
Journal of American Science 2013;9(5) http://www.jofamericanscience.org

350

Analysis of a Public Key Cryptosystem Using Standard and Homomorphic Approaches

Nazek A. AL-Essa

Princess Noura University, Science Faculty, Math Department, Riyadh, Saudi Arabia,
nazekaa@yahoo.com

Abstract: Information security within an organization is important in the last decades. The security approach based
on cryptography can transform information messages to make them secure and immune to attack. This works
discusses and presents the important mathematics for the RSA algorithm as one of the most popular public key
cryptography. The steps of the RSA algorithm are: key generation, encryption, and decryption. The algorithm
involves a public key for encrypting messages and a private key for decryption. The necessary mathematics based
on number theory are analyzed, discussed, and presented. The encryption and decryption of any messages depend on
N; where N is the product of two prime numbers. Both the public key and the private key are dependent on these
prime numbers. Because RSA can be broken by factoring N; the security based on integer factorization problem is
discussed and handled. Three factorization methods will be applied and compared. Moreover, two homomorphic
encryption algorithms are also analyzed and discussed. Such algorithms are considered scalar and probabilistic. The
inspiration for homomorphic encryption came from the properties of RSA. The homomorphic encryption algorithms
are promising for providing security to many applications. The performance of both the RSA algorithm and those
based on homomorphism is evaluated and compared.
[Nazek A. AL-Essa. Analysis of a Public Key Cryptosystem Using Standard and Homomorphic Approaches. J
Am Sci 2013; 9(5):350-360]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 44

Key words: Public key Cryptosystem, RSA Algorithm, Prime Numbers, Factorization Problem, Modular
Exponentiation, and Homomorphic Encryption.

1. Introduction
 With the expansion of the internet,
cryptography became a very important area for
several fields specially for those working in the
computer environment. There is a lot of
communication over insecure channels and such
pieces of information should be protected against any
unwanted access. In this concern, the data transferred
from one system to another over a network can be
protected by an encryption method. Encryption can
be briefly defined as a process in which the sender
encrypts the message in such a way that only the
recipient will be able to decrypt it.

To clarify both the cryptography and secrecy
suppose that a sender wishes to send a message to a
receiver in such a way that anyone else receiving the
message will not be able to understand it. In this
concern, there are three important involved items
mainly: the plaintext, the ciphertext, and the key. The
plaintext is that unencrypted text which is what the
sender wants to tell to the receiver. The ciphertext (or
the encrypted text) is the message the sender actually
sent to the receiver. The key is that important theme
which tells how to convert the plaintext to ciphertext
and vice versa Heribert Vallmer, and Rainer
Parchmann, 2009.]. Since the key is known to both
the sender and receiver, it is sometimes called the
shared key. The conversion of plaintext to ciphertext
and vice versa can be thought of as functions. If M is
the set of all possible plaintext messages and C is the

set of all possible ciphertext messages, then the key
determines a function fk: M → C. That function is
used by the sender to encipher the message. The

receiver uses the inverse function fk

-1
 to decipher the

message. This means fk must be an injection and fk

-1

must exist to decipher the encrypted message
[Heribert Vallmer, and Rainer Parchmann, 2009]..

Moreover, there are two types of keys: secret (or
symmetric) key and public (or asymmetric) key. In a
system of n users, the number of secret keys for
point-to-point communication is n(n-1)/2 = O(n2).
With the public key encryption system there are two
keys needed per user: one public key and one private
key. So, the total number of needed keys is 2n = O(n)
[Juan Monterde and Jose Vallejo, 2012], [Kenneth
Jacobs, 2011].

The RSA cryptosystem is one of the most
widely-used public key cryptography algorithm. The
RSA algorithm can be used for both public key
encryption and digital signatures. Its security is based
on the difficulty of factoring large integers [Heribert
Vollmer, and Rainer Parchmann, 2009]. Several
research works were presented in the public key
cryptography. Examples of such efforts are briefly
mentioned as follows:-

 [Juan Monterde and Jose Vallejo, 2012]
mentioned that a basic problem in cryptography is the
reduction of the number of operations needed to deal
with big numbers. This is usually done through the

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

351

use of congruences. An example is the RSA
algorithm, in which calculations are done modulo N,
where N is the product of two big primes p and q.
When using RSA encryption one has to compute
expressions of the form ab mod c, with large a, b. For
these, the Chinese remainder theorem is not so
practical, and other algorithms are preferred. From
the mathematical point of view, essential ingredients
of RSA cryptosystem are Fermat’s Little Theorem
and its generalization, and Euler’s theorem on
congruences.

 [Kenneth Jacobs, 2011] presented that an
encryption algorithm is a map e: A × K → A, where A
is a set called an alphabet, and K is a set called the
key space. A decryption algorithm is a map d: A × K
→ A, where the alphabet and key space are the same
as for e. For each key k1 K, there must exist k2 K
satisfying d(e(x, k1), k2) = x. The collection (A, K, e,
d) forms a cryptosystem.

 [Dima Grigoriev, et. al., 2009] presented a
cryptosystem which is complete for the class of
probabilistic public-key cryptosystems with bounded
error. To formalize the notion of “the hardest-to-
break” cryptographic primitive, the authors used
reductions. A cryptographic primitive S1 is reducible
to another primitive S2 iff there exists a probabilistic
procedure R (called a reduction) that breaks S1 and S2.
As an illustration, every one-way function can be
inverted by a polynomial-time algorithm. It makes
sense to use complete cryptographic primitives as
they are less likely to be breakable by polynomial-
time adversaries.

