
DOI: 10.2478/auom-2019-0016
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Intersecting semi-disks and the synergy of
three quadratic forms

Andrew D. Ionaşcu

Abstract

In this paper, we study the Diophantine equation x2 = n2 + mn +
np + 2mp with m, n, p, and x being natural numbers. This equation
arises from a geometry problem and it leads to representations of primes
by each of the three quadratic forms: a2 +b2, a2 +2b2, and 2a2−b2. We
show that there are infinitely many solutions and conjecture that there
are always solutions if x ≥ 5 and x 6= 7; and, we find a parametrization
of the solutions in terms of four integer variables.

1 Introduction

The following geometry problem recently appeared in various mathematics
groups on social media ([3]). Referring to Figure 1, we have two semi-disks
with centers at O and O′ intersecting as shown.

Problem: Given that |DE| = m, |EF | = n, and |FC| = p, find the diam-
eter of the smaller semi-disk, |AB| = 2x, as a function of m, n, and p.

The original problem was formulated with m = 3, n = 7, and p = 2, which
gave the answer: |AB| = 4

√
6. Naturally, one may ask to solve this in general

and perhaps some other related questions such as:
Q1) When is the value of |AB| an integer given m, n, and p are non-negative
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Figure 1: Intersecting semi-disks

integers?
Q2) What is the smallest integer value of |AB|, given m, n, and p are positive
integers?
Q3) Is the set of integer values for |AB| infinite?
Q4) What is the set of the integer values of |AB| if we assume m, n, and p
are natural numbers?
We are going to address all of these questions and relate this problem to the
famous Fermat’s characterizations of prime representations:

Theorem A (Fermat,[2]): A prime number p can be written as p =
x2 + y2 for some x and y integers if and only if p = 2 or p ≡ 1 (mod 4).
This theorem is proved in [2] using Euler’s ideas in Chapter I pages 7-12.

Theorem B (Euler,[1],[2],[8]): A prime number p can be written as
p = x2 +2y2 for some x and y integers if and only if p = 3 or p ≡ 1 or 3 (mod
8).

Our techniques involve the use of integer quaternions and they can be used in
similar number theoretic problems of the same nature (see [7]). As a byprod-
uct, we discovered a similar result to Theorem 1.6 from [8], which is stated in
Theorem 4.1 in Section 4.
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2 Solution of the geometry problem

The power of the point, D with respect to the small circle with center O′,
gives

|DE| · |DF | = |DO′|2 − x2,

where x is the radius of the small circle. Similarly, the power of the point C is

|CF | · |CE| = |CO′|2 − x2.

By the Apollonius median of a triangle formula, we have

4|OO′|2 = 2(|DO′|2 + |CO′|2)− |DC|2.

Now, we substitute to get

4|OO′|2 = 2(|DE| · |DF |+ x2 + |CF | · |CE|+ x2)− |DC|2.

Using the original data, we are going to substitute everything in terms of m,
n, and p and simplify:

4|OO′|2 = 2[m(m+ n) + p(n+ p) + 2x2]− (m+ n+ p)2.

On the other hand, in the right triangle OO′B, |OO′|2 + x2 = |OB|2. Since
|OB| = DC

2 , then the equation above turns into

4(|OB|2 − x2) = 2[m(m+ n) + p(n+ p) + 2x2]− (m+ n+ p)2.

Solving this for x2, we get:

8x2 = 2(m+ n+ p)2 − 2[m(m+ n) + p(n+ p)].

Simplifying and solving for |AB|, gives:

|AB| = 2x =
√
n2 +mn+ np+ 2mp. (1)

This formula (1) solves our geometry question in general. We observed that
if m = 3, n = 7, and p = 2, we obtain |AB| = 4

√
6. We will later discuss the

smallest integer value for |AB|, with m, n, and p being positive integers, in
the last section.
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3 Reduction to intersection of quadratic forms

At this point, we are interested in integer solutions of equation (1); and, we
continue by equivalently writing equation (1) in the following form:

4x2 = n2 + n(m+ p) + 2mp

To proceed, we complete the square:

4x2 +
(m+ p)2

4
= n2 + n(m+ p) + 2mp+

(m+ p)2

4
=⇒

4x2 +
m2 + 2mp+ p2

4
− 2mp = (n+

m+ p

2
)2.

