Computer Science ›› 2019, Vol. 46 ›› Issue (11): 168-175.doi: 10.11896/jsjkx.191100504C
• Software & Database Technology • Previous Articles Next Articles
ZHANG Xian, BEN Ke-rong
CLC Number:
[1]王千祥,张健,谢涛,等.软件分析:技术、应用与趋势/ CCF 2015-2016中国计算机科学技术发展报告[M].北京:机械工业出版社,2016:55-113. [2]ZHANG X,BEN K R.Application of deep learning methods in software analysis [J].Computer Engineering and Science,2017(12):2260-2268.(in Chinese) 张献,贲可荣.深度学习方法在软件分析中的应用[J].计算机工程与科学,2017,39(12):2260-2268. [3]JURAFSKY D,JAMES H M.Speech and language processing (2nd ed) [M].Upper Saddle River:Pearson/Prentice Hall,2009:4th Chapter. [4]HINDLE A,BARR E T,SU Z,et al.On the naturalness of software[C]∥Proceedings of the 34th International Conference on Software Engineering.Piscataway:IEEE,2012:837-847. [5]TU Z,SU Z,DEVANBU P.On the localness of software[C]∥Proceedings of the 22nd ACM SIGSOFT InternationalSympo-sium on Foundations of Software Engineering.New York:ACM,2014:269-280. [6]NGUYEN T T,NGUYEN A T,NGUYEN H A,et al.A statistical semantic language model for source code[C]∥Proceedings of the 9th Joint Meeting on Foundations of Software Enginee-ring.New York:ACM,2013:532-542. [7]YANG Y,JIANG Y,GU M,et al.A language model for statements of software code[C]∥Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering.Piscataway:IEEE,2017:682-687. [8]NGUYEN A T,HILTON M,CODOBAN M,et al.API code recommendation using statistical learning from fine-grained changes[C]∥Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering.New York:ACM,2016:511-522. [9]ALLAMANIS M,BARR E T,BIRD C,et al.Learning natural coding conventions[C]∥Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.New York:ACM,2014:281-293. [10]RAY B,HELLENDOORN V,GODHANE S,et al.On the naturalness of buggy code[C]∥Proceedings of the 38th Internatio-nal Conference on Software Engineering.New York:ACM,2016:428-439. [11]BIELIK P,RAYCHEV V,VECHEV M.Program synthesis for character level language modeling[C]∥Proceedings of the 5th International Conference on Learning Representations.Toulon,OpenReview,2017. [12]ODA Y,FUDABA H,NEUBIG G,et al.Learning to generate pseudo-code from source code using statistical machine translation[C]∥Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engineering.Piscataway:IEEE,2015:574-584. [13]HIRSCHBERG J,MANNING C D.Advances in natural language processing[J].Science,2015,349(6245):261-266. [14]WHITE M,VENDOME C,LINARES-VÁSQUEZ M,et al.Toward deep learning software repositories[C]∥Proceedings of the 12th IEEE/ACM Working Conference on Mining Software Repositories Piscataway.IEEE,2015:334-345. [15]DAM H K,TRAN T,GRUNDY J,et al.DeepSoft:a vision for a deep model of software[C]∥Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering.New York:ACM,2016:944-947. [16]DAM H K,TRAN T,PHAM T.A deep language model for software code[C]∥Workshop on Naturalness of Software,Collocated with the 24th International Symposium on Foundations of Software Engineering.New York:ACM,2016. [17]ALLAMANIS M,BARR E T,BIRD C,et al.Suggesting accurate method and class names[C]∥Proceedings of the 10th Joint Meeting on Foundations of Software Engineering.New York:ACM,2015:38-49. [18]YIN C L,WANG W,LI T,et al.Using RNNLM to conduct topic oriented feature location method[J].Journal of Frontiers of Computer Science and Technology,2017,11(10):1599-1608.(in Chinese) 尹春林,王炜,李彤,等.利用RNNLM面向主题的特征定位方法[J].