

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 1, May-June 2002

Cite this article as follows: Benny Sadeh, Stéphane Ducasse: Adding Dynamic Interfaces to
Smalltalk, in Journal of Object Technology, vol. 1, no. 1, May-June 2002, pages 63-79
http://www.jot.fm/issues/issue_2002_05/article1

Adding Dynamic Interfaces to Smalltalk

Benny Sadeh, Independent Consultant, Mindsmiths
Stéphane Ducasse Software Composition Group University of Berne,
Switzerland

The concept of interfaces is central to object-oriented methodologies and is one of the
most attractive features of Java and COM. Although Smalltalk always had interfaces
implicitly, in Smalltalk interfaces are not first-class objects: they cannot be conversed
with, referred to, or reflected upon. Consequently, Smalltalkers have been deprived of
such an important and useful tool.
Since a fundamental feature of Smalltalk is that just about everything in the language is
an implementation feature, explicit, static interfaces can be added to Smalltalk using
Smalltalk itself with ease. However, such an addition would short-change the powerful
dynamic aspects of Smalltalk.

In this article we present SmallInterfaces; a new ontology of dynamic interfaces which
makes a powerful use of the dynamic nature of Smalltalk. SmallInterfaces adds
interfaces as honorary members to Smalltalk’s extensive reflection mechanism, in a
manner portable across the many Smalltalk variants

.

1 INTRODUCTION

The term Interface is central to object-oriented methodologies [Reen96] and object
foundation [Abad96], and has been recently popularised by COM and Java. Smalltalk had
interfaces implicitly from its beginning. However, since Smalltalk does not have
interfaces as first-class objects, they cannot be conversed with, referred to, or reflected
upon. Because interfaces has proven to be extremely useful in supporting program
understanding and facilitating the transition from a conceptual design to a concrete
implementation, the lack of explicit interfaces in Smalltalk deprives Smalltalk developers
of such an important and useful tool.

Since a fundamental feature of Smalltalk is that just about everything in the language
is an implementation feature, explicit interfaces can be added to Smalltalk using
Smalltalk itself with relative ease. However, since Smalltalk is not merely a language but
a live, dynamic environment, adding static interfaces would lead to an ad-hoc solution.
Moreover, because Smalltalk is also an environment, every solution which extends
Smalltalk with interfaces has to integrate them into the Smalltalk IDE as well. On top of

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_05/article1

 ADDING DYNAMIC INTERFACES TO SMALLTALK

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

this challenge, since there exist multiple Smalltalk dialects, it is preferable that such a
solution is portable across Smalltalk dialects and facilitates the exchange of interfaces in
and out of the Smalltalk environment.

This paper describes how one solution, SmallInterfaces, has addressed the challenge
and extended Smalltalk with explicit dynamic interfaces in a portable fashion. Moreover,
the solution presented here does not limit itself to reproducing static interfaces in
Smalltalk but defines a new ontology of interfaces. This ontology empowers interfaces to
become dynamic and adaptive objects completely causally connected with their
environment [Mae87], a definition which adapts better to Smalltalk’s dynamic nature.
SmallInterfaces is a freeware add-on to Smalltalk developed by Benny Sadeh, and so far
has been ported to VisualWorks, VisualAge, Squeak, Smalltalk X, and GemStone
variants of Smalltalk. For downloads and further details see:
http://brain.cs.uiuc.edu/VisualWorks/SmallInterfaces.

The structure of this paper is as follows. We briefly describe what are interfaces,
then we present a new ontology of dynamic interfaces for Smalltalk. We then illustrate
how such interfaces solve different practical problems encountered by software
developers, then follow with a description of how dynamic interfaces are integrated
within the Smalltalk IDE. Finally, we compare other approaches before concluding.

2 INTERFACES

Interfaces are fundamental aspects of object-oriented programming [Cann89], [Abad96].
The term Interface is central to object-oriented methodologies and is one manifestation of
what commonly referred to as Type. Unlike a Class, which is a concrete type, an interface
is an abstract type. An interface specifies messages an object will understand but has no
method implementations for those messages, where a class specifies how those messages
will be executed by having concrete method implementations for those messages.

