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Abstract: Information security within an organization is important in the last decades. The security approach based 
on cryptography can transform information messages to make them secure and immune to attack. This works 
discusses and presents the important mathematics for the RSA algorithm as one of the most popular public key 
cryptography. The steps of the RSA algorithm are: key generation, encryption, and decryption. The algorithm 
involves a public key for encrypting messages and a private key for decryption. The necessary mathematics based 
on number theory are analyzed, discussed, and presented. The encryption and decryption of any messages depend on 
N; where N is the product of two prime numbers. Both the public key and the private key are dependent on these 
prime numbers. Because RSA can be broken by factoring N; the security based on integer factorization problem is 
discussed and handled. Three factorization methods will be applied and compared. Moreover, two homomorphic 
encryption algorithms are also analyzed and discussed. Such algorithms are considered scalar and probabilistic. The 
inspiration for homomorphic encryption came from the properties of RSA. The homomorphic encryption algorithms 
are promising for providing security to many applications. The performance of both the RSA algorithm and those 
based on homomorphism is evaluated and compared. 
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1. Introduction 
            With the expansion of the internet, 
cryptography became a very important area for 
several fields specially for those working in the 
computer environment. There is a lot of 
communication over insecure channels and such 
pieces of information should be protected against any 
unwanted access. In this concern, the data transferred 
from one system to another over a network can be 
protected by an encryption method. Encryption can 
be briefly defined as a process in which the sender 
encrypts the message in such a way that only the 
recipient will be able to decrypt it. 

To clarify both the cryptography and secrecy 
suppose that a sender wishes to send a message to a 
receiver in such a way that anyone else receiving the 
message will not be able to understand it. In this 
concern, there are three important involved items 
mainly: the plaintext, the ciphertext, and the key. The 
plaintext is that unencrypted text which is what the 
sender wants to tell to the receiver. The ciphertext (or 
the encrypted text) is the message the sender actually 
sent to the receiver. The key is that important theme 
which tells how to convert the plaintext to ciphertext 
and vice versa Heribert Vallmer, and Rainer 
Parchmann, 2009.]. Since the key is known to both 
the sender and receiver, it is sometimes called the 
shared key. The conversion of plaintext to ciphertext 
and vice versa can be thought of as functions. If M is 
the set of all possible plaintext messages and C is the 

set of all possible ciphertext messages, then the key 
determines a function fk: M → C.  That function is 
used by the sender to encipher the message. The 

receiver uses the inverse function fk

-1
 to decipher the 

message. This means fk must be an injection and fk

-1
 

must exist to decipher the encrypted message 
[Heribert Vallmer, and Rainer Parchmann, 2009].. 

Moreover, there are two types of keys: secret (or 
symmetric) key and public (or asymmetric) key. In a 
system of n users, the number of secret keys for 
point-to-point communication is n(n-1)/2 = O(n2). 
With the public key encryption system there are two 
keys needed per user: one public key and one private 
key. So, the total number of needed keys is 2n = O(n) 
[Juan Monterde and Jose Vallejo, 2012], [Kenneth 
Jacobs, 2011]. 

The RSA cryptosystem is one of the most 
widely-used public key cryptography algorithm. The 
RSA algorithm can be used for both public key 
encryption and digital signatures. Its security is based 
on the difficulty of factoring large integers [Heribert 
Vollmer, and Rainer Parchmann, 2009]. Several 
research works were presented in the public key 
cryptography. Examples of such efforts are briefly 
mentioned as follows:- 

 [Juan Monterde and Jose Vallejo, 2012] 
mentioned that a basic problem in cryptography is the 
reduction of the number of operations needed to deal 
with big numbers. This is usually done through the 
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use of congruences. An example is the RSA 
algorithm, in which calculations are done modulo N, 
where N is the product of two big primes p and q. 
When using RSA encryption one has to compute 
expressions of the form ab mod c, with large a, b. For 
these, the Chinese remainder theorem is not so 
practical, and other algorithms are preferred. From 
the mathematical point of view, essential ingredients 
of RSA cryptosystem are Fermat’s Little Theorem 
and its generalization, and Euler’s theorem on 
congruences. 

 [Kenneth Jacobs, 2011] presented that an 
encryption algorithm is a map e: A × K → A, where A 
is a set called an alphabet, and K is a set called the 
key space. A decryption algorithm is a map d: A × K 
→ A, where the alphabet and key space are the same 
as for e. For each key k1 K, there must exist k2 K 
satisfying  d(e(x, k1), k2) = x. The collection (A, K, e, 
d) forms a cryptosystem. 

 [Dima Grigoriev, et. al., 2009] presented a 
cryptosystem which is complete for the class of 
probabilistic public-key cryptosystems with bounded 
error. To formalize the notion of “the hardest-to-
break” cryptographic primitive, the authors used 
reductions. A cryptographic primitive S1 is reducible 
to another primitive S2 iff there exists a probabilistic 
procedure R (called a reduction) that breaks S1 and S2. 
As an illustration, every one-way function can be 
inverted by a polynomial-time algorithm. It makes 
sense to use complete cryptographic primitives as 
they are less likely to be breakable by polynomial-
time adversaries. 

The organization of this work is as follows: 
Sections 2 and 3 present the characterization of the 
public key cryptosystem and the arithmetic 
operations of RSA respectively. Section 4 discusses a 
homomorphic encryption algorithm while Section 5 
presents some methods for integer factorization. The 
applicability of cryptosystems using RSA and Paillier 
homomorphic encryption is handled in Section 6. 
Finally, the discussion of results and conclusion are 
presented in Sections 7 and 8 respectively. 

