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Abstract 
Packet processing systems maintain high throughput despite relatively high memory latencies 

by exploiting the coarse-grained parallelism available between packets. In particular, multiple 
processors are used to overlap the processing of multiple packets. Packet queuing—the 
fundamental mechanism enabling packet scheduling, differentiated services, and traffic 
isolation—requires a read-modify-write operation on a linked list data structure to enqueue and 
dequeue packets; this operation represents a potential serializing bottleneck. If all packets awaiting 
service are destined for different queues, these read-modify-write cycles can proceed in parallel. 
However, if all or many of the incoming packets are destined for the same queue, or for a small 
number of queues, then system throughput will be serialized by these sequential external memory 
operations. For this reason, low latency SRAMs are used to implement the queue data structures. 
This reduces the absolute cost of serialization but does not eliminate it; SRAM latencies determine 
system throughput. 

In this paper we observe that the worst-case scenario for packet queuing coincides with the 
best-case scenario for caches: i.e., when locality exists and the majority of packets are destined for 
a small number of queues. The main contribution of this work is the queuing cache, which consists 
of a hardware cache and a closely coupled queuing engine that implements queue operations. The 
queuing cache improves performance dramatically by moving the bottleneck from external 
memory onto the packet processor, where clock rates are higher and latencies are lower. We 
compare the queuing cache to a number of alternatives, specifically, SRAM controllers with: no 
queuing support, a software-controlled cache plus a queuing engine (like that used on Intel’s IXP 
network processor), and a hardware cache. Relative to these models, we show that a queuing cache 
improves worst-case throughput by factors of 3.1, 1.5, and 2.1 and the throughput of real-world 
traffic traces by factors of 2.6, 1.3, and 1.75, respectively. We also show that the queuing cache 
decreases external memory bandwidth usage, on-chip communication, and the number of queuing 
instructions executed under best-case, worst-case and real-world traffic workloads. Based on our 
VHDL models, we conclude that a queuing cache could be implemented at a low cost relative to 
the resulting performance and efficiency benefits. 

                                                   
 
* An early version of this manuscript appeared in ACM Computing Frontiers 2006. 
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1. Introduction 

Packet queues represent a critical serialization point in packet processing systems. An arriving 
packet is inserted into a queue based on the router’s classification policy, with the assigned queue 
representing the type of service the packet should receive. Similarly, when a packet is scheduled 
for transmission, the scheduler removes it from its queue. Queues are implemented as linked lists, 
and these operations require read-modify-write operations on the queue descriptor that keeps 
track of the start, end and size of the queue. When multiple queues are simultaneously active, the 
read-modify-write operations can be carried out in parallel. Modern packet processing systems 
use coarse-grained parallelism, in the form of multiple on-chip processors and memory 
controllers, to exploit this situation. However, the most challenging requirement is to provide 
good performance for consecutive operations on the same queue due to the lack of opportunity 
for parallelism. The worst-case, performance-limiting scenario in modern packet processing 
systems arises when there is high contention for a small number of queues. 

High-performance systems must support a large number of such queues; therefore queue 
descriptors are kept in off-chip memory. In high-speed networks, packet inter-arrival times rival 
memory access times, so SRAMs are used for this purpose. For example, QDR SRAM has an 
effective access latency of at least 15 to 20 ns, when chip to chip interconnects are accounted for, 
and the minimum packet arrival time in an OC-768 link is 8 ns. Therefore, when serialization 
occurs in a small number of queues, the latency to perform read-modify-write operations through 
off-chip memory will determine performance. 

In this paper, we observe that contention for a small number of queues is a form of locality, 
and is therefore ideal for a cache. We propose the queuing cache, an on-chip, hardware-based 
cache for chip-multiprocessors that supports queue operations directly. In our evaluation, we 
compare queuing cache performance to: 1) an unmodified system with no queuing or cache 
support, 2) a base system augmented with a hardware data cache, and 3) a system with a 
software-managed queuing cache. We show that the queuing cache provides superior throughput 
over a wide range of synthetic and real-world workloads, while increasing efficiency by reducing 
on-chip communication, reducing memory bandwidth, and reducing the number of instructions 
executed in software. 

The rest of this paper is organized as follows. Section 2 provides background on network 
processor (NP)-based packet processing systems. Section 3 describes the queuing cache as well as 
other traditional memory system models for packet queuing; the section also introduces an 
analytical performance model. Section 4 presents our experimental evaluation of the queuing 
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Figure 1: A Network Processor-based router line card. 
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cache and the alternate models. Section 5 provides an analysis of the results and elaborates 
queuing cache implementation details. Finally, the paper concludes in Section 6. 

2. Packet Processing Systems 

The organization of an NP-based router line card is shown in Figure 1. There are variations 
among line cards, including those that augment NPs with queue management chipsets [17], but 
the overall organization and use of SRAM and DRAM for queuing, as described below, are 
common to all variations. In both the ingress and egress directions, an NP sits between the switch 
fabric and the physical interface. The switch fabric carries traffic between line cards. The physical 
interface may consist of a single link, such as 10 Gb Ethernet or SONET, or a collection of slower 
links, such as 10/100 Mb Ethernet or DSL.  

To increase the number of instructions and memory operations that can be applied to each 
packet while meeting a target line rate, NPs are typically organized as highly-integrated chip-
multiprocessors. For example, Intel’s IXP2800 [1] features 16 pipelined processors, called micro-
engines (MEs), each of which support 8 thread contexts and zero cycle context switches in 
hardware. The chip also integrates 4 QDR SRAM controllers and 3 Rambus DRAM controllers, 
along with many other hardware units unrelated to queuing. In line cards like this, both SRAM 
and DRAM are used to implement packet queues. Queues and their descriptors are kept in 
SRAM, while the packets are kept in DRAM. The scheduling discipline is implemented in 
software on one or more processors. 