As a language level construct an interface contains a set of method declarations, each
being a method signature. The make of a signature varies substantially across languages.
In its widest form a signature consists of a name, an ordered list of qualified incoming
arguments (parameters), a qualified return argument (result), a set of possibly thrown
exceptions, and a set of possibly triggered events. There are many opinions about what is
the correct composition of a method signature; the question is open for debate and is
outside the scope of this paper. SmallInterfaces takes the position that for Smalltalk it is
sufficient that a signature is of the simplest form: it is solely the method selector (In
Smalltalk the method selector implicitly includes the number of parameters). It does not
include the incoming parameters types or the returned result’s type as Smalltalk is
dynamically typed.

Object-Oriented languages differ on how they facilitate interfaces. Some, like C++,
fold interfaces implicitly into the Class construct (abstract virtual class). Some, like
Objective-C and Java, provide Interface and Class explicitly as two distinct constructs.

http://brain.cs.uiuc.edu/VisualWorks/SmallInterfaces

Interfaces

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 65

And yet others, like Smalltalk, provide interfaces implicitly via polymorphic message
sends.

The benefits of distinguishing interfaces from classes are not new; interfaces have
proven to be extremely useful in facilitating the transition from a conceptual design to a
concrete implementation using a role based approach [Cive93a], [Reen96a], [Rieh98],
[Kend99], [Rieh00]. Interfaces are used mainly in the following contexts. Firstly, within
OO methodologies where roles in the analysis level can be mapped naturally to interfaces
in the implementation level. Secondly, in statically typed languages like Java, interfaces
allow different objects implementing a common interface to be manipulated via this
interface’s point of view, therefore facilitating polymorphism. Thirdly, in component-
ware interfaces establish which components can talk to which and about what, to
facilitate pluggability [Com], [Yell94]. Fourthly, interfaces facilitate better code
comprehension.

3 THE OPPORTUNITY: A NEW ONTOLOGY OF INTERFACES
FOR SMALLTALK

Smalltalk environments traditionally have lacked support for explicit interfaces.
However, since a fundamental feature of Smalltalk is that just about everything in the
language is an implementation feature, explicit interfaces can be added to Smalltalk using
Smalltalk and its reflective capabilities itself with relative ease [Foot89]. Hence adding
interfaces to Smalltalk does not require to modify the language grammar.

Porting a concept from one domain to another presents an opportunity for
redefinition; constraints that existed in the source domain might annul themselves in the
target domain. The mere transformation might raise possibilities that did not exist in the
source domain. When trying to incorporate the explicit interface concept into Smalltalk
we have two alternatives: either translate it as is based on the static typed semantics, or
redefine it for a dynamically typed environment.

Looking at a static typed definition of an interface such as the one defined for Java,
we find a few deficiencies:

• There is no derivation of the relationships between classes and interfaces; if a
class implements all of an interface’s messages but does not declare it, it is not
considered to conform to it.

• There is no derivation of the relationships among interfaces; if one interface
implicitly contains another, it is not exchangeable with the other. This is true even
if the two interfaces are equivalent (they implement exactly the same messages).

• The interface concept does not apply to the meta level; one cannot define
interfaces for class-side methods (static methods).

• Interfaces are not “pure” behavior specification. Some implementations fold other
concepts within it; therefore confuse the purpose of the construct. For example, in

 ADDING DYNAMIC INTERFACES TO SMALLTALK

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

COM, interfaces serve as delegates (a real behavior), and in Java an interface can
also be used as a tag (e.g., Serializable), and as a common pool of shared
variables (e.g., ObjectStreamConstants).

SmallInterfaces chose to adapt the interface concept to Smalltalk’s dynamic nature.
Interfaces in Smalltalk are now tangible and adaptive objects, just like any other object in
Smalltalk. The most important difference is that the relationship between interfaces and
classes is dynamically inferred by the environment instead of being hardwired by the
developer.

