
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 4, Mai – June 2006

Cite this article as follows: John D. McGregor: “Breathing life into “living documents”, in Journal of
Object Technology, vol. 5, no. 4, Mai – June 2006, pp. 17-21
http://www.jot.fm/issues/issue_2006_05/column2

Breathing life into “living documents”
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
A multitude of sins can be hidden behind the phrase “living document.” You can submit
documents that are incomplete or inconsistent as long as you promise to fix it later. In
this month’s issue of Strategic Software Engineering, I want to talk about the strategic
importance of being realistic about the state of knowledge, plans and documents in a
project..

1 INTRODUCTION

When I first heard the term “living document” some years ago, I liked the concept. It
signified an awareness that in an iterative, incremental development process we should be
open to revisiting and revising designs, plans, and schedules. Markets become crowded,
technologies emerge, and we learn. Updating strategies to reflect these new
circumstances is a reasonable thing to do.

More recently I have encountered much abuse of the concept. “Don’t worry, it’s a
living document. We can fix it later.” This indicates a misunderstanding of, or disregard
for, the real intent of a living document. Releasing a document that is incomplete,
inconsistent, or even incorrect is risky. Any document that is released will set
expectations to a degree. Future releases will not have the same impact as the original and
even if the document lives on the web where changes can be made centrally, some paper
copies will undoubtedly confound the change process.

Many in the United States feel that the Constitution of the United States should be
considered a living document. That is, it should be interpreted in the context of today’s
world. On the other hand, Justice Anthony Scalia of the United States Supreme Court
claims that the Constitution is not a living document. He adheres to a school of thought
that the Constitution provides a fundamental definition that should not be interpreted
differently in 2006 than it was 1946.

Our strategic plans have to be treated as living documents because events beyond our
control occur. Supreme Court justices can ignore the changing world, we can’t. But that
does not mean that we have to bend to every wind of change. I want to first consider a bit
of history and then propose some actions that can keep our strategic plans flexible but not
chaotic.

BREATHING LIFE INTO “LIVING DOCUMENTS”

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

2 A BIT OF HISTORY

Once upon a time we thought we did everything correctly the first time. There was no
need to make changes later. There is even evidence that this was so, just look at process
definitions like the old Military Standards. Hit it once and move on. No second chances,
no feedback.

Of course the back channels were full of problem reports. Derived documents
couldn’t be mapped back to their inputs because problems were fixed in the succeeding
documents but the inputs were never updated to reflect these discoveries. We simply
didn’t recognize these problems formally so they didn’t exist – at least until the project
was suddenly in deep trouble.

Maintenance was a nightmare. Since the code structure didn’t conform to the
architecture description, tracing errors to the associated defects was time consuming.
Being certain they were fixed was even more uncertain, particularly since you couldn’t
count on the requirements to be complete or consistent.

Iterative, incremental processes were defined to address some of these problems. By
addressing only a portion, an increment of functionality, of a product’s requirements at a
time these processes narrowed the focus so that a team was not trying to understand all of
a product at one time. By explicitly planning iterating to make multiple passes over the
development activities for an increment, these processes allowed opportunity for the
learning gained in later, more detailed, activities to affect the earlier artifacts.

Boehm’s spiral model and Rational’s Unified Process realistically addressed the
need to accommodate changes during a project. In particular, Boehm’s approach
explicitly addresses risk, includng the risks of not repairing previous work to reflect new
realities. Both models treat previous work as “living” artifacts subject to modification.

More recently, the agile approaches have focused more on incremental than
iterative1. These process models attack a very small portion of a product’s functionality at
a time so that multiple passes are not necessary, although in practice completed work is
often revisited and modified [Scwaber 02].

If history is any predictor, more artifacts will come alive. In 2002, the United States’
CyberSecurity policy became a living document so that the policy could become “plug
and play” with change made more easily. So far, at least to the best of my knowledge, it
still takes a vote to change an IEEE standard!

3 EVOLUTION TRAJECTORY

Developing a product is like hitting a moving target. The larger the product and the
longer the time period over which it is developed, the more opportunity there is for

1 Note that much of the agile literature uses the term iteration for what I am calling an increment. Larman
gives a brief but good discussion of this [Larman 2004, p. 10].

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 19

change and the more you have to anticipate how the target will have changed in that time.
Market pressures cause requirements to change, new business goals cause the architecture
to change, a new technology disrupts the normal cycle and causes previous
implementation plans to change.

The iterative, incremental approach facilitates this anticipation by shortening the
time and narrowing the focus. An iteration is a time slice that is a fraction of what it will
take to complete the entire product. An increment focuses on only a portion of the
requirements landscape for the complete product. There is less time from planning to the
competed execution of the plan, leaving less time for things to change. This reduces risk
to the project.