2.1. Packet Queues 
Packet queues are used to provide packet scheduling, QoS, and other types of differentiated 
services to packet aggregates. Many routers use a three-level queue hierarchy, where the first 
represents physical ports, the second represents classes of traffic and the last level consists of 
virtual output queues. Each ingress NP maintains a queue for each output port to eliminate head-
of-line blocking; each of these output port queues has a number of class queues associated with it 
in order to enable service differentiation and QoS; each of these class queues consists of per-flow 
virtual output queues which allow individual flows to be shaped, e.g., by throttling unresponsive 
flows that are causing congestion. 

Each incoming packet is enqueued into some virtual queue, and the status for the 
corresponding class and physical queues are updated to record the activity. A similar sequence 
occurs when a packet is dequeued from a virtual queue by the scheduler. Scheduling is typically 
carried out from root to leaf; i.e., first, the port is selected according to the port selection policy, 
then a class from the selected port is chosen which is followed by a virtual queue selection. It is 
important to note that one enqueue and one dequeue are expected during each packet 
arrival/departure period. Since both operations involve updates to shared queues, serialization can 
occur. 

In order to provide good memory utilization, virtual queues are typically kept in a linked list 
data structure [17]. Port and class queues, however, are only kept in a linked list data structure 
when the selection policy for class and virtual queue is ring-based. Round robin or weighted 
deficit round robin [18] are examples of ring based selection policies, where the next selection is 
the next link in the ring of active queues.  

A queue’s status needs to be updated for every incoming and outgoing packet, so that 
scheduling can be carried out efficiently. For example, many packet scheduling algorithms use 
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queue occupancies as inputs. For this reason, some architectures pass every enqueue and dequeue 
command to the scheduler, which manages its own local queue status database. This keeps the 
scheduler from either using stale information or making frequent queue descriptor read requests. 

2.2. A Packet Processing Pipeline 
Packet processing is typically implemented as a pipeline consisting of multiple processor stages. 
Whenever a stage makes heavy use of memory (e.g., queue operations), multiple threads are used 
to maintain good throughput despite relatively high memory latencies. The processing pipeline 
generally consists of the following tasks, each typically mapped to its own processor(s). 
1. Packet assembly. Several interfaces deliver packets in multiplexed frames or cells across 

different physical ports. 
2. Packet classification. Incoming packets are mapped to a queue.  
3. Admission control. Based on the QoS attribute of the queues, such as a maximum size, 

packets are either admitted or dropped.  
4. Packet enqueue. Upon admission, the packet is buffered in the DRAM, and the packet 

pointers are enqueued to the associated queues. Most architectures buffer the packet in 
DRAM at the first stage and then deallocate the buffer later if the packet is not admitted. 

5. Scheduling and dequeue. The scheduler selects the queues based on the QoS configuration, 
and then a packet is dequeued and transmitted. 

6. Data Manipulation, Statistics. A module may perform statistics collection and data 
manipulation based on the configuration. Packet reordering, segmentation and reassembly 
may also be performed. 

2.3. Queue Operations and Parallelism 
Both the queue descriptors, consisting of head and tail pointers and the queue length, and the 
linked lists (i.e., the queues) are stored in SRAM. SRAM and DRAM buffers are allocated in 
pairs, so that the address of the linked list node in SRAM implicitly indicates the packet address 
in DRAM. Thus, the linked lists in SRAM only contain next-pointer addresses.  

With this structure, every enqueue and dequeue operation involves an external memory read 
followed by a write operation. Recall that since the access time of external memory requires 
many processor cycles, multiple threads are used to hide the memory latency. A system can be 
balanced in this way by adding processors and threads, so long as each thread accesses a 
different queue. As soon as threads start accessing the same queue, the parallelism is lost and all 
operations are serialized, since every queuing operation involves a read followed by write, and 
the write back is always based on the data that was read. In the worst case, all threads compete for 
the same queue and progress is serialized, regardless of the number of processors or threads.  

As we will show, using an on-chip cache for queue descriptors can improve this worst-case 
performance.  

2.4. Related Work 
The importance of packet queuing in routers and switches has been motivated and discussed in 
the literature [14],[15],[16]. The majority of research on high-performance memory systems for 
networking has focused on optimizing packet buffer memory bandwidth. Researchers from 
Stanford University have proposed several schemes to buffer packets into DRAM at very high 
speeds [5],[6],[7],[10]. A group at ICS FORTH has proposed several ASIC based architectures to 
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efficiently perform the packet buffering and manage large number of queues at very high speeds 
[13]. 

Another branch of related work has focused on maximizing the utilization of available 
DRAM technologies. McKee et al. have proposed a number of mechanisms to maximize DRAM 
bandwidth in streaming computations [11]. Rixner et al. have proposed a related performance 
enhancement via efficient memory access scheduling [8]. Techniques to effectively reduce 
DRAM latency have also been proposed [9]. Hasan et al. have shown an approach to efficiently 
utilize the available DRAM bandwidth on a network processor [4]. 

The challenges of packet buffer design and DRAM utilization are important, but orthogonal 
issues. In this work, we directly improve the performance of packet queue data structures whose 
worst-case performance limits the performance of existing programmable packet processing 
systems. 

The software-controlled Q array structure in the Intel IXP 2XXX family of NPs is similar to 
the software-managed queuing cache discussed in Section 3.3. In the IXP, the software cache is 
managed and kept coherent by using a CAM in a processor (i.e., a micro-engine). The CAM 
keeps track of the mapping between queue descriptor ID and cache entry, as well as the location 
of the LRU entry for eviction purposes. As shown in this paper, using a hardware-managed 
queuing cache in the memory controller greatly increases performance while also improving the 
overall efficiency. 