Figure 1: Relationships between Interfaces and Classes.

Figure 2: Relationships among Interfaces.

In addition to adding interfaces as honorary members to Smalltalk’s extensive reflection
mechanism, SmallInterfaces defines a new ontology of interfaces for Smalltalk, which is
quite different from the one defined by other languages as shown by the Figures 1 and 2.

This redefinition of interfaces has the following properties:
a) Each interface specifies a set of messages, which together constitutes its

repertoire.

b) Repertoires are not mutually exclusive; a message can be part of many repertoires.
c) A behavior (class or metaclass) is a conformer of an interface if it understands its

entire repertoire. This is a many-to-many relationship: a behavior can conform to
many interfaces, and an interface can be understood by many behaviors.

The Opportunity: A New Ontology of Interfaces for Smalltalk

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 67

d) An anObject isTypeOf: type is true if type is its class (or one of its
superclasses), or one of the interfaces its class conforms to.

e) An interface can be composed of other interfaces. A composite interface is an
interface that extends other interfaces; it contains messages from the interfaces it
extends, and may add additional messages of its own. A composite interface also
referred to as an extending interface. These classifications are not mutually
exclusive; an interface can be extended and extending at the same time.

f) Interfaces form heterarchies. They relate to each other using the family tree
metaphor. An interface can have parents - the immediate interfaces it extends, and
ancestors - the progenitor of its family lineage. An interface can have children -
the immediate interfaces extending it, and descendants - family lineage emanating
from it. An interface can have twins - the interfaces equivalent to it, siblings - the
interfaces who share all of its parents, and stepsiblings - the interfaces that share
some of its parents.

g) At the top of the heterarchy1 are root interfaces, which are parentless interfaces;
they extend no other interfaces. At the bottom of the heterarchy are the leaf
interfaces which are childless interfaces; no other interfaces extend them. These
classifications are not mutually exclusive (Consider the case where an
environment contains a single interface - that interface is both a root and a leaf at
the same time.)

h) An interface with no repertoire is considered empty, and from the system point it
is transparent; both meaningless and harmless.

i) Of equivalence and containment: an interface is equivalent to another if their
repertoires are equal. An interface may be defined via an aggregation of other
interfaces.

j) Within a universe of objects (such as the Smalltalk image), interfaces form
acyclical directed graphs that are not necessarily connected. This universe is
dynamic: The inter-relationships among interfaces may change whenever an
interface is added to or removed from this universe, or whenever a message is
added to or removed from an interface. Likewise are the relationships between
classes and interfaces. So the relationships between classes and interfaces as well
as among interfaces are always inferred based on the actual make of classes and
interfaces in the current time in a particular universe.

Now that we have introduced the notion of dynamic interfaces, we show how they can be
used to bridge the transition from design to implementation and support program
understanding.

1 Heterarchy: a form of organization resembling a network or fishnet. [Web Dictionary of Cybernetics and
Systems]

 ADDING DYNAMIC INTERFACES TO SMALLTALK

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

4 BRIDGING THE GAP BETWEEN DESIGN AND
IMPLEMENTATION

In the realm of domain analysis, the use of roles has emerged as an important technique
for classifying and describing collaborations among groups of objects [Reen96a],
[Rieh98]. Roles reflect the various parts an object may play within a scenario it
participates in and are used extensively in Aspect-Oriented Programming design
[Kend99]. Roles also serve as a metaphor for communicating object-oriented software
designs and recognition of their importance has grown in recent years. For example, the
codification of object-oriented software design knowledge using Design Patterns is
founded in part on using the metaphor of roles, which describe reusable collaborations
between design elements [Gamm95]. Each design element plays an identifiable role with
well-defined responsibilities. For example, the Observer pattern describes a collaboration
involving two roles: Subject (or Observable) and Observer. An object may be a Subject in
one scenario, and an Observer in another. Or both within one scenario.

