
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 4, May-June 2007

Cite this article as follows: Radziah Mohamad, Safaai Deris, Hany H. Ammar: “Pattern-Oriented
Design for Multi-Agent System: A Conceptual Model”, in Journal of Object Technology, vol. 6, no.
4, May - June 2007, pp 55-75 http://www.jot.fm/issues/issue_2007_05/article1

Pattern-Oriented Design for Multi-Agent
System: A Conceptual Model

Radziah Mohamad and Safaai Deris, Faculty of Computer Science and
Information Systems, Universiti Teknologi Malaysia, Malaysia
Hany H. Ammar, Computer Science and Electrical Engineering Department,
West Virginia University, USA

Abstract
Design patterns represent solutions to specific problem of developing one application
that have evolved over time. They leverage the reuse level to the design phase by
providing a common vocabulary of design, means of understanding designs and proven
building blocks from which more complex applications are built. Much of the research
work on design patterns in agent world has primarily focused on discovering and
documenting patterns. To reap the benefits of deploying these proven design solutions,
patterns should be used as a first-class modelling blocks in designing the agent
application. This paper proposes a conceptual model based on patterns and agent
abstraction.

1 INTRODUCTION

The explosive growth of application areas such as electronic commerce, knowledge
management, peer-to-peer and mobile computing demand software that is robust, can
operate within a wide range of environments, and can evolve over time to cope with
changing requirements. Autonomous agents and multi-agent systems are being used to
cope with ever increasing complexity in such system requirements. As the complexity of
software system increases, developers look for approaches to facilitate the development
of software applications. Patterns are reusable good-quality design practices that have
proven useful in the design of software applications [Gamma et al.95][Buschmann et
al.96]. Patterns can help in leveraging reuse to the design level because they provide a
common vocabulary of designs and they are proven design units from which more
complex applications can be built. Against this background, much work has focused on
documenting design patterns for agent world [Deugo et al.01][Aridor&Lange98]. Other
work is concerned with applying these reusable designs in constructing agent applications
[Lind03][Cossentino et al.03][Kolp et al.01]. To reap the benefits of deploying these
proven design solutions, we believe that patterns should be used as a first-class modelling
blocks in designing the agent application.

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 56

Pattern-Oriented Analysis and Design methodology (POAD) proposed by
[Yacoub&Ammar04] offers a systematic process to design object-oriented system using
patterns as block of designs. However, the kind of decomposition that POAD offers is at
odds with the kind of decomposition that agent oriented design encourages since agents
are more coarse-grained than objects. Furthermore, it is hard to capture many aspects in
agent system, for example, the agent coordination. Inspired by a systematic process
offered by POAD, this paper proposes a conceptual model of pattern-oriented design for
multi-agent based system. Conceptual model could provide a solid foundation for the
design and implementation phases.

This paper is organised as follows. Section 2 will discuss the motivation of defining
the conceptual model. Section 3 will discuss our proposed pattern-oriented design
metamodel. Section 4 will show the mapping of the proposed concept to the existing
agent design concept. In section 5, we present a translation of the concept to the Object-
Z constructs. Section 6 describes how existing design patterns can be described according
to the proposed metamodel. Section 7 discusses related work and Section 8 concludes.

2 MOTIVATION

The multi-agent paradigm has shown an increasing potential for modelling and building a
wide range of complex applications from various domains. Multi-agent systems used for
air traffic control, weather monitoring and air combat simulations are some typical
examples. Designing and developing multi-agent system is not easy [Sycara98]. One
must manage at least three different levels of abstraction at the same time:

• The level of the individual agents.
• The level of the interactions between the agents
• The level of their organization

With increases in the complexity of software systems, reusing design ideas and models in
terms of design patterns is a promising alternative than designing from scratch. Looking
at the literature on design patterns for the agent world, we realize that most of the effort is
expended in discovering and documenting design patterns. The documentation of design
patterns, as it stands, describes details about a pattern, its usage, structure, behaviour of
participants, forces and consequences, and guidelines for implementations. Little work is
concerned with systematically applying these reusable designs in developing new multi-
agent applications. A systematic approach to design with patterns goes beyond just
applying a certain pattern. The approach include a development process which defines a
pattern composition approach, analysis and design steps, design models and tools to
automate the development steps [Yacoub&Ammar04].

