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Abstract
We present the WELTMODELL, a commonsense knowledge base that was automatically generated from aggregated dependency parse
fragments gathered from over 3.5 million English language books. We leverage the magnitude and diversity of this dataset to arrive at
close to ten million distinct N-ary commonsense facts using techniques from open-domain Information Extraction (IE). Furthermore,
we compute a range of measures of association and distributional similarity on this data. We present the results of our efforts using a
browsable web demonstrator and publicly release all generated data for use and discussion by the research community. In this paper, we
give an overview of our knowledge acquisition method and representation model, and present our web demonstrator.
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1. Introduction

Acquiring and representing structured, machine-readable
general world knowledge has been a longstanding chal-
lenge in Al and NLP. Early approaches for the creation
of commonsense knowledge were based on hand-coded
knowledge by groups of expert logicians (Lenat, 1995). To
overcome the inherent complexities in scaling up hand-built
rule-systems, more recent approaches have investigated the
use of crowd-sourcing (Singh et al., 2002) and the integra-
tion of numerous hand-built structured data sources (Speer
and Havasi, 2012). A prominent example of this line of
work is CONCEPTNET (Liu and Singh, 2004), a graph-
based knowledge representation project in which nodes are
concepts and edges relations that hold between these con-
cepts.

We follow a different recent line of work which investigates
the use of automated, data-driven methods to create com-
monsense knowledge bases (Schubert, 2002; Gordon et al.,
2010; Gordon, 2010). We are motivated by ever-growing
amounts of readily available natural language text (Halevy
et al., 2009), an increasing maturity of Information Extrac-
tion (IE) technologies and the availability of scalable com-
puting architectures (Dean and Ghemawat, 2008).

In particular, we are motivated by the availability of a
dataset of aggregated dependency parse fragments gath-
ered from over 3.5 million English language books (Gold-
berg and Orwant, 2013). By applying techniques from
open-domain IE (Akbik and Léser, 2012) and distributional
semantics (Akbik et al., 2012) to this large and diverse
dataset, we investigate the potential of large scale data-
driven approaches for automatically acquiring common-
sense knowledge. We distinguish our work from related
efforts (Speer and Havasi, 2012; Schubert, 2002) in that we
model relations that hold between an arbitrary number of
concepts (e.g. N-ary relations) and determine several no-
tions of similarity and association which we include in our
model. We make the results of our efforts publicly available
for use and discussion by the research community.

We present the WELTMODELL, the commonsense knowl-
edge base created with our data-driven approach, using a

browsable web interface. Typical commonsense informa-
tion that users may query in the WELTMODELL includes:

e Facts that pertain to a given concept, along with co-
occurrence counts and mutual information values. For
instance, a user might query for the concept “coffee”
(see Table 1). Example facts include unary facts (“cof-
fee may smell good”), binary facts (“someone may
drink coffee”) and ternary facts (“someone may have
coffee for breakfast”).

Concepts that may fill a slot in a given statement. For
example, given the facts found for “coffee” in Table 1,
users may ask: “What are other things that some-
one may have for breakfast?”, “What other things may
smell good?”, or “What things may a waiter bring?”.
See Table 2 for example results for such queries.

Statements with high applicative similarity for a given
statement. For instance, a user might ask “What state-
ments hold for things that a waiter may bring?” (they
may be put or placed on a table). We discuss such
notions of similarity in section 2.4.

In the following, we give an overview of our knowl-
edge acquisition methodology and knowledge representa-
tion model. We also give a brief overview of our web Ul

FACT NPMI | COuUNT
[someone] may sip [coffee] 0.65 6946
[someone] may drink [coffee] | 0.56 11206
[someone] may pour [coffee] | 0.52 2658

[coffee] may smell good 0.49 219
[someone] may have [coffee] | 0.44 102

for [breakfast]
[waiter] may bring [coffee] 0.41 140

Table 1: Facts that pertain to the concept “coffee”, ordered
by normalized pointwise mutual information (NPMI). Facts
have different numbers of slots for concepts which are in-
dicated by brackets. Thus, “[someone] may have [coffee]
for [breakfast]”, for example, is a ternary statement.
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a) b) [someone] may have
[someone] may sip [_] [-] for [breakfast]

c) d)
[waiter] may bring [_] [-] may smell good

CONCEPT | NPMI CONCEPT | NPMI

CONCEPT | NPMI CONCEPT | NPMI

coffee 0.65 mackerel | 0.62
brew 0.58 sausage 0.58
tea 0.57 cocoa 0.56
drink 0.5 oatmeal 0.51
champagne | 0.49 omelette 0.49
wine 0.48 coffee 0.44

check 0.48 gunpowder | 0.49
coffee 0.41 coffee 0.49
drink 0.41 cooking 0.36
salad 0.4 soup 0.35
tray 0.38 food 0.34
menu 0.36 air 0.32

