now Bk is a topological space—we don’t attempt an infinite dimensional smooth manifold structure

here—and π is a continous vector bundle. Any classifying map (6.21) for a vector bundle over a

compact smooth manifold induces a classifying map into Quniv → Bk. More is true, but we will

not prove this here; see [H2, Theorem 1.16], for example.

thm:101 Theorem 6.29. Let π : E → M be a vector bundle over a metrizable space M . Then there is a

classifying diagram

eq:118 (6.30) E
f̃

π

Quniv

M
f

Bk

and the map f is unique up to homotopy. Furthermore, the set of homotopy classes of maps

M → Bk is in 1:1 correspondence with the set of isomorphism classes of vector bundles E →M .
⇐

[Use notation BO(n). Add section about BO as double colimit. Be careful that the two stabilizations commute: the

relevant diagram is needed in (9.48), (9.63), (10.19), (10.30), and is written explicitly in (10.37). Some of these need to be

adjusted and perhaps moved sooner.]

subsec:6.5

(6.31) The infinite Grassmannian as an infinite dimensional manifold. LetH be a separable (real,

complex, or quaternionic) Hilbert space. Fix k ∈ Z>0. Define the Grassmannian

eq:119 (6.32) Grk(H) = {W ⊂ H : dimW = k}.

We can use the technique of Exercise 6.4 to introduce charts and a manifold structure on Grk(H),

but now the local model is an infinite dimensional Hilbert space.

Digression: Calculus in finite dimensions is developed on (affine spaces over) finite dimensional

vector spaces. A topology on the vector space is needed to take the limits necessary to compute

derivatives, and there is a unique topology compatible with the vector space structure. It is usually

described by a Euclidean metric, i.e., by an inner product on the vector space. In infinite dimensions

one also needs a topology compatible with the linear structure, but now there are many different

species of topological vector space. By far the easiest, and the closest to the finite dimensional

situation, is the topology induced from a Hilbert space structure: a complete inner product. That

is the topology we use here, and then the main theorems of differential calculus go through almost

without change.

We call Gr−k(H) a Hilbert manifold.

11Using the standard inner product, as in Exercise 6.6, we can take orthogonal complements to replace codimen-
sion k subspaces with dimension k subspaces and the universal quotient bundle with the universal subbundle.
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Choose an orthonormal basis e1, e2, . . . of H and so define the subspace Rq ⊂ H as the span

of e1, e2, . . . , eq. This induces a commutative diagram

eq:120 (6.33) · · · Grk(Rq−1) Grk(Rq) Grk(Rq+1) · · ·

Grk(H)

of inclusions, and so an inclusion of the colimit

eq:121 (6.34) i : Bk −→ Grk(H).

thm:103 Proposition 6.35. The map i in (6.34) is a homotopy equivalence.

One way to prove Proposition 6.35 is to first show that i is a weak homotopy equivalence, that

is, the induced map i∗ : πnBk → πnGrk(H) is an isomorphism for all n. (We must do this for all

basepoints p ∈ Bk and the corresponding i(p) ∈ Grk(H).) Then we would show that the spaces

in (6.34) have the homotopy type of CW complexes. For much more general theorems along these

lines, see [Pa1]. In any case I include Proposition 6.35 to show that there are different models for

the classifying space which are homotopy equivalent.

subsec:6.6

(6.36) Classifying space as a simplicial sheaf. We began with the problem of classifying finite

rank vector bundles over a compact smooth manifold. We found that the classifying space is not a

compact smooth manifold, nor even a finite dimensional manifold. We have constructed two models:

a topological space Bk and a smooth manifold Grk(H). There is a third possibility which expands

the idea of “space” in a more radical way: to a simplicial sheaf on the category of smooth manifolds.

This is too much of a digression at this stage, so we will not pursue it. The manuscript [FH] in

progress contains expository material along these lines.

Classifying spaces for principal bundles

Recall first the definition.

thm:104 Definition 6.37. Let G be a Lie group. A principal G bundle is a fiber bundle π : P →M over a

smooth manifold M equipped with a right G-action P ×G→ P which is simply transitive on each

fiber.

The hypothesis that π is a fiber bundle means it admits local trivializations. For a principal bundle

a local trivialization is equivalent to a local section. In one direction, if U ⊂M and s : U → P is a

section of π
∣∣
U
: P

∣∣
U
→ U , then there is an induced local trivialization

eq:122 (6.38)
ϕ : U ×G −→ P

x, g 1−→ s(x) · g

where ‘·’ denotes the G-action on P .
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subsec:6.7

(6.39) From vector bundles to principal bundles and back. Let π : E → M be a vector bundle of

rank k. Assume for definiteness that π is a real vector bundle. There is an associated principal

GLk(R)-bundle B(E) → M whose fiber at x ∈ M is the spaces of bases b : Rk
∼=−−→ Ex. These fit

together into a principal bundle which admits local sections: a local section of the principal bundle

B(E) → M is a local trivialization of the vector bundle E → M . Conversely, if P → M is a

principal G = GLk(R)-bundle, then there is an associated rank k vector bundle E →M defined as

eq:123 (6.40) E = P × Rk/G,

where the right G-action on P × Rk is

eq:124 (6.41) (p, ξ) · g = (p · g, g−1ξ), p ∈ P, ξ ∈ Rk, g ∈ G,

and we use the standard action of GLk(R) on Rk to define g−1ξ.

subsec:6.8

(6.42) Fiber bundles with contractible fiber. We quote the following general proposition in the

theory of fiber bundles.

thm:105 Proposition 6.43. Let π : E→M be a fiber bundle whose fiber F is contractible and a metrizable

topological manifold, possibly infinite dimensional. Assume that the base M is metrizable. Then

π admits a section. Furthermore, if E,M,F all have the homotopy type of a CW complex, then

π is a homotopy equivalence.

See [Pa1] for a proof of the first assertion. The last assertion follows from the long exact sequence of

homotopy groups and Whitehead’s theorem (6.53). [Put Whitehead earlier; can we make a better statement ⇐
of this proposition?]

subsec:6.9

(6.44) Classifying maps for principal bundles. Now we characterize universal principal bundles.

thm:106 Theorem 6.45. Let G be a Lie group. Suppose πuniv : P univ → B is a principal G-bundle and

P univ is a contractible metrizable topological manifold.12 Then for any continuous principal G-

bundle P →M with M metrizable, there is a classifying diagram

eq:125 (6.46) P
ϕ̃

P univ

M
ϕ

B

In the commutative diagram (6.46) the map ϕ̃ commutes with the G-actions on P,P univ, i.e., it is

a map of principal G-bundles.

Proof. A G-map ϕ̃ is equivalently a section of the associated fiber bundle

eq:126 (6.47) (P × P univ)/G→M

formed by taking the quotient by the diagonal right G-action. The fiber of the bundle (6.47)

is P univ. Sections exist by Proposition 6.43, since P univ is contractible. !

12We allow an infinite dimensional manifold modeled on a Hilbert space, say.
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subsec:6.10

(6.48) Back to Grassmannians. The construction in (6.39) defines a principal GLk(R)-bundle
over the universal Grassmannian, but we can construct it directly and it has a nice geometric

meaning. We work in the infinite dimensional manifold model (6.31). Thus let H be a separable

(real) Hilbert space. Introduce the infinite dimensional Stiefel manifold

eq:127 (6.49) Stk(H) = {b : Rk → H : b is injective}.

It is an open subset of the linear space Hom(Rk,H) ∼= H⊕ · · ·⊕H, which we give the topology of a

Hilbert space. Then the open subset Stk(H) is a Hilbert manifold. There is an obvious projection

eq:128 (6.50) π : Stk(H) −→ Grk(H)

which maps b to its image b(Rk) ⊂ H. We leave the reader to check that π is smooth. In fact, π is

a principal bundle with structure group GLk(R).

thm:107 Theorem 6.51. Stk(H) is contractible.

thm:109 Corollary 6.52. The bundle (6.50) is a universal GLk(R)-bundle.

The corollary is an immediate consequence of Theorem 6.51 and Theorem 6.45. We give the proof

of Theorem 6.51 below.
subsec:6.12

(6.53) Remark on contractibility. A fundamental theorem of Whitehead asserts that if X,Y are

connected13 pointed topological spaces which have the homotopy type of a CW complex, and

f : X → Y is a continuous map which induces an isomorphism f∗ : πnX → πnY for all n ∈ Z≥0,

then f is a homotopy equivalence. A map which satisfies the hypothesis of the theorem is called

a weak homotopy equivalence. An immediate corollary is that if X satisfies the hypotheses and all

homotopy groups of X vanish, then X is contractible. For “infinite spaces” with a colimit topology,

weak contractibility can often be verified by an inductive argument. That is the case for the Stiefel

space Stk(R∞) with a colimit topology, analogous to that for the Grassmannian in (6.25). We

prefer instead a more beautiful geometric argument using the Hilbert manifold Stk(H), which is

homotopy equivalent (as in Proposition 6.35).

thm:110 Exercise 6.54. Carry out this argument. You will want to consider submersions Stk(Rq) →
Stk−1(Rq), as we do below. Then you will need the long exact sequence of homotopy groups for a

fibration.
subsec:6.13

(6.55) The unit sphere in Hilbert space. The Stiefel manifold St1(H) is the unit sphere S(H) ⊂
H, the space of unit norm vectors. As a first case of Theorem 6.51 we prove that this infinite

dimensional sphere with the induced topology is contractible, summarizing an elegant argument of

Richard Palais [Pa2].

thm:112 Lemma 6.56. Let X be a normal topological space and A ⊂ X a closed subspace homeomorphic

to R. Then there exists a fixed point free continuous map f : X → X.

13Whitehead’s theorem easily extends to nonconnected spaces.
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Proof. The map x 1→ x + 1 on R induced a map g : A → A with no fixed points. By the Tietze

extension theorem g extends to a map g̃ : X → A. Let f be the extension g followed by the inclusion

A ↪→ X. !

thm:111 Theorem 6.57. S(H) is contractible.

Proof. Let {en}n∈Z be an orthonormal basis of H, set S = S(H) and let D = {ξ ∈ H : ∥ξ∥ ≤ 1} be

the closed unit ball in H. Define i : R ↪→ D by letting i
∣∣
[n,n+1]

be a curve on S which connects en
and en+1, n ∈ Z. Explicitly, for t ∈ [n, n+ 1],

eq:129 (6.58) i : t 1−→ cos
[
(t− n)π/2

]
en + sin

[
(t− n)π/2

]
en+1.

Then by the lemma there is a continous map f : D → D with no fixed points. We use it, as in

Hirsh’s beautiful proof of the Brouwer fixed point theorem, to construct a deformation retraction

g : D → S: namely, g(ξ) is the intersection of S with the ray emanating from ξ ∈ D in the direction

ξ−f(ξ). Then g is a homotopy equivalence. On the other hand, there is an easy radial deformation

retraction of D to 0 ∈ D, and so D is contractible. !

Proof of Theorem 6.51. Let π : Stk(H)→ Stk−1(H) map b : Rk → H to the restriction of b to Rk−1 ⊂
Rk. In terms of bases, if b maps the standard basis of Rk to ξ1, ξ2, . . . , ξk, then b̄ = π(b) gives the

independent vectors ξ2, . . . , ξk. The fiber over b̄ deformation retracts onto the set of nonzero vectors

in the orthogonal complement H′ of the span of ξ2, . . . , ξk, which is a closed subspace of H, hence

a Hilbert space. Now the set of nonzero vectors in a Hilbert space deformation retracts onto the

unit sphere, which by Theorem 6.57 is contractible. Then Proposition 6.43 implies that π is a

homotopy equivalence. Now proceed by induction, beginning with the statement that St1(H) is

contractible. !

thm:115 Remark 6.59. An alternative proof of Theorem 6.51 is based on Kuiper’s theorem, which states

that the Banach Lie group GL(H) of all invertible linear operators H→ H in the norm topology is

contractible. This group acts transitively on Stk(H) with stabilizer a contractible group. It follows

that the quotient is also contractible.

subsec:6.14

(6.60) Other Lie groups. Let G be a compact Lie group. (Note G need not be connected.) The

Peter-Weyl theorem asserts that there is an embedding G ⊂ U(k) ⊂ GLk(C) for some k > 0. Let

EG = Stk(H) be the Stiefel manifold for a complex separable Hilbert space H. Then the restriction

of the free GLk(C)-action to G is also free; let BG be the quotient. It is a Hilbert manifold, and

eq:130 (6.61) EG −→ BG

is a universal principal G-bundle, by Theorem 6.45.

This gives Hilbert manifold models for the classifying space of any compact Lie group.

thm:113 Exercise 6.62. What is the classifying Hilbert manifold of O(1) = Z/2Z? What about T = U(1)?

What about the unit quaternions Sp(1)? Show that the classifying Hilbert manifold of a finite

cyclic group is an infinite dimensional lens space.
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thm:114 Exercise 6.63. Let G be a connected compact Lie group and T ⊂ G a maximal torus. Then

T acts freely on EG, and there is an induced fiber bundle BT → BG. What is the fiber? Describe

both manifolds explicitly for the classical groups G = O(k), U(k), and Sp(k).



Lecture 7: Characteristic classes
sec:7

In this lecture we describe some basic techniques in the theory of characteristic classes, mostly

focusing on Chern classes of complex vector bundles. There is lots more to say than we can do

in a single lecture. Much of what we say follows the last chapter of [BT], which is posted on the

web site, and so these notes are terse on some points which you can read in detail there. I highly

encourage you to do so!

I will summarize a few results on the computation of the ring of characteristic classes, but we

will not attempt to prove them here. Those proof require more algebraic topology than I can safely

assume.

Classifying revisited

In Lecture 6 we sloughed over the classification statement, which appeared in passing in the

statement of Theorem 6.29. Here is a definitive version.

thm:116 Theorem 7.1. Let G be a Lie group and EG→ BG a universal principal G-bundle. Then for any

manifold M there is a 1:1 correspondence

eq:131 (7.2) [M,BG]
∼=−−→ {isomorphism classes of principal G-bundles over M}.

To a map f : M → BG we associate the bundle f∗EG → M . We gave some ingredients in the

proof. For example, Theorem 6.45 proves that (7.2) is surjective. One idea missing is that if

f0, f1 : M → BG are homotopic, then f∗
0 (EG) → M is isomorphic to f∗

1 (EG) → M . We give a

proof in case all maps are smooth and we use a Hilbert manifold model for the universal bundle,

as in (6.60).

thm:117 Proposition 7.3. Let P → ∆1×M be a smooth principal G-bundle. The the restrictions P
∣∣
{0}×M

→

M and P
∣∣
{1}×M

→M are isomorphic.

The assertion about homotopic maps is an immediate corollary: if F : ∆1×M → BG is a homotopy,

consider F ∗(EG)→ ∆1 ×M .

The proof uses the existence of a connection and the fundamental existence and uniqueness

theorem for ordinary differential equations. Let π : P → N be a smooth principal G-bundle. Then

at each p ∈ P there is a short exact sequence

eq:132 (7.4) 0 −→ ker(π∗)p −→ TpP −→ Tπ(p)N −→ 0

57
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!

Figure 16. A connection fig:16

thm:118 Definition 7.5. A horizontal subspace at p is a splitting of (7.4). A connection is a G-invariant

splitting of the sequence of vector bundles

eq:133 (7.6) 0 −→ kerπ∗ −→ TP −→ π∗TN −→ 0

over P .

Recall from Lemma 5.6 that splittings form an affine space. Fix n ∈ N . The G-invariant splittings

of (7.4) for p ∈ π−1(n) form a finite dimensional affine space. As n varies these glue together into

an affine bundle over N . A partition of unity argument (Exercise 5.7) then shows that connections

exist.

Figure 17. Homotopy invariance fig:17

Proof of Proposition 7.3. Let ∂/∂t denote the vector field on ∆1 × M which is tangent to the

∆1 = [0, 1] factor. Choose a connection on π : P → ∆1 ×M . The connection determines a G-

invariant vector field ξ on P which projects via π to ∂/∂t. The fundamental theorem for ODE

gives, for each initial condition p ∈ P
∣∣
{0}×M

an integral curve γp : [0, 1] → P whose composition

with π1 ◦ π is the identity. Here π1 : ∆1 ×M → ∆1 is projection onto the first factor. The map

p 1→ γp(1) is the desired isomorphism of principal bundles. !

thm:140 Exercise 7.7. Prove Theorem 7.1.
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The idea of characteristic classes

Let X be a topological space. There is an associated chain complex

eq:134 (7.8) C0 ←− C1 ←− C2 ←− · · ·

of free abelian groups which computes the homology of X. There are several models for the chain

complex, depending on the structure of X. A CW structure on X usually leads to the most efficient

model, the cellular chain complex. If A is an abelian group, then applying Hom(−, A) to (7.8) we

obtain a cochain complex

eq:135 (7.9) Hom(C0, A) −→ Hom(C1, A) −→ Hom(C2, A) −→ · · ·

which computes the cohomology groups H•(X;A). If R is a commutative ring, then the cohomol-

ogy H•(X;R) is a Z-graded ring—the multiplication is called the cup product—and it is commu-

tative in a graded sense. Just as homology is a homotopy invariant, so too is cohomology. There is

an important distinction: if f : X → X ′ is a continuous map, then the induced map on cohomology

is by pullback

eq:136 (7.10) f∗ : H•(X ′;A) −→ H•(X;A).

As stated, it is unchanged if f undergoes a homotopy.

Suppose α ∈ H•(BG;A) is a cohomology class on the classifying space BG. (Recall that there are

different, homotopy equivalent, models for BG; see Proposition 6.35. By the homotopy invariance

of cohomology, it won’t matter which we use.) Then if P → M is a principal G-bundle over a

manifold M , we define α(P ) ∈ H•(M ;A) by

eq:137 (7.11) α(P ) = f∗
P (α)

where fP : M → BG is any classifying map. Theorem 7.1 and the homotopy invariance of coho-

mology guarantee that (7.11) is well-defined. Then α(P ) is a characteristic class of P →M .

thm:119 Exercise 7.12. Suppose g : M ′ →M is smooth and P →M is a G-bundle. Prove that

eq:138 (7.13) α(g∗P ) = g∗α(P )

Thus we say that characteristic classes are natural.

Cohomology classes in H•(BG;A) are universal characteristic classes, and the problem presents

itself to compute the cohomology of BG with various coefficient groups A. We will state a few

results at the end of the lecture. First we develop Chern classes for complex vector bundles.

(Recall from (6.39) that this is equivalent to characteristic classes for G = GLk(C). We will make

a contractible choice of a hermitian metric, so may use instead the unitary group G = U(k).)
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Complex line bundles

Recall from Corollary 6.52 that a classifying space for complex line bundles is the projective

space P(H) of a complex separable Hilbert space H. To write the chain complex of this space, it is

more convenient to use the colimit space P(C∞), analogous to the discussion in (6.23). That space

has a cell decomposition with a single cell in each even dimension, so the cellular chain complex is

eq:139 (7.14) Z←− 0←− Z←− 0←− Z←− 0←− · · ·

The cochain complex which computes integral cohomology is then

eq:140 (7.15) Z −→ 0 −→ Z −→ 0 −→ Z −→ 0 −→ · · ·

With a bit more work we can prove that the integral cohomology ring of the classifying space is

eq:141 (7.16) H•
(
P(H);Z

) ∼= Z[y], deg y = 2,

a polynomial ring on a single generator in degree 2. The generator y is defined by (7.16) only up

to sign, and we fix the sign by requiring that

eq:142 (7.17) ⟨y, [P(V )]⟩ = 1,

where [P(V )] ∈ H2(P(H)) is the fundamental class of any projective line (V ∈ H two-dimensional).

Recall from (6.8) the tautological line bundle S → P(H).

thm:120 Definition 7.18. The first Chern class of S → P(H) is −y ∈ H2
(
P(H)

)
.

Since S → P(H) is a universal line bundle, this defines the first Chern class for all line bundles over

any base.

thm:121 Proposition 7.19. Let L1, L2 →M be complex line bundles. Then

eq:143 (7.20) c1(L1 ⊗ L2) = c1(L1) + c1(L2) ∈ H2(M).

Proof. It suffices to prove this universally. Let H1,H2 be infinite dimensional complex separable

Hilbert spaces, and Si → P(Hi) the corresponding tautological line bundles. The external tensor

product S1 # S2 is classified by the map

eq:144 (7.21) S1 # S2 S

P(H1)× P(H2)
f

P(H)

where H = H1 ⊗H2 and if Li ∈ P(Hi) contain nonzero vectors ξi, the line f(L1, L2) is the span

of ξ1⊗ ξ2. (Note that the fiber of S1#S2 at (L1, L2) is L1⊗L2.) If Vi ⊂ Hi is 2-dimensional, and if

Li ∈ P(Hi) is a fixed line, then the image of the projective lines P(V1)× {L2} and {L1}×P(V2) are

projective lines in P(H). It follows that f∗(y) = y1 + y2 in H2
(
P(H1)× P(H2)

)
, where y, y1, y2 are

the properly oriented generators of H•
(
H(P)

)
,H•

(
H(P1)

)
,H•

(
H(P2)

)
, respectively. !
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thm:122 Corollary 7.22. Let L→M be a complex line bundle. Then

eq:145 (7.23) c1(L
∗) = −c1(L).

This follows since L⊗ L∗ →M is trivializable.

Higher Chern classes

subsec:7.1

(7.24) The Leray-Hirsch theorem. As a preliminary we quote the following result in the topology

of fiber bundles; see [BT] or [H1, §4.D] for a proof.

thm:123 Theorem 7.25 (Leray-Hirsch). Let F → E → B be a fiber bundle and R a commutative ring.

Suppose α1, . . . ,αN ∈ H•(E;R) have the property that i∗bα1, . . . , i∗bαN freely generate the R-module

H•(Eb;R) for all b ∈ B. Then H•(E;R) is isomorphic to the free H•(B;R)-module with ba-

sis α1, . . . ,αN .

Even though the total space E is not a product B × F , its cohomology behaves as though it is, at

least as an R-module. The ring structure is twisted, however, and we will use that to define the

higher Chern classes below.

subsec:7.2

(7.26) Flag bundles. Let E be a complex vector space of dimension k with a hermitian metric.

There is an associated flag manifold F(E) whose points are orthogonal decompositions

eq:146 (7.27) E = L1 ⊕ · · ·⊕ Lk

of E as a sum of lines. If dimE = 2, then F(E) = P(E) since L2 is the orthogonal complement

of L1. In general the flag manifold F(E) has k tautological line bundles Lj → F(E), j = 1, . . . , k.

This functorial construction can be carried out in families. So to a hermitian vector bundle E →M

of rank k over a smooth manifold M there is an associated fiber bundle—the flag bundle

eq:147 (7.28) π : F(E)→M

with typical fiber the flag manifold. There are tautological line bundles Lj → F(E), j = 1, . . . , k.

thm:124 Proposition 7.29. Polynomials in the cohomology classes xj = c1(Lj) ∈ H2
(
F(E);Z

)
freely gen-

erate the integral cohomology of each fiber F(E)p, p ∈M , as an abelian group.

thm:125 Corollary 7.30. The pullback map

eq:148 (7.31) π∗ : H•(M ;Z) −→ H•
(
F(E);Z

)

is injective.

Note the choice of sign for xj ; it is opposite to that for y in (7.17). The image of π∗ is the subring

of symmetric polynomials in xj with coefficients in the ring H•(M ;Z).
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Sketch proof of Proposition 7.29. This is done in [BT], so we only give a rough outline. Consider

first the projective bundle

eq:149 (7.32) π1 : P(E)→M

whose fiber at p ∈ M is the projectivization P(Ex) of the fiber Ep. There is a tautological line

bundle S → P(E) which restricts on each fiber P(E)p of π1 to the tautological line bundle of

that projective space. The chain complex of a finite dimensional projective space is a truncation

of (7.14), from which it follows that y = c1(S∗) and its powers generate the cohomology of the fiber

of π1, in the sense of the Leray-Hirsch Theorem 7.25. So

eq:150 (7.33) H•
(
P(E);Z

) ∼= H•(M ;Z){1, y, y2, . . . , yk−1}

as abelian groups. Now consider the projective bundle associated to the quotient bundle14 Q →
P(E) and keep iterating. !

thm:126 Exercise 7.34. Work out the details of this proof without consulting [BT]!

subsec:7.3

(7.35) Higher chern classes. Following Grothendieck we define the Chern classes of E using The-

orem 7.25. Namely, the class yk ∈ H2k
(
P(E);Z

)
must by (7.33) satisfy a polynomial equation of

the form

eq:151 (7.36) yk + c1(E)yk−1 + c2(E)yk−2 + · · ·+ ck(E) = 0

for some unique classes ci(E) ∈ H2i(M ;Z).

thm:127 Definition 7.37. The class ci(E) defined by (7.36) is the ith Chern class of E →M .

thm:128 Proposition 7.38. The pullback π∗ci(E) to the flag bundle (7.28) is the ith elementary symmetric

polynomial in x1, . . . , xk.

Proof. Define the submersion

eq:152 (7.39) ρj : F(E) −→ P(E)

to map the flag E ∼= L1 ⊕ · · · ⊕ Lk to the line Lj. It is immediate that ρ∗j(y) = −xi, where

y = c1(S∗) ∈ H2
(
P(E);Z

)
as in (7.33), and xj = c1(Lj) as in Proposition 7.29. So each xj is a root

of the polynomial equation

eq:153 (7.40) zk − π∗c1(E)zk−1 + π∗c2(E)zk−2 − · · ·+ (−1)kπ∗ck(E) = 0

in the cohomology of F(E). The conclusion follows. !

thm:131 Exercise 7.41. Prove that the Chern classes of a trivial vector bundle vanish.

14Since E has a metric, we identify Q as the orthogonal complement to S.



BORDISM: OLD AND NEW 63

subsec:7.4

(7.42) The splitting principle. The pullback π∗E → F(E) is canonically isomorphic to the sum

L1 ⊕ · · · ⊕ Lk → F(E) of line bundles. That, combined with Corollary 7.30 and Proposition 7.38,

gives a method for computing with Chern classes: one can always assume that a vector bundle is

the sum of line bundles. That is not true on the base M , but it is true for the pullback to the

flag bundle. Any identity in Chern classes proved there is valid on M , because of the injectivity of

the induced map on cohomology. Furthermore, symmetric polynomials in the xi are polynomials

in the Chern classes, by a basic theorem in commutative algebra about polynomial rings, and in

particular live on the base M .

As a simple illustration, define the total Chern class of E →M as

eq:154 (7.43) c(E) = 1 + c1(E) + c2(E) + · · · .

Then we formally write

eq:155 (7.44) c(E) =
k∏

j=1

(1 + xj);

The equation is precisely true on F(E) for π∗c(E). Also, for a smooth manifold M we write

eq:157 (7.45) c(M) = c(TM)

for the Chern classes of the tangent bundle.

thm:129 Exercise 7.46. Prove the Whitney sum formula: If E1, E2 →M are complex vector bundles, then

eq:156 (7.47) c(E1 ⊕ E2) = c(E1)c(E2).

The formula for the tensor product is more complicated. Find a formula for c1(E1 ⊗E2). Can you

find a formula for c(E1 ⊗ E2) in case one of the bundles is a line bundle?

thm:135 Exercise 7.48. Define the complex conjugate bundle E →M to a complex vector bundle E →M .

Show that a Hermitian metric gives an isomorphism E
∼=−−→ E∗. Show that

eq:170 (7.49) ci(E) = (−1)ici(E).

Some computations

subsec:7.5

(7.50) The total Chern class of complex projective space. Consider CPn = P(Cn+1). As usual we

let y = c1(S∗) for the tautological line bundle S → CPn.

thm:130 Proposition 7.51. The total Chern class of CPn is

eq:158 (7.52) c(CPn) = (1 + y)n+1.
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This is to be interpreted in the truncated polynomial ring

eq:159 (7.53) H•(CPn) ∼= Z[y]/(yn+1).

Proof. We use the exact sequence

eq:160 (7.54) 0 −→ S −→ Cn+1 −→ Q −→ 0

of vector bundles over CPn and the fact (Exercise 7.41) that the Chern classes of a trivial bundle

vanish to deduce

eq:161 (7.55) c(S)c(Q) = 1.

It follows that

eq:163 (7.56) c(Q) =
1

1− y
= 1 + y + · · ·+ yn.

There is a canonical isomorphism

eq:162 (7.57) TCPn ∼= Hom(S,Q) ∼= Q⊗ S∗,

which was sketched in lecture and is left as a very worthwhile exercise. Using the splitting principle

we write (formally, or precisely up on the flag bundle of Q) Q = L1 ⊕ · · ·⊕ Ln and so

eq:164 (7.58) Q⊗ S∗ ∼= L1 ⊗ S∗ ⊕ · · · ⊕ Ln ⊗ S∗.

Let xj = c1(Lj) be the (formal) Chern roots of Q. Then

c(CPn) = c(Q⊗ S∗) =
n∏

j=1

(1 + xi + y)

=
n∑

j=0

cj(Q)(1 + y)n−j

=
n∑

j=0

yj(1 + y)n−j

= (1 + y)n+1 − yn+1

= (1 + y)n+1.

eq:165 (7.59)

!



BORDISM: OLD AND NEW 65

subsec:7.6

(7.60) The L-polynomial. Any symmetric polynomial in x1, . . . , xk defines a polynomial in the

Chern classes of E → M . So as not to fix the rank or the dimension of the base, we encode these

characteristic classes by formal power series in a variable x. For example,

eq:166 (7.61) L =
x

tanhx

is Hirzebruch’s “L-polynomial”, introduced in his classic book [Hir], which explains in more detail

the yoga for dealing with characteristic classes by “multiplicative sequences”. In this case the L-

polynomial is actually a power series in x2, not just in x. This means that L is a characteristic

class of real vector bundles, as we will see later.

To illustrate, let’s write the L-polynomial for a rank two complex vector bundle E → M where

M has dimension four. Let the formal Chern roots of E be x1, x2. First, we expand

eq:168 (7.62)
x

tanhx
=

x coshx

sinhx
=

x(1 + x2/2! + . . . )

x+ x3/6! + . . .
= 1 +

x2

3
+ . . . .

Thus

L = (1 +
x21
3
)(1 +

x22
3
) = 1 +

x21 + x22
3

= 1 +
(x1 + x2)2 − 2x1x2

3
= 1 +

c21 − 2c2
3

.eq:167 (7.63)

For example, for M = CP2 we computed in Proposition 7.51 that c1(CP2) = 3y and c2(CP2) = 3y2,

so

eq:169 (7.64) L(CP2) = 1 +
9y2 − 6y2

3
= 1 + y2.

The pairing with the fundamental class [CP2] ∈ H4(CP2) gives 1.

thm:132 Exercise 7.65. Compute the L-polynomial up to degree 8 for any vector bundle of any rank.

thm:133 Exercise 7.66. Prove that ⟨L(CPn), [CPn]⟩ = 1 for all n.

thm:134 Exercise 7.67. Recall the K3 surface X ⊂ CP3 defined by a homogeneous quartic polynomial.

Compute the total Chern class of X. (There are some hints at the end of Chapter IV of [BT].)

Real vector bundles

We can leverage the Chern classes of a complex bundle to define Pontrjagin classes of a real vector

bundle. Let V →M be a real vector bundle of rank k. Define its complexification E = V ⊗RC→M .

Since E ∼= E we deduce from Exercise 7.48 that the odd Chern classes c2h+1(E) are torsion of

order 2. We use the even Chern classes to define the Pontrjagin classes of V :

eq:171 (7.68) pi(V ) = (−1)ic2i(V ⊗R C) ∈ H4i(M ;Z).
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The sign convention is not totally standard, but this is more prevalent. The formal Chern roots

of E come in opposite pairs x,−x, and taking just one element in each pair we have the formal

expression

eq:172 (7.69) p(V ) =
∏

j

(1 + x2j)

which we usually write simply as
∏
(1 + x2).

thm:136 Exercise 7.70. Prove that the total Pontrjagin class of a sphere is trivial: p(Sn) = 1.

thm:137 Exercise 7.71. Prove that both Chern classes and Pontrjagin classes are stable in the sense that

they don’t change under stabilization of vector bundles (by adding trivial bundles).

Characteristic classes of principal G-bundles

There is much to say about the computation of the cohomology of BG. If G is a finite group, this

is reduces to group cohomology à la Eilenberg-MacLane. For a connected compact Lie group G one

can use a maximal torus of G to formulate a generalized splitting principle and make computations

in terms of Lie theory. The beautiful classic papers of Borel and Hirzebruch [BH1, BH2, BH3] are

a fount of useful information derived from this strategy. We just quote one general theorem in this

area which determines the real cohomology in terms of invariant polynomials on the Lie algebra.

For simplicity I state it in terms of compact Lie groups. [in the following assume G is connected.]⇒

thm:138 Theorem 7.72. Let G be a compact Lie group and g its Lie algebra. Then there is a canonical

isomorphism of H•(BG;R) with the ring of Ad-invariant polynomials on g, where a polynomial of

degree i gives a cohomology class of degree 2i.

In particular, this is a polynomial ring.

As a special case, we have the following.

thm:139 Theorem 7.73. The real cohomology of the classifying space of the orthogonal group is a polyno-

mial ring on the Pontrjagin classes:

eq:173 (7.74) H•(BO(k);R) ∼= R[p1, . . . , pi], deg pi = 4i,

where i is the greatest positive integer such that 2i ≤ k.



Lecture 8: More characteristic classes and the Thom isomorphism

sec:8

We begin this lecture by carrying out a few of the exercises in Lecture 7. We take advantage of

the fact that the Chern classes are stable characteristic classes, which you proved in Exercise 7.71

from the Whitney sum formula. We also give a few more computations. Then we turn to the

Euler class, which is decidedly unstable. We approach it via the Thom class of an oriented real

vector bundle. We introduce the Thom complex of a real vector bundle. This construction plays

an important role in the course.

In lecture I did not prove the existence of the Thom class of an oriented real vector bundle. Here I

do so—and directly prove the basic Thom isomorphism theorem—when the base is a CW complex.

It follows from Morse theory that a smooth manifold is a CW complex. I need to assume the

theorem that a vector bundle over a contractible base (in this case a closed ball) is trivializable.

For a smooth bundle this follows immediately from Proposition 7.3.

The book [BT] is an excellent reference for this lecture, especially Chapter IV.

Elementary computations with Chern classes

subsec:8.4

(8.1) Stable tangent bundle of projective space. We begin with a stronger version of Proposi-

tion 7.51. Recall the exact sequence (7.54) of vector bundles over CPn.

thm:141 Proposition 8.2. The tangent bundle of CPn is stably equivalent to (S∗)⊕(n+1).

Proof. The exact sequence (7.54) shows that Q ⊕ S ∼= Cn+1. Tensor with S∗ and use (7.57) and

the fact that S ⊗ S∗ is trivializable to deduce that

eq:174 (8.3) T (CPn)⊕ C ∼= (S∗)⊕(n+1).

!

thm:145 Exercise 8.4. Construct a canonical orientation of a complex manifold M . This reduces to a

canonical orientation of a (finite dimensional) complex vector space. You may want to review the

discussion of orientations in Lecture 2.

subsec:8.1

(8.5) The L-genus of projective space. Recall that Hirzebruch’s L-class is defined by the power

series (7.61). Namely, if a vector bundle E →M has formal Chern roots x1, x2, . . . , xk, then

eq:175 (8.6) L(E) =
k∏

j=1

xj
tanhxj

.

67
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Each xj has degree 2, and the term of order 2i, which is computed by a finite computation, is a

symmetric polynomial of degree i in the variables xj. It is then a polynomial in the elementary

symmetric polynomials c1, . . . , ck, which are the Chern classes of E. The L-genus is the pairing of

the L-class (8.6) of the tangent bundle of a complex manifold M with its fundamental class [M ].

thm:149 Remark 8.7 (L-class of a real vector bundle). Since x/ tanh x is a power series in x2, it follows that

the L-class is a power series in the Pontrjagin classes of the underlying real vector bundle. So the

L-class is defined for a real vector bundle, and the L-genus for a compact oriented real manifold.

thm:142 Proposition 8.8. The L-genus of CPn satisfies

eq:176 (8.9) ⟨L(CPn), [CPn]⟩ = 1

if n is even.

Here [CPn] ∈ H2n(CPn) is the fundamental class, defined using the canonical orientation of a

complex manifold. Also, L(CPn) is the L-polynomial of the tangent bundle. The degree of each

term in the L-class is divisible by 4, so the left hand side of (8.9) vanishes for degree reasons if n is

odd.

Proof. By Proposition 8.2 and the fact that the Chern classes are stable, we can replace T (CPn)

by (S∗)⊕(n+1). The Chern roots of the latter are not formal—it is a sum of line bundles—and each

is equal to the positive generator y ∈ H2(CPn). Since ⟨yn, [CPn]⟩ = 1, we conclude that the left

hand side of (8.9) is the coefficient of yn in

eq:177 (8.10) L
(
(S∗)⊕(n+1)

)
=

(
y

tanh y

)n+1

.

By the Cauchy integral formula, this equals

eq:178 (8.11)
1

2πi

∫
dy

yn+1

(
y

tanh y

)n+1

,

where the contour integral is taken over a small circle with center the origin of the complex y-line;

the orientation of the circle is counterclockwise. Substitute z = tanh y, and so dz/(1 − z2) = dy.

Then (8.11) equals

eq:179 (8.12)
1

2πi

∫
dz

(1− z2)zn+1
=

1

2πi

∫
dz

1 + z2 + z4 + . . .

zn+1
=

{
1, n even;

0, n odd.

!

subsec:8.2

(8.13) The Euler characteristic and top Chern class. We prove the following result at the end of

the lecture.

thm:144 Theorem 8.14. Let M be a compact complex manifold of dimension n. Then its Euler character-

istic is

eq:180 (8.15) χ(M) = ⟨cn(M), [M ]⟩.
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subsec:8.3

(8.16) The genus of a plane curve. Let C be a complex curve, which means a complex manifold

of dimension 1. The underlying real manifold is oriented and has dimension 2. Assume that C is

compact and connected. Then, say by the classification of surfaces, we deduce that

eq:181 (8.17) H0(C) ∼= Z, dimH1(C) = 2g(C), H2(C) ∼= Z

for some integer g(C) ∈ Z≥0 called the genus of C. The Euler characteristic is

eq:182 (8.18) χ(C) = 2− 2g(C).

A plane curve is a submanifold C ⊂ CP2, and it is cut out by a homogeneous polynomial of

degree d for some d ∈ Z≥1. An extension of Exercise 6.10 shows that these polynomials are

sections of (S∗)⊗d → CP2, which is the dth power of the hyperplane bundle (and is often denoted

O(d) → CP2). We simply assume that C is cut out as the zeros of a transverse section of that

bundle.

thm:146 Proposition 8.19. The genus of a smooth plane curve C ⊂ CP2 of degree d is

eq:183 (8.20) g(C) =
(d− 1)(d − 2)

2
.

Proof. The normal bundle to C ⊂ CP2 is canonically the restriction of (S∗)⊗d → CP2 to C, and so

we have the exact sequence (see (2.30))

eq:184 (8.21) 0 −→ TC −→ T (CP2)
∣∣
C
−→ (S∗)⊗d −→ 0.

Since this sequence splits (in C∞, not necessarily holomorphically), the Whitney sum formula

implies that

eq:185 (8.22) c(C) =
(1 + y)3

1 + dy
=

1 + 3y

1 + dy
= 1 + (3− d)y.

Here we use Proposition 7.51 to obtain the total Chern class of CP2. Proposition 7.19 together

with Corollary 7.22 compute the total Chern class of (S∗)⊗d.

Next, we claim ⟨y, [C]⟩ = d. One proof is that evaluation of y on a curve in CP2 is the intersection

number of that curve with a generic line, which is the degree of the curve (which is the number of

solutions to a polynomial equation of degree d in the complex numbers). Hence by Theorem 8.14

we have

eq:186 (8.23) χ(C) = ⟨c1(C), [C]⟩ = (3− d)d,

to which we apply (8.18) to deduce (8.20). !
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subsec:8.5

(8.24) The Euler characteristic of the K3 surface. A similar computation gives the Euler charac-

teristic of a quartic surface M ⊂ CP3 as 24, a fact used in (5.60). Do this computation! You will

find

eq:187 (8.25) c(M) =
(1 + y)4

1 + 4y
= 1 + 6y2.

