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Abstract

In a multi-programmed computing environment, threads of execution exhibit different 
runtime characteristics and hardware resource requirements. Not only do the behaviors of distinct 
threads differ, but each thread may also present diversity in its performance and resource usage 
over time. A heterogeneous chip multiprocessor (CMP) architecture consists of processor cores 
and caches of varying size and complexity. Prior work has shown that heterogeneous CMPs can
meet the needs of a multi-programmed computing environment better than a homogeneous CMP 
system. In fact, the use of a combination of cores with different caches and instruction issue 
widths better accommodates threads with different computational requirements.

A central issue in the design and use of heterogeneous systems is to determine an assignment 
of tasks to processors which better exploits the hardware resources in order to improve 
performance. In this paper we argue that the benefits of heterogeneous CMPs are bolstered by the 
use of a dynamic assignment policy, i.e., a runtime mechanism which observes the behavior of the 
running threads and exploits thread migration between cores. We validate our analysis by means 
of simulation. Specifically, our model assumes a combination of Alpha EV5 and Alpha EV6 
processors and of integer and floating point programs from the SPEC2000 benchmark suite. We 
show that a dynamic assignment can outperform a static one by 20% to 40% on average and by as 
much as 80% in extreme cases, depending on the degree of multithreading simulated.

1. Introduction

Chip multiprocessors (CMPs) will dominate commercial processor designs for at least the next 
decade, during which we will likely see an annual doubling of the number of processor cores 
integrated onto a single chip. This development is driven by technological constraints. It is 
possible to efficiently scale a CMP design by increasing the number of cores while maintaining or 
reducing overall power consumption by reducing clock frequency. As long as the increase in 
cores offsets the reduction in clock frequency, peak system performance will improve.

While replicating cores is an efficient strategy, architects are confronted with a basic 
question: what type of core should be replicated? A given die area can accommodate: many 
small, simple cores; fewer cores of a larger more sophisticated variety; or some combination of 
the two. Thus, in CMPs it is common to see either many simple processors [14] or a moderate 
quantity of high performance cores [13]. The first solution meets the needs of computing 
environments characterized by higher thread parallelism, while the second better accommodates 
scenarios with lower thread parallelism and higher individual thread complexity.
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Heterogeneous CMP systems, consisting of a combination of processor cores of varying type 
on the same chip, have been proposed recently as a compromise between the two alternatives 
above. The idea comes from the observation that a multi-programmed computing environment 
may present threads of execution with different hardware resource requirements, and that such 
needs may vary over time. Hence, an appropriate mapping of different threads to heterogeneous 
processor cores can maximize resource utilization and, at the same time, achieve a high degree of 
inter-thread parallelism.

In order to take advantage of a heterogeneous architecture, an appropriate policy to map 
running tasks to processor cores must be determined. The overall goal of such a strategy must be 
to maximize the performance of the whole system by accurately exploiting its resources. The 
control mechanism must take into account the heterogeneity of the system and of the workload, 
and the varying behavior of the threads over time. Moreover, it must be easily implementable and 
introduce as little overhead as possible.

In this paper we argue that, in a heterogeneous CMP system with a multi-programmed 
workload, a dynamic policy, i.e. a mechanism which observes the runtime behaviors of the 
running threads and exploits thread migration between the cores, is preferable to a static 
assignment. Our evaluation takes into consideration various combinations, both homogeneous 
and heterogeneous, of Alpha EV5 and Alpha EV6 processors all occupying the same die area. 
The workloads consist of several combinations of programs from the SPEC2000 benchmark 
suite.

We compare two homogeneous and three heterogeneous CMP configurations when a static 
assignment policy (not involving thread migration) is used. Specifically, we distinguish an 
average case from an ideal case, which assumes a priori knowledge of the performance of each 
thread on the two kinds of processors in use. We finally define two dynamic assignment policies, 
round robin and IPC-driven, and compare their performance with the static case.

We show that a heterogeneous system adopting a dynamic assignment policy is able to 
accommodate a variety of degrees of thread parallelism more efficiently than both a 
homogeneous and a heterogeneous system adopting a static assignment policy, and we quantify 
the performance improvements over both of them.

The rest of the paper is organized as follows. In Section 2 we introduce the problems 
addressed in this paper through a simple example. In Section 3 we describe our simulation 
methodology, processor configurations, and workload configuration. In Section 4 we present an 
analysis of the behavior of the adopted benchmarks on the two considered Alpha cores. In Section 
5 we describe our simulation model. In section 6 we detail describe the static and dynamic thread 
assignment policies. In Section 7 we present the results of simulations performed on 
homogeneous and heterogeneous CMP architectures. In Section 8 we present an analytical model 
allowing us to generalize our results and extend them to different processor types. In Section 9 we 
briefly relate our work to the literature. Finally, in Section 10 we summarize the goals and the 
results of our analysis.

2. Background

In this section, we develop a simple example highlighting the importance of dynamic thread 
scheduling in a heterogeneous CMP system, while also clarifying our target architecture and 
workloads.
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Figure 1: Execution times with different mapping of two threads onto heterogeneous dual core
system.

P1 P2

Thread A 1.6 0.4

Thread B 1.5 1

Table 1: IPC of threads A and B on cores P1 and P2.

Our interest is in heterogeneous CMP systems executing throughput-oriented workloads. In a 
throughput-oriented system, we are concerned with the total execution time for a group of 
programs, rather than the execution time of any individual one.

Each program in such a group will likely exhibit a different level of performance on each 
processor core type in the heterogeneous CMP. That is, a given program may execute a different 
number of instructions per cycle (IPC) on each core type due to the varying microarchitectural 
resources and capabilities present (e.g., caches and branch predictors).

Consider a scenario with the simplest heterogeneous CMP system, consisting of two 
processors P1 and P2 of different type, and a workload of two programs, thread A and thread B. 
Suppose further that each program exhibits the average IPC values reported in Table 1. From this 
data, we can infer that P1 is a more sophisticated, higher performance processor than P2. Thus, 
thread A experiences a four-fold IPC improvement on P1 relative to P2, while thread B sees an 
improvement of 50% in average IPC. To further simplify the example (we will tackle a more 
realistic scenario later), we assume that each program will run for 1 million instructions.