3. Memory System Models 

In this section, we will describe the structure of the queuing cache and its alternatives—a base 
system with no cache or queuing support, a data cache, and a software-controlled queuing 
cache—as well as how queue operations are carried out on each organization. We conclude this 
presentation of memory models with a brief analysis of the alternatives. 
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Figure 2:  Structure of the NP architecture with shared interconnect for memory and 
other resources. Each processor (P) is assumed to be multithreaded. The 
queuing subsystem involves processors, DRAM, and SRAM. HW-based 
queuing support would be integrated at the SRAM controllers. 
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3.1. Architecture and Memory Organization 
Figure 2 shows the structure of our basic system. It is a highly integrated system, featuring 
multiple processors, each multithreaded, and memory channels all sharing a bus-based 
interconnect. This general organization is common among chip multiprocessors and network 
processors [2].   

Since we are modeling a shared memory in a multiprocessor system, memory consistency is a 
critical issue. Specifically, our requirement is that requests for a particular queue occur in the 
correct order without corrupting the queue descriptor data structure. 

The queuing cache synchronizes access to a given queue automatically. For the other memory 
organizations, we model a zero-cost synchronization mechanism that assures ordered, coherent 
access to all queues. A real system would require some sort of software synchronization to 
maintain consistency, but these costs are not accounted for in the non-queuing cache models. 
Adding a realistic synchronization mechanism would greatly increase the complexity of the 
alternate models. As we will see, the queuing cache provides superior performance despite this 
disadvantage.  

An enqueue operation in the base model involves three memory references, a) initially the 
queue descriptor is read, b) then the arriving packet is linked to the queue’s tail, and c) finally the 
updated queue descriptor (tail) is written back. The last two references can be carried out 
concurrently, as they are independent writes. A dequeue operation also involves three memory 
references, a) initially the queue descriptor is read, b) then the next node of the head is read 
(which will become the new head), and c) finally the updated queue descriptor (head) is written 
back. All three references, in this instance, must be carried out sequentially.  

The time needed to complete a given memory reference depends on two factors: 1) the 
external memory latency and 2) the latency of the shared interconnect between the processor and 
the memory interface. This second factor is considerable and can rival or exceed external memory 
latency in highly-integrated CMPs, even in unloaded systems (i.e., those without interconnect 
contention). 

System type System parameter Value

Base CMP
parameters

Interconnect clock frequency 400 MHz

Memory access time (round trip) 40 ns

Interconnect bus w idth 8 w ords

Processor clock frequency 1 GHz

Interconnect delay (round trip) 40 ns

Synchronization server delay 0 ns

Memory clock frequency 200 MHz

Total instruction cycle time 10 ns

Cache access time 2.5 ns

Softw are cache
CAM access latency 5 ns

Total instruction cycle time 35 ns

Queuing cache Total instruction cycle time 5 ns
 

Table 1:  Parameters chosen for the base multithreaded CMP queuing system model. 
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3.2.  General-Purpose Data Cache 
A data cache can be placed between the queue descriptor memory hierarchy and the processors. It 
provides no direct support for queuing operations, but can shorten the load/store latency for 
operations applied to cached queue descriptors. Figure 4 illustrates this effect, as well as the 
corresponding operations for all the implementations. Since there is little re-use in the linked list 
memory, the cache only needs to hold the recently accessed queue descriptors. In addition, for 
good performance it must be able to service multiple requests concurrently, and hence the cache 
must be lock-up free [3]. The data cache improves queuing performance as long as there is some 
locality in the queue descriptor accesses. Since a hit does not require an external memory access, 
the cost of serialization is reduced. However, the interconnect latency persists. 

3.3. Software-controlled Queuing Cache 
The cost of serialization can also be reduced with the addition of a small linked list processor 
(also referred to as a queuing engine) and a software-controlled cache between the queue 
descriptor memory hierarchy and the processors. This is the approach used in Intel’s NPs. The 
linked list reads and writes will be handled internally by the cache, resulting in interconnect 
latency savings. Each thread sends an enqueue or dequeue command to the cache and the cache 
performs the link list read or write followed by the queue descriptor update. However, since the 
cache is software controlled, before issuing an enqueue or a dequeue command, threads must 
ensure that the queue descriptor is cached. If it is not cached, then threads need to issue 
commands in order to evict an entry and bring in the appropriate queue descriptor to the cache. 
Thus, threads issue two commands on a miss and one command on a hit, in order to service an 
enqueue or a dequeue request. In addition, the synchronization must be carried out by the threads.  

3.4. Queuing Cache 
A queuing cache is a small fully associative cache with tightly coupled queuing engines. It 
reduces the interconnect latency by enabling the threads to issue only one command for an 
enqueue or dequeue operation. The Queuing cache internally manages the queue descriptor cache 
and performs the appropriate queuing operations on a hit or miss. Furthermore, a queuing cache 
operates in parallel and accepts commands from multiple threads (i.e., it is also lock-up free). 
When multiple requests are destined to a single queue, it ensures that all requests are serviced 
without any contention and in the correct order. Thus, individual threads need not maintain 
synchronization or packet ordering. We consider a particular queuing cache design and its 
implementation costs in Section 5. 

3.5. Summarizing the Queuing Sub-systems 
The four alternatives are best differentiated by considering how they 1) reduce the number of off-
chip memory accesses, and 2) reduce the number of operations sent across the shared on-chip 
interconnect. 

The three cache-based schemes all reduce external memory accesses, and thereby reduce 
latency, on a hit—this is the traditional benefit of caching. The two schemes that employ queuing 
engines, the queuing cache and software managed queuing cache, reduce the number of memory 
commands sent by sending queue operations rather than the memory references that implement 
them. The software managed cache, however, must send cache management operations on 
misses, so the benefit is reduced. 
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Figure 3:  High level schematic diagram and communications involved in the queuing sub-
system a) without any cache, b) with data cache, c) with software-controlled cache 
and linked list processor, and d) queuing cache. The communication across the shared 
interconnect in order to perform an enqueue or dequeue is also highlighted. 