The organization of this work is as follows:
Sections 2 and 3 present the characterization of the
public key cryptosystem and the arithmetic
operations of RSA respectively. Section 4 discusses a
homomorphic encryption algorithm while Section 5
presents some methods for integer factorization. The
applicability of cryptosystems using RSA and Paillier
homomorphic encryption is handled in Section 6.
Finally, the discussion of results and conclusion are
presented in Sections 7 and 8 respectively.

2. Characterization of Public Key Cryptography
 As mentioned before, cryptography is the study
of ways in which a sender and a receiver can securely
communicate information. In this concern, there are
two modes: secret key cryptography and public key
cryptography. Secret key cryptography (sometimes
known as symmetric key) employs identical private
keys for users, while they also hold unique public
keys. Symmetric keys refer to the identical private
keys shared by users. On the other hand public key
cryptography is known as asymmetric cryptosystem.
The key of a public key cryptography is composed of
a public part and a private part. The public key is
accessible to any body, where the private key is kept
undisclosed by its owner. In public key cryptography,
the decryption function can't be easily derived from
the encryption function and vice versa [Heribert
Vallmer, and Rainer Parchmann, 2009]. Regardless
the modes figure1 shows the main elements of
cryptography and cryptanalysis [Mike Knee, 2008].

Figure 1: Cryptography and Cryptanalysis

The focus of this work is directed to the
public key cryptography. A mathematical construct is
important to specify the formal definition of the public
key cryptosystem.
Definition 2.1: A public key cryptosystem (PKS) can
be easily characterized by a set of components which
are mentioned as follows:

PKS = (M, C, K, E, D), where
M is the message space; sometimes called the set of
plaintexts or unencrypted text

C is the cipher text space; sometimes called the set of
cipher texts or encrypted texts
K is the key space; sometimes called the set of keys. A
key k  K consists of a public key ek and a private key
dk
E is the encryption function which is written as

Eek
: M → C

D is the decryption function which is written as
Ddk

: C → M

Encryption Decryption

Cryptanalysis

Ciphertext Plaintext Plaintext

Encryption Key
Decryption Key

Modify

Ciphertext

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

352

E and D should satisfy the following
Ddk

○ Eek
 = 1M

3. Arithmetic Operations of RSA Cryptosystem
 RSA cryptosystem is one of the most popular
asymmetric algorithms. It is well-known as a public
key cryptography algorithm. It uses two keys; e and d;
which work in pairs for encryption and decryption
respectively. One of such keys is called a public key
while the other is called a private key.

3.1 The Main Elements of the RSA Algorithm
 The RSA algorithm has three important elements
mainly: key generation, encryption, and decryption.
The following sections briefly describe the arithmetic
operations of such elements.
3.1.1 Key Generation
 As mentioned before, the RSA cryptosystem
handles two keys: a public key and a private one. The
public key is used for encrypting data or messages and
is known to everyone. The data or messages encrypted
with the public key can only be decrypted using the
private key.
Moreover, generation of keys is based on choosing
two distinct prime numbers p and q. Such numbers
should be of similar bit-length and randomly chosen
[Satyendra Mandal, et. al., 2009]. After choosing the
two large distinct prime numbers p and q by the key-
owner he/she can compute the public modulus
N = pq. N is used as the modulus for both the public
and private keys. Then, a public exponent e is
chosen to be coprime to ϕ(N) = (p -1) (q-1) such that
2 < e < ϕ(N), e and ϕ(N) are coprime. e is released as
the public key exponent. Choosing e is considered
an addition chain results in more efficient
encryption. The pair (e, N) forms the public key and
is published while the private key d is determined
using modular arithmetic. It is important to satisfy
the congruence relation ed ≡ 1 mod ϕ(N) where d is
considered as the private key exponent. The public
key consists of the modulus N and the encryption
exponent e while the private key consists of the
modulus N and the decryption exponent d which
must be kept secret [Satyendra Mandal, et. al.,
2009].
3.1.2 Encryption
 Regarding the encryption steps, the message M
is represented by a finite sequence of digits. If M
consists of letters, it can be represented as: A = 01,
B = 02, C = 03, …. , Z = 26. The message M is then
broken into blocks M = M1 M2 …….. Mk, where each
block satisfies 0 ≤ Mi < N. Each block is encrypted
individually which means the plaintext is encrypted
into cipher text.

Ci ≡ (Mi)
e mod N

3.1.3 Decryption
 Decryption aims at recovering the original
message M. This is done by reversing the concept as
decryption works in an analogous way to encryption.

Mi ≡ (Ci)
d mod N

This means that the plaintext or message M is
recovered [Heribert Vollmer, and Rainer Parchmann,
2009]. Because of symmetry in modular arithmetic,
encryption and decryption are modular inverses and
commutative. Moreover, the correctness of the RSA
cryptosystem is guaranteed by the following steps in
section 3.2.
3.2 Steps of the RSA Algorithm
 From the above, the steps of RSA algorithm can
be written. In this concern, two pairs of functions (fpub ,
fpri) are important for each user where pub and pri
stand for public and private respectively. The steps
can be briefly mentioned as follows [Junan Monterde
and Jose Vallejo, 2012]:

1. The user chooses two large prime numbers p
and q.

2. The product N can be computed as N = pq
3. The totient function on N and ϕ(N) can be

evaluated
4. A number e can be chosen where

e  {1, 2, 3, ….. ϕ(N) }, coprime with ϕ(N)
It is important to mention that e is an invertible

element of the ring ℤ/ ϕ(N) ℤ as the greatest
common divisor gcd(e, ϕ(N)) = 1
5. Let d is an integer where its equivalence class

is the inverse of that e such that
ed ≡ 1 (mod ϕ(N))

6. The encryption function fpub : ℤ / N ℤ →

 N / N ℤ is given by
fpub(m) = me (mod N)

7. The decryption function fpri is the inverse of
fpub such that

fpri (m) = md (mod N)
Definition 3.2.1:For any number x, let π(x) is the
number of primes p satisfying 2 ≤ p ≤ x i.e π(8) =
4 as the primes between 2 and 8 are 2, 3, 5, and 7.