This paper discuss the relationship between concepts used in Pattern –Oriented
Design for agent world modeling (POD) and the agent metamodels. The POD semantics
is defined along two dimensions: abstract syntax and well-formedness rules. According to
Kim and Carrington [Kim&Carrington04], a pattern properties must be expressed
generically so that the pattern can be realized in various ways depending on the

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 57

application. The abstract syntax dimension is used to achieve this goal. In this dimension,
a pattern-oriented design metamodel is adopted. The abstract syntax of the metamodel is
represented using a set of UML class diagrams defining the metamodel construct and
their relationships. The well-formedness rules dimension specifies constraints on each of
the elements described in the metamodel class diagrams. Object-Z is used to specify the
rules. Using these concepts, we define each design pattern for agent world generically in
terms of a pattern model.

The overall process is as illustrated in the framework in the Figure 1. The framework
is based on Kim and Carrington’s metamodeling framework [Kim&Carrington04]. In this
framework, the pattern metamodel and pattern models are developed as a single Object-Z
specification. The syntactic structures of POD design pattern constructs and the rules for
developing a well-formed pattern diagrams are precisely described using the Object-Z
notation, extending the approach of [Kim&Carrington04]. Based on this formal
description, POD constructs are translated to Object-Z constructs.

Figure 1 POD metamodel framework

3 PATTERN-ORIENTED DESIGN (POD) METAMODEL

In POD, design pattern is used as a first-class modeling concepts to design agent
application. Figure 2 illustrates the proposed POD metamodel.

A metaclass Pattern from which different types of patterns are derived is defined. A
pattern has a name describing its name and type. PatternKind is a data type that defines
the design pattern names. Its values denote the type of an instantiated patterns. Examples
of the PatternKind values are BDI architecture [Sauvage04], Mediator [Deugo et al.01]
and Observer [Gamma et al.95]. By inheriting the Pattern class, a class of pattern is
defined. An agent pattern can be classified into agent structure aspect, agent interaction
aspect, agent organization aspect and agent architecture aspect. The following
subsections will discuss in detail each of the aspects.

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 58

Figure 2 POD metamodel

Agent Structure Class

Agent structure class defines a solution on how the agent is represented an its most
common elements. In our approach, we represent the solution as a set of collaborating
classes. The pattern is modeled as packages to group the model elements. Inspired by the
Pattern-Oriented Analysis and Design methodology defined by Yacoub and Ammar
[Yacoub&Ammar04], we treat the agent pattern in this class as a component. Hence, the
agent structure is composed of PatternDependency, PatternInterface, PatternAssociation
and AgentClass metaclasses. A pattern dependency indicates a semantic relationship
between two patterns – a situation in which a change to the source pattern may require a
change to the target pattern. This type of relationship is used in POD at the high-level
design phase where the system is modeled as a composition of patterns and pattern
dependency relationship between those patterns. A pattern interfaces define how the
pattern interfaces to other patterns. The interface helps in gluing patterns together at the
high level of abstraction and hiding internal details and design decisions made within the
pattern. A pattern association defines a semantic relationship between the interfaces of
two patterns. The instances of an association are a set of tuplets relating instances of the
Pattern Interface.

Agent Architecture Class

This class describes the internal architecture of an agent. This class shows different ways
to arrange and decompose the structure of agent into several modules and their
interactions.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 59

Agent Organization Class

This class models a solution of specific organization infrastructure constrained by rules
that enforce agents to some collective or individual behaviour. It explains the concepts
associated with organisation and their numerous uses. The organization compose of
organisation structure which is an abstract structure grouping role descriptions.

Agent Interaction Class

This class models a proven solution on how agents are supposed to interact using
communications. The communications are specified by attributes like interaction
protocols and content languages.

4 RELATING THE POD METAMODEL TO THE AGENT
METAMODEL

Figure 3 illustrates the mapping between the proposed POD concept to the simplified
version of the unified agent concept proposed by [Bernon et al.04]. The unified agent
concept is resulted from the integration of three agent design methodologies: ADELFE,
PASSI and Gaia. It represents the common concepts shared by the three methodologies.
In mapping the POD concept to the unified agent concept, we represent it in two level of
abstractions: pattern level and agent level. The pattern level deals with the agent patterns
classes available in the literature: agent structure, agent interaction, agent organization
and agent architecture. The agent level contains the elements of the agent-based solution.
In this level, the agent is enriched with all the generic properties an agent may have. The
agent is composed of role, service and ontology. The agent can belong to an organization.
By mapping these two concepts, we would be able to define a methodology to
systematically design multi-agent application with patterns. The motivation is the
methodology could be immersed to the existing agent design methodologies to make
them more mature.

