
Journal of Instruction-Level Parallelism 10 (2008) 1-24 Submitted 10/06; published 6/08

Exploiting Locality to Ameliorate Packet Queue
Contention and Serialization

Patrick Crowley PCROWLEY@WUSTL.EDU
Sailesh Kumar SAILESH@ARL.WUSTL.EDU
John Maschmeyer JRM5@CEC.WUSTL.EDU
Department of Computer Science and Engineering
Applied Research Laboratory
Washington University
One Brookings Drive
St. Louis, MO 63130-4899 USA

Abstract
Packet processing systems maintain high throughput despite relatively high memory latencies

by exploiting the coarse-grained parallelism available between packets. In particular, multiple
processors are used to overlap the processing of multiple packets. Packet queuing—the
fundamental mechanism enabling packet scheduling, differentiated services, and traffic
isolation—requires a read-modify-write operation on a linked list data structure to enqueue and
dequeue packets; this operation represents a potential serializing bottleneck. If all packets awaiting
service are destined for different queues, these read-modify-write cycles can proceed in parallel.
However, if all or many of the incoming packets are destined for the same queue, or for a small
number of queues, then system throughput will be serialized by these sequential external memory
operations. For this reason, low latency SRAMs are used to implement the queue data structures.
This reduces the absolute cost of serialization but does not eliminate it; SRAM latencies determine
system throughput.

In this paper we observe that the worst-case scenario for packet queuing coincides with the
best-case scenario for caches: i.e., when locality exists and the majority of packets are destined for
a small number of queues. The main contribution of this work is the queuing cache, which consists
of a hardware cache and a closely coupled queuing engine that implements queue operations. The
queuing cache improves performance dramatically by moving the bottleneck from external
memory onto the packet processor, where clock rates are higher and latencies are lower. We
compare the queuing cache to a number of alternatives, specifically, SRAM controllers with: no
queuing support, a software-controlled cache plus a queuing engine (like that used on Intel’s IXP
network processor), and a hardware cache. Relative to these models, we show that a queuing cache
improves worst-case throughput by factors of 3.1, 1.5, and 2.1 and the throughput of real-world
traffic traces by factors of 2.6, 1.3, and 1.75, respectively. We also show that the queuing cache
decreases external memory bandwidth usage, on-chip communication, and the number of queuing
instructions executed under best-case, worst-case and real-world traffic workloads. Based on our
VHDL models, we conclude that a queuing cache could be implemented at a low cost relative to
the resulting performance and efficiency benefits.

* An early version of this manuscript appeared in ACM Computing Frontiers 2006.

CROWLEY, KUMAR AND MASCHMEYER

2

1. Introduction

Packet queues represent a critical serialization point in packet processing systems. An arriving
packet is inserted into a queue based on the router’s classification policy, with the assigned queue
representing the type of service the packet should receive. Similarly, when a packet is scheduled
for transmission, the scheduler removes it from its queue. Queues are implemented as linked lists,
and these operations require read-modify-write operations on the queue descriptor that keeps
track of the start, end and size of the queue. When multiple queues are simultaneously active, the
read-modify-write operations can be carried out in parallel. Modern packet processing systems
use coarse-grained parallelism, in the form of multiple on-chip processors and memory
controllers, to exploit this situation. However, the most challenging requirement is to provide
good performance for consecutive operations on the same queue due to the lack of opportunity
for parallelism. The worst-case, performance-limiting scenario in modern packet processing
systems arises when there is high contention for a small number of queues.

High-performance systems must support a large number of such queues; therefore queue
descriptors are kept in off-chip memory. In high-speed networks, packet inter-arrival times rival
memory access times, so SRAMs are used for this purpose. For example, QDR SRAM has an
effective access latency of at least 15 to 20 ns, when chip to chip interconnects are accounted for,
and the minimum packet arrival time in an OC-768 link is 8 ns. Therefore, when serialization
occurs in a small number of queues, the latency to perform read-modify-write operations through
off-chip memory will determine performance.

In this paper, we observe that contention for a small number of queues is a form of locality,
and is therefore ideal for a cache. We propose the queuing cache, an on-chip, hardware-based
cache for chip-multiprocessors that supports queue operations directly. In our evaluation, we
compare queuing cache performance to: 1) an unmodified system with no queuing or cache
support, 2) a base system augmented with a hardware data cache, and 3) a system with a
software-managed queuing cache. We show that the queuing cache provides superior throughput
over a wide range of synthetic and real-world workloads, while increasing efficiency by reducing
on-chip communication, reducing memory bandwidth, and reducing the number of instructions
executed in software.

The rest of this paper is organized as follows. Section 2 provides background on network
processor (NP)-based packet processing systems. Section 3 describes the queuing cache as well as
other traditional memory system models for packet queuing; the section also introduces an
analytical performance model. Section 4 presents our experimental evaluation of the queuing

Switch
Fabric

Link Interface

Ingress NP

Egress NP

SRAM DRAM

Fabric InterfaceSRAM DRAM

P
hysical Ports

Figure 1: A Network Processor-based router line card.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

3

cache and the alternate models. Section 5 provides an analysis of the results and elaborates
queuing cache implementation details. Finally, the paper concludes in Section 6.

2. Packet Processing Systems

The organization of an NP-based router line card is shown in Figure 1. There are variations
among line cards, including those that augment NPs with queue management chipsets [17], but
the overall organization and use of SRAM and DRAM for queuing, as described below, are
common to all variations. In both the ingress and egress directions, an NP sits between the switch
fabric and the physical interface. The switch fabric carries traffic between line cards. The physical
interface may consist of a single link, such as 10 Gb Ethernet or SONET, or a collection of slower
links, such as 10/100 Mb Ethernet or DSL.

To increase the number of instructions and memory operations that can be applied to each
packet while meeting a target line rate, NPs are typically organized as highly-integrated chip-
multiprocessors. For example, Intel’s IXP2800 [1] features 16 pipelined processors, called micro-
engines (MEs), each of which support 8 thread contexts and zero cycle context switches in
hardware. The chip also integrates 4 QDR SRAM controllers and 3 Rambus DRAM controllers,
along with many other hardware units unrelated to queuing. In line cards like this, both SRAM
and DRAM are used to implement packet queues. Queues and their descriptors are kept in
SRAM, while the packets are kept in DRAM. The scheduling discipline is implemented in
software on one or more processors.

2.1. Packet Queues
Packet queues are used to provide packet scheduling, QoS, and other types of differentiated
services to packet aggregates. Many routers use a three-level queue hierarchy, where the first
represents physical ports, the second represents classes of traffic and the last level consists of
virtual output queues. Each ingress NP maintains a queue for each output port to eliminate head-
of-line blocking; each of these output port queues has a number of class queues associated with it
in order to enable service differentiation and QoS; each of these class queues consists of per-flow
virtual output queues which allow individual flows to be shaped, e.g., by throttling unresponsive
flows that are causing congestion.