Theorem 3.2.2:(Euler's theorem). Let a  ℤ
*
m then

a
ϕ(m)

≡ 1 mod m, gcd(a, m) = 1.
Theorem 3.2.3:(Fermat's little theorem). Let p be

prime and a  ℤ
*
p then a

p-1
≡ 1 mod p.

Theorem 3.2.4: Let a ≥ 2 be an integer, then a can be
factored as a product of prime numbers

a = p1
e1. p2

e2. p3
e3 . …….pr

er

Definition 3.2.5: If p is prime, then the set ℤ/pℤ of
integers modulo p with its addition, subtraction,

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

353

multiplication, and division rules is an example of a
field.

The filed ℤ/pℤ of integers modulo p has only finitely
many elements. It is a finitite field and is often

denoted by ℤp. Thus ℤp and ℤ/pℤ are just two different
notations for the same object. Finitite fields are
important throughout cryptography [Jeffrey Hoffstein,
et. al., 2008].
Proposition 3.2.6: (Correctness of RSA)

Med ≡ M mod N

Proof As ed ≡ 1 mod ϕ(N), there must be k ℕ such
that

ed = k . ϕ(N)+ 1

Med
 = M

(k . ϕ(N)+ 1) = M (M
 k . ϕ(N)

) = M (M
ϕ(N)

)
k

Euler's theorem states that M
ϕ(N)

 ≡ 1 mod N □

Proposition 3.2.7: If N is the product of two distinct
prime numbers, then factoring N and computing ϕ(N)
are equivalent.
Proof As mentioned above N = pq and ϕ(N) = (p -
1)(q-1). This means that pq – p – q + 1 - ϕ(N) = 0
Substituting q = N/p This gives the following

 N – p – N/p + 1 - ϕ(N) = 0 i.e.
p2 – p(N - ϕ(N)+ 1) + N = 0

 p2 – pA + N = 0 where A = N - ϕ(N)+ 1
Solving this quadratic equation, it is easy to say that:

p, q = A/2 ± (A2/4 – N)1/2
Also, if the prime factors p and q are known then ϕ(N)
equals (p-1)(q-1) □
Theorem 3.2.8: Let N = pq , p < q < 2p, d < 1/3
4 N , then d can be computed.

Theorem 3.2.9: For every m  Z/NZ

fpri (fpub (m)) ≡ fpri (m
e) ≡ med ≡ m(mod N)

Proposition 3.2.10: If p is prime and r is a positive
integer, then ϕ(pr) = pr – pr-1.

Examples for RSA Algorithm 3.2.11
To clarify the functions of RSA algorithm, let us
present the following two examples [Artan Luma, and
Nderim Zeqiri, 2012], [Natarajan Meghanathan,
2012]:
Let p=17 and q=23 are two prime numbers. It is
required to find both the encryption and decryption
keys to cipher a plaintext say 127.
Solution
As N = pq, so N = 17*23 = 391
As ϕ(N)= (p-1)(q-1), so (p-1)(q-1) = 352
The encryption exponent e is chosen which is
relatively prime with (p-1)(q-1), so e is assumed to be
13. This means that the encryption key is (13, 391).
To cipher a plaintext or message m = 127, so

c ≡ me mod (N)

c ≡ 12713 mod (391)
c can be easily found as shown in the following steps:
(127)1 mod 391 = 127
(127)2 mod 391 ≡ (127 * 127) mod 391 = 16129 mod
391 = 98
(127)4 mod 391 ≡ ((127)2 * (127)2) mod 391 ≡ (98
*98) mod 391 ≡ 9604 mod 391 = 220
(127)8 mod 391 ≡ ((127)4 * (127)4) mod 391 ≡ (220 *
220) mod 391 ≡ 48400 mod 391 = 307
(127)13 mod 391 ≡ ((127)8 * (127)4 * (127)1) mod 391
≡ (307 * 220 * 127) mod 391 = 213, so the cipher text
is 213.
The decryption of cipher text c = 213 can be obtained
through

d . e ≡ 1 (mod (p-1)(q-1))
As the decryption key d is the multiplicative inverse of
13 modulo 352, so d is found to be 325. The
decryption of the cipher text c = 213 can be found
through

m ≡ cd mod N
m ≡ (213)325 mod 391. Using the same computing
procedure mentioned above, so (213)325 mod 391 ≡
((213)256 * (213)64 * (213)4 * (213)1) mod 391≡(239*
154*169*213) mod 391 =127. So, the plaintext is 127.
3.3 Modified RSA Algorithm

The RSA cryptosystem takes long computation
cost. This cost is due to several themes specially for
performing the modular exponentiation. The
decryption operation takes long computation cost
specially when using large public keys. This part tries
to enhance the hardness of factoring N. It is a good
thing to reduce the computation cost specially that
decryption time than that consumed in the traditional
RSA algorithm. This can be done by the following
[Ren-Junn Hwang, et. al., 2005]:

1. The secret key is better to know the prime
factors p-1, p+1, q-1, q+1.

2. (p-1) and (q-1) should contain a large prime
factor such that r1| (p-1) and t1| (q-1), where
r1 and t1 are two large primes.