We now consider possible mappings of these programs onto the cores. Given our simple 
assumptions, we can calculate the execution time for each program on each processor core by 
dividing the total number of instructions (again, assumed to be 1 million) by the average IPC on 
the target processor.  For example, if we map thread A onto P2 and thread B onto P1, thread A 
will complete in 2.5M cycles whereas thread B will complete in around 700,000 cycles. The total 
execution time, then, is the maximum of these two, 2.5M cycles. Alternately, if we map thread A 
to P1 and thread B to P2, thread B becomes the longer running program leading to a total 
execution time of 1M cycles. This introductory example illustrates a 2.5X difference in 
performance due to the mapping of programs to cores. These results are shown in Figure 1.
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The two assignments above represent static assignments, that is, the thread-to-processor
mapping does not change once made. If we assume that programs can migrate across cores, 
however, we can explore dynamic assignment policies. Suppose, for example, that our system 
always keeps P1 busy. That is, whenever P1 becomes idle the program running on P2 is moved 
immediately to P1. As shown in Figure 1, in the example this policy improves on the best static 
mapping by 20%. As we will see, the difference is considerably greater in more realistic 
scenarios.

Note that the importance of thread assignment depends on the ratios between the IPCs on the 
two different core types. Specifically, the higher the ratios, the more the execution time will 
depend on the mapping performed and the dynamic assignment will outperform the static one. 
This can also be intuitively understood thinking that unitary ratios correspond to a homogeneous 
system, where remapping does not find a reason to exist.

In the remainder of this paper we expand the basic ideas introduced in this example and 
address some open questions.

First, in our example above, each program had sufficiently different performance on each 
core type to demonstrate the importance of thread assignment. But do real programs running on 
real processor cores have such performance differentials? In Section 4, we show that SPEC 
programs executing on two Alpha core types do.

Second, we remove most of the simplistic assumptions in the model above and study more 
realistic scenarios. In particular, our analysis will take into consideration: (i) a higher number of 
cores and programs, (ii) the fact that IPC is not known a priori, (iii) the fact that IPC is not a 
constant parameter but varies over time during program execution, and (iv) thread migration 
overhead. We will show how this added complexity further motivates the use of dynamic thread 
assignment.

Third, by gradually introducing assignment policies with increasing complexity we point out 
the reasons and the conditions which make dynamic assignment suitable in a fully heterogeneous 
environment.

3. Architecture and Methodology

In this section we describe our experimental methodology, the processor configuration for both 
homogeneous and heterogeneous systems, the workload setup and the evaluation metrics.

3.1. Simulation Approach

In our evaluation we consider homogeneous and heterogeneous configurations of EV5 (Alpha 
21164) [5] and EV6 (Alpha 21264) [15] processors. Since it would be very time consuming to 
perform full system simulations for each combination of CMP configuration, workload setup, 
assignment policy, our experiments are conducted in two phases. 

We first use the M5 simulator [6] to gather execution traces for each program on both core 
types. We then use our own simulator to model each CMP configuration and to evaluate different 
assignment policies. 

The traces collected in the first phase are used to model the execution of each thread in the 
CMP simulations performed in the second phase. Each trace entry corresponds to the average IPC 
computed on a window of 1M clock cycles. Hence, the execution of the CMP system is modeled 
by decomposing it in windows of 1M clock cycles, and advancing each thread according to the 
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appropriate IPC value. Note how using traces is more realistic and removes the assumption of 
constant IPC made in the introductory example in the background section.

This two-phase approach has the benefit of flexibility and fast execution, and the drawback of 
neglecting the effects of L2 cache contentions.  However, we evaluated the impact of L2 cache 
conflicts for a subset of the results by reducing L2 cache size to 1/Nth of the original size (for N 
cores) and saw no major effects. A detailed discussion of our simulation model is given in 
Section 5.

3.2. Processor Configurations

We have developed M5 simulator configurations to represent EV5 and EV6 processors. The basic 
aspects of the hardware setup are detailed in Table 2.

Notice that EV6 offers higher ILP and bigger and more sophisticated L1 caches at the cost of 
higher area occupancy. Also, note that the area needed for one EV6 can accommodate 
approximately 5 EV5s. Therefore, in order to consider a constant and equal amount of area, in our 
experiments we make use of homogeneous configurations consisting of 4 EV6s or 20 EV5s and 
the following heterogeneous configurations: 5 EV5s and 3 EV6s, 10 EV5s and 2 EV6s, 15 EV5s 
and 1 EV6.

3.3. Workload Definition

Our workloads are based on eleven programs from the SPEC2000 benchmark suite; five of them 
are integer (gcc, gzip, bzip2, parser and crafty) and six floating point (equake, galgel, lucas, 
wupwise, mgrid and swim). All these benchmarks are run in M5 using the ref  SPEC input option. 
The programs are summarized in Table 3.

In our CMP simulations, we vary the number of running threads from one to forty (twice the 
maximum amount of processors used). Both EV5 and EV6 are single threaded processors: in 
situations where the number of running programs exceeds the one of available cores, some 
queuing results.

In order to reduce the sensitivity of the results to the particular set of programs simulated, 
workloads are constructed with randomization. Specifically, for a given number of threads and 
for each distinct CMP configuration, 100 different simulations are run; we report the averages. In 

EV5 (Alpha 21164) EV6 (Alpha 21264)

Issue-width 4-issue 6-issue

L1 caches 8KB/DM/32B blocks 64KB/2-way/64B blocks

# MSHRs 4 8

Branch pred 2K-gshare Hybrid

Pipelines 2 INT, 2 FP 4 INT, 2 FP

Area 5.06 mm2 24.05 mm2

L2 cache unified, 4MB, 128 B blocks

Latencies L1 2 clock cycles, L2 10 clock cycles, main memory 150 ns

Bus L2-main memory 2GB/s bandwidth

Clock 2.1 GHz

Table 2: Hardware characteristics of EV5 and EV6 cores.
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each simulation, the workloads are randomly selected from the SPEC programs according to a 
uniform distribution.

3.4. Evaluation Metrics

In our experiments we assume that all the threads enter the system at the same time. As an 
evaluation metric, we use the speedup of the CMP configuration over the baseline performance of 
a single EV6 core. The speedup is computed in terms of global IPC, defined as the ratio between 
the global instruction count and the execution time. 