Notice that this also proves that c1(M) = 0.

thm:147 Exercise 8.26. Prove that a degree (n+1) hypersurface M ⊂ CPn has vanishing first Chern class.

Such a complex manifold is called Calabi-Yau. (In fact, the stronger statement that the complex

determinant line bundle Det TM →M is holomorphically trivial is true.)

The Thom isomorphism

subsec:8.7

(8.27) Relative cell complexes. Let X be a topological space and A ⊂ X a closed subspace. We

write (X,A) for this pair of spaces. A cell structure on (X,A) is a cell decomposition of X \ A.

This means that X is obtained from A by successively attaching 0-cells, 1-cells, etc., starting from

the space A. The relative chain complex of the cell structure is defined analogously to the absolute

chain complex (7.8). Cochain complexes which compute cohomology are obtained algebraically

from the chain complex, as in (7.9).

Example: The pair (Sk,∞) has a cell structure with a single k-cell ek. The chain complex is

eq:190 (8.28) · · ·←− 0←− Z{ek}←− 0←− · · ·

where the nonzero entry is in degree k.

If the pair (X,A) satisfies some reasonable point-set conditions, which are satisfied if it admits

a cell structure, then the homology/cohomology of the pair are isomorphic (by excision) to the

homology/cohomology of the quotient X/A relative to the basepoint A/A.

subsec:8.6

(8.29) The cohomology of a real vector space. Let V be a real vector space of dimension k. Of

course, V deformation retracts to the origin in V by scaling, so the cohomology of V is that of

a point. But there is more interesting relative cohomology, or cohomology with compact support.

Suppose V has an inner product. Let Cr(V) denote the complement of the open ball of radius r

about the origin. The pair
(
V, Cr(V)

)
has a cell structure with a single k-cell ek. The chain complex

of the pair is then (8.28), and taking Hom(−,Z) we deduce

eq:188 (8.30) Hq(V, Cr(V);Z) ∼=

{
Z, q = k;

0, otherwise.

The result is, of course, independent of the radius (by the excision property of cohomology). Notice

that the quotient V/Cr(V) is homeomorphic to a k-sphere with a basepoint, so (8.30) is consistent

with the example (8.28) above.
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Figure 18. The pair
(
V, Cr(V)

)
fig:18

The isomorphism in (8.30) is determined only up to sign, or rather depends on a precise choice

of k-cell ek. That is, there are two distinguished generators of this cohomology group. These

generators form a Z/2Z-torsor canonically attached to the vector space V.

thm:148 Lemma 8.31. This torsor canonically is o(V), as defined in (2.7).

Proof. Recall that the k-cell is defined by the attaching map, which is a homeomorphism (we can

take it to be a diffeomorphism) f : Sk−1 → Sr(V), where Sk−1 = ∂Dk is the standard (k−1)-sphere

and Sr(V) is the sphere of radius r in V centered at the origin. Given an orientation o ∈ o(V)
of V, there is an induced orientation of Sr(V) and so a distinguished homotopy class of orientation-

preserving diffeomorphisms f . This singles out a generator in (8.30) and proves the lemma.

Here’s an alternative proof. Let a ∈ Hk(V, Cr(V);Z) be a generator. Its image inHk(V, Cr(V);R)
can, by the de Rham theorem, be represented by a k-form ωa on V whose support is contained

in the open ball Br(V) of radius r centered at the origin. There is a unique orientation of V—a

point o ∈ o(V)—such that

eq:189 (8.32)

∫

(V,o)
ωa = 1.

(The integral in the opposite orientation is −1.) The isomorphism of the lemma maps a 1→ o. !

subsec:8.8

(8.33) Thom classes. Let π : V → M be a real vector bundle of rank k. Assume it carries an

Figure 19. The pair
(
V,Cr(V )

)
fig:19

inner product. Consider the pair
(
V,Cr(V )

)
, where Cr(V ) ⊂ V is the set of all vectors of norm at

least r. Recall also the notion of an orientation of a real vector bundle (Definition 2.14), which is

a section of the double cover o(V )→M .
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thm:150 Definition 8.34. A Thom class for π : V →M is a cohomology class UV ∈ Hk
(
V,Cr(V );Z

)
such

that i∗pUV is a generator of Hk
(
Vp, Cr(Vp);Z

)
for all p ∈M .

It is clear that a Thom class induces an orientation of V →M . The converse is also true.

thm:151 Proposition 8.35. Let π : V → M be an oriented real vector bundle. Then there exists a Thom

class UV ∈ Hk
(
V,Cr(V );Z

)
.

We sketch a proof below.

subsec:8.9

(8.36) Thom isomorphism theorem. Given the Thom class, we apply the Leray-Hirsch theorem

(Theorem 7.25) to the pair
(
V,Cr(V )

)
, which is a fiber bundle over M with typical fiber

(
V, Cr(V)

)
.

[This is wrong! Only collapse fiber by fiber?]⇒

thm:152 Corollary 8.37. Let π : V → M be an oriented real vector bundle. Then the integral cohomology

of
(
V,Cr(V )

)
is a free H•(M ;Z)-module with a single generator UV .

Put differently, the map

eq:191 (8.38) H•(M ;Z)
UV⌣π∗(−)−−−−−−−→ Hk+•

(
V,Cr(V );Z

)

is an isomorphism of abelian groups. This map—the Thom isomorphism—is pullback from the

base followed by multiplication by the Thom class.

It follows immediately from (7.39) that there is a unique Thom class compatible with a given

orientation. [xref is wrong: find correct one!]⇒

Proof of Proposition 8.35. As stated earlier a smooth manifold M admits a CW structure, which

means it is constructed by iteratively attaching cells, starting with the empty set. Let {eα}α∈A
denote the set of cells. For convenience, denote V =

(
V,Cr(V )

)
. We prove that V has a cell

decomposition with cells {fα}α∈A indexed by the same set A, and dim fα = dim eα+k. Furthermore,

the cellular chain complex of V is the shift of the cellular chain complex of M by k units to the right.

The same is then true of cochain complexes derived from these chain complexes. In particular, there

is an isomorphism

eq:200 (8.39) H0(M ;Z)
∼=−−→ Hk(V;Z).

The image of 1 ∈ H0(M ;Z) is the desired Thom class UV . A bit more argument (using properties

of the cup product) shows that the map (8.39) is the map (8.38), and so this gives a proof of the

Thom isomorphism.

For each cell eα there is a continuous map Φα : Dα → M , where Dα is a closed ball. Its

restriction to the open ball is a homeomorphism onto its image eα ⊂ M and M is the disjoint

union of these images. The pullback Φ∗
αV → Dα is trivializable. Fix a trivialization. This induces

a homeomorphism Φ∗
αV ≈ Dα×

(
V, Cr(V)

)
≈

(
Dα×V,Dα×Cr(V)

)
. This pair has a cell structure

with a single cell, which is the Cartesian product of Dα and the k-cell described in (8.29). Now

the orientation of V →M induces an orientation of Φ∗
αV → Dα, and so picks out the k-cell ek, as

in the proof of Lemma 8.31. Define fα = eα × ek. These cells make up a cell decomposition of V.

Furthermore, ∂(fα) = ∂(eα)× ek, since ∂(ek) = 0. !



BORDISM: OLD AND NEW 73

Possession of a cell structure for a space is far more valuable than knowledge of its homology or

cohomology; the latter can be derived from the former. So you should keep the picture of the cell

structure used in the proof.

thm:163 Exercise 8.40. Think through the argument in the proof without the assumption that V →M is

oriented. Now there is a sign ambiguity in the definition of ek. Can you see how to deal with that

and what kind of statement you can make?

subsec:8.10

(8.41) The Thom complex. As mentioned above, the cohomology of a pair (X,A) is the reduced

cohomology of the quotient space X/A with basepoint A/A, at least if certain point-set conditions

are satisfied. The quotient V/Cr(V ) is called the Thom complex of V → M and is denoted MV .

Figure 19 provides a convenient illustration: imagine the red region collapsed to a point. Note

there is no projection from MV to M : there is no basepoint in M and no distinguished image of

the basepoint in MV . Also, note that the zero section (depicted in blue) induces an inclusion

eq:192 (8.42) i : M −→MV .

thm:156 Exercise 8.43. What is the Thom complex of the trivial vector bundle M × Rk →M?

thm:157 Exercise 8.44. There is a nontrivial real line bundle V → S1, often called the Möbius bundle.

What is its Thom complex?

The Euler class

thm:153 Definition 8.45. Let π : V →M be an oriented real vector bundle of rank k with Thom class UV .

The Euler class e(V ) ∈ Hk(M ;Z) is defined as

eq:193 (8.46) e(V ) = i∗(UV ),

where i is the zero section (8.42).

thm:154 Proposition 8.47. If π : V → M is an oriented real vector bundle which admits a nonvanishing

section, then e(V ) = 0.

Proof. First, if M is compact, then the norm of the section s : M → V achieves a minimum, and

taking r less than that minimum produces a Thom class whose pullback s∗(UV ) by the section

vanishes. Since the section is homotopic to the zero section i, the result follows. If M is not

compact and the norm of the section does not achieve a minimum, then let r : M → R>0 be a

variable function whose value at p ∈M is less than ∥s(p)∥. !

thm:155 Proposition 8.48. Let L → M be a complex line bundle and LR → M the underlying oriented

rank 2 real vector bundle. Then

eq:194 (8.49) e(LR) = c1(L) ∈ H2(M ;Z).
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Proof. Consider the fiber bundle

eq:195 (8.50) P(L∗ ⊕ C) −→M

with typical fiber a projective line, or 2-sphere. The dual tautological line bundle S∗ → P(L∗ ⊕C)
has a first Chern class Ũ = c1(S∗) which restricts on each fiber to the positive generator of the

cohomology of the projective line. There are two canonical sections of (8.50). The first j : M →
P(L∗ ⊕ C) maps each point of M to the trivial line C; the second i : M → P(L∗ ⊕ C) maps each

point to the line L∗. Note that the complement of the image of j may be identified with L: every

line in L∗
p ⊕ C not equal to C is the graph of a linear functional L∗

p → C, which can be identified

with an element of Lp. Now j∗(S∗)→ M is the trivial line bundle and i∗(S∗)→M is canonically

the line bundle L → M . It follows that Ũ lifts to a relative class15 U ∈ H2
(
P(L∗ ⊕ C), j(M);Z

)
,

the Thom class of LR →M . Then

eq:196 (8.51) e(LR) = i∗(U) = i∗
(
c1(S

∗)
)
= c1(i

∗S∗) = c1(L).

!

I leave the proof of the next assertion as an exercise.

thm:158 Proposition 8.52. Let V1, V2 →M be oriented real vector bundles. Then

eq:197 (8.53) e(V1 ⊕ V2) = e(V1)e(V2).

thm:159 Exercise 8.54. Prove Proposition 8.52.

thm:160 Corollary 8.55. Let E →M be a rank k complex vector bundle. Then

eq:198 (8.56) ck(E) = e(ER).

thm:161 Exercise 8.57. Prove Corollary 8.55. Use Proposition 8.48 and the Whitney sum formulas Propo-

sition 8.52 and Exercise 7.46.
subsec:8.11

(8.58) The Euler characteristic.

thm:162 Proposition 8.59. Let M be a compact oriented n-manifold. Then its Euler characteristic is

eq:199 (8.60) χ(M) = ⟨e(M), [M ]⟩.

Proof. I will sketch a proof which relies on a relative version of the de Rham theorem: If M is a

smooth manifold and A ⊂ M a closed subset, then the de Rham complex of smooth differential

forms on M supported in M \ A computes the real relative cohomology H•(M,A;R). We also

use the fact that the integer on the right hand side of (8.60) can be computed from the pairing

15Use excision to push to the pair
(

L,Cr(L)
)

considered above.
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of eR(M) ∈ Hn(M ;R) with the fundamental class, and that—again, by the de Rham theorem—if

ω is a closed n-form which represents eR(M), then that pairing is
∫
M ω. Here eR is the image of

the (integer) Euler class in real cohomology by extension of scalars Z→ R.
Now for the proof: Recall that the Euler characteristic of M is the self-intersection number of the

diagonal in M ×M , or equivalently the self-intersection number of the zero section of TM → M .

It is computed by choosing a section ξ : M → TM—that is, a vector field—which is transverse to

the zero section. The intersection number is the sum of local intersection numbers at the zeros

of ξ, and each local intersection number is ±1. Choose a local framing of M on a neighborhood Ni

about each zero pi ∈ M of ξ—that is, a local trivialization of TM → M restricted to Ni. By

transversality and the inverse function theorem we can cut down the neighborhoods Ni so that

ξ : Ni → Rn (relative to the trivialization) is a diffeomorphism onto its image. Fix a Riemannian

metric on M and suppose ∥ξ∥ > r on the complement of the union of the Ni. Let ω ∈ Ωn(TM)

be a closed differential form with support in TM \ Cr(TM) which represents the real Thom class

UM ;R ∈ Hn
(
TM,Cr(TM);R

)
. Since the section ξ : M → TM is homotopic to the zero section i,

we have

eq:201 (8.61) χ(M) =

∫

M
ξ∗ω.

Because of the support condition on ω, the integral is equal to the sum of integrals over the neighbor-

hoods Ni. Under the local trivialization ω represents the integral generator of Hn
(
Rn, Cr(Rn);R

)
—

this by the definition (Definition 8.34) of the Thom class—and so
∫
Ni
ξ∗ω = ±1. I leave you to

check that the sign is the local intersection number. !



Lecture 9: Tangential structures

sec:9

We begin with some examples of tangential structures on a smooth manifold. In fact, despite

the name—which is appropriate to our application to bordism—these are structures on arbitrary

real vector bundles over topological spaces; the name comes from the application to the tangent

bundle of a smooth manifold. Common examples may be phrased as a reduction of structure group

of the tangent bundle. The general definition allows for more exotic possibilities. We move from a

geometric description—and an extensive discussion of orientations and spin structures—to a more

abstract topological definition. Note there are both stable and unstable tangential structures. The

stable version is what is usually studied in classical bordism theory; the unstable version is relevant

to the modern developments, such as the cobordism hypothesis.

I suggest you think through this lecture first for a single tangential structure: orientations.

Orientations revisited
subsec:9.2

(9.1) Existence and uniqueness. Let V →M be a real vector bundle of rank n over a manifold M .

(In this whole discussion you can replace a manifold by a metrizable topological space.) In Lecture 2

we constructed an associated double cover o(V ) → M , the orientation double cover of the vector

bundle V → M . An orientation of the vector bundle is a section of o(V ) → M . There is an

existence and uniqueness exercise.

thm:165 Exercise 9.2. The obstruction to existence is the isomorphism class of the orientation double

cover: orientations exists if and only if o(V ) → M is trivializable. Show that this isomorphism

class is an element of H1(M ;Z/2Z). If this class vanishes, show that the set of orientations is a

torsor for H0(M ;Z/2Z), the group of locally constant maps M → Z/2Z. Of course, this can be

identified with the set of maps π0M → Z/2Z.

thm:166 Remark 9.3. The isomorphism class of o(V ) → M is the first Stiefel-Whitney class w1(V ) ∈
H1(M ;Z/2Z). The Stiefel-Whitney classes are characteristic classes of real vector bundles. They

live in the cohomology algebra H•(BO;Z/2Z).

subsec:9.1

(9.4) Recollection of frame bundles. Recall from (6.39) that to the vector bundle V → M is

associated a principalGLn(R)-bundleB(V )→M of bases, often called the frame bundle of V →M .

If we endow V →M with a metric, then we can take orthonormal frames and so construct a principal

O(n)-bundle of frames BO(V )→M .

thm:167 Exercise 9.5. Recall the determinant homomorphism

eq:202 (9.6) GLn(R)
det−−−→ R ̸=0.

76
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Let GL+
n (R) ⊂ GLn(R) denote the subgroup det−1(R>0). Then GL+

n (R) acts freely on B(V ).

Identify the quotient with o(V ). What is the analogous statement for orthonormal frames?

subsec:9.3

(9.7) Reduction of structure group. Let H,G be Lie groups and ρ : H → G a homomorphism.

(For the discussion of orientations this is the inclusion GL+
n (R) ↪→ GLn(R).)

thm:168 Definition 9.8.

(i) Let Q → M be a principal H-bundle. The associated principal G-bundle Qρ → M is the

quotient

eq:203 (9.9) Qρ = (Q×G)/H,

where H acts freely on the right of Q×G by

eq:204 (9.10) (q, g) · h = (q · h, ρ(h)−1g), q ∈ Q, g ∈ G, h ∈ H.

(ii) Let P → M be a principal G-bundle. Then a reduction to H is a pair (Q, θ) consisting of

a principal H-bundle Q→M and an isomorphism

eq:205 (9.11) Qρ
θ

P

M

of principal G-bundles.

thm:169 Exercise 9.12.

(i) What is the G-action on Qρ?

(ii) Define an isomorphism of reductions.

(iii) Suppose V →M is a real vector bundle of rank n with metric. Let ρ : O(n) ↪→ GLn(R) be
the inclusion. What is BO(V )ρ?

(iv) Assume that ρ is an inclusion. Show that Q ⊂ Qρ and, using θ, we can identify a reduction

to H as a sub-fiber bundle Q ⊂ P . Assuming that H is a closed Lie subgroup, show that

reductions are in 1:1 correspondence with sections of the G/H bundle P/H →M .

subsec:9.4

(9.13) Orientations as reductions of structure group. The definitions conspire to show that an

orientation of a real rank n vector bundle V →M is a reduction of structure group of B(V )→M

to the group GL+
n (R) ↪→ GLn(R). In particular, this follows by combining Exercise 9.5 and

Exercise 9.12(iv) together with the definition of an orientation.

Spin structures

subsec:9.5

(9.14) The spin group. Let SO(n) ⊂ O(n) be the subgroup of orthogonal matrices of determinant

one. In low dimensions these are familiar groups. The group SO(1) is trivial: it just has the identity
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element. The group SO(2) is the group of rotations in the oriented plane R2, or more concretely

the group of matrices

eq:208 (9.15)

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ R,

which has the topology of the circle. Its fundamental group is infinite cyclic. The manifold under-

lying the group SO(3) is diffeomorphic to RP3, so has fundamental group isomorphic to Z/2Z. (I

gave an argument for this in a previous lecture.) In fact, π1SO(n) ∼= Z/2Z for all n ≥ 3.

thm:170 Exercise 9.16. Prove this as follows. The group SO(n) acts transitively on the sphere Sn−1, and

the stabilizer of a point is isomorphic to SO(n− 1). So there is a fiber bundle SO(n)→ Sn−1 with

typical fiber SO(n−1). (It is a principal bundle.) Use the long exact sequence of homotopy groups

and induction to deduce the assertion.

thm:171 Definition 9.17. The spin group Spin(n) is the double cover group of SO(n).

Thus Spin(1) ∼= Z/2Z is cyclic of order 2. The spin group Spin(2) is abstractly isomorphic to

the circle group: Spin(2) → SO(2) is the nontrivial double cover. The manifold underlying the

group Spin(3) is diffeomorphic to S3, and Spin(n) is connected and simply connected (also called

1-connected) for n ≥ 3. There is an explicit realization of the spin group inside the Clifford algebra.

thm:172 Remark 9.18. Definition 9.17 relies on a general construction in Lie groups. Namely, if G is a

connected Lie group, π : G̃→ G a covering space, and ẽ ∈ π−1(e) a basepoint, then there is a unique

Lie group structure on G̃ such that ẽ is the identity element and π is a group homomorphism. If

you identify the covering space G̃ with a space of homotopy classes of paths in G, then you might

figure out how to define the multiplication. See [War] for details.

thm:173 Definition 9.19. Let V → M be a real vector bundle of rank n with a metric. A spin structure

on V is a reduction of structure group of the orthonormal frame bundle BO(V ) → M along

ρ : Spin(n)→ O(n).

Here ρ is the projection Spin(n) → SO(n) followed by the inclusion SO(n) → O(n). So the

reduction can be thought of in two steps: an orientation followed by a lift to the double cover.

thm:174 Exercise 9.20. Make this explicit: construct an orientation of V → M from a spin structure on

V →M .
subsec:9.6

(9.21) Existence for complex bundles. We will not discuss the general existence problem here, but

will instead restrict to important special case and give an example of non-existence.

subsec:9.7

(9.22) The double cover of the unitary group. The complex vector space Cn has as its underlying

real vector space R2n. Explicitly, to an n-tuple (z1, . . . , zn) of complex numbers we associate the

2n-tuple (x1, y1, . . . , xn, yn) of real numbers, where zn = xn+
√
−1yn. The real part of the standard

hermitian metric on Cn is the standard real inner product on R2n. So there is a homomorphism,

which is an inclusion,

eq:209 (9.23) U(n) −→ O(2n)
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of unitary transformations of Cn into orthogonal transformations of R2n. In fact, the image lies

in SO(2n), which follows since complex linear transformations preserve the natural orientation

of Cn = R2n. (Alternatively, U(n) is connected, so the image of (9.23) is a connected subgroup

of O(2n).) Define Ũ(n) to be the pullback Lie group

eq:210 (9.24) Ũ(n) Spin(2n)

U(n) SO(2n)

It is the unique connected double cover of U(n). (The fundamental group of U(n) is infinite cyclic

for all n.)

subsec:9.8

(9.25) Spin structures on a complex vector bundle. Let E → M be a rank n complex vector

bundle. There is an underlying rank 2n real vector bundle ER → M . As manifolds ER = E

and the projection map is the same. What is different is that we forget some of the structure

of E → M , namely we forget scalar multiplication by
√
−1 and only remember the real scalar

multiplication. Choose a hermitian metric on E → M , a contractible choice which carries no

topological information. Then there is an associated principal U(n) bundle BU (E) → M , the

unitary bundle of frames.

thm:175 Definition 9.26. A spin structure on E →M is a reduction of BU (E)→M along Ũ(n)→ U(n).

This is not really a definition, but rather a consequence of (9.24).

thm:176 Exercise 9.27. Recast Definition 9.26 as a theorem and prove that theorem. (Hint: . . . is a spin

structure on ER →M . . . ).

thm:177 Proposition 9.28. Let E → M be a complex vector bundle which admits a spin structure. Then

there exists c̃ ∈ H2(M ;Z) such that 2c = c1(E).

thm:178 Corollary 9.29. The manifold CPn does not admit a spin structure if n is even.

For according to Proposition 7.51 we have c1(CPn) = (n + 1)y, where y ∈ H2(CPn;Z) is the

generator.

I outline the proof of Proposition 9.28 in the following exercise, the first part of which should

have been part of the lecture on Chern classes.

thm:179 Exercise 9.30.

(i) Let E → M be a complex vector bundle of rank n. Define the associated determinant

line bundle DetE → M . One method is to use complex exterior algebra, analogous to

Exercise 2.6(i) in the real case. Another is to use principal bundles and the determinant

homomorphism det: GLn(C)→ C×.

(ii) Use the splitting principle (7.42) to prove that c1(DetE) = c1(E).
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(iii) Construct the top homomorphism in the commutative diagram of Lie group homomorphisms

eq:211 (9.31) Ũ(n) T

U(n)
det T

in which the right vertical arrow is the squaring map.

(iv) Recall Proposition 7.19 and complete the proof of Proposition 9.28.
subsec:9.9

(9.32) Double covers and uniqueness of spin structures. We work in the context of (9.7). Let

ρ : H → G be a double cover of the Lie group G. We have in mind G = SO(n) and H = Spin(n).

Let P → M be a principal G-bundle and (Q, θ) a reduction along ρ to a principal H-bundle.

Suppose R → M is a double cover, which may be viewed as a principal Z/2Z-bundle. Then we

can construct a new reduction (Q′, θ′) by “acting on” the reduction (Q, θ) with the double cover

R → M . For this, consider the fiber product Q ×M R → M , which is a principal (H × Z/2Z)-
bundle. The bundle Q′ → M is obtained by dividing out by the diagonal Z/2Z ⊂ H → Z/2Z,
where Z/2Z ⊂ H is the kernel of the covering map ρ. I leave you to construct θ′.

thm:180 Remark 9.33. There is a category of double covers of M , and it has a “product” operation which

makes it a categorical analog of a group. That Picard category acts on the category of reductions

to H.

thm:181 Exercise 9.34. As in Exercise 9.2 the set of isomorphism classes of double covers ofM isH1(M ;Z/2Z).
How is its abelian group structure related to Remark 9.33? Show that any two reductions to H

are related by a double cover in the manner described. Conclude that H1(M ;Z/2Z) acts simply

transitively on the set of isomorphism classes (Exercise 9.12(ii)) of reductions.

thm:183 Exercise 9.35. Just as an orientation on a manifold M with boundary induces an orientation of

the boundary ∂M , show that the same is true of a spin structure. (As a spin structure includes an

orientation, the statement about orientations is included.)

thm:182 Exercise 9.36. Show that there are two isomorphism classes of spin structure on S1. Describe

the principal Spin(2)-bundles and the isomorphisms θ explicitly. Which occurs as the boundary of

a spin structure on the disk D2?

Reductions of structure group and classifying spaces

We continue in the context of (9.7), working with an arbitrary homomorphism ρ : H → G. As we

have only constructed classifying spaces for compact Lie groups (in (6.60)), we assume H and G are

compact. Let EH → BH be the universal H-bundle. The associated G-bundle has a classifying

map

eq:212 (9.37) EH ×ρ G EG

BH
Bρ

BG
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which we denote16 Bρ. The top horizontal arrow in (9.37) induces an isomorphism θuniv : EH ×ρ
G

∼=−−→ (Bρ)∗(EG). The pair (EG ×ρ G, θuniv) is the universal reduction of a G-bundle to an

H-bundle.

thm:184 Proposition 9.38. Let P →M be a principal G-bundle and f : M → BG a classifying map. Then

a lift f̃ in the diagram

eq:213 (9.39) BH

M

f̃

f

BG

induces a reduction to H, and conversely a reduction to H induces a lift f̃ . Isomorphism classes

of reductions are in 1:1 correspondence with homotopy classes of lifts.

Here a homotopy of lifts is a map F : ∆1×M → BH such that F (t,−) : M → BH is a lift of f for

all t ∈ ∆1.

Proof. Given a lift, pull back the universal reduction (EG ×ρ G, θuniv) to M . Conversely, any

reduced bundle (Q→M, θ) has a classifying map of principal H-bundles

eq:214 (9.40) Q EG

M
g

BH

and so a map of principal G-bundles

eq:215 (9.41) Q×ρ G EG×ρ G

M
g

BH

The isomorphism θ then induces a diagram

eq:216 (9.42) P (Bρ)∗(EG) EG

M
g

BH
Bρ

BG

in which the composition Bρ ◦ g is a classifying map, so is necessarily homotopic to f . Construct f̃

as the endpoint of a homotopy of maps M → BH which lifts the homotopy Bρ ◦ g → f using the

homotopy lifting property of Bρ. !

thm:185 Exercise 9.43. Work out the details of the last argument as well as the proof of the last assertion

of Proposition 9.38.

16There is a functorial construction B of classifying spaces which inspires this notation.
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General tangential structures

We now generalize reductions of O(n)-bundles along homomorphisms ρ : H → G to a more

general and flexible notion of a tangential structure.

Recall the construction (6.25) of the classifying space BO(n) as a colimit of finite dimensional

Grassmannians. There are closed inclusions Grn(Rq) → Grn+1(Rq+1) obtained by sending W 1→
R⊕W where we write Rq+1 = R⊕ Rq. These induce maps BO(n)→ BO(n+ 1), and we define

eq:219 (9.44) BO = colim
n→∞

BO(n).

It is a classifying space for the infinite orthogonal group O defined in (5.38).

thm:186 Definition 9.45. An n-dimensional tangential structure is a topological space X(n) and a fibration

π(n) : X(n)→ BO(n). A stable tangential structure is a topological space X and a fibration π : X→
BO. It gives rise to an n-dimensional tangential structure for each n ∈ Z≥0 by letting π(n) : X(n)→
BO(n) be the fiber product

eq:217 (9.46) X(n)

π(n)

X

π

BO(n) BO

If M is a k-dimensional manifold, then an X(n)-structure on M is a lift M → X(n) of a classifying

map M → BO(n) of T̃M , where we have stabilized the tangent bundle TM of the m-dimensional

manifold M to the rank n bundle

eq:218 (9.47) T̃M := Rn−m ⊕ TM.

An X-structure on M is a family of coherent X(n)-structures for n sufficiently large.
⇒

[Say directly in terms of classifying bundle, so introduce universal bundle earlier.]

Notice that an n-dimensional tangential structure induces an m-dimensional tangential structure

for all m < n by taking the fiber product

eq:220 (9.48) X(m)

π(m)

X(n)

π(n)

BO(m) BO(n)

thm:192 Example 9.49. The trivial tangential structure has X = BO, so X(n) = BO(n), and the structure

maps π(n) are identity maps.

thm:187 Example 9.50. A stable framing is the tangential structure X = EO, a contractible space with a

free O-action. What is X(n)→ BO(n) in this example? (Hint: It is a principal O-bundle.)
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thm:196 Example 9.51. An n-framing is the n-dimensional unstable tangential structure X(n) = EO(n).

An n-framing of an m-manifold M is a trivialization of T̃M . What is X(m)?

thm:188 Example 9.52. An orientation is the stable tangential structure X = BSO, and an orientation

of T̃M amounts to an orientation of TM since Rn−m has a canonical orientation. In this case the

space X(n) in (9.46) is the classifying space BSO(n).

thm:189 Example 9.53. A spin structure is also a stable tangential framing; the space X(n) is the classi-

fying space BSpin(n).

thm:190 Example 9.54. There are examples which are not reductions of structure group. For example, if

X(n) = BO(n)×BΓ for some finite group Γ, then an X(n)-structure on M is a principal Γ-bundle

over M . We can replace BΓ by any space Y . Isomorphism classes of X(n)-structures then track

homotopy classes of maps M → Y .

thm:191 Exercise 9.55. Following Proposition 9.38, define an isomorphism of X(n)-structures. Formulate

the classification of isomorphism classes of X(n)-structures as a problem in homotopy theory.

subsec:9.10

(9.56) The universal X(n)-bundle. Let π : X→ BO be a stable tangential structure with induced

tangential structures π(n) : X(n)→ BO(n) for each n ∈ Z≥0. Let

eq:222 (9.57) S(n) −→ BO(n)

be the universal real vector bundle of rank n, as in (6.28). Its pullback to X(n) has a tautological

X(n)-structure, the identity map idX(n) lifting π(n) in

eq:224 (9.58) π(n)∗
(
S(n)

)
S(n)

X(n)
π(n)

BO(n)

so is the universal real rank n bundle with X(n)-structure. By abuse of notation we denote this

pullback π(n)∗
(
S(n)

)
as simply

eq:223 (9.59) S(n) −→ X(n)

Suppose M is an m-manifold, m ≤ n. Then an X(n)-structure on M is an X(n)-structure on its

stabilized tangent bundle T̃M →M , as stated in Definition 9.45, which is more simply a classifying

map

eq:221 (9.60) T̃M S(n)

M X(n)
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subsec:9.11
(9.61) Manifolds with boundary. If M is a manifold with boundary and it is equipped with an

X(n)-structure (9.60), then there is an induced X(n)-structure on the boundary. Namely, we just

restrict (9.60) to ∂M ; recall the exact sequence (1.12) at the boundary, which is split by the

discussion in (5.3); and use Definition 9.45 which involves the stabilized tangent bundle (9.47) of

the boundary: T̃ (∂M) := R⊕ T (∂M).

X-bordism
subsec:9.14

(9.62) Involutions. The classifying space BO(n) is a colimit (6.25) of Grassmannians Grn(Rq).

Endow Rq with the standard inner product. Then the map W 1→ W⊥ to the orthogonal subspace

induces inverse diffeomorphisms

eq:226 (9.63) Grn(Rm)←→ Grm−n(Rm)

which exchange the tautological subbundles S with the tautological quotient bundlesQ. The double

colimit of (9.63) as n,m→∞ yields an involution

eq:227 (9.64) ι : BO −→ BO

If X→ BO is a stable tangential structure, we define its pullback by ι to be a new stable tangential

structure

eq:228 (9.65) X⊥ X

BO
ι

BO

If f : M → BO is the stable classifying map of a vector bundle V →M , and there is a complemen-

tary bundle V ⊥ → M such that V ⊕ V ⊥ ∼= Rm, then ι ◦ f : M → BO is a stable classifying map

for V ⊥ →M .
subsec:9.13

(9.66) Stable normal structures from stable tangential structures. We reconsider the discussion

in (5.15), only instead of embedding in the sphere we embed in affine space (which is what we were

doing anyhow). Fix a stable tangential structure π : X → BO. Let M be a smooth n-manifold.

A stable X-structure on M is an X(n + q)-structure on TM → M for sufficiently large q, i.e.,

compatible classifying maps

eq:225 (9.67) S(n) S(n) · · ·

TM

X(n, n + q) X(n, n+ q + 1) · · ·

M
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In the diagram we X(n, n+q) is the pullback of X(n)→ BO(n) to the Grassmannian Grn(Rn+q) ↪→
BO(n). Now suppose M ↪→ An+q is an embedding with normal bundle ν → M of rank q. We use

the Euclidean metric to identify ν ∼= TM⊥ so TM ⊕ ν ∼= Rn+q. Then using the perp map (9.63)

we obtain a classifying map

eq:229 (9.68) ν Q(q)

M X⊥(q, n+ q)

Here X⊥(q, n + q) is the pullback of X⊥ → BO to the Grassmannian Grq(Rn+q). Stabilizing we

obtain a classifying map of the stable normal bundle. It is simply ι ◦ f , where f is the stable

classifying map (9.67) of the tangent bundle. Note that ι ◦ f is defined without choosing an

embedding.

In this way we pass back and forth between stable tangential X-structures and stable normal

X⊥-structures.
subsec:9.12

(9.69) X-bordism groups. We now imitate Definition 1.19 to define a bordism of closed manifolds

equipped with an X-structure on the stable tangent bundle, or equivalently an X⊥-structure on

the stable normal bundle. Bordism is an equivalence relation, and we denote the bordism group of

closed n-dimensional X-manifolds as ΩX
n .

thm:194 Exercise 9.70. Prove that bordism is an equivalence relation. Pay attention to the symmetry

argument: see (2.20).

thm:197 Exercise 9.71. Show that for X = BSO, as in Example 9.52, this reproduces the oriented bordism

group defined in Lecture 2. Quite generally, if X = BG, then we use the notation ΩG
• in place of ΩX

• .



Lecture 10: Thom spectra and X-bordism

sec:10

We begin with the definition of a spectrum and its antecedents: prespectra and Ω-prespectra.

Spectra are the basic objects of stable homotopy theory. We construct a prespectrum—then a

spectrum—for each unstable or stable tangential structure. They are built using the Thom complex

of vector bundles, so they are known as Thom spectra. For stable tangential structures there is

a version of the Pontrjagin-Thom construction and then the main theorem identifies X-bordism

groups with the homotopy groups of an appropriate Thom spectrum. We then focus on oriented

bordism and summarize the computation of its rational homotopy groups.

Prespectra and spectra

This definition is basic to stable homotopy theory. A good reference is [Ma1]. All spaces in this

section are pointed.

Let X,Y be pointed spaces. Recall from Exercise 4.29 that there is an isomorphism of spaces

eq:230 (10.1) Map∗(ΣX,Y )
∼=−−→ Map∗(X,ΩY )

if we use the correct topologies. In the following definition we only need (10.1) as an isomorphism

of sets.

thm:195 Definition 10.2.

(i) A prespectrum T• is a sequence {Tq}q∈Z>0 of pointed spaces and maps sq : ΣTq → Tq+1.

(ii) An Ω-prespectrum is a prespectrum T• such that the adjoints tq : Tq → ΩTq+1 of the struc-

ture maps are weak homotopy equivalences.

(iii) A spectrum is a prespectrum T• such that the adjoints tq : Tq → ΩTq+1 of the structure

maps are homeomorphisms.

Obviously a spectrum is an Ω-prespectrum is a prespectrum. We can take the sequence of pointed

spaces Tq0 , Tq0+1, Tq0+2, . . . to begin at any integer q0 ∈ Z. If T• is a spectrum which begins at q0,

then we can extend to a sequence of pointed spaces Tq defined for all integers q by setting

eq:231 (10.3) Tq = Ωq0−qTq0 , q < q0.

Note that each Tq, in particular T0, is an infinite loop space:

eq:232 (10.4) T0 ≃ ΩT1 ≃ Ω2T2 ≃ · · ·

There are shift maps on prespectra, Ω-prespectra, and spectra: simply shift the indexing.
86
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thm:198 Example 10.5. Let X be a pointed space. The suspension prespectrum of X is defined by setting

Tq = ΣqX for q ≥ 0 and letting the structure maps sq be the identity maps. In particular,

for X = S0 we obtain the sphere prespectrum with Tq = Sq.
⇐

[Suspension (shifts) of a spectrum]

subsec:10.2

(10.6) Spectra from prespectra. Associated to each prespectrum T• is a spectrum17 LT• called its

spectrification. It is easiest to construct in case the adjoint structure maps tq : Tq → ΩTq+1 are

inclusions. Then set (LT )q to be the colimit of

eq:233 (10.7) Tq
tq−−−→ ΩTq+1

Ωtq+1−−−−→ Ω2Tq+2 −→ · · ·

which is computed as an union; see (4.32). For the suspension spectrum of a pointed space X the

0-space is

eq:234 (10.8) (LT )0 = colim
ℓ→∞

ΩℓΣℓX,

which is usually denoted QX; see (4.39) for QS0.

thm:199 Exercise 10.9. Prove that the homotopy groups of QX are the stable homotopy groups of X.

(Recall Proposition 4.40.)
subsec:10.5

(10.10) Homotopy and homology of prespectra. Let T• be a prespectrum. Define its homotopy

groups by

eq:235 (10.11) πn(T ) = colim
ℓ→∞

πn+ℓTℓ,

where the colimit is over the sequence of maps

eq:240 (10.12) πn+ℓTℓ
πn+ℓtℓ−−−−→ πn+ℓΩTℓ+1

adjunction−−−−−−→ πn+ℓ+1Tℓ+1

Similarly, define the homology groups as the colimit

eq:241 (10.13) Hn(T ) = colim
ℓ→∞

H̃n+ℓTℓ,

where H̃ denotes the reduced homology of a pointed space. We might be tempted to define the

cohomology similarly, but that does not work.18

thm:203 Exercise 10.14. Compute the homology groups of the sphere spectrum. More generally, compute

the homology groups of the suspension spectrum of a pointed space X in terms of the reduced

homology groups of X.

thm:202 Exercise 10.15. Define maps of prespectra. Construct (in case the adjoint structure maps are

inclusions) a map T → LT of prespectra and prove that it induces an isomorphism on homotopy

and homology groups.

17The notation ‘L’ indicates ‘left adjoint’.
18Homotopy and homology commute with colimits, but cohomology does not: there is a derived functor lim1

which measures the deviation.
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Thom spectra

subsec:10.3

(10.16) Pullback of the universal bundle. There is an inclusion

eq:236 (10.17) i : BO(q) −→ BO(q + 1)

defined as the colimit of the inclusions of Grassmannians which are the vertical arrows

eq:238 (10.18) W 1−→ R⊕W

in the diagram

eq:237 (10.19) Grq(Rm) Grq(Rm+1) Grq(Rm+2) · · ·

Grq+1(Rm+1) Grq+1(Rm+2) Grq+1(Rm+3) · · ·

Recalling the definition of the tautological vector bundle S(q) → BO(q), as in (6.27), we see that

there is a natural isomorphism

eq:239 (10.20) i∗S(q + 1)
∼=−−→ R⊕ S(q)

over BO(q).

Let Y be a stable tangential structure (Definition 9.45). Then we also have maps i : Y(q) →
Y(q + 1) and isomorphisms (10.20) of the pullbacks over Y(q).

subsec:10.4

(10.21) Thom complexes and suspension. Let V → Y be a real vector bundle, and fix a metric.

Recall the Thom complex is the quotient V/Cr(V ), where Cr(V ) is the complement of the open

disk bundle of radius r > 0. (The choice of radius is immaterial.)

thm:201 Proposition 10.22. The Thom complex of R⊕ V → Y is homeomorphic to the suspension of the

Thom complex of V → Y .