3. (p+1) and (q+1) should contain a large prime
factor such that s1| (p+1) and u1| (q+1), where
s1 and u1 are two large primes.

4. The moduli p-1, p+1, q-1, and q+1 can be
represented as follows:-

p-1 = Πh
i=1 ri

αi

p+1 = Πj
i=1 si

βi

q-1 = Πk
i=1 ti

xi

q+1 = Πl
i=1 ui

δi

5. The modular exponentiations can be
computed as follows:-

y1 ≡ cd mod (p-1)
y2 ≡ cd mod (p+1)
y3 ≡ cd mod (q-1)
y4 ≡ cd mod (q+1)

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

354

6. x1 and x2 are computed such that
 x1 = 2-1 (y1 + y2 – z) mod p, where z =0 if y1 ≥
y2; otherwise z =1
 x2 = 2-1 (y3 + y4 – z) mod q, where z =0 if y3 ≥
y4; otherwise z =1
7. Generate the plaintext m ≡ cd mod N based

on x1 and x2.

Theorem 3.4.1: Let p and q are distinct primes and g
= gcd (p-1, q-1)
 Then a (p-1) (q-1)/g ≡ 1 mod (pq) for all a
satisfying gcd (a, pq) = 1

Proposition 3.4.2: Let p and q are distinct primes and
e ≥ 1 such that gcd(e, (p-1)(q-1)) = 1 and de ≡ 1
(mod(p-1)(q-1))
Then the congruence xe ≡ c (mod pq) has the unique
solution x ≡ cd (mod pq)

4. Homomorphic Encryption
 Homomorphic encryption describes a property
of an encryption scheme. Such property can perform
computations on the ciphertext without decrypting it
first. An encryption algorithm/scheme is
homomorphic if it is possible to perform implicit
operation on the plaintext by processing the ciphertext
only. The scheme is called fully homomorphic when it
is performed a sequence of operations both addition
and multiplication. The scheme is somewhat
homomorphic if it supports a limited number of
operations [Nitin Jain, et al., 2012], [Guilhem
Castagnos and Fabien Laguillaumie, 2012]. It is
important to mention that homomorphic cryptography
can be used for several applications. Examples of such
applications are: auction, voting, multi-party
computation, digital signatures, and message
authentication codes [Salil Vadhan, and Alon Rosen,
2006], [Ron Rivest, 2002].

Definition 4.1:

A homomorphic encryption can be defined
by three polynomial-time algorithms (G, E, D), with at
least one pair of polynomial-time computable binary
operations (addition or multiplication) on the plaintext
space P and the ciphertext space C respectively.
To illustrate such homomorphic encryption scheme, it
is important to mention that:

1. The key generation algorithm G is a
randomized algorithm which takes a security

parameter 1
n
 as input and returns a pair (pk,

sk) where pk and sk are the primary key and
secret key respectively. It can be written as

(pk, sk) R
 G(1

n
).

2. The encryption algorithm E takes the public
key pk and a plaintext m and outputs a

ciphertext c = Epk (m). It can be written as c
= Epk (m, r) where r is a random help value.
The encryption algorithm E is homomorphic
between the plaintext space P and the
ciphertext space C if c1 = E(m1) and c2 =

E(m2), then c1⊙c2  E(m1⊙ m2).

3. The decryption algorithm D is a deterministic
algorithm in the sense that it takes a
ciphertext c = E(m, r) and either the secret
key sk or the value r and returns a plaintext
m. It can be written as m = Dsk(c) or m =
Dr(c)

4.1 Homomorphic Property of RSA
 If the RSA public-key is modulus m and
exponent e, then the encryption of a message x is
given by E(x) = xe mod m. The homomorphic
property is then

E(x1) . E(x2) = x1
e x2

e mod m = (x1x2)
e mod m =

E(x1x2)
The following example is presented to illustrate that
concept.
Example
Assume that p = 47 and q = 71 are two prime numbers
so N = p q = 3337, then ϕ = (p-1)(q-1) = 3220
The public exponent e is chosen to be relatively prime
to 3220, so e = 79. The public key is (N =3337, e

=79). The inverse of e mod N is d = 79
-1

 mod 3220 =
1019
Consider two messages that are 75 and 39
respectively.
The calculation for 75 is E((3337, 79), 75) = 7579 mod
3337 = 2213
The calculation for 39 is E((3337, 79), 39) = 3979 mod
3337 = 2739
The calculation for (75)(39) = 2925 is E((3337, 79),
2925) = 292579 mod 3337 = 1415
It is noted that: (2213)(2739) = 6061407 i.e. 6061407
mod 3337 = 1415
This ensures the property from the multiplicative
properties of modular arithmetic

(x1x2)
e ≡ x1

e x2
e ≡ c1c2 (mod N)

4.2 Paillier Homomorphic Encryption
 Paillier homomorphic scheme is an efficient
probabilistic and additive encryption scheme. Such
scheme is an example of scalar homomorphic
cryptosystems. The Paillier homomorphic encryption
scheme is briefly described as follows [Nitin Jain, et.
al., 2012], [Nitin Jain, et. al., 2012], [Salil Vadhan and
Alon Rosen, 2006]

Paillier's trapdoor function is an isomorphism f : ℤ N ×

ℤ
*
N → ℤ

*

N 2 given by f (a,b) = (1+N)
a
 . bN mod N

2
,

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

355

where N = pq for distinct odd primes p, q of equal
length.
Assume that a is the message m, and b the random
help value r, the Paillier homomorphic scheme is
defined by the three polynomial-time algorithms (G,
E, D) as follows:

1. The Key Generation Algorithm
1.1 Let A be a polynomial-time algorithm that,

an input 1
n
, outputs (N, p, q) where N = pq

1.2 Input 1
n
 run A(1

n
) to obtain (N, p, q). The

public key is N and the private key is (N,
ϕ(N)), where ϕ(N) is the Euler's Totient
function.