A design process and a programming language work well together when there is
support for a clear translation from the design’s conceptual units to those of the language.
Interface is the programming language level mechanism which maps well to Role in the
design domain. So introducing interfaces in Smalltalk would ease the translation from a
Role-based design to implementation.
Declaring an Interface
An implementation of the Observer Pattern in Smalltalk requires that Observer is
responsible to understand the message update:, while Subject should propagate change
events via changed: and manage its dependents (observers) using addDependent: and
removeDependent:. How can we use interfaces to implement this pattern?

We create an Observable interface by first evaluating the definition:
Interface subclass: #Observable

instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
interfaces: ''

in the Smalltalk IDE and later adding interactively method definitions (with or without
comments) for each message in the Observable’s repertoire. Alternatively we can create
the interface and its repertoire by evaluating:

Interface
newNamed: #Observable
withSelectors: #(addDependent: removeDependent:
changed:)

Bridging the Gap between Design and Implementation

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 69

Inferring Conformers Dynamically

We can now query for all classes which conform to the Observable interface either by
executing: Observable conformers or by using the Interface Browser. Note that
every time an inter face repertoire is changed its conformers are dynamically inferred.
Hence if we now execute: Object interfaces we get a collection containing the
Observable interface.

And after defining the Observer interface as follow:
Interface

newNamed: #Observer
withSelectors: #(update:)

the definition of the class Object would now reflect the fact that in Smalltalk any
Object can play both the Observer and Observable roles:

nil subclass: #Object
instanceVariableNames: ''
classVariableNames: 'DependentsFields EventHandlers '
poolDictionaries: ''
category: 'Kernel'
interfaces: 'Observable Observer '

First Class Interfaces and Stub Generation

As Smalltalk is dynamically typed, type information is not used to validate the
correctness of the arguments at compile time. However, using interface names when
naming method arguments is a good way to convey type information. For example, the
following code shows that the method update:with: takes as first argument an object
that should understand the interface Observer.

Object>>update: anObserver with: aSubject
 ….

Documenting code as shown by the preceding example was already possible without
explicit support for interfaces. However having tangible interfaces is important because it
allows the programmer to browse and identify correct definition of an interface, and
validate if a given class implements an interface. Using the Interface Browser or methods
such as conformers and types, the reader can further investigate the intention of those
interfaces as shown in subsequent sections. Moreover, with explicit interfaces we can
support the automatic generation of stub methods. Hence executing: SomeClass
implements: Observer generates the appropriate stub methods; the methods
contained in the Observer that are not already implemented by its class hierarchy.

Supporting Documentation Coherence

 ADDING DYNAMIC INTERFACES TO SMALLTALK

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

With the following example we show how the use of explicit and dynamic interfaces can
help with program understanding and having a coherent documentation.

The Problem with Implicit Interfaces

In most current Smalltalk dialects interfaces are not a language. Instead, they are implicit
within class implementations. So Smalltalk developers usually refer to an interface
indirectly by saying that classes A, B, and C are “polymorphically compatible”, meaning
those classes understand a certain group of messages. One of the common ways to
indicate the existence of such an implicit interface is to implement an isX method to
return true in all classes implementing an X interface. The following example taken from
VisualWorks Smalltalk illustrates such a practice.

GenericException class>>isExceptionHandler
"Answer if the receiver responds to the #handles:
message as required by the exception-handling
machinery."

 ^true

GenericException class>>isExceptionCreator

"Answer whether the receiver understands the behavior
of an ExceptionCreator. This includes #raiseSignal,
#new, as well as all the behavior of an
ExceptionHandler, such as #handles: and #accepts. An
ExceptionCreator can create objects (via #new) that
conform to the behavior of SignalledExceptions."

 ^true

The example exhibits the following issues:

• ExceptionCreator and ExceptionHandler are implicit; there are no such
entities in the system.

• The relationship between ExceptionCreator and ExceptionHandler; that
ExceptionCreator extends ExceptionHandler, is not evident anywhere in
the system.

• The documentation of ExceptionHandler is inaccurate: the comment in
isExceptionHandler says it consists of: {handles:}, where the comment
in isExceptionCreator says it consists of: {handles:, accepts:, …}.