Note that the Thom complex of the 0-vector bundle—the identity map Y → Y—is the disjoint

union of Y and a single point, which is then the basepoint of the disjoint union. That disjoint

union is denoted Y+. Then Proposition 10.22 implies that the Thom complex of R → Y is ΣY+,

the suspension of Y+. Iterating, and using the notation Y V for the Thom complex of V → Y , we

have Y Rℓ ≃ ΣℓY+. So the Thom complex is a “twisted suspension” of the base space.

Proof. Up to homeomorphism we can replace the disk bundle of R ⊕ V → Y by the Cartesian

product of the unit disk in R and the disk bundle of V → Y . Crushing the complement in R × V

to a point is the same crushing which one does to form the suspension of Y V , as in Figure 20. !



BORDISM: OLD AND NEW 89

Figure 20. The Thom complex of R⊕ V → Y fig:20

subsec:10.6

(10.23) The Thom prespectrum. Let Y be a stable tangential structure. Consider the diagram

eq:242 (10.24) R⊕ S(q) S(q + 1)

Y(q)
i

Y(q + 1)

where we use (10.20). There is an induced map on Thom complexes, and by Proposition 10.22 this

is a map

eq:243 (10.25) sq : Σ
(
Y(q)S(q)

)
−→ Y(q + 1)S(q+1).

thm:204 Definition 10.26.

(i) The Thom prespectrum TY• of a stable tangential structure Y is defined by

eq:244 (10.27) TYq = Y(q)S(q)

and the structure maps (10.25).

(ii) The Thom spectrum MY• is L(TY•).

Note that the maps (10.25) are inclusions, so L(TY•) is defined in (10.6).

subsec:10.7

(10.28) Stable tangential structures from reduction of structure group. Let {G(n)}n∈Z>0 be a se-

quence of Lie groups and G(n) −→ G(n + 1), ρ(n) : G(n) → O(n) sequences of homomorphisms

such that the diagram

eq:245 (10.29) · · · G(n)

ρ(n)

G(n + 1)

ρ(n+1)

· · ·

· · · O(n) O(n+ 1) · · ·
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commutes. There is an stable tangential structure BG → BO which is the colimit of the induced

sequence of maps of classifying spaces

eq:246 (10.30) · · · BG(n)

Bρ(n)

BG(n+ 1)

Bρ(n+1)

· · ·

· · · BO(n) BO(n+ 1) · · ·

The corresponding bordism groups are denoted ΩG
• , consistent with the notation in (2.23) for G(n) =

SO(n) and the obvious inclusion maps.

thm:206 Exercise 10.31. Show that the tangential structures in Example 9.49, Example 9.50, Exam-

ple 9.52, and Example 9.53 are all of the form BG for a suitable G = colimn→∞G(n).

thm:207 Exercise 10.32. Show that the Thom spectrum of the stable framing tangential structure (Ex-

ample 9.50) is the sphere spectrum.

The general Pontrjagin-Thom theorem

This general form of the Pontrjagin-Thom theorem was introduced by Lashof [La]; see [St, §2]
for an exposition.

thm:208 Theorem 10.33. Let X be a stable tangential structure. Then for each n ∈ Z≥0 there is an

isomorphism

eq:247 (10.34) φ : πn(MX⊥) −→ ΩX
n .

The perp stable tangential structure X⊥ is defined in (9.62) and its Thom spectrum in Defini-

tion 10.26. Our notation for the bordism group indicates the stable tangential structure, which is

not standard in the literature.

thm:209 Remark 10.35. I do not know an example in which X⊥ ̸= X. I would like to know one.

thm:210 Lemma 10.36. Let X = BSO be the stable tangential structure of orientations. Then X⊥ = X.

Proof. BSO is a colimit of Grassmannians GrSOn (Rm) of oriented subspaces of Rm. Let the vector

space Rm have its standard orientation. Then the orthogonal complement of an oriented subspace

inherits a natural orientation,19 and this gives a lift

eq:248 (10.37) GrSOn (Rm) GrSOm−n(R
m)

Grn(Rm) Grm−n(Rm)

of (9.63) in which the vertical maps are double covers which forget the orientation. The double

colimit of (10.37) gives an equivalence X⊥ ≈ X. !

19Check the signs carefully to construct an involution in the following.

Dan Freed

Dan Freed
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thm:213 Corollary 10.38. There is an isomorphism

eq:249 (10.39) φ : πn(MSO) −→ ΩSO
n .

In the next lecture we compute the rational vector space obtained by tensoring the left hand side

of (10.39) with Q; then φ⊗Q gives an isomorphism to ΩSO
n ⊗Q.

thm:211 Exercise 10.40. Generalize Lemma 10.36 to the tangential structures described in (10.28).

thm:212 Exercise 10.41. Check that Theorem 10.33 reduces to Corollary 5.22.

Remarks about the proof of Theorem 10.33. The tools from differential topology which go into the

proof were all employed in the first lectures for the special case of stably framed manifolds; see

especially the proof of Theorem 3.9. So we content ourselves of reminding the reader of the map φ

and its inverse map ψ.

The map φ: A class in πn(MX⊥) is represented by

eq:250 (10.42) f : Sn+q −→ TX⊥
q = X⊥(q)S(q)

for some q ∈ Z>0. We choose f so that it is smooth and transverse to the zero section Z(q) ⊂
X⊥(q)S(q). Define M := f−1

(
Z(q)

)
⊂ Sn+q. The normal bundle ν → M to M ⊂ Sn+q is a rank q

bundle isomorphic to the pullback of the normal bundle to Z(q) ⊂ X⊥(q)S(q), which is S(q)→ Z(q),

so inherits the X⊥-structure

eq:251 (10.43) M
f−−→ Z(q) ∼= X⊥(q) −→ X⊥

on its normal bundle, so on its stable normal bundle. By (9.66) this is equivalent to an X-structure

on the stable tangent bundle to M .

The inverse map ψ: We refer to Figure 21. Suppose M is a closed n-manifold with a stable

tangential X-structure, or equivalently a stable normal X⊥-structure. Choose an embedding M ↪→
Sn+q for some q ∈ Z>0 and a tubular neighborhood U ⊂ Sn+q. The normal structure induces—

possibly after suspending to increase q—a classifying map

eq:252 (10.44) ν ≈ U S(q)

M X⊥(q)

The Pontrjagin-Thom collapse, which maps the complement of U to the basepoint, induces a map

eq:253 (10.45) Sn+q → X⊥(q)S(q)

to the Thom complex, and this represents a class in πn(X⊥). !



Figure 21. The Pontrjagin-Thom collapse fig:21

Lecture 11: Hirzebruch’s signature theorem

sec:11

In this lecture we define the signature of a closed oriented n-manifold for n divisible by four. It

is a bordism invariant Sign: ΩSO
n → Z. (Recall that we defined a Z/2Z-valued bordism invariant

of non-oriented manifolds in Lecture 2.) The signature is a complete bordism invariant of closed

oriented 4-manifolds (see (2.28)), as we prove here. It can be determined by tensoring with Q,

or even tensoring with R. We use the general Pontrjagin-Thom Theorem 10.33 to convert the

computation of this invariant to a homotopy theory problem. We state the theorem that all such

bordism invariants can be determined on products of complex projective spaces. In this lecture we

illustrate the techniques necessary to compute that ΩSO
4 ⊗ Q is a one-dimensional rational vector

space. The general proof will be sketched in the next lecture. Here we also prove Hirzebruch’s

formula assuming the general result.

We sometimes tensor with R instead of tensoring with Q. Tensoring with R has the advan-

tage that real cohomology is represented by differential forms. Also, the computation of the real

cohomology of BSO can be related to invariant polynomials on the orthogonal Lie algebra so.

Definition of signature

subsec:11.1

92
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(11.1) The fundamental class of an oriented manifold. Let M be a closed oriented n-manifold for

some n ∈ Z≥0. The orientation20 defines a fundamental class

eq:254 (11.2) [M ] ∈ Hn(M).

Here coefficients in Z are understood. The fundamental class depends on the orientation: the

fundamental class of the oppositely oriented manifold satisfies

eq:255 (11.3) [−M ] = −[M ].

The fundamental class is part of a discussion of duality in homology and cohomology; see [H1,

§3.3]. The fundamental class determines a homomorphism

eq:256 (11.4)
Hn(M ;A) −→ A

c 1−→ ⟨c, [M ]⟩

for any coefficient group A. When A = R we use the de Rham theorem to represent an element c ∈
Hn(M ;R) by a closed differential n-form ω. Then

eq:257 (11.5) ⟨c, [M ]⟩ =
∫

M
ω.

(Recall that integration of differential forms depends on an orientation, and is consistent with (11.3).)

For that reason the map (11.4) can be thought of as an integration operation no matter the coeffi-

cients.
subsec:11.2

(11.6) The intersection pairing. Let M be a closed oriented n-manifold and suppose n = 4k for

some k ∈ Z≥0. To define the intersection pairing we use the cup product on cohomology. Consider,

then, the integer-valued bihomomorphism

eq:258 (11.7)
IM : H2k(M ;Z)×H2k(M ;Z) −→ Z

c1, c2 1−→ ⟨c1 ⌣ c2, [M ]⟩

This intersection form is symmetric, by basic properties of the cup product The abelian groupH2k(M ;Z)
is finitely generated, so has a finite torsion subgroup and a finite rank free quotient; the rank of

the free quotient is the second Betti number b2(M).

thm:214 Exercise 11.8. Prove that the torsion subgroup is in the kernel of the intersection form (11.7).

This means that if c1 is torsion, then I(c1, c2) = 0 for all c2.

It follows that the intersection form drops to a pairing

eq:259 (11.9)
IM : FreeH2k(M ;Z)× FreeH2k(M ;Z) −→ Z

c̄1, c̄2 1−→ ⟨c̄1 ⌣ c̄2, [M ]⟩

on the free quotient. Poincaré duality is the assertion that IM is nondegenerate: if IM (c̄1, c̄2) = 0

for all c̄2, then c̄1 = 0. See [H1, §3.3] for a discussion.

20We remark that any closed manifold (without orientation, or possibly nonorientable) has a fundamental class in
mod 2 homology.
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subsec:11.3

(11.10) Homology interpretation. Another consequence of Poincaré duality is that there is a dual

pairing on FreeH2k(M), and it is more geometric. In fact, the name ‘intersection pairing’ derives

from the homology version. To compute it we represent two homology classes in the middle di-

mension by closed oriented submanifolds C1, C2 ⊂M , wiggle them to be transverse, and define the

intersection pairing as the oriented intersection number IM (C1, C2) ∈ Z.

subsec:11.4

(11.11) de Rham interpretation. Let A be a finitely generated abelian group of rank r. Then

A→ A⊗R has kernel the torsion subgroup of A. The codomain is a real vector space of dimension r,

and the image is a full sublattice isomorphic to the free quotient FreeA. We apply this to the middle

cohomology group. A part of the de Rham theorem asserts that wedge product of closed forms

goes over to cup product of real cohomology classes, and so we can represent the intersection

pairing IM ⊗ R in de Rham theory by the pairing

eq:260 (11.12)
ÎM : Ω2k(M)× Ω2k(M) −→ R

ω1,ω2 1−→
∫

M
ω1 ∧ ω2

The pairing is symmetric and makes sense for all differential forms.

thm:215 Exercise 11.13. Use Stokes’ theorem to prove that (11.12) vanishes if one of the forms is closed

and the other exact. Conclude that it induces a pairing on de Rham cohomology, hence by the de

Rham theorem on real cohomology.

The induced pairing on real cohomology is IM ⊗R.

thm:216 Definition 11.14. The signature Sign(M) is the signature of the symmetric bilinear form IM ⊗R.

Recall that a symmetric bilinear form B on a real vector space V has three numerical invariants

which add up to the dimension of V : the nullity and two numbers b+, b−. There is a basis e1, . . . , en
of V so that

eq:261 (11.15)

B(ei, ej) = 0, i ̸= j;

B(ei, ei) = 1, i = 1, . . . , b+;

B(ei, ei) = −1, i = b+ + 1, . . . , b+ + b−;

B(ei, ei) = 0, i = b+ + b− + 1, . . . , n.

There is a subspace kerB ⊂ V , the null space of B, whose dimension is the nullity. b+ is the

dimension of the maximal subspace on which B is positive definite; b− is the dimension of the

maximal subspace on which B is negative definite. See [HK], for example. The signature is defined

to be the difference Sign(B) = b+ − b−. Note B is nondegenerate iff kerB = 0 iff the nullity

vanishes.
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Examples

The following depends on a knowledge of the cohomology ring in several cases, but you can also

use the oriented intersection pairing. We begin with several 4-manifolds.

thm:217 Example 11.16 (S4). Since H2(S4;Z) = 0, we have Sign(S4) = 0.

thm:218 Example 11.17 (S2 × S2). The second cohomology H2(S2×S2;Z) has rank two. In the standard

basis the intersection form is represented by the matrix

eq:262 (11.18) H =

(
0 1
1 0

)

The ‘H’ stands for ‘hyperbolic’. One way to see this is to compute in homology. The submani-

folds S2 × pt and pt×S2 represent generators of H2(S2 × S2), each has self-intersection number

zero, and the intersection number of one with the other is one. Diagonalize H to check that its

signature is zero.

thm:219 Example 11.19 (K3 surface). The K3-surface was introduced in (5.60). You computed its total

Chern class, so its Pontrjagin class, in Exercise 7.67. One can compute (I’m not giving techniques

here for doing so) that the intersection form is

eq:263 (11.20) − E8 ⊕−E8 ⊕H ⊕H ⊕H,

where E8 is an 8× 8 symmetric positive definite matrix of integers derived from the Lie group E8.

Its signature is −16.

The K3 surface is spin(able), which follows from the fact that its first Chern class vanishes. (A

related statement appears as Proposition 9.28.) The following important theorem of Rohlin applies.

thm:220 Theorem 11.21 (Rohlin). Let Mn be a closed oriented manifold with n ≡ 4 (mod 8). Then

SignM is divisible by 16.

thm:221 Example 11.22 (CP2). The groupH2(CP2;Z) is infinite cyclic and a positive generator is Poincareé

dual to a projective line CP1 ⊂ CP2. The self-intersection number of that line is one, whence

SignCP2 = 1.

thm:222 Example 11.23 (CP2). This is the usual notation for the orientation-reversed manifold −CP2.

By (11.3) we find SignCP2 = −1.

Obviously, neither CP2 nor CP2 is spinable, as proved in Corollary 9.29 and now also follows from

Theorem 11.21.

I leave several important facts to you.

thm:223 Exercise 11.24. Prove that SignCP2ℓ = 1 for all ℓ ∈ Z>0.

thm:224 Exercise 11.25. Show that the signature is additive under disjoint union and also connected sum.

Prove that if M1,M2 have dimensions divisible by 4, then Sign(M1 ×M2) = Sign(M1) Sign(M2).

In fact, the statement is true without restriction on dimension as long as we define SignM = 0 if

dimM is not divisible by four.
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Signature and bordism

We prove that the signature is a bordism invariant: if M4k = ∂N4k+1 and N is compact and

oriented, then SignM = 0. We first prove two lemmas. The first should remind you of Stokes’

theorem.

thm:225 Lemma 11.26. Let N4k+1 be a compact oriented manifold with boundary i : M4k ↪→ N . Suppose

c ∈ H4k(N ;A) for some abelian group A. Then

eq:264 (11.27) ⟨i∗(c), [M ]⟩ = 0.

Proof. We have

eq:265 (11.28) ⟨i∗(c), [M ]⟩ = ⟨c, i∗[M ]⟩ = 0

since i∗[M ] = 0. (This is a property of duality; intuitively, the manifold M is a boundary, so too

is its fundamental class.) !

This can also be proved using differential forms, via the de Rham theorem, if A ⊂ R. Namely,

if ω is a closed 4k-form on N which represents the real image of c in H4k(N ;R), then the pair-

ing ⟨i∗(c), [M ]⟩ can be computed as

eq:266 (11.29)

∫

M
i∗(ω) =

∫

N
dω = 0

by Stokes’ theorem.

thm:226 Lemma 11.30. Let B : V × V → R be a nondegenerate symmetric bilinear form on a real vector

space V . Suppose W ⊂ V is isotropic—B(w1, w2) = 0 for all w1, w2 ∈W—and 2 dimW = dimV .

Then SignB = 0.

Proof. Let e1 ∈W be nonzero. SinceB is nondegenerate there exists f1 ∈ V such that B(e1, f1) = 1.

Shifting f1 by a multiple of e1 we can arrange that B(f1, f1) = 0. In other words, the form B on the

subspace R{e1, f1} ⊂ V is hyperbolic, so has signature zero. Let V1 be the orthogonal complement

to R{e1, f1} ⊂ V relative to the form B. Since B is nondegenerate we have V = R{e1, f1} ⊕ V1.

Also, W1 := W ∩ V1 ⊂ V1 is isotropic and 2dimW1 = dimV1. Set B1 = B
∣∣
V1
. Then the data

(V1, B1,W1) satisfies the same hypotheses as (V,B,W ) and has smaller dimension. So we can

repeat and in a finite number of steps write B as a sum of hyperbolic forms. !

thm:227 Theorem 11.31. Let N4k+1 be a compact oriented manifold with boundary i : M4k ↪→ N . Then

SignM = 0.

Proof. Consider the commutative diagram

eq:267 (11.32) H2k(N ;R) i∗

∼=

H2k(M ;R)

∼=

H2k+1(N,M ;R)

∼=

H2k+1(N,M ;R) H2k(M ;R)
i∗

H2k(N ;R)



BORDISM: OLD AND NEW 97

The rows are a stretch of the long exact sequences of the pair (N,M) in real cohomology and

real homology. The vertical arrows are Poincaré duality isomorphisms. We claim that image(i∗) is

isotropic for the real intersection pairing

eq:268 (11.33) IM ⊗ R : H2k(M ;R)×H2k(M ;R) −→ R

and has dimension 1
2 dimH2k(M ;R). The isotropy follows immediately from Lemma 11.26. This

and the commutativity of (11.32) imply that (i) image(i∗) maps isomorphically to ker(i∗) under

Poincaré duality, and (ii) image(i∗) annihilates ker(i∗) under the pairing of cohomology and homol-

ogy. It is an easy exercise that these combine to prove 2 dim image(i∗) = dimH2k(M ;R). Now the

theorem follows immediately from Lemma 11.30. !

thm:228 Corollary 11.34. For each k ∈ Z≥0 the signature defines a homomorphism

eq:269 (11.35) Sign: ΩSO
4k −→ Z.

That (11.35) is well-defined follows from Theorem 11.31; that it is a homomorphism follows from

Exercise 11.25. In fact, defining the signature to vanish in dimensions not divisible by four, we see

from Exercise 11.25 that

eq:270 (11.36) Sign: ΩSO −→ Z

is a ring homomorphism.

Any manifold with nonzero signature is not null bordant. In particular,

thm:241 Proposition 11.37. CP2ℓ is not null bordant, l ∈ Z>0.

thm:242 Exercise 11.38. Demonstrate explicitly that CP2ℓ+1 is null bordant by exhibiting a null bordism.

Hirzebruch’s signature theorem

subsec:11.6

(11.39) Pontrjagin numbers. Recall the Pontrjagin classes, defined in (7.68). For a smooth

manifold M we have pi(M) ∈ H4i(M ;Z). Suppose M is closed and oriented. Then for any

sequence (i1, . . . , ir) of positive integers we define the Pontrjagin number

eq:271 (11.40) pi1,...,ir(M) = ⟨pi1(M)⌣ · · ·⌣ pir(M), [M ]⟩.

By degree count, this vanishes unless 4(i1+· · ·+ir) = dimM . In any case Lemma 11.26 immediately

implies the following

thm:229 Proposition 11.41. The Pontrjagin numbers are bordism invariants

eq:272 (11.42) pi1,...,ir : Ω
SO
n −→ Z.
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subsec:11.7

(11.43) Tensoring with Q. The following simple observation is crucial: the map Z −→ Z ⊗ Q
is injective. For this is merely the inclusion Z ↪→ Q. This means that (11.35) and (11.42) are

determined by the linear functionals

eq:273 (11.44) Sign: ΩSO
4k ⊗Q −→ Q

and

eq:274 (11.45) pi1,...,ir : Ω
SO
n ⊗Q −→ Q

obtained by tensoring with Q. This has the advantage that the vector space ΩSO
n ⊗ Q is easier to

compute than the abelian group ΩSO
n . In fact, we already summarized the main results about ΩSO

in Theorem 2.24. These follow by applying the Pontrjagin-Thom theorem of Lecture 10, specifically

Corollary 10.38. We recall just the statement we need here and present the proof in the next lecture.

thm:230 Theorem 11.46. There is an isomorphism

eq:275 (11.47) Q[y1, y2, y3, . . . ]
∼=−−→ ΩSO ⊗Q

under which yk maps to the oriented bordism class of the complex projective space CP2k.

Assuming Theorem 11.46 for now, we can prove the main theorem of this lecture.

thm:231 Theorem 11.48 (Hirzebruch). Let M4k be a closed oriented manifold. Then

eq:276 (11.49) SignM = ⟨L(M), [M ]⟩,

where L(M) ∈ H•(M ;Q) is the L-class (7.61).

Proof. It suffices to check the equation (11.49) on a basis of the rational vector space ΩSO
4k ⊗Q. By

Theorem 11.46 this is given by a product of projective spaces Mk1,...kr := CP2k1 × · · · × CP2kr for

k1 + · · · + kr = k. By Exercise 11.24 and Exercise 11.25 we see that

eq:281 (11.50) SignMk1,...,kr = 1.

On the other hand, by Proposition 8.8 we have

eq:277 (11.51) ⟨L(CP2ki), [CPki ]⟩ = 1

for all i. Since

eq:278 (11.52) L(Mk1,...,kr) = L(CP2k1) · · ·L(CP2kr)
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and

eq:279 (11.53) [CP2k1 × · · ·× CP2kr ] = [CP2k1 ]× · · ·× [CP2kr ],

it follows that

eq:280 (11.54) ⟨L(Mk1,...,kr), [Mk1,...,kr ]⟩ = 1.

(The product on the right hand side of (11.53) is the tensor product in the Kunneth theorem for the

rational homology vector space H2k(CP2k1×· · ·×CP2kr ;Q).) The theorem now follows from (11.50)

and (11.54). !

Integrality

For a 4-manifold M4 the signature formula (11.49) asserts

eq:282 (11.55) SignM = ⟨p1(M)/3, [M ]⟩.

In particular, since the left hand side is an integer, so is the right hand side. A priori this is far from

clear: whereas p1(M) is an integral cohomology class, 1
3p1(M) is definitely not—it is only a rational

class. Also, there exist real vector bundles V → M over 4-manifolds so that ⟨p1(V )/3, [M ]⟩ is not
an integer.

thm:232 Exercise 11.56. Find an example. Even better, find an example in which M is a spin manifold.

So the integrality is special to the tangent bundle.

This is the tip of an iceberg of integrality theorems.

thm:233 Exercise 11.57. Work out the formula for the signature in 8 and 12 dimensions in terms of

Pontrjagin numbers. Note that the denominators grow rapidly.

Hurewicz theorems

A basic tool for the computation is the Hurewicz theorem, which relates homotopy and homology

groups.

subsec:11.8

(11.58) The integral Hurewicz theorem. Let (X,x) be a pointed topological space.21 The Hurewicz

map

eq:283 (11.59) ηn : πnX −→ HnX

21I didn’t mention earlier the technical issue that the basepoint should be nondegenerate in a certain sense: the
inclusion {x} ↪→ X should be a cofibration. See [Ma1] for details.



100 D. S. FREED

sends a homotopy class represented by a pointed map f : Sn → X to the homology class f∗[Sn].

You probably proved in the prelim class that for n = 1 the Hurewicz map is surjective with kernel

the commutator subgroup [π1X,π1X] ⊂ π1X, i.e., H1X is the abelianization of π1X. For higher n

we have the following. Recall that a pointed space is k-connected, k ∈ Z>0, if it is path connected

and if πiX = 0 for i ≤ k.

thm:234 Theorem 11.60 (Hurewicz). Let X be a pointed space which is (n − 1)-connected for n ∈ Z≥2.

Then the Hurewicz homomorphism ηn is an isomorphism.

We refer the reader to standard texts (e.g. [H1], [Ma1]) for a proof of the Hurewicz theorem. The

following is immediate by induction.

thm:238 Corollary 11.61. Let X be a 1-connected pointed space which satisfies HiX = 0 for i = 2, 3, . . . , n−
1. Then X is (n− 1)-connected and (11.59) is an isomorphism.

subsec:11.11

(11.62) The rational Hurewicz theorem. There is also a version of the Hurewicz theorem over Q.

We state it here and refer to [KK] for an “elementary” proof. (It truly is more elementary than

other proofs!)

thm:243 Theorem 11.63 (Q-Hurewicz). Let X be a 1-connected pointed space, and assume that πiX⊗Q =

0, 2 ≤ i ≤ n− 1, for some n ∈ Z≥2. Then the rational Hurewicz map

eq:292 (11.64) ηi ⊗Q : πiX ⊗Q −→ Hi(X;Q)

is an isomorphism for 1 ≤ i ≤ 2n− 2.

It is also true that η2n−1 is surjective, but we do not need this.

Computation for 4-manifolds

By Corollary 10.38 there is an isomorphism

eq:288 (11.65) φ : π4(MSO) −→ ΩSO
4 .

Recall that π4(MSO) ∼= π4+qMSO(q) for q sufficiently large. And (11.43) it suffices to compute

π4(MSO)⊗Q.

thm:244 Theorem 11.66. If q ≥ 6, then dimQ π4+q (MSO(q)⊗Q) = 1.

Proof. Recall that there is a diffeomorphism SO(3) ≃ RP3, so its rational homotopy groups are

isomorphic to those of the double cover S3, the first few of which are

eq:293 (11.67) πiSO(3)⊗Q ∼=

{
0, i = 1, 2;

Q, i = 3.
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Now for any integer q ≥ 3 the group SO(q + 1) acts transitively on Sq with stabilizer of a point

in Sq the subgroup SO(q). So there is a fiber bundle SO(q)→ SO(q + 1)→ Sq, which is in fact a

principal SO(q)-bundle.22 The induced long exact sequence of homotopy groups23 has a stretch

eq:294 (11.68) πi+1SO(q + 1) −→ πi+1S
q −→ πiSO(q) −→ πiSO(q + 1) −→ πiS

q −→ πi−1SO(q) −→ · · ·

and it remains exact after tensoring with Q. First use it to show π2SO(q)⊗Q = 0 for all24 q ≥ 3.

Set q = 3. Then, using the result that π4S3 ∼= Z/2Z, so that π4S3 ⊗ Q = 0, we deduce that

π3SO(4)⊗Q has dimension 2. Now set q = 4 and deduce that π3SO(5)⊗Q has dimension 1. You

will need to also use the result that π5S3 ⊗Q = 0. By induction on q ≥ 5 we then prove

eq:295 (11.69) πiSO(q)⊗Q ∼=

{
0, i = 1, 2;

Q, i = 3

for all q ≥ 5.

Next, use the universal fiber bundle G → EG → BG for G = SO(q), q ≥ 5, which is a special

case of (6.61), and the fact that EG is contractible, so has vanishing homotopy groups, to deduce

eq:296 (11.70) πiBSO(q)⊗Q ∼=

{
0, i = 1, 2, 3;

Q, i = 4

from the long exact sequence of homotopy groups. Then the Q-Hurewicz Theorem 11.63 implies

eq:297 (11.71) Hi
(
BSO(q);Q

) ∼=

⎧
⎪⎨

⎪⎩

0, i = 1, 2, 3;

Q, i = 4;

0, i = 5, 6

for q ≥ 5.

The proof of the Thom isomorphism theorem, Proposition 8.35, gives a cell structure for the

Thom complex. The resulting Thom isomorphism on homology implies

eq:298 (11.72) Hi
(
MSO(q);Q

) ∼=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, i = 1, . . . , q − 1;

Q, i = q;

0, i = 1 + q, 2 + q, 3 + q

Q, i = 4 + q

0, i = 5 + q, 6 + q.

The cell structure also implies that the Thom complex MSO(q) of the universal bundle S(q) →
BSO(q) is (q − 1)-connected. The Q-Hurewicz theorem then implies that the Q-Hurewicz map

22We construct it here by fixing a point in Sq . Can you construct an isomorphic principal SO(q)-bundle without
choosing a basepoint? what is the geometric meaning of the total space?

23We have used this before; see [H1, Theorem 4.41] or, for a quick review, [BT, §17].
24In fact, π2G = 0 for any finite dimensional Lie group G.
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πiMSO(q)⊗Q→ Hi
(
MSO(q);Q

)
is an isomorphism for 1 ≤ i ≤ 2q−2, whence if q ≥ 6 we deduce

in particular

eq:299 (11.73) π4+q
(
MSO(q);Q

) ∼= Q.

!

By Proposition 11.37 the class of CP2 in ΩSO
4 ⊗ Q is nonzero. (We need a bit more: CP2 has

infinite order in ΩSO
4 because its signature is nonzero and the signature (11.35) is a homomorphism.)

Since π4(MSO) ⊗ Q is one-dimensional, the class of CP2 is a basis. Finally, we prove (11.55) by

checking both sides for M = CP2 using Example 11.22, Proposition 7.51, and the definition (7.68)

of the Pontrjagin classes.



Lecture 12: More on the signature theorem

sec:12

Here we sketch the proof of Theorem 11.46. In the last lecture we indicated most of the techniques

involved by proving the theorem for 4-manifolds. There are two additional inputs necessary for the

general case. First, we need to know that the rational cohomology of BSO is the polynomial ring

on the Pontrjagin classes. We simply quote that result here, but remark that it follows from Theo-

rem 7.72. In fact, all we really end up using is the graded dimension of the rational cohomology—its

dimension in each degree. The second input is purely algebraic, to do with symmetric functions.

We indicate what the issue is and refer the reader to the literature.

As we are about to leave classical bordism, we begin with a comment—thanks to a student

question and off-topic with respect to the signature theorem—which could have been made right

at the beginning of the course.

Bordism as a generalized homology theory

The basic building blocks of singular homology theory are continuous maps

eq:300 (12.1) f : ∆q −→ X

from the standard q-simplex ∆q to a topological space X. Chains are formal sums of such maps,

and there is a boundary operator, so a notion of closed chains, or cycles. From this one builds a

chain complex and homology. A crucial case is X = pt. Then the homology question comes down

to whether a closed simplicial complex is a boundary. It is: one can simply cone off the simplicial

complex σ to construct a new simplicial complex Cσ whose boundary is σ.

In bordism theory—as a generalized homology theory—one replaces (12.1) by continuous maps

eq:301 (12.2) f : M q −→ X

out of a closed q-dimensional manifold M . Now rather than defining a formal abelian group of

“chains”, we define the equivalence relation of bordism: fi : Mi → X, i = 0, 1, are equivalent if

there exists a compact (q + 1)-manifold N with ∂N = M0 ⨿M1 and a continuous map f : N → X

whose restriction to the boundary is f0⨿f1. (Of course, we should make a more elaborate definition

modeled on Definition 1.19.) The equivalence classes turn out to be an abelian group, which we

denote Ωq(X). Then the graded abelian group Ω•(X) satisfies all of the axioms of homology theory

except for the specification of Ω•(pt). What we have been studying is Ω•(pt). But I want you to

know that there is an entire homology theory there. See [DK] for one account.

I remark that there is a variation ΩX
• (X) for every stable tangential structure X.

103
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Mising steps

We begin with an important result in its own right.

subsec:12.2⇒
(12.3) The cohomology of BSO. [summarize Milnor-Stasheff argument with Gysin sequence and induction to

compute dimension of the rational cohomology.]

thm:246 Theorem 12.4. The rational cohomology ring of the classifying space of the special orthogonal

group is the polynomial ring generated by the Pontrjagin classes:

eq:302 (12.5) H•(BSO;Q) ∼= Q[p1, p2, . . . ].

One proof follows from Theorem 7.72, which identifies real25 cohomology classes on BSO(q) with

invariant polynomials on the orthogonal algebra o(q). The latter is the Lie algebra of real skew-

symmetric matrices. ‘Invariant’ means invariant under conjugation by an orthogonal matrix. So for

a skew-symmetric matrix A we must produce a polynomial P (A) ∈ R so that P (OAO−1) = P (A)

for every orthogonal matrix O. This is easy to do. Define

eq:303 (12.6) Qt(A) = det(I − tA) = 1 + P1(A)t
2 + P2(A)t

4 + · · · ,

where I is the identity matrix. Then Qt(A) is a polynomial in t with real coefficients, and by the

skew-symmetry of A we can show Q−t(A) = Qt(A), so only even powers of t occur. (Prove it!) The

coefficients Pi are invariant polynomials in A, and up to a factor they correspond to the universal

Pontrjagin classes.

thm:247 Exercise 12.7 ([Kn]). Here are some hints—using some theory of compact Lie groups—towards

a proof of Theorem 7.72.26 Let T ⊂ G be a maximal torus, N ⊂ G its normalizer, and W = N/T

the Weyl group. Identify G-invariant polynomials on g with W -invariant polynomials on the Lie

algebra t of T . Consider the iterated fibration EG/T → EG/N → EG/G, which is BT → BN →
BG. The first map is a finite cover, and induces an isomorphism in rational cohomology. The fiber

of BN → BG is G/N , which has the rational cohomology of a sphere.

subsec:12.4

(12.8) The proof. Now we sketch a proof of most of Theorem 11.46, which we restate here. The

statement about complex projective spaces is deferred to a later subsection.

thm:245 Theorem 12.9. There is an isomorphism

eq:308 (12.10) Q[x1, x2, x3, . . . ]
∼=−−→ ΩSO ⊗Q.

All we really need from the statement is that the dimension of ΩSO
4k ⊗ Q is p(k), the number of

partitions of k.

25The result over the rationals is stronger, but follows since the Pontrjagin classes are rational.
26The Lie group G in the theorem should be assumed connected.
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Proof. The rational homology of BSO is the dual vector space to the rational cohomology, so

eq:304 (12.11) H•(BSO;Q) ∼= Q[p1, p2, . . . ]

for dual homology classes p1, p2, . . . . The Thom isomorphism theorem, as in the derivation of (11.72),

and the definition (10.13) of the homology of a spectrum, imply

eq:305 (12.12) H•(MSO;Q) ∼= Q[q1, q2, . . . ]

for some classes qk ∈ H2k(MSO;Q). Finally, MSO(q) is (q − 1)-connected, which by Q-Hurewicz

implies that the map

eq:306 (12.13) ηi ⊗Q : πi
(
MSO(q)

)
⊗Q −→ Hi

(
MSO(q);Q

)

is an isomorphism for 1 ≤ i ≤ 2q − 2. In the limit q →∞ we obtain an isomorphism for all i. !

subsec:12.5

(12.14) A very nice exercise. The following is a great test of your understanding of the Pontrjagin-

Thom construction.

thm:248 Exercise 12.15. Suppose that M is a closed oriented 4k-manifold whose rational bordism class is

the sum27 ci1···irx
i1 · · · xir under the isomorphism (11.47). Recall the Pontrjagin number (11.42).

Prove that ci1···ir is the Pontrjagin number pi1···ir of the stable normal bundle to M . You will need,

of course, to use the generators xi defined in the proof.

Complex projective spaces as generators

The content of Theorem 12.9 is that ΩSO
4k ⊗ Q is a rational vector space of dimension p(k),

the number of partitions of k. Recall that a partition of a positive integer k is a finite unordered

set {i1, . . . , ir} of positive integers such that i1+· · ·+ir = k. For example, ΩSO
8 ⊗Q is 2-dimensional.

The remaining statement we must prove is the following.

thm:249 Proposition 12.16. Let k ∈ Z≥1. The manifolds Mi1···ir := CP2i1 × · · · · CP2ir form a basis

of ΩSO
4k ⊗Q, where {i1, . . . , ir} ranges over all partitions of k.

The case k = 1 is easy, as we used in Lecture 11. For k = 2 we must show that the classes of

CP4 and CP2 × CP2 are linearly independent. We can use the Pontrjagin numbers p21, p2 to show

that: the matrix

eq:307 (12.17)

(
25 10
18 9

)

is nondegenerate. The rows represent the manifolds CP4, CP2×CP2 and the colums the Pontrjagin

numbers p21, p2. This sort of argument does not easily generalize. Rather than repeat the necessary

algebra of symmetric functions here, we defer to [MS, §16].
27over a basis of polynomials of degree 4k



Lecture 13: Categories

sec:13

We begin again. In Lecture 1 we used bordism to define an equivalence relation on closed

manifolds of a fixed dimension n. The set of equivalence classes has an abelian group structure

defined by disjoint union of manifolds. Now we extract a more intricate algebraic structure from

bordisms. The equivalence relation only remembers the existence of a bordism; now we record

the bordism itself. The bordism now has a direction: it is a map from one closed manifold to

another. Gluing of bordisms, previously used to prove transitivity of the equivalence relation, is

now recorded as a composition law on bordisms. To obtain an associative composition law we

remember bordisms only up to diffeomorphism. (In subsequent lectures we will go further and

remember the diffeomorphism.) The algebraic structure obtained is a category Bord⟨n−1,n⟩, which

here replaces the set of equivalence classes Ωn. The notation for this category suggests more

refinements to come later. Disjoint union provides an algebraic operation on Bord⟨n−1,n⟩, which is

then a symmetric monoidal category.

In this lecture we introduce categories, homomorphisms, natural transformations, and symmetric

monoidal structures. Pay particular attention to the example of the fundamental groupoid (Ex-

ample 13.14), which shares some features with the bordism category, though with one important

difference: the bordism category is not a groupoid.

Categories

thm:250 Definition 13.1. A category C consists of a collection of objects, for each pair of objects y0, y1 a

set of morphisms C(y0, y1), for each object y a distinguished morphism idy ∈ C(y, y), and for each

triple of objects y0, y1, y2 a composition law

eq:309 (13.2) ◦ : C(y1, y2)× C(y0, y1) −→ C(y0, y2)

such that ◦ is associative and idy is an identity for ◦.

The last phrase indicates two conditions: for all f ∈ C(y0, y1) we have

eq:310 (13.3) idy1 ◦f = f ◦ idy0 = f

and for all f1 ∈ C(y0, y1), f2 ∈ C(y1, y2), and f3 ∈ C(y2, y3) we have

eq:311 (13.4) (f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1).

We use the notation y ∈ C for an object of C and f : y0 → y1 for a morphism f ∈ C(y0, y1).
106
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thm:251 Remark 13.5 (set theory). The words ‘collection’ and ‘set’ are used deliberately. Russell pointed

out that the collection of all sets is not a set, yet we still want to consider a category whose objects

are sets. For many categories the objects do form a set. In that case the moniker ‘small category’

is often used. In these lecture we will be sloppy about the underlying set theory and simply talk

about a set of objects.

thm:252 Definition 13.6. Let C be a category.

(i) A morphism f ∈ C(y0, y1) is invertible (or an isomorphism) if there exists g ∈ C(y1, y0)

such that g ◦ f = idy0 and f ◦ g = idy1 .

(ii) If every morphism in C is invertible, then we call C a groupoid.

subsec:13.1

(13.7) Reformulation. To emphasize that a category is an algebraic structure like any other, we

indicate how to formulate the definition in terms of sets28 and functions. Then a category C consists

of a set C0 of objects, a set C1 of functions, and structure maps

eq:312 (13.8)

i : C0 −→ C1

s, t : C1 −→ C0

c : C1 ×C0
C1 −→ C1

which satisfy certain conditions. The map i attaches to each object y the identity morphism idy,

the maps s, t assign to a morphism (f : y0 → y1) ∈ C1 the source s(f) = y0 and target t(f) = y1,

and c is the composition law. The fiber product C1 ×C0
C1 is the set of pairs (f2, f1) ∈ C1 × C1

such that t(f1) = s(f2). The conditions (13.3) and (13.4) can be expressed as equations for these

maps.

Examples of categories

thm:253 Example 13.9 (monoid). Let C be a category with a single object, i.e., C0 = {∗}. Then C1 is

a set with an identity element and an associative composition law. This is called a monoid. A

groupoid with a single object is a group.29

thm:254 Example 13.10 (set). At the other extreme, suppose C is a category with only identity maps,

i.e., i : C0 → C1 is an isomorphism of sets (a 1:1 correspondence). Then C is given canonically by

the set C0 of objects, and we identify the category C as this set.

thm:255 Example 13.11 (action groupoid). Let S be a set and G a group which acts on S. There is an

associated groupoid C = S//G with objects C0 = S and morphisms C1 = G× S. The source map

is projection to the first factor and the target map is the action G × S → S. We leave the reader

to work out the composition and show that the axioms for a category are a direct consequence of

those for a group action. See Figure 22.