We multiply everything by 4, simplify, and then complete the square a second
time to obtain our final equation:

16x2 +m2 − 6mp+ 9p2 = (2n+m+ p)2 + 8p2 =⇒

(4x)2 + (m− 3p)2 = (2n+m+ p)2 + 2(2p)2. (2)

Now, we need to look for the numbers N which are the sum of two squares
and, also at the same time, the sum of three squares in which two are equal
to each other. Such numbers are the numbers in the sequence: 1, 2, 4, 8, 9,
16, 17, 18, 25, 32, 34, ... etc, which is the sequence A155562 in the OEIS. For
example,

17 = 42 + 12 = 32 + 2(22), or

34 = 52 + 32 = 42 + 2(32).

These numbers are basically at the intersection of two sets of numbers which
are represented by two quadratic forms, i.e., a2 + b2 and a2 + 2b2. If these
numbers are prime numbers, they are given by Theorem 1 and Theorem 2,
stated in the Introduction.

Let us work out the case N = 34 and solve for m, n, p, and 2x. Clearly,
from equation (2), we get p = 3

2 . We can choose m − 3p = −3, which gives
m = 3

2 . Then, 2n + m + p = 4 implies n = 1
2 . Finally, 2x = 5

2 . Scaling with
a factor of 2, we obtain the integer solution of m = p = 3, n = 1, and 2x = 5.
We will show that this is the smallest integer solution for |AB| given m, n,
and p are natural numbers.

Obviously, not every writing of N = U2+V 2 = K2+2L2 gives a meaningful
solution for m, n, and p. For example, if N = 73 = 82 + 32 = 12 + 2(62), we
need to have p = 3 and m− 3p = ±8 or m− 3p = ±3. So, m can be 17, 1, 12,
or 6. Then, 2n + m + p = 1. Therefore, n cannot be positive for any of the
options of m.
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In general, we need to have the following conditions satisfied: p = L
2 ,

m = 3L
2 ± U ≥ 0 and K ≥ 2L± U , or m = 3L

2 ± V ≥ 0 and K ≥ 2L± V (the
± go the same way in the inequalities). To answer question Q1 in a way that
is somewhat complete, we have the following theorem.

THEOREM 3.1. The value of |AB| is an integer if and only if there exists
a natural number N that can be written as N = U2 + V 2 = K2 + 2L2, where
U and V are integers and K and L are positive integers, with |V | = 2AB,
3L+ 2U ≥ 0, K ≥ U + 2L, and U and L are even.

4 From Fermat to quaternions

Putting Theorem A and Theorem B together implies that a prime number p
can be written as

p = x2 + y2 = u2 + 2v2

if and only if p is of the form p = 8k + 1, where k is an integer. Examples of
such primes are:

17 = 42 + 12 = 32 + 2(2)2,

41 = 52 + 42 = 32 + 2(4)2,

73 = 82 + 32 = 12 + 2(6)2, . . . etc.

Theorem 1.2 (II) in [8] states that a prime can be written as 2E2 − F 2 if and
only if p = 2 or p ≡ ±1 (mod 8). This implies that all the primes we have
written above can be also written as p = U2 + V 2 = 2E2 − F 2 or

U2 + V 2 + F 2 = 2E2. (3)

In [6], a similar equation was parameterized and the idea of integer quaternions
was used. The quaternions are just the set of 4-dimensional vectors q =
a+ bi+ cj + dk where a, b, c, and d are real numbers, which can be added on
components and multiplied by using the rules for i, j, and k which are given
by:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i and ki = −ik = j.