System Enqueue operation Dequeue operation 
System 
with 
/without 
data cache 

enqueue(pkt_ptr, queue) { 
  // First grab the lock 
  grab_lock(); 
  // Read in the queue tail 
  tail = load_tail(queue); 
  // Link old tail to new pkt 
  wr_link_mem(tail, pkt_ptr); 
  // Update and store tail 
  tail = pkt_ptr; 
  store_tail(queue, pkt_ptr); 
} 

pkt_ptr dequeue(queue) { 
  // First grab the lock 
  grab_lock(); 
  // Read in the queue head 
  head = load_head(queue); 
  // Read next pkt from head 
  new_head = rd_link_mem(head); 
  // Store the new head 
  tail = pkt_ptr; 
  store_head(queue, new_head); 
  return head; 
} 

System 
with 
software 
controlled 
cache 

enqueue(pkt_ptr, queue) { 
  //wait until queue is free via CAM 
  grab_lock(); 
  //hit => my_entry is cache location 
  my_entry = lookup_cache(); 
  if ( my_entry = -1) { // Miss 
      // Evict LRU entry from cache 
      my_entry = lru_cache; 
      evict_from_cache(my_entry); 
      // Set the in use bit 
      set_inuse_bit(my_entry); 
      // Load tail in LRU location 
      load_tail(queue, my_entry); 
  } 
  enqueue(pkt_ptr, my_entry); 
} 

pkt_ptr dequeue(queue) { 
  //wait until queue is free via CAM 
  grab_lock(); 
  //hit => my_entry is cache location 
  my_entry = lookup_cache(); 
  If ( my_entry = -1) { // Miss 
       // Evict LRU entry from cache 
       my_entry = lru_cache; 
       evict_from_cache(my_entry); 
   // Set the in use bit 
   set_inuse_bit(my_entry); 
   // Load head in LRU location 
   load_head(queue, my_entry); 
  } 
  head = dequeue(pkt_ptr, my_entry); 
  return head; 
} 

System 
with 
queuing 
cache 

enqueue(pkt_ptr, queue) { 
  // Implemented in queuing cache 
  enqueue(pkt_ptr, queue); 
} 

pkt_ptr dequeue(queue) { 
  // Implemented in queuing cache 
  return dequeue(queue); 
} 

Table 2: Pseudo-code of the operations performed at each thread in the four queuing subsystem 
models. 
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The differences in on-chip and off-chip communication can be seen in Figure 3, where the 
queue operations and their resulting memory interactions are illustrated for each implementation. 
In order to compare the operational differences in concrete terms, Table 2 provides pseudo-code 
for each subsystem implementation, for both enqueue and dequeue operations. The operational 
timelines shown in Figure 4 illustrates the individual contributors to enqueue and enequeue 
latency. 

 
Figure 4: Illustration of the time line for servicing enqueue and dequeue requests in, a) system 

without any cache or explicit support for queuing, b) system with general purpose data 
cache for queue descriptors, c) system with software controlled cache and linked list 
processing capability, and d) system with queuing cache. 
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3.6. Initial Comparative Analysis 
Table 3 compares each of the sub-system implementations according to their treatment of a 
selection of key characteristics: queue contention resolution, maintaining packet order, instruction 
overhead for queue management, on-chip communication bandwidth, and off-chip bandwidth. 

We have also developed an intuitive model that can be used to analytically determine the 
peak throughput of the various queuing sub-system models. In this model, peak throughput is 
achieved when enough threads are used to saturate memory bandwidth, and, hence, additional 
threads will offer no benefit. Our analytical method is based on the concept of time gained and 
lost. Time refers to the real processing time of a single thread. Time lost refers to the total real 
processing time lost by a thread due to stalls. Time gained implies the total real processing time 
saved by a thread due to a cache hit. We will now quantify the time lost and gained.  

Theoretically, the highest throughput is achieved when every thread accesses distinct queues 
and the time required to perform a single enqueue or dequeue is Te/n or Td/n, respectively. Te and 
Td, respectively, are the individual enqueue and dequeue service times, and n is the total number 
of threads. Note that these times will vary across different queuing sub-systems. When there is 
complete contention, all but one contending thread get stalled. The time lost during such stalls 
will be, ∑

∈

−=
packets all  

))((*))((
i

opl itfitTT , where Top is the time required to service the current 

enqueue or dequeue operation, t(i) is the time since the last operation on the same queue, and, f(x) 
is a unit step function with a step at Top. Thus f(x) is one when x is greater than Top, and zero 
elsewhere. That is, if the next operation for queue arrives before the current one is complete, 
stalls will result. 

A cache hit saves the processing time of a single thread and the savings amounts to Te(miss) – 
Te(hit) for an enqueue and Td(miss) – Td(hit) for a dequeue. Note that the time saved during enqueues 
and dequeues is the same in our context. The time saved, Ts, in a cache based system with a hit 

Characteristics No caching Data cache Software-controlled 
cache 

Queuing cache 

Queue 
contention 

Threads resolve 
cooperatively. May 
need hardware support 
for synchronization 

Same as previous Threads resolve 
contention with the aid of 
fully associative cache 
array 

Internally 
resolved by the 
queuing cache 

Packet order Threads must ensure 
correct packet service 
order. Adds complexity 
and thread stalls 

Same as previous Same as previous Packet service 
order is always 
ensured by the 
queuing cache 

Instruction 
count for 
queuing 

~30. May vary based on 
ISA 

~30. May vary 
based on the ISA 

~60. May vary based on 
the ISA 

3-4 

Communication 
at the shared 
inter-connect 

Read QD 
Write QD 
Read/Write link list 

Same as previous Issue 1 (evict and allocate) 
Issue 2 (enqueue/dequeue) 

A single Issue 
(enqueue/ 
dequeue) 

QD bandwidth No reduction Reduction = hit 
rate 

Same as previous Same as 
previous 

Table 3: Table summarizing the characteristics of each of the four queuing sub-system models. 
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rate of h is given by ∑
∈

−=
packets all  

*)(
i

hitmisss hTTT . Thus, the time needed to service Ne enqueues and 

Nd dequeues in a system is given by  sl
ddee TT

n
TNTN

−+
+ ** . 