28ignoring set-theoretic complications, as in Remark 13.5
29So, by analogy, you’d think instead of ‘category’ we’d use ‘monoidoid’ !
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Figure 22. The action groupoid S//G fig:22

thm:257 Example 13.12 (category of sets). Assuming that the set theoretic difficulties alluded to in Re-

mark 13.5 are overcome, there is a category Set whose objects are sets and whose morphisms are

functions.

thm:256 Example 13.13 (subcategories of Set). There is a category Ab of abelian groups. An object A ∈
Ab is an abelian group and a morphism f : A0 → A1 is a homomorphism of abelian groups.

Similarly, there is a category Vectk of vector spaces over a field k. There is also a category of rings

and a category of R-modules for a fixed ring R. (Note Ab is the special case R = Z.) Each of these

categories is special in that the hom-sets are abelian groups. There is also a category Top whose

objects are topological spaces Y and in which a morphism f : Y0 → Y1 is a continuous map.

thm:258 Example 13.14 (fundamental groupoid). Let Y be a topological space. The simplest invariant

is the set π0Y . It is defined by imposing an equivalence relation on the set Y underlying the

topological space: points y0 and y1 in Y are equivalent if there exists a continuous path which

connects them, i.e., a continuous map γ : [0, 1]→ Y which satisfy γ(0) = y0, γ(1) = y1.

The fundamental groupoid C = π≤1Y is defined as follows. The objects C0 = Y are the points

of Y . The hom-set C(y0, y1) is the set of homotopy classes of maps γ : [0, 1]→ Y which satisfy γ(0) =

y0, γ(1) = y1. The homotopies are taken “rel boundary”, which means that the endpoints are fixed

in a homotopy. Explicitly, a homotopy is a map

eq:313 (13.15) Γ : [0, 1] × [0, 1] −→ Y

such that Γ(s, 0) = y0 and Γ(s, 1) = y1 for all s ∈ [0, 1]. The composition of homotopy classes of

paths is associative, and every morphism is invertible. Note that the automorphism group C(y, y)

is the fundamental group π1(Y, y). So π≤1Y encodes both π0Y and all of the fundamental groups.

thm:266 Exercise 13.16. Given a groupoid C use the morphisms to define an equivalence relation on the

objects and so a set π0C of equivalence classes. Can you do the same for a category which is not a

groupoid?

Functors and natural transformations

thm:259 Definition 13.17. Let C,D be categories.

(i) A functor or homomorphism F : C → D is a pair of maps F0 : C0 → D0, F1 : C1 → D1

which commute with the structure maps (13.8).
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(ii) Suppose F,G : C → D are functors. A natural transformation η from F to G is a map of

sets η : C0 → D1 such that for all morphisms (f : y0 → y1) ∈ C1 the diagram

eq:314 (13.18) Fy0
Ff

η(y0)

Fy1

η(y1)

Gy0
Gf

Gy1

commutes. We write η : F → G.

(iii) A natural transformation η : F → G is an isomorphism if η(y) : Fy → Gy is an isomorphism

for all y ∈ C.

In (i) the commutation with the structure maps means that F is a homomorphism in the usual sense

of algebra: it preserves compositions and takes identities to identities. A natural transformation is

often depicted in a diagram

eq:322 (13.19) C

G

F

η D

with a double arrow.

thm:260 Example 13.20 (functor categories). Show that for fixed categories C,D there is a category Hom(C,D)

whose objects are functors and whose morphisms are natural transformations.

thm:261 Remark 13.21. Categories have one more layer of structure than sets. Intuitively, elements of

a set have no “internal” structure, whereas objects in a category do, as reflected by their self-

maps. Numbers have no internal structure, whereas sets do. Try that intuition out on each of the

examples above. Anything to do with categories has an extra layer of structure. This is true for

homomorphisms of categories: they form a category (Example 13.20) rather than a set. Below we

see that when we define a monoidal structure there is an extra layer of data before conditions enter.

thm:262 Example 13.22. There is a functor ∗∗ : Vect → Vect which maps a vector space V to its double

dual V ∗∗. But this is not enough to define it—we must also specify the map on morphisms, which

in this case are linear maps. Thus if f : V0 → V1 is a linear map, there is an induced linear map

f∗∗ : V ∗∗
0 → V ∗∗

1 . (Recall that f∗ : V ∗
1 → V ∗

0 is defined by ⟨f∗(v∗1), v0⟩ = ⟨v∗1 , f(v0)⟩ for all v0 ∈ V0,

V ∗
1 ∈ V ∗

1 . Then define f∗∗ = (f∗)∗.) Now there is a natural transformation η : idVect → ∗∗ defined
on a vector space V as

eq:315 (13.23)
η(V ) : V −→ V ∗∗

v 1−→
(
v∗ 1→ ⟨v∗, v⟩

)

for all v∗ ∈ V ∗. I encourage you to check (13.18) carefully.
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thm:263 Example 13.24 (fiber functor). Let Y be a topological space and π : Z → Y a covering space.

Then there is a functor

eq:316 (13.25)
Fπ : π≤1Y −→ Set

y −→ π−1(y)

which maps each point of y to the fiber over y. Again, this is not a functor until we tell how

morphisms map. For that we need to use the theory of covering spaces. Any path γ : [0, 1] →
Y “lifts” to an isomorphism γ̃ : π−1(y0) → π−1(y1), and the isomorphism is unchanged under

homotopy. A map

eq:317 (13.26) Z0
ϕ

π0

Z1

π1

Y

of covering spaces induces a natural transformation ηϕ : Fπ0 → Fπ1 .

Symmetric monoidal categories

A category is an enhanced version of a set; a symmetric monoidal category is an enhanced

version of a commutative monoid. Just as a commutative monoid has data (composition law,

identity element) and conditions (associativity, commutativity, identity property), so too does a

symmetric monoidal category have data and conditions. Only now the conditions of a commutative

monoid become data for a symmetric monoidal category. The conditions are new and numerous.

We do not spell them all out, but defer to the references.

subsec:13.2

(13.27) Product categories. If C ′, C ′′ are categories, then there is a Cartesian product category

C = C ′ × C ′′. The set of objects is the Cartesian product C0 = C ′
0 × C ′′

0 and the set of objects

is likewise the Cartesian product C1 = C ′
1 × C ′′

1 . We leave the reader to work out the structure

maps (13.8).

thm:264 Definition 13.28. Let C be a category. A symmetric monoidal structure on C consists of an

object

eq:323 (13.29) 1C ∈ C,

a functor

eq:318 (13.30) ⊗ : C × C −→ C
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and natural isomorphisms

eq:319 (13.31) C × C × C

−⊗(−⊗−)

(−⊗−)⊗−

α C ,

eq:320 (13.32) C × C

(−⊗−)◦τ

−⊗−

σ C ,

and

eq:321 (13.33) C

idC

1C⊗−

ι C .

The quintuple (1C ,⊗,α,σ, ι) is required to satisfy the axioms indicated below.

The functor τ in (13.31) is transposition:

eq:328 (13.34)
τ : C × C −→ C × C

y1, y2 1−→ y2, y1

A crucial axiom is that

eq:329 (13.35) σ2 = id .

Thus for any y1, y2 ∈ C, the composition

eq:330 (13.36) y1 ⊗ y2
σ−−→ y2 ⊗ y1

σ−−→ y1 ⊗ y2

is idy1⊗y2 . The other axioms express compatibility conditions among the extra data (13.29)–(13.33).

For example, we require that for all y1, y2 ∈ C the diagram

eq:324 (13.37) (1C ⊗ y1)⊗ y2
ια

1C ⊗ (y1 ⊗ y2)
ι

y1 ⊗ y2
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commutes. We can state the axioms informally as asserting the equality of any two compositions

of maps built by tensoring α,σ, ι with identity maps. These compositions have domain a tensor

product of objects y1, . . . , yn and any number of identity objects 1C—ordered and parenthesized

arbitrarily—to a tensor product of the same objects, again ordered and parenthesized arbitrarily.

Coherence theorems show that there is a small set of conditions which needs to be verified; then

arbitrary diagrams of the sort envisioned commute. You can find precise statements and proof

in [Mac, JS]

subsec:13.3

(13.38) Symmetric monoidal functor. This is a homomorphism between symmetric monoidal cat-

egories, but as is typical for categories the fact that the identity maps to the identity and tensor

products to tensor products is expressed via data, not as a condition. Then there are higher order

conditions.

thm:267 Definition 13.39. Let C,D be symmetric monoidal categories. A symmetric monoidal functor

F : C → D is a functor with two additional pieces of data, namely an isomorphism

eq:325 (13.40) 1D −→ F (1C)

and a natural isomorphism

eq:326 (13.41) C × C

F (−⊗−)

F (−)⊗F (−)

ψ C .

There are many conditions on this data.

The first condition expresses compatibility with the associativity morphisms: for all y1, y2, y3 ∈ C

the diagram

eq:327 (13.42)
(
F (y1)⊗ F (y2)

)
⊗ F (y3)

ψ

αD

F (y1 ⊗ y2)⊗ F (y3)

ψ

F (y1)⊗
(
F (y2)⊗ F (y3)

)

ψ

F
(
(y1 ⊗ y2)⊗ y3

)

F (αC)

F (y1)⊗ F (y2 ⊗ y3)
ψ

F
(
y1 ⊗ (y2 ⊗ y3)

)

is required to commute. Next, there is compatibility with the identity data ι: for all y ∈ C we

requre that

eq:331 (13.43) F (1C)⊗ F (y)
F (ψ)

F (1C ⊗ y)

F (ι)

1D ⊗ F (y)

eq:331 (13.40)

ι
F (y)
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commute. The final condition expresses compatibility with the symmetry σ: for all y1, y2 ∈ C the

diagram

eq:332 (13.44) F (y1)⊗ F (y2)
σD

ψ

F (y2)⊗ F (y1)

ψ

F (y1 ⊗ y2)
F (σC)

F (y2 ⊗ y1)

thm:268 Exercise 13.45. Define a natural transformation of symmetric monoidal functors.



Lecture 14: Bordism categories

sec:14

The definition

Fix a nonnegative30 integer n. Recall the basic Definition 1.19 of a bordism X : Y0 → Y1 whose

domain and codomain are closed (n − 1)-manifolds. A bordism is a quartet (X, p, θ0, θ1) in which

X is a compact manifold with boundary, p : ∂X → {0, 1} is a partition of the boundary, and θ0, θ1
are boundary diffeomorphism. As usual we overload the notation and use ‘X’ to denote the full

quartet of data.

thm:269 Definition 14.1. Suppose X,X ′ : Y0 → Y1 are bordisms between closed (n − 1)-manifolds Y0, Y1.

A diffeomorphism F : X → X ′ is a diffeomorphism of manifolds with boundary which commutes

with p, θ0, θ1.

So, for example, we have a commutative diagram

eq:333 (14.2) X p

F {0, 1}

X ′ p′

and similar commutative diagrams involving the θ’s.

thm:270 Definition 14.3. Fix n ∈ Z≥0. The bordism category Bord⟨n−1,n⟩ is the symmetric monoidal

category defined as follows.

(i) The objects are closed (n− 1)-manifolds.

(ii) The hom-set Bord⟨n−1,n⟩(Y0, Y1) is the set of diffeomorphism classes of bordisms X : Y0 →
Y1.

(iii) Composition of morphisms is by gluing (Figure 2).

(iv) For each Y the bordism [0, 1] × Y is idY : Y → Y .

(v) The monoidal product is disjoint union.

(vi) The empty manifold ∅n−1 is the tensor unit (13.29).

The additional data α,σ, ι expresses the associativity and commutativity of disjoint union, which we

suppress; but see (1.16). In (iv) the partition of the boundary is projection p : {0, 1}× Y → {0, 1}
onto the first factor and the boundary diffeomorphisms are the identity on Y .

30We allow n = 0. Recall that the empty manifold can have any dimension, and we allow ∅−1 of dimension −1.

114
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subsec:14.1

(14.4) Isotopy. Let Diff Y denote the group of smooth diffeomorphisms of a closed manifold Y .

It is a topological group31 if we use the compact-open topology.

thm:271 Definition 14.5.

(i) An isotopy is a smooth map F : [0, 1]×Y → Y such that F (t,−) : Y → Y is a diffeomorphism

for all t ∈ [0, 1].

(ii) A pseudoisotopy is a diffeomorphism F̃ : [0, 1] × Y → [0, 1] × Y which preserves the sub-

manifolds {0} × Y and {1} × Y .

Equivalently,32 an isotopy is a path in Diff Y . Diffeomorphisms f0, f1 are said to be isotopic if

there exists an isotopy F : f0 → f1. Isotopy is an equivalence relation. The set of isotopy classes

is π0Diff Y , which is often called the mapping class group of Y . An isotopy induces a pseudoisotopy

eq:334 (14.6)
F̃ : [0, 1] × Y −→ [0, 1] × Y

(t, y) 1−→
(
t, F (t, y)

)

We say F̃ : f0 → f1 if the induced diffeomorphisms of Y on the boundary of [0, 1]×Y are f0 and f1.

thm:272 Exercise 14.7. Prove that pseudoisotopy is an equivalence relation.

thm:273 Remark 14.8. Pseudoisotopy is potentially a courser equivalence relation than isotopy: isotopic

diffeomorphisms are pseudoisotopic. The converse is true for simply connected manifolds of dimen-

sion ≥ 5 by a theorem of Cerf.

subsec:14.2

Figure 23. The bordism associated to a diffeomorphism fig:23

(14.9) Embedding diffeomorphisms in the bordism category. Let Y be a closed (n−1)-manifold and

f : Y → Y a diffeomorphism. There is an associated bordism (Xf , p, θ0, θ1) with (i) Xf = [0, 1]×Y ,

p : {0, 1} × Y → Y projection, (iii) θ0 = idY , and (iv) θ1 = f , as depicted in Figure 23. If

F : f0 → f1 is an isotopy, then we claim that the bordisms Xf0 and Xf1 are equal in the hom-

set Bord⟨n−1,n⟩(Y, Y ). For the isotopy F determines a diffeomorphism and the composition of

bordisms in the top row of

Figure 24 is Xf1 . Of course, Figure 24 shows that pseudoisotopic diffeomorphisms determine equal

bordisms in Bord⟨n−1,n⟩(Y, Y ).

31A topological group G is simultaneously and compatibly a topological space and a group: composition and
inversion are continuous maps G×G → G and G → G.

32With what we have introduced we can talk about continuous paths in Diff Y , which correspond to maps F

which are only continuous in the first variable. But then we can approximate by a smooth map. In any case we can
in a different framework discuss smooth maps of smooth manifolds into Diff Y .
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Figure 24. Isotopic diffeomorphisms give diffeomorphic bordisms fig:24

thm:274 Exercise 14.10. Show that ifXf0 andXf1 are equal in Bord⟨n−1,n⟩(Y, Y ), then f0 is pseudoisotopic

to f1.

Summarizing, there is a homomorphism

eq:335 (14.11) π0(Diff Y ) −→ Bord⟨n−1,n⟩(Y, Y )

which is not necessarily injective.

thm:278 Exercise 14.12. Is (14.11) injective for n = 1 and Y = pt⨿pt?
subsec:14.3

(14.13) Bordism categories with tangential structures. Recall Definition 9.45: an n-dimensional

tangential structure is a fibration X(n)→ BO(n). There is a universal rank n bundle S(n)→ X(n)

with X(n)-structure, and an X(n)-structure on a manifold M of dimension k ≤ n is a commutative

diagram

eq:336 (14.14) Rn−k ⊕ TM S(n)

M X(n)

There is a bordism category BordX(n)⟨n−1,n⟩ analogous to Bord⟨n−1,n⟩ as defined in Definition 14.3, but

all manifolds Y,X are required to carry X(n)-structures. Examples include stable tangential struc-

tures, such as orientation and spin, as well as unstable tangential structures, such as n-framings.

We follow the notational convention of Exercise 9.71.

Examples of bordism categories

thm:275 Example 14.15 (Bord⟨−1,0⟩). There is a unique (−1)-dimensional manifold—the empty mani-

fold ∅−1—so Bord⟨−1,0⟩ is a category with a single object, hence a monoid (Example 13.9). The

monoid is the set of morphisms Bord⟨−1,0⟩(∅−1, ∅−1) under composition. In fact, the symmetric

monoidal structure gives a second composition law, but it is equal to the first which is necessarily

commutative. This follows from general principles, but is easy to see in this case. Namely, the

monoid consists of diffeomorphism classes of closed 0-manifolds, so finite unions of points. The set

of diffeomorphism classes is Z≥0. Composition and the monoidal product are both disjoint union,

which induces addition in Z≥0.
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thm:276 Example 14.16 (BordSO⟨−1,0⟩). Now all manifolds are oriented, so the morphisms are finite unions

of pt+ and pt−, up to diffeomorphism. Let x+, x− denote the diffeomorphism class of pt+,pt−.

Then the monoid BordSO⟨−1,0⟩ is the free commutative monoid generated by x+, x−.

thm:279 Exercise 14.17. Prove that Diff S1 has two components, each of which deformation retracts onto

a circle.

Figure 25. Some bordisms in Bord⟨1,2⟩ fig:25

thm:277 Example 14.18 (Bord⟨1,2⟩). Objects are closed 1-manifolds, so finite unions of circles. As depicted

in Figure 25 the cylinder can be interpreted as a bordism X : (S1)⨿2 → ∅1; the dual bordism X∨

(Definition 1.22) is a map X∨ : ∅1 → (S1)⨿2. Let ρ : S1 → S1 be reflection, f = 1⨿ ρ the indicated

diffeomorphism of (S1)⨿2, and Xf the associated bordism (14.9). Then

eq:337 (14.19)
X ◦Xid ◦X∨ ≃ torus

X ◦Xf ◦X∨ ≃ Klein bottle

These diffeomorphism become equations in the monoid Bord⟨1,2⟩(∅1, ∅1) of diffeomorphism classes

of closed 2-manifolds.

Topological quantum field theories

Just as we study abstract groups via their representations, so too we study bordism categories via

representations. There are linear actions of groups on vector spaces, and also nonlinear actions on

more general spaces. Similarly, there are linear and nonlinear representations of bordism categories.

thm:280 Definition 14.20. Fix n ∈ Z≥0 and X(n) an n-dimensional tangential structure. Let C be a

symmetric monoidal category. An n-dimensional topological quantum field theory of X(n)-manifolds

with values in C is a symmetric monoidal functor

eq:338 (14.21) F : BordX(n)⟨n−1,n⟩ −→ C

Symmetric monoidal functors are defined in (13.38). We use the acronym ‘TQFT’ for ‘topological

quantum field theory’. We do not motivate the use of ‘quantum field theory’ for Definition 14.20

here; see instead the discussion in [F1]. I also strongly recommend the beginning sections of [L1].

The definition originates in the mathematics literature in [A1], which in turn was inspired by [S1].

There is a nice thorough discussion in [Q].
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thm:281 Remark 14.22. Let Top denote the symmetric monoidal category whose objects are topological

spaces and whose morphisms are continuous maps. The monoidal structure is disjoint union.

Let Ab denote the category whose objects are abelian groups and whose morphisms are group

homomorphisms. Homology theory gives symmetric monoidal functors

eq:339 (14.23) Hq : (Top,⨿) −→ (Ab,⊕)

for all nonnegative integers q. Note that the symmetric monoidal structure on Ab is direct sum:

the homology of a disjoint union is the direct sum of the homologies. One should think of the

direct sum as classical ; for quantum field theories we will use instead tensor product. In vague

terms quantization, which is the passage from classical to quantum, is a sort of exponentiation

which turns sums to products.

For this reason we keep the ‘quantum’ in ‘TQFT’.

subsec:14.5

(14.24) Codomain categories. Typical “linear” choices for C are: (i) the symmetric monoidal cate-

gory (Vectk,⊗) of vector spaces over a field k, (ii) the symmetric category (R Mod,⊗) of left modules

over a commutative ring R, and the special case (iii) the symmetric monoidal category (Ab,⊗) of
abelian groups under tensor product. On the other hand, we can take as codomain a bordism

category, which is decidedly nonlinear. For example, if M is a closed k-manifold, then there is a

symmetric monoidal functor

eq:340 (14.25) −×M : Bord⟨n−1,n⟩ −→ Bord⟨n+k−1,n+k⟩

which, I suppose, can be called a TQFT. If F : Bord⟨n+k−1,n+k⟩ → C is any (n + k)-dimensional

TQFT, then composition with (14.25) gives an n-dimensional TQFT, the dimensional reduction

of F along M .



Lecture 15: Duality

sec:15

We ended the last lecture by introducing one of the main characters in the remainder of the

course, a topological quantum field theory (TQFT). At this point we should, of course, elaborate

on the definition and give examples, background, motivation, etc. I will not do so in these notes.

Instead I refer you to the expository paper [F1] as well as to the beginning sections of [L1]. There

are many other references with great expository material.

In this lecture we explore the finiteness property satisfied by a TQFT, which is encoded via

duality in symmetric monoidal categories.

Some categorical preliminaries

We begin with a standard notion which you’ll find in any book which contains a chapter on

categories, including books on category theory.

thm:282 Definition 15.1. Let C,D be categories. A functor F : C → D is an equivalence if there exist a

functor G : D → C, and natural isomorphisms G ◦ F → idC and F ◦G→ idD.

thm:283 Proposition 15.2. A functor F : C → D is an equivalence if and only if it satisfies:

(i) For each d ∈ D there exist c ∈ C and an isomorphism
(
f(c)→ d

)
∈ D; and

(ii) For each c1, c2 ∈ C the map of hom-sets F : C(c1, c2)→ D
(
F (c1), F (c2)

)
is a bijection.

If F satisfies (i) it is said to be essentially surjective and if it satisfies (ii) it is fully faithful.

thm:284 Exercise 15.3. Prove Proposition 15.2.

Next we spell out the answer to Exercise 13.45. It is part of the definition of a TQFT.

thm:285 Definition 15.4. Let C,D be symmetric monoidal categories and F,G : C → D symmetric monoidal

functors. Then a symmetric monoidal natural transformation η : F → G is a natural transformation

such that the diagrams

eq:341 (15.5) F (1C)

η(1C )1D

G(1C)

and

eq:342 (15.6) F (y1)⊗ F (y2)
ψ

η⊗η

F (y1 ⊗ y2)

η

G(y1)⊗G(y2)
ψ

G(y1 ⊗ y2)
119



120 D. S. FREED

commute for all y1, y2 ∈ C.

TQFT’s as a symmetric monoidal category

Fix a bordism category B = BordX(n)⟨n−1,n⟩ and a symmetric monoidal category C. We now explain

that topological quantum field theories F : B → C are objects in a symmetric monoidal category.

A morphism F → G is as defined in Definition 15.4. The monoidal product of theories F1, F2 is

defined by

eq:343 (15.7)
(F1 ⊗ F2)(Y ) = F1(Y )⊗ F2(Y )

(F1 ⊗ F2)(X) = F1(X) ⊗ F2(X)

for all objects Y ∈ B and morphisms (X : Y0 → Y1) ∈ B. The tensor unit 1 is the trivial theory

eq:344 (15.8)
1(Y ) = 1C

1(X) = id1C

for all Y ∈ B and (X : Y0 → Y1) ∈ B.

We denote the symmetric monoidal category of TQFT’s as [Use TQFT⟨n−1,n⟩ ]⇒

eq:345 (15.9) TQFTn = TQFTX(n)
n [C] = Hom⊗(BordX(n)⟨n−1,n⟩, C).

The short form of the notation is used if the tangential structure X(n) and codomain category C

are clear.
subsec:15.1

(15.10) Endomorphisms of the trivial theory. Suppose η : 1 → 1 in TQFTn. Then for all Y ∈
BordX(n)⟨n−1,n⟩ we have η(Y ) ∈ C(1C , 1C) = End(1C). Note that if C = Ab is the category of abelian

groups, then End(1C) = Z. So η is a numerical invariant of closed (n− 1)-manifolds. Furthermore,

if X : Y0 → Y1 then by the naturality condition (13.18) we find that η(Y0) = η(Y1). This shows

that η factors down to a homomorphism of monoids

eq:346 (15.11) η : ΩX(n)
n−1 −→ End(1C).

Now by Lemma 1.30, and its generalization to manifolds with tangential structure, we know that

every element of ΩX(n)
n−1 is invertible. It follows that the image of η consists of invertible elements.

We say, simply, that η is invertible.

In other words, an endomorphism of 1 is a bordism invariant of the type studied in the first half

of the course. A topological quantum field theory, then, is a “categorified” bordism invariant.

thm:286 Exercise 15.12. What is a topological quantum field theory whose codomain category has as

objects the set of integers and only identity arrows?

The invertibility observed in (15.10) is quite general.

thm:287 Theorem 15.13. A morphism (η : F → G) ∈ TQFTn is invertible. TQFTn is a groupoid.

The two statements are equivalent. We prove Theorem 15.13 at the end of this lecture.
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subsec:15.2

(15.14) Central problem. Given a dimension n, a tangential structure X(n), and a codomain

category C we can ask to “compute” the groupoid TQFTX(n)
n [C]. This is a vague problem whose

solution is an equivalent groupoid which is “simpler” than the groupoid of topological quantum

field theories. It has a nice answer when n = 1. In the oriented case it is a generalization of the

theorem that ΩSO
0 is the free abelian group with a single generator pt+. There is also a nice answer

in the oriented case for n = 2.

Finiteness in TQFT

To motivate the abstract formulation of finiteness in symmetric monoidal categories, we prove

the following simple proposition. For simplicity we omit any tangential structure.

thm:288 Proposition 15.15. Let F : Bord⟨n−1,n⟩ → VectC be a TQFT. Then for all Y ∈ Bord⟨n−1,n⟩ the

vector space F (Y ) is finite dimensional.

Figure 26. Some elementary bordisms fig:26

Figure 27. The S-diagram fig:27

Proof. Fix Y ∈ Bord⟨n−1,n⟩ and let V = F (Y ). Let c : ∅n−1 → Y ⨿ Y and e : Y ⨿ Y → ∅n−1 be

the bordisms pictured in Figure 26. The manifold Y is depicted as a point, and each bordism

has underlying manifold with boundary [0, 1] × Y . The composition depicted in Figure 27 is

diffeomorphic to the identity bordism idY : Y → Y . Under F it maps to idV : V → V (see (13.40)).

On the other hand, the composition maps to

eq:347 (15.16) V
idV ⊗F (c)−−−−−−→ V ⊗ V ⊗ V

F (e)⊗idV−−−−−−→ V

Let the value of F (c) : C→ V ⊗ V on 1 ∈ C be
∑
i
v′i ⊗ v′′i for some finite set of vectors v′i, v

′′
i ∈ V .

Then equating (15.16) with the identity map we find that for all ξ ∈ V we have

eq:348 (15.17) ξ =
∑

i

e(ξ, v′i)v
′′
i ,

and so the finite set of vectors {v′′i } spans V . This proves that V is finite dimensional. !

thm:289 Exercise 15.18. Prove that F (c) and F (e) are inverse bilinear forms.
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Duality data and dual morphisms

We abstract the previous argument by singling out those objects in a symmetric monoidal cate-

gory which obey a finiteness condition analogous to that of a finite dimensional vector space.

thm:290 Definition 15.19. Let C be a symmetric monoidal category and y ∈ C.

(i) Duality data for y is a triple of data (y∨, c, e) in which y∨ is an object of C and c, e are

morphisms c : 1C → y ⊗ y∨, e : y∨ ⊗ y → 1C . We require that the compositions

eq:349 (15.20) y
c⊗idy−−−→ y ⊗ y∨ ⊗ y

idy ⊗e−−−−→ y

and

eq:350 (15.21) y∨
idy∨ ⊗c
−−−−−→ y∨ ⊗ y ⊗ y∨

e⊗idy∨−−−−→ y∨

be identity maps. If duality data exists for y, we say that y is dualizable.

(ii) A morphism of duality data (y∨, c, e) → (ỹ∨, c̃, ẽ) is a morphism y∨
f−→ ỹ∨ such that the

diagrams

eq:351 (15.22) y ⊗ y∨

idy ⊗f1C

c

c̃ y ⊗ ỹ∨

and

eq:352 (15.23) y∨ ⊗ y e

f⊗idy 1C

ỹ∨ ⊗ y ẽ

commute.

c is called coevaluation and e is called evaluation.

We now express the uniqueness of duality data. As duality data is an object in a category,

as defined in Definition 15.19, we cannot say there is a unique object. Rather, here we have

the strongest form of uniqueness possible in a category: duality data is unique up to unique

isomorphism.

thm:291 Definition 15.24. Let C be a category.

(i) If for each pair y0, y1 ∈ C the hom-set C(y0, y1) is either empty or contains a unique element,

we say that C is a discrete groupoid.

(ii) If for each pair y0, y1 ∈ C the hom-set C(y0, y1) has a unique element, we say that C is

contractible.
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A discrete groupoid is equivalent to a set (Example 13.10). A contractible groupoid is equivalent

to a category with one object and one morphism, the categorical analog of a point.

thm:292 Proposition 15.25. Let C be a symmetric monoidal category and y ∈ C. Then the category of

duality data for y is either empty or is contractible.

The proof is a homework problem (Problem Set #2).

A morphism between dualizable objects has a dual.

thm:293 Definition 15.26. Let y0, y1 ∈ C be dualizable objects in a symmetric monoidal category and

f : y0 → y1 a morphism. The dual morphism f∨ : y∨1 → y∨0 is the composition

eq:353 (15.27) y∨1
idy∨

1
⊗c0

−−−−−→ y∨1 ⊗ y0 ⊗ y∨0
idy∨

1
⊗f⊗idy∨

0−−−−−−−−−→ y∨1 ⊗ y1 ⊗ y∨0
e1⊗idy∨

0−−−−−→ y∨0

In the definition we choose duality data (y∨0 , c0, e0), (y
∨
1 , c1, e1) for y0, y1.

thm:294 Exercise 15.28. Check that this definition agrees with that of a dual linear map for C = Vect.

Also, spell out the consequence of Proposition 15.25 for the dual morphism.

Duality in bordism categories

We already encountered dual manifolds and dual bordisms in Definition 1.22, Remark 1.24, and

(2.20). In this subsection we prove the following.

thm:295 Theorem 15.29. Every object in a bordism category BordX(n)⟨n−1,n⟩ is dualizable.

Proof. If X(n) is the trivial tangential structure BO(n)→ BO(n), so BordX(n)⟨n−1,n⟩ = Bord⟨n−1,n⟩ is

the bordism category of (unoriented) manifolds, then for any closed (n − 1)-manifold Y we have

Y ∨ = Y with coevaluation and evaluation as in Figure 26. In the general case, an object (Y, θ) ∈
BordX(n)⟨n−1,n⟩ is a closed (n− 1)-manifold Y equipped with a classifying map

eq:354 (15.30) R⊕ TY
θ

S(n)

Y X(n)

to the universal bundle (9.59); cf. (9.60). Its dual (Y, θ)∨ = (Y, θ∨) has the same underlying

manifold and classifying map θ∨ the composition

eq:355 (15.31) R⊕ TY
−1⊕idTY R⊕ TY

θ
S(n)

Y
idY

Y X(n)

dafr
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The coevaluation and evaluation (X, p, θ0, θ1) are as depicted in Figure 26. In both cases X =

[0, 1] × Y . For the coevaluation p : ∂X → {0, 1} is the constant function 1, and for the evaluation

it is the constant function 0. For the evaluation

eq:356 (15.32)

θ0 : [0, 1) × Y ⨿ [0, 1) × Y −→ [0, 1] × Y

(t,y) 1−→ (t/4, y)

(t,y) 1−→ (1− t/4, y)

with natural lifts to the X(n)-structures. The formula for θ1 for the coevaluation is similar. !

thm:296 Exercise 15.33. Write the map on X(n)-structures explicitly. Note the − sign in the differential

of the last formula in (15.32) matches the −1 in the first map of (15.31).

Proof of Theorem 15.13

We first prove the following.

thm:297 Proposition 15.34. Let B,C be symmetric monoidal categories, F,G : B → C symmetric monoidal

functors, and y ∈ B dualizable. Then

(i) F (y) ∈ C is dualizable.

(ii) If η : F → G is a symmetric monoidal natural transformation, then η(y) : F (y) → G(y) is

invertible.

Proof. If (y∨, c, e) is duality data for y, then
(
F (y∨), F (c), F (e)

)
is duality data for F (y). This

proves (i).

For (ii) we claim that η(y∨)∨ is inverse to η(y). Note that by Definition 15.26, η(y∨)∨ is a map

G(y∨)∨ → F (y∨)∨, and since G(y∨) = G(y)∨ it may be interpreted as a map G(y) → F (y). Let

c : 1B → y ⊗ y∨ and e : y∨ ⊗ y → 1B be coevaluation and evaluation. Consider the diagram

eq:357 (15.35)

G(y)
id⊗F (c)

id⊗G(c)

G(y)⊗ F (y∨)⊗ F (y)

id⊗η(y∨)⊗η(y)

id⊗η(y∨)⊗id
G(y)⊗G(y∨)⊗ F (y)

id⊗ id⊗η(y)

G(e)⊗id
F (y)

η(y)

G(y)⊗G(y∨)⊗G(y)
G(e)⊗id

G(y)

We claim it commutes. The left triangle commutes due to the naturality of η applied to the

coevaluation c : 1B → y ⊗ y∨. The next triangle and the right square commute trivially. Now

starting on the left, the composition along the top and then down the right is the composition

η(y) ◦ η(y∨)∨. The composition diagonally down followed by the horizontal map is the identity, by

G applied to the S-diagram relation (15.20) (and using (13.40)). A similar diagram proves that

η(y∨)∨ ◦ η(y) = id. !
⇒

[Corollary: η(y∨) = (η(y)−1)∨ = (η(y)∨)−1]

Theorem 15.13 is an immediate consequence of Theorem 15.29 and part (ii) of (11.71). Part (i)

implies the following.
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thm:298 Theorem 15.36. Let C be a symmetric monoidal category and F : BordX(n)⟨n−1,n⟩ → C be a topolog-

ical quantum field theory. Then for all Y ∈ BordX(n)⟨n−1,n⟩, the object F (Y ) ∈ C is dualizable.



Lecture 16: 1-dimensional TQFTs

sec:16

In this lecture we determine the groupoid of 1-dimensional TQFTs of oriented manifolds with

values in any symmetric monoidal category. This is a truncated version of the cobordism hypothesis,

but illustrates a few of the basic underlying ideas.

Categorical preliminaries

We need three notions from category theory: a full subcategory of an arbitrary category, the

groupoid of units of an arbitrary category, and the dimension of an object in a symmetric monoidal

category.

thm:299 Definition 16.1. Let C be a category and C ′
0 ⊂ C0 a subset of objects. Then the full subcate-

gory C ′ with set of objects C ′
0 has as hom-sets

eq:358 (16.2) C ′
1(y0, y1) = C1(y0, y1), y0, y1 ∈ C ′

0.

There is a natural inclusion C ′
0 → C0 which is an isomorphism on hom-sets. We can describe the

entire set of morphisms C ′
1 as a pullback:

eq:359 (16.3) C ′
1 C1

s×t

C ′
0 × C ′

0
j×j

C0 × C0

where s, t are the source and target maps (13.8) and j : C ′
0 ↪→ C0 is the inclusion.

We need a particular example of a full subcategory.

thm:302 Definition 16.4. Let C be a symmetric monoidal category. Define C fd ⊂ C as the full subcategory

whose objects are the dualizable objects of C.

The notation ‘fd’ puts in mind ‘finite dimensional’, which is correct for the category Vect: the

dualizable vector spaces are those which are finite dimensional. It also stands for ‘fully dualizable’.

The ‘fully’ is not (yet) relevant.

Recall that if M is a monoid, then the group of units M∼ ⊂ M is the subset of invertible

elements. For example, if M is the monoid of n× n matrices under multiplication, then M∼ is the

subset of invertible matrices, which form a group.

thm:300 Definition 16.5. Let C be a category. Its groupoid of units33 is the groupoid C∼ with same objects

C∼
0 = C0 as in the category C and with morphisms C∼

1 ⊂ C1 the subset of invertible morphisms

in C.

33usually called the maximal groupoid

126
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Notice that identity arrows are invertible and compositions of invertible morphisms are invertible,

so C∼ is a category. Obviously, it is a groupoid.

The last definition applies only to symmetric monoidal categories.

thm:301 Definition 16.6. Let C be a symmetric monoidal category and y ∈ C a dualizable object. Then

the dimension of y, denoted dim y ∈ C(1C , 1C), is the composition

eq:360 (16.7) dim y : 1C
c−−→ y ⊗ y∨

σ−−→ y∨ ⊗ y
e−−→ 1C ,

where (y∨, c, e) is duality data for y.

The reader can easily check that dim y is independent of the choice of duality data (Definition 15.19).

Classification of 1-dimensional oriented TQFTs

Recall from (2.28) that the oriented bordism group in dimension zero is the free abelian group

on one generator: ΩSO
0
∼= Z. We can restate this in terms of bordism invariants. Let M be any

commutative monoid. Then 0-dimensional bordism invariants with values in M is the commutative

monoid Hom(ΩSO
0 ,M), where the sum F +G of two bordism invariants is computed elementwise:

(F +G)(Y ) = F (Y )+G(Y ) for all compact 0-manifolds Y . Then F (Y ) is automatically invertible,

since ΩSO
0 is a group.

thm:303 Theorem 16.8 (cobordism hypothesis—set version). The map

eq:361 (16.9)
Φ : Hom(ΩSO

0 ,M) −→ M∼

F 1−→ F (pt+)

is an isomorphism of abelian groups.

This is the restatement.

Now we consider 1-dimensional oriented TQFTs.

thm:304 Theorem 16.10 (cobordism hypothesis—1-categorical version). Let C be a symmetric monoidal

category. Then the map

eq:362 (16.11)
Φ : TQFTSO

⟨0,1⟩(C) −→ (C fd)∼

F 1−→ F (pt+)

is an equivalence of groupoids.

The map Φ is well-defined by Theorem 15.36, which asserts in particular that F (pt+) is dualizable.

Recall (you shouldn’t have forgotten in one page!) Definition 16.4 and Definition 16.5, which give

meaning to the subgroupoid (C fd)∼ of C.

The proof relies on the classification of closed 0-manifolds and compact 1-manifolds with bound-

ary [M3]. Note that if Y0, Y1 are closed 0-manifolds which are diffeomorphic, then the set of
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Figure 28. The five connected oriented bordisms in BordSO⟨0,1⟩ fig:31

diffeomorphisms Y0 → Y1 is a torsor for the group of permutations (of, say, Y0). A connected com-

pact 1-manifold with boundary is diffeomorphic to a circle or a closed interval, which immediately

leads to the classification of connected morphisms in BordSO⟨0,1⟩, as illustrated in Figure 28: every

connected oriented bordism is diffeomorphic to one of the five possibilities illustrated there.

Proof. We must show that Φ is fully faithful and essentially surjective. Recall that

First, if F,G are field theories and η1, η2 : F → G isomorphisms, and suppose that η1(pt+) =

η2(pt+). Since pt− = pt∨+, according to the formula proved in Proposition 15.34 we have η(pt−) =(
η(pt+)

∨
)−1

for any natural isomorphism η. It follows that η1(pt−) = η2(pt−). Since any compact

oriented 0-manifold Y is a finite disjoint union of copies of pt+ and pt−, it follows that η1(Y ) =

η2(Y ) for all Y , whence η1 = η2. This shows that Φ is faithful.