If q = a+bi+cj+dk, the conjugate of q is q = a−bi−cj−dk and the norm of
q is N(q) = a2 + b2 + c2 + d2. Quaternions whose components are all integers,
are referred here as integer quaternions. It is well known that the norm N is
multiplicative. In other words, N(q1q2) = N(q1)N(q2), and q1q2 = q2 q1.
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Following the same technique as in [6], we can think of the equality (3) as
the norm of q(i+ j)q, whose conjugate is q(i+ j)q = −q(i+ j)q which means
the real part of q(i+ j)q is zero. Therefore,

Ui+ V j + Fk = q(i+ j)q

where q = t+ ui+ vj + wk is an integer quaternion. As a result we obtain

N(Ui+ V j + Fk) = N(q(i+ j)q) = N(q)N(i+ j)N(q) = 2N(q)2.

This gives the parametrization of (3):
U = u2 + 2uv + t2 − 2tw − w2 − v2,
V = 2uv + v2 + 2tw − w2 + t2 − u2,
F = 2uw + 2vw − 2tv + 2tu and

E = u2 + v2 + w2 + t2.

(4)

From here, to deduce a parametrization of the equality A2 +B2 = C2 + 2D2,
we use Lagrange’s identity (α2 + β2)(γ2 + θ2) = (αγ + βθ)2 + (αθ − βγ)2:

U2 +V 2 = 2E2−F 2 = 2(u2 + v2 +w2 + t2)2− (2uw+ 2vw− 2tv+ 2tu)2 =⇒

U2+V 2 = 2[(u2+v2)−(w2+t2)]2+8(u2+v2)(w2+t2)−(2uw+2vw−2tv+2tu)2 =⇒

U2+V 2 = 2[(u2+v2)−(w2+t2)]2+4[2(uw−tv)2+2(vw+tu)2−(uw+vw−tv+tu)2]

or finally

U2 + V 2 = 2[(u2 + v2)− (w2 + t2)]2 + 4(uw − tv − vw − tu)2 = K2 + 2L2.

Hence, we obtain 
A = u2 + 2uv + t2 − 2tw − w2 − v2

B = 2uv + v2 + 2tw − w2 + t2 − u2

C = 2(vw + tv − uw + tu)

D = u2 + v2 − t2 − w2

. (5)
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If we multiply the equation U2 +V 2 = K2 + 2L2 by 2, it becomes (U +V )2 +
(U−V )2 = 2K2+4L2. Dividing this equation by 4, we get (U+V

2 )2+(U−V
2 )2 =

L2 + K2

2 . Since (U+V
2 ) = t2 − w2 + 2uv and (U−V

2 ) = u2 − 2tw − v2, solving
for U and V and switching K and L roles, we obtain a new parametrization
of the equality U2 + V 2 = K2 + 2L2:

U = t2 − w2 + 2uv

V = u2 − v2 − 2tw

K = u2 + v2 − t2 − w2

L = vw + tv − uw + tu

. (6)

Hence, we recover the parametrization given in [5].
The beginning of this discussion was mostly about primes. However, one

can prove that in general, a similar result to Theorem 1.6 in [8]:

THEOREM 4.1. Given the sets

A := {t ∈ Z|t = 2x2 − y2, x, y ∈ Z},

B := {t ∈ Z|t = x2 + y2, x, y ∈ Z}, and

C := {t ∈ Z|t = 2x2 + y2, x, y ∈ Z}

then A ∩B ⊂ C, A ∩ C ⊂ B, B ∩ C ⊂ A.

The proof to this theorem follows the same steps as Theorem 1.6 in [8] and
the details of the argument will appear in subsequent work.

DEFINITION 4.2. Given three quadratic forms, we say that they form a
trinity, if the sets of integers that they represent, say A, B, and C, satisfy:
A ∩B ⊂ C, A ∩ C ⊂ B, B ∩ C ⊂ A.

This brings the question of how many triples of quadratic forms form a
trinity.

