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Abstract
A growing number of studies have explored the use of trace caches as a mechanism to

increase instruction fetch bandwidth. The trace cache is a memory structure that stores stat-
ically non-contiguous but dynamically adjacent instructions in contiguous memory
locations. When coupled with an aggressive trace or multiple branch predictor, it can fetch
multiple basic blocks per cycle using a single-ported cache structure. This paper compares
trace cache performance to the theoretical limit of a three-block fetch mechanism. The
three-block fetch mechanism is modeled by an idealized 3-ported instruction cache with a
zero-latency alignment network. Several new metrics are defined to formalize analysis of
the trace cache. These include fragmentation, duplication, indexability, and efficiency met-
rics. We show that performance is more limited by branch mispredictions than ability to
fetch multiple blocks per cycle. As branch prediction improves, high duplication and the
resulting low efficiency are shown to be among the reasons that the trace cache does not
reach its upper bound. Based on the shortcomings of the trace cache shown in this paper,
we identify some potential future research areas.

1. Introduction
Instruction supply is a key element in the performance of current superscalar processors.

Because of the large number of branch instructions in the typical instruction stream and the
small size of basic blocks, fetching through multiple branches per cycle is critical to high
performance processors. Traditional instruction cache designs cannot fetch past multiple
branches per cycle, and in particular through multiple taken branches per cycle.

The trace cache fetch mechanism is a solution to the problem of fetching past multiple
branches in a single cycle. It stores dynamically adjacent instructions in a contiguous mem-
ory block and can do so with intervening branch instructions. When it is coupled with a mul-
tiple-branch predictor, it can provide a high-bandwidth mechanism to fetch multiple basic
blocks per cycle.

This paper presents a study of the limits of trace cache performance and their causes. The
goal is not to compare the trace cache against other competing mechanisms or to introduce
any new features, but to study where current trace cache configurations can improve.

The contributions of this study are:

• an examination of the limit of trace cache performance based on an idea
3-block fetch mechanism that is modeled by a 3-ported instruction cache 
a perfect instruction alignment network;

• a definition of several metrics to aid in analysis of trace cache performan
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• a study of the sources and extent of trace cache inefficiency;

• identification of branch mispredictions as being a major cause of low trac
cache performance; and

• identification of new research opportunities.

The rest of this paper is organized as follows. Section 2 describes previous work a
basic trace cache fetch mechanism. Section 3 introduces several metrics that we use 
uate the trace cache. Section 4 provides information on our simulation environment, an
tion 5 evaluates the limits of trace cache performance. Section 6 extends the resu
Section 5 by evaluating trace cache performance in terms of the metrics introduced in
tion 3. Section 7 concludes and presents some future directions for trace cache resear

2. Related Work and the Trace Cache Fetch Mechanism
Many caching techniques have been proposed to enhance instruction fetch in supe

processors. The fill unit assembles multiple instructions from a single basic block for si
cycle issue to a wide-issue processor [2, 4, 5]. The fill unit in [2] is a post-decode cach
CISC instructions which contains partially renamed groups of micro-operations. It was
marily intended as a mechanism to allow a large number of micro-operations to be exe
concurrently on an out-of-order processor. In conjunction with the decoded instru
cache, this model reduces both the decoding and dependency checking necessary in t
cal execution path. The fill unit of [4] is designed to eliminate complex dependency chec
logic in the processor’s critical path by assembling instructions into VLIW format and c
ing the result in a separate shadow cache. The work in [5] is an extension for superscal
cessors with complex decoding requirements.

More recently, several fetch mechanisms have been proposed to reduce the imp
branches in the instruction stream. The collapsing buffer [7] relies on multiple accesse
branch target buffer to produce the addresses needed for fetching multiple basic block
single cycle. The branch address cache [3] requires a highly interleaved instruction ca
support multiple accesses per cycle. The trace cache is an extension of the fill unit and
trace buffer [1] that attempts to collect noncontiguous basic blocks from the dyn
instruction stream into a single contiguous cache memory location [6, 8, 9, 10, 11, 12
The trace cache is compared to several of the previous proposals in [8].

A diagram of the trace cache fetch mechanism is shown in Figure 1. The branch pre
is either a multiple branch predictor [10] or a trace predictor [12]. The fill unit collects b
blocks and builds traces for storage in the trace cache. It merges several basic blocks
single trace whereas earlier fill units stopped at the first branch instruction. The trace 
is backed up by a conventional instruction cache in the case of a trace miss.

The fetch engine simultaneously presents an address to the trace cache, the conve
instruction cache, and the branch prediction unit. If the trace cache contains a trace s
at the address that also agrees with the branch prediction information, the trace cache 
a hit and returns the trace. If the trace cache contains a trace at the address, but the
prediction information does not completely agree, a partial hit is indicated. Instruction cache
accesses occur in parallel with the trace cache; this of course, need not be the ca
power-savings is required.

If the trace cache does not contain a trace beginning at the specified address, it sig
miss. The instruction cache then supplies the line containing the requested address 
execution engine and the fill unit. The fill unit begins building a new trace.
2
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The trace cache fill unit continues to receive instructions until one of the trace termina-
tion conditions is met. The trace termination policy1 determines when trace construction is
completed. A trace is terminated under any of the following conditions: 16 instructions, 3
basic blocks, or any trap, return, indirect jump or other serializing instruction such as a cache
flush.