In the next sections, we will show how the time lost due to serialization and the time gained 
due to cache hits influence the system throughput. In Section 5, we will revisit this model with 
insights gained from the experimental results. 

4. Experimental Evaluation 

In this section, we evaluate the performance of each queuing sub-system under a variety of 
synthetic and real-world workloads. Since our goal is to measure queuing performance, queuing 
subsystem remains the bottleneck. Our aim is to show which queuing organization provides the 
best performance and efficiency. 

4.1. Simulation Methodology 

We use a mix of behavioral and RTL-style VHDL to simulate our system and memory models. 
RTL was used to model the control and logic details of the queuing cache and other units, and 
behavioral VHDL was used to model processor activity, interconnect paths and arbitration, and 
memory structures. We have built a base CMP model with hardware support for multithreading in 
behavioral VHDL and developed three variants of queuing sub-systems around it. 

4.1.1. Base Multithreaded CMP model 
The parameters chosen for our base CMP system are shown in Table 1. These parameters closely 
approximate those found in Intel’s IXP NPs. In the data cache model, we add a cache with 
support for the following parameters: associativity, line size, capacity, number of miss status 
holding registers (MSHRs), optional write-allocation, write-through or write-back, and LRU or 
random replacement [20]. In the software controlled cache model we have attached the cache 
array and queuing engine at the memory controller. In the queuing cache model, we have added 
the RTL design of the queuing cache at the memory controller. 

In most experiments, the queuing cache and the software-controlled cache were configured 
with 32 fully associative entries and 32 queuing engines. However, the data cache was configured 
to be 2-way set associative with 128 words. This is because this data cache configuration had a) 
the best performance to complexity ratio, and b) an area footprint equivalent to the queuing cache 
and software controlled cache [12]. 

4.1.2. Synchronization 
As described in Section 3, synchronization between queues is necessary when performing parallel 
operations in order to prevent packet reordering and to keep queue data structures coherent. Of 
the structures modeled in this paper, only the queuing cache accounts for the overhead costs of 
synchronization, since the associated logic was implemented inside it. The other models would 
require some kind of software-based synchronization involving locks. Our other models do not 
implement these software mechanisms, but if they did the net effect would be greater operation 
latency and communication bandwidth. By not including the costs of synchronization in the non-
queuing cache solutions, we over-estimate the performance and efficiency of these models. As we 
will see, the queuing cache gives strong relative performance despite this disadvantage. 
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4.1.3. Workloads 
When performed collectively by multiple threads, queuing throughput can be highly sensitive to 
the workload. As we have noted, system throughput is determined by the fraction of current 
operations that can proceed in parallel. To evaluate a range of possibilities, we have gathered a 
collection of synthetic and real-world packet traces. Each trace has a different concentration of 
packets to queues.  

For real-world workloads, we use two traces: a network-edge trace from NLANR [22] that 
consists of traffic recorded on an OC-3 link between a University and the Internet, and a core 
Internet trace from CAIDA [21] that consists of traffic taken from an OC-48 link connecting two 
backbone routers. Traffic is mapped to the queues by applying a hash function on the packet 
header. 

Our synthetic traces were designed to capture a wide range of temporal locality in queue 
references. In order to generate various synthetic traces, we modeled a packet arrival and 
departure server. At the arrival server, packets arrived for each queue according to a Poisson 
process [19]. In order to model the varying rates of each queue, we assign each queue a different 
Poisson process parameter1, λ. The departure server modeled an approximate deficit round robin 

                                                   
 
1 1/ λ is the mean of the exponential random variable of the Poisson process. 

Workload type Notation Distribution of 
λ across 
queues 

Description 

Logarithmic Lk Exponential The weights of each queue were 
exponentially distributed. Thus,  
λi = k* λi-1 

Uniformly random R Uniform Weights of all queues were same, λ. 
Strictly uniform U n.a. The arrival process, instead of being 

Poisson, is a round robin one, in which 
queues send packets in a round robin 
order. It results in no temporal locality. 

Set dominating SDn_k Two sets of 
uniform 

A set of n equal priority queues had 
captured k% of the bandwidth and 
remaining (N-n) queues took the 
remaining bandwidth. Thus, 
n* λ1 = k/(100-k)* (N-n)* λ2, where λ1 
and λ2 are the mean inter-arrival time of 
first and second set of queues 
respectively. 

Single dominating SD1_k Two sets of 
uniform 

This is the limiting case of the previous 
workload, wherein the value of n is one. 

Table 4:  Description of the synthetic workloads, their notation and the distribution of 
parameters. 
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selection1 [18], wherein a queue with a higher rate and backlog sends not only more packets but is 
also likely to send them in larger bursts. Our sets of synthetic workloads are described in Table 4. 

4.1.4. Description of the Notation in Graphs and Tables 
We use the following notation for each experimental curve: 
Workload_type.System_type.Cache_size.Cache_type. The notation for Workload_type is 
described in Table 4. System_type is, a) sqc for software-controlled cache, b) nc for base system, 
c) dc for data cache, and d) qc for queuing cache. Thus, SD1_70.sqc.32.fa indicates that a) the 
traffic type is single dominating queue taking 70% of the link capacity, b) system is software-
controlled cache, c) the cache array size is 32, and d) it is fully associative. 