1.3 Set pk = N = pq, sk = ϕ(N) = (p-1)(q-1)
where p and q are two n-bit primes.

2. The Encryption Algorithm

2.1 Let mℤ N is the message to encrypt and r is

the random help value where r 
R

 ℤ
*
N

2.2 Set c = EN(m, r) = (1 + N)
m
. rN ≡

(1 + mN) rN mod N
2

3. The Decryption Algorithm
3.1 To decrypt the ciphertext c into plaintext m

compute ĉ using ϕ(N) as follows:

ĉ = c ϕ(N) ≡ (1 + N)
m ϕ(N)

 ≡ (1 +m ϕ(N)N) mod N
2

3.2 Compute m' as m' = ((ĉ -1) / ϕ(N)) mod N
2

where m = m' / N
3.3 Compute ĉ to decrypt c using r where ĉ =

c r -N mod N
2
 , m = (ĉ – 1) /N

3.4 If the secret key sk is known, r can be
recovered from c as follows:

r = cN-1 mod ϕ(N)mod N

4.3 Damgard-Jurik Homomorphic Encryption
 This approach is considered a probabilistic
homomorphic cryptosystem [Nitin Jain, et. al., 2012].
Such homomorphic cryptosystem has three main
phases mainly: key generation, encryption, and
decryption. The details of such phases are as follows:
1. Key Generation

1.1 An RSA modulus is chosen as N= pq =
(2p' +1)(2q'+1) with primes p, p', q, q'

1.2 An element g is selected as g  Q
N
 ,

where Q
N
 refers to the group of all squares in (ℤ/Nℤ)*,

α is chosen as α  ℤ/τℤ, where τ = pq = { Q
N
 }

1.3 h is computed as h = gα mod N
1.4 The public key a ≔ (N, g, h) while the

secret key is α.

2. Encryption
2.1 An integer s is chosen as s > 0 such that

m  ℤ/ N
s
 ℤ

2.2 A random r is chosen as r  ℤ/nℤ, where

n = 4
log

2
N

2.3 Ea(m, r) is the ciphertext where

 Ea(m, r) =(gr mod N, (hr mod N)N s(N+1)
m
 mod N

s +1
)

≔ (G, H)
2.4 A function Ls is set where

 Ls((N+1)
m
 mod N

s +1
) m mod N

s

3. Decryption
3.1 The message m is found as:

m= Ls(h(ga mod N)- N s) = Ls(g
αr mod N) N s (N+1)m (gαr

mod N)- N s) = Ls((N+1)
m
 mod N

s +1
)

3.2 From Ea(m1, r1) and Ea(m2, r2) and the
additive homomorphic approach Ea(m1 + m2, r1 + r2)
can be computed as:

Ea(m1+ m2, r1+ r2) = (gr
1

+ r
2 mod N, (h

r
1

+ r
2 mod N) N s

(N+1)
m

1
 + m

2 mod N
s +1

) = Ea(m1, r1) × Ea(m2, r2)

5. Integer Factorization for RSA Algorithm
 The choice of secret primes is very important in the
RSA cryptosystem. This means that the factorization
is important for the key generation, encryption, and
decryption [Jeffrey Hoffstein, et. al., 2008].
As N = pq, the factorization process aims at
determining the prime factors p and q. To find the
primes p and q, it is better to consider an integer L
where p-1 divides L and q-1 does not divide L.

L = i(p-1) and L = j(q-1) + k, where i, j and k are
integers and k ≠ zero.

From Fermat's Little Theorem, it is easy to say that:

aL = ai(p-1) = a(p-1)i ≡ 1
i
 ≡ 1(mod p),

 aL = a j(q-1)+k = ak (aq-1) j ≡ ak . 1
j
 ≡ ak (mod q)

For the most choices of a, it is easy to say that p
divides aL -1 and q doesn't divide aL-1. Moreover, p
can be recovered with the simple gcd, so

p = gcd (aL – 1, N)
If p-1 is a product of some small primes, then it will
divide n! for some values of n. For each number
n = 2, 3, 4, …… the value of a is chosen and
computed

gcd (an! -1, N)
If a number between 1 and N is obtained, then a
nontrival factor of N is done [Jeffrey ,et. al., 2008].
In fact, there are several methods of factorization;
three of such methods will be briefly presented in the
following sections.

5.1 Trial Division Factorization Method

This method is one of the oldest and
important methods for factorizing an integer N. The
trial division method can factorize an integer N by
dividing that integer by any integer greater than one

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

356

and less than N. That method checks all possible
prime factors of N. It starts from 2 and works up

to N . i.e such method requires π(N) ≈
)Nln(

N2
 trial

divisions, where π(N) denotes the number of primes
less than N. The factorization can be done by dividing
the integer N by small prime numbers starting with 2,
3, 5, and so on. If the remainder of the division is
zero, N is divisible by that prime number. Such
process is repeated to keep all the prime numbers less

than or equal to N than can divide N. This

factorization method is simple and easy to understand.
It performs well for small prime numbers up to a
certain number of decimal digits. However, it will take
long time to try all possible large prime factors. For
example to factorize 95 it is advised to divide 95 by 2,
3, 5, 7. The remainder when 95 is divided by 5 is 0.
So, 5 is one of the prime factors of 95. The other
factor is 95/5=19.
Such type of factorization method is based on the fact
that composite numbers N have at least one prime

factor ≤ N . This method is an important approach

for clearing integers N from small prime factors.