 
2. Characterization of Public Key Cryptography 
          As mentioned before, cryptography is the study 
of ways in which a sender and a receiver can securely 
communicate information. In this concern, there are 
two modes: secret key cryptography and public key 
cryptography. Secret key cryptography (sometimes 
known as symmetric key) employs identical private 
keys for users, while they also hold unique public 
keys. Symmetric keys refer to the identical private 
keys shared by users. On the other hand public key 
cryptography is known as asymmetric cryptosystem. 
The key of a public key cryptography is composed of 
a public part and a private part. The public key is 
accessible to any body, where the private key is kept 
undisclosed by its owner. In public key cryptography, 
the decryption function can't be easily derived from 
the encryption function and vice versa [Heribert 
Vallmer, and Rainer Parchmann, 2009]. Regardless 
the modes figure1 shows the main elements of 
cryptography and cryptanalysis [Mike Knee, 2008]. 

 

 
Figure 1: Cryptography and Cryptanalysis 

 
 

The focus of this work is directed to the 
public key cryptography. A mathematical construct is 
important to specify the formal definition of the public 
key cryptosystem.  
Definition 2.1: A public key cryptosystem (PKS) can 
be easily characterized by a set of components which 
are mentioned as follows: 

PKS = ( M, C, K, E, D ), where 
M is the message space; sometimes called the set of 
plaintexts or unencrypted text 

C is the cipher text space; sometimes called the set of 
cipher texts or encrypted texts 
K is the key space; sometimes called the set of keys. A 
key k  K consists of a public key ek and a private key 
dk  
E is the encryption function which is written as  

Eek
: M  →  C 

D is the decryption function which is written as  
Ddk

: C → M 

Encryption Decryption 

Cryptanalysis 

Ciphertext Plaintext Plaintext 

Encryption Key 
Decryption Key 

Modify 

Ciphertext 
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E and D should satisfy the following 
Ddk

○ Eek
 = 1M  

   
3. Arithmetic Operations of RSA Cryptosystem 
            RSA cryptosystem is one of the most popular 
asymmetric algorithms. It is well-known as a public 
key cryptography algorithm. It uses two keys; e and d; 
which work in pairs for encryption and decryption 
respectively. One of such keys is called a public key 
while the other is called a private key. 
  
3.1 The Main Elements of the RSA Algorithm 
       The RSA algorithm has three important elements 
mainly: key generation, encryption, and decryption. 
The following sections briefly describe the arithmetic 
operations of such elements. 
3.1.1 Key Generation 
            As mentioned before, the RSA cryptosystem 
handles two keys: a public key and a private one. The 
public key is used for encrypting data or messages and 
is known to everyone. The data or messages encrypted 
with the public key can only be decrypted using the 
private key. 
Moreover, generation of keys is based on choosing 
two distinct prime numbers p and q. Such numbers 
should be of similar bit-length and randomly chosen 
[Satyendra Mandal, et. al., 2009]. After choosing the 
two large distinct prime numbers p and q by the key-
owner he/she can compute the public modulus         
N = pq. N is used as the modulus for both the public 
and private keys. Then, a public exponent e is 
chosen to be coprime to ϕ(N) = (p -1) (q-1) such that  
2 < e < ϕ(N), e and ϕ(N) are coprime. e is released as 
the public key exponent. Choosing e is considered 
an addition chain results in more efficient 
encryption. The pair (e, N) forms the public key and 
is published while the private key d is determined 
using modular arithmetic. It is important to satisfy 
the congruence relation ed ≡ 1 mod ϕ(N) where d is 
considered as the private key exponent. The public 
key consists of the modulus N and the encryption 
exponent e while the private key consists of the 
modulus N and the decryption exponent d which 
must be kept secret [Satyendra Mandal, et. al., 
2009]. 
3.1.2 Encryption 
            Regarding the encryption steps, the message M 
is represented by a finite sequence of digits. If M 
consists of letters, it can be represented as: A = 01,     
B = 02, C = 03, …. , Z = 26. The message M is then 
broken into blocks M = M1 M2 …….. Mk,  where each 
block satisfies 0 ≤ Mi < N. Each block is encrypted 
individually which means the plaintext is encrypted 
into cipher text. 

Ci ≡ (Mi)
e mod N 
 

3.1.3 Decryption 
            Decryption aims at recovering the original 
message M. This is done by reversing the concept as 
decryption works in an analogous way to encryption. 

Mi  ≡   (Ci)
d mod N 

This means that the plaintext or message M is 
recovered [Heribert Vollmer, and Rainer Parchmann, 
2009]. Because of symmetry in modular arithmetic, 
encryption and decryption are modular inverses and 
commutative. Moreover, the correctness of the RSA 
cryptosystem is guaranteed by the following steps in 
section 3.2. 
3.2 Steps of the RSA Algorithm 
       From the above, the steps of RSA algorithm can 
be written. In this concern, two pairs of functions (fpub , 
fpri) are important for each user where pub and pri 
stand for public and private respectively. The steps 
can be briefly mentioned as follows [Junan Monterde 
and Jose Vallejo, 2012]: 

