LANOMS 2005 - 4th Latin American Network Operations and Management Symposium 257

Distribution and Coordination of Policies for
Large-scale Service Management

Nigel Sheridan-Smith', Tim O’Neill', John Leaney', and Mark Hunter?

! Institute of Information and Communication Technologies
University of Technology, Sydney
{nigelss, toneill, jrleaney}@eng.uts.edu.au
2 Alcatel Australia
Mark.Hunter@alcatel.com.au

Abstract. The distribution and coordination of policies is often over-
looked but is crucial to the scalability of dynamic, personalised services.
In this work we partition an Abstract Syntax Tree of the policies to deter-
mine the responsibility of different management nodes in a geographically
segregated network (i.e. management by delegation). This partitioning is
combined with IN/OUT set analysis to determine the required coordina-
tion for policy enforcement of complex policies with inter-dependencies.
Our simulation results show that this approach is promising, as higher
decision loads can be readily handled by further sub-dividing of the net-
work.

1 Introduction

The PRONTO management system [1] which is currently in development uses a
policy-based service definition language to describe how to construct and manage
personalised services in Next-Generation Networks (NGNs). Centralised policy
architectures are unlikely to cope with millions of dynamically changing ser-
vices and the Policy Decision Points (PDPs) will quickly become bottlenecks.
Since PRONTO is evolutive, only one PDP is required for different types of
policies as the network architecture evolves. Policies are distributed to multiple
management nodes which are given responsibility for geographic partitions of
the network. This approach allows policy load to be quickly redistributed by
changing the demarcation of responsibility.

Whilst some types of policies can be easily distributed to multiple man-
agement nodes (due to their independence), other types of policies will require
coordination because the events, conditions and actions (ECA) refer to devices
in different network partitions. We apply the principles of automatic parallelising
compilers [2] to aid in distributing and coordinating more complex policies where
the sequencing of ECA components is critical to correct policy evaluation and
enforcement. Further work in [4] examines many of the proposed extensions (flow
control, looping and transactions) to the basic scheme outlined in this paper.



258

LANOMS 2005 - 4th Latin American Network Operations and Management Symposium

2 Policy distribution

2.1 The PRONTO management system and language

The PRONTO management system is highly flexible and extensible, allowing
policies to be applied to interchangeable, event-driven software components, and
devices from different vendors for end-to-end service management. The service
definition language allows the behaviour of complex, adaptive and dynamic ser-
vices to be described at multiple levels of abstraction, and allows the services
to evolve over time. The language ties together the different aspects of the ser-
vice, such as the devices involved (through roles), the parameters of the ser-
vice, the software components used, the resources required, the different states
of the service (for workflow), and the policies which define the static and dy-
namic behaviour of the services. Policies applied at abstract layers on software
components create more detailed policies at lower layers, but the policies can
be changed dynamically in response to feedback from the network, to optimise
the configuration or adapt services to the user’s environment. This approach is
generic and elastic, therefore lending itself to the management of many different
types of policy functions in the network (e.g. QoS, security, VPNs, multicast,
etc), without multiple policy system implementations. For further details refer
to [1].

2.2 Parallelisation of policies

In automatic parallelising compilers, the design of effective partitioning algo-
rithms is difficult because coordination overhead trades off against parallelisa-
tion [2]. However, policy systems might benefit from fine-grained partitioning
because the policy targets are distributed throughout the whole network with
latency having only marginal impact.

We introduce three types of coordination: (1) Data Distributions (DI) where
data dependencies exist across geographical partitions and shared data must be
transmitted between the management nodes (2) Sequence Points (SP) where
control flow sequencing occurs across geographical partitions, and (3) Event No-
tifications (EN) where the combination of events and conditions leads to policy
actions being triggered across the network (all participating management nodes
must be informed of this occurrence). Similar coordination can be applied equally
to events and conditions, but only actions are shown in this paper. We distribute
event management similar to Howard et al. [5] to minimise polling and commu-
nication overheads.