Using Explicit Interfaces

With the benefit of explicit interfaces we can now define and link ExceptionHandler
and ExceptionCreator as one interface extending the other.

Bridging the Gap between Design and Implementation

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 71

Interface
newNamed: #ExceptionHandler
withSelectors: #(handles: accepts:).

Interface

newNamed: #ExceptionCreator
extending: 'ExceptionHandler'
additionalSelectors: #(raiseSignal new).

Consequently, all relationships among behaviors (classes and metaclasses) and interfaces
are derived dynamically as shown by figures 3 & 4.

Figure 3: ExceptionCreator definition and classes implementing it.

Now given an interface, various information can be obtained, such as:

• Which interfaces extend it?
ExceptionHandler extenders => (ExceptionCreator)

• Which interfaces it extends?
ExceptionCreator extended => (ExceptionHandler)

• Which behaviors understand it?
ExceptionCreator conformers => (Signal GenericException
class)

• What messages it consists of?

 ADDING DYNAMIC INTERFACES TO SMALLTALK

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

ExceptionCreator repertoire => (#raiseSignal #new #handles:
#accepts:)

Figure 4: Interface views for classes implementing ExceptionHandler.

Supporting Software Exploration

Smalltalk is a software development environment which comes with a rich and robust
library of classes. Alas, this is one of the most common complaints of newcomers to
Smalltalk: there is too much out there to know (in the IDE). Where does one start? What
is important to know first? This situation is not unique to Smalltalk; it is a common
response whic h many experience when introduced to a system with average complexity.

Interfaces give us another mental navigation tool while browsing. Explicit interfaces
are useful in facilitating faster learning of the Smalltalk environment. One way to do so is
to supply a specific collection of interfaces to the developers to direct their exploration of
a system.

Bundled with SmallInterfaces are all interface specifications described by the ANSI
Smalltalk standard [Ansi]. Using those, the developer can now concentrate on exploring
the classes conforming to key interfaces while viewing only the aspects of a class which
pertain to a specific interface. For example (as shown in the figure below), viewing only
the puttableStreamProtocol portion of Stream.

Bridging the Gap between Design and Implementation

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 73

Figure 5: puttableStreamProtocol view of Stream.

One possible path of exploration is starting from the root interfaces (execute: Interface
rootsOfTheWorld), and then exploring the constrained interface-view of conforming
classes. We can repeatedly drill down through the children of each root or maybe
sidetrack exploring other interfaces of an interesting class we meet along the way.

5 IMPLEMENTATION

We now discuss the implementation choices the first author has made while designing
SmallInterfaces. These choices where driven by focusing on the developer as the target
audience (not the compiler), and by the desire for portability and ease of integration
across all Smalltalk environments.

Interfaces as Classes

In SmallInterfaces an interface is implemented as a class, and all interfaces are direct
subclasses of Interface. Consequently, an interface can be created and browsed just like
any other class. That aspect makes interfaces very visible to the developer.

By choosing to implement interfaces as classes and tailoring the incremental
compilation for interfaces, a developer can browse and manipulate interfaces in a familiar
fashion. Since all interfaces are classes, they can be filed in and out of the image (the

 ADDING DYNAMIC INTERFACES TO SMALLTALK

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

Smalltalk way of exporting and importing source code). This feature solves the issue of
exchanging interfaces among images and across dialects.

When an interface is defined, a class representing it is created with specific methods
representing its repertoire. Hence, the following definit ion creates an interface with
methods as shown below:

Interface
newNamed: #MyInterface
withSelectors: #(methodName …)

As a consequence, the body of each interface method definition is of the form:

MyInterface>>methodName
"possible comment"
^self implementorsResponsibility

An Implementation Note. There is a difference between the inheritance relationship
between the classes that represent interfaces and the inheritance relation (extension)
between interfaces via their repertoire extension. Hence, the Observer interface inherits
from the class Interface at the implementation level but it does not inherit from the
Interface class repertoire: the two relationships, inheritance and repertoire extension are
disconnected.