1. The user chooses two large prime numbers p 
and q. 

2. The product N can be computed as N = pq 
3. The totient function on N and ϕ(N) can be 

evaluated 
4. A number e can be chosen where  

e  {1, 2, 3, ….. ϕ(N) }, coprime with ϕ(N) 
It is important to mention that e is an invertible 

element of the ring ℤ/ ϕ(N) ℤ as the greatest 
common divisor gcd(e, ϕ(N)) = 1 
5. Let d is an integer where its equivalence class 

is the inverse of that e such that  
ed  ≡ 1 (mod ϕ(N)) 

6. The encryption function fpub : ℤ / N ℤ  → 

 N / N ℤ is given by 
fpub(m) = me (mod N)  

7. The decryption function fpri is the inverse of 
fpub such that 

fpri (m) = md (mod N) 
Definition 3.2.1:For any number x, let π(x) is the 
number of primes p satisfying     2 ≤ p ≤ x  i.e  π(8) = 
4 as the primes between 2 and 8 are 2, 3, 5, and 7. 
 

Theorem 3.2.2:( Euler's theorem). Let a  ℤ
*
m  then 

a 
ϕ(m)

≡ 1 mod m, gcd(a, m) = 1.  
Theorem 3.2.3:( Fermat's little theorem). Let p be 

prime and  a  ℤ
*
p  then a 

p-1 
≡ 1 mod p. 

Theorem 3.2.4: Let a ≥ 2 be an integer, then a can be 
factored as a product of prime numbers 

a = p1
e1.  p2

e2.  p3
e3  . …….pr

er 

Definition 3.2.5: If p is prime, then the set ℤ/pℤ of 
integers modulo p with its addition, subtraction, 
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multiplication, and division rules is an example of a 
field. 

The filed ℤ/pℤ of integers modulo p has only finitely 
many elements. It is a finitite field and is often 

denoted by ℤp. Thus ℤp and ℤ/pℤ are just two different 
notations for the same object. Finitite fields are 
important throughout cryptography [Jeffrey Hoffstein, 
et. al., 2008]. 
Proposition 3.2.6: (Correctness of RSA) 

Med ≡ M mod N 

Proof   As ed ≡ 1 mod ϕ(N), there must be k ℕ such 
that 

ed = k . ϕ(N)+ 1 

Med
 = M 

(k . ϕ(N)+ 1) = M (M
 k . ϕ(N)

) = M (M 
ϕ(N)

)
k
 

Euler's theorem states that M 
ϕ(N)

 ≡ 1 mod N              □ 
 
Proposition 3.2.7: If N is the product of two distinct 
prime numbers, then factoring N and computing ϕ(N) 
are equivalent. 
Proof   As mentioned above N = pq and ϕ(N) = (p -
1)(q-1). This means that pq – p – q + 1 - ϕ(N) = 0 
Substituting q = N/p This gives the following 

      N – p – N/p + 1 -  ϕ(N) = 0 i.e. 
p2 – p(N - ϕ(N)+ 1) + N = 0 

                 p2 – pA + N = 0 where A = N - ϕ(N)+ 1 
Solving this quadratic equation, it is easy to say that: 

p, q = A/2 ± (A2/4 – N)1/2 
Also, if the prime factors p and q are known then ϕ(N) 
equals (p-1)(q-1)                                                         □ 
Theorem 3.2.8: Let N = pq , p < q < 2p, d < 1/3 
4 N , then d can be computed. 

 
Theorem 3.2.9:   For every m  Z/NZ  

fpri (fpub (m))  ≡ fpri (m
e) ≡ med ≡ m(mod N) 
 

Proposition 3.2.10:  If p is prime and r is a positive 
integer, then ϕ(pr) = pr – pr-1. 
 
Examples for RSA Algorithm 3.2.11 
To clarify the functions of RSA algorithm, let us 
present the following two examples [Artan Luma, and 
Nderim Zeqiri, 2012], [Natarajan Meghanathan, 
2012]: 
Let p=17 and q=23 are two prime numbers. It is 
required to find both the encryption and decryption 
keys to cipher a plaintext say 127. 
Solution 
As N = pq, so N = 17*23 = 391 
As ϕ(N)= (p-1)(q-1), so (p-1)(q-1) = 352 
The encryption exponent e is chosen which is 
relatively prime with (p-1)(q-1), so e is assumed to be 
13. This means that the encryption key is (13, 391). 
To cipher a plaintext or message m = 127, so  

c ≡ me mod (N) 

c ≡ 12713 mod (391) 
c can be easily found as shown in the following steps: 
(127)1 mod 391 = 127 
(127)2 mod 391 ≡ (127 * 127) mod 391 = 16129 mod 
391 = 98 
(127)4 mod 391 ≡ ((127)2 * (127)2) mod 391 ≡ (98 
*98) mod 391 ≡ 9604 mod 391 = 220 
(127)8 mod 391 ≡ ((127)4 * (127)4) mod 391 ≡ (220 * 
220) mod 391 ≡ 48400 mod 391 = 307 
(127)13 mod 391 ≡ ((127)8 * (127)4 * (127)1) mod 391 
≡ (307 * 220 * 127) mod 391 = 213, so the cipher text 
is 213. 
The decryption of cipher text c = 213 can be obtained 
through 

d . e ≡ 1 (mod (p-1)(q-1)) 
As the decryption key d is the multiplicative inverse of 
13 modulo 352, so d is found to be 325. The 
decryption of the cipher text c = 213 can be found 
through  

m ≡ cd mod N 
m ≡ (213)325 mod 391. Using the same computing 
procedure mentioned above, so (213)325 mod 391 ≡ 
((213)256 * (213)64 * (213)4 * (213)1) mod 391≡(239* 
154*169*213) mod 391 =127. So, the plaintext is 127. 
3.3 Modified RSA Algorithm 