To show Φ is full, given F,G and an isomorphism f : F (pt+) → G(pt+) we must construct

η : F → G such that η(pt+) = f . So define η(pt+) = f and η(pt−) = (f∨)−1. Extend using

the monoidal structure in C to define η(Y ) for all compact oriented 0-manifolds Y . This uses the

statement given before the proof that any such Y is diffeomorphic to (pt+)
⨿n+ ⨿ (pt−)

⨿n− for

unique n+, n− ∈ Z≥0. Also, the diffeomorphism is determined up to permutation, but because of

coherence the resulting map η(Y ) is independent of the chosen diffeomorphism. It remains to show

that η is a natural isomorphism, so to verify (13.18) for each morphism in BordSO⟨0,1⟩. It suffices to

consider connected bordisms, so each of the morphisms in Figure 28. The first two are identity

maps, for which (13.18) is trivial. The commutativity of the diagram

eq:387 (16.12) F (−)F (+)

f (f∨)−11

F (Xc)

G(Xc)

G(−)G(+)
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for coevaluation Xc follows from the commutativity of

eq:386 (16.13) 1
F (Xc)

G(Xc)

F (−)F (+)

11G(Xc)

1f
F (−)G(+)

G(−)G(+)
F (Xc)11

F (−)F (+)G(−)G(+)
1f11

F (−)G(+)G(−)G(+)

1G(Xe)1

In these diagrams we use ‘+’ and ‘−’ for ‘pt+’ and ‘pt−’, and also denote identity maps as ‘1’. The

argument for evaluation Xe is similar, and that for the circle follows since the circle is Xe ◦ σ ◦Xc.

Notice that the commutative diagram for the circle S1 asserts F (S1) = G(S1).

Finally, we must show that Φ is essentially surjective. Given y ∈ C dualizable, we must34

construct a field theory F with F (pt+) = y. Let (y∨, c, e) be duality data for y. Define F (pt+) = y,

F (pt−) = y∨, and

eq:388 (16.14) F
(
(pt+)

⨿n+ ⨿ (pt−)
⨿n−

)
= y⊗n+ ⊗ (y∨)⊗n− .

Any compact oriented 0-manifold Y is diffeomorphic to some (pt+)
⨿n+ ⨿ (pt−)

⨿n− , and again by

coherence the choice of diffeomorphism does not matter. Now any oriented bordism X : Y0 → Y1 is

diffeomorphic to a disjoint union of the bordisms in Figure 28, and for these standard bordisms we

define F (Xc) = c, F (Xe) = e, and F (S1) = e◦σ ◦c; the first two bordisms in the figure are identity

maps, which necessarily map to identity maps. We map X to a tensor product of these basic

bordisms. It remains to check that F is a functor, i.e., that compositions map to compositions.

When composing in BordSO⟨0,1⟩ the only nontrivial compositions are those indicated in Figure 29.

The first composition is what we use to define F (S1). The S-diagram relations (15.20) and (15.21)

show that the last compositions are consistent under F . !

Figure 29. Nontrivial compositions in BordSO⟨0,1⟩ fig:32

34In fact, we only need construct F with F (pt+) ∼= y, but we will construct one where F (pt+) equals y.



Lecture 17: Invertible topological quantum field theories

sec:17

In this lecture we introduce the notion of an invertible TQFT. These arise in both topological

and non-topological quantum field theory as anomaly theories, a topic we might discuss at the end

of the course. They are also interesting in homotopy theory, though not terribly much explored to

date in that context. As usual, we need some preliminary discussion of algebra.

Group completion and universal properties

subsec:17.1

(17.1) The group completion of a monoid. Recall that a monoid M is a set with an associative

composition law M ×M →M and a unit 1 ∈M .

thm:305 Definition 17.2. Let M be a monoid. A group completion (|M |, i) of M is a group |M | and a

homomorphism i : M → |M | of monoids which satisfies the following universal property: If G is a

group and f : M → G a homomorphism of monoids, then there exists a unique map f̃ : |M | → G

which makes the diagram

eq:363 (17.3) M
i

f

|M |

f̃

G

commute.

The definition does not prove the existence of the group completion—we must provide a proof—

but the universal property does imply a strong uniqueness property. Namely, if (H, i) and (H ′, i′) are

group completions of M , then there is a unique isomorphism φ : H → H ′ of groups which makes

the diagram

eq:364 (17.4) M
i

i′

H

φ

H ′

commute. The proof, the details of which I leave to the reader, involves four applications of the

universal property (to f = i and f = i′ to construct the isomorphism and its inverse, and then two

more to prove the compositions are identity maps).

thm:306 Example 17.5. If M = Z>0 under multiplication, then the group completion is Q>0 under multi-

plication.
130
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thm:307 Example 17.6. If M = Z≥0 under multiplication, then the group completion (|M |, i) is the trivial
group. For there exists x ∈ |M | such that x · i(0) = 1, and so for any n ∈M we have

eq:365 (17.7) i(n) =
(
x · i(0)

)
· i(n) = x ·

(
i(0) · i(n)

)
= x · i(0 · n) = x · i(0) = 1.

Now apply uniqueness of the factorization.

subsec:17.2

(17.8) Free groups. We recall that given a set S, there is a free group F (S) generated by S, and it

too is characterized by a universal property. In this setup a free group
(
F (S), i

)
is a pair consisting

of a group F (S) and a map i : S → F (S) of sets such that for any group G and any map f : S → G

of sets, there exists a unique homomorphism of groups f̃ : F (S)→ G which makes the diagram

eq:366 (17.9) S
i

f

F (S)

f̂

G

commute. Again uniqueness follows immediately. Existence is something you must have seen when

discussing van Kampen’s theorem, for example. See [H1].

subsec:17.3

(17.10) Construction of the group completion. Now we prove that a group completion of a monoidM

exists. Let
(
F (M), i

)
be a free group on the set underlying M . Define N as the normal subgroup

of F (M) generated by elements

eq:367 (17.11) i(x1x2)i(x2)
−1i(x1)

−1, x1, x2 ∈M.

Given a homomorphism f : M → G of monoids, for all x1, x2 ∈M we have f(x1x2) = f(x1)f(x2).

But f = f̂ i from (17.9), and so it follows that

eq:368 (17.12) f̂
(
i(x1x2)i(x2)

−1i(x1)
−1

)
= 1,

whence f̂ factors down to a unique homomorphism f̃ : F (M)/N → G.

thm:308 Exercise 17.13. This last step uses a universal property which characterizes a quotient group.

What is that universal property?

The groupoid completion of a category

thm:309 Definition 17.14. Let C be a category. A groupoid completion (|C|, i) of C is a groupoid |C| and
a homomorphism i : C → |C| of monoids which satisfies the following universal property: If G is a
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groupoid and f : C → G a functor, then there exists a unique map f̃ : |C| → G which makes the

diagram

eq:369 (17.15) C
i

f

|C|

f̃

G

commute.

Intuitively, |C| is obtained from C by “inverting all of the arrows”, much in the same way that

the group completion of a monoid is constructed. In fact, notice that if C has one object, then

Definition 17.14 reduces to Definition 17.2.

We give some examples below; see Theorem 17.41.

subsec:17.4

(17.16) Uniqueness of f̃ . There is a choice whether to require that f̃ in (17.15) be unique. If so,

then you should show that (|C|, i) is unique up to unique isomorphism. We do make that choice.

It has a consequence that the map i is an isomorphism i0 : C0 → |C|0 on objects. For let G be

the groupoid with objects G0 = C0 and with a unique morphism between any two objects, so the

set of morphisms is G1 = C0 × C0. There is a unique functor f : C → G which is the identity on

objects, and applying the universal property we deduce that i0 : C0 → |C|0 is injective. If there

exists y ∈ |C|0 not in the image of i0, then we argue as follows. Let G′ be the groupoid with two

objects a, b and a unique morphisms between any two objects. Let f : C → G′ be the functor which

sends all objects to a and all morphisms to ida. Then the factorization f̃ cannot be unique. For if

f̃(y) = a, then define a new factorization with y 1→ b and adjust all morphisms starting or ending

at y accordingly.

subsec:17.8

(17.17) Sketch of a construction for |C|. Here is a sketch of the existence proof for |C|, which
follows the argument in (17.8), (17.10). In the next lecture we give a proof using topology. Briefly,

given sets C0, C1 and maps s, t : C1, C0, there is a free groupoid F (C0, C1) generated. It has the

set C0 of objects. Let C ′
1 be the set C1 equipped with maps s′ = t : C ′

1 → C0, t′ = s : C ′
1 → C0.

They are formal inverses of the arrows in C1. Then a morphism in F (C0, C1) is a formal string

of composable elements in C1 ⨿ C ′
1. The composition and inverse operations in F (C0, C1) are by

amalgamation and order-reversal. If now C is a category, then we take the quotient of F (C0, C1)

which keeps the same objects C0 and for every pair of composable arrows g, f in C1 identifies the

amagamation gf with the composition g ◦ f in F (C0, C1). I didn’t try to work out the details of

this quotient construction.

Invertibility in symmetric monoidal categories

The following should be compared with Definition 15.19(i).

thm:310 Definition 17.18. Let C be a symmetric monoidal category and y ∈ C. Then invertibility data

for y is a pair (y′, θ) consisting of y′ ∈ C and an isomorphism θ : 1C → y ⊗ y′. If invertibility data

exists, then we say that y is invertible.
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There is a category of invertibility data, and it is a contractible groupoid (Definition 15.24). So

an inverse to y, if it exists, is unique up to unique isomorphism. We denote any choice of inverse

as y−1. Note that the set of invertible objects is closed under the tensor product and it contains

the unit object 1C .

thm:313 Remark 17.19. An object y ∈ Y is invertible if and only if the functor y ⊗ − : C → C is an

equivalence.

thm:312 Example 17.20. Let C = Vectk be the category of vector spaces over a field k with symmetric

monoidal structure the tensor product. Then V ∈ Vectk is invertible if and only if dimV = 1. In

this case we say V is a line.

thm:311 Lemma 17.21. Let C be a symmetric monoidal category.

(i) If y ∈ C is invertible, then y is dualizable and y−1 is a dual object.

(ii) If C is a symmetric monoidal groupoid and y ∈ C is dualizable, then y is invertible with

inverse y∨.

Proof. Part (ii) is trivial as the coevaluation c : 1C → y ⊗ y∨ is invertible. For (i) we let θ : 1C →
y ⊗ y−1 be coevaluation and evaluation is, up to multiplication by an element of C(1C , 1C), the

composition

eq:370 (17.22) y−1 ⊗ y
σ−−→ y ⊗ y−1 θ−1

−−−→ 1C ,

where σ is the symmetry of the symmetric monoidal structure. We leave the details to a homework

problem. !

thm:314 Definition 17.23. A Picard groupoid is a symmetric monoidal category in which all objects and

morphisms are invertible.

thm:315 Example 17.24. Given a field k, there is a Picard groupoid Linek whose objects are k-lines and

whose morphisms are isomorphisms of k-lines. Given a spaceX, there are Picard groupoids LineR(X)

and LineC(X) of line bundles over X.

thm:316 Definition 17.25. Let C be a symmetric monoidal category. An underlying Picard groupoid is

a pair (C×, i) consisting of a Picard groupoid C× and a functor i : C× → C which satisfies the

universal property: If D is any Picard groupoid and j : D → C a symmetric monoidal functor, then

there exists a unique j̃ : D → C× such that the diagram

eq:371 (17.26) C× i
C

D
j̃ j

commutes.

We obtain C× from C by discarding all non-invertible objects and non-invertible morphisms. Recall

(Definition 16.5) that C contains a subgroupoid C∼ ⊂ C of units, obtained by discarding all non-

invertible morphisms. So we have C× ⊂ C∼ ⊂ C.
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subsec:17.7

(17.27) Invariants of a Picard groupoid. Associated to a Picard groupoidD are abelian groups π0D,

π1D and a k-invariant

eq:385 (17.28) π0D ⊗ Z/2Z→ π1D.

Define objects y0, y1 ∈ D to be equivalent if there exists a morphism y0 → y1. Then π0D is the

set of equivalence classes. The group law is given by the monoidal structure ⊗, and we obtain an

abelian group since ⊗ is symmetric. Define π1D = D(1D, 1D) as the automorphism group of the

tensor unit. If y ∈ D then there is an isomorphism

eq:378 (17.29) −⊗ idy : Aut(1D) −→ Aut(y)

where we write Aut(y) = D(y, y). The k-invariant on y is the symmetry σ : y ⊗ y → y ⊗ y, which

is an element of Aut(y ⊗ y) ∼= Aut(1D) = π1D. We leave the reader to verify that this determines

a homomorphism π0D ⊗ Z/2Z→ π1D.

Invertible TQFTs

We distinguish the special subset of invertible topological quantum field theories.

thm:317 Definition 17.30. Fix a nonnegative integer n, a tangential structure X(n), and a symmetric

monoidal category C. Then a topological quantum field theory α : BordX(n)⟨n−1,n⟩ → C is invertible if

it factors through the underlying Picard groupoid of C:

eq:372 (17.31) BordX(n)⟨n−1,n⟩
α

C

C×

If α is invertible, it follows from the universal property of the groupoid completion (Definition 17.14)

that there is a factorization

eq:373 (17.32) BordX(n)⟨n−1,n⟩
α

C

|BordX(n)⟨n−1,n⟩ |
α̃

C×

We will identify the invertible theory with the map α̃ (and probably omit the tilde.) In Lecture 19

we will see that α̃ can be identified with a map of spectra.

thm:318 Lemma 17.33. The groupoid completion |BordX(n)⟨n−1,n⟩ | of a bordism category is a Picard groupoid.

Proof. By Theorem 15.29 an object of BordX(n)⟨n−1,n⟩ is dualizable, so by Lemma 17.21(ii) it is also

invertible. !

thm:320 Remark 17.34. A TQFT α is invertible if and only if it is an invertible object in the symmetric

monoidal category (15.9) of TQFTs.
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subsec:17.5

(17.35) Super vector spaces. We introduce the symmetric monoidal category of super vector

spaces. For more detail on superalgebra I recommend [DeM]. The word ‘super’ is a synonym

for ‘Z/2Z-graded’. A super vector space is a pair (V, ϵ) consisting of a vector space (over a field k

of characteristic not equal35 to 2) and an endomorphism ϵ : V → V such that ϵ2 = idV . The

±-eigenspaces of ϵ provide a decomposition V = V 0 ⊕ V 1; elements of the subspace V 0 are called

even and elements of the subspace V 1 are called odd. A morphism (V, ϵ)→ (V ′, ϵ′) is a linear map

T : V → V ′ such that T ◦ ϵ = ϵ′ ◦ T . It follows that T maps even elements to even elements and

odd elements to odd elements. The monoidal structure is defined as

eq:375 (17.36) (V1, ϵ1)⊗ (V2, ϵ2) = (V1 ⊗ V2, ϵ1 ⊗ ϵ2)

What is novel is the symmetry σ. If v ∈ V is a homogeneous element, define its parity |v| ∈ {0, 1}
so that v ∈ V |v|. Then for homogeneous elements vi ∈ Vi the symmetry is

eq:376 (17.37)
σ : (V1, ϵ1)⊗ (V2, ϵ2) −→ (V2, ϵ2)⊗ (V1, ϵ1)

v1 ⊗ v2 1−→ (−1)|v1| |v2| v2 ⊗ v1

This is called the Koszul sign rule. Let sVectk denote the symmetric monoidal category of super

vector spaces. The obvious forgetful functor sVectk → Vectk is not a symmetric monoidal functor,

though it is a monoidal functor.

subsec:17.6

(17.38) Example of an invertible field theory. According to Theorem 16.10 to define an oriented

one-dimensional TQFT

eq:377 (17.39) α : BordSO⟨0,1⟩ → sVectk

we need only specify α(pt+). We let it be the odd line (k,−1) whose underlying vector space is

the trivial line k (the field as a one-dimensional vector space) viewed as odd: the endomorphism ϵ

is multiplication by −1. We leave as a homework problem to prove that α is invertible and that

α(S1) = −1.

The groupoid completion of one-dimensional bordism categories

Of course, by Lemma 17.33 the groupoid completion |B| of a bordism category B is a Picard

groupoid, so has invariants described in (17.27). We compute them for the bordism categories

eq:379 (17.40)
B = Bord⟨0,1⟩

BSO = BordSO⟨0,1⟩

35We can give a different description in that case.
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thm:319 Theorem 17.41. For the group completion of the unoriented bordism category

eq:380 (17.42) π0|B| ∼= Z/2Z, π1|B| = 0

and for the group completion of the oriented bordism category

eq:382 (17.43) π0|BSO| ∼= Z, π1|BSO| ∼= Z/2Z,

with nontrivial k-invariant.

Proof. The arguments for π0 are straightforward and amount to Proposition 1.31 and the assertion

ΩSO
0
∼= Z.

Figure 30. Some unoriented 1-dimensional bordisms fig:28

To compute π1B we argue as follows. First, 1B = ∅0 is the empty 0-manifold, so End(1B) =

B(1B , 1B) consists of diffeomorphism classes of closed 1-manifolds. Therefore, there is an isomor-

phism of commutative monoids End(1B) ∼= Z≥0 which counts the number of components of a

bordism X. Let Xn denote the disjoint union of n circles. Then using the bordisms defined in

Figure 30 we have

eq:383 (17.44) f1 ◦ g = f2 ◦ g = h

as morphisms in B. In the groupoid completion |B| we can compose on the right with the inverse

to g to conclude that i(f1) = i(f2), where i : B → |B|. That implies that in |B| we have

eq:384 (17.45) i(X1) ◦ i(h) = i(f1) ◦ i(k) = i(f2) ◦ i(k) = i(h),

whence i(X1) = i(∅0) = 1|B|. It remains to show that every morphism ∅0 → ∅0 in |B| is equivalent
to a union of circles and their formal inverses. Observe first that the inverse of the “right elbow” h

is the “left elbow”, since their composition in one order is the circle, which is equivalent to the

identity map. Next, any morphism ∅0 → ∅0 in |B| is the composition of a finite number of

morphisms Y2k → Y2ℓ and inverses of such morphisms, where Yn is the 0-manifold consisting of

n points. Furthermore, each such morphism is the disjoint union of circles, identities, right elbows,



BORDISM: OLD AND NEW 137

Figure 31. Some oriented 1-dimensional bordisms fig:29

left elbows, and their inverses. Identities are self-inverse and the elbows are each other’s inverse,

hence carrying out the compositions of elbows and identities we obtain a union of circles and their

inverses, as desired. This proves π1|B| is the abelian group with a single element.

To compute π1|BSO| we make a similar argument using the bordisms in Figure 31. Let X̃n

be the disjoint union of n oriented circles. Note that the circle has a unique orientation up to

orientation-preserving diffeomorphism. In this case we conclude that i(X̃2) = i(∅0) = 1|BSO|. To

rule out the possibility that i(X̃1) is also the tensor unit, we use the TQFT in (17.38). It maps

the oriented circle X̃1 to a non-tensor unit (which necessarily has order two).

Figure 32. The k-invariant of |BordSO⟨0,1⟩ | fig:30

Figure 32 illustrates the computation of the k-invariant (17.28) of |BSO|. The nontrivial element

of π0|BSO| is represented by pt+, and the top part of the diagram is the symmetry σ : pt+⨿pt+ →

dafr
Fix this argument: pictures don't work and in any case trying to prove X_2=0, not X_1=0.



138 D. S. FREED

pt+⨿pt+ in BSO. We then tensor with the identity on the inverse of pt+, which is pt−; that

is represented by the disjoint union of the top and bottom four strands. The left and right ends

implement the isomorphism 1|BSO|
∼= pt+⨿pt+⨿pt−⨿pt−. The result is the oriented circle X̃1,

which is the generator of π1|BSO|. !



Lecture 18: Groupoids and spaces

sec:18

The simplest algebraic invariant of a topological space T is the set π0T of path components. The

next simplest invariant, which encodes more of the topology, is the fundamental groupoid π≤1T .

In this lecture we see how to go in the other direction. There is nothing to say for a set T : it is

already a discrete topological space. If G is a groupoid, then we can ask to construct a space BG

whose fundamental groupoid π≤1BG is equivalent to G. We give such a construction in this section.

More generally, for a category C we construct a space BC whose fundamental groupoid π≤1BC

is equivalent to the groupoid completion (Definition 17.14) of C. The space BC is called the

classifying space of the category C. As we will see in the next lecture, if T• is a spectrum, then its

fundamental groupoid π≤1T• is a Picard groupoid, and conversely the classifying space of a Picard

groupoid is a spectrum.

As an intermediate between categories and spaces we introduce simplicial sets. These are com-

binatorial models for spaces, and are familiar in some guise from the first course in topology. We

only give a brief introduction and refer to the literature—e.g. [S2, Fr] for details. One important

generalization is that we allow spaces of simplices rather than simply discrete sets of simplices.

In other words, we also consider simplicial spaces. This leads naturally to topological categories,36

which we also introduce in this lecture.

In subsequent lectures we will apply these ideas to bordism categories. Lemma 17.33 asserts that

the groupoid completion of a bordism category is a Picard groupoid, and we can ask to identify its

classifying spectrum. To make the problem more interesting we will yet again extract from smooth

manifolds and bordism a more intricate algebraic invariant: a topological category.

Simplices

Let S be a nonempty finite ordered set. For example, we have the set

eq:389 (18.1) [n] = {0, 1, 2, . . . , n}

with the given total order. Any S is uniquely isomorphic to [n], where the cardinality of S is n+1.

Let A(S) be the affine space generated by S and Σ(S) ⊂ A(S) the simplex with vertex set S. So

if S = {s1, s1, . . . , sn}, then A(S) consists of formal sums

eq:390 (18.2) p = t0s0 + t1s1 + · · ·+ tnsn, ti ∈ R, t0 + t1 + · · · + tn = 1,

and Σ(S) consists of those sums with ti ≥ 0. We write An = A([n]) and ∆n = Σ([n]). For these

standard spaces the point i ∈ [n] is (. . . , 0, 1, 0, . . . ) with 1 in the ith position.

36This term generates confusion. We follow [S2] in using it to denote an internal category in the category Top of
topological spaces. A more common usage is for a category enriched over Top.

139
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Let ∆ be the category whose objects are nonempty finite ordered sets and whose morphisms are

order-preserving maps (which may be neither injective nor surjective). The category ∆ is generated

by the morphisms

eq:391 (18.3) [0] [1] [2] · · ·

where the right-pointing maps are injective and the left-pointing maps are surjective. For example,

the map di : [1] → [2], i = 0, 1, 2 is the unique injective order-preserving map which does not

contain i ∈ [2] in its image. The map si : [2] → [1], i = 0, 1, is the unique surjective order-

preserving map for which s−1
i (i) has two elements. Any morphism in ∆ is a composition of the

maps di, si and identity maps.

Each object S ∈ ∆ determines a simplex Σ(S), as defined above. This assignment extends to a

functor

eq:392 (18.4) Σ : S −→ Top

to the category of topological spaces and continuous maps. A morphism θ : S0 → S1 maps to the

affine extension θ∗ : Σ(S0)→ Σ(S1) of the map θ on vertices.

Simplicial sets and their geometric realizations

Recall the definition (13.7) of a category.

thm:321 Definition 18.5. Let C be a category. The opposite category Cop is defined by

eq:393 (18.6) Cop
0 = C0, Cop

1 = C1, sop = t, top = s, iop = i,

and the composition law is reversed: gop ◦ fop = (f ◦ g)op.

Here recall that C0 is the set of objects, C1 the set of morphisms, and s, t : C1 → C0 the source and

target maps. The opposite category has the same objects and morphisms but with the direction of

the morphisms reversed.

The following definition is slick, and at first encounter needs unpacking (see [Fr], for example).

thm:322 Definition 18.7. A simplicial set is a functor

eq:394 (18.8) X : ∆op −→ Set

It suffices to specify the sets Xn = X([n]) and the basic maps (18.3) between them. Thus we

obtain a diagram

eq:395 (18.9) X0 X1 X2 · · ·

We label the maps di and si as before. The di are called face maps and the si degeneracy maps.

The set Xn is a set of abstract simplices. An element of Xn is degenerate if it lies in the image of

some si.

The morphisms in an abstract simplicial set are gluing instructions for concrete simplices.



BORDISM: OLD AND NEW 141

thm:323 Definition 18.10. Let X : ∆op → Set be a simplicial set. The geometric realization is the topo-

logical space |X| obtained as the quotient of the disjoint union

eq:396 (18.11)
∐

S

X(S)× Σ(S)

by the equivalence relation

eq:397 (18.12) (σ1, θ∗p0) ∼ (θ∗σ1, p0), θ : S0 → S1, σ1 ∈ X(S1), p0 ∈ Σ(S0).

The map θ∗ = Σ(θ) is defined after (18.4) and θ∗ = X(θ) is part of the data of the simplicial set X.

Alternatively, the geometric realization map be computed from (18.9) as

eq:398 (18.13)
∐

n

Xn ×∆n
/
∼,

where the equivalence relation is generated by the face and degeneracy maps.

thm:329 Remark 18.14. The geometric realization can be given the structure of a CW complex.

Examples

thm:324 Example 18.15. Let X be a simplicial set whose nondegenerate simplices are

eq:399 (18.16) X0 = {A,B,C,D}, X1 = {a, b, c, d}.

The face maps are as indicated in Figure 33. For example d0(a) = B, d1(a) = A, etc. (This requires

a choice not depicted in Figure 33.) The level 0 and 1 subset of the disjoint union (18.13) is pictured

in Figure 34. The 1-simplices a, b, c, d glue to the 0-simplices A,B,C,D to give the space depicted

in Figure 33. The red 1-simplices labeled A,B,C,D are degenerate, and they collapse under the

equivalence relation (18.12) applied to the degeneracy map s0.

Figure 33. The geometric realization of a simplicial set fig:33

thm:325 Example 18.17. Let T be a topological space. Then there is a simplicial set SingT of singular

simplices, defined by

eq:400 (18.18) (SingT )(S) = Top
(
Σ(S), T

)
,
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Figure 34. Gluing the simplicial set fig:34

where Top
(
Σ(S), T

)
is the set of continuous maps Σ(S)→ T , i.e., the set of singular simplices with

vertex set S. The boundary maps are the usual ones. The evaluation map

eq:401 (18.19) (Sing T )(S)× Σ(S) = Top
(
Σ(S), T

)
×Σ(S) −→ T,

passes through the equivalence relation to induce a continuous map

eq:402 (18.20) |Sing T | −→ T.

A basic theorem in the subject asserts that this map is a weak homotopy equivalence.

Categories and simplicial sets

subsec:18.1

(18.21) The nerve. Let C be a category, which in part is encoded in the diagram

eq:403 (18.22) C0 C1

The solid left-pointing arrows are the source s and target t of a morphism; the dashed right-pointing

arrow i assigns the identity map to each object. This looks like the start of a simplicial set, and

indeed there is a simplicial set NC, the nerve of the category C, which begins precisely this way:

NC0 = C0, NC1 = C1, d0 = t, d1 = s, and s0 = i. A slick definition runs like this: a finite

nonempty ordered set S determines a category with objects S and a unique arrow s→ s′ if s ≤ s′

in the order. Then

eq:404 (18.23) NC(S) = Fun(S,C)

where Fun(−,−) denotes the set of functors. As is clear from Figure 35, NC([n]) consists of sets

of n composable arrows in C. The degeneracy maps in NC insert an identity morphism. The face

map di omits the ith vertex and composes the morphisms at that spot; if i is an endpoint i = 0 or

i = n, then di omits one of the morphisms.

thm:326 Example 18.24. Let M be a monoid, regarded as a category with a single object. Then

eq:405 (18.25) NMn = M×n.

It is a good exercise to write out the face maps.
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Figure 35. A totally ordered set as a category fig:35

thm:327 Definition 18.26. Let C be a category. The classifying space BC of C is the geometric realiza-

tion |NC| of the nerve of C.

thm:336 Remark 18.27. A homework exercise will explain the nomenclature ‘classifying space’.

thm:328 Example 18.28. Suppose G = Z/2Z is the cyclic group of order two, viewed as a category with

one object. Then NGn has a single nondegenerate simplex (g, . . . , g) for each n, where g ∈ Z/2Z
is the non-identity element. So BG is glued together with a single simplex in each dimension. We

leave the reader to verify that in fact BG ≃ RP∞.

thm:330 Theorem 18.29. Let M be a monoid. Then π1BM is the group completion of M .

The nerve NM has a single 0-simplex, which is the basepoint of BM .

Proof. The fundamental group of a CW complex B is computed from its 2-skeleton B2. Assuming

there is a single 0-cell, the 1-skeleton is a wedge of circles, so its fundamental group is a free group F .

The homotopy class of the attaching map S1 → B1 of a 2-cell is a word in F , and the fundamental

group of B is the quotient F/N , where N is the normal subgroup generated by the words of the

attaching maps of 2-cells. For B = BM the set of 1-cells is M , so π1BM1 ∼= F (M) is the free group

generated by the set M . The homotopy class of the 2-cell (m1,m2) is the word (m1m2)m
−1
2 m−1

1 .

By (17.10) the quotient F (M)/N is the group completion of M . !

We next prove an important proposition [S2].

thm:333 Proposition 18.30. Let F,G : C → D be functors and η : F → G a natural transformation. Then

the induced maps |F |, |G| : |C|→ |D| on the geometric realizations are homotopic.

Proof. Consider the ordered set [1] as a category, as in Figure 35. Its classifying space is home-

omorphic to the closed interval [0, 1]. Define a functor H : [1] × C → D which on objects of the

form (0,−) is equal to F , on objects of the form (1,−) is equal to G, and which maps the unique

morphism (0 → 1) to the natural transformation η. Then |H| : [0, 1] × |C| → |D| is the desired

homotopy. !

thm:334 Remark 18.31. The proof implicitly uses that the classifying space of a Cartesian product of cate-

gories is the Cartesian product of the classifying spaces. That is not strictly true in general; see [S2]

for discussion.

thm:332 Proposition 18.32. Let G be a groupoid. Then the natural functor iG : G→ π≤1BG is an equiva-

lence of groupoids.

The objects of G are the 0-skeleton of BG, and iG is the inclusion of the 0-skeleton on objects. The

1-cells of BG are indexed by the morphisms of G, and imposing a standard parametrization we

obtain the desired map iG.
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Proof. Any groupoid G is equivalent to a disjoint union of groups. To construct an equivalence

choose a section of the quotient map G0 → π0G and take the disjoint union of the automorphism

groups of the objects in the image of that section.

!

thm:331 Corollary 18.33. Let C be a category. The fundamental groupoid π≤1BC is equivalent to the

groupoid completion of C.

Proof. As explained after the statement of Proposition 18.32 there is a natural map C
iC−−→

π≤1BC. We check the universal property (17.15). Suppose f : C → G is a functor from C to

a groupoid. There is an induced continuous maps Bf : BC → BG and then an induced functor

π≤1Bf : π≤1BC → π≤1BG such that the diagram

eq:406 (18.34) C
iC

f

π≤1BC

π≤1Bf

G
iG
π≤1BG

By Proposition 18.32 the map iG is an equivalence of groupoids, and composition with an inverse

equivalence gives the required factorization f̃ . !

thm:335 Remark 18.35. A skeleton of π≤1BC is a groupoid completion as in Definition 17.14; its set of

objects is isomorphic to C0. There is a canonical skeleton: the full subcategory whose set of objects

is iC(C0).

Simplicial spaces and topological categories

A simplicial set describes a space—its geometric realization—as the gluing of a discrete set of

simplices. However, we may also want to glue together a space from continuous families of simplices.

thm:337 Definition 18.36. A simplicial space is a functor

eq:407 (18.37) X : ∆op −→ Top

More concretely, a simplicial space is a sequence {Xn} of topological spaces with continuous face

and degeneracy maps as in (18.9). The construction of the geometric realization (Definition 18.10)

goes through verbatim.

We can also promote the sets and morphisms of a (discrete) category from sets to spaces.

thm:338 Definition 18.38. A topological category consists of topological spaces C0, C1 and continuous maps

eq:408 (18.39)

i : C0 −→ C1

s, t : C1 −→ C0

c : C1 ×C0
C1 −→ C1

which satisfy the algebraic relations of a discrete category.
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These are described following (13.8). Thus the partially defined composition law c is associative

and i(y) is an identity morphism with respect to the composition.

thm:339 Example 18.40. Let M be a topological monoid. So M is both a monoid and a topological space,

and the composition law M ×M → M is continuous. Then M may be regarded as a topological

category with a single object.

thm:340 Example 18.41. At the other extreme, a topological space T may be regarded as a topological

category with only identity morphisms.

thm:341 Example 18.42. There is a topological category whose objects are finite dimensional vector spaces

and whose spaces of morphisms are spaces of linear maps (with the usual topology).

thm:342 Example 18.43. Let M be a smooth manifold and G a Lie group. Then there is a topological

category whose objects are principal G-bundles with connection and whose morphisms are flat

bundle isomorphisms.

thm:343 Definition 18.44. Let C be a topological category. Its nerve NC and classifying space BC are

defined as in (18.21) and Definition 18.26, verbatim.

Notice that the nerve is a simplicial space.



Lecture 19: Γ-spaces and deloopings

sec:19

To a topological category C we associate a topological space BC. We saw in (17.32) that an

invertible field theory, defined on a discrete bordism category B, factors through the groupoid

completion |B| of B. Furthermore, by Corollary 18.33, the groupoid completion is the fundamental

groupoid |B| of the classifying space of B. In the next lecture we introduce topological bordism

categories and a corresponding richer notion of a topological quantum field theory, with values in

a symmetric monoidal topological category. In that case we will see that an invertible field theory

factor through the classifying space of the topological bordism category. Now a topological bordism

category has a symmetric monoidal structure, so we can ask what extra structure is reflected on

the classifying space. In this lecture we will see that this extra structure is an infinite loop space

structure. In other words, the classifying space BC of a topological symmetric monoidal category

is the 0-space of a prespectrum. (Review Definition 10.2.)

There are many “delooping machines” which build the infinite loop space structure. Here we

give an exposition of Segal’s Γ-spaces [S2], though we use the observation of Anderson [A] that the

opposite category Γop to Segal’s category Γ is the category of finite pointed sets. Further accounts

may be found in [BF] and [Sc]. So whereas in Lecture 18 we have the progression

eq:414 (19.1) Topological categories −→ Simplicial spaces −→ Spaces

in this lecture we make a progression

eq:415 (19.2) Symmetric monoidal topological categories −→ Γ-spaces −→ Prespectra.

In fact, we will only discuss a special type of symmetric monoidal structure, called a permutative

structure, which is rigid in the sense that the associativity and identity maps (13.31) and (13.33)

are equalities. Our treatment follows [Ma2]; see also [EM, §4].

Motivating example: commutative monoids

subsec:19.1

(19.3) Segal’s category. Segal [S2] defined a category Γ whose opposite (Definition 18.5) is easier

to work with.

thm:344 Definition 19.4. Γop is the category whose objects are finite pointed sets and whose morphisms

are maps of finite sets which preserve the basepoint.

Any finite pointed set is isomorphic to

eq:409 (19.5) n+ = {∗, 1, 2, . . . , n}
146

dafr
topological
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for some n ∈ Z≥0. We also use the notation

eq:410 (19.6) S0 = 1+ = {∗, 1}.

There are also categories Set∗, Top∗ of pointed sets and pointed topological spaces, and Γop ⊂ Set∗
is a subcategory.

subsec:19.2

(19.7) The Γ-set associated to a commutative monoid. Let M be a commutative monoid, which

we write additively. Forgetting the addition we are left with a pointed set (M, 0). Define the

functor

eq:411 (19.8)
AM : Γop −→ Set∗

S 1−→ Set∗(S,M)

This defines AM on objects: there is a canonical isomorphism AM (n+) = M×n. Note in particular

that we recover the commutative monoid as

eq:424 (19.9) AM (S0) = M.

Given a map (S0
θ−→ S1) ∈ Γop, we must produce

(
Set∗(S0,M)

θ∗=AM (θ)−−−−−−→ Set∗(S1,M)
)
. This is

not composition, but rather is a “wrong-way map”, or integration. It is defined as

eq:412 (19.10) θ∗(µ)(s1) =

⎧
⎨

⎩

0, s1 = ∗;∑

s0∈θ−1(s1)

µ(s0), s1 ̸= ∗,

where µ : S0 → M is a pointed map (µ(∗) = 0) and s1 ∈ S1. This pushforward map is illustrated

in Figure 36. Note that the map α : 2+ → 1+ with α(1) = α(2) = 1 maps to addition M×2 → M ,

and said addition is necessarily commutative and associative, which one proves by applying AM to

the commutative diagrams

eq:413 (19.11) 2+
τ

α

2+

α

1+

3+ 2+

2+ 1+

The functor AM is a special Γ-set.

thm:345 Definition 19.12.

(i) A Γ-set is a functor A : Γop → Set∗ such that A({∗}) = {∗}.
(ii) A is special if the natural map

eq:416 (19.13) A(S1 ∨ S2) −→ A(S1)×A(S2)

is an isomorphism of pointed sets.
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Figure 36. The pushforward θ∗ associated to θ : S0 → S1 fig:36

In (i) the pointed set {∗} ∈ Γop ⊂ Set∗ is the special object with a single point. A specification of this

object makes Γop and Set∗ into pointed categories, that is, categories with a distinguished object.37

So the requirement in (i) is that A be a pointed map of pointed categories. The map (19.13) is

induced from the collapse maps

eq:417 (19.14) S1 ∨ S2 −→ S1 and S1 ∨ S2 −→ S2.

thm:346 Remark 19.15. For any category C a functor Cop → Set is called a presheaf on C. So a special

Γ-set is a pointed presheaf on Γ.

thm:349 Remark 19.16. We view a (special) Γ-set A as a set A(S0) with extra structure. So for A = AM

we have the set M in (19.9) with the extra structure of a basepoint A({∗}) and a commutative

associative composition law A(2+
α−→ 1+). A similar picture holds for Γ-spaces below.

thm:348 Example 19.17. A representable Γ-set is defined by A(S) = Γop(T, S) for some fixed T ∈ Γop.

Taking T = S0 we have the special Γ-set

eq:418 (19.18) S(S) = Γop(S0, S).

Notice that S(S0) = S0, so that S is the set S0 with extra structure. Spoiler alert!38

At the end of the lecture we give a similar construction (a bit heuristic) in which we replace the

commutative monoid M with a symmetric monoidal category C. In that case µ : S → C assigns

an object of C to each element of S and the addition in (19.10) is replaced by the tensor product

in C.

Γ-spaces

It is a small leap to generalize Definition 19.12 to spaces. We just need to be careful to replace

isomorphisms with weak homotopy equivalences.

37A standard definition of ‘pointed category’ also requires that for every object y there be a unique map ∗ → y
and a unique map y → ∗. We do not make that requirement, though it is true here.

38The associated prespectrum is the sphere spectrum, after completing to a spectrum as in (10.6).



BORDISM: OLD AND NEW 149

thm:347 Definition 19.19.

(i) A Γ-space is a functor A : Γop → Top∗ such that A({∗}) is contractible.
(ii) A is special if the natural map

eq:421 (19.20) A(S1 ∨ S2) −→ A(S1)×A(S2)

is a weak homotopy equivalence of pointed spaces.

Some authors require the stronger condition that A({∗}) = {∗}.

Γ and ∆

Recall that ∆ is the category of nonempty finite ordered sets and nondecreasing maps. Any

object is isomorphic to

eq:419 (19.21) [n] = {0 < 1 < 2 < · · · < n}

for some n ∈ Z≥0. We now define a functor

eq:420 (19.22) κ : ∆op −→ Γop

Composing with κ we obtain a functor from Γ-spaces to simplicial spaces (recall Definition 18.36).

subsec:19.4

(19.23) Definition of κ. The functor κ on objects is straightforward. If S ∈ ∆ is a nonempty

finite ordered set, let ∗ ∈ S be the minimum, and consider the pair κ(S) = (S, ∗) as a finite pointed

set, forgetting the ordering.

 

Figure 37. The functor ∆op → Γop on morphisms fig:37

What is trickier is the action of κ on morphisms. We illustrate the general definition in Figure 37.