The concurrent and sequential keywords are used to allows policy writ-
ers to specify the optimal placement of parallelisation, and indicate where strict
sequential execution must be observed. Concurrent actions can be executed sep-
arately and simultaneously as long as there are no dependencies; however flow or
data dependencies must be ordered correctly when executed [2,3]. Other types
of interactions are anti-dependencies and output dependencies, and are due to
the potential for race conditions.



LANOMS 2005 - 4th Latin American Network Operations and Management Symposium 259

service /testservice

{
events {startService;}
concurrent policies
{ ,
on (startService) [Symbar aronio |
{ (R
X =Yy + 2
a=x%*y
}
}

}

(a) Service policies (b) Annotated Abstract Syntax Tree (AST)

Fig. 1. Service to AST transformation

3 The distribution and coordination algorithm

In the simplest cases, a policy might be entirely managed by a single manage-
ment node, or a purely concurrent policy might be distributed to independent
management nodes with no coordination. In these cases, only an EN message is
required to share event instance information and begin policy execution.

3.1 Abstract Syntax Tree partitioning

During policy compilation, an Abstract Syntaz Tree (AST) is constructed, and
context-sensitive information is annotated to the nodes [2], as shown in Fig. 1.
The top half of each ellipse node is marked with the type of node and the bottom
half is marked with the relevant text.

We can partition the different branches, and then associate the different
branches with particular management nodes. The most important node is the
name expression (NA) since it refer to various symbols, such as variables and the
references to objects under management. Using two-phase depth-first traversals
we mark on the AST nodes with arrows indicating the direction of responsibility.
The NA nodes are directly associated with a management node that is respon-
sible for the identified symbol (e.g. a device). In a downward pass, nodes below
NA are marked upwards. In the upward pass, any unmarked nodes are marked
downwards if all children belong to the same management node. These arrows
then indicate regions of responsibility. In the second pass, DI nodes are inserted
into the AST to clearly define the boundaries between partitions.

3.2 Data dependencies

The previous approach identifies simple dependencies within individual actions,
but not across actions, nor does it locate anti- and output dependencies where



260

LANOMS 2005 - 4th Latin American Network Operations and Management Symposium

1 INREF(x) Backpatch list 1 - after (1)
INREF(y) ‘ . ‘ 1 ‘ ‘ ‘
INVAL(y)

2)

INVAL(z)
Execy +z
Exec x =
OUTVAL(x)

Symbol —
OUTVAL —
OUTREF —
INVAL —
INREF —
ALIAS —

2 INREF(a)
INREF (x)
3 INVAL(x) ,
INREF(y) Backpatch list 2 - after (4)
INVAL(y) x |1 313
Execx*y
4 Execa= a |2
OUTVAL(a)

Fig. 2. Semantic execution order, IN/OUT markers and backpatching

symbols are used more than once and must be guarded against race conditions.
We extend the IN and OUT sets used by Wolfe [3] to maximise parallelism within
each policy action. We also distinguish between value and reference symbols.
Consequently, INVAL and INREF refer to retrieved values and references, and
OUTVAL and OUTREF refer to changed values and references respectively.
OUTREF determines when one symbol aliases (or behaves like) another.

Using another depth-first traversal, we simulate sequential policy execution,
and generate a list of IN and OUT markings on NA nodes which are used for
the analysis of dependencies. Different policy constructs (set/retrieve variable,
side-effects, etc) will generate unique lists with combinations of IN and OUT
markings. As the list is created, a backpatch list is maintained, such that the
nodes with the most recent OUT markings and the all IN markings since the
last OUT sets are stored. If the symbols are temporary, then IN markings do not
need to be maintained, as these symbols are implicitly duplicated. Fig. 2 shows
how the IN/OUT markers are generated according to sequential execution order
during traversal, and the backpatch lists at point 1 and 4. When OUT markings
are encountered, a bidirectional association is formed between the OUT node
and the previous OUT node, by inserting a DI data-dependency node. Similarly,
a SP flow-dependency node is inserted between IN nodes and the most recent
OUT node, to ensure that anti- and output dependencies are sequenced correctly
for non-temporary variables. The IN markings are cleared from the backpatch
list at each OUT node. Finally, the backpatch list allows symbols to refer to other
symbols when aliasing occurs. If policy actions must be sequentially executed,
then an SP node is inserted between the partitions on different actions to ensure
correct ordering. Fig. 3 shows the dependency tree associations formed for the
previous example.