Each incoming packet is enqueued into some virtual queue, and the status for the
corresponding class and physical queues are updated to record the activity. A similar sequence
occurs when a packet is dequeued from a virtual queue by the scheduler. Scheduling is typically
carried out from root to leaf; i.e., first, the port is selected according to the port selection policy,
then a class from the selected port is chosen which is followed by a virtual queue selection. It is
important to note that one enqueue and one dequeue are expected during each packet
arrival/departure period. Since both operations involve updates to shared queues, serialization can
occur.

In order to provide good memory utilization, virtual queues are typically kept in a linked list
data structure [17]. Port and class queues, however, are only kept in a linked list data structure
when the selection policy for class and virtual queue is ring-based. Round robin or weighted
deficit round robin [18] are examples of ring based selection policies, where the next selection is
the next link in the ring of active queues.

A queue’s status needs to be updated for every incoming and outgoing packet, so that
scheduling can be carried out efficiently. For example, many packet scheduling algorithms use

CROWLEY, KUMAR AND MASCHMEYER

4

queue occupancies as inputs. For this reason, some architectures pass every enqueue and dequeue
command to the scheduler, which manages its own local queue status database. This keeps the
scheduler from either using stale information or making frequent queue descriptor read requests.

2.2. A Packet Processing Pipeline
Packet processing is typically implemented as a pipeline consisting of multiple processor stages.
Whenever a stage makes heavy use of memory (e.g., queue operations), multiple threads are used
to maintain good throughput despite relatively high memory latencies. The processing pipeline
generally consists of the following tasks, each typically mapped to its own processor(s).
1. Packet assembly. Several interfaces deliver packets in multiplexed frames or cells across

different physical ports.
2. Packet classification. Incoming packets are mapped to a queue.
3. Admission control. Based on the QoS attribute of the queues, such as a maximum size,

packets are either admitted or dropped.
4. Packet enqueue. Upon admission, the packet is buffered in the DRAM, and the packet

pointers are enqueued to the associated queues. Most architectures buffer the packet in
DRAM at the first stage and then deallocate the buffer later if the packet is not admitted.

5. Scheduling and dequeue. The scheduler selects the queues based on the QoS configuration,
and then a packet is dequeued and transmitted.

6. Data Manipulation, Statistics. A module may perform statistics collection and data
manipulation based on the configuration. Packet reordering, segmentation and reassembly
may also be performed.

2.3. Queue Operations and Parallelism
Both the queue descriptors, consisting of head and tail pointers and the queue length, and the
linked lists (i.e., the queues) are stored in SRAM. SRAM and DRAM buffers are allocated in
pairs, so that the address of the linked list node in SRAM implicitly indicates the packet address
in DRAM. Thus, the linked lists in SRAM only contain next-pointer addresses.

With this structure, every enqueue and dequeue operation involves an external memory read
followed by a write operation. Recall that since the access time of external memory requires
many processor cycles, multiple threads are used to hide the memory latency. A system can be
balanced in this way by adding processors and threads, so long as each thread accesses a
different queue. As soon as threads start accessing the same queue, the parallelism is lost and all
operations are serialized, since every queuing operation involves a read followed by write, and
the write back is always based on the data that was read. In the worst case, all threads compete for
the same queue and progress is serialized, regardless of the number of processors or threads.

As we will show, using an on-chip cache for queue descriptors can improve this worst-case
performance.

2.4. Related Work
The importance of packet queuing in routers and switches has been motivated and discussed in
the literature [14],[15],[16]. The majority of research on high-performance memory systems for
networking has focused on optimizing packet buffer memory bandwidth. Researchers from
Stanford University have proposed several schemes to buffer packets into DRAM at very high
speeds [5],[6],[7],[10]. A group at ICS FORTH has proposed several ASIC based architectures to

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

5

efficiently perform the packet buffering and manage large number of queues at very high speeds
[13].

Another branch of related work has focused on maximizing the utilization of available
DRAM technologies. McKee et al. have proposed a number of mechanisms to maximize DRAM
bandwidth in streaming computations [11]. Rixner et al. have proposed a related performance
enhancement via efficient memory access scheduling [8]. Techniques to effectively reduce
DRAM latency have also been proposed [9]. Hasan et al. have shown an approach to efficiently
utilize the available DRAM bandwidth on a network processor [4].

The challenges of packet buffer design and DRAM utilization are important, but orthogonal
issues. In this work, we directly improve the performance of packet queue data structures whose
worst-case performance limits the performance of existing programmable packet processing
systems.

The software-controlled Q array structure in the Intel IXP 2XXX family of NPs is similar to
the software-managed queuing cache discussed in Section 3.3. In the IXP, the software cache is
managed and kept coherent by using a CAM in a processor (i.e., a micro-engine). The CAM
keeps track of the mapping between queue descriptor ID and cache entry, as well as the location
of the LRU entry for eviction purposes. As shown in this paper, using a hardware-managed
queuing cache in the memory controller greatly increases performance while also improving the
overall efficiency.

3. Memory System Models

In this section, we will describe the structure of the queuing cache and its alternatives—a base
system with no cache or queuing support, a data cache, and a software-controlled queuing
cache—as well as how queue operations are carried out on each organization. We conclude this
presentation of memory models with a brief analysis of the alternatives.

DRAM
Controllers

(Packet Data)

SRAM
Controllers

Queue support

P P P P

On-Chip
SRAM

P P P P

P P P P

P P P P

I/O
Interface

(e.g., SPI)

Control
ProcessorCoprocessors

(e.g.,hash, crypto)

…

…

DRAM
Controllers

(Packet Data)

SRAM
Controllers

Queue support

P P P P

On-Chip
SRAM

P P P P

P P P P

P P P P

I/O
Interface

(e.g., SPI)

Control
ProcessorCoprocessors

(e.g.,hash, crypto)

…

…

Figure 2: Structure of the NP architecture with shared interconnect for memory and
other resources. Each processor (P) is assumed to be multithreaded. The
queuing subsystem involves processors, DRAM, and SRAM. HW-based
queuing support would be integrated at the SRAM controllers.

CROWLEY, KUMAR AND MASCHMEYER

6

3.1. Architecture and Memory Organization
Figure 2 shows the structure of our basic system. It is a highly integrated system, featuring
multiple processors, each multithreaded, and memory channels all sharing a bus-based
interconnect. This general organization is common among chip multiprocessors and network
processors [2].

Since we are modeling a shared memory in a multiprocessor system, memory consistency is a
critical issue. Specifically, our requirement is that requests for a particular queue occur in the
correct order without corrupting the queue descriptor data structure.

The queuing cache synchronizes access to a given queue automatically. For the other memory
organizations, we model a zero-cost synchronization mechanism that assures ordered, coherent
access to all queues. A real system would require some sort of software synchronization to
maintain consistency, but these costs are not accounted for in the non-queuing cache models.
Adding a realistic synchronization mechanism would greatly increase the complexity of the
alternate models. As we will see, the queuing cache provides superior performance despite this
disadvantage.

An enqueue operation in the base model involves three memory references, a) initially the
queue descriptor is read, b) then the arriving packet is linked to the queue’s tail, and c) finally the
updated queue descriptor (tail) is written back. The last two references can be carried out
concurrently, as they are independent writes. A dequeue operation also involves three memory
references, a) initially the queue descriptor is read, b) then the next node of the head is read
(which will become the new head), and c) finally the updated queue descriptor (head) is written
back. All three references, in this instance, must be carried out sequentially.