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 60

Figure 3 Mapping between the POD concept and agent concept

5 A FORMAL DEFINITION OF THE CONCEPT

In this section, we present a formal definition of POD concept using Object-Z. Object-Z
is an object-oriented extension to Z designed specifically to facilitate specification in an
object-oriented style and it is used as a meta-language to specify other languages such as
UML [Kim&Carrington99]. The model constructs discussed in this section are useful for
tool developers and methodologists who are more interested in the formal aspects of the
models and their semantics.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 61

Pattern

Prior to formalizing pattern concepts, a given set, PatternName and Name are defined,
from which the names of all patterns and pattern type are drawn.

[PatternName, Name]

Using this type, we formalize the metaclass Pattern in Figure 2 as an Object-Z class
Pattern. The attribute patterninstance is formalized as a variable in the Object-Z class.

Agent Class

In POD, agent class is defined as a descriptor of a set of roles with common properties in
terms of tasks and structure. The agent class has a name, roles, attributes and tasks.
Attributes have names and types. Following the approach of Kim and Carrington
[Kim&Carrington99], two given sets, AgentName and Name are defined for the agent
structure. From these given sets, the name of all agent classes and the names of all
attributes, tasks and roles can be drawn respectively. A schema named AgentClassDecl
denotes the components of an agent class: a finite set of attributes, a finite set of roles and
a finite set of tasks played by the roles. A partial function attrstate is declared to map
attributes to their types. Agent class names should be unique in the enclosing name space.
Thus, the set of agent classes defined as a partial function from AgentClassName to
AgentClassDecl.

[AgentName, Name]

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 62

A schema named AgentRole denotes the component of an agent role: an association to the
agent class, a finite set of role name and a partial function, plays to map the agent class to
roles it plays.

The constraints defined for the AgentRole are based on the constraints defined by
Zambonelli [Zambonelli et al.01]:

1. No agent can simultaneously play more than one role.
2. Every agent that plays role r1 must play at least one other role.
3. Every agent that plays role r1 will eventually play role r2.
4. Once an agent plays role r1, it plays r1 forever.

Pattern Association

A pattern association defines a semantic relationship between the interfaces of two
patterns. It has exactly two AssociationEnd. Each end is a pattern interface, which refers
to services offered by the agent.

assockind ::= none | aggregate | composite
patassockind ::= service

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 63

A schema named AssociationEnd denotes the components of an association end: a role
name, a multiplicity constraint, an attached class, an attached pattern. The variable
aggregation denotes whether or not the attached class is an aggregate. This variable can
take the values none, aggregate or composite. The variable patassoc denotes the type of
the attached pattern.

The constraints defined for the PatternAssociations are:
1. The type of AssociationEnd of a PatternAssociations is an interface offered by the

agent.
2. At most, one AssociationEnd is an aggregation.

Pattern Dependency

A pattern dependency indicates a semantic relationship between two patterns – a situation
in which a change to the source pattern may require a change to the target pattern. This
type of relationship is used in POD at the high-level design phase where the system is
modeled as a composition of design patterns and PatternDependency relationship
between those patterns.

The constraints defined for the PatternDependency are:
1. The client of a PatternDependency is a pattern.
2. The supplier of a PatternDependency is a pattern.
3. A PatternDependency is only between two elements.

Pattern Interfaces

A pattern interface is a set of classes used to define how the pattern interfaces to other
patterns. In our approach, the set of classes refer to the set of services offered by the

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 64

agent. To qualify as a design component, a pattern has to have interfaces [Szyperski98].
The interface helps in gluing patterns together at the high level of abstraction and hiding
internal details and design decisions made within the pattern.

A schema named InterfaceDecl denotes the components of an interface: a finite set
of services. A partial function servicesigs is defined to map services to their parametes
and also to map each parameter to its type. Agent interface names should be unique in the
enclosing name space. Thus, the set of interfaces is defined as a partial function from
InterfaceName to InterfaceDecl.

A schema named PatternInterfaceDecl denotes the components of a pattern interface.
The variable inter denotes the type of the interface. This variable can take the values of
classes.

interfaceType ::= classes

The constraints described well-formedness rules for the PatternInterface are:
1. For each method in a PatternInterface, the namespace of the pattern must have a

matching service.
2. For each class in a PatternInterface, the internal contents of the pattern (pattern

classes) must have a matching class.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 65

Agent Structure

A pattern for agent structure used in POD is a unit of building agent software design that
encapsulates information; it encapsulates a solution to a frequent recurring design
problem, it hides lower level design decisions, and it offers interfaces to other design
artifacts. In this sense, the pattern becomes a design component with interfaces. In POD,
the pattern to model agent structure can only contains Agent Classes, Associations,
Generalizations, Pattern Associations, Pattern Dependency and Pattern Interface.