3.5. Additional Assumptions

In this work we do not assume the presence of an oracle having a priori knowledge of the 
characteristics of the workload. Instead, the system must gather this information through thread 
migration and the cost of this operation is quantified and included in the evaluation. The only 
exception to this rule will be the best static assignment case, introduced for the purpose of 
comparison.

4. Benchmark Characterization

In this section we analyze the performance of the SPEC benchmarks when executing on EV5 and 
EV6 cores. The data are collected with the M5 simulator.

For each program, 2.5 billion instructions were executed on both EV5 and EV6 processor 
cores. The following statistics were collected: IPC, branch predictor accuracy, L1 data and 
instruction cache miss rate, and L2 miss rate. Moreover, execution was divided into windows of 1 
million clock cycles and the values of the mentioned statistics within those windows of execution 
were also computed. This latter group of data, which we refer to as relative statistics, better 
captures the local variability of the programs behavior and will be used as input to the CMP 
simulator.

Figures 2 and 3 display the arithmetic mean and the variance of the relative IPC over program 
execution excluding a warm-up period of 500 million instructions. Three basic observations can 
be made. First, each program performs better on an EV6 than on an EV5 core. Second, the IPC 

Program Description
164.gzip Data compression utility

176.gcc      C compiler

186.crafty    Chess program

197.parser Natural language processing

256.bzip2 Data compression utility

168.wupwise   Quantum chromodynamics 

171.swim    Shallow water modeling      

172.mgrid Multi-grid solver in 3D potential field

178.galgel    Fluid dynamics: analysis of oscillatory instability

183.equake Finite element simulation; earthquake modeling

189.lucas Number theory: primality testing

Table 3: Benchmarks used in workloads.
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Figure 2: Average IPC.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

gzip gcc bzip2 parser crafty equake galgel wupwise mgrid swim lucas

program

IP
C

 V
a
ri

a
n

c
e

Alpha EV6 Alpha EV5

Figure 3: Variance of IPC.

exhibits a discrete variability across the benchmarks. Third, as the variance data point out, there 
are programs (e.g. lucas) which experience a large variation in IPC during execution and 
programs which exhibit more regular behavior (e.g. crafty, equake). Further analysis of the IPC 
traces over time highlights a correlation between IPC variation and program phases. As we will 
discuss in Section 6.3, these phases can be effectively exploited with dynamic thread assignment 
policy.

The analysis of branch predictor accuracy and cache miss rate led us to several conclusions. 
First, it confirmed how the considered collection of benchmarks exhibits heterogeneity in the 
exploitation of the different hardware resources. Second, it highlighted how the 
microarchitectural differences between the two cores contribute differently to the gain in IPC 
when moving from an EV5 to an EV6. Specifically, while the branch predictor accuracy does not 
have a significant increase in this transition, the miss rate strongly depends on the processor 
selection. However, the way the miss rate affects IPC varies significantly across the benchmarks. 
That is, cache miss rates cannot replace a reliable IPC as performance metric.

Figure 4 reports the ratios between the mean IPC value on an EV6 and on an EV5 processor. 
Note that, in the best case, an EV6 is 4 times as fast as an EV5. As mentioned, an EV6 core 
occupies 5 times the area of an EV5. Thus, a first analysis of this data suggests that, in case of 
static assignment, it is not efficient to use EV6 cores when the thread parallelism is high.
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5. CMP Simulation Model

In this section we describe the CMP simulation model we use to evaluate different combinations 
of processors, workloads, and thread assignment policies.

5.1. The Model: Working Principles

The idea at the basis of the CMP simulator is the following. A multiprocessor system can be 
thought of as a collection of processor and thread objects where each thread represents an 
instance of one of the benchmark programs. At each simulation cycle, a thread can either be 
unassigned or associated to a core. Conversely, each processor can either be idle or running one 
of the available threads. System progress is simulated by having all the non-idle processors 
simultaneously advance a given number of clock cycles. Since the execution traces gathered with 
M5 provide the relative IPC, miss rate, and branch predictor accuracy computed each million 
clock cycle interval, each simulation tick on the CMP simulation model will also represent 1 
million clock cycles of execution on the real system. 

Each IPC value in an execution trace is used to determine the number of instructions that 
each thread will execute over a simulation period. Since IPC traces are collected for each 
(program, core) pair, the IPC data and the mapping information jointly drive the CMP 
simulations.

Finally, one more issue must be considered in order to have a correct model of the system. 
The input data to the CMP simulator are temporal sequences (a necessity given that all the cores 
are equally clocked). On the other hand, the current IPC of each program is clearly dependent 
upon the executing processor. As a consequence, for any given program, the values 
corresponding to a particular simulated clock cycle in the EV5 and in the EV6 IPC sequences 
relate to two different points of execution of the program itself. This is pointed out in Figure 5, 
which shows how the same instruction is temporally postponed on the (relatively slower) EV5 
execution.



DYNAMIC THREAD ASSIGNMENT ON HETEROGENEOUS MULTIPROCESSOR ARCHITECTURES

9

To have the simulator work properly, each value of the traces must be associated with the 
program execution point it refers to. The execution point is expressed in terms of number of 
instructions previously committed. Upon thread migration, this information is used in order to 
locate the proper IPC value to use in the data sequence corresponding to the new core. Additional 
thread migration details are explained in the next subsection.

5.2. Modeling Thread Migration

A thread migration event can be thought of as an inter-core context switch; upon transfer, the 
architectural state (PC value, registers, etc.) of the migrating thread must be copied onto the 
destination processor. Copying the architectural state is required for correctness. For performance 
reasons, we must also consider the time needed to move and rebuild the state in other 
mechanisms such as caches.

One can imagine mechanisms to transfer the content of the L1 caches and the branch 
predictor state to the new core. Such mechanisms may be not trivial to implement. For example, 
the different size and associativity of the L1 caches may cause block evictions when moving from 
an EV6 to an EV5 core.

An easier way to think of the problem is to only move the architectural state of the migrating 
thread to the new processor. The branch predictor state and the cache content can be dynamically 
rebuilt during execution; hence, the new core will go through a warm up period of reduced 
throughput. We represent this by adding two parameters to the model: switch_duration and 
switch_loss. Upon thread migration, the IPC of the destination processor will be reduced by the 
switch_loss factor over a number of clock cycles indicated by switch_duration.