The time needed to complete a given memory reference depends on two factors: 1) the
external memory latency and 2) the latency of the shared interconnect between the processor and
the memory interface. This second factor is considerable and can rival or exceed external memory
latency in highly-integrated CMPs, even in unloaded systems (i.e., those without interconnect
contention).

System type System parameter Value

Base CMP
parameters

Interconnect clock frequency 400 MHz

Memory access time (round trip) 40 ns

Interconnect bus w idth 8 w ords

Processor clock frequency 1 GHz

Interconnect delay (round trip) 40 ns

Synchronization server delay 0 ns

Memory clock frequency 200 MHz

Total instruction cycle time 10 ns

Cache access time 2.5 ns

Softw are cache
CAM access latency 5 ns

Total instruction cycle time 35 ns

Queuing cache Total instruction cycle time 5 ns

Table 1: Parameters chosen for the base multithreaded CMP queuing system model.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

7

3.2. General-Purpose Data Cache
A data cache can be placed between the queue descriptor memory hierarchy and the processors. It
provides no direct support for queuing operations, but can shorten the load/store latency for
operations applied to cached queue descriptors. Figure 4 illustrates this effect, as well as the
corresponding operations for all the implementations. Since there is little re-use in the linked list
memory, the cache only needs to hold the recently accessed queue descriptors. In addition, for
good performance it must be able to service multiple requests concurrently, and hence the cache
must be lock-up free [3]. The data cache improves queuing performance as long as there is some
locality in the queue descriptor accesses. Since a hit does not require an external memory access,
the cost of serialization is reduced. However, the interconnect latency persists.

3.3. Software-controlled Queuing Cache
The cost of serialization can also be reduced with the addition of a small linked list processor
(also referred to as a queuing engine) and a software-controlled cache between the queue
descriptor memory hierarchy and the processors. This is the approach used in Intel’s NPs. The
linked list reads and writes will be handled internally by the cache, resulting in interconnect
latency savings. Each thread sends an enqueue or dequeue command to the cache and the cache
performs the link list read or write followed by the queue descriptor update. However, since the
cache is software controlled, before issuing an enqueue or a dequeue command, threads must
ensure that the queue descriptor is cached. If it is not cached, then threads need to issue
commands in order to evict an entry and bring in the appropriate queue descriptor to the cache.
Thus, threads issue two commands on a miss and one command on a hit, in order to service an
enqueue or a dequeue request. In addition, the synchronization must be carried out by the threads.

3.4. Queuing Cache
A queuing cache is a small fully associative cache with tightly coupled queuing engines. It
reduces the interconnect latency by enabling the threads to issue only one command for an
enqueue or dequeue operation. The Queuing cache internally manages the queue descriptor cache
and performs the appropriate queuing operations on a hit or miss. Furthermore, a queuing cache
operates in parallel and accepts commands from multiple threads (i.e., it is also lock-up free).
When multiple requests are destined to a single queue, it ensures that all requests are serviced
without any contention and in the correct order. Thus, individual threads need not maintain
synchronization or packet ordering. We consider a particular queuing cache design and its
implementation costs in Section 5.

3.5. Summarizing the Queuing Sub-systems
The four alternatives are best differentiated by considering how they 1) reduce the number of off-
chip memory accesses, and 2) reduce the number of operations sent across the shared on-chip
interconnect.

The three cache-based schemes all reduce external memory accesses, and thereby reduce
latency, on a hit—this is the traditional benefit of caching. The two schemes that employ queuing
engines, the queuing cache and software managed queuing cache, reduce the number of memory
commands sent by sending queue operations rather than the memory references that implement
them. The software managed cache, however, must send cache management operations on
misses, so the benefit is reduced.

CROWLEY, KUMAR AND MASCHMEYER

8

a) b)

Queue descriptor
memory controller

Queue node
memory controller

c)

Queue descriptor
memory controller

Queue node
memory controller

Miss

d)

Queue descriptor
memory controller

Queue node
memory controller

Miss

Queue descriptor
memory controller

Queue node
memory controller

General purpose
shared cache

Miss

Read/write Load/store Read/Write

Allocate/Evict/Enqueue/Dequeue Enqueue/Dequeue

Read/write

. . .

.

. . .

Software cache +
link list processor

Queuing cache

Figure 3: High level schematic diagram and communications involved in the queuing sub-
system a) without any cache, b) with data cache, c) with software-controlled cache
and linked list processor, and d) queuing cache. The communication across the shared
interconnect in order to perform an enqueue or dequeue is also highlighted.

System Enqueue operation Dequeue operation
System
with
/without
data cache

enqueue(pkt_ptr, queue) {
 // First grab the lock
 grab_lock();
 // Read in the queue tail
 tail = load_tail(queue);
 // Link old tail to new pkt
 wr_link_mem(tail, pkt_ptr);
 // Update and store tail
 tail = pkt_ptr;
 store_tail(queue, pkt_ptr);
}

pkt_ptr dequeue(queue) {
 // First grab the lock
 grab_lock();
 // Read in the queue head
 head = load_head(queue);
 // Read next pkt from head
 new_head = rd_link_mem(head);
 // Store the new head
 tail = pkt_ptr;
 store_head(queue, new_head);
 return head;
}

System
with
software
controlled
cache

enqueue(pkt_ptr, queue) {
 //wait until queue is free via CAM
 grab_lock();
 //hit => my_entry is cache location
 my_entry = lookup_cache();
 if (my_entry = -1) { // Miss
 // Evict LRU entry from cache
 my_entry = lru_cache;
 evict_from_cache(my_entry);
 // Set the in use bit
 set_inuse_bit(my_entry);
 // Load tail in LRU location
 load_tail(queue, my_entry);
 }
 enqueue(pkt_ptr, my_entry);
}

pkt_ptr dequeue(queue) {
 //wait until queue is free via CAM
 grab_lock();
 //hit => my_entry is cache location
 my_entry = lookup_cache();
 If (my_entry = -1) { // Miss
 // Evict LRU entry from cache
 my_entry = lru_cache;
 evict_from_cache(my_entry);
 // Set the in use bit
 set_inuse_bit(my_entry);
 // Load head in LRU location
 load_head(queue, my_entry);
 }
 head = dequeue(pkt_ptr, my_entry);
 return head;
}

System
with
queuing
cache

enqueue(pkt_ptr, queue) {
 // Implemented in queuing cache
 enqueue(pkt_ptr, queue);
}

pkt_ptr dequeue(queue) {
 // Implemented in queuing cache
 return dequeue(queue);
}

Table 2: Pseudo-code of the operations performed at each thread in the four queuing subsystem
models.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

9

The differences in on-chip and off-chip communication can be seen in Figure 3, where the
queue operations and their resulting memory interactions are illustrated for each implementation.
In order to compare the operational differences in concrete terms, Table 2 provides pseudo-code
for each subsystem implementation, for both enqueue and dequeue operations. The operational
timelines shown in Figure 4 illustrates the individual contributors to enqueue and enequeue
latency.