Interfaces behavior – a sampler

We briefly describe the public interface defined for interfaces.

Interface creation
An interface can be created explicitly by sending: newNamed: and
newNamed:withSelectors: to Interface. Alternatively, an interface can be created
by extending existing interfaces using: newNamed:extending:additional
Selectors:. An existing interface can be extended via: , extend: and extendAll:.

Heterarchy navigation
The interfaces related to the receiver can be queried via: extended, extenders,
parents, children, ancestors, descendants, and other methods using the family
tree metaphor.

Interfaces as templates
A class can be created using an interface as a template by sending one of: asClass, …,
asClassNamed:super:namespace: to the interface. The same facility exists for
metaclasses by using: asMetaclass, …. An interface can be created using a class as a
template by sending one of: asInterface or asInterfaceNamed: to the class.

Implementation

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 75

Conforming behaviors
A class can choose to implement an interface either by using one of the various
implement: methods, or by including the interface’s name within its class definition, as
in:

NameOfSuperclass subclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''

interfaces: 'NameOfInterface1 NameOfInterface2'

Stub methods generation
When a class chooses to implements an interface, the interface generates stub methods
for all messages for which there is no existing method implementation via:
createStubedMethodFor:from:. After which, the developer fills in those stubs. One
can query for stubbed methods via: methodsStubedIn:.

Conformance querying
The classes and metaclasses conforming to an interface can be queried via: conformers
and allConformers (including subclasses). One can ask for the class’ interfaces via:
interfaces, and whether a class conforms to an interface via: conformsTo:.

Object typing
Object was extended with: types, which returns all the classes it is a member of and all
the interfaces its classes implements. Similar to isKindOf: an object can now be
queried for its type membership via: isTypeOf:.

Repertoire querying
Both interfaces and classes can be asked for the set of methods they implement via:
repertoire. There are various set operations which can be performed on repertoires,
such as finding the difference between the two.

On Integrating Interfaces with the Smalltalk Environment

Since Smalltalk is not merely a language but also a dynamic object environment which
facilitates an incremental development process based on incremental compilation, every
solution which extends Smalltalk with interfaces has to deal with the challenge of
integrating it into the Smalltalk environment as well.

In such a live environment the relationships between classes and interfaces as well as
the relationships among interfaces are dynamic. In particular, the causality of connections
between classes and interfaces has to be preserved at any moment; when a class, an
interface, or a method is added/changed/removed to/from the environment, all relevant
interfaces and classes should be immediately affected by the event. This is paramount

 ADDING DYNAMIC INTERFACES TO SMALLTALK

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

because of Smalltalk’s dynamic nature. The major implication is that the web of
relationships needs to be inferred from the actual composition of classes and interfaces in
a given universe, for a given moment. For example, the addition of a message to a given
interface can change the conformance of classes to that interface. Therefore, it needs to
be synchronized with all currently extending interfaces and conforming behaviors.

The causal connection between interfaces and classes and between interfaces
themselves is achieved by hooking to the change notification mechanism within the
Smalltalk environment. Upon notification of any pertinent change, the relationships
between affected classes and/or interfaces are re-synched.

Portability across Smalltalk Dialects

On top of this challenge, since there are multiple Smalltalk dialects in existence, it is
desirable that such a solution is portable across Smalltalk dialects and facilitates the
transport of interfaces in and out of the Smalltalk image (intra), and across Smalltalk
environments (inter). To make things harder still, it is desirable that the solution does not
cause any base changes; none of the base classes shape or existing methods should be
touched.

Portability is achieved by concentrating on making no base changes, and by isolating
the points of differences among the various Smalltalk environments, then rewriting the
bridge code for each environment. Most of the points of contention were in the reflection
layer which is not yet standardized across Smalltalk dialects. Since one of the major
differences among Smalltalk dialects is their GUI implementation, the Interfaces Browser
(the GUI portion) was written on top of the Refactory Browser, thus bypassing the GUI
portability issue. As a result, environments that did not have the Refactory Browser
available do not have the GUI portion available as well.