The constraints defined for the AgentStructure are:
1. A pattern should have at least one PatternInterface to qualify as a design

component.
2. No two elements have the same name inside a pattern.
3. A dependency relationship between two patterns is only of type

PatternDependency.
4. Classes that are involved in associations should be classes in the pattern. The

constraints for the association relationships is based on the UML association
constraints defined by Kim and Carrington [Kim&Carrington99].

5. Classes involved in generalizations should be classes in the pattern. The
constraints for the generalization relationships is based on the UML
generalization constraints defined by Kim and Carrington [Kim&Carrington99].

Agent Organization

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 66

A pattern for agent organization used in POD is reused from the existing catalogues of
organisation patterns for object-oriented systems. As pointed by Zambonelli [Zambonelli
et al.01], there are similarities between agent organization in multi-agent system with
respect to the most widely used organisational structures. In defining rules for the agent
organization, we need to express constraints between agent roles, between agent

interactions and between agent roles and its interaction. Hence, in one organization, there
should exist an interaction that involves one agent role, r1 and another agent role, r2.

Agent Interaction

A multi-agent system consists of an organized group of agents which interact with each
other. This interaction is generally regarded as the foundation for cooperative and
competitive behaviour in autonomous agents. In POD, an agent interaction should
consists at least the following elements:

• Type of participants
• Interaction states
• Events which trigger states changes
• Valid actions given the participant and the state.

Prior to formalizing the agent interaction concept, a given set, State is defined, from
which the names of all states are drawn. A schema named Transition denotes the
components of a transition in one interaction: a source and target state, a guard
expression, events which trigger the transition and actions taken due to the transition.

[State]

Operations used in an event are defined as follows. The attributes name and a sequence of
operation parameter are formalized as variables in the Operation class.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 67

As denoted by the schema Event, an event in the interaction consists of operation, an
association to transition and state.

For consistency, the following constraint is defined for the Event:
1. For an event, there should be an agent interaction includes a transition triggered

by the event.
An action is a specification of an executable statement that should be performed as a
result of the execution of a transition or entering to or exiting from a state. A schema
Stimulus denotes a component of one communication: a sender class, a receiver class and
communication link between the sender and receiver. For an action, there should be an
association between the sender agent and the receiver agent in its static model.

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 68

The constraints defined for the AgentInteraction are:
1. For all events associated with the interaction, there should be transitions

describing the detailed behaviour of the events.
2. For all actions occuring in the interaction, there should be an association between

the sender agent and the receiver agent.

Agent Architecture

Prior to formalizing an agent architecture pattern, two given sets, PORT and
COMPDESC are defined for the agent architecture. As outlined by Abowd [Abowd et
al.95], an architecture style consists of components (the locus of computation),
connectors (define the interaction between components) and configuration (the
collections of interacting components and connectors). In applying this concept to the
agent world, an architectural component consists of component name, ports together with
a description of its computation. This is represented in an Object-Z schema named
Component. An architectural connector is then modeled as a collection of agent roles and
a description of its interaction protocol. This is represented in a schema named
Connector.

[PORT, COMPDESC]

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 69

A schema named Instance is introduced to denote components of instances in the
architecture, named PortInst, a variable for the component instance and RoleInst for the
connector instance.

A schema AgentArchitecture is defined to represent the configuration. It consists of the
component, connectors and association between the component and connectors instances
models by the partial function, attach.

The constraints described well-formedness rules for the AgentArchitecture are:
1. Any role instances in the attach is an agent role for some named connector in the

architecture.
2. All port instances described by the agent architecture appear on an actual

component instance.

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 70

6 PATTERN MODELS

This paper develops a precise design patterns model for agent world by directly
instantiating the Object-Z specifications defined in the pattern metamodel. An example is
given in the following sub-section. Any conformance checks on the pattern model can be
achieved using reasoning techniques developed for Object-Z on the Object-Z
specification.

Observer pattern model

This section illustrates an example of instantiating the Observer pattern [Gamma et
al.95]. Figure 4 shows a visual view to describe the pattern. In representing the patterns
for agent structure, the proposed concept follows the representation of the POAD
constructional design patterns. By following POAD constructs, agent structure is treated
as design components which can be glued together at high design level. This composition
defines the agent application overall structure.