3.3 Parallel execution

Once the policies have been distributed, they can be executed in parallel. Ini-
tially, the event source notifies any one of the management nodes involved. This



LANOMS 2005 - 4th Latin American Network Operations and Management Symposium 261

Symbol: y
Symbol: z

Fig. 3. Dependency tree

management node has primary responsibility for execution, and sends EN mes-
sages to the other management nodes to notify them of the event. Any AST par-
tition without SP predecessors can be executed immediately and independently.
Partitions with DI predecessors can commence execution, but cannot continue
and complete until the relevant data is received from another management node.

Once the partition has completed execution, the management node respon-
sible must then send SP and DI messages to other management nodes when
succession is required. These messages indicate that the prior partition has com-
pleted execution, and in the case of DI messages, carry the relevant data to be
shared between the management nodes.

3.4 Simulation

We have developed a simulation using the OMNET++ Discrete Event Simulator
that evaluates the performance and scalability of different types of distributed
policies in different network configurations. We model a simple database and
multiple management nodes with caching, and describe the different branches
of the AST and their relationships using XML. With this simulator, we are able
to evaluate this algorithm to determine the impact of different types of policy
coordination in large-scale networks. Currently, we use some estimations and
some measurements from real systems as timing delays. Early results show the
potential scalability of this approach, shown in Fig. 4. Here, increasing the num-
ber of management nodes definitely helps in balancing decision load, with only
a minimal degradation in response time. Furthermore, the response time under
heavy loads is improved. We anticipate that this simulator will be very useful in
understanding the cost and performance implications of different architectures
for delivering complex personalised services, and help to determine the optimal
placement for policy decisions [4].



262

LANOMS 2005 - 4th Latin American Network Operations and Management Symposium

450 7
5 400 6
350 £ 7
/ - & 5
a;, 300 —e—3 PDP - MN1 ° —e—3 PDP - MN3
250 / —+—6 PDP - MN1 £ 44 —a—6 PDP - MN3
; 9 PDP - MN1 8 9 PDP - MN3
200 4 —e— 12 PDP - MN1 23 s A —e— 12 PDP - MN3
150 4 —+—15 PDP - MN1 E / ad —+— 15 PDP - MN3
S %
o 2
100 4 H
"o L
0 . . . 0 4 . .
0 200 400 600 800 0 200 400 600 800
Request rate (events per second) Request rate (events per second)
(a) Throughput (b) Response time

Fig. 4. Scalability

4 Conclusion

We have outlined an algorithm for distributing policies amongst a number of
management nodes based on geographical segregation. This allows policies to
be distributed outwards to help share the policy decision and enforcement load
across many policy-capable servers, to increase the performance and scalability.
We create three additional types of nodes for synchronisation and annotate the
Abstract Syntax Tree with information that is useful for the execution of those
policies in a distributed fashion. Our simulation is able to demonstrate that
our approach is helpful in improving the load handling of the policy system as
anticipated.

We would like to acknowledge the generous financial support of Alcatel Aus-
tralia and the Australian Research Council through Industry Linkage Grant
LP0219784.

References

1. Sheridan-Smith, N., Leaney, J., O’Neill, T., and Hunter, M.: A Policy-Driven Au-
tonomous System for Evolutive and Adaptive Management of Complex Services and
Networks. Presented at Eng. Comp. Based Sys. (ECBS 2005)

2. Grune, D., Bal, H. E., Jacobs, and C. J. H.: Modern Compiler Design. John Wiley
& Sons, West Sussex (2000)

3. Wolfe, M.: High Performance Compilers for Parallel Computing. 1st edn. Addison-
Wesley, Redwood City CA (1996)

4. Sheridan-Smith, N., O’Neill, T., Leaney, J., and Hunter, M.: Enhancements to Policy
Distribution for Control Flow, Looping and Transactions. Internal report UTS-Eng-
TR-05-21 (2005)

5. Howard, S., Lutfiyya, H., Katchabaw, M. and Bauer, M.: Supporting Dynamic Policy
Change using CORBA Systems Management Facilities. IM (1997)