Figure 4: Illustration of the time line for servicing enqueue and dequeue requests in, a) system

without any cache or explicit support for queuing, b) system with general purpose data
cache for queue descriptors, c) system with software controlled cache and linked list
processing capability, and d) system with queuing cache.

CROWLEY, KUMAR AND MASCHMEYER

10

3.6. Initial Comparative Analysis
Table 3 compares each of the sub-system implementations according to their treatment of a
selection of key characteristics: queue contention resolution, maintaining packet order, instruction
overhead for queue management, on-chip communication bandwidth, and off-chip bandwidth.

We have also developed an intuitive model that can be used to analytically determine the
peak throughput of the various queuing sub-system models. In this model, peak throughput is
achieved when enough threads are used to saturate memory bandwidth, and, hence, additional
threads will offer no benefit. Our analytical method is based on the concept of time gained and
lost. Time refers to the real processing time of a single thread. Time lost refers to the total real
processing time lost by a thread due to stalls. Time gained implies the total real processing time
saved by a thread due to a cache hit. We will now quantify the time lost and gained.

Theoretically, the highest throughput is achieved when every thread accesses distinct queues
and the time required to perform a single enqueue or dequeue is Te/n or Td/n, respectively. Te and
Td, respectively, are the individual enqueue and dequeue service times, and n is the total number
of threads. Note that these times will vary across different queuing sub-systems. When there is
complete contention, all but one contending thread get stalled. The time lost during such stalls
will be, ∑

∈

−=
packets all

))((*))((
i

opl itfitTT , where Top is the time required to service the current

enqueue or dequeue operation, t(i) is the time since the last operation on the same queue, and, f(x)
is a unit step function with a step at Top. Thus f(x) is one when x is greater than Top, and zero
elsewhere. That is, if the next operation for queue arrives before the current one is complete,
stalls will result.

A cache hit saves the processing time of a single thread and the savings amounts to Te(miss) –
Te(hit) for an enqueue and Td(miss) – Td(hit) for a dequeue. Note that the time saved during enqueues
and dequeues is the same in our context. The time saved, Ts, in a cache based system with a hit

Characteristics No caching Data cache Software-controlled
cache

Queuing cache

Queue
contention

Threads resolve
cooperatively. May
need hardware support
for synchronization

Same as previous Threads resolve
contention with the aid of
fully associative cache
array

Internally
resolved by the
queuing cache

Packet order Threads must ensure
correct packet service
order. Adds complexity
and thread stalls

Same as previous Same as previous Packet service
order is always
ensured by the
queuing cache

Instruction
count for
queuing

~30. May vary based on
ISA

~30. May vary
based on the ISA

~60. May vary based on
the ISA

3-4

Communication
at the shared
inter-connect

Read QD
Write QD
Read/Write link list

Same as previous Issue 1 (evict and allocate)
Issue 2 (enqueue/dequeue)

A single Issue
(enqueue/
dequeue)

QD bandwidth No reduction Reduction = hit
rate

Same as previous Same as
previous

Table 3: Table summarizing the characteristics of each of the four queuing sub-system models.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

11

rate of h is given by ∑
∈

−=
packets all

*)(
i

hitmisss hTTT . Thus, the time needed to service Ne enqueues and

Nd dequeues in a system is given by sl
ddee TT

n
TNTN

−+
+ ** .

In the next sections, we will show how the time lost due to serialization and the time gained
due to cache hits influence the system throughput. In Section 5, we will revisit this model with
insights gained from the experimental results.

4. Experimental Evaluation

In this section, we evaluate the performance of each queuing sub-system under a variety of
synthetic and real-world workloads. Since our goal is to measure queuing performance, queuing
subsystem remains the bottleneck. Our aim is to show which queuing organization provides the
best performance and efficiency.

4.1. Simulation Methodology

We use a mix of behavioral and RTL-style VHDL to simulate our system and memory models.
RTL was used to model the control and logic details of the queuing cache and other units, and
behavioral VHDL was used to model processor activity, interconnect paths and arbitration, and
memory structures. We have built a base CMP model with hardware support for multithreading in
behavioral VHDL and developed three variants of queuing sub-systems around it.

4.1.1. Base Multithreaded CMP model
The parameters chosen for our base CMP system are shown in Table 1. These parameters closely
approximate those found in Intel’s IXP NPs. In the data cache model, we add a cache with
support for the following parameters: associativity, line size, capacity, number of miss status
holding registers (MSHRs), optional write-allocation, write-through or write-back, and LRU or
random replacement [20]. In the software controlled cache model we have attached the cache
array and queuing engine at the memory controller. In the queuing cache model, we have added
the RTL design of the queuing cache at the memory controller.

In most experiments, the queuing cache and the software-controlled cache were configured
with 32 fully associative entries and 32 queuing engines. However, the data cache was configured
to be 2-way set associative with 128 words. This is because this data cache configuration had a)
the best performance to complexity ratio, and b) an area footprint equivalent to the queuing cache
and software controlled cache [12].

4.1.2. Synchronization
As described in Section 3, synchronization between queues is necessary when performing parallel
operations in order to prevent packet reordering and to keep queue data structures coherent. Of
the structures modeled in this paper, only the queuing cache accounts for the overhead costs of
synchronization, since the associated logic was implemented inside it. The other models would
require some kind of software-based synchronization involving locks. Our other models do not
implement these software mechanisms, but if they did the net effect would be greater operation
latency and communication bandwidth. By not including the costs of synchronization in the non-
queuing cache solutions, we over-estimate the performance and efficiency of these models. As we
will see, the queuing cache gives strong relative performance despite this disadvantage.

CROWLEY, KUMAR AND MASCHMEYER

12

4.1.3. Workloads
When performed collectively by multiple threads, queuing throughput can be highly sensitive to
the workload. As we have noted, system throughput is determined by the fraction of current
operations that can proceed in parallel. To evaluate a range of possibilities, we have gathered a
collection of synthetic and real-world packet traces. Each trace has a different concentration of
packets to queues.

For real-world workloads, we use two traces: a network-edge trace from NLANR [22] that
consists of traffic recorded on an OC-3 link between a University and the Internet, and a core
Internet trace from CAIDA [21] that consists of traffic taken from an OC-48 link connecting two
backbone routers. Traffic is mapped to the queues by applying a hash function on the packet
header.

Our synthetic traces were designed to capture a wide range of temporal locality in queue
references. In order to generate various synthetic traces, we modeled a packet arrival and
departure server. At the arrival server, packets arrived for each queue according to a Poisson
process [19]. In order to model the varying rates of each queue, we assign each queue a different
Poisson process parameter1, λ. The departure server modeled an approximate deficit round robin

1 1/ λ is the mean of the exponential random variable of the Poisson process.

Workload type Notation Distribution of
λ across
queues

Description

Logarithmic Lk Exponential The weights of each queue were
exponentially distributed. Thus,
λi = k* λi-1

Uniformly random R Uniform Weights of all queues were same, λ.
Strictly uniform U n.a. The arrival process, instead of being

Poisson, is a round robin one, in which
queues send packets in a round robin
order. It results in no temporal locality.