4.2. Results with Uniformly Random Traffic 
Figure 5 shows the queuing throughput, in millions of packets per second, of each queuing sub-
system organization on a uniformly random workload. This situation corresponds to the best-case 
scenario in a multithreaded system without caches, in which all operations can operate in parallel. 
In this workload, there are a large number of active queues, and packets are spread equally. Thus, 
there is no queue locality or contention, as reflected by the low, near-zero hit rates. All models 
saturate at slightly over 80M operations per second. The queuing cache has a greater slope, 
however, and achieves peak performance with only 12 threads as compared to the 18-20 threads 
required by the others.  

This result shows that the queuing cache is more efficient, i.e. needs fewer concurrent 
operations, in achieving peak performance. We also note that this performance level is peak 
performance achievable in a system without a cache. 

                                                   
 
1 Deficit round robin (DRR) is a class of fair queuing algorithm and is widely used commercial routers. 
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Figure 5: Plots throughput versus number of threads under a uniformly random workload. The 
hit rate for cache-based systems is also shown. 
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4.3. Results with Weighted Random Traffic 

4.3.1. A Single Dominating Queue  
Figure 6a reports throughput for a trace consisting of traffic dominated by a single queue that 
carries 30% of all packets, with the remaining traffic spread uniformly over a large number of 
queues. This scenario presents a moderate amount of narrow locality, since 30% of all packets 
target a single queue. Therefore we see higher hit rates, around 30%, and more contention. 
Clearly, this locality is dominated by the costs of serialization, since performance for all models 
is worse than that of the uniformly random case. Here, the queuing cache achieves superior 
performance due to its shorter serialization path. 

Figure 6b reports the throughput with 32 threads as the weight of the single dominating queue 
varies from 5% to 100% of the total traffic. As can be seen, the cache-based models see initial 
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Figure 6:  a) Top. Plots throughput versus number of threads under traffic with a single 

dominating queue utilizing 30% of the link capacity. b) Bottom. Plots throughput 
versus weight of a single dominating queue for systems with 32 threads. This 
simulates gradually increasing locality. We note that small weights improve the 
performance of cache-based systems and as locality increases, serialization degrades 
the performance. 
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benefit as the weight increases, rise to a peak, and then eventually descend to the worst-case 
performance levels. The initial benefits are due to the increased hit rates while the eventual 
decline is due to serialization of traffic at a single queue. The queuing cache has the highest peak, 
and maintains it over the widest range of weights. But locality ceases to be a benefit for the 
queuing cache beyond a weight of 20%, whereas the other cache-based models lose the benefit of 
locality at around 10%. As expected, hit rates increase with the queue weight. 

4.3.2. A Set of Dominating Queues 
We now consider workloads that extend the locality from one queue to a set of queues. Figure 7a 
shows throughput when a set of 16 dominating queues accounts for 90% of all traffic. As 
expected, hit rates are high, between 75% and 90%, and the cache-based models achieve 
performance greatly in excess of the memory bandwidth limit. This scenario represents a broader 
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Figure 7:  a) Top. Plots throughput versus number of threads under traffic with a set of 16 

dominating queues, which take 90% of the link capacity. b) Bottom. Plots 
throughput versus number of dominating queues for systems with 32 threads and 
the dominant queues take 90% of the link capacity. This simulates gradually 
decreasing locality. We see that as the number of dominant queues approaches the 
cache size, performance gets maximized and afterwards, as the hit rates fall, the 
performance approaches to the memory bandwidth. 
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form of locality, where 16 different operations are concurrently active on average. The queuing 
cache achieves greater performance with fewer threads due to its greater efficiency and lower 
operation latency. It achieves a throughput of 150 M operations per second, representing 
improvement factors of 1.15 and 1.30 over the software queuing cache and data cache, 
respectively. 

Figure 7b reports results for 32 threads as the number of queues in the dominating set (90% 
traffic) ranges from 1 to 256. The graph shows that all cache-based models increase with 
dominating set size until the cache capacity is met: 32 for the queuing cache and software 
queuing cache, whereas the larger data cache begins its decline at 64. By examining the hit rates, 
it can be seen that throughput tracks hit rate precisely. The larger data cache maintains a higher 
hit rate, and thus maintains higher throughput longer. All models eventually converge on their 
uniformly random performance levels. 
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Figure 8:  a) Top. Plots throughput versus number of threads under traffic with 

exponentially weighted queues and exponent of 1.1. b) Bottom. Plots throughput 
versus number of threads under traffic with exponentially weighted queues and 
exponent of 1.01. It is evident that traffic with an exponent of 1.1 results in higher 
hit rates and hence higher performance, because the weight is distributed such 
that there is broader locality. 



EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION 
 

17 
 

4.3.3. Exponentially Distributed Queue Weights 
Figure 8 reports throughput when queues have exponentially distributed weights. We use 
exponentially distributed weights because they provide a means of weighting queues more 
realistically than previous traces. As can be seen from the performance plots, the narrower 
exponential distribution shown in Figure 8a results in higher hit rates and throughput than does 
the wider distribution shown in Figure 8b. The first distribution has a moderate amount of broad 
locality; the second spreads the weight over more queues, therefore the larger data cache sees 
better performance by capturing a slightly larger set of active queues. 

4.4. Real-World Workload Results 

Figure 9 shows throughput for the edge and core traces respectively. As expected, the edge trace 
shows moderate locality and hit rates, and hence high-performance in cache-based systems. In 
fact, the throughput results are similar to those seen in the narrow L1.1 exponential synthetic 
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Figure 9:  a) Top. Plots throughput versus number of threads under real-world traffic collected 

at an edge router. b) Bottom. Plots throughput versus number of threads under real-
world traffic collected at the core router. It is evident that the edge traffic has a 
higher degree of temporal locality and hence better hit rates and performance. 
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trace. On edge traffic with 32 threads, the queuing cache achieves throughput of 130 M 
operations per second, representing improvement factors of 1.3 and 1.75 relative to the software 
queuing cache and data cache, respectively. 