Figure 4 Observer pattern

[State, Interface]

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 71

The constraints defining the observer pattern are:
1. In an observer’s update operation, the notifying subject is asked to reveal its new

state (via the getState operation), which then becomes the new state of the
observer.

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 72

2. The subject object will notify all the observers objects attached to it when its
subject’s state changes. The subject class will invoke the update operation of each
observer to inform those observers of the subject’s state change.

3. Concrete Subject class inherits from the Subject class.
4. Concrete Observer class inherits from the Observer class.
5. Observer objects are registered and associated with subjects. Each subject, then,

has a registered set of observers.
6. Each observer is associated with only one subject.

7 RELATED WORKS

Several successful experiences have reported on the advantages of using design patterns
in designing agent applications. Generally, we classify design approach that utilize design
patterns into adhoc and systematic approach. Using an adhoc approach, a design pattern
records a solution and forces and consequences of applying this solution. Kolp [Kolp et
al.01] presents a set of social patterns as part of the Tropos [Bresciani et al.04]
methodology to describe the general architecture of a system under construction.
Cossentino [Cossentino et al. 03] presents the design of a particular type of agent pattern
immersed in the PASSI methodology. They defined a pattern as consisting of a model
and an implementation code. However, this is not usually sufficient to systematically
develop applications using patterns. This is simply because there is no process to guide
the development and to integrate the pattern with other design artifacts.

A systematic approach to design with patterns goes further beyond just applying a
certain pattern. Systematic approaches can be classified as pattern languages and
development processes. A pattern language provides a set of patterns that solve problems
in a specific domain. Pattern languages not only document the patterns themselves but
also the relationships between these patterns. They imply the process to apply the
language to completely solve a specific set of design problems. Weiss [Weiss03]
proposed a generic agent pattern language. It documents the forces involved in agent-
based design and key agent concepts. A domain-specific pattern language for agent-based
manufacturing has been proposed by [Weiss03]. The relationships between the patterns
are made explicit in such a way that they guide a developer through the process of
designing a system. A systematic development process, on the other hand, defines a
pattern composition approach, analysis and design steps, design models, and tools to
automate the development steps. Such development process produces consistent designs
each time the process steps are conducted. This paper is concerned with systematic
development processes because they are the way to repeatable software design practice.
The concept presented in this paper is an initial step to define a methodology to
systematically design agent applications using patterns.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 73

8 CONCLUSION AND FUTURE WORKS

Overall, our work is inspired by the component-based approaches. Specifying the design
patterns as design components allows for pattern composition and integration at design
level. The syntactic structures are precisely described using the Object-Z notation. This
description is then used as a basis for translation rules from POD contructs to Object-Z
constructs. The Object-Z specifications are formal models of pattern diagrams. Thus,
semantic analysis of these pattern diagrams can take place on these Object-Z
specifications using proof techniques provided for Object-Z. Any inconsistency or error
discovered during the analysis provide feedback on the pattern diagrams. The Object-Z
specifications introduced in this paper are type-checked using the Wizard type-checker.

The formal approach presented in this paper, brings precision to POD descriptions
by eliminating ambiguities from the description. The formal pattern metamodel and
models facilitate a rigorous reasoning about patterns as design components. After
identifying the concept for the systematic agent development using patterns, we are now
working on defining a methodology for designing multi-agent systems according to the
proposed metamodel. The aim is, the methodology could be applied or embedded to the
existing agent methodology. The motivation is to make the existing agent design
methodology like Tropos [Bresciani04], MaSE [DeLoach et al.01], Gaia [Zambonelli et
al.03] and PASSI [Cossentino03] more mature.

REFERENCES

[Aridor&Lange98] Aridor Y. and Lange D.: “Agent Design Patterns: Elements of
Agent Application Design”, in Autonomous Agents (Agents ’98),
ACM Press, 1998.

[Abowd et al.95] Abowd G., Allen R. and Garlan D.: “Formalizing Style to
Understand of Software Architecture”, ACM Transaction of
Software Engineering Methodology, Volume 4, Number 4, 1995,
pp. 319-364.

[Bresciani et al. 04] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J and
Perini, A.: “TROPOS: An Agent-Oriented Software Development
Methodology” in Journal of Autonomous Agents and Multi-Agent
Systems, Kluwer Academic Publishers Volume 8, Issue 3, Pages
203 - 236, May 2004.