Agile methods shorten the anticipation even further. Two or three week increments
are common with daily meetings to adjust the immediate trajectory [Boehm 03].

Since there are activities that begin and end an increment and an iteration, project
teams develop a rhythm. “Projects in crisis have no rhythm, for they tend to be
opportunistic and reactive in their work. Successful projects have a rhythm, reflected in a
regular release process that tends to focus on the successive refinement of the system's
architecture. This is what Microsoft calls ‘synch and stabilize,’ and it's a practice which
brings results, for systems of just about any complexity.” [Booch 95]

The strategic rhythm of a project is different from the tactical rhythms. Strategic
goals and decisions have more global and hopefully longer lasting implications. For
example, changing the design of an algorithm because of a change in the level of
performance desired can happen much more quickly, and more often, than a change from
performance to security as the highest priority non-functional requirement.

In a software product line, planning for how products will be produced is a strategic
action that is first conducted during the initial product line planning. Its rhythm is very
slow since core assets are built and the first product built before there is any feedback to
cause re-consideration. Within that strategic rhythm there is the much faster rhythm of
producing the individual product production plans [Chastek 02].

4 BREATHING LIFE INTO LIVING DOCUMENTS

There is a significant difference in the effectiveness between an incomplete, or completed
by guesswork, document and a living document that anticipates the normal evolution of
products and domains. In this section I will present some guidelines for making living
documents effective.

A living document is managed in a manner to be compatible with the evolutionary
cycles of the products with which it is associated. The rhythm of the project determines
when this document should be updated. Change too often and the project personnel can’t
keep track of the latest information. Change too seldom and the project personnel lose
confidence in the accuracy of the document.

BREATHING LIFE INTO “LIVING DOCUMENTS”

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

A living document is evaluated using the C3 criteria: correct, complete, and
consistent. The Guided Inspection technique is a useful approach to addressing these
criteria [McGregor 98]. If a deadline forces the release of a document before it is
complete, a specific plan about when that portion will be available should be attached to
the document.

A living document is accompanied by a process, usually referred to as a change
management process, for handling asynchronous events that will cause the document to
become obsolete. Major initiatives by competitors, new legislation, or other unanticipated
events may cause the project to break out of its rhythm. The project management process
should have activities to restore the rhythm of the project.

A living document is accompanied by a plan, maybe a future work section, that
anticipates the evolutionary trajectory of the technologies and products that impact the
document. This may be an increment plan in which specific features are assigned to the
increment in which they will be introduced or a technology plan in which releases of
tools from a vendor or subcontractor will enable certain project activities.

A living document lives in a controlled environment. This environment is often
under the guidance of a change control board (CCB). The Board has representation from
constituencies that balance the forces for and against change. The Board examines each
change request to determine whether the value that is added offsets the cost. The cost
includes some estimate of the time lost by document users adjusting to the change.

5 SUMMARY

The days of rigid waterfall processes and unchangeable documents that ignore reality are
behind us. However, we may go to the other extreme if we are not careful. Documents
that are changed on a whim confuse project personnel and often get out of synch with
other rapidly changing documents. Documents that obey the rhythm of the project will
facilitate an effective and efficient evolutionary trajectory. It’s not a question of whether
the abuse of living documents causes a project to lose its rhythm or whether once the
rhythm is lost the living documents can not be coherently maintained. They are
interdependent and maintenance of both the rhythm and the integrity of the documents is
necessary for an effective project.

ACKNOWLEDGEMENTS

I want to thank John Hunt and Bhargavi Panjala for their comments that greatly improved
this article.

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 21

REFERENCES

[Boehm 03] Barry Boehm and Richard Turner. Balancing Agility and Discipline: A
Guide for the Perplexed, Addison-Wesley, 2003.

[Booch 95] Grady Booch. Object Solutions : Managing the Object-Oriented Project,
Addison-Wesley, 1995.

[Chastek 02] Gary Chastek and John D. McGregor. Guidelines for Developing a Product
Line Production Plan, CMU/SEI-2002-TR-006, 2002.

[Cybersecurity 02] CyberSecurity policy http://www.computerworld.com/securitytopics/
security/story/0,10801,72108,00.html.

[Larman 04] Craig Larman. Agile and Iterative Development. Addison-Wesley, 2004.

[McGregor 98] John D. McGregor. The Fifty Foot Look at Analysis and Design Models,
Journal of Object-Oriented Programming, 1998.

[Scwaber 02] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum,
Prentice Hall, 2002.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University and a partner in Luminary Software, a software engineering consulting firm.
His research interests include software product lines and component-base software
engineering. His latest book is A Practical Guide to Testing Object-Oriented Software
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com.