6 RELATED WORK

[Gott96] introduces the notion of roles in Smalltalk. However, the roles are not connected
to the classes in a dynamic way. [Yell94] introduces the notion of interfaces to describe
and reason about components. Object interfaces are described as a state automata and the
approach is not an integration of interfaces into an object model but a proposal for a new
way of describing objects. [Hail90] introduces multiple interfaces that drive the views
given by an object and possible access to it. These proposed interfaces are not simply an
explicit representation of the class behavior but have an extra semantics and change
radically the object model. [Lamp93] introduces the idea of specialization interfaces, i.e.,
interfaces that describes how methods call each other so that subclass designer can reason
about these calling dependencies. The very same idea was extended by Reuse Contracts
[Stey96].

Related work

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 77

Dolphin Smalltalk Protocols

Dolphin Smalltalk incorporates interfaces as well, referred to as Protocols [Dolp01]. Like
with SmallInterfaces, all behaviors in Dolphin can specify conformance to an interface.
However, Dolphin substantially differs in its choice of interface implementation. In
Dolphin, the relationship between classes and interfaces are hard coded by the developer;
there is no dynamic inference. Also, every interface is an island; interfaces do not relate
to each other.

Dolphin interfaces are instance-based. Because interfaces are instances, they can
bare any name, therefore avoiding name collisions with classes such as Object and
keywords such as nil. This is a good thing. On the other hand, they are not as visible as
classes; the developer has to edit an interface using a Protocol Browser, and cannot
specify argument names and comments for each of the messages. Also, interfaces cannot
be referenced directly in code.

Dolphin’s current implementation of interfaces does not facilitate intra- and inter-
exchange of interfaces; they exist only within the context of one image. Furthermore,
when a class is filed out, the knowledge of which interfaces it conforms to is lost.

SmallScript Interfaces

SmallScript is a superset of Smalltalk [SS01]. SmallScript incorporates interfaces at the
language construct level, and as such have support for them within the virtual machine.
Interfaces are a part of the SmallScript optional type declaration and they can be used for
multi-method discrimination.

A SmallScript interface is more than an interface in the sense we define early in this
paper; a SmallScript interface is actually a dynamic mixin . It is a full- fledged class that
can be instantiated, unlike in SmallInterfaces where an interface is merely a behavior
specification. SmallScript interfaces provide multiple inheritance via true delegation
(unlike forwarding). A behavior can conform to an interface by dynamically acquiring via
aggregation a concrete interface instance. Also, interfaces and their methods are generic;
classes supporting a given interface can specialize interface methods at will.

This language construct is very attractive since it allows one to compose objects via
aggregation; mix and match behaviors at will while avoiding the confinement which
comes with composition via inheritance. Alas, since support for it has to happen in the
virtual machine level, such characteristics cannot be added to all Smalltalk in a portable
fashion.

7 CONCLUSION AND FUTURE WORK

Currently, there is no support for explicit and dynamically inferred interfaces within
Smalltalk which is portable across all Smalltalk variants. In this article we presented

 ADDING DYNAMIC INTERFACES TO SMALLTALK

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

SmallInterfaces that integrate dynamic interfaces to Smalltalk’s reflection layer in a
portable fashion and without any base changes. The interfaces are not statically declared
but inferred dynamically to fit better the dynamic nature of Smalltalk. Using
SmallInterfaces, the developer has now the ability to define interfaces and to indicate
which classes conform to them. SmallInterfaces integrates interfaces into the existing
development environment while providing support for them on the tools level.
Furthermore, it facilitates a whole slew of interactions between classes, interfaces, and
objects, all in order to support program understanding, documentation, and smooth
transition from analysis and design into implementation.