On the left is shown a non-decreasing map f : S0 → S1 of finite ordered sets. The induced map κ(f)

of pointed sets maps in the opposite direction. We define it by moving in S1 from the smallest to

the largest element. The smallest element ∗ ∈ S1 necessarily maps to ∗ ∈ S0. For each successive

element s1 ∈ S1 we find the minimal s′1 ∈ f(S0) ⊂ S1 such that s′1 ≥ s1; then define κf(s)) as the

minimal element of f−1(s′1). Finally, if no element s′1 ≥ s1 is in the image of f , then set κf(s1) = ∗.
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subsec:19.3

(19.24) Motivation. The category ∆ is generated by injective/surjective= face/degeneracy maps,

as depicted in (18.9). So let’s see what κ does on face and degeneracy maps, and we go a step further

and apply to the Γ-set AM defined in (19.7). We leave the reader to check that if d : [n]→ [n+ 1]

is the injective map which misses i ∈ [n+1], then the induced face map d∗ : M×(n+1) →M×n sends

eq:422 (19.25) (m1,m2, . . . mn+1) 1−→ (m1, . . . ,mi +mi+1, . . . ,mn+1),

where mj ∈M . Similarly, if s : [n]→ [n− 1] is the surjective map which sends both i and i+ 1 to

the same element, then the induced degeneracy map s∗ : [n− 1]→ [n] sends

eq:423 (19.26) (m1, . . . ,mn−1) 1−→ (m1, . . . , 0, . . . ,mn−1),

where 0 is inserted in the ith spot. These are the face and degeneracy maps of the nerve of the

category with one object whose set of morphisms is M ; see Example 18.24.

subsec:19.5

(19.27) The realization of a Γ-space. To a Γ-space A is associated a simplicial space A ◦ κ and

so its geometric realization |A ◦ κ|, a topological space. We simply use the notation |A| for this

space. Observe that |A| is a pointed space. For the set of n-simplices is the pointed space A(n+),

and its basepoint is the degenerate simplex built by successively applying degeneracy maps to

the basepoint of A(0+). The basepoint of A(0+) gives a distinguished 0-simplex in the geometric

realization (18.13), which is then the basepoint of |A|. We will now define additional structure on

the geometric realization in the form of a Γ-space BA such that BA(S0) = |A|.

The classifying space of a Γ-space

thm:350 Definition 19.28. Let A be a Γ-space. Its classifying space BA is the Γ-space

eq:425 (19.29) BA(S) = |T 1−→ A(S ∧ T )| .

The vertical bars denote the geometric realization of the simplicial space underlying a Γ-space; we

prove in the lemma below that the map inside the vertical bars is a Γ-space. Note S, T ∈ Γop.

Also, there is a canonical isomorphism

eq:426 (19.30) BA(S0) = |A|,

and BA({∗}) is the basepoint of |A|.

thm:351 Remark 19.31. There are modified geometric realizations of a simplicial space which have better

technical properties; see the appendix to [S2]. Also, see [D] for another version of geometric

realization. Depending on the realization, it may be that BA({∗}) is a contractible space which

contains the basepoint of |A|.
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thm:352 Lemma 19.32. Let A be a Γ-space and S ∈ Γop. Then T 1→ A(S ∧ T ) is a Γ-space, special if A is

special.

Proof. Observe that T 1→ S ∧ T is a functor Γop → Γop, and that 0+ 1→ S ∧ 0+ = 0+. For the

special statement, if T1, T2 ∈ Γop, then

eq:427 (19.33) T1 ∨ T2 1−→ S ∧ (T1 ∨ T2) = (S ∧ T1) ∨ (S ∧ T2).

Now use the special property of A and the fact that the realization of a product is the product of

the realizations. !

The prespectrum associated to a Γ-space

subsec:19.7

(19.34) Iteration. Let A be a Γ-space. We iterate the classifying space construction to obtain a

sequence

eq:428 (19.35) A, BA, B2A, B3A, . . .

of Γ-spaces, and so too a sequence

eq:429 (19.36) A(S0), BA(S0), B2A(S0), B3A(S0), . . .

of pointed topological spaces.

subsec:19.8

(19.37) Prespectrum structure. We define for any Γ-space A a continuous map

eq:430 (19.38) s : Σ(A(S0)) −→ BA(S0) = |A|.

Applying this to each space in (19.36) we obtain a prespectrum. The simplicial space associated

to A has A(0+) = A({∗}) as its space of 0-simplices. Assume for simplicity that A({∗}) = ∗;
in any case ∗ ∈ A({∗}) and the same construction applies. Now the geometric realization of a

simplicial space has a natural filtration by subspaces; the qth stage of the filtration is obtained by

taking the disjoint union over n = 0, 1, . . . , q in (18.13). Under the hypothesis just made on A, the

0th stage of the filtration is a single point ∗. The 1st stage of the filtration is obtained by gluing

on A(1+) = A(S0) using the two face maps and single degeneracy map. We leave the reader to

check that we exactly obtain the (reduced) suspension Σ(A(S0)). Hence the map s is the inclusion

of the 1st stage of the filtration of |A|.
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subsec:19.9

(19.39) Monoid structure on π0A(S0). If A is a special Γ-space, then the composition

eq:431 (19.40) Γop A−−→ Top∗
π0−−−→ Set∗

is a special Γ-set. You will prove in the homework that the Γ-set structure gives π0A(S0) the

structure of a commutative monoid.

thm:353 Theorem 19.41 ([S2]). If the commutative monoid π0A(S0) is an abelian group, then the adjoint

eq:432 (19.42) t : A(S0) −→ ΩBA(S0)

is a weak homotopy equivalence.

thm:354 Corollary 19.43. For k > 0 the space BkA(S0) is weakly equivalent to ΩBk+1A(S0).

Proof. For BkA(S0) is the geometric realization of the Γ-space Bk−1A which has a contractible

space of 0-simplices, and therefore π0 trivial. !

The necessity of the condition in Theorem 19.41 is clear. For if A(S0) is equivalent to a loop

space, then the loop product (on π0) has additive inverses: reverse the parametrization of the loop.

A standard argument, which you encountered encountered in the second problem set, proves that

the loop product is equal to the product given by the Γ-space structure. If π0A(S0) is an abelian

group, then (19.36) is an Ω-prespectrum.

We do not provide a proof of Theorem 19.41 in this version of the notes.

thm:355 Example 19.44. Let A be a discrete abelian group. The Ω-prespectrum (19.35) associated to the

Γ-set (19.8) defined by A (viewed as a commutative monoid) is an Eilenberg-MacLane spectrum.

thm:356 Example 19.45. The prespectrum associated to the Γ-set S is the sphere spectrum. (Better: the

sphere spectrum is the completion of that Ω-prespectrum to a spectrum.)

Γ-categories

The next definition is analogous to Definition 19.19. Recall that a pointed category is a category

with a distinguished object. The collection of (small) pointed categories forms a category Cat∗;

morphisms are functors and we require associativity on the nose.39

thm:357 Definition 19.46.

(i) A Γ-category is a functor D : Γop → Cat∗ such that D({∗}) is equivalent to the trivial

category with a single object and the identity morphism.

(ii) D is special if the natural map

eq:437 (19.47) D(S1 ∨ S2) −→ D(S1)×D(S2)

is an equivalence of pointed categories.

39Categories are more naturally objects in a 2-category. Namely, functors are like sets, and there is an extra layer
of structure: natural transformations between functors. So it is rather rigid to demand that composition of functors
be associative on the nose.

Dan Freed
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subsec:19.10

(19.48) From Γ-categories to Γ-spaces and prespectra. Let D be a Γ-category. Then composing

with the classifying space construction B : Cat∗ → Top∗ we obtain a Γ-space BD and then a

prespectrum whose 0-space is B(D(S0)), the classifying space of the category D(S0).

subsec:19.11

(19.49) Permutative categories. We would like to associate a Γ-category to a symmetric monoidal

category, but we need to assume additional rigidity to do so. A theorem of Isbell [I] asserts that

every symmetric monoidal category is equivalent to a permutative category, so this is not really a

loss of generality. A permutative category is a symmetric monoidal category with a strict unit and

strict associativity.

thm:358 Definition 19.50. A permutative category is a quartet (C, 1C ,⊗,σ) consisting of a pointed cate-

gory (C, 1C ), a functor ⊗ : C ×C → C, and a natural transformation σ as in (13.32) such that for

all y, y1, y2, y3 ∈ C

(i) 1C ⊗ y = y ⊗ 1C = y;

(ii) (y1 ⊗ y2)⊗ y3 = y1 ⊗ (y2 ⊗ y3);

(iii) the composition y1 ⊗ y2
σ−→ y2 ⊗ y1

σ−→ y1 ⊗ y2 is the identity; and

(iv) the diagrams

eq:433 (19.51) 1⊗ y
σ

=

y ⊗ 1

=

y

y1 ⊗ y2 ⊗ y2
σ

1⊗σ

y3 ⊗ y1 ⊗ y2

σ⊗1

y1 ⊗ y3 ⊗ y2

commute.

thm:359 Example 19.52. The category Γop of finite pointed sets has a permutative structure if we take a

model in which the set of objects is precisely {n+ : n ∈ Z≥0}. Then define n1
+⊗n2

+ = (n1 + n2)
+.

The tensor unit is 0+ and we leave the reader to define the symmetry σ.

subsec:19.12

(19.53) The Γ-category associated to a permutative category. As we said earlier, this construc-

tion is analogous to (19.7). We give the basic definitions and leave to the reader the detailed

verifications. Let C be a permutative category. We define an associated Γ-category D as follows.

For S ∈ Γop a finite pointed set let D(S) be the category whose objects are pairs (c, ρ) in which

(i) c(T ) ∈ C for each pointed subset T ⊂ S and (ii) the map

eq:434 (19.54) ρ(T1, T2) : c(T1)⊗ c(T2) −→ c(T1 ∨ T2)

is an isomorphism for each pair of pointed subsets with T1 ∩ T2 = {∗}. These data must satisfy

several conditions:

(i) c({∗}) = 1C ;

(ii) ρ({∗}, T ) = idT for all T ; and
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(iii) for all T1, T2, T3 with correct intersections the diagrams

eq:435 (19.55) c(T1)⊗ c(T2)
ρ(T1,T2)

σ

c(T1 ∨ T2)

c(T2)⊗ c(T1)
ρ(T2,T1)

c(T2 ∨ T1)

and

eq:436 (19.56) c(T1)⊗ c(T2)⊗ c(T3)
ρ(T1,T2)⊗id

id⊗ρ(T2,T3)

c(T1 ∨ T2)⊗ c(T3)

ρ(T1∨T2,T3)

c(T1)⊗ c(T2 ∨ T3)
ρ(T1,T2∨T3)

c(T1 ∨ T2 ∨ T3)

commute.

thm:360 Exercise 19.57. Define a morphism
(
(c, ρ) → (c′, ρ′)

)
∈ D(S). The data is, for each pointed

T ⊂ S, a morphism
(
c(T ) → c′(T )

)
∈ C. What is the condition that these morphisms must

satisfy?

This completes the definition of the category D(S) associated to S ∈ Γop. Now we must define a

functor D(S0)
θ∗−−→ D(S1) for each morphism (S1

θ−→ S1) ∈ Γop. The definition follows Figure 36.

To streamline the notation, for T ⊂ S1 a pointed subset define the modified inverse image to be

the pointed subset

eq:441 (19.58) θ̃−1(T ) := {∗} ∪ θ−1
(
T \ {∗}

)
.

Now given (c, ρ) ∈ D(S0) define (c′, ρ′) = θ∗(c, ρ) by

eq:439 (19.59) c′(T ) = c
(
θ̃−1(T )

)

We leave the reader to supply the definition of ρ′ and of θ∗ on morphisms.

Observe that there is a natural isomorphism of categories

eq:440 (19.60) D(S0)
∼=−−→ C.

In this sense the Γ-category D is the category C with extra structure, which encodes its permutative

structure.

thm:361 Exercise 19.61. Work out the Γ-space associated to the permutative category of Example 19.52.

How does it compare to S?



Lecture 20: Topological bordism categories

sec:20

We return to bordism and construct a more complicated “algebraic” invariant than the previous

ones: a topological category. Of course, this is not purely algebraic, but rather a mix of algebra

and topology. We begin with some preliminaries on the topology of function spaces. The Whitney

theorem then gives a model of the classifying space of the diffeomorphism group of a compact

manifold in terms of a space of embeddings. Then, following Galatius-Madsen-Tillmann-Weiss

(GMTW), we construct the topological category of bordisms. We did not find a symmetric monoidal

structure, though morally it should be there. It turns out that in any case the classifying space is

the 0-space of a spectrum. For the bordism category with morphisms oriented 2-manifolds, this was

first shown in [Ti]; the identity of that spectrum was conjectured in [MT] and first proved in [MW].

The GMTW Theorem is a generalization to all dimensions. As we shall see, it is a generalization

of the classical Pontrjagin-Thom Theorem 10.33.

In this lecture we get as far as stating the GMTW Theorem [GMTW]. We discuss the proof in

subsequent lectures.

Topology on function spaces

A reference for this subsection is [Hi, Chapter 2]. In particular, Hirsch uses jet spaces to describe

the spaces of maps below as subspaces of function spaces with the standard compact-open topology.

We pass immediately to C∞ functions; it is somewhat easier to consider Cr functions for r finite

and then take r →∞.
subsec:20.1

(20.1) The Whitney topology. Let Z,M be smooth manifolds with Z closed. We define a topology

on the set C∞(Z,M) of smooth maps Z →M . The topology is generated40 by setsN
(
f, (U, z), (V,m),K, ϵ

)

where f : Z → M is a smooth function; (U, z) is a chart on Z with z : U → An; (V,m) is a chart

on M ; K ⊂ U is a compact set such that f(K) ⊂ V ; and ϵ > 0. To describe the sets we use

multi-index notation α = (α1, . . . ,αn), αi ∈ Z≥0, |α| = α1 + · · ·+ αn, and

eq:442 (20.2) Dα =
∂|α|

(∂z1)α1 · · · (∂zn)αn
.

Then N
(
f, (U, z), (V,m),K, ϵ

)
consists of all smooth functions f ′ : Z → M such that f ′(K) ⊂ Z

and for all multi-indices α and all j = 1, . . . ,dimM , we have

eq:443 (20.3)
∥∥Dα(mj ◦ f ′ ◦ z−1)−Dα(mj ◦ f ◦ z−1)

∥∥
C0(K)

< ϵ.

The C0(K) norm is the sup norm, which is the maximum of the norm of a continuous function on

the compact set K and mj : V → R is the coordinate function in the chart.

40In other words, the topology is the smallest topology which contains the sets N .

155
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thm:362 Remark 20.4. If Z is noncompact this is called the weak Whitney topology; there is also a strong

Whitney topology.

subsec:20.2

(20.5) Embeddings and diffeomorphisms. Topologize embeddings Emb(Z,M) ⊂ C∞(Z,M) using

the subspace topology. Similarly, topologize the group of diffeomorphisms Diff(Z) ⊂ C∞(Z,Z) as

a subspace. Composition and inversion are continuous, so Diff(Z) is a topological group. For

embeddings into affine space define

eq:444 (20.6) Emb(Z,A∞) = colim
m→∞

Emb(Z,Am).

An element of Emb(Z,A∞) is an embedding f : Z → Am for some m, composed with the inclusion

Am → A∞.

thm:363 Theorem 20.7. Emb(Z,A∞) is contractible and Diff(Z) acts freely.

Notice that a contractible space is nonempty; the nonemptiness is a nontrivial statement. The

following argument may be found in [KM, Lemma 44.22].

Proof. Emb(Z,A∞) is nonempty by Whitney’s embedding theorem. The freeness of the diffeomor-

phism action is clear, since each embedding f : Z → Am is injective. For the contractibility consider

the homotopy Ht : A∞ → A∞, 0 ≤ t ≤ 1, defined by

eq:445 (20.8) Ht(x
1, x2, . . . ) =

(
x1, . . . , xn−1, xn cos θn(t), xn sin θn(t), xn+1 cos θn(t), xn+1 sin θn(t), . . .

)
,

where n is determined by 1
n+1 ≤ t ≤ 1

n and

eq:446 (20.9) θn(
1

n+ 1
+ s) = ρ

(
n(n+ 1)s

)π
2
.

Here ρ : [0, 1] → [0, 1] is a smooth(ing) function with ρ
(
[0, ϵ)

)
= 0, ρ

(
(1 − ϵ, ϵ]

)
= 1 for some ϵ > 0.

In fact, n is not uniquely determined if t is the reciprocal of an integer, but the formulas are

consistent for the two choices. Since all but finitely many xi vanish, the map H : [0, 1]×A∞ → A∞

is smooth. Also, H0 = idA∞ and

eq:447 (20.10)
H1/2(x

1, x2, . . . ) = (x1, 0, x2, 0, . . . )

H1(x
1, x2, . . . ) = (0, x1, 0, x2, . . . ).

We use H to construct a contraction. Fix an embedding i0 : Z → A∞. Use H0→1/2 to homotop i0
to an embedding H1/2 ◦ i0 which lands in A∞

odd. Now composition with H1 is a map Emb(Z,A∞)→
Emb(Z,A∞

even ⊂ A∞). Combining composition with H0→1 with the homotopy

eq:448 (20.11) Ku(z) = (1− u)(H1 ◦ i)(z) + u (H1/2 ◦ i0)(z), i ∈ Emb(Z,A∞),

we obtain a contraction of Emb(Z,A∞). !

Notice that averaging an embedding into A∞
odd with an embedding into A∞

even yields an embedding.

Dan Freed
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subsec:20.3

(20.12) A classifying space for Diff(Z). Let B∞(Z) denote the quotient space of the free Diff(Z)-

action on Emb(Z,A∞).

thm:364 Proposition 20.13 ([BiFi]). The map π in

eq:449 (20.14) Diff(Z) Emb(Z,A∞)

π

B∞(Z)

is a topological principal bundle with structure group Diff(Z).

A point of B∞(Z) is a submanifold Y ⊂ A∞ which is diffeomorphic to Z. The topology on Emb(Z,A∞)

induces a quotient topology on the set B∞(Z) via the map π. There are smoothness statements

one can make about the fiber bundle (20.14), but we are content with the topological assertion.41

There is also a generalization for Z noncompact [KM, §44].

Sketch proof. We must prove (20.14) is locally trivial, so produce local sections of π. Fix an

embedding i : Z → A∞ and let U ⊂ A∞ be a tubular neighborhood around the image i(Z). It is

equipped with a submersion p : U → i(Z) ∼= Z. Then we claim

eq:450 (20.15) {i′ ∈ Emb(Z,A∞) : i′(Z) ⊂ U, p ◦ i′ = i}

is an open subset of Emb(Z,A∞) on which π is injective and whose image under π is an open

neighborhood of π(i). We defer to the references for the proofs of these claims. !

subsec:20.4

(20.16) The associated bundle. The topological group Diff(Z) has a left action on Z by evaluation:

f ∈ Diff(Z) acts on y ∈ Z to give f(y) ∈ Z. We can “mix” this left action with the right Diff(Z)-

action in (20.14) to produce the associated fiber bundle

eq:451 (20.17) Z E∞(Z)

B∞(Z)

in which

eq:452 (20.18) E∞(Z) = Emb(Z,A∞)×Diff(Z) Z.

Note there is a natural map E∞(Z) → A∞ which is an embedding on each fiber. The fiber

bundle (20.17) is universal for fiber bundles with fiber (diffeomorphic to) Z embedded in A∞.

Because of the embedding, the classifying map of such a fiber bundle is unique.

41We should not be complacent, however. In the next lecture we will need to speak of smooth maps into B∞(Z),
as for example discussed in [KM].
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The topological bordism category

The discrete category BordX(n)⟨n−1,n⟩ of Definition 14.3 uses abstract manifolds and bordisms. To

define a topological category we use manifolds and bordisms which are embedded in affine space.

Also, we do not identify diffeomorphic bordisms.

thm:365 Definition 20.19. Fix n ∈ Z≥0. The topological bordism category tBord⟨n−1,n⟩ is defined as follows.

(i) An object is a pair (a, Y ) consisting of a real number a ∈ R and a closed (n−1)-submanifold

Y ⊂ A∞;

(ii) A morphism X : (a0, Y0) → (a1, Y1) is either the identity, if a0 = a1 and Y0 = Y1, or

if a0 < a1 a compact n-dimensional neat submanifold X ⊂ [a0, a1] × A∞ such that for

some δ > 0 we have

eq:453 (20.20)
X ∩

(
[a0, a0 + δ)× A∞

)
= [a0, a0 + δ) × Y0,

X ∩
(
(a1 − δ, a1]× A∞

)
= (a1 − δ, a1]× Y1.

(iii) Composition of non-identity morphisms is the union, as illustrated in Figure 38.

(iv) The set
∐

Z

(
R×B∞(Z)

)
of objects is topologized using the quotient topology on B∞(Z), as

in (20.12). The disjoint union runs over diffeomorphism types of closed (n− 1)-manifolds.

(v) There is a similar topology on the set of morphisms, as discussed in [GMTW, §2].

 

Figure 38. Composition of morphisms fig:38

subsec:20.5

(20.21) Symmetric monoidal structure: discussion. We would like to introduce a symmetric

monoidal structure on tBord⟨n−1,n⟩ using disjoint union as usual. Then the discussion in Lec-

ture 19 on Γ-spaces would imply that the classifying space B
(
tBord⟨n−1,n⟩

)
is the 0-space of a

spectrum. Unfortunately, we don’t see how to introduce that structure, though it is true that

B
(
tBord⟨n−1,n⟩

)
is an infinite loop space.

Since the manifolds are embedded, we must make the disjoint union concrete. One technique is

to introduce the map

eq:454 (20.22)
m : A∞ × A∞ −→ A∞

(x1, x2, . . . ) , (y1, y2, . . . ) 1−→ (x1, y1, x2, y2, . . . )
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and then define the monoidal product as (a1, Y1)⊗ (a2, Y2) =
(
a1 + a2,m(Y1, Y2)

)
. The tensor unit

is (0, ∅n−1). Unfortunately, this is not strictly associative nor is the unit strict—in other words,

this is not a permutative category—and there are not enough morphisms in tBord⟨n−1,n⟩ to define

an associator and a map (13.33), much less a symmetry. Naive modifications do not seem to work

either. Fortunately, we do not need to use the symmetric monoidal structure to define and identify

the classifying space.

We remark that the bordism multi -category we will discuss in the last few lectures does have a

symmetric monoidal structure42

Finally, we would like to define a continuous TQFT as a symmetric monoidal functor from
tBord⟨n−1,n⟩ into a symmetric monoidal topological category, but absent the symmetric monoidal

structure on tBord⟨n−1,n⟩ we cannot do so. Nonetheless, we can still motivate interest in the

classifying space B
(
tBord⟨n−1,n⟩

)
by asserting that an invertible continuous TQFT is a map of

topological Picard groupoids B
(
tBord⟨n−1,n⟩

)
→ C for a topological Picard groupoid C.

subsec:20.6
(20.23) X(n)-structures. We use BO(n) = Grn(R∞) as a model for the classifying space of the

orthogonal group (6.23). This is convenient since if i : Y ↪→ A∞ is an (n− 1)-dimensional subman-

ifold, then the “Gauss map”

eq:466 (20.24) TY
i∗ R⊕ S(n− 1) S(n)

Y Grn−1(R∞) Grn(R∞)

is a classifying map for the once stabilized tangent bundle. Let X(n) → Grn(R∞) be an n-

dimensional tangential structure. Then an X(n)-structure on Y ⊂ A∞ is a lift of (20.24) to a

map

eq:467 (20.25) TY S(n)

Y X(n)

The definition of an X(n)-structure on a morphism is similar. There is a topological bordism

category tBordX(n)⟨n−1,n⟩ whose objects and morphisms are as in Definition 20.19, now with the addition

of an X(n)-structure. The equalities in (20.20) now include the X(n)-structure as well. For a fixed

Y ⊂ A∞ there is a space of X(n)-structures, and that space enters into the topologization of the

sets of objects and morphisms. We refer to [GMTW, §5] for details.

subsec:20.7

(20.26) The main question. Identify the classifying space B
(
tBordX(n)⟨n−1,n⟩

)
.

42though the technical details on defining symmetric monoidal (∞, n)-categories may not be written down as of
this writing.

dafr
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Madsen-Tillmann spectra

subsec:20.8

(20.27) Heuristic definition. Fix a nonnegative integer n and an n-dimensional tangential struc-

ture X(n)→ BO(n). Recall the universal bundle S(n)→ X(n), which is pulled back from BO(n).

thm:367 Definition 20.28. The Madsen-Tillmann spectrum MTX(n) is the Thom spectrum X(n)−S(n).

subsec:20.9

(20.29) Precise definition. As we have only defined the Thom spectrum associated to S(n) (Def-

inition 10.26), not the virtual Thom spectrum associated to −S(n), we need something more

concrete. Recall that BO(n) is the colimit (6.23) of Grassmannians. Define X(n, n + q) as the

pullback

eq:455 (20.30) X(n, n + q) X(n)

Grn(Rn+q) BO(n)

Use the standard metric on Rn+q so that there is a direct sum Rn+q = S(n)⊕Q(q) of vector bundles

over Grn(Rn+q) and, by pullback, over X(n, n+ q).

thm:368 Definition 20.31. The Madsen-Tillmann spectrum MTX(n) is the spectrum completion of the

prespectrum whose (n+ q)th space is the Thom space of Q(q)→ X(n, n + q). The structure maps

are obtained by applying the Thom space construction to the map

eq:456 (20.32) R⊕Q(q) Q(q + 1)

X(n, n + q) X(n, n+ q + 1)

of vector bundles.

This prespectrum has spaces defined for integers ≥ n, which is allowed; see the remarks following

Definition 10.2. The intuition here is that, as formal bundles, Q(q) = −S(n) +Rn+q, so the Thom

space of the vector bundle Q(q)→ X(n, n+ q) represents the 0-space of the (n+ q)th suspension of

the spectrum defined in Definition 20.28. The latter is equally the (n+q)th space of the unsuspended

MT spectrum.

subsec:20.10

(20.33) Notation. The ‘MT’ notation is due to Mike Hopkins. It not only stands for ‘Madsen-

Tillmann’, but also for a Tangential variant of the thoM spectrum. The MT spectra are tangential

and unstable; the M-spectra are normal and stable. We will see a precise relationship below.

For Madsen-Tillmann spectra constructed from reductions of structure group (10.28), we use the

notation MTG(n). For example, the Madsen-Tillmann spectrum for oriented bundles isMTSO(n).

thm:369 Proposition 20.34. There is a homotopy equivalence MTSO(1) ≃ S−1 = Σ−1S0.

Here S0 is the sphere spectrum.
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Proof sketch. First, BSO(1) is contractible, since SO(1) is the trivial group with only the identity

element. So the formal Definition 20.28 reduces to MTSO(1) = BSO(1)−R ≃ Σ−1T• where T • is

the suspension spectrum of a contractible unpointed space, which is the sphere spectrum. (Check

that the Thom space ∗R of the trivial bundle over a point is the pointed space S1.) We leave the

reader to give the instructive proof based on Definition 20.31. [check if just get sphere prespectrum on ⇐
the nose] !

subsec:20.11

(20.35) The perp map. Now assume that X is a stable tangential structure (Definition 9.45).

There is an induced n-dimensional tangential structure X(n). Recall from (9.62) the perp stable

tangential structure X⊥. We now construct a map

eq:457 (20.36) ΣnMTX(n) −→MX⊥

from the Madsen-Tillmann spectrum to the Thom spectrum. Namely, the perp map followed by

stabilization yields the diagram

eq:458 (20.37) Q(q)
∼=

S(q) S(q)

X(n, n+ q)
∼=

X⊥(q, n+ q) X⊥(q)

Grn(Rn+q)
⊥
∼=

Grq(Rn+q) Grq(R∞)

The induced map on the Thom space of the upper left arrow to the Thom space of the upper

right arrow is a map MTX(n)n+q → MX⊥
q on the indicated spaces of the spectra. The maps are

compatible with the structure maps of the prespectra as q varies, and so we obtain the map (20.36)

of spectra.

subsec:20.12

(20.38) The filtration of the Thom spectrum. The stabilization map

eq:459 (20.39) Q(q) Q(q)

X(n, n+ q) X(n + q, n+ 1 + q)

induces a map ΣnMTX(n)q → Σn+1MTX(n+1)q on Thom spaces, and iterating with n we obtain

a sequence of maps

eq:460 (20.40) MTX(0) −→ Σ1MTX(1) −→ Σ2MTX(2) −→ · · ·

of spectra. Define the colimit to be the stable Madsen-Tillmann spectrum MTX. The perp

maps (20.36) induce a map

eq:461 (20.41) MTX→MX⊥

Dan Freed

Dan Freed

Dan Freed
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on the colimit. It is clear from the construction (20.37) that (20.41) is an isomorphism. So the

(suitably suspended) Madsen-Tillmann spectra (20.40) give a filtration of the Thom spectrum.

The Galatius-Madsen-Tillmann-Weiss theorem

Now we can state the main theorem.

thm:370 Theorem 20.42 ([GMTW]). Let n be a nonnegative integer and X(n) an n-dimensional tangential

structure. Then there is a weak homotopy equivalence

eq:462 (20.43) B
(
tBordX(n)⟨n−1,n⟩

)
≃

(
ΣMTX(n)

)
0
.

In words: The classifying space of the topological bordism category is the 0-space of the suspension

of the Madsen-Tillmann spectrum. We sketch the proof in subsequent lectures. The power of the

theorem is that the space on the right hand side is constructed from familiar ingredients in algebraic

topology, so its invariants are readily calculable.

subsec:20.13

(20.44) The GMTW theorem on π0. Theorem 20.42 is a weak homotopy equivalence of (pointed)

spaces. It induces an isomorphism of (pointed) sets by applying π0. Since both sides are infinite

loop spaces, π0 is an abelian group, and so we obtain an isomorphism of abelian groups. A space

is a refinement of the set π0, and so (20.43) is a refinement of this isomorphism of sets. We now

compute π0 of both sides.

For the classifying space of the bordism category, the left hand side of (20.43), we compute π0
directly from the category. Namely, the morphisms define an equivalence relation on objects: two

objects are equivalent if they are connected by a morphism. The construction of the classifying

space shows that π0 is the set of isomorphisms classes. Applied to the bordism category we obtain

the bordism group

eq:463 (20.45) π0B
(
tBordX(n)⟨n−1,n⟩

) ∼= ΩX(n)
n−1 .

Assume that X(n) is induced from a stable tangential structure X. Then for the right hand side

of (20.43), we have for q large

π0
(
ΣMTX(n)

)
0
= πn+q−1X(n, n+ q)Q(q)

∼= πn+q−1X
⊥(q, n + q)S(q)

∼= πn−1MX⊥.

eq:464 (20.46)

Therefore, on the level of π0 the weak homotopy equivalence (20.43) is an isomorphism

eq:465 (20.47) ΩX(n)
n−1

∼=−−→ πn−1MX⊥.

Recall the general Pontrjagin-Thom Theorem 10.33 which is precisely such an isomorphism. So we

expect that the weak homotopy equivalence induces the Pontrjagin-Thom collapse map on the level

of π0, and that the GMTW theorem is a generalization of the classical Pontrjagin-Thom theorem.



Lecture 21: Sheaves on Man
sec:21

In this lecture and the next we sketch some of the basic ideas which go into the proof of Theo-

rem 20.42. The main references for the proof are the original papers [GMTW] and [MW]. These

lectures are an introduction to those papers.

The statement to be proved is a weak homotopy equivalence of two spaces. The main idea is to

realize each space as a moduli space in C∞ geometry. Moduli spaces are fundamental throughout

geometry. A simple example is to fix a vector space V and construct the parameter space of lines

in V : the projective space PV . We could then omit the fixed ambient space V and ask for the

moduli space of all lines. To formulate that precisely, consider arbitrary smooth families of lines,

parametrized by a “test” manifold M . The first step is to define a ‘smooth family of lines’ as a

smooth line bundle L→M . The collection F(M) of line bundles is then a contravariant function

of M : given a smooth map f : M →M ′ there is a pullback f∗ : F(M ′)→ F(M) of line bundles. We

seek a universal line bundle L→ |F| over a topological space so that any line bundle is pulled back

from this family. Of course, we have arrived back at the idea of a classifying space, as discussed

in Lecture 6. In this lecture we take up nonlinear versions—families of curved manifolds—and

construct the universal space |F| directly from the map F . For this we isolate certain properties

of F : it is a sheaf.

We introduce sheaves of sets and sheaves of categories. The sheaves are functions of an arbitrary

smooth manifold, not of open sets on a fixed manifold. The map F in the previous paragraph is

not a sheaf as stated, but is a sheaf of sets if we define F(M) as the set of line bundles L → M

equipped with an embedding into a vector bundle M × H → M with constant fiber H. In our

nonlinear examples we consider fiber bundles of manifolds equipped with an embedding into affine

space, as in the definition of the topological bordism category (Definition 20.19). In this lecture we

discuss some basics and the construction of a topological space |F| from a sheaf of sets F . We also

introduce sheaves of categories and their classifying spaces.

Presheaves and sheaves
subsec:21.1

(21.1) Sheaves on a fixed manifold. Let X be a smooth manifold. A presheaf on X assigns a

set F(U) to each open set U ⊂ X and a restriction map i∗ : F(U ′) → F(U) to each inclusion

i : U ↪→ U ′. Formally, then, define the category Open(X) whose objects are open subsets of X and

whose morphisms are inclusions. A presheaf is a functor

eq:468 (21.2) F : Open(X)op −→ Set .

It is a sheaf if it satisfies a gluing condition, which we specify below in the context we need.

A typical example is the structure sheaf F (U) = C∞(U) of smooth functions. Other sorts of
163
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“functions”—differential forms, sections of a fixed vector bundle—also form sheaves over a fixed

manifold.
subsec:21.2

(21.3) The category of smooth manifolds. The sheaves we introduce are defined on all manifolds,

not just on open submanifolds of a fixed manifold.

thm:371 Definition 21.4. The category Man has as objects smooth finite dimensional manifolds without

boundary and as morphisms smooth maps of manifolds.

This category is quite general, and there are examples of sheaves defined only on interesting sub-

categories.43

subsec:21.3

(21.5) Presheaves on Man. Any contravariant function of manifolds is a presheaf.

thm:372 Definition 21.6. A presheaf on Man is a functor

eq:469 (21.7) F : Manop −→ Set .

We give several examples.

thm:373 Example 21.8. Let F(M) = C∞(M) be the set of smooth functions. A smooth map (f : M →
M ′) of manifolds induces a pullback F(f) = f∗ : F(M ′)→ F(M) on functions.

thm:374 Example 21.9. For any X ∈ Man define FX(M) = Man(M,X). (Recall that Man(M,X) is the

hom-set in the category Man, so here the set of smooth maps M → X.) The sheaf FX is the

representable sheaf associated to the manifold X. Intuitively, we “test” FX with the probe M .

There is a category of presheaves.

thm:375 Definition 21.10. Let F ,F ′ : Manop → Set be presheaves. A map, or morphism, ϕ : F → F ′ of

presheaves is a natural transformation of functors.

The construction in Example 21.9 embeds the category of manifolds in the category of presheaves,

as expressed by the following general and simple result.

thm:376 Lemma 21.11 (Yoneda). Let X ∈ Man and F : Manop → Set. Then there is a bijection

eq:470 (21.12) Map(FX ,F)
∼=−−→ F(X).

Proof. We construct maps in each direction and leave the reader to prove they are inverse. First, a

natural transformation ϕ ∈ Map(FX ,F) determines ϕ(X)(idX) ∈ F(X). (Note ϕ(X) : FX(X) →
F(X) and FX(X) = Man(X,X).) In the other direction, if s ∈ F(X) then define ϕ ∈ Map(FX ,F)

by ϕ(M)(f) = F(f)(s), where (f : M → X) ∈ Man(M,X). !

We give two examples of non-representable presheaves.

43For example, the sheaf F(M) = {orientations of M} is defined on the subcategory where maps are required to
be local diffeomorphisms. One can further restrict the manifolds to be of a fixed dimension, as for example required
by the notion of a ‘local field’ in theoretical physics [F2].
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thm:378 Example 21.13. Let q ∈ Z≥0. Then Fq(M) = Ωq(M) is a presheaf. It is not representable:

there is no finite dimensional (or infinite dimensional) smooth manifold Ωq such that differential

q-forms on M correspond to maps M → Ωq. But the presheaf Fq is a stand-in for such a mythical

manifold. In that sense presheaves on Man are generalized manifolds. In that regard, an immediate

consequence of Lemma 21.11 is Map(FX ,Fq) = Ωq(X).

thm:379 Example 21.14. Define F(M) to be the set of commutative diagrams

eq:471 (21.15) Y

π

M × A∞

π1

M

in which π is a proper submersion and the top arrow is the Cartesian product of π and an em-

bedding.44 So F(M) is the set of submanifolds of M × A∞ whose projection onto M is a proper

submersion. These form a presheaf: morphisms map to pullbacks of subsets and compositions of

morphisms map strictly to compositions. (The reader should contemplate what goes wrong with

compositions without the embedding.)

thm:382 Remark 21.16. An important theorem of Charles Ehresmann asserts that a proper submersion is

a fiber bundle.
subsec:21.4

(21.17) The sheaf condition. A sheaf is a presheaf which satisfies a gluing condition; there is no

extra data.

thm:380 Definition 21.18. Let F : Manop → Set be a presheaf. Then F is a sheaf if for every open

cover {Uα} of a manifold M , the diagram

eq:472 (21.19) F(M) −→
∏

α0

F(Uα0
) −→
−→

∏

α0,α1

F(Uα0
∩ Uα1

)

is an equalizer.

This means that if sα0
∈ F(Uα0

) is a family of elements such that the two compositions in (21.19)

agree, then there is a unique s ∈ F(M) which maps to {sα0
}. If we view F(U) as the space of

“sections” of the presheaf F on the open set U , then the condition is that local coherent “sections”

of the presheaf glue uniquely to a global section.

thm:381 Remark 21.20. An open cover expresses M as a colimit of the diagram

eq:473 (21.21)
∐

α0,α1

Uα0
∩ Uα1

−→
−→

∐

α0

Uα0
.

The sheaf condition asserts that F(M) is the limit of F applied to (21.21).

44We also want to add the condition that for any compact K ⊂ M the embedding π−1(K) ↪→ A∞ factors through
a smooth embedding π−1(K) ↪→ Am for some finite m. This condition applies to all similar subsequent examples.

Dan Freed
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subsec:21.5

(21.22) Intuition. We can often regard F(M) as a smooth family of elements of F(pt) parametrized

by M . So for a representable sheaf FX we have F(pt) = X and FX(M) is a smooth family of

points of X parametrized by M . Similarly, for the sheaf in Example 21.14, F(pt) is the set of

submanifolds of A∞ and F(M) is a smooth family of such submanifolds. In other examples, e.g.

Example 21.13, the intuition must be refined: for q > 0 there are no nonzero q-forms on a point.

In this case an element of F(M) is a smooth coherent family of elements of F(U) for arbitrarily

small open sets U . That is exactly what the sheaf condition asserts.

The representing space of a sheaf

subsec:21.6

(21.23) Extended simplices. Recall (18.4) that a nonempty finite ordered set S determines a sim-

plex Σ(S) whose vertex set is S. The simplex Σ(S) is a subspace of the abstract affine space Σe(S)

spanned by S. Whereas Σ(S) is not a smooth manifold—it is a manifold with corners—the affine

space Σe(S) is. So

eq:474 (21.24) Σe : ∆ −→ Man

is a functor whose image consists of affine spaces and (very special) affine maps.

subsec:21.7

(21.25) The space attached to a sheaf on Man. The following definition allows us to represent

topological spaces by sheaves.

thm:383 Definition 21.26. Let F Manop → Set be a sheaf. The representing space |F| is the geometric

realization of the simplicial set

eq:475 (21.27) ∆op Σop
e−−−→ Manop

F−−→ Set .

For example, if F = FX is the representable sheaf attached to a smooth manifold X, then

S 1→ F
(
Σe(S)

)
is the (extended, smooth) singular simplicial set associated to X, a manifold analog

of Example 18.17. The Milnor theorem quoted after (18.20) holds for extended smooth simplices.

thm:384 Theorem 21.28 (Milnor). The canonical map |FX |→ X is a weak homotopy equivalence.