The core trace has little locality, low hit rates and, hence, low throughput. As expected, this 
trace features many active queues. Therefore, performance is similar to, but slightly better than, 
the uniformly random case. Under this workload, the cache-based models all converge between 
90-95M operations per second. Once again, the queuing cache is more efficient in achieving peak 
performance. It saturates at 17 threads, compared to 25 for the other cache-based models. 

4.5. Tuning Cache Parameters 
We have performed experiments on several configurations of the data cache. We have changed a) 
the eviction policy from LRU to random, b) the allocation policy from write allocate to no-
allocate, c) the write policy from write back to write through, and d) line size of the cache. We 
didn’t notice more than a single percent point change in the overall system performance with the 
first two changes. The third change, namely the write policy actually deteriorated the 
performance in the setup where the memory had a single shared read and write bus. This is 
because write through policy performs redundant writes, which if not performed, could have been 
used for reads. We have also observed that overall performance deteriorated as we increased the 
cache line size. This is due to the lack of spatial locality between queues. Thus, an increased line 
size results in extraneous memory accesses that fetch entries that are not likely to be used. 
Therefore, we conclude that the best cache configuration for the queuing operations under 
network workloads is a single word per line and write back policy. Allocation and eviction policy 
don’t have significant impact on performance. 

4.6.  Summary 

In the preceding sections, the benefit of caching queue descriptor data has been shown. To 
summarize these caching benefits, we make the following points. 

When contention for a queue is high, keeping the queue descriptor in an on-chip cache 
shortens the serialization path. Therefore, worst-case performance is improved. Of the models we 
considered, the queuing cache had the shortest serialization and therefore the best worst-case 
performance. It improves throughput by factors of 3.1, 1.5, and 2.1 over the system with no 
cache, with a software-controlled cache and with a data cache, respectively. 

When the number of active queues is much greater than the number of queue entries, then 
caching provides little benefit. However, the queuing cache improves efficiency since it achieves 
peak performance with the fewest number of threads, reaching peak performance with only 12 
threads, as opposed to the 18-20 required by the other organizations. 

When the number of active queues is greater than one but not much greater than the cache 
capacity, then this broad locality will greatly increase throughput. In effect, each cache entry can 
support a concurrent operation; this provides operation throughput above that which is achievable 
based on external memory bandwidth. As the number of active queues exceeds the cache 
capacity, the request sequence appears more random and misses begin to dominate. When the 
number of active queues is close to the cache size, the performance of the queuing cache peaks at 
approximately 150M packets/second. As the number of active queues increases, the throughput 
approaches the 90 M packets/second value seen in uniformly random traffic. 
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5. Analysis and Discussion 

In this section, we discuss additional quantitative metrics that can be helpful in evaluating a 
packet queuing memory system, including: workload characterization, operation latency, external 
memory bandwidth, packet queuing instruction count, and on-chip communication bandwidth. 
Table 5 summarizes many of these metrics. 

5.1. Input Characterization 
The input traces can be characterized by the inter-arrival times, where we refer to the inter-arrival 
time as the time elapsed to service all other requests between two requests for the same queue. 
Serialization occurs only when the inter-arrival time is less than the enqueue or dequeue service 
time of a single thread, which we will call the loss threshold. In a fully associative cache, hits are 
guaranteed to occur when the number of inter-arriving packets is less than the cache size, which 
we will call the gain threshold. Above this threshold, misses can occur resulting in no time gain. 
Furthermore, misses are more likely to occur as the inter-arrival time increases. 

By plotting the distribution of inter-arrival times for a given input trace, the performance of a 
queuing system can be estimated. For example in Figure 10, for the single weighted queue trace, 
ninety percent of the inter-arrival times are less than the service time of a single packet, indicating 
that serialization is occurring. On the other hand, the majority of inter-arrival times for the 
random and core traces are above the gain threshold, and therefore a cache gives little benefit.  A 
large percentage of the inter-arrival times for the trace in which 8 queues are heavily weighted lie 
between the loss and gain thresholds, resulting in large time gains and small losses. The 
exponential and edge traces have about 50 percent of inter-arrival times below the gain threshold 
(considering a cache size of 32, and therefore gain threshold of 32 packets serviced) and a small 
fraction below the loss threshold. These trends are reflected in the throughput plots in the 
experiments. 

5.2. Off-Chip Bandwidth 
With no cache, every queue operation results in three off-chip references. Each enqueue operation 
requires one read and two writes to memory. A dequeue requires two reads and one write. Thus 

Model Enqueue 
Latency 

Dequeue 
Latency 

Off-chip 
Bandwidth 

On-chip 
Bandwidth 

Instructions 

Queuing 
Cache 

Te(hit) = 80 ns 
Te(miss) = 120 ns 

Td(hit) = 80 ns 
Td(miss) = 120 ns 

(1-h)*2T+T T 3-4 

Software 
Queuing 
Cache 

Te(hit) = 120 ns 
Te(miss) = 200 ns 

Td(hit) = 120 ns 
Td(miss) = 200 ns 

(1-h)*2T+T 3T 60 

Data 
Cache 

Te(hit) = 130 ns 
Te(miss) = 170 ns 

Td(hit) = 170 ns 
Td(miss) = 210 ns 

(1-h)*2T+T 3T 30 

No Cache Te = 170 ns Td =250 ns 3T 3T 30 

Table 5: Quantitative summary of the characteristics of the four queuing sub-systems. 
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on average, if the system throughput is T, the required off-chip bandwidth will be 1.5*T for both 
reads and writes. For cache based systems with a hit rate of h, the effective bandwidth will get 
reduced by h, and will be (1.5-h)*T for both reads and writes. 