The RSA cryptosystem takes long computation 
cost. This cost is due to several themes specially for 
performing the modular exponentiation. The 
decryption operation takes long computation cost 
specially when using large public keys.  This part tries 
to enhance the hardness of factoring N. It is a good 
thing to reduce the computation cost specially that 
decryption time than that consumed in the traditional 
RSA algorithm. This can be done by the following 
[Ren-Junn Hwang, et. al., 2005]: 

1. The secret key is better to know the prime 
factors p-1, p+1, q-1, q+1. 

2. (p-1) and (q-1) should contain a large prime 
factor such that r1| (p-1) and t1| (q-1), where 
r1 and t1 are two large primes. 

3. (p+1) and (q+1) should contain a large prime 
factor such that s1| (p+1) and u1| (q+1), where 
s1 and u1 are two large primes. 

4. The moduli p-1, p+1, q-1, and q+1 can be 
represented as follows:- 

p-1 = Πh
i=1 ri 

αi 

p+1 = Πj
i=1 si 

βi 

q-1 = Πk
i=1 ti 

xi 

q+1 = Πl
i=1 ui 

δi 

5. The modular exponentiations can be 
computed as follows:- 

y1 ≡ cd mod (p-1) 
y2 ≡ cd mod (p+1) 
y3 ≡ cd mod (q-1) 
y4 ≡ cd mod (q+1) 
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6. x1 and x2 are computed such that  
        x1 = 2-1 (y1 + y2 – z) mod p, where z =0 if y1 ≥  
y2; otherwise z =1 
       x2 = 2-1 (y3 + y4 – z) mod q, where z =0 if y3 ≥  
y4; otherwise z =1 
7. Generate the plaintext m ≡ cd mod N based 

on x1 and x2. 
 

Theorem 3.4.1: Let p and q are distinct primes and g 
= gcd (p-1, q-1) 
                   Then a (p-1) (q-1)/g ≡ 1 mod (pq)   for all a 
satisfying gcd (a, pq) = 1 
 
Proposition 3.4.2: Let p and q are distinct primes and 
e ≥ 1 such that gcd(e, (p-1)(q-1)) = 1 and de ≡ 1 
(mod(p-1)(q-1)) 
Then the congruence xe ≡ c (mod pq) has the unique 
solution x ≡ cd (mod pq) 
 
4. Homomorphic Encryption 
             Homomorphic encryption describes a property 
of an encryption scheme. Such property can perform 
computations on the ciphertext without decrypting it 
first. An encryption algorithm/scheme is 
homomorphic if it is possible to perform implicit 
operation on the plaintext by processing the ciphertext 
only. The scheme is called fully homomorphic when it 
is performed a sequence of operations both addition 
and multiplication. The scheme is somewhat 
homomorphic if it supports a limited number of 
operations [Nitin Jain, et al., 2012], [Guilhem 
Castagnos and Fabien Laguillaumie, 2012]. It is 
important to mention that homomorphic cryptography 
can be used for several applications. Examples of such 
applications are: auction, voting, multi-party 
computation, digital signatures, and message 
authentication codes [Salil Vadhan, and Alon Rosen, 
2006], [Ron Rivest, 2002]. 
 
Definition 4.1: 

A homomorphic encryption can be defined 
by three polynomial-time algorithms (G, E, D), with at 
least one pair of polynomial-time computable binary 
operations (addition or multiplication) on the plaintext 
space P and the ciphertext space C respectively.  
To illustrate such homomorphic encryption scheme, it 
is important to mention that: 

1. The key generation algorithm G is a 
randomized algorithm which takes a security 

parameter 1
n
 as input and returns a pair (pk, 

sk) where pk and sk are the primary key and 
secret key respectively. It can be written as 

(pk, sk) R
 G(1

n
). 

2. The encryption algorithm E takes the public 
key pk and a plaintext m and outputs a 

ciphertext c = Epk (m). It can be written as c 
= Epk (m, r) where r is a random help value. 
The encryption algorithm E is homomorphic 
between the plaintext space P and the 
ciphertext space C  if  c1 = E(m1) and c2 = 

E(m2), then c1⊙c2  E(m1⊙ m2). 

3. The decryption algorithm D is a deterministic 
algorithm in the sense that it takes a 
ciphertext  c = E(m, r) and either the secret 
key sk or the value r and returns a plaintext 
m. It can be written as m = Dsk(c) or m = 
Dr(c) 

 
4.1 Homomorphic Property of RSA 
        If the RSA public-key is modulus m and 
exponent e, then the encryption of a message x is 
given by E(x) = xe mod m.  The homomorphic 
property is then 

E(x1) . E(x2) = x1
e x2

e mod m = (x1x2)
e mod m = 

E(x1x2) 
The following example is presented to illustrate that 
concept. 
Example 
Assume that p = 47 and q = 71 are two prime numbers 
so N = p q = 3337, then ϕ = (p-1)(q-1) = 3220 
The public exponent e is chosen to be relatively prime 
to 3220, so e = 79. The public key is (N =3337, e 