The canonical map is induced from the evaluation

eq:476 (21.29) F
(
(Σe(S))

)
×Σ(S) = Man

(
Σe(S),X

)
× Σ(S)

ev−−→ X.

thm:385 Example 21.30. Fix a (separable) complex Hilbert space H. Define a sheaf F by letting F(M) be

the set of commutative diagrams

eq:477 (21.31) L

π

M ×H

π1

M
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in which π is a complex line bundle and the horizontal embedding composed with projection

onto H is linear on each fiber of π. (So it is an embedding of the line bundle L → M into the

bundle with constant fiber H.) In this case we claim there is a natural map |F| → PH which is a

weak homotopy equivalence. In essence F(M) is the space of smooth maps M → PH, where we

introduce an appropriate infinite dimensional smooth structure on PH. (As a simple special case,

for which we do not need the smooth structure, consider F(pt).) So while F is not representable

in Man, it is in a larger category which includes infinite dimensional smooth manifolds, and then

the proof of Theorem 21.28 applies. We do not attempt details here.
⇐

[example of closed q-forms: degenerate simplices except in degree q labeled by R, the integral over the usual q-simplex]

subsec:21.8

(21.32) Concordance. We introduce an equivalence relation on sections of a sheaf. It is an adap-

tation of homotopy equivalence of functions to the sheaf world.

thm:386 Definition 21.33. Let F : Manop → Set be a sheaf, M ∈ Man, and s0, s1 ∈ F(M). Then s0 and

s1 are concordant if there exists s ∈ F(R×M) such that

eq:478 (21.34)
i∗−s = π∗2s0 on (−∞, ϵ)×M,

i∗+s = π∗2s1 on (1− ϵ,∞)×M

for some ϵ > 0.

The maps in (21.34) are the inclusions and projections

eq:479 (21.35) M (−∞, ϵ)×M
π2 i−

R×M (1− ϵ,∞)×M
i+ π2

M .

This is just a smooth version of a homotopy, which would normally be expressed on the manifold-

with-boundary [0, 1] ×M , which is not in the category Man. See Figure 39.

 

Figure 39. A concordance fig:39

Concordance is an equivalence relation. We denote the set of concordance classes of elements

of F(M) as F [M ]. The map M 1→ F [M ] is not usually a sheaf: equivalence classes do not glue.

thm:387 Example 21.36. For the sheaf F of Example 21.30 the set F [M ] is the set of equivalence classes

of complex line bundles L→M . For the standard cover {S2 \ {p1} , S2 \ {p2}} of M = S2 by two

open sets, the diagram (21.19) fails to be an equalizer.
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subsec:21.9

(21.37) The meaning of the representing space. The representation space represents concordance

classes.

thm:388 Theorem 21.38 ([MW]). There is a bijection

eq:480 (21.39) F [M ] −→
[
M, |F|

]
,

where the codomain is the set of homotopy classes of continuous maps M → |F|.

Sketch of proof. A detailed proof may be found in [MW, Appendix]. We content ourselves here

with describing the map (21.39), which is formal, and its inverse, which is less formal. We use the

Yoneda Lemma 21.11, the Milnor Theorem 21.28, and the fact that the representing space |− | is
a functor to construct (21.39) as the composition

eq:481 (21.40) F(M) ∼= Map(FM ,F)
|−|−−→

[
|FM |,F|

] ∼=←−−
[
M, |F|

]
.

To see that this passes to concordance classes, note that a concordance is a map FR×M → F , by

Yoneda, and so induces45

eq:482 (21.41) |FR×M | ≃ |FR|× |FM | ≃ R× |FM | −→ |F|,

a homotopy of maps M → |F|.
The inverse construction is a bit more intricate. One begins with a map g : M → |F|, a repre-

sentative of a homotopy class, and then must construct an element of F(M). This is accomplished

using the sheaf property, which allows to construct a coherent family of elements of F(U) for a

covering of M by open sets U . The first step is a simplicial approximation theorem, which realizes g

up to homotopy as the geometric realization of a map g′ : sC → sF of simplicial sets, where sC is

the simplicial set associated to an ordered simplicial complex C together with a homeomorphism

|C|→M—in fact, a smooth triangulation of M—and sF is the simplicial set (21.27). The second

step is to construct a vector field on M from the triangulation C, a vector field which pushes

towards lower dimensional simplices. This induces a map h : M → M homotopic to the identity

such that each simplex ∆ in C has an open neighborhood U∆ which retracts onto ∆ under h. Then

h∗g′(∆) ∈ F(U∆) is a coherent family of elements, so glues to the desired element of F(M), whose

concordance class is independent of the choices. We refer to [MW, Appendix] for details. !

thm:389 Example 21.42. The application of Theorem 21.38 to Example 21.30 produces the theorem that

PH classifies equivalence classes of line bundles over a smooth manifold M , something we discussed

in Lecture 6.

45We assume the geometric realization commutes with products; see Remark 19.31.
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Sheaves of categories

Let Cat be the category whose objects are categories C• = (C0, C1) and whose morphisms are

functors. We use the formulation (13.7) of categories as pairs of sets with various structure maps.

A functor is a pair of maps (one on objects, one on morphisms), and composition of functors is

associative on the nose.46

thm:390 Definition 21.43. A sheaf of categories F• : Manop → Cat is a pair of set-valued functors (F0,F1) : Manop →
Set togther with structure maps (13.8) which satisfy the defining relations of a category.

So F0 and F1 separately satisfy the sheaf condition. For any test manifold M the category F•(M)

is discrete: F0(M) and F1(M) are sets.

thm:391 Definition 21.44. Let F• : Manop → Cat be a sheaf of categories. The representing category is

the topological category

eq:483 (21.45) |F•| =
(
|F0| , |F1|

)
.

⇐
[example of sheaf of double covers–including embeddings]

A topological category has a classifying space, so there is a space B|F•| associated to a sheaf F•

of categories. One of the constructions used in the proof, which we will not recount here, is a

sheaf β(F•) of sets associated to a sheaf F• of categories with the property

eq:484 (21.46) |β(F•)| ≃ B|F•|.

See [GMTW, §2.4], [MW, §4.1] for the construction of the cocycle sheaf.

46There is a “weaker” notion involving natural transformations on functors: categories are objects of a 2-category.
We will discuss higher categories, at least heuristically, in the last two lectures.



Lecture 22: Remarks on the proof of GMTW

sec:22

Recall that the GMTW Theorem 20.42 asserts the existence of a weak homotopy equivalence

eq:485 (22.1) B
(
tBordX(n)⟨n−1,n⟩

)
≃

(
ΣMTX(n)

)
0
.

The left hand side is the classifying space of the topological bordism category whose morphisms

are compact n-manifolds with X(n)-structure. The right hand side is the 0-space of the suspension

of the Madsen-Tillmann spectrum. Both of these pointed spaces were defined in Lecture 20, where

we showed that the classical Pontrjagin-Thom theorem is the weak homotopy equivalence (22.1)

composed with π0. Indeed, the ideas of classical Pontrjagin-Thom theory are integral to the proof.

Rather than attempt a direct map between the spaces (22.1), the proof proceeds by constructing

sheaves which represent these spaces. More precisely, there is a sheaf of sets D = DX(n)
n on Man

whose representing space is
(
ΣMTX(n)

)
0
. The Pontrjagin-Thom theory, as well as Phillips’ Sub-

mersion Theorem [Ph] is used to prove this representing statement. The value D(M) of the sheaf

on a test manifold M is a set of submersions over M . Intuitively, it is a set of fiber bundles of

compact (n−1)-manifolds, but because the Phillips theorem only applies to noncompact manifolds

there is a necessary modification. We explain the heuristic idea in the first section below, and then

give the technically correct rendition, though not a complete proof. The space on the left hand

side of (22.1) is the classifying space of a topological category, and it is fairly easy to construct

a sheaf of categories C = CX(n)
n on Man which represents this topological category (in the sense

of Definition 21.44). Its value on a test manifold M is a category whose objects are fiber bundles

over M with fibers closed (n − 1)-manifolds. The remainder of the proof goes through auxiliary

sheaves (of categories) which mediate between C and D. We content ourselves with an overview

and refer to the reader to the original papers [GMTW, MW] for a full account.

The main construction: heuristic version

As mentioned in the introduction, this section is a useful false start.

subsec:22.1

(22.2) A sheaf of (n − 1)-manifolds. Fix a positive integer n and an X(n)-structure X(n) →
Grn(R∞). We elaborate on Example 21.14. Let E : Manop → Set be the sheaf whose value on a

test manifold M is a pair of maps

eq:486 (22.3) Y

π

M × A∞

π1

M
170
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in which π is a fiber bundle with fibers closed (n−1)-manifolds and the top arrow is an embedding.

For simplicity we do not include a tangential structure. Assume for simplicity that M is compact.

Then for some m > 0 the embedding factors through an embedding into Am:

eq:488 (22.4) Y

π

M × Am

π1

M

subsec:22.2
(22.5) Relative Gauss map. The relative tangent bundle T (Y/M)→ Y is the kernel of the differ-

ential of π, the set of tangent vectors which point along the fibers of π. The embedding gives a

Gauss map (see (20.23))

eq:487 (22.6) T (Y/M) S(n− 1)

Y Grn−1(Rm)

We emphasize: A fiber bundle, or proper submersion, has a tangent bundle along the fibers, which

is identified with the pullback of the universal subbundle S(n− 1)→ Grn−1(Rm).

The normal bundle ν → Y to the embedding in (22.4) is also the normal bundle to the embedding

of each fiber of π in Am, since π is a submersion, and the embedding induces a classifying map

eq:489 (22.7) ν Q(m− n+ 1)

Y Grn−1(Rm)

subsec:22.3
(22.8) Pontrjagin-Thom collapse. As in Lecture 2 and Lecture 10, choose a tubular neighborhood

of Y ⊂ M × Am. Then the Pontrjagin-Thom collapse induced by the embedding, followed by the

map on Thom spaces induced from (22.7), is

eq:490 (22.9) M+ ∧ Sm −→ Y ν −→ Grn−1(Rm)Q(m−n+1).

Here M+ is the union of M and a disjoint basepoint, and the domain is the one-point compactifi-

cation of M × Am. According to Definition 20.31 the last space in (22.9) is the mth space of the

Madsen-Tillmann spectrum MTO(n− 1). So (22.9) is a pointed map of the mh suspension of M+

into the mth space of the prespectrum which completes to the spectrum MTO(n− 1). Therefore,

it represents a map of M into MTO(n− 1)0.

In summary, from a fiber bundle (22.4) of (n− 1)-manifolds with embedding we have produced

a map of the base into the 0-space of the spectrum MTO(n− 1).

Dan Freed
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subsec:22.4

(22.10) An attempted inverse. Conversely, a map M → MTO(n − 1)0 is represented, for suffi-

ciently large m, by a pointed map

eq:491 (22.11) g : M+ ∧ Sm −→ Grn−1(R
m)Q(m−n+1).

After a homotopy we can arrange that g be transverse to the zero section of the bundle Q(m−n+

1)→ Grn−1(Rm). Then the inverse image of the zero section is a submanifold Y ⊂ M × Am with

dimY − dimM = n − 1. If we assume that M is compact, which we do, then Y is also compact.

There is also a classifying map (22.7) of the normal bundle, the restriction of (22.11) to a map

Y → Grn−1. Let V → Y be the pullback of S(n− 1)→ Grn−1(Rm).

If—and this is not generally true—the composition Y ↪→ M × Am → M is a submersion, then

since Y is compact it is a fiber bundle. We would deduce that maps into the Madsen-Tillmann

spectrum give fiber bundles. But that is not true. Nor is it true, even if the composition is a

submersion, that V → Y can be identified with the relative tangent bundle.

The main construction: real version

The main tool to obtain a submersion is the Phillips Submersion Theorem. It is part of a circle

of ideas in differential topology called immersion theory [Sp], and one of the main tools used in the

proofs is Gromov’s h-principle [ElMi]. We simply quote the result here.

thm:392 Theorem 22.12 (Phillips [Ph]). Let X be a smooth manifold with no closed components and M a

smooth manifold with dimM ≤ dimX. Then the differential

eq:492 (22.13) Submersion(X,M)
d−−→ Epi(TX, TM)

is a weak homotopy equivalence.

Here Epi(TX, TM) is the space of smooth maps L : TX → TM which sends fibers to fibers and

restricts on each fiber to a surjective linear map (epimorphism). The domain of (22.13) is the space

of submersions X → M , and the differential maps a submersion to an epimorphism on tangent

bundles. Note that a manifold with no closed components is often called an open manifold.

Theorem 22.12 is precisely the tool needed to deform the map Y →M in (22.10) to a submersion.

But to do so we must replace Y be a noncompact manifold. The simplest choice is X = R × Y .

We indicate the modifications to the previous heuristic section which incorporate this change.

subsec:22.5

(22.14) The sheaf D. We introduce a sheafD = DX(n)
n : Manop → Set which represents

(
ΣMTX(n)

)
0
.

thm:393 Definition 22.15. Fix M ∈ Man. An element of D(M) is a pair (X, θ) consisting of a submanifold

X ⊂M ×R× A∞ and an X(n)-structure θ. The submanifold must satisfy

(i) π1 : X →M is a submersion with fibers of dimension n, and

(ii) π1 × π2 : X →M × R is proper.
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The relative tangent bundle T (X/M) → X has rank n and, because of the embedding, comes

equipped with a Gauss map

eq:493 (22.16) T (X/M) S(n)

X Grn(R× R∞)

The tangential structure is a fibration X(n) → Grn(R × R∞), fixed once and for all. The relative

X(n)-structure θ is a lift

eq:494 (22.17) T (X/M)
θ

S(n)

X X(n)

of the Gauss map, as in (20.25).

We remark that the embedding X ↪→M ×R×A∞ is required to satisfy the technical condition

in the footnote of Example 21.14. For this exposition we restrict to M compact.

The first condition in Definition 22.15 implies that π1 is a family of n-manifolds, but it is not a

fiber bundle as the fibers may be noncompact, so as we move over the base M the topology of the

fibers can change. The second condition implies that each fiber comes with a real-valued function π2
with compact fibers. The inverse image of a regular value a ∈ R is a closed (n − 1)-manifold, but

the topology depends on the regular value. The inverse images of two regular values a0 < a1 comes

with a bordism: the inverse image of [a0, a1]. See Figure 40.

Figure 40. A fiber of X →M fig:40

subsec:22.6

(22.18) Statement of theorems. Recall the notion of concordance (21.32).

thm:394 Theorem 22.19. For any M ∈Man there is a bijection

eq:495 (22.20) D[M ] ∼=
[
M ,

(
ΣMTX(n)

)
0

]

between concordance classes of elements of D(M) and homotopy classes of maps into the 0-space

of the suspended Madsen-Tillmann spectrum.
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We sketch the construction of the bijection (22.20) in the remainder of this section.

Recall from Theorem 21.38 that the representing space |D| also satisfies

eq:496 (22.21) D[M ] ∼=
[
M , |D|

]
,

and so the following is not surprising.

thm:395 Corollary 22.22. There is a weak homotopy equivalence

eq:497 (22.23) |D| ≃
(
ΣMTX(n)

)
0
.

The proof uses an auxiliary sheaves which keep track of the contractible choices (of a tubular

neighborhood, of a regular value) which are used below. We refer to [Po, §4.3] for a sketch of how

that argument goes.

subsec:22.7

(22.24) Sketch of (22.20) −→. Given an element X ⊂ M × R × A∞ of D(M), choose a ∈ R a

regular value of π2, m a positive integer such that X ⊂ M × R × Am. Let Y ⊂ M × Am be the

intersection of X and M × {a}×Am. The normal bundle to Y ⊂M ×Am is the restriction of the

normal bundle to X ⊂ M × R × Am. Therefore, as in (22.7) but now using the lift (22.17) from

the X(n)-structure, we obtain a classifying map

eq:498 (22.25) ν Q(m− n+ 1)

Y X(n,m+ 1)

where the southeast space is the pullback

eq:499 (22.26) X(n,m+ 1) X(n)

Grn(R× Rm) Grn(R× R∞)

Choose a tubular neighborhood of Y ⊂M ×Am. The Pontrjagin-Thom collapse, as in (22.9), is a

map

eq:500 (22.27) M+ ∧ Sm −→ X(n,m+ 1)Q(m−n+1).

The last space is the (m+1)-space of the Madsen-Tillmann spectrum MTX(n), so that (22.27) rep-

resents a (non-pointed) map of M into the 0-space of the shifted spectrum ΣMTX(n).
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subsec:22.8

(22.28) Sketch of (22.20) ←−. We proceed as in (22.10), but now mapping into the last space

in (22.27), to obtain as there

(i) a submanifold Y ⊂M × Am with dimY − dimM = n− 1,

(ii) a classifying map of the normal bundle

eq:501 (22.29) ν Q(m− n+ 1)

Y
g

X(n,m+ 1)

and

(iii) a rank n vector bundle W → Y , defined as g∗
(
S(n)→ X(n,m+ 1)

)
.

These bundles over Y come equipped with isomorphisms

eq:502 (22.30)
ν ⊕W

∼=−−→ Rm+1

ν ⊕ TY
∼=−−→ TM ⊕ Rm

The first is induced from the tautological exact sequence (6.9) after choosing once and for all

a splitting over X(n,m + 1). The second comes from splitting the usual exact sequence for a

submanifold. Combining these isomorphisms we obtain an isomorphism

eq:503 (22.31) Rm+1 ⊕ TY
∼=−−→ W ⊕ ν ⊕ TY

∼=−−→W ⊕ TM ⊕ Rm.

The next step is to “strip off” the trivial bundle of rank m in the isomorphism (22.31). This

is possible for m sufficiently large. The proof is an application of the following general principle,

which can be proved by obstruction theory. Recall that for k ∈ Z≥0 a space is k-connected if it is

connected and all homotopy groups πq, q ≤ k vanish. A map is k-connected if its mapping cylinder

is k-connected.

thm:396 Proposition 22.32.

(i) Let E → Y be a (continuous) fiber bundle with k-connected fiber and base Y a CW complex

of dimension ℓ. Then the space Γ(Y ;E) of sections is (k − ℓ)-connected.
(ii) Let (E1 → E2) −→ Y be a map of fiber bundles. Assume the map on each fiber is k-

connected and dimY = ℓ. Then the induced map of sections Γ(Y ;E1) → Γ(Y ;E2) is

(k − ℓ)-connected.

Our application is to the map

eq:504 (22.33) Iso
(
R⊕ TY , W ⊕ TM

)
−→ Iso

(
Rm+1 ⊕ TY , W ⊕ TM ⊕ Rm)

)

of fiber bundles of isomorphisms of vector bundles over Y . On fibers this is the standard embedding

of general linear groups GLn+d(R) ↪→ GLn+d+m, where d = dimM . This map is (n + d − 1)-

connected, so the induced map on sections is (n− 1)-connected. Since n− 1 > 0, this implies that
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the isomorphism (22.31) is isotopic to an isomorphism which is the stabilization of an isomorphism

eq:505 (22.34) R⊕ TY
∼=−−→W ⊕ TM.

Now compose the isomorphism (22.34) with projection onto TM to obtain an epimorphism

eq:506 (22.35) T (R× Y ) ∼= R⊕ TY
∼=−−→ TM.

The Phillips Submersion Theorem 22.12 implies that there is a submersion π1 : X = R × Y → M

whose differential is isotopic to (22.35). The isomorphism (22.34) induces an isomorphism

eq:507 (22.36) W
∼=−−→ T (X/M) = ker dπ1.

Projection gives a function π2 : X → R, and we can use the Whitney embedding theorem to

construct π3 : X ↪→ Am′
for m′ sufficiently large. The product π1 × π2 × π3 : X ↪→M ×R×Am′

is

the desired element of D(M). (A more delicate argument produces the X(n)-structure.)

thm:397 Remark 22.37. This completes the sketch construction of the two maps in (22.20). The proof that

they are inverse is based on [MW, Lemma 2.5.2].

A sheaf model of the topological bordism category

It is fairly straightforward to construct a sheaf of (discrete) categories whose representing space is

the topological bordism category tBordX(n)⟨n−1,n⟩. This is a more elaborate version of Example 21.30,

where there is a “representing category in the category of smooth infinite dimensional manifolds”.

thm:398 Definition 22.38. The sheaf of categories C = CX(n)
n : Manop → Cat is defined on a test mani-

fold M ∈ Man as follows. The objects of C(M) are triples (a, Y, θ) consisting of a smooth function

a : M → R, an embedding Y ↪→ M × A∞ such that π1 : Y → M is a proper submersion, and

an X(n)-structure θ on the relative tangent bundle. A morphism (a0, Y0, θ0) → (a1, Y1, θ1) is a

pair (X,Θ) consisting of a neat submanifold X ↪→ M × [a0, a1] × A∞ with X(n)-structure Θ such

that π1 : X →M is a proper submersion and, for some δ : M → R>0

eq:508 (22.39)
X ∩

(
M × [a0, a0 + δ) × A∞

)
= Y0 × [a0, a0 + δ)

X ∩
(
M × (a1 − δ, a1]× A∞

)
= Y1 × (a1 − δ, a1]

as X(n)-manifolds.

Here M × [a0, a1] ⊂M × R is the subset of pairs (m, t) such that a0(m) ≤ t ≤ a1(t). Composition

is by union, as usual when we have embeddings.

As indicated, C(M) is the space of smooth mapsM → tBordX(n)⟨n−1,n⟩, with the appropriate smooth

structure on tBordX(n)⟨n−1,n⟩, and this gives a map of topological categories

eq:509 (22.40) η : |C| −→ tBordX(n)⟨n−1,n⟩ .

We have not defined a weak equivalence of topological categories, which is what we’d like to say

(22.40) is, but in any case the definition would amount to the following.
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thm:399 Theorem 22.41. η induces a weak homotopy equivalence of classifying spaces

eq:510 (22.42) B|C| −→ B
(
tBordX(n)⟨n−1,n⟩

)
.

Sketch of proof. The space of q-simplices Nq|C| in the nerve of |C| is the geometric realization of

the extended, smooth singular simplices on the space Nq
tBordX(n)⟨n−1,n⟩, so by Theorem 21.28 the map

eq:511 (22.43) Nq|C| −→ Nq
tBordX(n)⟨n−1,n⟩

induced by η is a weak homotopy equivalence. Thus Bη is also a weak homotopy equivalence. !

Comments on the rest

We hope to have given a “reader’s guide” to much of the proof in [GMTW]. At this point we

have a sheaf of categories C which represents the space B
(
tBordX(n)⟨n−1,n⟩

)
and a sheaf of spaces D

which represents the space
(
ΣMTX(n)

)
0
. To put them on equal footing we regard D as a sheaf of

categories with only identity morphisms. The goal now is to construct a weak homotopy equivalence

of these sheaves. This is not done directly, but by means of two intermediate sheaves of categories.

There are two main discrepancies between C(pt) and D(pt), and so between C(M) and D(M)

which are parametrized families. First, objects in D are to be thought of as fibers at an unspecified

regular value a ∈ R of a proper map X → R, whereas objects in C have a specified value of a.

Second, morphisms in D are manifolds without boundary (X → R) whereas morphisms in C are

manifolds with boundary. The intermediate sheaves D |∩ , C |∩ mediate these discrepancies. We

sketch the definitions below. The main work is in proving that straightforwardly defined maps

eq:512 (22.44) D
α←−− D |∩ γ−−→ C |∩ δ←−− C

are weak homotopy equivalences.

subsec:22.9

(22.45) The sheaf D |∩ and the map α. For convenience we omit the X(n)-structures from the

notation: they are just carried along.

The objects are a subsheaf of FR×D where FR is the representable sheaf of real-valued functions

(see Example 21.9). An object in D |∩ (M) is a pair (a,X) where X ⊂ M × R × A∞ is an object

of D(M) and a : M → R has the property that a(m) is a regular value of π2
∣∣
π−1
1 (M)

. It is a category

of partially ordered sets: there is a unique morphisms (a0,X0) → (a1,X1) if (a0,X0) ≤ (a1,X1),

and the latter is true if and only if X0 = X1, the functions satisfy a0 ≤ a1 and a0 = a1 on a union

of components of M .

The map α is the forgetful map which forgets a.
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subsec:22.10

(22.46) The sheaf C |∩ and the maps δ, γ. This is very similar to C, but the objects and morphisms

are not “sharply cut off” at points a ∈ R. So objects have a bicollaring and morphisms are open

with collars at a0, a1. We refer to [GMTW, §2] for details.
The map δ puts product bicollars and collars on the objects and morphisms of C.

To define γ(a,X) we use the fact that a consists of regular values to find a function ϵ : M → R>0

so that (a− ϵ, a+ ϵ) also consists of regular values. (The notation is as in Definition 22.38.) Then

Y = (π1×π2)−1
(
M×(a−ϵ, a+ϵ)

)
is an object of C |∩ . There is a similar construction on morphisms.

subsec:22.11
(22.47) Proofs of equivalences. The techniques to prove that the maps α, γ, δ are weak equiva-

lences are presented in [GMTW] with technical details in [MW].



Lecture 23: An application of Morse-Cerf theory

sec:23

We review quickly the idea of a Morse function and recall the basic theorems of Morse theory.

Passing through a single critical point gives an elementary bordism; a very nice Morse function—an

excellent function—decomposes an arbitrary bordism as a sequence of elementary bordisms. The

space of excellent functions is not connected, but is if we relax the excellence standard slightly.

This basic idea of Cerf theory relates different decompositions. We use it to classify 2-dimensional

oriented TQFTs with values in the category of vector spaces. This is one of the earliest theorems

in the subject, dating at least from Dijkgraaf’s thesis [Dij].

Morse functions
subsec:23.1

(23.1) Critical points and the hessian. Let M be a smooth manifold and f : M → R a smooth

function. Recall that p ∈ M is a critical point if dfp = 0. A number c ∈ R is a critical value if

f−1(c) contains a critical point. At a critical point p the second differential, or Hessian,

eq:513 (23.2) d2fp : TpM × TpM −→ R

is a well-defined symmetric bilinear form. To evaluate it on ξ1, ξ2 ∈ TpM extend ξ2 to a vector

field to near p, and set d2fp(ξ1, ξ2) = ξ1ξ2f(p), the iterated directional derivative. We say p is a

nondegenerate critical point if the Hessian (23.2) is a nondegenerate symmetric bilinear form.

thm:400 Lemma 23.3 (Morse). If p is a nondegenerate critical point of the function f : M → R, then there

exists a local coordinate system x1, . . . , xn about p such that

eq:514 (23.4) f = (x1)2 + · · · + (xr)2 − (xr+1)2 − · · ·− (xn)2 + c

for some p.

The number n− r of minus signs in (23.4) is the index of the critical point p.

An application of Sard’s theorem proves that Morse functions exist, and in fact are open and

dense in the space of C∞ functions (in the Whitney topology (20.1)).

subsec:23.2

(23.5) Morse functions on bordisms. If X is a manifold with boundary we consider smooth func-

tions which are constant on ∂X and have no critical points on ∂X. The following terminology is

apparently due to Thom.

thm:401 Definition 23.6. Let X : Y0 → Y1 be a bordism. An excellent function f : X → R satisfies

(i) f(Y0) = a0 is constant;
179
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Figure 41. An excellent function on a bordism fig:41

(ii) f(Y1) = a1 is constant; and

(iii) The critical points x1, . . . , xN have distinct critical values c1, . . . , cN which satisfy

eq:515 (23.7) a0 < c1 < · · · < cN < a1.

We depict an excellent function on a bordism in Figure 41.

thm:402 Proposition 23.8. Let X : Y0 → Y1 be a bordism. Then the space of excellent functions on X is

open and dense.

subsec:23.3

(23.9) Passing a critical level. The basic theorems of Morse theory tell the structure of Xa′,a′′ =

f−1([a′, a′′]) if a′, a′′ are regular values. If there are no critical values in [a′, a′′], then Xa′,a′′ is

diffeomorphic to the Cartesian product of [a′, a′′] and Y = f−1(a) for any a ∈ [a′, a′′]. If there

is a single critical value c ∈ [a′, a′′] and f−1(c) contains a single critical point of index q, then

Xa′,a′′ is obtained from Xa′,c−ϵ by attaching an n-dimensional q-handle. We defer to standard

books [M4, PT] for a detailed treatment of Morse theory.

 

Figure 42. Some elementary 2-dimensional bordisms fig:42

thm:403 Definition 23.10. A bordism X : Y0 → Y1 is an elementary bordism if it admits an excellent

function with a single critical point.

The elementary 2-dimensional bordisms are depicted in Figure 42.
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subsec:23.4

(23.11) Decomposition into elementary bordisms. An excellent function on any bordism X : Y0 →
Y1 expresses it as a composition of elementary bordisms

eq:516 (23.12) X = XN ◦ · · · ◦X1

where X1 = f−1([a0, c1 + ϵ]), X2 = f−1([c1 + ϵ, c2 + ϵ]), . . . ,XN = f−1([cN−1 + ϵ, a1]). Excellent

functions connected by a path of excellent functions lead to an equivalent decomposition: corre-

sponding elementary bordisms are diffeomorphic. We can track the equivalence class by a Kirby

graphic (Figure 43) which indicates the distribution of critical points and their indices. The space of

excellent functions is not connected; a bordism has (infinitely) many decompositions with different

Kirby graphic.

Figure 43. The Kirby graphic of Figure 41 fig:43

Elementary Cerf theory

Jean Cerf [C] studied a filtration on the space of smooth functions. The subleading part of the

filtration connects different components of excellent functions.

thm:404 Definition 23.13. A smooth function f : M → R on an n-manifold M has a birth-death singularity

at p ∈M if there exist local coordinates x1, . . . , xn in which

eq:517 (23.14) f = (x1)3 + (x1)2 + · · ·+ (xr)2 − (xr+1)2 − · · · − (xn)2 + c

We say the index of p is n− r.

There is an intrinsic definition: p is a degenerate critical point, the null space Np ⊂ TpM of d2fp
has dimension one, and the third differential d3fp is nonzero on Np.

thm:405 Definition 23.15. Let X : Y0 → Y1 be a bordism and f : X → R a smooth function.
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(i) f is good of Type α if f is excellent except at a single point at which f has a birth-death

singularity.

(ii) f is good of Type β if f is excellent except that there exist exactly two critical points xi, xi+1

with the same critical value f(xi) = f(xi+1).

We say f is good if it is either excellent or good of Type α or good of Type β.

thm:407 Theorem 23.16 (Cerf [C]). Let X : Y0 → Y1 be a bordism. Then the space of good functions is

connected. More precisely, if f0, f1 are excellent, then there exists a path ft of good functions such

that ft is excellent except at finitely many values of t.

There is an even more precise statement. The space of good functions is an infinite dimensional

manifold, the space of good functions which are not excellent is a codimension one submanifold,

and the path t 1→ ft crosses this submanifold transversely at finitely many values of t.

A path of good functions has an associated Kirby graphic which encodes the excellent chambers

and wall crossings of the path. The horizontal variable it t and the vertical is the critical value.

The curves in the graphic are labeled by the index of the critical point in the preimage. Birth-

death singularities occur with critical points of neighboring indices. Kirby uses these graphics in

his calculus [Ki]. Figure 44 shows some simple Kirby graphics.

Figure 44. Kirby graphics of a birth, death, and exchange fig:44

thm:408 Example 23.17. The prototype for crossing a wall of Type α is the path of functions

eq:518 (23.18) ft(x) =
x3

3
− tx

defined for x ∈ R. Then ft is Morse for t ̸= 0, has no critical points if t < 0, and has two critical

points x = ±
√
t for t > 0. As t increases through t = 0 the two critical points are born; as

t decreases through t = 0 they die. The critical values are ±t3/2, up to a multiplicative constant,

which explains the shape of the Kirby graphic.

These Cerf wall crossings relate different decompositions (23.12) of a bordism into elementary

bordisms. In the next section we apply this to construct a 2-dimensional TQFT by “generators

and relations”: we define it on elementary bordisms and use the Cerf moves to check consistency.

Application to TQFT

subsec:23.5

(23.19) Frobenius algebras. Before proceeding to 2-dimensional field theories, we need some alge-

bra.
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thm:409 Definition 23.20. Let k be a field. A commutative Frobenius algebra (A, τ) over k is a finite

dimensional unital commutative associative algebra A over k an a linear map τ : A→ k such that

eq:519 (23.21)
A×A −→ k

x, y 1−→ τ(xy)

is a nondegenerate pairing.

thm:410 Example 23.22 (Frobenius). Let G be a finite group. Let A be the vector space of functions

f : G→ C which are central : f(gxg−1) = f(x) for all x, g ∈ G. Define multiplication as convolution:

eq:520 (23.23) f1 ∗ f2(x) =
∑

x1x2=x

f1(x1)f2(x2).

A straightforward check shows ∗ is commutative and associative and the unit is the “δ-function”,

which is 1 at the identity e ∈ G and 0 elsewhere. The trace is

eq:521 (23.24) τ(f) =
f(e)

#G
.

If we remove the central condition, then we obtain the noncommutative Frobenius algebra of all

complex-valued functions on G.

thm:411 Example 23.25. Let M be a closed oriented n-manifold. Then H•(M ;C) is a super commutative

Frobenius algebra. Multiplication is by cup product and the trace is evaluation on the fundamental

class. The ‘super’ reflects the sign in the cup product. For M = S2 we obtain an ordinary

commutative Frobenius algebra since there is no odd cohomology. This is a key ingredient in the

original construction of Khovanov homology [Kh].

subsec:23.6

(23.26) 2-dimensional oriented TQFT. The following basic result was well-known by the late

1980s. It appears in Dijkgraaf’s thesis [Dij]. More mathematical treatments can be found in [Ab,

Ko]. The Morse theory proof we give below is taken from [MoSe, Appendix].

thm:412 Theorem 23.27. Let F : BordSO⟨1,2⟩ → Vectk be a TQFT. Then F (S1) is a commutative Frobe-

nius algebra. Conversely, if A is a commutative Frobenius algebra, then there exists a TQFT

FA : BordSO⟨1,2⟩ → Vectk such that FA(S1) = A.

thm:413 Remark 23.28. The 2-dimensional field theory constructed from the Frobenius algebra in Exam-

ple 23.22 has a “classical” description: it counts principal G-bundles, which for a finite group G are

regular covering spaces with Galois group G. The invariant F (X) of a closed surface of genus g is

given by a classical formula of Frobenius. The TQFT provides a proof of that formula by cutting

a surface of genus g into elementary pieces.

We give the proof of Theorem 23.27 which is in [MS].
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Proof. Given F : BordSO⟨1,2⟩ → Vectk define the vector space A = F (S1). The elementary bordisms

in Figure 45 define a unit u : k → A, a trace τ : A → k, and a multiplication m : A ⊗ A → A.

(We read “time” as flowing up in these bordisms; the bottom boundaries are incoming and the

top boundaries are outgoing.) The bilinear form (23.21) is the composition in Figure 46, and it

has an inverse given by the cylinder with both boundary components outgoing, as is proved by the

S-diagram argument. Therefore, it is nondegenerate. This proves that (A, u,m, τ) is a commutative

Frobenius algebra.
 

Figure 45. Elementary bordisms which define the Frobenius structure fig:45

 

Figure 46. The bilinear form fig:46

Next we compute the map defined by the time-reversal of the multiplication (Figure 47). Let

x1, . . . , xn and x1, . . . , xn be dual bases of A relative to (22.42): τ(xixj) = δij . Then

eq:522 (23.29)
m∗ : A −→ A⊗A

x 1−→ xxi ⊗ xi

This is the adjoint of multiplication relative to the pairing (23.21). Similarly, note that the unit u =

τ∗ is adjoint to the trace. In fact, these adjunctions follow from general duality in symmetric

monoidal categories. The time-reversal is the dual in the bordism category (Definition 1.22, (2.20),

Theorem 15.29),47 and the dual in the category of vector spaces is the usual dual. A symmetric

monoidal functor, such as FA, maps duals to duals (Proposition 15.34).

For the converse, suppose A is a commutative Frobenius algebra. We construct a 2-dimensional

TQFT FA.

It is easy to prove that the topological group DiffSO(S1) of orientation-preserving diffeomor-

phisms retracts onto the group of rotations, which is connected. Since diffeomorphisms act on A

through their isotopy class, the action is trivial. Thus is Y is any oriented manifold diffeomorphic

to a circle, there is up to isotopy a unique orientation-preserving diffeomorphism Y → S1. For any

47We also note that an oriented surface admits an orientation-reversing involution, so is diffeomorphic to the same
underlying manifold with the opposite orientation.
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Figure 47. The adjoint m∗ fig:47

closed oriented 1-manifold Y define FA(Y ) = A⊗(#π0Y ); orientation-preserving diffeomorphisms of

closed 1-manifolds act as the identity.

The value of FA on elementary 2-dimensional bordisms (Figure 42) are given by the structure

maps u = τ∗, τ,m,m∗ of the Frobenius algebra. An arbitrary bordism is a composition of el-

ementary bordisms (tensor identity maps) via an excellent Morse function, and we use such a

decomposition to define FA. However we must check that the value is independent of the excellent

Morse function. For that we use Cerf’s Theorem 23.16. It suffices to check what happens when we

cross a wall of Type α or of Type β.

First, a simplification. Since time-reversal implements duality, if an equality of maps holds for a

wall-crossing it also holds for its time-reversal. This cuts down the number of diagrams one needs

to consider.
 

Figure 48. The four Type α wall-crossings fig:49

There are four Type α wall-crossings, as indicated by their Kirby graphics in Figure 48. The

numbers indicate the index of the critical point. If ft is a path of Morse functions with the first

Kirby graphic, then the three subsequent ones may be realized by−ft, f1−t, and −f1−t, respectively.

(Here 0 ≤ t ≤ 1.) It follows that we need only check the first. The corresponding transition of

bordisms is indicated in Figure 49. These bordisms both map to idA : A → A: for the first this

expresses that u is an identity for the multiplication m.
 

Figure 49. Crossing a birth-death singularity fig:48

In a Type β wall-crossing there are two critical points and the critical levels cross. So on

either side of the wall the bordism X is a composition of two elementary bordisms. We assume
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X is connected or there is nothing to prove. Furthermore, if the indices of the critical points

are q1, q2, then the Euler characteristic of the bordism is (−1)q1 + (−1)q2 , by elementary Morse

theory. Let C denote the critical contour at the critical time tcrit, when the two critical levels cross.

Since the bordism is connected there are two possibilities: either C is connected or it consists

of two components, each with a single critical point. In the latter case there would have to be

another critical point in the bordism to connect the two components, else the bordism would not

be connected. Therefore, C is connected and it follows easily that both critical points have index 1,

whence X has Euler characteristic −2.
Now in each elementary bordism (Figure 42) the number of incoming and outgoing circles differs

by one, so in a composition of two elementary bordisms the number of circles changes by two or

does not change at all. This leads to four possibilities for the number of circles: 1 → 1, 2 → 2,

3→ 1, or 1→ 3. The last is the time-reversal of the penultimate, so we have three cases to consider.

 

Figure 50. 1→ 1 fig:50

The first, 1 → 1, is a torus with two disks removed. Figure 50 is not at the critical time—the

two critical levels are distinct. Note that at a regular value between the two critical values, the

level curve has two components, by the classification of elementary bordisms (Figure 42). So the

composition is

eq:523 (23.30) A
m∗

−−−→ A⊗A
m−−−→ A

 

Figure 51. 2→ 2 fig:51

The second case, 2 → 2, is somewhat more complicated than the others. The number of circles

in the composition is either 2 → 1 → 2 or 2 → 3 → 2. The 2 → 1 → 2 composition, depicted in
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Figure 52. 2→ 2 fig:53

Figure 51, is m∗ ◦m, which is the map

eq:524 (23.31) x⊗ y 1−→ xy 1−→ xyxi ⊗ xi,

using the dual bases introduced above. The 2 → 3 → 2 composition, depicted in Figure 52, is

either (m⊗ id) ◦ (id⊗m∗) or (id⊗m) ◦ (m∗ ⊗ id), so either

eq:525 (23.32) x⊗ y 1−→ x⊗ yxi ⊗ xi 1−→ xyxi ⊗ xi

or

eq:526 (23.33) x⊗ y 1−→ xxi ⊗ xi ⊗ y 1−→ xxi ⊗ xiy.

To see that these are equal, use the identity z = τ(zxj)xj for all z ∈ A. Thus

eq:527 (23.34) xxi ⊗ xiy = τ(xiyxj)xxi ⊗ xj = yxjx⊗ xj = xyxi ⊗ xi.

 

Figure 53. 3→ 1 fig:52

The last case, 3→ 1, is depicted in Figure 53 at the critical time. On either side of the wall we

have a composition 3 → 2 → 1, and the two different compositions A⊗3 −→ A⊗2 −→ A are equal

by the associative law for m. !



Lecture 24: The cobordism hypothesis

sec:24

In this last lecture we introduce the Baez-Dolan cobordism hypothesis [BD], which has been

proved by Hopkins-Lurie in dimension 2 and by Lurie [L1] in all dimensions. We begin by motivating

the notion of an extended topological quantum field theory. This leads to the idea of higher

categories, which are also natural for bordisms. We then state the cobordism hypothesis for framed

manifolds. We refer to [F1, Te] for more thorough introductions to the cobordism hypothesis.