[Cossentino et al. 03] Cossentino, M., Sabatucci, L, Sorace, S. and Chella, A,: “Patterns
reuse in the PASSI methodology”, Fourth International Workshop
Engineering Societies in the Agents World (ESAW'03) - 29-31
October 2003, Imperial College London.

PATTERN-ORIENTED DESIGN FOR MULTI-AGENT SYSTEM: A CONCEPTUAL MODEL

 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 74

[DeLoach et al. 01] DeLoach, S. A., Wood, M. F. and Sparkman, C. H.: “Multiagent
Systems Engineering”, The International Journal of Software
Engineering and Knowledge Engineering, Volume 11 no. 3, pp.
231-258, June 2001.

[Deugo et al. 01] Deugo, D., Weiss, M. and Kendall, E.: Coordination of
Autonomous Internet Agents: Models, Technologies and
Applications, chapter Reusable Patterns for Agent Coordination,
Springer, 2001.

[Gamma et al. 95] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, Longman, 1995.

[Kim&Carrington99] Kim, S. K and Carrington, D.: Formalizing the UML Class
Diagram Using Object-Z, in the Proceedings of the 2nd.
International Conference on the Unified Modeling Language
(UML’ 99), vol. 1723 of Lecture Notes in Computer Science,
Springer, 1999

[Kim&Carrington04] Kim, S. K. and Carrington, D.: Using Integrated Metamodeling to
Define OO Design Patterns with Object-Z and UML, in the
Proceedings of the 11th. Asia-Pacific Software Engineering
Conference (APSEC’04), 2004.

[Kolp et al.01] Kolp, M., Castro, J. and Mylopoulos, J.: “A social organization
perspective on software architectures”, in 1st. International
Workshop from Software Requirements to Architectures, 2001.

[Lind03] Lind, J.: “Pattens in Agent-Oriented Software Engineering”. in
Giunchiglia, F., Odell, J. and Weiss, G., editors, Agent-Oriented
Software Engineering III, vol. 2585 of Lecture Notes in Computer
Science, Springer, 2003.

[Sauvage04] Sauvage, S. Design Patterns for Multiagent Systems Design. In
MICAI’04, in Lecture Notes in Computer Science, Volume 2972,
pages 352–361, Mexico, April 2004. Springer-Verlag, Heidelberg.

[Sycara98] Sycara K.: “Multiagent Systems”, AI Magazine 19(2), 1998, pp.
79-92.

[Szyperski98] Szyperski, C.: Component Software: Beyond Object-Oriented
Programming. Addison Wesley Longman, Reading, Mass, 1998

[Weiss03] Weiss M.: “A Pattern Language for Motivating the Use of
Agents”, (P.Giogini et al. (Eds.): AOIS 2003, LNAI 3030, pp. 142-
157, 2004).

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 75

[Yacoub&Ammar04] Yacoub S. and Ammar H. H.: Pattern-Oriented Analysis and
Design: Composing Patterns to Design Software Systems,
Addison-Wesley, 2004.

[Zambonelli et al.03] Zambonelli F., Jennings N. and Wooldridge M.: “Developing
multiagent system: The Gaia Methodology”, ACM Transactions on
Software Engineering and Methodology, Volume 12, Issue 3, July
2003, pp. 317-370.

[Zambonelli et al.01] Zambonelli F., Jennings N. and Wooldridge M.: “Organisational
Rules as an Abstraction for the Analysis and Design of Multi-
Agent Systems”, International Journal of Software Engineering
and Knowledge Engineering, Volume 11, Number 1, February
2001, pp. 302-328.

About the authors
Radziah Mohamad is a lecturer at the Software Engineering Department, Faculty of
Computer Science and Information Systems, Universiti Teknologi Malaysia. She is
currently pursuing her PhD at Universiti Teknologi Malaysia. Her research interests
include pattern-oriented design, formal methods, agent-oriented software engineering and
component-based software engineering. She can be reached at radziahm@utm.my

Safaai Deris is a Professor in the Department of Software Engineering at Universiti
Teknologi Malaysia, Malaysia. His research interests include artificial intelligence,
object-oriented technology, software engineering, bioinformatics and database
technology. He can be reached at safaai@fsksm.utm.my

Hany H. Ammar is a Professor in the Department of Computer Science and Electrical
Engineering at West Virginia University. He has been recently a Principal Investigator on
a number of research projects on Fingerprint Image Comparison Software funded by
Loral Federal Systems, and on Software Verification and Validation funded by NASA
Goddard. His research interests include software engineering, reliability engineering,
biometrics and computer architecture. He can be reached at Hany.Ammar@mail.wvu.edu