Set dominating SDn_k Two sets of
uniform

A set of n equal priority queues had
captured k% of the bandwidth and
remaining (N-n) queues took the
remaining bandwidth. Thus,
n* λ1 = k/(100-k)* (N-n)* λ2, where λ1
and λ2 are the mean inter-arrival time of
first and second set of queues
respectively.

Single dominating SD1_k Two sets of
uniform

This is the limiting case of the previous
workload, wherein the value of n is one.

Table 4: Description of the synthetic workloads, their notation and the distribution of
parameters.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

13

selection1 [18], wherein a queue with a higher rate and backlog sends not only more packets but is
also likely to send them in larger bursts. Our sets of synthetic workloads are described in Table 4.

4.1.4. Description of the Notation in Graphs and Tables
We use the following notation for each experimental curve:
Workload_type.System_type.Cache_size.Cache_type. The notation for Workload_type is
described in Table 4. System_type is, a) sqc for software-controlled cache, b) nc for base system,
c) dc for data cache, and d) qc for queuing cache. Thus, SD1_70.sqc.32.fa indicates that a) the
traffic type is single dominating queue taking 70% of the link capacity, b) system is software-
controlled cache, c) the cache array size is 32, and d) it is fully associative.

4.2. Results with Uniformly Random Traffic
Figure 5 shows the queuing throughput, in millions of packets per second, of each queuing sub-
system organization on a uniformly random workload. This situation corresponds to the best-case
scenario in a multithreaded system without caches, in which all operations can operate in parallel.
In this workload, there are a large number of active queues, and packets are spread equally. Thus,
there is no queue locality or contention, as reflected by the low, near-zero hit rates. All models
saturate at slightly over 80M operations per second. The queuing cache has a greater slope,
however, and achieves peak performance with only 12 threads as compared to the 18-20 threads
required by the others.

This result shows that the queuing cache is more efficient, i.e. needs fewer concurrent
operations, in achieving peak performance. We also note that this performance level is peak
performance achievable in a system without a cache.

1 Deficit round robin (DRR) is a class of fair queuing algorithm and is widely used commercial routers.

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

No of threads

Th
ro

ug
hp

ut
, m

ill
io

n
pa

ck
et

s
/ s

ec

R.nc
R.sqc.32.fa
R.qc.32.fa
R.dc.128.2way
Hit (queuing $)
Hit (data $)

100

80

60

40

20

0

H
it

ra
te

 (%
)

Figure 5: Plots throughput versus number of threads under a uniformly random workload. The
hit rate for cache-based systems is also shown.

CROWLEY, KUMAR AND MASCHMEYER

14

4.3. Results with Weighted Random Traffic

4.3.1. A Single Dominating Queue
Figure 6a reports throughput for a trace consisting of traffic dominated by a single queue that
carries 30% of all packets, with the remaining traffic spread uniformly over a large number of
queues. This scenario presents a moderate amount of narrow locality, since 30% of all packets
target a single queue. Therefore we see higher hit rates, around 30%, and more contention.
Clearly, this locality is dominated by the costs of serialization, since performance for all models
is worse than that of the uniformly random case. Here, the queuing cache achieves superior
performance due to its shorter serialization path.

Figure 6b reports the throughput with 32 threads as the weight of the single dominating queue
varies from 5% to 100% of the total traffic. As can be seen, the cache-based models see initial

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
No of threads

Th
ro

ug
hp

ut
, m

ill
io

n
pa

ck
et

s
/ s

ec

S1_30.nc
S1_30.sqc.32.fa
S1_30.qc.32.fa
S1_30.dc.128.2way
Hit (queuing $)
Hit (data $)

100

80

60

40

20

0

Pe
rc

en
t (

%
)

0

20

40

60

80

100

120

140

160

5 15 25 35 45 55 65 75 85 95
Weight of a single dominating queue

Th
ro

ug
hp

ut
, m

ill
io

n
pa

ck
et

s
/ s

ec

S1_x.nc
S1_x.sqc.32.fa
S1_x.qc.32.fa
S1_x.dc.128.2way
Hit (queuing $)
Hit (data $) 100

80

60

40

20

0

H
it

ra
te

 (%
)

No of threads = 32

Figure 6: a) Top. Plots throughput versus number of threads under traffic with a single

dominating queue utilizing 30% of the link capacity. b) Bottom. Plots throughput
versus weight of a single dominating queue for systems with 32 threads. This
simulates gradually increasing locality. We note that small weights improve the
performance of cache-based systems and as locality increases, serialization degrades
the performance.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

15

benefit as the weight increases, rise to a peak, and then eventually descend to the worst-case
performance levels. The initial benefits are due to the increased hit rates while the eventual
decline is due to serialization of traffic at a single queue. The queuing cache has the highest peak,
and maintains it over the widest range of weights. But locality ceases to be a benefit for the
queuing cache beyond a weight of 20%, whereas the other cache-based models lose the benefit of
locality at around 10%. As expected, hit rates increase with the queue weight.

4.3.2. A Set of Dominating Queues
We now consider workloads that extend the locality from one queue to a set of queues. Figure 7a
shows throughput when a set of 16 dominating queues accounts for 90% of all traffic. As
expected, hit rates are high, between 75% and 90%, and the cache-based models achieve
performance greatly in excess of the memory bandwidth limit. This scenario represents a broader

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
No of threads

Th
ro

ug
hp

ut
, m

ill
io

n
pa

ck
et

s
/ s

ec

S16_90.nc
S16_90.sqc.32.fa
S16_90.qc.32.fa
S16_90.dc.128.2way
Hit (queuing $)
Hit (data $)

100

80

60

40

20

0

H
it

ra
te

 (%
)

0

20

40

60

80

100

120

140

160

1 32 64 96 128 160 192 224 256
No of dominating queues

Th
ro

ug
hp

ut
, m

ill
io

n
pa

ck
et

s
/ s

ec

Sx_90.nc
Sx_90.sqc.32.fa
Sx_90.qc.32.fa
Sx_90.dc.128.2way
Hit (queuing $)
Hit (data $)

100

80

60

40

20

0

H
it

ra
te

 (%
)

No of threads = 32

Figure 7: a) Top. Plots throughput versus number of threads under traffic with a set of 16

dominating queues, which take 90% of the link capacity. b) Bottom. Plots
throughput versus number of dominating queues for systems with 32 threads and
the dominant queues take 90% of the link capacity. This simulates gradually
decreasing locality. We see that as the number of dominant queues approaches the
cache size, performance gets maximized and afterwards, as the hit rates fall, the
performance approaches to the memory bandwidth.

CROWLEY, KUMAR AND MASCHMEYER

16

form of locality, where 16 different operations are concurrently active on average. The queuing
cache achieves greater performance with fewer threads due to its greater efficiency and lower
operation latency. It achieves a throughput of 150 M operations per second, representing
improvement factors of 1.15 and 1.30 over the software queuing cache and data cache,
respectively.

Figure 7b reports results for 32 threads as the number of queues in the dominating set (90%
traffic) ranges from 1 to 256. The graph shows that all cache-based models increase with
dominating set size until the cache capacity is met: 32 for the queuing cache and software
queuing cache, whereas the larger data cache begins its decline at 64. By examining the hit rates,
it can be seen that throughput tracks hit rate precisely. The larger data cache maintains a higher
hit rate, and thus maintains higher throughput longer. All models eventually converge on their
uniformly random performance levels.