计算机科学与探索,2017,11(10):1599-1608. [19]ZHANG X,BEN K R,ZENG J.Cross-entropy:a new metric for software defect prediction[C]∥Proceedings of the 18th IEEE International Conference on Software Quality,Reliability and Security.Piscataway:IEEE,2018:111-122. [20]BENGIO Y,DUCHARME R,VINCENT P.A neural probabilistic language model[C]∥Proceedings of the 15th Annual Conference on Neural Information Processing Systems.Massachusetts:MIT Press,2001:932-938. [21]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,512(7553):436-444. [22]MIKOLOV T,KARAFIÁT M,BURGET L,et al.Recurrentneural network based language model[C]∥Proceedings of the Annual Conference of the International Speech Communication Association.Makuhari,ISCA,2010:1045-1048. [23]MIKOLOV T,YIH W,ZWEIG G.Linguistic regularities in continuous space word representations[C]∥Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Atlanta,NAAC,2013:746-751. [24]ZAREMBA W,SUTSKEVER I,VINYALS O.Recurrent neural network regularization[J].arXiv:1409.2329,2014. [25]SALEHINEJAD H,BAARBE J,SANKAR S,et al.Recent advances in recurrent neural networks[J].arXiv:1801.01078,2018. [26]BIELIK P,RAYCHEV V,VECHEV M.PHOG:probabilisticmodel for code[C]∥ Proceedings of the 33rd International Conference on Machine Learning.New York:ACM,2016:2933-2942. [27]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [28]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [29]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[C]∥Proceedings of the 26th Annual Conference on Neural Information Processing Systems.Massachusetts:MIT Press,2012:1097-1105. [30]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2015:1-9. [31]PASCANU R,MIKOLOV T,BENGIO Y.On the difficulty of training recurrent neural networks[C]∥Proceedings of the 30th International Conference on Machine Learning.New York:ACM,2013:1310-1318. |
[1] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[2] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[3] | PENG Shuang, WU Jiang-jiang, CHEN Hao, DU Chun, LI Jun. Satellite Onboard Observation Task Planning Based on Attention Neural Network [J]. Computer Science, 2022, 49(7): 242-247. |
[4] | LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji. Survey of the Application of Natural Language Processing for Resume Analysis [J]. Computer Science, 2022, 49(6A): 66-73. |
[5] | YU Xin, LIN Zhi-liang. Novel Neural Network for Dealing with a Kind of Non-smooth Pseudoconvex Optimization Problems [J]. Computer Science, 2022, 49(5): 227-234. |
[6] | AN Xin, DAI Zi-biao, LI Yang, SUN Xiao, REN Fu-ji. End-to-End Speech Synthesis Based on BERT [J]. Computer Science, 2022, 49(4): 221-226. |
[7] | SHI Yu-tao, SUN Xiao. Conversational Comprehension Model for Question Generation [J]. Computer Science, 2022, 49(3): 232-238. |
[8] | LI Hao, CAO Shu-yu, CHEN Ya-qing, ZHANG Min. User Trajectory Identification Model via Attention Mechanism [J]. Computer Science, 2022, 49(3): 308-312. |
[9] | ZHANG Hu, BAI Ping. Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification [J]. Computer Science, 2022, 49(2): 279-284. |
[10] | CHEN Zhi-yi, SUI Jie. DeepFM and Convolutional Neural Networks Ensembles for Multimodal Rumor Detection [J]. Computer Science, 2022, 49(1): 101-107. |
[11] | XIAO Ding, ZHANG Yu-fan, JI Hou-ye. Electricity Theft Detection Based on Multi-head Attention Mechanism [J]. Computer Science, 2022, 49(1): 140-145. |
[12] | WANG Li-mei, ZHU Xu-guang, WANG De-jia, ZHANG Yong, XING Chun-xiao. Study on Judicial Data Classification Method Based on Natural Language Processing Technologies [J]. Computer Science, 2021, 48(8): 80-85. |
[13] | PAN Fang, ZHANG Hui-bing, DONG Jun-chao, SHOU Zhao-yu. Aspect Sentiment Analysis of Chinese Online Course Review Based on Efficient Transformer [J]. Computer Science, 2021, 48(6A): 264-269. |
[14] | ZENG You-yu, XIE Qiang. Fault Prediction Method Based on Improved RNN and VAR for Ship Equipment [J]. Computer Science, 2021, 48(6): 184-189. |
[15] | DING Ling, XIANG Yang. Chinese Event Detection with Hierarchical and Multi-granularity Semantic Fusion [J]. Computer Science, 2021, 48(5): 202-208. |
|