5 Answers to our questions

An answer to question Q1 in a way that is somewhat complete, is contained in
Theorem 5.1. We can use the parametrization (5) and (6) to be more precise
in this theorem but it is difficult to say when the inequalities involved are
satisfied. However, a special case can be easily worked out: if u = w = 0, we
obtain U = t2− v2, V = t2 + v2, K = 2tv, and L = v2− t2. To make K and L

positive, we can choose v > t > 0. This gives AB = v2+t2

2 . This shows that we
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have infinitely many solutions for |AB| if we take v and t of the same parity
and 2tv > v2−t2. This answers question Q3 and partially answers question Q4.

We notice that these examples have m = p. To answer question Q2, let
us prove that 5 is the smallest integer value of AB, given m, n, and p are
positive integers.

PROPOSITION 5.1. The smallest integer value of 2x where 4x2 = n2 +
mn+ np+ 2mp, with m, n, and p as natural numbers, is 5.

Proof: By way of contradiction from equation (1), if we assume that 2x ≤ 4,
we obtain n2 + mn + np + 2mp ≤ 16. Since n ≥ 1, this implies 1 + m + n +
p + 2mp ≤ 16 or equivalently (2m + 1)(2p + 1) ≤ 31. Since the situation is
perfectly symmetric in m, n, and p, we may assume that m ≤ p. This implies
(2n + 1)2 ≤ 31 or 2n + 1 ≤ 5 which means m = 1 or m = 2. If m = 1, then
2p+ 1 ≤ 31

3 , which implies that p is in 1, 2, 3, 4.
Case 1: m = p = 1

Now, we substitute in equation (1) and obtain 2x =
√
n2 + 2n+ 2 =

√
(n+ 1)2 + 1,

which is clearly not an integer for any value of n ≥ 1.
Case 2: m = 1, p = 2

In this case, we have 2x =
√
n2 + 3n+ 4, which is strictly between n+ 1 and

n+ 2. Therefore, 2x cannot be an integer.
Case 3: m = 1. p = 3

Here, we have 2x =
√
n2 + 4n+ 6 which is strictly between n + 2 and n + 3.

Hence, 2x cannot be an integer.
Case 4: m = 1, p = 4

Now, 2x =
√
n2 + 5n+ 8 which is strictly between n+ 2 and n+ 3. Thus, 2x

cannot be an integer.
Case 5: m = p = 2

In this case, 2x =
√
n2 + 4n+ 8 which is strictly between n+ 2 and n+ 3. 2

Let us denote the set of values |AB| for which (1) has positive integer solutions
by S. One simple observation is that S has the property ”x ∈ S =⇒ kx ∈ S

for every k positive integer”. Computer searches show that S = {k ∈ N|k ≥
5}\{7}. The reason why 7 is excluded is because the equation (1) is equivalent
with

(2m+ n)(2p+ n) = 98− n2 (7)

and this restricts n to be in the set 1 through 6. If n is odd, 98−n2 is a prime
and that makes equation (7) impossible. If n is even, the left hand side of (7)
is divisible by 4 but the right hand side is not. We observed that

6 ∈ S for m = 2, n = 3, and p = 3
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8 ∈ S for m = 2, n = 3, and p = 7

14 ∈ S for m = 8, n = 1, and p = 11.

This shows that we can concentrate on odd numbers in S:

(2m+ n)(2p+ n) = 2(2k + 1)2 − n2 (8)

In order to get a solution from this equation, it is necessary to write the right
hand side of (8) as a product of two factors which are at least n. Now, it
turns out that for most values of k in equation (8), this can be accomplished
with n is in the set {1, 2, 3, 4, 5, 6}. The first odd number for which n ≥ 7 is
63091 = 7 · 9013. However,

9013 ∈ S for m = 8, n = 1, and p = 4778480.

We are going to close this paper with the conjecture that S = {k ∈ N|k ≥
5} \ {7}.
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