The switch_duration parameter is sized assuming that the cost for refilling the L1 caches is 
higher than the one for rebuilding the branch predictor state and transferring the thread 
architectural state. This is reasonable considering that the transfer of the architectural state can 
require few clock cycles, and that the branch misprediction penalty is 3 clock cycles compared to 
an L2 access time of 10 clock cycles. Assuming that the L1 caches must be completely refilled—
the worst case assumption—it will take about 2048 and 514 accesses to the lower level cache to 
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refill the EV6 and the EV5 L1 caches, respectively. If most of the data can be retrieved in the L2 
shared cache, 20480 clock cycles can be assumed to refill the bigger caches of the EV6. To be 
conservative and take into account the fact that L2 cache contentions due to thread migration may 
lengthen its access time, we’ll assume a switch_duration of 1 million clock cycles. 

6. Assignment Policies

In this section we discuss the working principles of different assignment policies, along with their 
advantages and limitations.

As mentioned in Section 2, a static assignment policy leads to a thread-to-core mapping that 
won’t be subject to modifications over time. Conversely, a dynamic scheduling strategy exploits 
thread migration in order to better exploit available resources.

Two observations motivate the use of dynamic policies. First, as shown in Section 3 and as 
pointed out by previous work [7][8], the runtime behavior of any program tends to vary during 
execution. Thus, it may be beneficial to remap a thread to a different processor as the program 
phase changes. Second, thread migration can be seen as a mechanism to collect control 
information for performing the dynamic assignment itself.

In the remainder of the section we describe the different scheduling mechanisms in detail.

6.1. Static Assignment

Finding the best static assignment of jobs to processors is a well studied problem both for 
homogeneous and heterogeneous architectures [10][11]. Known methods are based on the 
assumption that the characteristics of the workload are known a priori. Moreover, since the 
scheduling problem is NP-hard, the proposed solutions rely on heuristics which seek sub-optimal 
solutions. In our simulation model, two static scheduling mechanisms are implemented: a random
and a pseudo best static assignment.

The random static assignment is based on the assumption that the system has no a priori 
knowledge of the workload characteristics and therefore assigns threads to processors in a 
random fashion. The assignment tries however to maximize the use of the EV6 cores, which will 
be the first ones to be assigned a thread. In other words, the policy won’t let EV6s idle unless 
their number exceeds the number of threads to be assigned. If the system has more programs to be 
scheduled than available cores, unassigned threads will be given a processor as soon as one is 
available. In our simulated evaluations, the effect of particularly unlucky random scheduling is 
mediated by the fact that each data point is on average produced by running 100 distinct 
simulations over random thread selections and assignments.

The pseudo best static assignment assumes that the runtime characteristics of the threads to 
be executed are known a priori. In particular, it assumes the presence of an oracle providing the 
system with the program’s IPC on both cores and the number of instructions to be executed. Note 
this policy is only relevant for purposes of comparison.

Implementing the best static assignment would mean exploring all the possible permutations 
of assignments of threads to cores. Instead of doing this, we use a simple heuristic to find a 
suboptimal assignment. In the simulation phase, the suboptimality will also be mediated by 
averaging the results on randomly selected workload configurations.

The adopted heuristic is based on two observations. First, the global IPC is negatively 
affected by a long execution of a slow thread on an EV5 processor. Second, an optimal 



DYNAMIC THREAD ASSIGNMENT ON HETEROGENEOUS MULTIPROCESSOR ARCHITECTURES

11

assignment tends to exploit the EV6 cores by having them execute more threads. Specifically, as 
the EV6 cores are on average twice as fast as the EV5 ones, the heuristic will attempt to schedule 
twice as many threads on an EV6 as on an EV5. In order to better follow these two principles, the 
assignment policy will additionally sort the threads basing on their IPC on the two processor 
types and try to assign to a core the first available thread which exhibits the highest IPC on it.

6.2. Round Robin Dynamic Assignment

Besides not being able to capture the phase behavior of the executing programs, static assignment 
has two main drawbacks. First, it does not optimize EV6 usage. In fact, when one core becomes 
idle, it will persist in that state unless some unassigned threads exist. Secondly, the execution of 
“slow” threads on EV5 cores may penalize overall system performance, especially if global IPC 
is taken as a performance metric.

 A simple round robin dynamic assignment can be used to limit the two effects above. By 
periodically rotating the assignment of threads to processors in a round robin fashion, this policy 
ensures that the available EV6 cores are equally shared among the running programs. Moreover, 
when all the threads are assigned and some EV6 cores become idle, jobs are moved from the 
running EV5 to the free EV6 cores, diminishing their inactivity.

In this scheme, a swap_period parameter defines the frequency of the rotation. At the end of 
each rotation period as many threads as possible are migrated in parallel. Note that, since there 
are fewer EV6 than EV5 cores, several swap cycles will be necessary to have a complete rotation 
of the threads.

The round robin strategy is blind: it works unaware of the runtime behavior of the threads and 
does not use run-time information in order to drive the reassignment. Nevertheless, it represents 
an improvement in respect to a simple static assignment.

6.3. IPC-Driven Dynamic Assignment

We can improve on this dynamic assignment policy by considering the characteristics of the 
executing threads. In particular, the assignment policy should try to ensure a good assignment of 
threads to cores over the whole execution, causing dynamic changes as the programs enter 
different execution phases.

As mentioned in Section 3, relative IPC is a good metric to quantify thread behavior and 
drive the dynamic assignment. In fact, the goal of the assignment is to maximize the overall IPC, 
which in turns depends on the IPC of the individual threads. Moreover, the value of the IPC of the 
running threads can be easily made available at each execution cycle.

The idea at the basis of the IPC-driven assignment can be stated as follows. The overall 
performance of a heterogeneous system can be optimized if, at any given instant of execution, the 
threads which benefit more from the architecture of the most sophisticated processors are 
executed on them. Conversely, the threads that achieve only a modest performance increase by 
executing on the “faster” cores can be run on the “slower” ones and be migrated just when a 
faster processor becomes idle. Hence, for each thread, the ratio between the IPCs on an EV6 and 
on an EV5 processor can be used to guide the assignment: threads with higher ratios will run on 
EV6s and, conversely, threads with lower ratios will be executed on EV5s. This approach has the 
benefit of simplicity: it does not require the evaluations of all the possible permutations of 
assignments of threads to cores but it implies a sorting operation.
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Figure 8: gzip relative IPC.

Figure 7: crafty relative IPC.