5.3. On-Chip Bandwidth 
A cache-less system without any hardware support for queuing uses the same amount of 
bandwidth on-chip as off. With the addition of a data cache, while the off-chip bandwidth is 
reduced, the on-chip bandwidth stays the same. The software queuing cache adds a small amount 
of on-chip bandwidth due to cache management. A queuing cache significantly reduces the on-
chip bandwidth because an enqueue or dequeue requires only a single instruction. 

5.4. Efficiency 
On the Intel IXP, the queue manager software that controls the Q array structure in the SRAM 
controller (which is similar to our software queuing cache model) requires approximately 60 
instructions. The data cache and cache-less systems each use a smaller number of instructions 
since only the instructions to read and write the queue descriptors, update the queue descriptor, 
and modify the links are required. This requires approximately 30 instructions. A queuing cache 
requires only 3-4 instructions for either an enqueue or dequeue. Thus, a queuing cache simplifies 
the programming of the packet processor. In fact, it frees up resources which are otherwise used 
for queue management. 

5.5. Scalability and Flexibility 
One of the primary advantages of the queuing cache model is its scalability. As has been shown, a 
system with a queuing cache is often able to achieve higher throughput with about half to two-
thirds as many threads. In addition, a queuing cache eliminates the synchronization overhead 
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Figure 10:  Plots the probability distribution of the average inter-arrival time of all 

packets within each queue. It is clear that as we move from a single 
dominant queue to a set of dominant queues to exponentially 
distributed weighted queues and real-world traces, the inter-arrival 
time distribution becomes wider. In the limit, random distributions 
have the widest range of inter-arrival times. 
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which is needed in the other models. The software queuing cache model requires additional on-
chip bandwidth for synchronization. For example, the Intel IXP Q array is kept coherent with a 
CAM at a single micro-engine; this restricts queue operations and management to a single 
processor. Consequently, there is a limit to the number of threads that can be used and, hence, the 
maximum throughput of the system. In a queuing cache, there is no such limitation on either the 
number of threads used for queuing or the location of these threads. Thus, throughput can be 
improved by increasing the number of threads and increasing the size of the queuing cache 
without a large increase in the on-chip bandwidth utilization. Moreover, in the data cache and 
cache-less models, a synchronization mechanism is needed to resolve contention. As we have 
noted, we have not accounted for the synchronization overheads of these systems, and therefore a 
performance loss is likely in a real implementation. 

5.6. Implementation Complexity 
A queuing cache implementation consists of: a fully associative cache to hold the recently 
accessed queue descriptors, logic maintaining the LRU entry for eviction purposes, and an array 
of queuing engines. In order to ensure correct service order within each queue, each arriving 
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Figure 11:  High level organization and circuit diagram of the queuing cache implemented for this 

experimental evaluation. 
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request is placed into a circular buffer. A queuing engine is allowed to choose a request from the 
buffer every clock cycle. This is achieved by using a rotating token method. In order to resolve 
contention involving multiple requests for the same queue, an NxN contention network, where N 
is the maximum number of requesting threads, selects the queues which are not currently in 
service. One of them is chosen by the queuing engine currently holding the token. Subsequently, 
all requests with the same queue ID are automatically masked by the contention network. Thus, 
every engine services a unique queue sequentially. An eviction and an allocation are performed 
on a miss. Since queuing engines are initiated sequentially, only one eviction and allocation in the 
cache can occur during a given clock. 

Once a request is serviced, the engine checks the circular buffer for jobs pending for the 
queue it has just served. A linear search is performed beginning from the position from where the 
last request was picked. This ensures the correct service order within each queue. The high level 
organization and circuit diagram of the queuing cache is shown in Figure 11. 

Table 6 summarizes the combinatorial gate count and flip-flop count estimates of the queuing 
cache, for a configuration in which there are 32 parallel queuing engines and a fully associative 
32 word cache array. The queue ID is assumed to be 16-bits wide, which in turn implies a 
maximum of 64K queues, and packet pointers are 32-bits. 

As we have determined from our (non-optimized) sample implementation, the complexity of 
a queuing cache with 32 entries is comparable to the complexity of a 128-entry, 2-way set 
associative, lock-up free cache that can support 32 concurrent requests.  This indicates that a 
queuing cache is a cost-effective means of improving queuing performance in a robust way.  

6. Conclusion 

This paper describes and evaluates the queuing cache, a hardware cache with a tightly-coupled 
queuing engine. We have shown that a queuing cache can improve packet queuing performance 
over a wide variety of synthetic and real-world workloads relative to a number of alternative 
memory models. The queuing cache improves performance by reducing the number of on- and 
off-chip requests generated, and thereby reducing operation latency. We compare the queuing 
cache to: a cache-less system with no support for queuing, a system with a software-controlled 

Block name Flip Flop 
Count 

Combinatorial 
Logic Gate count 

Request register 
array 

1760 2K 

Contention 
Network 

- 18K 

Queuing engine 
array 

512 5K 

Cache array 1K 4.5K 
Cross connects - 7.5K, 1K 

Table 6: Gate count estimate of the example queuing cache implementation. 
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queuing cache (similar to the mechanism used in the IXP 2XXX network processors), and a 
system with a data cache. Under worst-case conditions, when all packets belong to a single queue, 
the queuing cache provides throughput improvement factors of 3.1, 1.5, and 2.1 over these 
models, respectively. Under uniformly random traffic, all organizations saturate external memory 
bandwidth and achieve the same performance, but the queuing cache shows greater efficiency by 
requiring 33%-40% fewer threads to achieve maximum performance. As expected, when locality 
exists in a workload, all cache-based models see improved performance. In a real-world trace of 
edge Internet traffic, the queuing cache improved throughput by factors of 2.6, 1.3 and 1.75, 
respectively. The queuing cache also results in gains in on-chip bandwidth, off-chip memory 
bandwidth, and programmer ease-of-use. Finally, our RTL-style VHDL implementation 
demonstrates that the footprint of a queuing cache is not too large, making it a highly cost-
effective means of improving queuing performance. 
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