Table 2: Typical concepts that are observed for four example statements of different arity. Each statement has exactly one
free slot, indicated as “[_]”. In example b), a ternary statement, the concepts observed that may fill the free slot are different
items of food that one may have for breakfast. Example d) is a unary statement that is observed for concepts that may smell

good.

2. Knowledge Acquisition

2.1. Data set

We base our knowledge acquisition effort on the Syntactic
N-Grams dataset (Goldberg and Orwant, 2013). It was ex-
tracted from corpus of 3.5 million digitized English Google
Books (Michel et al., 2011) and includes ca. 10 billion dis-
tinct items. The dataset contains syntactic n-grams, rooted
dependency tree fragments from parsed English text. N-
grams may consist of up to 5 arcs in a dependency tree
between content-words (word types judged to be semanti-
cally important such as nouns and verbs), plus any number
of arcs to functional-markers, word types such as determin-
ers and auxiliary verbs. At time of writing, it is the largest
openly available corpus of its kind. An example of a syn-
tactic n-gram that was seen 16 times is given in Figure 1a).

compl dobj
nsubj
det aux
a) e [

when the waiter had brought coffee

WRB DT NN VBD VBD

L

fact: [waiter] may bring [coffee]
frame: [_] may bring [_]
b) verb: bring
concepts: [waiter], [coffee]
count: 16

L

statement ‘ concept ‘ count
c) [waiter] may bring [_] [coffee] 16
[_1 may bring [coffee] [waiter] 16

Figure 1: Extraction process for an example n-gram. The
n-gram is displayed in a). The extraction method identifies
the head verb (highlighted bold) and dismisses all nodes
that are not of interest (highlighted in italics). The extracted
fact with its components (frame, verb, concepts and count)
is listed in b). The collapsed statement-concept representa-
tion for this fact is given in c).

2.2. Fact Extraction

Our method expects as input a dependency tree fragment
that contains a verb and all of its arguments. We apply an
open-domain Information Extraction method modeled on
the KRAKEN system described in (Akbik and Loser, 2012):
Using a simple rule-set over typed dependencies, we collect
subjects, particles, negations, passive subjects, direct and
prepositional objects of the verb, and determine whether the
dependency tree fragment contains a passive construction,
and whether it is negated. Personal pronouns and certain
nouns (such as “anybody” and “everyone”) are replaced
with the placeholder “someone”. Some vague words such
as “that” and “everything” are generalized to “something”.
Verbs are lemmatized in active, but not in passive, construc-
tions.

We then place the collected arguments in the following or-
der: Subject, negation, main verb, particles, direct objects
and prepositional objects. All other links, such as auxiliary
verbs and complements are disregarded. So, the input frag-
ment “when the waiter had brought coffee” yields the fact
“[waiter] may bring [coffee]”. Refer to Figure 1 a) and b)
for an illustration of this step.

Representation. This yields a large resource of N-ary
facts. Facts consist of a frame with slots for each noun
concept. So, in the fact “[waiter] may bring [coffee]”, the
frame is “[_] may bring [_]” and the concepts are “waiter”
and “coffee”. Frames are always based on a verb, so that
for each verb a number of frames with different numbers of
slots and prepositions exist. The verb “bring”, for instance,
has frames such as “[_] may bring [_] before [_] ” and “[_]
may bring down [_]”. Aggregated frequency counts from
the Syntactic N-Grams dataset are also stored for each fact.
An illustration of a fact and its components is given in Fig-
ure 1Db).

Finally, a statement is a fact in which exactly one slot is
empty, such as “[waiter] may bring [_]”. Statements per-
tain to concepts that may fill the empty slot. This concept-
statement pair representation is important to our knowledge
base, because it allows us to define filters and calculate sev-
eral measures of similarity and association.