Two important issues must be addressed in order to implement this policy. First, the IPC 
values on both processors must be available in order to make assignment decisions. Since we 
don’t assume the presence of an oracle providing such information, some learning mechanism 
must be established. This mechanism must take into account variations of the IPC over program 

Figure 6: mgrid relative IPC.
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execution. Second, it must be defined how and how often the control information must be used.

It can be assumed that a program’s current IPC is always available for the processor that is 
executing the program; since the program only executes on one processor at a time, however, the 
IPC for the other processor is unknown. Thus, for each running thread, a migration action is 
needed in order to refresh the aforementioned IPC ratio. The system will experience forced thread 
migrations when an update of the control information is necessary and IPC-driven migrations 
when the thread-to-core assignment must be rebalanced.

6.3.1. Controlling Thread Migrations in IPC-Driven Assignment

Forced migrations performed in order to keep the IPC estimate accurate can be initiated in two 
ways: periodically on all threads at the same time, or on a per-thread basis. Figures 6-9 show the 
variation of the relative IPC during execution for several benchmarks. As can be seen, each 
program has a unique IPC phase behavior. The patterns differ in both shape and phase duration. 
Thus, no one migration period will suit all programs. For example, long periods would penalize 
threads with shorter execution phases (e.g. mgrid), while short periods would trigger useless 
migrations on more stable execution patterns (e.g. crafty).

Previous work shows that the phase behavior of the programs does not depend upon the 
executing processor [8]. This same fact can be observed in Figures 6-9: for any benchmark, 
sudden variations in IPC can be observed at the same execution points on both processors. 
According to this observation, forced thread migrations can be triggered by a rapid variation in 
IPC. Tailoring the controlled swap operations to the single threads, this approach minimizes the 
number of performed thread migrations.

The use of the bare relative IPC as control variable would cause continuous variations of IPC 
within a limited range to trigger frequent migrations. As it appears from Figure 8, this would be 
the case in gzip. In order to avoid this phenomenon, the IPC-driven dynamic policy uses the 
moving average of the IPC as the control variable. Specifically, the moving average is computed 
summing its previous value weighted by a factor 0.35 to the current value of the IPC weighted by 
a factor 0.65. Additionally, a forced migration of all the threads is triggered at the beginning of 
execution (after a warm-up period) in order to initialize the system.

IPC-driven migrations will be executed by constantly comparing the biggest IPC ratio on the 
EV5 processors with the smallest on the EV6 processors. If the former exceeds the latter, a swap 
of the corresponding threads will be triggered. A swap_inactivity period parameter is introduced 
in order to limit the compare operations and allow the system to stabilize between two 

Figure 9: parser relative IPC.
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Figure 10: Comparison between homogeneous and heterogeneous system with static random 
assignment.

consecutive swap operations. In particular, this parameter defines a minimum number of clock 
cycles between two consecutive migrations of the same thread.

Finally, as in the round robin case, this dynamic policy will prevent EV6 cores from being 
idle by migrating unassigned or EV5 threads to them.

7. Simulation Results 

In this section we present the results of our simulations. We first evaluate the static assignment 
policies on homogeneous and the heterogeneous systems, and then show how the use of dynamic 
policies outperforms any static configuration. As previously mentioned, each experimental data 
point is obtained by averaging the results of 100 simulations run over random thread selections 
and initial assignments.

7.1. Homogeneous vs. Heterogeneous Configuration with Static Assignment 

Figure 10 compares the homogeneous and the heterogeneous configurations when a random static 
assignment is used. The intersection between the two curves corresponding to the homogeneous 
configurations determines two areas: if the workload presents low thread-level parallelism (less 
than eleven threads) then a 4EV6 configuration is preferable, otherwise a 20EV5 setup is more 
effective.

All the curves present a drop when the number of threads exceeds the number of available 
processors; at this point queuing develops in the system. This effect is mitigated by the 
introduction of additional threads, which allows a better balancing of the cores utilization thus 
diminishing their idle time.

The analysis of Figure 10 shows that if mechanisms to optimize the thread-to-core 
assignment are not used, the utilization of a heterogeneous setup does not bring any benefit. In 
fact, the global IPC can be negatively affected by the execution of slow threads on EV5 cores. 
Moreover, the EV6 utilization is not maximized. 
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Figure 11: Comparison between random and pseudo optimal static assignment.

This fact becomes evident by the observation of Figure 11 which compares the random and 
the pseudo optimal static assignment for a 3EV6-5EV5 configuration. Not only does the best 
static assignment represent an average of 20% improvement over the random one, but it is also 
more effective than a 4EV6 configuration for nearly all scenarios with a non-negligible degree of 
thread parallelism. A similar improvement is achieved with all three heterogeneous 
configurations tested (the curves have been omitted for readability).

7.2. Dynamic Assignment

Figure 12 compares the performance of the Round Robin assignment policy to the configurations 
exhibiting the best performance in the previous experiments.

The results permit several observations. First of all, on a 3EV6-5EV5 configuration the 
Round Robin strategy performs similarly and generally better than the pseudo optimal static 
assignment policy. It should be noted that the latter assumes an a priori knowledge of the IPC of 
the running threads, while the former is completely unaware of the characteristics of the 
workload. Hence, a great benefit is gained by simply reassigning the idle EV6 cores and 
balancing the EV6 utilization among the running threads. Second, notice that all the dynamic 
strategies either perform better than, or approximate (1EV6-15EV5), the best static assignment 
policy on a 3EV6-5EV5 configuration even when the number of threads is limited. This 
consideration and a comparison with Figure 11 leads to the conclusion that dynamic assignment 
is preferable or comparable to the ideal static one, independent of the heterogeneous 
configuration even for low degrees of thread parallelism. Finally, in case of a high degree of 
thread-level parallelism, the dynamic assignment on heterogeneous configuration can be beaten 
only by a 20EV5 configuration. However, the presence of a single EV6 core still guarantees 
better performance than the homogenous case for fewer than 14 threads, and the 2EV6-10EV5
configuration still allows comparable performance up to 30 threads. Thus, the heterogeneous 
solution appears to be attractive even for high degrees of thread parallelism.

In Figure 13 we compare the Round Robin and the IPC-driven dynamic policies, and include 
the homogeneous configurations for comparison. The rotation period used in case of the Round 
Robin strategy is 500M clock cycles. However, experiments where this period was varied from 
50M to 800M clock cycles did not show dramatic differences in the results.