In this lecture we extract from the geometry of bordisms an even more elaborate algebraic gadget

than before: an (∞, n)-category.

We have no pretense of precision, and indeed to define an (∞, n)-category, much less a symmetric

monoidal (∞, n)-category, is a nontrivial undertaking. At the same time we discuss some motivating

examples which we do not explain in complete detail. The circle of ideas around the cobordism

hypothesis is under rapid development as we write. We hope the reader is motivated to explore the

references, the references in the references, and the many forthcoming references.

Extended TQFT

subsec:24.7

(24.1) Factoring numerical invariants. Let

eq:532 (24.2) F : BordX(n)⟨n−1,n⟩ → Vectk

be a topological field theory with values in the symmetric monoidal category of vector spaces over k.

Thus the theory assigns a number in k to every closed n-manifold X (with X(n)-structure, which

we do not mention in the sequel). Suppose X is cut in two by a codimension one submanifold Y ,

as indicated in Figure 54. We view X1 : ∅n−1 → Y and X2 : Y → ∅n−1, so that F (X1) : k → F (Y )

and F (X2) : F (Y ) → k. Let ξ1, . . . , ξk be a basis of F (Y ) and ξ1, . . . , ξk the dual basis of F (Y )∨.

Write

eq:530 (24.3)
F (X1) = aiξi

F (X2) = biξ
i

for some ai, bi ∈ k. Then the fact that F (X) = F (X2) ◦ F (X1) means

eq:528 (24.4) F (X) = aibi.

In other words, the TQFT allows us to factorize the numerical invariant of a closed n-manifold into

a sum of products of numbers. An n-manifold with boundary has an invariant which is not a single

number, but rather a vector of numbers.
188
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Figure 54. Factoring the numerical invariant F (X) fig:54

subsec:24.8

(24.5) Factoring the “quantum Hilbert space”. We ask: can we factor the vector space F (Y )? If

so, what kind of equation replaces (24.4)? Well, it must be an equation of sets rather than numbers,

and more precisely an equation for vector spaces. Our experience teaches us we should not write

an equality but rather an isomorphism, and that isomorphism takes place in the category Vectk.

(Compare: the equation (24.4) takes place in the set k.) So given a decomposition of the closed

(n− 1)-manifold Y , as in Figure 55, we might by analogy with (24.3) write

eq:529 (24.6)
F (Y1) = V ici

F (Y2) = Wic
i

for vector spaces V i,Wi ∈ Vectk, and by analogy with (24.4) write

eq:531 (24.7) F (Y ) ∼=
⊕

i

V i ⊗Wi

In these expressions V i,Wi ∈ Vectk. But what are ci, ci? By analogy they should be dual bases

of a Vectk-module F (Z) which is associated to the closed (n − 2)-manifold Z. Of course, the

TQFT (24.2) does not assign anything in48 codimension 2, so we must extend our notion of TQFT

to carry out this factorization.

 

Figure 55. Factoring the vector space F (Y ) fig:55

Indeed, one of the main ideas of this lecture is to extend the notion of a TQFT to assign invariants

to manifolds of arbitrary codimension—down to points—and thus allow gluing which is completely

local.

48By ‘codimension 2’ we mean (n− 2)-manifolds.
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thm:414 Remark 24.8. In realistic quantum field theories the vector space F (Y ) in codimension 1 is usually

called the quantum Hilbert space. (It is a Hilbert space in unitary theories.) The idea that it should

be local in the sense that it factors when Y—physically a spacelike slice in a Lorentz manifold—

is split in two, is an idea which is present in physics. For systems with discrete space, such as

statistical mechanical models in which space is a lattice, the quantum Hilbert space is a tensor

product of Hilbert spaces attached to each lattice site and obviously obeys a gluing law. For

continuous systems one sometimes attaches a von Neumann algebra to what corresponds to Z in

Figure 55, and then the Hilbert spaces F (Y1), F (Y2) are modules over that von Neumann algebra.

Example: n = 3 Chern-Simons theory

This topological quantum field theory was introduced49 in [Wi1]. It was the key example for

many of the early mathematical developments in topological quantum field theory; see [F3] for a

recent survey. Here we just make some structural remarks which indicate the utility of viewing

quantum Chern-Simons as an extended TQFT.

subsec:24.10

(24.9) Definition using the functional integral. The data which defines the theory is a compact Lie

group G and a class in H4(BG;Z) called the level of the theory. For G a connected simple group,

H4(BG;Z) ∼= Z and the level can be identified with an integer (usually denoted ‘k’ in the literature).

Let X be a closed oriented 3-manifold. The field in Chern-Simons theory is a connection A on a

principal G-bundle over X. The Chern-Simons invariant is a number ΓX(A) ∈ C×, which in fact

has unit norm.50 Suppose L ⊂ X is a link with components L1, . . . , Lℓ. Let ρ1, . . . , ρℓ be finite

dimensional unitary representations of G, which we use to label the components of the link. Then

there is an invariant

eq:533 (24.10) WL;ρ1,...,ρℓ(A) ∈ C

defined as the product of the characters of the representations ρi applied to the holonomy of the

connection A around the various components Li of the link. Physicists call this the “Wilson line”

operator. Formally, the quantum Chern-Simons invariant is a functional integral

eq:534 (24.11) F (X,L; ρ1, . . . , ρℓ) =

∫
DAΓX(A)WL(A)

over the infinite dimensional space of G-connections. It is not well-defined mathematically—an

appropriate measure ΓX(A)DA has not been rigorously constructed—but as a heuristic leads to

many predictions which have been borne out, both theoretically and numerically.51

49We have been lax in not pointing out earlier that the whole notion of a topological quantum field theory was
introduced by Witten in an earlier paper [Wi2]

50This numerical invariant extends to an invertible quantum field theory which is not topological: it is defined
on the bordism category of oriented manifolds equipped with a G-connection. Similarly, there is an invertible theory
which includes the Wilson line operators (24.10) described below.

51One subtlety: in the quantum theory the manifolds have an additional tangential structure—a trivialization of
the first Pontrjagin class p1—which is very close to a 3-framing (Example 9.51).
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Figure 56. A surface with marked points fig:56

subsec:24.11

(24.12) Categorical interpretation. It is natural to make a (topological) bordism category whose

objects are oriented 2-manifolds with a p1-structure and a finite set of marked points; see Figure 56.

A bordism between two such surfaces is then a 3-manifold with boundary and a link; see Figure 57.

The link is a neat compact 1-dimensional submanifold, and it hits the boundary in the marked

points. Each component of the link is labeled by a representation of G. Composition and the

symmetric monoidal product (disjoint union) are as usual. Then the Chern-Simons theory is a

symmetric monoidal functor from this category to VectC.

 

Figure 57. A bordism with a link/braid fig:57

subsec:24.12

(24.13) Cutting out the links. The idea now is to convert to a standard bordism category by

cutting out a tubular neighborhood of the marked points and links. Already from an object

(Figure 56) we obtain a 2-manifold with boundary in a 3-dimensional theory. Thus codimension 2

manifolds (1-manifolds) are immediately in the game. If we cut out a tubular neighborhood of the

link in Figure 57, then we obtain a 3-manifold with corners.

Consider a closed component of a link. A tubular neighborhood is a diffeomorphic to a solid torus,

but not canonically so: the isotopy classes form a Z-torsor where the generator of Z acts by a Dehn

twist. To fix this indeterminacy the links are given a normal framing. Then, up to isotopy, there is

a unique identification of a tubular neighborhood of each closed component with D2 × S1, and in

the 3-manifold with the tubular neighborhood removed there is a contribution of a standard S1×S1

to the boundary. Now the labels ρi can be interpreted as a basis for the vector space F (S1 × S1).

In fact, there is a finite set of labels in the quantum theory.52

For a component of the link with boundary, the normal framing fixes up to isotopy a diffeomor-

phism of a tubular neighborhood with a solid cylinder, and the intersection with the incoming or

outgoing 2-manifold is a disk, as in Figure 58. This can be re-drawn as in Figure 59, which suggests

52For a connected and simply connected group G the vector space is a quotient of the representation ring of G;
the story is more complicated for a general compact Lie group.
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Figure 58. Tubular neighborhood of marked point fig:58

that ρi be interpreted as an object in the linear category F (S1). This is indeed what happens in

the extended TQFT.

 

Figure 59. An object ρi ∈ F (S1) fig:59

Morse functions revisited
subsec:24.13

(24.14) Multi-cuttings and locality. In Lecture 23 we used a single Morse function—in fact, an

excellent function—to decompose a bordism into a composition of elementary bordisms (Figure 41).

But the elementary bordisms (e.g. Figure 42) are not completely local; they contain more than a

local neighborhood of the critical point. To achieve something entirely local we must slice again in

the other direction, say by a second Morse function. For a 2-dimensional manifold this is enough

to achieve locality (Figure 60). For an n-dimensional manifold we need n functions.

 

Figure 60. Cutting a surface with 2 Morse functions near a critical point fig:60

The multi-categorical nature of multi-cuttings is already evident in Figure 60. Recall from

Figure 38 that a single function on a manifold, thought of as “time”, gives rise to a composition

law for bordisms. Hence n time functions induce n composition laws. These should be thought

of as “internal” to an n-category; there is still disjoint union which induces a symmetric monoidal

structure.

subsec:24.14

(24.15) Collapsing identity maps. The standard Morse picture collapses the four vertical lines

in Figure 60. The resulting manifold with corners is a (closed) square D1 × D1. As time (f1)

flows from bottom to top two of the boundary edges (S0 × D1) flow to the other two boundary
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edges (D1 × S0) through the square. The four corner points (S0 × S0) remain inert through the

flow. In this interpretation the square is a map

eq:535 (24.16) D1 ×D1 : S0 ×D1 =⇒ D1 × S0

and the two pairs of boundary edges are maps

eq:536 (24.17) S0 × S0 → S0 × S0.

We combine (24.16) and (24.17) into a single diagram:

eq:537 (24.18) S0 × S0

D1×S0

S0×D1

D1×D1 S0 × S0

The general n-dimensional handle of index q is depicted as

eq:538 (24.19) Sp−1 × Sq−1

Dp×Sq−1

Sp−1×Dq

Dp×Dq Sp−1 × Sq−1

where p = n− q.

Higher categories

subsec:24.15

(24.20) (m,n)-categories. Intuitively, a higher category has objects, 1-morphisms which map be-

tween objects, 2-morphisms which map between 1-morphisms, etc. The diagrams (24.18) and (24.19)

are 2-morphisms (double arrows) which map between 1-morphisms (single arrows). There are

k composition laws for k-morphisms, and the composition laws are no longer required to be as-

sociative. We allow ∞-categories which have morphisms of all orders. An (∞, n)-category is an

∞-category in which all k-morphisms are invertible for k > n. In this notation a (1, 1)-category is

an ordinary category and a (1, 0)-category is a groupoid.

What follows are two examples of 2-categories. Together with the multi-bordism category indi-

cated in the previous section, these give some of the most important ways in which multi-categories

arise.

thm:415 Example 24.21 (Higher groupoids from a topological space). This generalizes Example 13.14. Let

Y be a topological space. The simplest invariant π0Y is the set of path components. The next

simplest is π≤1Y , the fundamental groupoid of Y . Its objects are the points of Y and a morphism
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y0 → y1 is a homotopy class of continuous paths γ : [0, 1] → Y with γ(0) = y0 and γ(1) = y1. It

is clear how to go further. We construct a 2-groupoid π≤2Y as follows. (A 2-groupoid is a (2, 0)-

category, i.e., a 2-category in which all morphisms are invertible.) An object is a point of Y as

before. A 1-morphism in π≤2Y is a continuous path—there is no identification of homotopic paths.

Let y0, y1 ∈ Y and γ, γ′ : [0, 1] → Y two continuous paths from y0 to y1. A 2-morphism Γ : γ ⇒ γ′

is a homotopy class of continuous maps Γ : [0, 1] × [0, 1]→ Y such that

eq:539 (24.22)

Γ(t1, 0) = γ(t1)

Γ(t1, 1) = γ′(t1)

Γ(0, t2) = y0

Γ(1, t2) = y1

for all t1, t2 ∈ [0, 1]. The last two equations allow us to factor Γ through the lune obtained by

collapsing the vertical boundary edges of the square [0, 1] × [0, 1]. Thus the domain has the shape

of the diagram (24.18), as befits a 2-morphism. We identify homotopic maps Γ, where the map on

the boundary is static during the homotopy. Vertical composition of 2-morphisms is associative on

the nose, but other compositions are only associative up to homotopy.

It should be clear how to define the fundamental m-groupoid π≤mY of the topological space Y

for any m ∈ Z≥0. There is an assertion (either a definition or theorem, depending on the approach,

though I don’t know a reference in which it is a theorem) in higher category theory that an (∞, 0)-

category is a topologial space.

thm:416 Example 24.23 (The Morita 2-category of algebras). Let k be a field. We construct a 2-category

C = Algk which is not a groupoid. (In the above nomenclature it is a (2, 2)-category.) The objects

are algebras over k. For algebras A0, A1 a morphism B : A0 → A1 is an (A1, A0)-bimodule. That is,

B is a k-vector space which is simultaneously a left module for A1 and a right module for A0. The

actions commute, so equivalently B is a left (A1 ⊗Aop
0 )-module. The collection C(A0, A1) of these

bimodules is a 1-category: a morphism f : B ⇒ B′ is a linear map f : B → B′ which intertwines

the (A1, A0)-action. So f is a 2-morphism in C:

eq:540 (24.24) A0

B′

B

f A1

Composition of bimodules (1-morphisms) is by tensor product over an algebra. Thus if A0, A1, A2

are k-algebras, B1 : A0 → A1 an (A1, A0)-bimodule, and B2 : A1 → A2 an (A2, A1)-bimodule, then

B2 ◦B1 : A0 → A2 is the (A2, A0)-bimodule B2 ⊗A1
B1. This composition is only associative up to

isomorphism.

The cobordism hypothesis

subsec:24.16
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(24.25) The (∞, n)-category of bordisms. We motivated above the idea that using multiple Morse

functions we can make out of n-manifolds an n-category: n-manifolds with corners of all codi-

mensions form the n-morphisms in that category. This is an (n, n)-category in the nomenclature

of (24.20). This is already a huge step above what we had before, an n-categorical generalization

of Definition 14.3. Now we want to generalize Definition 20.19 in the sense that we will consider a

topological space of n-morphisms. Now an n-morphism is an n-manifold with corners, together with

partitions of the various corners telling which are incoming and which are outgoing. (There are

also collar neighborhoods.) The discussion in Lecture 20 indicates how that can be done. However,

using the assertion at the end of Example 24.21 we can replace that space by its fundamental ∞-

groupoid, which amounts to saying that an (n+1)-morphism is a diffeomorphism of n-dimensional

bordisms, an (n + 2)-morphism is an isotopy of such diffeomorphisms, etc. In this way we ob-

tain an (∞, n)-bordism category which we denote Bordn. Of course, we can include a tangential

structure as well. The relevant example for us is n-framings (Example 9.51), which we denote as

X(n) = EO(n), and thus denote the resulting bordism category BordEO(n)
n .

subsec:24.17

(24.26) Fully extended TQFT. Following Definition 14.20 we define a (fully) extended topological

quantum field theory to be a homomorphism of symmetric monoidal (∞, n)-categories

eq:541 (24.27) F : BordEO(n)
n −→ C

into an arbitrary symmetric monoidal (∞, n)-category C.

subsec:24.18

(24.28) Finiteness. Recall Theorem 15.36 which asserts that the objects which appear in the

image of an ordinary TQFT are dualizable. The corresponding finiteness condition in an (∞, n)-

category is n-dualizability, or full dualizability. We do not elaborate here, but defer to [L1, §2.3].
subsec:24.19

(24.29) The cobordism hypothesis. The cobordism hypothesis is the next in a sequence of theorems

in the course. The first is stated in (2.28): the oriented bordism group ΩSO
0 is the free abelian

group on one generator. It may be accurate to attribute this to Brouwer as it is the basis of

oriented intersection theory. This statement only uses 0- and 1-manifolds, and on such manifolds

an orientation is equivalent to a 1-framing. This result was restated in Theorem 16.8. The second

result in this line is Theorem 16.10. It roughly asserts that BordSO⟨0,1⟩ = BordEO(1)
⟨0,1⟩ is the free 1-

category with duals53 with a single generator pt+. But it is much easier to formulate in terms of

homomorphisms out of Bord⟨0,1⟩, and that is how Theorem 16.10 is stated. Still, it is a theorem

about the structure of the bordism category, a statement about 0- and 1-manifolds. The cobordism

hypothesis is a similar statement, but about the bordism (∞, n)-category.

thm:417 Theorem 24.30 (cobordism hypothesis). Let C be a symmetric monoidal (∞, n)-category. Then

the map

eq:542 (24.31)
Φ : TQFTEO(n)

n (C) −→ (C fd)∼

F 1−→ F (pt+)

is an equivalence of ∞-groupoids.

53i.e., every object has a dual



196 D. S. FREED

The domain is the multi-category of homomorphisms BordEO(n)
n → C. The multi-category analog of

Proposition 15.34(ii) implies that the domain is an ∞-groupoid: all morphisms are invertible. The

notation in the codomain follows Definition 16.4 and Definition 16.5: it is the maximal∞-groupoid

underlying the subcategory of fully dualizable objects.

The cobordism hypothesis is a statement about the n-framed bordism category. There are many

variations. We will stop here and not comment on the proof nor on the applications.



Appendix: Fiber bundles and vector bundles

sec:26

This appendix is provided for reference as these topics may not be covered in the prelim class.pp

I begin with fiber bundles. Then I will discuss the particular case of vector bundles and the

construction of the tangent bundle. Intuitively, the tangent bundle is the disjoint union of the

tangent spaces (see (25.20)). What we must do is define a manifold structure on this disjoint union

and then show that the projection of the base is locally trivial.

Fiber bundles

thm:a1 Definition 25.1. Let π : E → M be a map of sets. Then the fiber of π over p ∈ M is the inverse

image π−1(p) ∈ E.

In some cases, as in the context of fiber bundles, it it convenient to denote the fiber π−1(p) as Ep.

If π is surjective then each fiber is nonempty, and the map π partitions the domain E:

eq:a1 (25.2) E =
∐

p∈M

Ep

Recall that ‘⨿’ is the notation for disjoint union; that is, an ordinary union in which the sets are

disjoint. (So ‘disjoint’ functions as an adjective; ‘disjoint union’ is not a compound noun.)

thm:a2 Definition 25.3. Let π : E →M be a surjective map of manifolds. Then π is a fiber bundle if for

every p ∈M there exists a neighborhood U ⊂M of p, a manifold F , and a diffeomorphism

eq:a2 (25.4) ϕ : π−1(U) −→ U × F

such that the diagram

eq:a3 (25.5) π−1(U)
ϕ

π

U × F

π1

U

commutes. If π′ : E′ → M is also a fiber bundle, then a fiber bundle map ϕ : E → E′ is a smooth

map of manifolds such that the diagram

eq:a4 (25.6) E
ϕ

π

E′

π′

M

commutes. If ϕ has an inverse, then we say ϕ is an isomorphism of fiber bundles.
197
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In the diagram π1 : U × F → U is projection onto the first factor. (We will often use the notation

πk : X1 × X2 × · · · × Xn → Xk for projection onto the kth factor of a Cartesian product.) The

commutation of the diagram is the assertion that π = π1 ◦ϕ, which means that ϕ maps fibers of π

diffeomorphically onto F . The manifold F may vary with the local trivialization.

thm:a3 Definition 25.7. The modification of Definition 25.3 in which F is fixed once and for all defines

a fiber bundle with fiber F .

You should prove that we can always take F to be fixed on each component of M .

Terminology: E is called the total space of the bundle and M is called the base. As mentioned,

F is called the fiber.

thm:a4 Example 25.8. The simplest example of a fiber bundle is π = π1 : M × F → M , where M and

F are fixed manifolds. This is called the trivial bundle with fiber F . A fiber bundle is trivializable

if it is isomorphic to the trivial bundle.

The characteristic property of a fiber bundle is that it is locally trivializable: compare (25.5)

and (25.6).

thm:a5 Exercise 25.9. Prove that every fiber bundle π : E →M is a submersion.

thm:a6 Remark 25.10. We can also define a fiber bundle of topological spaces: in Definition 25.3 replace

‘manifold’ by ‘topological space’ and ‘diffeomorphism’ by ‘homeomorphism’.

Transition functions

A local trivialization of a fiber bundle is analogous to a chart in a smooth manifold. Notice,

though, that a topological manifold has no intrinsic notion of smoothness, so we must define

smooth manifolds by comparing charts via transition functions and then specifying an atlas of

C∞ compatible charts. By contrast, when defining the notion of a fiber bundle we already know

what a smooth manifold is and so only assert the existence of smooth local trivializations. But we

can still construct fiber bundles by a procedure analogous to the construction of smooth manifolds

when we don’t have the total space as a manifold.

Let π : E → M be a fiber bundle and ϕ1 : π−1(U1) → U1 × F and ϕ2 : π−1(U2) → U2 × F two

local trivializations with the same fiber F . Then the transition function from ϕ1 to ϕ2 is

eq:a5 (25.11) g21 : U1 ∩ U2 −→ Aut(F )

defined by

eq:a6 (25.12) (ϕ2 ◦ ϕ−1
1 )(p, f) =

(
p, g21(p)(f)

)
, p ∈ U1 ∩ U2, f ∈ F.

Here Aut(F ) is the group of diffeomorphisms of F . The map g21 is smooth in the sense that the

associated map

eq:a11 (25.13)
g̃21 : (U1 ∩ U2)× F −→ F

(p , f) 1−→ g21(p)(f)
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is smooth. When we come to vector bundles F is a vector space and the transition functions land

in the finite dimensional Lie group of linear automorphisms; then the map (25.11) is smooth if and

only if (25.13) is smooth. Note in the formulas that g21(p)(f) means the diffeomorphism g21(p)

applied to f .

Just as the overlap, or transition, functions between coordinate charts encode the smooth struc-

ture of a manifold, the transition functions between local trivializations encode the global properties

of a fiber bundle.

We can use transition functions to construct a fiber bundle when we are only given the base and

fiber but not the total space. For that start with the base manifold M and the fiber manifold F

and suppose {Uα}α∈A is an open cover of M . Now suppose given transition functions

eq:a7 (25.14) gα1α0
: Uα0

∩ Uα1
−→ Aut(F )

for each pair α0,α1 ∈ F , and assume these are smooth in the sense defined above using (25.13).

We demand that gαα(p) be the identity map for all p ∈ Uα, that gα1α0
= g−1

α0α1
on Uα0

∩ Uα1
, and

that

eq:a8 (25.15) (gα0α2
◦ gα2α1

◦ gα1α0
)(p) = idF , p ∈ Uα0

∩ Uα1
∩ Uα2

.

Equation (25.15) is called the cocycle condition. We are going to use the transition functions (25.14)

to construct E from the local trivial bundles Uα×F → Uα, and the cocycle condition (25.15) ensures

that the gluing is consistent. So define

eq:a9 (25.16) E =
∐

α∈A

(Uα × F )
/
∼

where

eq:a10 (25.17)
(
pα0

, f
)
∼

(
pα1

, gα1α0
(f)

)
, pα0

= pα1
∈ Uα0

∩ Uα1
, f ∈ F.

The projections π1 : Uα × F → Uα fit together to define a surjective map π : E → M . It is

straightforward to verify that each fiber π−1(p) of π is diffeomorphic to F . Also, observe that the

quotient map restricted to Uα × F is injective.

thm:a7 Proposition 25.18. The quotient (25.16) has the natural structure of a smooth manifold and

π : E →M is a fiber bundle with fiber F .

I will only sketch the proof, which I suggest you think through carefully. Once we prove E is

a manifold then the fiber bundle property—the local triviality—is easy as the construction comes

with local trivializations. Equip E with the quotient topology: a set G ⊂ E is open if and only if

its inverse image in
∐

α∈A
(Uα × F ) is open. This topology is Hausdorff: if q1, q2 ∈ E have different

projections in M they can be separated by open subsets of M ; if they lie in the same fiber, then

we use the fact that F is Hausdorff to separate them in some Uα × F . The topology is also
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second countable: since M is second countable there is a countable subset of A for which E is the

quotient (25.16), and then as F is second countable we can find a countable base for the topology.

To construct an atlas, cover each Uα by coordinate charts of M and cover F by coordinate charts.

Then the Cartesian product of these charts produces charts of Uα × F , and so charts of E. It

remains to check that the overlap of these coordinate charts is C∞.

Vector bundles

The notion of fiber bundle is very general: the fiber is a general manifold. In many cases the

fibers have extra structure. In lecture we met a fiber bundle of affine spaces. There are also fiber

bundles of Lie groups. One important special type of fiber bundle is a vector bundle: the fibers are

vector spaces.

thm:a9 Definition 25.19. A vector bundle is a fiber bundle as in Definition 25.3 for which the fibers π−1(p), p ∈
M are vector spaces, the manifolds F in the local trivialization are vector spaces, and for each p ∈ U

the local trivialization (25.4) restricts to a vector space isomorphism π−1(p)→ F .

As mentioned earlier, the transition functions (25.14) take values in the Lie group of linear auto-

morphisms of the vector space F . (For F = Rn we denote that group as GLnR.)
You should picture a vector bundle over M as a smoothly varying locally trivial family (25.2) of

vector spaces parametrized by M . “Smoothly varying” means that the collection of vector spaces

fit together into a smooth manifold.

The tangent bundle

Let M be a smooth manifold and assume dimM = n. (If different components of M have

different dimensions, then make this construction one component at a time.) One of the most

important consequences of the smooth structure is the tangent bundle, the collection of tangent

spaces

eq:a14 (25.20) π :
∐

p∈M

TpM −→M

made into a vector bundle. We can construct it as a vector bundle using Proposition 25.18 as follows.

Let {(Uα, xα)}α∈A be a countable covering of M by coordinate charts. (As remarked earlier count-

ability is not an issue and we can use the entire atlas.) Then we obtain local trivializations (25.4)

for each coordinate chart:

eq:a15 (25.21)

ϕα : π
−1(Uα) −→ U × Rn

ξ =
∑

i

ξi
∂

∂xi
1−→ (p; ξ1, ξ2, . . . , ξn),

where ξ ∈ TpM . This is well-defined, but so far only a map of sets as we have not even topolo-

gized the total space in (25.20). But we can still use (25.21) to compute the transition functions
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via (25.12). Namely, define gα1α0
: Uα0

∩ Uα1
→ GLnR by

eq:a16 (25.22) gα1α0
(p) = d(xα1

◦ x−1
α0

)p.

In other words, the transition functions for the tangent bundle are the differentials of the overlap

functions for the charts.



Problems
sec:25

thm:418 Exercise 26.1. Derive the signature formula for a closed oriented 8-manifold. You may use the

result that ΩSO
8 ⊗Q is 2-dimensional with basis the classes of CP2 × CP2 and CP4.

thm:419 Exercise 26.2. Check the signature formula in the previous problem for the quaternionic projec-

tive plane HP2.

thm:420 Exercise 26.3. Suppose V1 → M1 and V2 → M2 are real vector bundles. Find a relationship

among the Thom complexes MV1
1 , MV2

2 , and (M1 ×M2)V1×V2 .

thm:421 Exercise 26.4. Prove that CP4 does not embed in A11. (Hint: Consider Pontrjagin classes.)

thm:422 Exercise 26.5. Construct a 20-dimensional closed oriented manifold with signature 2012.

thm:434 Exercise 26.6.

(i) Construct a double cover homomorphism SU(2) × U(1)→ U(2).

(ii) Compute the rational homotopy groups πiU(8) ⊗Q for i = 1, . . . , 4.

(iii) Compute as much of H•
(
BU(8);Q

)
as you can.

thm:435 Exercise 26.7.

(i) Recall from (14.4) in the lecture notes that a diffeomorphism f : Y → Y of a closed mani-

fold Y determines a bordism Xf . Let f0, f1 be diffeomorphisms. Prove that Xf0 is diffeo-

morphic to Xf1 (as bordisms) if and only of f0 is pseudoisotopic to f1.

(ii) Find a manifold Y and diffeomorphisms f0, f1 : Y → Y which are pseudoisotopic but not

isotopic.

thm:436 Exercise 26.8.

(i) Let S be a set with composition laws ◦1, ◦2 : S × S → S and distinguished element 1 ∈ S.

Assume (i) 1 is an identity for both ◦1 and ◦2; and (ii) for all s1, s2, s3, s4 ∈ S we have

(s1 ◦1 s2) ◦2 (s3 ◦1 s4) = (s1 ◦2 s3) ◦1 (s2 ◦2 s4).

Prove that ◦1 = ◦2 and that this common operation is commutative and associative.

(ii) Let C be a symmetric monoidal category. Apply (a) to C(1, 1), where 1 ∈ C is the tensor

unit.

thm:423 Exercise 26.9. Let y ∈ C be a dualizable object in a symmetric monoidal category, and suppose

(y∨, c, e) and (ỹ∨, c̃, ẽ) are two sets of duality data. Prove there is a unique map (y∨, c, e)→ (ỹ∨, c̃, ẽ).

thm:437 Exercise 26.10. For each of the following symmetric monoidal categories determine all of the

dualizable objects.
202
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(i) (Top,⨿), the category of topological spaces and continuous maps under disjoint union.

(ii) (Ab,⊕), the category of abelian groups and homomorphisms under direct sum.

(iii) (ModR,⊗), the category of R-modules and homomorphisms under tensor product, where

R is a commutative ring.

(iv) (Set,×), the category of sets and functions under Cartesian product.

thm:424 Exercise 26.11. Recall that every category C has an associated groupoid |C| obtained from C by

inverting all of the arrows. What is |Bord⟨1,2⟩|? |BordSpin⟨1,2⟩|? What are all VectC-valued invertible

topological quantum field theories with domain Bord⟨1,2⟩? BordSpin⟨1,2⟩?

thm:425 Exercise 26.12. Fix a finite group G. Let C denote the groupoid G//G of G acting on itself by

conjugation. Let D denote the groupoid of principal G-bundles over S1. (A principal G-bundle

is a regular, or Galois, cover with group G.) Prove that C and D are equivalent groupoids. You

should spell out precisely what these groupoids are.

thm:438 Exercise 26.13. Explain why each of the following fails to be a natural map η : F → G of sym-

metric monoidal functors F,G : C → D.

(i) F,G are the identity functor on Vectk for some field k, and η(V ) : V → V is multiplication

by 2 for each vector space V .

(ii) C,D are the category of algebras over a field k, the functor F maps A 1→ A ⊗ A, the

functor G is the identity, and η(A) : A⊗A→ A is multiplication.

thm:439 Exercise 26.14. In this problem you construct a simple TQFT F : Bord⟨0,1⟩ → VectQ. For any

manifold M let C(M) denote the groupoid of principal G-bundles over M , as in Exercise 26.12.n

(i) For a compact 0-manifold Y , define F (Y ) as the vector space of functions C(Y )→ Q. Say

what you mean by such functors on a groupoid.

(ii) For a closed 1-manifold X define

F (X) =
∑

[P ]∈π0C(X)

1

#Aut(P )
,

where the sum is over equivalence classes of principalG-bundles. Extend this to all bordisms

X : Y0 → Y1.

(iii) Check that F is a symmetric monoidal functor.

(iv) Calculate F on a set of duality data for the point pt ∈ Bord⟨0,1⟩. Use it to compute F (S1).

thm:426 Exercise 26.15. Fix a nonzero number λ ∈ C. Construct an invertible TQFT F : BordSO⟨1,2⟩ →
VectC such that for a closed 2-manifold X we have F (X) = λχ(X), where χ(X) is the Euler

characteristic. Can you extend to the bordism category Bord⟨1,2⟩?

thm:440 Exercise 26.16. Here are some problems concerning invertibility in symmetric monoidal cate-

gories, as in Lecture 17.

(i) Construct a category of invertibility data (Definition 17.18), and prove that this category

is a contractible groupoid.

(ii) Prove Lemma 17.21(i).
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(iii) Let α : BordSO⟨0,1⟩ → C be a TQFT. Prove that if α(pt+) is invertible, then α is invertible.

thm:427 Exercise 26.17. Compute the invariants of the Picard groupoid of superlines. (See (17.27) and

(17.35) in the notes.)

thm:428 Exercise 26.18. Show that a special Γ-set determines a commutative monoid. More strongly,

construct a category of special Γ-sets, a category of commutative monoids, and an equivalence of

these categories.

thm:429 Exercise 26.19. Let S denote the Γ-set S(S) = Γop(S0, S), for S ∈ Γop a finite pointed set.

Compute π1|S|.

thm:441 Exercise 26.20. Let C be a category. An object ∗ ∈ C is initial if for every y ∈ C there exists

a unique morphism ∗ → y, and it is terminal if for every y ∈ C there exists a unique morphism

y → ∗.
(i) Prove that an initial object is unique up to unique isomorphism, and similarly for a terminal

object.

(ii) Examine the existence of initial and terminal objects for the following categories: Vect, Set,

Space, Set∗, Space∗, the category of commutative monoids, a bordism category, a category

of topological quantum field theories.

(iii) Prove that if C has either an initial or final object, then its classifying space is contractible.

thm:430 Exercise 26.21. Let K denote the classifying spectrum of the category whose objects are finite

dimensional complex vector spaces and whose morphisms are isomorphisms of vector spaces. Com-

pute π0K. Compute π1K.
⇒

thm:431 Exercise 26.22. [rewrite as quotient of diagonal in M × M.] Let M be a commutative monoid. We

described a general construction of the group completion of any monoid. Give a much simpler

construction of the group completion |M | by imposing an equivalence relation on M ×M . You

may wish to think about the examples M = (Z≥0,+) and M = (Z>0,×).

thm:442 Exercise 26.23. Let G be a topological group, viewed as a category C with a single object.

(Normally we use ‘G’ in place of ‘C’, but for clarity here we distinguish.)

(i) Describe the nerve NC of G explicitly.

(ii) Define a groupoid G whose set of objects is G and with a unique morphism between any

two objects. Construct a free right action of G on G with quotient C. First, define carefully

what that means.

(iii) Prove that the classifying space BG is contractible.

(iv) Show that G acts freely on BG with quotient BC.

So we would like to assert that BG → BC is a principal G-bundle, and by Theorem 6.45 in the

notes a universal bundle, which then makes BC a classifying space in the sense of Lecture 6. The

only issue is local triviality; see Segal’s paper.

thm:432 Exercise 26.24. The embedding U(m) ↪→ O(2m) of the unitary group into the orthogonal group

determines a 2m-dimensional tangential structure BU(m) → BO(2m). Compute the integral

homology H•(MTU(m)) of the associated Madsen-Tillmann spectrum.
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thm:443 Exercise 26.25. For each of the following maps F : Manop → Set, answer : Is F a presheaf? Is

F a sheaf?

(i) F(M) = the set of smooth vector fields on M

(ii) F(M) = the set of orientations of M

(iii) F(M) = the set of sections of Sym2 T ∗M

(iv) F(M) = the set of Riemannian metrics on M

(v) F(M) = the set of isomorphism classes of double covers of M

(vi) F(M) = Hq(M ;A) for some q ≥ 0 and abelian group A

thm:433 Exercise 26.26. Define a sheaf F of categories on Man which assigns to each test manifold M a

groupoid of double covers of M . Be sure to check that you obtain a presheaf—compositions map to

compositions—which satisfies the sheaf condition. Describe |F| and B|F|. Compute the set F [M ]

of concordance classes of double covers on M .

thm:444 Exercise 26.27.

(i) Fix q ≥ 0. Define a sheaf F of sets on Man which assigns to each test manifold M the set

of closed differential q-forms. Compute F [M ]. Identify |F|.
(ii) Fix k > 0. Fix a complex Hilbert space H. Define a sheaf F of sets on Man which assigns

to each test manifold M the set of rank k vector bundles π : E → M together with an

embedding E ↪→M ×H into the vector bundle with constant fiber H and a flat covariant

derivative operator. (The flat structure and embedding are uncorrelated.) Discuss briefly

why F is a sheaf. Compute F [M ]. Identify |F|.
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pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. (1970), no. 39, 5–173.

D [D] Vladimir Drinfeld, On the notion of geometric realization, Mosc. Math. J. 4 (2004), no. 3, 619–626, 782,
arXiv:math/0304064.

DeM [DeM] Pierre Deligne and John W. Morgan, Notes on supersymmetry (following Joseph Bernstein), Quantum
fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc.,
Providence, RI, 1999, pp. 41–97.

Dij [Dij] R. Dijkgraaf, A geometrical approach to two-dimensional conformal field theory,
http://igitur-archive.library.uu.nl/dissertations/2011-0929-200347/UUindex.html. Ph.D.
thesis.

DK [DK] James F. Davis and Paul Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics,
vol. 35, American Mathematical Society, Providence, RI, 2001.

ElMi [ElMi] Y. Eliashberg and N. Mishachev, Introduction to the h-principle, Graduate Studies in Mathematics,
vol. 48, American Mathematical Society, Providence, RI, 2002.

EM [EM] A. D. Elmendorf and M. A. Mandell, Rings, modules, and algebras in infinite loop space theory,
Adv. Math. 205 (2006), no. 1, 163–228.

F1 [F1] Daniel S. Freed, The cobordism hypothesis, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 1, 57–92.
F2 [F2] D. S. Freed, Lectures on twisted K-theory and orientifolds, http://www.ma.utexas.edu/users/dafr/ESI.pdf.
F3 [F3] Daniel S. Freed, Remarks on Chern-Simons theory, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 2, 221–

254.
FH [FH] D. S. Freed and M. J. Hopkins, Chern-Weil forms and abstract homotopy theory. in preparation.
Fr [Fr] Greg Friedman, Survey article: an elementary illustrated introduction to simplicial sets,

Rocky Mountain J. Math. 42 (2012), no. 2, 353–423, arXiv:0809.4221.
GMTW [GMTW] Søren Galatius, Ulrike Tillmann, Ib Madsen, and Michael Weiss, The homotopy type of the cobordism

category, Acta Math. 202 (2009), no. 2, 195–239, arXiv:math/0605249.
GP [GP] Victor Guillemin and Alan Pollack, Differential topology, AMS Chelsea Publishing, Providence, RI, 2010.

Reprint of the 1974 original.
H1 [H1] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
H2 [H2] , Vector Bundles and K-Theory. http://www.math.cornell.edu/ hatcher/VBKT/VBpage.html.

in progress.
Hi [Hi] Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New

York, 1994. Corrected reprint of the 1976 original.
Hir [Hir] Friedrich Hirzebruch, Topological methods in algebraic geometry, Classics in Mathematics, Springer-

Verlag, Berlin, 1995. Translated from the German and Appendix One by R. L. E. Schwarzenberger,

http://dx.doi.org/10.1063/1.531236
http://arxiv.org/abs/arXiv:math/0304064
http://arxiv.org/abs/http://igitur-archive.library.uu.nl/dissertations/2011-0929-200347/UUindex.html
http://dx.doi.org/10.1016/j.aim.2005.07.007
http://dx.doi.org/10.1090/S0273-0979-2012-01393-9
http://arxiv.org/abs/http://www.ma.utexas.edu/users/dafr/ESI.pdf
http://dx.doi.org/10.1090/S0273-0979-09-01243-9
http://dx.doi.org/10.1216/RMJ-2012-42-2-353
http://arxiv.org/abs/arXiv:0809.4221
http://dx.doi.org/10.1007/s11511-009-0036-9
http://arxiv.org/abs/arXiv:math/0605249
http://arxiv.org/abs/http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html


BORDISM: OLD AND NEW 207

With a preface to the third English edition by the author and Schwarzenberger, Appendix Two by A.
Borel, Reprint of the 1978 edition.

HK [HK] Kenneth Hoffman and Ray Kunze, Linear algebra, Second edition, Prentice-Hall Inc., Englewood Cliffs,
N.J., 1971.

Ho [Ho] M. J. Hopkins, Algebraic topology and modular forms, Proceedings of the International Congress of
Mathematicians, Vol. I (Beijing, 2002) (Beijing), Higher Ed. Press, 2002, pp. 291–317.

I [I] John R. Isbell, On coherent algebras and strict algebras, J. Algebra 13 (1969), 299–307.
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