=79). The inverse of e mod N is d = 79
-1

 mod 3220 = 
1019 
Consider two messages that are 75 and 39 
respectively.  
The calculation for 75 is E((3337, 79), 75) = 7579 mod 
3337 = 2213 
The calculation for 39 is E((3337, 79), 39) = 3979 mod 
3337 = 2739 
The calculation for (75)(39) = 2925 is E((3337, 79), 
2925) = 292579 mod 3337 = 1415 
It is noted that: (2213)(2739) = 6061407   i.e. 6061407 
mod 3337 = 1415 
This ensures the property from the multiplicative 
properties of modular arithmetic 

(x1x2)
e  ≡ x1

e x2
e  ≡ c1c2 (mod N) 

4.2 Paillier Homomorphic Encryption 
       Paillier homomorphic scheme is an efficient 
probabilistic and additive encryption scheme. Such 
scheme is an example of scalar homomorphic 
cryptosystems. The Paillier homomorphic encryption 
scheme is briefly described as follows [Nitin Jain, et. 
al., 2012], [Nitin Jain, et. al., 2012], [Salil Vadhan and 
Alon Rosen, 2006] 

Paillier's trapdoor function is an isomorphism f : ℤ N × 

ℤ
*
N → ℤ

*

N 2   given by f (a,b) = (1+N)
a
 . bN mod N

2
, 



Journal of American Science 2013;9(5)                                                     http://www.jofamericanscience.org  

 

355 

where N = pq for distinct odd primes p, q of equal 
length. 
Assume that a is the message m, and b the random 
help value r, the Paillier homomorphic scheme is 
defined by the three polynomial-time algorithms (G, 
E, D) as follows: 
 

1. The Key Generation Algorithm 
1.1 Let A be a polynomial-time algorithm that, 

an input 1
n
, outputs (N, p, q) where N = pq 

1.2 Input 1
n
 run A(1

n
) to obtain (N, p, q). The 

public key is N and the private key is (N, 
ϕ(N)), where ϕ(N) is the Euler's Totient 
function. 

1.3 Set pk = N = pq, sk = ϕ(N) = (p-1)(q-1) 
where p and q are two n-bit primes. 

2. The Encryption Algorithm 

2.1 Let mℤ N is the message to encrypt and r is 

the random help value where  r 
R

 ℤ
*
N  

2.2 Set c = EN(m, r) = (1 + N)
m
. rN  ≡  

(1 + mN ) rN mod N
2
 

3. The Decryption Algorithm 
3.1 To decrypt the ciphertext c into plaintext m 

compute ĉ using ϕ(N) as follows: 

ĉ = c ϕ(N) ≡ (1 + N)
m ϕ(N)

 ≡ (1 +m ϕ(N)N) mod N 
2
 

3.2 Compute m' as  m' = ((ĉ -1) / ϕ(N)) mod N 
2
 

where   m = m' / N 
3.3 Compute  ĉ  to decrypt c using r where  ĉ =  

c r -N mod N 
2
 , m = (ĉ – 1) /N 

3.4 If the secret key sk is known, r can be 
recovered from c as follows:  

r = cN-1 mod ϕ(N)mod N 
 

4.3 Damgard-Jurik Homomorphic Encryption 
        This approach is considered a probabilistic 
homomorphic cryptosystem [Nitin Jain, et. al., 2012]. 
Such homomorphic cryptosystem has three main 
phases mainly: key generation, encryption, and 
decryption. The details of such phases are as follows: 
1. Key Generation 

1.1 An RSA modulus is chosen as N= pq =  
(2p'  +1)(2q'+1) with primes p, p', q, q' 

1.2 An element g is selected as g  Q
N
 , 

where Q
N
 refers to the group of all squares in (ℤ/Nℤ)*, 

α is chosen as α  ℤ/τℤ, where τ = pq = { Q
N
 } 

1.3 h is computed as h = gα mod N 
1.4 The public key a ≔ (N, g, h) while the 

secret key is α. 
 
 

2. Encryption 
2.1 An integer s is chosen as s > 0 such that 

m  ℤ/ N 
s
 ℤ 

2.2 A random r is chosen as r  ℤ/nℤ, where 

n = 4
log

2
N
 
2.3 Ea(m, r) is the ciphertext where  

   Ea(m, r) =(gr mod N, (hr mod N)N s(N+1)
m
 mod N 

s +1
) 

≔ (G, H) 
2.4 A function Ls is set where  

      Ls((N+1)
m
 mod N 

s +1
) m mod N 

s
 

3. Decryption 
3.1 The message m is found as:  

m= Ls(h(ga mod N)- N s) = Ls(g
αr mod N) N s (N+1)m (gαr 

mod N)- N s ) = Ls((N+1)
m
 mod N 

s +1
) 

3.2 From Ea(m1, r1) and Ea(m2, r2) and the 
additive homomorphic approach Ea(m1 + m2, r1 + r2) 
can be computed as: 

Ea(m1+ m2, r1+ r2) = (gr
1

+ r
2 mod N, (h

r
1

+ r
2 mod N) N  s  

(N+1)
m

1
 + m

2 mod N 
s +1

)   = Ea(m1, r1) × Ea(m2, r2) 
 
5. Integer Factorization for RSA Algorithm 
     The choice of secret primes is very important in the 
RSA cryptosystem. This means that the factorization 
is important for the key generation, encryption, and 
decryption [Jeffrey Hoffstein, et. al., 2008].   
As N = pq, the factorization process aims at 
determining the prime factors p and q. To find the 
primes p and q, it is better to consider an integer L 
where p-1 divides L and q-1 does not divide L. 