BECCHI AND CROWLEY

16

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

number of threads

g
lo

b
al

 s
p

ee
d

u
p

20EV5

3EV6 & 5 EV5RR

2EV6 & 10 EV5 RR

1EV6 & 15EV5 RR

3EV6 & 5EV5 best static

Figure 12: Comparison between Round Robin dynamic policies and static assignment.

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

number of threads

g
lo

b
a

l 
s

p
e

e
d

u
p

4EV6
20EV5
3EV6 & 5 EV5RR
2EV6 & 10 EV5 RR
3EV6 & 5EV5 dyn
2EV6 & 10EV5 dyn

Figure 13: Comparison between dynamic policies and homogeneous configurations.

We can observe that the IPC-driven strategy brings a little performance improvement over the 
Round Robin one, which becomes more manifest when the number of simulated threads exceeds 
the number of available processors. Thus, the use of the runtime characteristics of the system is 
beneficial even at the cost of maintaining the control information.

However, the incremental performance improvement of the IPC-driven policy over the 
Round Robin one highlights that, for the simulated workloads, a simple dynamic scheduler 
periodically triggering thread migration and unaware of the runtime behavior of the running 
threads is sufficient for exploiting the benefits of a heterogeneous system. Moreover, this holds
particularly with a limited degree of thread-level parallelism. In order to understand this fact, 
some deeper analysis is needed.

The use of a dynamic policy contributes a better utilization of the system in two ways: (i) by 
keeping the higher performance processors fully utilized, (ii) and by better distributing the load 
across cores of different types. Note that the latter is done differently depending on the dynamic 
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Figure 14: Components of speedup: IPC-driven assignment.
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Figure 15: Components of speedup: Round Robin assignment.

policy used. Specifically, the Round-Robin policy ensures a fair share of EV6 utilization to each 
thread through the periodic migrations; conversely, the IPC-driven allocates EV6 cores to threads 
which can most benefit from them.

Figures 14 and 15 show how these two factors affect the speedup of each dynamic policy 
over the static assignment. The displayed graphs correspond to the 3EV6-5EV5 configuration; 
similar results have been obtained in case of the other considered heterogeneous setups.

It can be noted that the full utilization of EV6 cores accounts for the higher contribution to 
the overall speedup, independent of the policy and the level of multithreading considered. 
Moreover, we can divide the graphs into 4 regions based on the number of active threads. If the 
number of threads is less than the number of available EV6s (that is, 3), then no migration and no 
performance improvement over the static case takes place. If the number of threads does not 
exceed the number of available cores, then the EV6 full utilization accounts for about 30% of the 
speedup and the load distribution for between 7% and 10%. This happens independently of the 
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mechanism used to provide dynamicity. If the number of threads is slightly greater than the 
number of processors (namely, between 9 and 11), then a 20% speedup is provided exclusively 
by fully utilizing the EV6 cores. Finally, for higher degrees of thread parallelism, EV6 full 
utilization accounts for about 15% of the speedup; IPC-driven migration brings an additional 
speedup of 7% while the increment given by periodic thread migration in case of Round Robin 
policy is around 3%.

Figure 16 shows how the cost of thread migration affects the performance with dynamic, 
IPC-driven assignment. In particular, the result of varying the swap duration parameter is 
displayed. We observe that as we vary the cost of thread migration from 0 to 100 million cycles, 
there is no significant reduction in speedup. This is a consequence of making migration decisions 
on a per-thread basis; tailoring thread migration to the behavior of single programs (instead than 
forcing it in a system wide manner) minimizes the number of migrations experienced by the 
system.

As a general conclusion, we can observe that when a dynamic assignment policy is used, any 
heterogeneous configuration can accommodate a variety of degrees of thread parallelism better 
than a homogeneous one. The improvement in extreme cases (few threads and 20EV5 or many 
threads and 4EV6) can reach 60-80%. Moreover, the modest performance improvement of the 
IPC-Driven compared the Round Robin assignment policy is due to the fact that the mechanism 
which the most account for the speedup over the static assignment is shared by the two policies. 
This consideration suggests that, especially in case of low level of thread parallelism, a simple 
dynamic mechanism is sufficient for exploiting the benefit of heterogeneous CMP. In fact, the 
difference in IPC ratio across the considered workloads is sufficient to benefit from dynamic 
assignment but not enough to motivate sophisticated migration policies.

8. Analytical Model

In this section we present an analytical model of a CMP system. The goal is to generalize the 
discussion to different processor types and programs, and to be able to answer the following 
question: How different should the processor cores and benchmark programs be in order for a 
heterogeneous configuration to be preferable to a homogeneous one? 
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Parameter Description

Processor type = {SP, FP} SP=slow processor 

FP= fast processor

CMP configuration = {HOM-
SP, HOM-FP, HET(n)}

HOM-SP=homogeneous with SP

HOM-FP=homogeneous with FP

HET(n) = heterogeneous with n FP

aSP area of SP

aFP area of FP

α= aFP/aSP area factor

IPCSP(p) IPC of program p on SP

IPCFP(p) IPC of program p on FP

β(p)= IPCFP(p)/ IPCSP(p) performance factor for program p

k number of SP on HOM-SP

 /k number of FP on HOM-FP

n number of FP on HET(n)

 nk  number of SP on HET(n)

Table 4: Parameters in the analytical model.

The parameters of our model are listed in Table 4. Specifically, the model assumes two types 
of processor cores: slow (SP) and fast (FP). These cores can be arranged in a homogeneous 
(HOM-SP and HOM-FP) or a heterogeneous (HET) configuration. To allow a fair comparison 
between the different CMP configurations, our chosen configurations all occupy the same amount 
of on-chip area. To this end, we introduce two area parameters aSP and aFP and an area factor α. If 
k represents the number of SP in a homogeneous configuration and n the number of FP in a 
heterogeneous one, then α is used to determine the number of FP in a HOM-FP and the number 
of SP in a HET(n) in order to keep the die area constant.