For a dynamically typed language like Smalltalk it is sufficient for a message
declaration to specify the number of arguments. That is what SmallInterfaces does.
However, there is another meaningful scheme for Smalltalk, where the type (interface or
class) of each input and output arguments would be specified as well [John86]. Such a
scheme would be very hard to implement across Smalltalks, and would demand the
addition of a type-inference engine [Gara01], and optional typing (as done in SmallScript
and CLOS) across all Smalltalks. Since SmallInterfaces focuses on helping the design
and development process itself, it deemed the first and simpler approach sufficient.

REFERENCES

[Abad96] Martin Abadi and Luca Cardelli, A Theory of Objects, Springer, 1996, 0-387-
94775-2.

[Cann89] Peter S. Canning and William Cook and Walter L. Hill and Walter G. Olthoff,
Interfaces for Strongly-Typed Object -Oriented Programming, Proceedings of
OOPSLA '89, 457-468, 1989.

[Cive93a] Franco Civello, Roles for composite objects in object-oriented analysis and
design, Proceedings of OOPSLA '93, 376-393, 1993.

[Dolp01] Dolphin Smalltalk Document, http://www.object-arts.com/

[Foot89] Brian Foote and Ralph E. Johnson, Reflective Facilities in Smalltalk-80,
Proceedings OOPSLA '89, 327-336, 1989.

[Gamm95] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design
Patterns, Addison Wesley, 1995.

[Gara01] Franscico Garau, Concrete Type Inference for Squeak, University of Buenos
Aires, 2001.

[Gott96] Georg Gottlob, Michael Schrefl and Brigitte Rock, Extending Object-
Oriented Systems with Roles, ACM Transactions on Information Systems,
268-296, vol 14, n 3, July, 1996.

http://www.object-arts.com/

Conclusion and Future Work

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 79

[Hail90a] Brent Hailpern and Harold Ossher, Extending Objects to Support Multiple
Interfaces and Access Control, IEEE Transactions on Software Engineering,
vol 16, n 11, 1247-1257, November, 1990.

[John86] Ralph E. Johnson, Type-Checking Smalltalk, Proceedings of OOPSLA '8,
315-321, 1986.

[Kend99] Elizabeth, Role Model Design and Implementations with Aspect-Oriented
Programming, Proceedings of OOPSLA'99, 353-369,1999.

[Lamp93] John Lamping, Typing the Specialization Interface, Proceedings of OOPSLA
'93, 201-214, 1993.

[Maes87] Pattie Maes, Concepts and Experiments in Computational Reflection,
Proceedings of OOPSLA '87, 147-155, dec, 1987.

[Reen96] Trygve Reenskaug, Working with Objects: The OOram Software Engineering
Method, Manning Publications, 1996, 1-884777-10-4.

[Rieh00] Dirk Riehle, Framework Design: a Role Modelling Approach, Swiss Federal
Institute of Technology, Zurich, 2000.

[Rieh98] Dirk Riehle and Thomas Gross, Role Model Based Framework Design and
Integration, Proceedings of OOPSLA '98, 117-133, 1998.

[SS01] SmallScript, http://www.smallscript.net/

[Stey96a] Patrick Steyaert, Carine Lucas, Kim Mens and Theo D'Hondt, Reuse
Contracts: Managing the Evolution of Reusable Assets, Proceedings of
OOPSLA '96, 268-285, 1996.

[Yell94a] Daniel M. Yellin and Robert E. Strom, Interfaces, Protocols, and the Semi-
Automatic Construction of Software Adaptors, 176--190, Proceedings of
OOPSLA'94, 1994.

About the authors

Dr. Stéphane Ducasse is postdoctorant researcher at University of Bern. His interests
are: reflective systems, components, design and implementation of languages and
applications, and reengineering of object-oriented applications. He is co-author of the
book Object-Oriented Reengineering Patterns. He is the main organizer of the European
Smalltalk User Group conference. Email: ducasse@iam.unibe.ch.

Benny Sadeh is an independent consultant who lives in the Bay Area,
California. His interests are: reflective systems, metaprogramming,
frameworks, Extreme Programming (XP), and doing the right thing. He
can be reached at: benny@mindsmiths.com

http://www.smallscript.net/