Using such method, it needs approximately
Nlog

N

divisions with remainders [Wikipedia, 2012]. For
large number with potentially large prime factor, it
may take a very long time to try all the possible prime
factors.

5.2 Fermat Factorization Method

Fermat's factorization method is based on the
representation of an odd integer as the difference of
two squares: N = a2 – b2 Fermat's method tries values
of a to check that a2 – N = b2 is a square [Wikipedia,
2012]. The algorithm of this method is briefly
mentioned as follows:

Algorithm: Fermat Factorization (N) //N should be
odd//

a ← ceil (N)

b2 ← a2 – N
While b2 isn't a square
a ← a +1
b2 ← a2 – N
Endwhile
Return a – b //or a + b

If N is prime, one needs O(N) steps. If N has a factor
close to its square root, the method works quickly.
This factorization method rewrites the composite

number N as the difference of squares as N =a
2
–b

2

[B.R. Ambedkor and S.S. Bedi, 2011]. This means

N = (a+b)(a-b). This means that P and Q are nontrivial
odd factors of N such that N=PQ where P ≤ Q and P =
(a-b) and Q = (a + b). To factorize the number 95 (for
example), the following steps are followed:
1. Let N =95 {the product of two prime numbers}
2. Decimal digits: 2 bits
3. Let factors are P and Q

4. Let a is N and take the ceiling function

5. Compute b as b2 = a2 – N
6. Check if b is integer then it is a factor otherwise
increment a and compute again b.
7. This operation is repeated till b is an integer
number; then y is a factor of N.
Moreover, Fermat's method is very good at finding the
factorization of N = PQ if P and Q are very close to
each other. Fermat's method factors N quickly if N can

be factored as N = ab with a, b ≈ N . This algorithm

is more efficient than trial division and it is used by
some factorization packages to find factors between 5
and 11 digits [Franz Lemmermeyer, 2006].

5.3 Factorization Based on Pollard'Rho Method

This factorization is based on Pollard'Rho

method and N [B.R. Ambedkar, and S.S. Bedig,

2011]. The main steps of this method are as follows:

1. Let the integer number to be factorized is N
2. LOOP

3. S = ceiling of (N)

4. Let x = S 2 -1
5. Compute gcd(x, N)
6. IF the gcd >1
 THEN it is a factor of N and the other factor is
N/gcd
 ELSE decrement S and go to LOOP till x > 1

To illustrate that method the following example is
presented.
Example
Let N = 95
S =10
P = gcd (99, 95) =1
S = 9
P = gcd(80, 95)=5
Q = N/P = 95/5 = 19
P and Q are factors of N

6. Applicability of the RSA and Homomorphic
Cryptosystem

The public-key system is mainly
characterized by the use of the cryptographic
algorithm mentioned before. Such algorithm adopts
two keys: one as a private while the other is a public
key. Using the RSA cryptosystem, the sender encrypts

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

357

a message with the recipient's public key. Using the
RSA mathematics mentioned before, the encryption
and decryption operations of RSA were applied. This
was done on different data sizes as well as different
key sizes. Figures 2, 3 present the encryption and
decryption time for some adopted different data sizes
and key sizes. Figures 4 to 11 show the encryption and

decryption time (ms) for the RSA, modified RSA, and
homomorphic Paillier and Damgard-Jurik encryption.
This involves also the key sizes and data sizes
respectively. Figure 12 shows the number of iterations
consumed to factorize some integer numbers using the
three adopted factorization methods.

RSA Algorithm

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500

Key Size(bits)

En
cr

yp
tio

n/
De

cr
yp

tio
n

Ti
m

e(
m

s)

Encryption Time Decryption Time

RSA Algorithm

0

20000

40000

60000

80000

100000

120000

0 2000 4000 6000 8000 10000

Data Size(byte)

En
cr

yp
tio

n/
De

cr
yp

tio
n

Ti
m

e(
m

s)

Encryption Time Decryption Time

Figure 2: Time (ms) Vs. Key Sizes (bits) Figure 3: Time (ms) Vs. Data Sizes (Bytes)

Key Sizes for RSA, Modified RSA, and

Pailler Homomorphic Encryption

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500

Key Sizes (bits)

E
n

c
ry

p
ti

o
n

 T
im

e
(m

s
)

Encrypt Modified Encrypt RSA Encrypt Homomorphism

Key Sizes for RSA, Modified RSA, and

Paillier Homomorphic Decryption

0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000 2500

Key Sizes(bits)

D
e
c
ry

p
ti

o
n

 T
im

e
(m

s
)

Decrypt Modified Decrypt RSA Decrypt Homomorphism

Figure 4: Encryption Time (ms) vs. Key Sizes (bits) Figure 5: Decryption Time (ms) vs. Key Sizes (bits)

Data Sizes for RSA, Modified RSA, and

Paillier Hmomorphic Encryption

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Data Sizes (bytes)

E
n

cr
yp

ti
o

n
 T

im
e(

m
s)

Encrypt Modified Encrypt RSA Encrypt Homomorphism

Data Sizes for RSA, Modified RSA, and

Paillier Homomorphic Decryption

0

20000

40000

60000

80000

100000

120000

140000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Data Sizes (bytes)

D
ec

ry
p

ti
o

n
 T

im
e(

m
s)

Decrypt Modified Decrypt RSA Decrypt Homomorphism

Figure 6: Encryption Time (ms) vs. Data Sizes (bytes) Figure 7: Decryption Time (ms) vs. Data Sizes (bytes)

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

358

Key Sizes for Paillier and Damgard-Jurik

Homomorphism

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500

Key Sizes (bits)