The two processor cores may differ in various ways. They may be architecturally different, 
and use a distinct cache configuration, as is the case of the Alpha EV5 and EV6 cores considered 
above. Or, they may share the same architecture but be clocked at different rates. Clearly, in the 
latter case the memory bandwidth available to the fast processors must also be scaled 
accordingly. In order to encompass different scenarios, our model represents the diversity 
between the processors in terms of their performance. Specifically, IPCSP(p) and IPCFP(p) are the 
average IPC reported by  a program p on a uni-processor configuration consisting of a single slow 
and a single fast processor, and β(p) is ratio between the two, that is, the relative performance 
improvement on the fast core.

Notice that we could have represented the performance also as a function of the time, t, in the 
form IPC(p,t). In our simplified model, we avoid the use of the time dimension, as this analysis 
has already been covered in the simulation model presented in the first part of the paper. This 
choice implies the assumption that the influence of the program phase behavior on the overall 
performance of a heterogeneous system is a small factor compared to the ability of a 
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heterogeneous system to equally distribute the fast processor utilization. This agrees with the 
detailed simulation results reported in Section 7.2 (Figure 14 and 15).

The performance equations for the three CMP configurations are as follows. 

In particular, TCMP_CONF (τ) indicates the execution time of τ threads, each consisting of I 
instructions, on configuration CMP_CONF. We assume that the τ threads are randomly drawn 
from the set of available benchmarks according to a uniform distribution.

The behavior of the two homogeneous configurations is similar. Specifically, if the number of 
threads does not exceed the available processors, then the execution time is determined by the 
slowest thread. Otherwise, queuing originates in the system and the average length of the queue is 
given by the ratio between the number of threads and the number of processors. The average 
execution time is the product between the average execution time of a thread and the length of the 
queue.

In the case of a heterogeneous configuration, since our analytical model neglects program 
phases, a round-robin assignment policy is assumed (this is a fair assumption given the marginal 
improvements reported in Section 7.2). Three possible scenarios can occur. If the number of 
threads is lower than that of the fast processors, then no reassignment takes place and the 
execution time corresponds to that of a HOM-FP configuration. Otherwise, a periodic rotation 
takes place and each thread is assigned a fair share of the available fast processors. The average 
IPC of a thread is given by the weighted average between the IPCFP and IPCSP of the program 
itself, the weights being the number n of available FP and the number of used SP (which, in turn, 
depends on the number of running threads). If the number of threads exceeds that of the 
processors, all the SP are utilized, queuing originates in the system, and the execution time is 
given by the product between the average size of the queue and the average execution time of a 
single thread.

For the sake of generality, the model can be refined through the introduction of a 
performance degradation factor δ accounting for increased memory and interconnect contention. 
Ideally, δ should be a function of the number of processors (  nkn  ). Since this factor is 
negligible in the scenarios simulated in this paper, it has been omitted in the performance 
equations. 
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Figure 17: Speed-up obtained by applying the analytical model, k=20, to the benchmark in 
Table 3.

8.1. Model Validation

In order to validate our analytical model, we tested it on the benchmark programs in Table 3. 
Specifically, we assumed the Alpha EV5 to be the SP and the Alpha EV6 to be the FP. As 
IPCSP(p) and IPCFP(p), we considered the average IPC reported by program p during the
simulation of 2.5 billion instruction on the corresponding processor core. Note that the area factor 
α is equal to 5. According to the simulations performed in the first part of the paper, we set the 
parameter k to 20 and, for n, we tested the values 3, 2 and 1. Finally, the number of threads τ
varies from 1 to 30.

The results produced by the analytical model are shown in Figure 17. As done previously, we 
show the speedup as compared to a uni-processor configuration consisting of a single FP. Note 
that the aspect and the trend of the curves are very similar to what produced in our simulations 
(Figures 11 and 12). The bigger discontinuity (i.e., the zig-zag behavior of the graphs) is due to 
the fact that we are considering average IPC values and not parameters which are functions of 
time.

8.2. Additional Experiments

In this section, we use our analytical model to derive general conclusions for different processor 
types. In particular, we study the relationship between speedup and the degree of difference 
between the processor types. We focus on two cases: i) SP and FP are architecturally the same 
but are clocked at different rates, and ii) SP and FP are architecturally different.

8.2.1.  Different Clock Rates

We first accelerate the FP clock frequency by a constant factor β, that is, fFP= β fSP, fFP and fSP

being the two clock frequencies utilized. If we report the IPC in reference to the slower clock, we 
can say IPCFP(p)=β*IPCSP(p) for each program p. This implies that the fast processor is provided 
with enough memory bandwidth to sustain the increased fetch rate. Moreover, since the two 
processors are architecturally the same, we assume that the area factor α is 1.
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Figure 19: Comparison between HOM-FP and HET(10) with k=20 and α=1.

We performed evaluations by varying β and n, that is, the number of processors the increased 
clock cycle is applied to. Note again that the required memory bandwidth of the chip increases 
with both factors. In Figures 18 and 19 we show the results obtained by setting n to 5 and 10, 
respectively, and varying β between 1.5 and 4.5. For each value of β, we show the speedup 
obtained by accelerating all the processors versus only a subset (n) of them. We make the 
following observations.

Obviously, if the number of threads does not exceed that of FP, the two configurations 
perform the same. The maximum difference is observed when the number of threads is greater 
than that of FP but less or equal than that of processor cores. However, we can observe that the 
maximum speed-up of HOM-FP versus HET(5) is between 1.3 and 2.4, and the one of HOM-FP
versus HET(10) is between 1.2 and 1.65. Moreover, when there are more threads than processors, 
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the difference between the two configurations is less significant.

As a conclusion, applying a faster clock to only a subset of the cores in a CMP reduces power 
consumption without implying a significant performance loss in throughput-oriented workloads, 
especially if the number of threads does not approximate the number of processors. We note also 
that the relative advantage of faster clocks decreases with increased clock frequency. That is, the 
effectiveness of accelerating all processors, rather than a subset of them, diminishes as the 
accelerated clock frequency increases. As an example, for n equal to 5, the speedup/β ratio of 
2.4/4.5 is less than 1.3/1.5.

8.2.2. Different Architectures

We now consider the scenario where the two processors are architecturally different. In this 
context, we assume that a higher performance factor is achieved at the cost of a higher 
architectural complexity, which translates into a higher area factor, α. This is the case of the 
Alpha EV5 and AlphaEV6 cores considered above.