2.3. Pointwise Mutual Information.

Many frequently observed statements are very general and
are seen with very large numbers of concepts. An example
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FUNCTIONAL SIMILARITY

APPLICATIVE SIMILARITY

Concept 1 | Concept 2 Cosine Statement 1 \ Statement 2 Cosine
coffee tea 0.54 [-] may cross [face] [.] may pass over [face] 0.25
coffee brew 0.54 [-] may hang in [air] [-] may fill [air] 0.62
belief notion 0.53 [-] may hang in [air] [-] may fill [room] 0.66
belief assumption | 0.46 [-] may hang in [air] [someone] may exhale [_] 0.67
belief idea 0.45 [-] may cure [disease] | [someone] may be administered [_] | 0.86

Table 3: Examples for functional and applicative similarities. The concepts “coffee” and “tea” (highlighted bold) share
a high functional similarity, because statements that hold for “coffee” often also hold for “tea” (such as “[someone] may
drink [_]”). The statements “[_] may cure [disease]” and “[someone] may be administered [_]” because many things that

cure diseases may also be administered to someone.

is “[someone] may see [_]” which is observed for nearly
any noun. In order to measure the strength of the associ-
ation between a statement and a concept that may fill the
statement’s free slot, we compute the mutual information
of each concept-statement pair. We use the pointwise mu-
tual information (PMI) - as well as its normalized variant
(NPMI) - and calculate the discrepancy between the prob-
ability of a concept-statement coincidence given their joint
distribution and their individual distributions, assuming in-
dependence. Equation 1 shows the formula for the NPMI,
where p(s) is the probability of a statement and p(c) the
probability of a concept.

p(s,c)
. p(s)*p(c)

npmi() loy—log[p(& ] (1
We also compute the so-called Lexicographer’s Mututal
Information (LMI) by multiplying the NPMI with the
concept-statement co-occurrence counts. This offsets the
tendency of the PMI to rate rare events to highly. We make
all three statistics available, as we feel that each may be
used to find significant, or typical, statements for a given
concept and vice versa.

2.4. Functional and Applicative Similarity

We compute measures of similarity for all pairs of concepts
and all pairs of statements.

Functional similarity. Following (Turney, 2012), we de-
fine the functional similarity of two concepts to be the de-
gree to which two concepts are observed with the same
statements. The concepts “coffee” and “tea” for example
are functionally similar, because they share a large set of
statements, such as “[someone] may drink [_]”, “[someone]
may sip [_]” and “[someone] may pour [_]”. See Table 3 for
examples.

Applicative similarity. We define two statements to have
a high applicative similarity if they are observed with sim-
ilar nouns. For example, the statements “[_] may cure [dis-
ease]” and “[someone] may be administered [_]” have a cer-
tain applicative similarity because they are observed with
nouns such as “medicine”, “dose” and “draught”. A verbal-
ization of this example would be “things that cure diseases
may often be administered to someone”. See Table 3 for
examples.

We measure the similarity of two concepts or statements
using the cosine distance (Bullinaria and Levy, 2007) over
shared attributes in a vector space presentation. The closer

the cosine distance is to 0, the more similar two concepts or
statements are. We describe the process of calculating the
cosine distance in greater detail in (Akbik et al., 2012).

2.5. Results

We apply our algorithm to the dataset and find 852,387,621
facts, of which 9,544,862 are distinct. The knowledge base
spans 933,997 distinct frames, 2,993,678 distinct concepts
and 6,155,115 distinct statements.

3. Demonstration

For demonstration and discussion purposes, we make avail-
able a browsable web interface to the WELTMODELL
at http://www.textmining.tu-berlin.de/weltmodell, where
users can freely browse concepts, statements, frames and
verbs. The two most important views are the concept and
the statement views:

Concept view The concept view shows associated state-
ments and functionally similar concepts for a given
concept. Users may filter statements according to their
arity. See Figure 2 for an example. A click on the ar-
row next to a statement leads to the statement view.

Statement view The statement view shows associated
concepts and applicatively similar concepts for a given
statement. Here, users can execute a single-link hierar-
chical agglomerative clustering (HAC) by clicking the
“group” button. Associated concepts are then grouped
according to their functional similarity. We show an
example of this view and the visualized clustering in
Figure 3.

Users can compare the different mutual information metrics
and inspect for each fact a sample of syntactic n-grams in
which it was found.