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
No of threads

Th
ro

ug
hp

ut
, m

ill
io

n
pa

ck
et

s
/ s

ec

L1.1.nc
L1.1.sqc.32.fa
L1.1.qc.32.fa
L1.1.dc.128.2way
Hit (queuing $)
Hit (data $)

100

80

60

40

20

0

H
it

ra
te

 (%
)

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
No of threads

Th
ro

ug
hp

ut
, m

ill
io

n
pa

ck
et

s
/ s

ec

L1.01.nc
L1.01.sqc.32.fa
L1.01.qc.32.fa
L1.01.dc.128.2way
Hit (queuing $)
Hit (data $)

100

80

60

40

20

0

H
it

ra
te

 (%
)

Figure 8: a) Top. Plots throughput versus number of threads under traffic with

exponentially weighted queues and exponent of 1.1. b) Bottom. Plots throughput
versus number of threads under traffic with exponentially weighted queues and
exponent of 1.01. It is evident that traffic with an exponent of 1.1 results in higher
hit rates and hence higher performance, because the weight is distributed such
that there is broader locality.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

17

4.3.3. Exponentially Distributed Queue Weights
Figure 8 reports throughput when queues have exponentially distributed weights. We use
exponentially distributed weights because they provide a means of weighting queues more
realistically than previous traces. As can be seen from the performance plots, the narrower
exponential distribution shown in Figure 8a results in higher hit rates and throughput than does
the wider distribution shown in Figure 8b. The first distribution has a moderate amount of broad
locality; the second spreads the weight over more queues, therefore the larger data cache sees
better performance by capturing a slightly larger set of active queues.

4.4. Real-World Workload Results

Figure 9 shows throughput for the edge and core traces respectively. As expected, the edge trace
shows moderate locality and hit rates, and hence high-performance in cache-based systems. In
fact, the throughput results are similar to those seen in the narrow L1.1 exponential synthetic

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
No of threads

Th
ro

ug
hp

ut
, m

ill
io

n
pa

ck
et

s
/ s

ec

Edge.nc
Edge.sqc.32.fa
Edge.qc.32.fa
Edge.dc.128.2way
Hit (queuing $)
Hit (data $)

100

80

60

40

20

0

H
it

ra
te

 (%
)

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
No of threads

Th
ro

ug
hp

ut
, m

ill
io

n
pa

ck
et

s
/ s

ec

Core.nc
Core.sqc.32.fa
Core.qc.32.fa
Core.dc.128.2way
Hit (queuing $)
Hit (data $)

100

80

60

40

20

0

H
it

ra
te

 (%
)

Figure 9: a) Top. Plots throughput versus number of threads under real-world traffic collected

at an edge router. b) Bottom. Plots throughput versus number of threads under real-
world traffic collected at the core router. It is evident that the edge traffic has a
higher degree of temporal locality and hence better hit rates and performance.

CROWLEY, KUMAR AND MASCHMEYER

18

trace. On edge traffic with 32 threads, the queuing cache achieves throughput of 130 M
operations per second, representing improvement factors of 1.3 and 1.75 relative to the software
queuing cache and data cache, respectively.

The core trace has little locality, low hit rates and, hence, low throughput. As expected, this
trace features many active queues. Therefore, performance is similar to, but slightly better than,
the uniformly random case. Under this workload, the cache-based models all converge between
90-95M operations per second. Once again, the queuing cache is more efficient in achieving peak
performance. It saturates at 17 threads, compared to 25 for the other cache-based models.

4.5. Tuning Cache Parameters
We have performed experiments on several configurations of the data cache. We have changed a)
the eviction policy from LRU to random, b) the allocation policy from write allocate to no-
allocate, c) the write policy from write back to write through, and d) line size of the cache. We
didn’t notice more than a single percent point change in the overall system performance with the
first two changes. The third change, namely the write policy actually deteriorated the
performance in the setup where the memory had a single shared read and write bus. This is
because write through policy performs redundant writes, which if not performed, could have been
used for reads. We have also observed that overall performance deteriorated as we increased the
cache line size. This is due to the lack of spatial locality between queues. Thus, an increased line
size results in extraneous memory accesses that fetch entries that are not likely to be used.
Therefore, we conclude that the best cache configuration for the queuing operations under
network workloads is a single word per line and write back policy. Allocation and eviction policy
don’t have significant impact on performance.

4.6. Summary

In the preceding sections, the benefit of caching queue descriptor data has been shown. To
summarize these caching benefits, we make the following points.

When contention for a queue is high, keeping the queue descriptor in an on-chip cache
shortens the serialization path. Therefore, worst-case performance is improved. Of the models we
considered, the queuing cache had the shortest serialization and therefore the best worst-case
performance. It improves throughput by factors of 3.1, 1.5, and 2.1 over the system with no
cache, with a software-controlled cache and with a data cache, respectively.

When the number of active queues is much greater than the number of queue entries, then
caching provides little benefit. However, the queuing cache improves efficiency since it achieves
peak performance with the fewest number of threads, reaching peak performance with only 12
threads, as opposed to the 18-20 required by the other organizations.

When the number of active queues is greater than one but not much greater than the cache
capacity, then this broad locality will greatly increase throughput. In effect, each cache entry can
support a concurrent operation; this provides operation throughput above that which is achievable
based on external memory bandwidth. As the number of active queues exceeds the cache
capacity, the request sequence appears more random and misses begin to dominate. When the
number of active queues is close to the cache size, the performance of the queuing cache peaks at
approximately 150M packets/second. As the number of active queues increases, the throughput
approaches the 90 M packets/second value seen in uniformly random traffic.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

19

5. Analysis and Discussion

In this section, we discuss additional quantitative metrics that can be helpful in evaluating a
packet queuing memory system, including: workload characterization, operation latency, external
memory bandwidth, packet queuing instruction count, and on-chip communication bandwidth.
Table 5 summarizes many of these metrics.

5.1. Input Characterization
The input traces can be characterized by the inter-arrival times, where we refer to the inter-arrival
time as the time elapsed to service all other requests between two requests for the same queue.
Serialization occurs only when the inter-arrival time is less than the enqueue or dequeue service
time of a single thread, which we will call the loss threshold. In a fully associative cache, hits are
guaranteed to occur when the number of inter-arriving packets is less than the cache size, which
we will call the gain threshold. Above this threshold, misses can occur resulting in no time gain.
Furthermore, misses are more likely to occur as the inter-arrival time increases.

By plotting the distribution of inter-arrival times for a given input trace, the performance of a
queuing system can be estimated. For example in Figure 10, for the single weighted queue trace,
ninety percent of the inter-arrival times are less than the service time of a single packet, indicating
that serialization is occurring. On the other hand, the majority of inter-arrival times for the
random and core traces are above the gain threshold, and therefore a cache gives little benefit. A
large percentage of the inter-arrival times for the trace in which 8 queues are heavily weighted lie
between the loss and gain thresholds, resulting in large time gains and small losses. The
exponential and edge traces have about 50 percent of inter-arrival times below the gain threshold
(considering a cache size of 32, and therefore gain threshold of 32 packets serviced) and a small
fraction below the loss threshold. These trends are reflected in the throughput plots in the
experiments.