To this end, we performed different experiments by varying β and, at the same time, keeping 
the ratio β/α constant. In particular, in Figure 20, β/α is set to 0.5 and β varies from 1.5 to 3. A
homogeneous configuration is compared to a heterogeneous configuration with two fast 
processors. The number of slow processors is dependent upon α, which, in turns, grows with β. 
The speedup as compared to a uni-processor configuration consisting of one FP is reported.

It can be observed that, in general, keeping the value of β lower leads to a higher overall 
speedup, especially for high multithreading degrees. This has two explanations. First, as β
increases, α also increases. Therefore, in the same area it is possible to accommodate fewer 
processors. If the number of threads is high, the performance increase on a few FP does not make 
up for the smaller number of available cores. Second, the speedup is reported as compared to a 
FP with the same β as the one of the simulated CMP configuration. Thus, the execution time of 
the baseline configuration decreases with β, too.

Similar trends have been reported with different values of β/α (namely: 0.75, 1). As a result, 
when considering architecturally different processors it is essential to relate the performance 
improvement of the FP to its cost, in this case reported in terms of area.

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

number of threads

s
p

e
e
d

-u
p

HOM-FP

HET(2), β=3

HET(2), β=2.5

HET(2), β=2

HET(2), β=1.5

Figure 20: Speedup against a single FP with β/α=0.5.



BECCHI AND CROWLEY

24

9. Related Work

Prior related work can be classified in two categories:  work explicitly referring to heterogeneous

CMP architectures, and work addressing the thread-to-core scheduling problem in a theoretical 
way. 

In [12] the authors address the impact of heterogeneity on distributed shared memory 
systems, and assume the presence of few nodes with large caches for supporting single-thread 
parallelism, and many nodes with smaller caches for multi-thread parallelism. Static assignment 
policies to map jobs to processors are assumed.

In [3] resource sharing between adjacent cores on a CMP is studied as a mean for saving area 
die and increasing the overall system performance. In [1] it is studied how to dynamically map 
threads to cores in a CMP in order to reduce power consumption.

In [9] a method to automatically synthesize a custom architecture and in parallel assign jobs 
to cores is proposed. The heterogeneity is achieved by augmenting the instruction set of 
homogeneous processors via custom instructions.

The work presented in [11] proposes a static heuristic for heterogeneous processors based on 
the use of an acyclic precedence graph. However, the use of this heuristic requires an a priori 
knowledge of the characteristics of the workload.

The two pieces of work closest to the one presented in this paper are [2] and [17]. We borrow 
from [2] the choice of the processors and the homogeneous configurations. However, there are 
several crucial differences, both conceptual and methodological. First, the authors of [2] use 
system-wide profile-run phases in order to periodically compute the best thread-to-core 
assignment and apply it. In each profile phase, common for all the programs, the collected 
statistics are used in order to compute the assignment to be used during the next run phase. This is 
done by evaluating a subset of the possible permutations of assignments of threads to processors. 
Instead of this system-wide arrangement, our approach is thread specific, and thread reassignment 
is driven by changes in IPC during execution. Avoiding the evaluation of permutations of 
assignments allows us to reduce the number of forced thread migrations. Second, the authors of 
[2] do not explicitly address or quantify thread migration. In fact, their approach to dynamicity 
can be thought as performing a sequence of periodic static assignments according to metrics 
collected during the profile phases. Third, in [2] the Round Robin policy is not considered. Since, 
at the end of each profile phase, the policies proposed distribute the load in order to maximize the 
throughput, they behave similarly in principle to the IPC-driven assignment. We crosschecked 
this by implementing them in our simulator and observed no substantial performance differences. 
Fourth, in [2] the evaluation is restricted to the low thread parallelism working region. Note that it 
is specifically in this region that the simple Round Robin policy performs like the more 
sophisticated IPC-based one. Finally, our work provides an analytical evaluation identifying the 
factors of the dynamic policies that provide the speedup over the static approach.

In [17] an analytical model motivating the use of heterogeneous multiprocessor systems is 
presented. The authors assume the presence of a slow and a fast processor. However, there are 
several differences between their approach and ours. The most substantial concerns the workload, 
which ultimately affects the motivation for introducing heterogeneity. In fact, while we consider a 
heterogeneous workload consisting of different programs with varying characteristics, the authors 
of [17] imagine deploying a single program on the analyzed system. Specifically, they assume 
that the program is partially parallelizable, and distinguish its serial fraction fS from its 
parallelizable fraction fP. Having many slow processors allows the parallel execution of fP, 
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whereas the fast processor provides a speedup to fS. Clearly, a mechanism to separate a program 
into its parallel and its serial portions and to deploy them accordingly is needed. This assumption 
is not required in our analysis. A second difference relies on the fact that, while we basically 
present a performance/area model (in that we compare CMP configurations occupying the same 
on-chip area), in [17] a performance/cost analysis is presented. The cost, however, is not 
quantified in practical terms. It is worth noticing that the study in [17] refers to generic multi-
computer environments, whereas we specifically relate to chip multiprocessor systems, where a 
performance/area analysis is more meaningful.                                                                                                                                                     

10. Conclusions

Heterogeneous multiprocessor systems have been recently proposed as a mean to efficiently 
accommodate different degrees of thread parallelism and to meet the needs of multi-programmed 
computing environments. In fact, the presence of many low area cores ensures a high level of 
parallelism and the one of few high performance cores guarantees high throughput when thread 
parallelism is low. Furthermore, threads with distinct hardware resource requirements can be 
effectively mapped to processors with different complexity.

In this work we argue that the benefits of heterogeneous CMP are increased by the use of 
dynamic policies for assigning threads to processors.  Not only do such strategies better capture 
the dynamic behavior of the running threads, they also maximize the usage of the high 
performance cores.

In this work we propose two different dynamic policies and evaluate them on three distinct 
heterogeneous configurations of cores having the same ISA. We compare their performance with 
the one provided by a random and a pseudo optimal static assignment policy and by two 
homogeneous configurations. The evaluation is performed for distinct degrees of thread 
parallelism. Our analysis is based on the use of an own simulation model representing the cost of 
thread migration and of all the required control mechanisms.

Our results highlight the ability of all analyzed heterogeneous configurations to offer good 
performance across several degrees of thread parallelism when a dynamic policy is used.  A 
dynamic policy on a heterogeneous CMP can outperform a random assignment policy by 20% to 
40% and a homogeneous configuration by 20% to 80% depending on the number of threads 
simulated.
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