4. Outlook

Present work focuses on expanding the range of our knowl-
edge acquisition efforts to non-verb constructions such as
noun phrases, and finding causal relationships between
verbs (Rink et al., 2010; Gordon et al., 2011). We in-
tend to increase the data quality by continuously refining
our extractors and integrating external repositories such
as WORDNET (Miller, 1995) and OPEN MIND COMMON
SENSE (Singh et al., 2002). We also plan to add more vi-
sualization options as we add new types of commonsense
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Entries with planet
Statement Frame Verb
3 [planet] may round {sun} {_ }mayround{ } round
% [planet] may be inhabited {___} may be inhabited inhabit
¥ [planet] may move in {circle} {__}maymovein{ } move
¥ [planet] may revolve around SO or STH {__} may revolve around revolve
[
> SO or STH may know SO or STH on {__Imayknow{ }on{__} know
[planet]
> {star} may have [planet] {__}mayhave{ } have
¥ [planet] may be in {aspect} {__Jmaybein{_} be
¥ [planet] may suffer {fate} {___}may suffer{__} suffer

Similar nouns

Number of slots: [l 1 2 3

Noun Cosine similarity

planet 0
Normalized
PMI Occurrences star 0.7853959
0.53564495 409 Q earth 0.7873673
0.5331673 1008 Q mooen 07965421
0.5007309 260 Q body 0.8448494
0.4543455 296 Q sun 0.84605

island 0.8529062
0.45137 304 Q globe 0.857812

comet 0.8621587
0.44716358 253 Q

particle 0.8665688
0.446238 65 Q
0.43894663 73 Q Show all similar nouns

Figure 2: Information on the concept “planet”. On the left side, some associated statements are listed. On the right side,
concepts with high functional similarity are listed, such as “star”, “earth” and “moon”.

Entries with waiter may bring [ ]
Verb: bring

Frame: {__} may bring {__}

Noun Statement v Normalized PMI

> trotter {waiter} may bring [trotter] 0.48548084
> check {waiter} may bring [check] 0.48003334
? bill {waiter} may bring [bill] 0.35802507
> note {waiter} may bring [note] 0.23742908
? coffee {waiter} may bring [coffee] 0.4132596

> drink {waiter} may bring [drink] 0.4064224

> salad {waiter} may bring [salad] 0.39561632

Figure 3: Statement view for “[waiter] may bring [_]”, i.e.

Similar statements

Noun Cosine
similarity
OCCLITTEnCes v {waiter} may bring {__} 0
11 Q {servant} may bring{__} 0.69518954
{SOor STH} may drink {___} with {SOor 0.7067701
276 a I STH}
may send u 0.7165954
T I {__}may p
{___} may be on {table} 0.72012275
43 I
{SOor STH} may set{___} on {table} 0.72501606
140 {___} may be served 0.72726303
170 {SO or STH} may place {___} on {table} 0.7285332
14 {__} may taste good 0.7331363

all things that a waiter may bring. Concepts are grouped

according to functional similarity, so one functionally similar group of concepts a waiter may bring is “check”, “bill” and
“note”. Applicatively similar statements are listed on the right. The statement “[someone] may place [_] on [table]” is
similar. This reads as “things that a waiter may bring may also often be placed on a table”.

information. We will also investigate in how far we can en-
courage and automatically integrate user feedback into our
knowledge base.

Disambiguation. One principal problem that we are ad-
dressing is the widespread ambiguity of concepts (as well
as statements to a lesser extend). Examples for ambiguous
concepts are “plane” (airplane vs. field) and “change” (coin
vs. modification). Our hope is to separate the meanings
either using unsupervised methods, for example through
clustering the statements for each concept, or by disam-
biguating concepts to WordNet. Initial investigations of
both supervised and unsupervised approaches point to po-
tential, however no results of sufficient quality for inclusion
into the publicly browsable dataset have yet been produced.

Incompleteness. Another challenge that we are investi-
gating concerns incompleteness; even with the very large
dataset used in our experiments, not all possible facts are

observed. An example of this is the statement “[_] may have
[wing]”, which is observed for many different birds, but not
the concept “owl”. However, the WELTMODELL contains
enough information to infer such statements, e.g. we know
that an owl is a bird and that it can fly. We also observe that
birds that can fly often have wings. Currently we are inves-
tigating matrix completion methods as a general means to
infer new information (Riedel et al., 2013).

Common sense reasoning. In order to gather further re-
quirements for data-driven commonsense knowledge ac-
quisition, we intend to address commonsense reasoning
tasks such as the Choice of Plausible Alternatives (COPA)
task described in (Roemmele et al., 2011). Our goal is
to create methods that not only heuristically solve such
tasks but also “explain” their choice as a series of human-
readable commonsense reasoning steps.
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