5.2. Off-Chip Bandwidth
With no cache, every queue operation results in three off-chip references. Each enqueue operation
requires one read and two writes to memory. A dequeue requires two reads and one write. Thus

Model Enqueue
Latency

Dequeue
Latency

Off-chip
Bandwidth

On-chip
Bandwidth

Instructions

Queuing
Cache

Te(hit) = 80 ns
Te(miss) = 120 ns

Td(hit) = 80 ns
Td(miss) = 120 ns

(1-h)*2T+T T 3-4

Software
Queuing
Cache

Te(hit) = 120 ns
Te(miss) = 200 ns

Td(hit) = 120 ns
Td(miss) = 200 ns

(1-h)*2T+T 3T 60

Data
Cache

Te(hit) = 130 ns
Te(miss) = 170 ns

Td(hit) = 170 ns
Td(miss) = 210 ns

(1-h)*2T+T 3T 30

No Cache Te = 170 ns Td =250 ns 3T 3T 30

Table 5: Quantitative summary of the characteristics of the four queuing sub-systems.

CROWLEY, KUMAR AND MASCHMEYER

20

on average, if the system throughput is T, the required off-chip bandwidth will be 1.5*T for both
reads and writes. For cache based systems with a hit rate of h, the effective bandwidth will get
reduced by h, and will be (1.5-h)*T for both reads and writes.

5.3. On-Chip Bandwidth
A cache-less system without any hardware support for queuing uses the same amount of
bandwidth on-chip as off. With the addition of a data cache, while the off-chip bandwidth is
reduced, the on-chip bandwidth stays the same. The software queuing cache adds a small amount
of on-chip bandwidth due to cache management. A queuing cache significantly reduces the on-
chip bandwidth because an enqueue or dequeue requires only a single instruction.

5.4. Efficiency
On the Intel IXP, the queue manager software that controls the Q array structure in the SRAM
controller (which is similar to our software queuing cache model) requires approximately 60
instructions. The data cache and cache-less systems each use a smaller number of instructions
since only the instructions to read and write the queue descriptors, update the queue descriptor,
and modify the links are required. This requires approximately 30 instructions. A queuing cache
requires only 3-4 instructions for either an enqueue or dequeue. Thus, a queuing cache simplifies
the programming of the packet processor. In fact, it frees up resources which are otherwise used
for queue management.

5.5. Scalability and Flexibility
One of the primary advantages of the queuing cache model is its scalability. As has been shown, a
system with a queuing cache is often able to achieve higher throughput with about half to two-
thirds as many threads. In addition, a queuing cache eliminates the synchronization overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 32 64 96 128
Interarrival latency (in no of packets)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

S1_90
S8_90
L1.1
Edge
Core
R

Figure 10: Plots the probability distribution of the average inter-arrival time of all

packets within each queue. It is clear that as we move from a single
dominant queue to a set of dominant queues to exponentially
distributed weighted queues and real-world traces, the inter-arrival
time distribution becomes wider. In the limit, random distributions
have the widest range of inter-arrival times.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

21

which is needed in the other models. The software queuing cache model requires additional on-
chip bandwidth for synchronization. For example, the Intel IXP Q array is kept coherent with a
CAM at a single micro-engine; this restricts queue operations and management to a single
processor. Consequently, there is a limit to the number of threads that can be used and, hence, the
maximum throughput of the system. In a queuing cache, there is no such limitation on either the
number of threads used for queuing or the location of these threads. Thus, throughput can be
improved by increasing the number of threads and increasing the size of the queuing cache
without a large increase in the on-chip bandwidth utilization. Moreover, in the data cache and
cache-less models, a synchronization mechanism is needed to resolve contention. As we have
noted, we have not accounted for the synchronization overheads of these systems, and therefore a
performance loss is likely in a real implementation.

5.6. Implementation Complexity
A queuing cache implementation consists of: a fully associative cache to hold the recently
accessed queue descriptors, logic maintaining the LRU entry for eviction purposes, and an array
of queuing engines. In order to ensure correct service order within each queue, each arriving

Request register array (Buffers requests in circular order)
Thread ID, Enqueue bit, Valid bit, Packet pointer, Queue ID

wr_ptr_r

thread_id,
queue_id,
enqueue,
dequeue,
pkt_ptr

.

.

.

Round robin logic
Finds first empty slot in the
register array from last wr_ptr

Requester in
service bit

Queuing engine

Queuing engine

Queuing engine

Queuing engine

Queuing engine array (Services a requester)
Stores the requester ID currently serviced

Queue ID from
request register
array and
requester in
service bits
are fed into
this network

Cross
connect

X

Rotating token is used
to initiate an engine

idle

Pick
request

token = '1'
Set the in
service bit

Evict
LRU

Read QD
in cache

Service
request

Pick
next

Pick next
requester
with same
queue ID

Contention Network (NxN matrix structure)
Selects from requester array, requests whose queue IDs are not in service

.

.

.

.

.
c

a

b

.
c

a

b

. .
c

a

b

. .
c

a

b

.
c

a

b

.

.

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a=b
a

b

a=b
a

b

.

. a=b
a

b

Current requester

Next
requester

Current queue ID being serviced

Queue ID
from
requester
array

Cache array
Fully associative

Cross
connect

X
Queuing
Engine
Interface
(RD/WR)

Round robin
logic

This state machine
performs appropriate
memory operations
to service the enqueue
and dequeue requests

If not present
(reset in use bit)

.

.

.

.

.

.

.

.

.

.

.

.

Valid bits

c
a

b

.
.

.
c

a

b

.
.

.

c
a

b

.
.

.
c

a

b

.
.

.
c

a

b

.
.

. .
c

a

b

c
a

b

.
.

.'Z'

'Z'

'Z' .

c = NOT ((a.queue_ID XOR b.queue_ID) OR a.in_use OR b.in_use)

0

0

1

0

wired-AND logic

Figure 11: High level organization and circuit diagram of the queuing cache implemented for this

experimental evaluation.

CROWLEY, KUMAR AND MASCHMEYER

22

request is placed into a circular buffer. A queuing engine is allowed to choose a request from the
buffer every clock cycle. This is achieved by using a rotating token method. In order to resolve
contention involving multiple requests for the same queue, an NxN contention network, where N
is the maximum number of requesting threads, selects the queues which are not currently in
service. One of them is chosen by the queuing engine currently holding the token. Subsequently,
all requests with the same queue ID are automatically masked by the contention network. Thus,
every engine services a unique queue sequentially. An eviction and an allocation are performed
on a miss. Since queuing engines are initiated sequentially, only one eviction and allocation in the
cache can occur during a given clock.

Once a request is serviced, the engine checks the circular buffer for jobs pending for the
queue it has just served. A linear search is performed beginning from the position from where the
last request was picked. This ensures the correct service order within each queue. The high level
organization and circuit diagram of the queuing cache is shown in Figure 11.