E
n

cr
yp

ti
on

 T
im

e(
m

s)

Encrypt Paillier Homomorphism

Encrypt Damgard-Jurik Homomorphism

Key Sizes for Paillier and Damgard-Jurik

Homomorphism

0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000 2500

Key Sizes (bits)

D
ec

ry
p

ti
o

n
 T

im
e(

m
s)

Decrypt Paillier Homomorphism

Decrypt Damgard-Jurik Homomorphism

Figure 8: Encryption Time (ms) vs. Key Sizes (bits) Figure 9: Decryption Time (ms) vs. Key Sizes (bits)

Data Sizes for Paillier and Damgard-Jurik

Homomorphism

0

5000

10000

15000

20000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Data Sizes (bytes)

E
n

c
ry

p
ti

o
n

 T
im

e(
m

s)

Encrypt Paillier Homomorphism

Encrypt Damgard-Jurik Homomorphism

Data Sizes for Paillier and Damgard-Jurik

Homomorphism

0

20000

40000

60000

80000

100000

120000

140000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Data Sizes (bytes)

D
ec

ry
pt

io
n

Ti
m

e(
m

s)

Decrypt Paillier Homomorphism

Decrypt Damgard-Jurik Homomorphism

Figure 10: Encryption Time (ms) vs. Data Sizes (bytes) Figure 11: Decryption Time (ms) vs. Data Sizes (bytes)

Factorization of N=91, N=391

0

5

10

15

20

Trial Div ision Fermat Pollard' Rho

Factorization Methods

N
o

. o
f I

te
ra

ti
on

s

N=91= N=391

Factorization of N=5959, N=8051, N=16157

0

20

40

60

80

100

120

Trial Div ision Fermat Pollard' Rho

Factorization Methods

N
o.

 o
f I

te
ra

tio
ns

N=5959 N=8051 N=16157

Figure 12a: Cost for Integer Factorization Figure 12b: Cost for Integer Factorization

Factorization of N=63361421

0

500

1000

1500

2000

2500

3000

Trial Div ision Fermat Pollard' Rho

Factorization Methods

N
o.

 o
f I

te
ra

ti
on

s

N=63361421

Factorization of N=8616460799, N=999962000357

0

200

400

600

800

1000

1200

1400

Trial Division Fermat Pollard' Rho

Factorization Methods

N
o.

 o
f I

te
ra

tio
ns

N=8616460799 N=999962000357

Figure 12c: Cost for Integer Factorization Figure 12d: Cost for Integer Factorization

7. Discussion of Results

The RSA cryptosystem is one of the most
widely used asymmetric encryption system. The
private key is kept secret while the public key is
revealed to everybody in RSA. The necessary

mathematics was presented to manipulate such public
key cryptosystem. It is important for a sender to
compute the cipher text by using the public key of the
receiver for any message. The receiver should be able
to decrypt the cipher easily to plaintext using his

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

359

private key. The security of RSA depends on the
difficulty in factoring N into p and q if N is
sufficiently large. It is advised to choose the size of
N such that the cost for performing the factorization
exceeds the value of the encrypted information.

Both the encryption and decryption times for
the modified RSA algorithm are less than their
corresponding values of the RSA algorithm. This has
been occurred for the adopted key and data sizes.
From the results it is shown that bigger keys result in
longer encryption and decryption time. As the key
size increases, the difference between encryption and
decryption times also increases. Similarly, increasing
the data sizes cause longer encryption and decryption
time. The decryption time is always longer than the
encryption time for different data sizes or key sizes.
Moreover, the number of iterations to detect a prime
number increases as the length of that number (in
digits) increases. This means more time is consumed
to detect large prime numbers. It is important to
mention that homomorphic encryption enables
mathematical operations to be performed on
encrypted data without revealing the contents of the
original plaintext. The cryptosystem is additive or
multiplicative homomorphic depending upon the
operation which can be addition or multiplication.
Paillier cryptography algorithm has benefits. It gives
the homomorphic property needed for some
applications such as voting. Paillier cryptosystem is
semantically secure assuming that it is hard to
distinguish Nth residues from non-Nth residues mod
N2 [Ron Rivest, 2002]. The performance of
Damgard-Jurik homomorphic algorithm is better than
that of Paillier homomorphic algorithm. It is
considered the best one compared to the other
adopted algorithms in this work. This is true for the
adopted key sizes as well as data sizes.

Moreover, the performance of the three
adopted methods for integer factorization is different.
Not all the factorization methods take the same
factorization time. The trial division is easy and
performs well for identifying small prime factors. It
takes long time to find large prime factor in a large
integer number. The Pollard'Rho method is effective
and better than the trial division method for finding
large prime factors in large integer numbers. That
method is effective at splitting composite number
with small factors. The majority of experiments show
that the Fermat factorization method was the best
compared to the other two methods. Fermat's method
is very good at finding the factorization of N = pq if
p and q are very close to each other. Also, if N has a
factor close to its square root that method works
quickly.

8. Conclusion
The RSA algorithm has various security

issues based on mathematical calculations. Although
RSA is a good approach for security purpose, its key
length is large which consumes much time to decrypt
any message or plaintext. Due to the advance
development in the factorization field of large
primes, the key length for securing RSA is being
increased. Increasing the key length causes a
promising increase in the security of RSA
cryptography. On the other hand, this increases the
computation cost. i.e. large key sizes have regular
increase in computing power and continuing
refinement of factoring power.