L = i(p-1)  and L = j(q-1) + k, where i, j and k are 
integers and k ≠ zero. 

From Fermat's Little Theorem, it is easy to say that: 

aL = ai(p-1) = a(p-1)i  ≡  1
i
 ≡ 1(mod p),   

              aL = a j(q-1)+k = ak (aq-1) j  ≡  ak . 1
j
 ≡ ak (mod q) 

For the most choices of a, it is easy to say that p 
divides aL -1 and q doesn't divide aL-1. Moreover, p 
can be recovered with the simple gcd, so 

p = gcd (aL – 1, N) 
If p-1 is a product of some small primes, then it will 
divide n! for some values of n. For each number  
n = 2, 3, 4, …… the value of a is chosen and 
computed   

gcd (an! -1, N) 
If a number between 1 and N is obtained, then a 
nontrival factor of N is done [Jeffrey ,et. al., 2008]. 
In fact, there are several methods of factorization; 
three of such methods will be briefly presented in the 
following sections. 
 
5.1 Trial Division Factorization Method 

This method is one of the oldest and 
important methods for factorizing an integer N. The 
trial division method can factorize an integer N by 
dividing that integer by any integer greater than one 
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and less than N. That method checks all possible 
prime factors of N. It starts from 2 and works up 

to N . i.e such method requires π(N) ≈
)Nln(

N2
  trial 

divisions, where π(N) denotes the number of primes 
less than N. The factorization can be done by dividing 
the integer N by small prime numbers starting with 2, 
3, 5, ...... and so on. If the remainder of the division is 
zero, N is divisible by that prime number. Such 
process is repeated to keep all the prime numbers less 

than or equal to N  than can divide N. This 

factorization method is simple and easy to understand. 
It performs well for small prime numbers up to a 
certain number of decimal digits. However, it will take 
long time to try all possible large prime factors. For 
example to factorize 95 it is advised to divide 95 by 2, 
3, 5, 7. The remainder when 95 is divided by 5 is 0. 
So, 5 is one of the prime factors of 95. The other 
factor is 95/5=19. 
Such type of factorization method is based on the fact 
that composite numbers N have at least one prime 

factor ≤ N . This method is an important approach 

for clearing integers N from small prime factors. 

Using such method, it needs approximately 
Nlog

N
 

divisions with remainders [Wikipedia, 2012]. For 
large number with potentially large prime factor, it 
may take a very long time to try all the possible prime 
factors. 
 
5.2 Fermat Factorization Method 

Fermat's factorization method is based on the 
representation of an odd integer as the difference of 
two squares: N = a2 – b2 Fermat's method tries values 
of a to check that a2 – N = b2 is a square [Wikipedia, 
2012]. The algorithm of this method is briefly 
mentioned as follows:  
 
Algorithm: Fermat Factorization (N) //N should be 
odd// 

a ← ceil ( N ) 

b2 ← a2 – N  
While b2 isn't a square 
a ← a +1  
b2 ← a2 – N 
Endwhile 
Return a – b //or a + b 
 
If N is prime, one needs O(N) steps. If N has a factor 
close to its square root, the method works quickly. 
This factorization method rewrites the composite 

number N as the difference of squares as N =a
2
–b

2
 

[B.R. Ambedkor and S.S. Bedi, 2011]. This means     

N = (a+b)(a-b). This means that P and Q are nontrivial 
odd factors of N such that N=PQ where P ≤ Q and P = 
(a-b) and Q = (a + b). To factorize the number 95 (for 
example), the following steps are followed: 
1. Let N =95 {the product of two prime numbers} 
2. Decimal digits: 2 bits 
3. Let factors are P and Q 

4. Let a is N  and take the ceiling function 

5. Compute b as b2 = a2 – N 
6. Check if b is integer then it is a factor otherwise 
increment a and compute again b.  
7. This operation is repeated till b is an integer 
number; then y is a factor of N. 
Moreover, Fermat's method is very good at finding the 
factorization of N = PQ if P and Q are very close to 
each other. Fermat's method factors N quickly if N can 

be factored as N = ab with a, b ≈ N . This algorithm 

is more efficient than trial division and it is used by 
some factorization packages to find factors between 5 
and 11 digits [Franz Lemmermeyer, 2006]. 
 
5.3 Factorization Based on Pollard'Rho Method 

This factorization is based on Pollard'Rho 

method and N [B.R. Ambedkar, and S.S. Bedig, 

2011]. The main steps of this method are as follows: 
 
1. Let the integer number to be factorized is N 
2. LOOP 

3. S = ceiling of ( N ) 

4. Let x = S 2 -1 
5. Compute gcd(x, N) 
6. IF the gcd >1  
     THEN it is a factor of N and the other factor is 
N/gcd  
     ELSE decrement S and go to LOOP till x > 1 
 
To illustrate that method the following example is 
presented. 
Example 
Let N = 95 
S =10 
P = gcd (99, 95) =1 
S = 9 
P = gcd(80, 95)=5 
Q = N/P = 95/5 = 19 
P and Q are factors of N 
 