Table 6 summarizes the combinatorial gate count and flip-flop count estimates of the queuing
cache, for a configuration in which there are 32 parallel queuing engines and a fully associative
32 word cache array. The queue ID is assumed to be 16-bits wide, which in turn implies a
maximum of 64K queues, and packet pointers are 32-bits.

As we have determined from our (non-optimized) sample implementation, the complexity of
a queuing cache with 32 entries is comparable to the complexity of a 128-entry, 2-way set
associative, lock-up free cache that can support 32 concurrent requests. This indicates that a
queuing cache is a cost-effective means of improving queuing performance in a robust way.

6. Conclusion

This paper describes and evaluates the queuing cache, a hardware cache with a tightly-coupled
queuing engine. We have shown that a queuing cache can improve packet queuing performance
over a wide variety of synthetic and real-world workloads relative to a number of alternative
memory models. The queuing cache improves performance by reducing the number of on- and
off-chip requests generated, and thereby reducing operation latency. We compare the queuing
cache to: a cache-less system with no support for queuing, a system with a software-controlled

Block name Flip Flop
Count

Combinatorial
Logic Gate count

Request register
array

1760 2K

Contention
Network

- 18K

Queuing engine
array

512 5K

Cache array 1K 4.5K
Cross connects - 7.5K, 1K

Table 6: Gate count estimate of the example queuing cache implementation.

EXPLOITING LOCALITY TO AMELIORATE PACKET QUEUE CONTENTION AND SERIALIZATION

23

queuing cache (similar to the mechanism used in the IXP 2XXX network processors), and a
system with a data cache. Under worst-case conditions, when all packets belong to a single queue,
the queuing cache provides throughput improvement factors of 3.1, 1.5, and 2.1 over these
models, respectively. Under uniformly random traffic, all organizations saturate external memory
bandwidth and achieve the same performance, but the queuing cache shows greater efficiency by
requiring 33%-40% fewer threads to achieve maximum performance. As expected, when locality
exists in a workload, all cache-based models see improved performance. In a real-world trace of
edge Internet traffic, the queuing cache improved throughput by factors of 2.6, 1.3 and 1.75,
respectively. The queuing cache also results in gains in on-chip bandwidth, off-chip memory
bandwidth, and programmer ease-of-use. Finally, our RTL-style VHDL implementation
demonstrates that the footprint of a queuing cache is not too large, making it a highly cost-
effective means of improving queuing performance.

Acknowledgments

This work was supported in part by NSF grants CCF-0430012 and CNS-0325298 and by a gift
from Intel Corp.

References

[1] M. Adiletta, et al. “The Next Generation of Intel IXP Network Processors,” Intel
Technology Journal, pp. 6-18, Aug. 2002.

[2] M. Chiang, G. Sohi, “Evaluating Design Choices for Shared Bus Multiprocessors in a
Throughput-Oriented Environment,” IEEE Transactions on Computers, pp.297-317, Mar.
1992.

[3] C. Scheurich, M. Dubois, “Lockup-free Caches in High-Performance Multiprocessors,” J.
Parallel Distrib. Comput., pp. 25-36, Jan. 1991.

[4] J. Hasan, S. Chandra, T. N. Vijaykumar, “Efficient Use of Memory Bandwidth to Improve
Network Processor Throughput,” Proc. 30th Int’l. Symp. on Computer Architecture, (ISCA
03), ACM Press, pp. 300-313, 2003.

[5] S. Iyer, R. R. Compella, N. McKeown, Designing Buffers for Router Line Cards, Technical
Report TR02-HPNG-031001, Computer Science Dept., Stanford University, 2002.

[6] S. Iyer, R. R. Kompella, N. McKeown, “Analysis of a Memory Architecture for Fast Packet
Buffers,” Proc. 2001 IEEE Workshop on High Performance Switching and Routing, pp.
368-373, May 2001.

[7] G. Shrimali, N. McKeown, Statistical Guarantees for Packet Buffers: The Monolithic
DRAM Case, Technical Report TR04-HPNG-020603, Computer Science Dept., Stanford
University, 2004.

[8] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access
Scheduling,” Proc. 27th Int’l. Symp. on Computer Architecture, (ISCA 03), ACM Press, pp.
128-138, 2000.

CROWLEY, KUMAR AND MASCHMEYER

24

[9] W. Lin, S. Reinhardt, D. Burger, “Reducing DRAM Latencies with an Integrated Memory
Hierarchy Design,” Proc. 7th Int’l Symp. on High-Perf. Computer Architecture, (HCPA
01). IEEE Press, pp. 301-312, 2001.

[10] Y. Joo, N. McKeown, “Doubling Memory Bandwidth for Network Buffers,” Proc. 17th
Ann. Joint Conf. of the IEEE Computer and Communications Societies, (INFOCOM 98),
IEEE Press, pp. 808-815, 1998.

[11] S.A. McKee, et al., “Dynamic Access Ordering for Streamed Computations,” IEEE Trans.
on Computers, pp. 1255-1271, Nov. 2000.

[12] R.L. Lee , P.C. Yew , D. H. Lawrie, “Multiprocessor Cache Design Considerations,” Proc.
14th Int’l. Symp. on Computer Architecture, (ISCA 87), ACM Press, pp.253-262, 1987.

[13] A. Nikologiannis, M. Katevenis, “Efficient Per-Flow Queuing in DRAM at OC-192 Line
Rate Using Out-of-Order Execution Techniques,” Proc. 2001 IEEE Int’l Conf. on
Communications, (ICC 2001), IEEE Press, pp. 2048-2052, 2001.

[14] S.-T. Chuang, et al., “Matching Output Queuing with a Combined Input and Output Queued
Switch,” Proc. 18th Ann. Joint Conf. of the IEEE Computer and Communications Societies,
(INFOCOM 99), IEEE Press, pp. 1169-1178, 1999.

[15] M.G. Hluchyj, M.J. Karol, “Queuing in High-Performance Packet Switching,” IEEE J. Sel.
Areas Comm., pp. 1587-1597, Dec. 1998.

[16] S.N. Bhatti, J. Crowcroft. “QoS-Sensitive Flows: Issues in IP Packet Handling,” IEEE
Internet Computing, pp. 48-57, July 2000.

[17] J-G Chen, et al. “Chapter 14—Implementing High-Performance, High-Value Traffic
Management Using Agere Network Processor Solutions”, Network Processor Design,
volume 2, Morgan Kaufmann, 2004.

[18] M. Shreedhar, George Varghese. “Efficient Fair Queuing Using Deficit Round-Robin,”
IEEE Trans. on Networking, pp. 375-385, June 1996.

[19] V. Frost, B. Melamed, “Traffic Modeling for Telecommunications Networks,” IEEE
Communications Magazine, pp. 70-80, Mar. 1994.

[20] A.J. Smith, “Cache Memories,” ACM Computing Surveys, pp.473-530, Sep. 1982.

[21] Backbone packet header traces at OC192 and OC48, collected at Cooperative Association
for Internet Data Analysis (CAIDA), http://www.caida.org/projects/trends/data/

[22] Backbone and edge packet header traces collected from the Internet Measurement, Internet
Analysis, National Laboratory for Applied Network Research (NLANR),
http://moat.nlanr.net/