Moreover, one of the main promising
properties of the Paillier encryption is that it is
additively homomorphic over plaintexts and also
allows multiplication of plaintexts by a constant. This
is also valid for the Damgard-Jurik homomorphic
encryption in addition to its applicability for a wider
application scope. The fully homomorphic encryption
scheme allows to compute arbitrary functions over
encrypted data without the decryption key.
Encryption schemes based on homomorphism are
critical for the design of highly functional
cryptosystems.

References
1. Heribert Vollmer, and Rainer Parchmunn,

“Cryptographic Applications of Algorithemic
Number Theory”, Presented to Goufried Wilhlm
Universitat Hannover, Fakultat Fur
Elektrotechnik Und Informatik, November,
2009.

2. Juan Monterde and Jose Vallejo, “Implementing
the RSA Cryptosystem with Maxima CAS”,
The Electronic Journal of Mathematics and
Technology, Vol. 6, No. 1, PP. 34-53, 2012.

3. Kenneth Jacobs, “Survey of Modern
Mathematical Cryptography”, A Thesis Project
Presented to the University of Tennesssee
Honors Program, PP. 1-12, April 2011.

4. Dima Grigoriev, Edward Hirsch, and Konstantin
Pervyshev, “A Complete Public-Key
Cryptosystem”, Groups-Complexity-
Cryptography, Heldermann Verlag, Vol. 1,
No.1, PP. 1-12, 2009.

5. Mike Knee, “Good Old Mathematics: The Basis
of Cryptography”, Snell & Wilcox, 2008.

6. Satyendra Mandal, Kumarjit Banerjee, Biswajit
Maiti, and J. Palchaudhury, “Modified Trail
Division for Implementation of RSA Algorithm
with Large Integers”, The International Journal
of Advanced Networking and Applications, Vol.
1, No. 4, PP. 210-216, 2009.

Journal of American Science 2013;9(5) http://www.jofamericanscience.org

360

7. Karl Petersen, “Notes on Number Theory and
Cryptography”, PP. 1-23, Downloaded From the
Internet in 2012 From the Website
http://math.unc.edu/.
Faculty/petersen/Coding/cr2.pdf

8. Jeffrey Hoffstein, Jill Pipher, and Joseph
Silverman, "An Introduction to Mathematical
Cryptography", Springer, 2008.

9. Natarajan Meghanathan, "Number Theory and
RSA Public-Key Encryption", Downloaded in
2012 From the Website
http://williamstallings.com/Extras/ Security-
Notes/lectures/publickey.html.

10. Artan Luma, and Nderim Zeqiri, "Data
Encryption using an Algorithm Implemented in
RSA Algorithm", Downloaded in 2012 From
the Website
http://artanluma.com/pdf/Data_encryption_usin
g_AN_algorithms_implemented_in_RSA_algor
ithm.pdf.

11. Ren-Junn Hwang, Feng-Fu Su, Yi-Shuing Yeh,
and Chia-Yao Chen, "An Efficient Decryption
Method for RSA Cryptosystem", The
Proceedings of the 19th International Conference
on Advanced Information Networking and
Applications (AINA'05), PP. 1-6, 2005.

12. B.R.Ambedkar and S.S.Bedi, "A New
Factorization Method to Factorize RSA Public
Key Encryption", The International Journal of
Computer Science Issues, Vol. 8, Issue 6, No. 1,
PP. 242-247, November 2011.

13. Joseph Rabaiotti, "Implementing on RSA
Cryptography System for Windows", A Report
Presented to the Computer Science Department,
Cardiff University, April, 2003.

14. Punita Meelu, and Rajni Meelu,
"Implementation of Public Key Cryptographic
System: RSA", The International Journal of
Information Technology and Knowledge
Management, Vol. 5, No. 2, PP.239-242, July-
December 2012.

15. Gerard P. Michon, "Prime Factorization",
Downloaded From the Internet in 2012 From

the Website
http://www.numericana.com/answer/factoring.ht
m.

16. Kostas Bimpikis, and Ragesh Jaiswal, "Modern
Factoring Algorithms", A technical Report
Presented to the University of California, San
Diego, PP. 1-15, 2005.

17. Franz Lemmermeyer, "Introduction to
Cryptography", December 15, 2006,
Downloaded From the Internet From the
Website http://www.fen.bilkent.edu.
tr/~franz/crypto/cryp06.pdf.

18. Ljupco Kocarev, Marjan Sterjev, Attila Fekete,
and Gabor Vattay, "Public-Key Encryption
With Chaos", The American Institute of
Physics, Vol. 14, No. 4, PP. 1078-1082,
December 2004.

19. L. Sreenivasulu Reddy, "Efficient on Board J2-
RSA Key Generation With Smart Cards", The
IJSCE Journal, Vol. 2, No. 2, PP. 75-79, May
2012.

20. Wikipedia, "Factorization Methods",
Downloaded From the Internet in 2012 From
the Website http://www.wikipedia.com.

21. Nitin Jain, Saibal Pal, Dhananjay Upadhyay,
"Implementation and Analysis of Homomorphic
Encryption Schemes", The International Journal
on cryptography and Information Security, Vol.
2, No. 2, PP. 27-44, 2012.

22. Guilhem Castagnos and Fabien Laguillaumie,
"Homomorphic Encryption for Multiplication
Pairing Evaluation" Springer-Verlag Berlin
Heidelberg, LNCS 7485, PP. 374-392, 2012.

23. Salil Vadhan and Alon Rosen, "Public-Key
Encryption in Practice, Downloaded From the
Internet From the Website http://www. , PP. 1-
7, 2006.

24. Ron Rivest, "Voting and Homomorphic
Encryption", Downloaded From the Internet
From the Website
http://www.cnn.com/2002/allpoltics/10/29/elec0
2. bush.changes.ap/index.html.

3/27/2013