6. Applicability of the RSA and Homomorphic 
Cryptosystem 

The public-key system is mainly 
characterized by the use of the cryptographic 
algorithm mentioned before. Such algorithm adopts 
two keys: one as a private while the other is a public 
key. Using the RSA cryptosystem, the sender encrypts 
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a message with the recipient's public key. Using the 
RSA mathematics mentioned before, the encryption 
and decryption operations of RSA were applied. This 
was done on different data sizes as well as different 
key sizes. Figures 2, 3 present the encryption and 
decryption time for some adopted different data sizes 
and key sizes. Figures 4 to 11 show the encryption and 

decryption time (ms) for the RSA, modified RSA, and 
homomorphic Paillier and Damgard-Jurik encryption. 
This involves also the key sizes and data sizes 
respectively. Figure 12 shows the number of iterations 
consumed to factorize some integer numbers using the 
three adopted factorization methods.  
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Figure 2: Time (ms) Vs. Key Sizes (bits)             Figure 3: Time (ms) Vs. Data Sizes (Bytes) 
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Figure 6: Encryption Time (ms) vs. Data Sizes (bytes) Figure 7: Decryption Time (ms) vs. Data Sizes (bytes) 
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Key Sizes for Paillier and Damgard-Jurik 
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Figure 8: Encryption Time (ms) vs. Key Sizes (bits) Figure 9: Decryption Time (ms) vs. Key Sizes (bits) 
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Figure 10: Encryption Time (ms) vs. Data Sizes (bytes)      Figure 11: Decryption Time (ms) vs. Data Sizes (bytes) 
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Figure 12a: Cost for Integer Factorization                          Figure 12b: Cost for Integer Factorization 
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Figure 12c: Cost for Integer Factorization                           Figure 12d: Cost for Integer Factorization 

 
7. Discussion of Results 

The RSA cryptosystem is one of the most 
widely used asymmetric encryption system. The 
private key is kept secret while the public key is 
revealed to everybody in RSA. The necessary 

mathematics was presented to manipulate such public 
key cryptosystem. It is important for a sender to 
compute the cipher text by using the public key of the 
receiver for any message. The receiver should be able 
to decrypt the cipher easily to plaintext using his 
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private key. The security of RSA depends on the 
difficulty in factoring N into p and q if N is 
sufficiently large. It is advised to choose the size of  
N  such that the cost for performing the factorization 
exceeds the value of the encrypted information.  

Both the encryption and decryption times for 
the modified RSA algorithm are less than their 
corresponding values of the RSA algorithm. This has 
been occurred for the adopted key and data sizes. 
From the results it is shown that bigger keys result in 
longer encryption and decryption time. As the key 
size increases, the difference between encryption and 
decryption times also increases. Similarly, increasing 
the data sizes cause longer encryption and decryption 
time. The decryption time is always longer than the 
encryption time for different data sizes or key sizes. 
Moreover, the number of iterations to detect a prime 
number increases as the length of that number (in 
digits) increases. This means more time is consumed 
to detect large prime numbers. It is important to 
mention that homomorphic encryption enables 
mathematical operations to be performed on 
encrypted data without revealing the contents of the 
original plaintext. The cryptosystem is additive or 
multiplicative homomorphic depending upon the 
operation which can be addition or multiplication. 
Paillier cryptography algorithm has benefits. It gives 
the homomorphic property needed for some 
applications such as voting. Paillier cryptosystem is 
semantically secure assuming that it is hard to 
distinguish Nth residues from non-Nth residues mod 
N2 [Ron Rivest, 2002]. The performance of 
Damgard-Jurik homomorphic algorithm is better than 
that of Paillier homomorphic algorithm. It is 
considered the best one compared to the other 
adopted algorithms in this work. This is true for the 
adopted key sizes as well as data sizes. 

Moreover, the performance of the three 
adopted methods for integer factorization is different. 
Not all the factorization methods take the same 
factorization time. The trial division is easy and 
performs well for identifying small prime factors. It 
takes long time to find large prime factor in a large 
integer number. The Pollard'Rho method is effective 
and better than the trial division method for finding 
large prime factors in large integer numbers. That 
method is effective at splitting composite number 
with small factors. The majority of experiments show 
that the Fermat factorization method was the best 
compared to the other two methods. Fermat's method 
is very good at finding the factorization of N = pq if 
p and q are very close to each other. Also, if N has a 
factor close to its square root that method works 
quickly. 

 
 

8. Conclusion 
The RSA algorithm has various security 

issues based on mathematical calculations. Although 
RSA is a good approach for security purpose, its key 
length is large which consumes much time to decrypt 
any message or plaintext. Due to the advance 
development in the factorization field of large 
primes, the key length for securing RSA is being 
increased. Increasing the key length causes a 
promising increase in the security of RSA 
cryptography. On the other hand, this increases the 
computation cost. i.e. large key sizes have regular 
increase in computing power and continuing 
refinement of factoring power. 

Moreover, one of the main promising 
properties of the Paillier encryption is that it is 
additively homomorphic over plaintexts and also 
allows multiplication of plaintexts by a constant. This 
is also valid for the Damgard-Jurik homomorphic 
encryption in addition to its applicability for a wider 
application scope. The fully homomorphic encryption 
scheme allows to compute arbitrary functions over 
encrypted data without the decryption key. 
Encryption schemes based on homomorphism are 
critical for the design of highly functional 
cryptosystems. 
 
References 
1. Heribert Vollmer, and Rainer Parchmunn, 

“Cryptographic Applications of Algorithemic 
Number Theory”, Presented to Goufried Wilhlm 
Universitat Hannover, Fakultat Fur 
Elektrotechnik Und Informatik, November, 
2009. 

2. Juan Monterde and Jose Vallejo, “Implementing 
the RSA Cryptosystem with Maxima CAS”, 
The Electronic Journal of Mathematics and 
Technology, Vol. 6, No. 1, PP. 34-53, 2012. 

3. Kenneth Jacobs, “Survey of Modern 
Mathematical Cryptography”, A Thesis Project 
Presented to the University of Tennesssee 
Honors Program, PP. 1-12, April 2011. 

4. Dima Grigoriev, Edward Hirsch, and Konstantin 
Pervyshev, “A Complete Public-Key 
Cryptosystem”, Groups-Complexity-
Cryptography, Heldermann Verlag, Vol. 1, 
No.1, PP. 1-12, 2009. 

5. Mike Knee, “Good Old Mathematics: The Basis 
of Cryptography”, Snell & Wilcox, 2008. 

6. Satyendra Mandal, Kumarjit Banerjee, Biswajit 
Maiti, and J. Palchaudhury, “Modified Trail 
Division for Implementation of RSA Algorithm 
with Large Integers”, The International Journal 
of Advanced Networking and Applications, Vol. 
1, No. 4, PP. 210-216, 2009. 



Journal of American Science 2013;9(5)                                                     http://www.jofamericanscience.org  

 

360 

7. Karl Petersen, “Notes on Number Theory and 
Cryptography”, PP. 1-23, Downloaded From the 
Internet in 2012 From the Website 
http://math.unc.edu/. 
Faculty/petersen/Coding/cr2.pdf  

8. Jeffrey Hoffstein, Jill Pipher, and Joseph 
Silverman, "An Introduction to Mathematical 
Cryptography", Springer, 2008. 

9. Natarajan Meghanathan, "Number Theory and 
RSA Public-Key Encryption", Downloaded in 
2012 From the Website 
http://williamstallings.com/Extras/ Security-
Notes/lectures/publickey.html.  

10. Artan Luma, and Nderim Zeqiri, "Data 
Encryption using an Algorithm Implemented in 
RSA Algorithm", Downloaded in 2012 From 
the Website 
http://artanluma.com/pdf/Data_encryption_usin
g_AN_algorithms_implemented_in_RSA_algor
ithm.pdf. 

11. Ren-Junn Hwang, Feng-Fu Su, Yi-Shuing Yeh, 
and Chia-Yao Chen, "An Efficient Decryption 
Method for RSA Cryptosystem", The 
Proceedings of the 19th International Conference 
on Advanced Information Networking and 
Applications (AINA'05), PP. 1-6, 2005. 

12. B.R.Ambedkar and S.S.Bedi, "A New 
Factorization Method to Factorize RSA Public 
Key Encryption", The International Journal of 
Computer Science Issues, Vol. 8, Issue 6, No. 1, 
PP. 242-247, November 2011. 

13.  Joseph Rabaiotti, "Implementing on RSA 
Cryptography System for Windows", A Report 
Presented to the Computer Science Department, 
Cardiff University, April, 2003. 

14. Punita Meelu, and Rajni Meelu, 
"Implementation of Public Key Cryptographic 
System: RSA", The International Journal of 
Information Technology and Knowledge 
Management, Vol. 5, No. 2, PP.239-242, July-
December 2012. 

15. Gerard P. Michon, "Prime Factorization", 
Downloaded From the Internet in 2012 From  

the Website 
http://www.numericana.com/answer/factoring.ht
m. 

16. Kostas Bimpikis, and Ragesh Jaiswal, "Modern 
Factoring Algorithms", A technical Report 
Presented to the University of California, San 
Diego, PP. 1-15, 2005. 

17. Franz Lemmermeyer, "Introduction to 
Cryptography", December 15, 2006, 
Downloaded From the Internet From the 
Website http://www.fen.bilkent.edu. 
tr/~franz/crypto/cryp06.pdf. 

18. Ljupco Kocarev, Marjan Sterjev, Attila Fekete, 
and Gabor Vattay, "Public-Key Encryption 
With Chaos", The American Institute of 
Physics, Vol. 14, No. 4, PP. 1078-1082, 
December 2004. 

19. L. Sreenivasulu  Reddy, "Efficient on Board J2-
RSA Key Generation With Smart Cards", The 
IJSCE Journal, Vol. 2, No. 2, PP. 75-79, May 
2012. 

20.  Wikipedia, "Factorization Methods", 
Downloaded From the Internet in 2012 From 
the Website http://www.wikipedia.com. 

21.  Nitin Jain, Saibal Pal, Dhananjay Upadhyay, 
"Implementation and Analysis of Homomorphic 
Encryption Schemes", The International Journal 
on cryptography and Information Security, Vol. 
2, No. 2, PP. 27-44, 2012. 

22. Guilhem Castagnos and Fabien Laguillaumie, 
"Homomorphic Encryption for Multiplication 
Pairing Evaluation" Springer-Verlag Berlin 
Heidelberg, LNCS 7485, PP. 374-392, 2012. 

23. Salil Vadhan and Alon Rosen, "Public-Key 
Encryption in Practice, Downloaded From the 
Internet From the Website http://www. , PP. 1-
7, 2006. 

24. Ron Rivest, "Voting and Homomorphic 
Encryption", Downloaded From the Internet 
From the Website 
http://www.cnn.com/2002/allpoltics/10/29/elec0
2. bush.changes.ap/index.html. 

 
 
3/27/2013 