3. Trace Cache Metrics
In addition to the common metrics of hit rate and IPC, we use other metrics to help us

analyze the trace cache. These are fragmentation, instruction duplication, efficiency, index-
ability,   and retirement rate. Since performance is the reason for having a trace cache in the
first place, IPC must be the metric of choice in determining the best configuration, assuming
no degradation in cycle time. Fragmentation, duplication, efficiency and indexability are
used to analyze why various configurations perform as they do. The remainder of this section
defines and explains these metrics.

3.1. Hit Rate
The hit rate metric measures the effectiveness of the trace cache in providing instructions

to the front end of the processor. It is important to note whether the trace cache hit rate is
computed using accesses and hits only on the correct execution path or if it is computed
without regard to the right or wrong execution path. That is:

(EQ. 1)

(EQ. 2)

1. Also called trace selection or trace finalization policy.

Figure 1: A fetch engine with a trace cache. The fill unit can be filled speculatively, as shown in the
diagram, or with traces formed from retired instructions. Lines that cross are connected.

Fill Unit

(Partial) Hit Logic

Trace Cache. Each entry contains:
1. Up to 16 instructions or 3 branches
2. Fall-through and target address
3. Branch Flags
4. Decode/Rename Information
5. Tag
6. Valid/Replacement Information

Multiple
Branch

Predictor

Instruction
Cache

Address

Correct path hit rate
# hits or partial hits on correct execution path

# accesses on correct execution path
-------------------------------------------------------------------------------------------------------------=

All path hit rate
# hits or partial hits on right or wrong path

# accesses on right or wrong path
------------------------------------------------------------------------------------------------------=
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The all-path hit rate makes no distinction between correct and incorrect execution path.
There can be a significant difference between these two metrics because of branch prediction
accuracy and processor pipeline width and depth. While we recognize this discrepancy in the
two ways of measuring hit rate, we will always show the correct-path hit rate. It is generally
higher than the all-path hit rate.

3.2. Fragmentation
Like hit rate, fragmentation indicates how efficiently the trace cache stores instructions.

Fragmentation is a measure of storage utilization which describes the portion of the trace
cache that is unused because of traces shorter than 16 instructions. It is essentially wasted
storage. Fragmentation is related directly to the trace selection policy. More conservative
trace selection results in shorter traces, and thus higher fragmentation. Rotenberg [12]
showed that average trace length was reduced by about 20 percent when backward branch
and call instructions were added to the trace termination conditions.

During a particular clock cycle, fragmentation is the ratio of empty instruction slots to
total instruction slots, counting empty trace lines. Average fragmentation is computed by
summing the fragmentation values for each cycle and dividing by the number of cycles. A
higher value for fragmentation indicates a less efficient trace cache; a conventional cache has
no fragmentation.

We defined fragmentation to include empty lines because sometimes trace cache lines
cannot be used; that is, there are no basic blocks or fragments that start at address X in the
benchmark, so location X in the trace cache is forced to be empty. Also, this definition of
fragmentation allows a more intuitive definition of the efficiency metric (defined below).

3.3. Duplication
Another measure of instruction fetch capability is duplication. Duplication is a measure

of how efficiently the “un-fragmented” storage in the trace cache is used. Duplication
consequence of the method of indexing the trace cache and is really an intended side
In a conventional instruction cache, a particular instruction can only appear once be
only the instruction address is used to index the cache. In a trace cache, the instr
address along with branch prediction information is used to identify a trace, so a given 
may begin a trace and also appear as an interior member of many traces in the trace c

Code duplication in the trace cache occurs because a program revisits a section o
It may be that conditional branch instructions in the code take different directions each
they are executed, as can be the case with if-then-else constructs. In such cases, dup
is due to the multiple inclusion of fork and join points in the control flow graph. This is ill
trated in Figure 2(A).

Duplication may also occur because of a loop whose length is not an integer multip
the maximum trace cache line size. This case is illustrated in Figure 2(B). If N is the nu
of instructions that can fit in the trace cache line, a loop of L instructions will result in
GCD(L, N) trace lines being stored. In the case where a loop has one more instructio
the trace cache line can hold (i.e. GCD(L, N) = 1), each instruction will be stored N ti
and the trace cache will be swamped with N similar (shifted) trace lines. This patholo
case only occurs if the loop is executed N times dynamically and could be avoided enti
the compiler tailored the loop to the particular trace cache configuration.
4
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We use the formula

(EQ. 3)

to capture the duplication in the trace cache. As with fragmentation, the value we report
is an average across the benchmark cycle count. This is analogous to the dynamic redun-
dancy factor reported in [13]. A higher duplication indicates lower utilization of the trace
cache.

A conventional cache has no duplication, though a cache hierarchy may exhibit duplica-
tion due to cache inclusion. Duplication in the trace cache is more serious than inclusion-
duplication because the duplicates appear in a single memory structure instead of across sev-
eral levels of memory structures. Since the memory structure must be larger than if it held no
duplicates, the access time of the structure is increased.

3.4. Efficiency
Fragmentation and duplication are important metrics because they indicate how effi-

ciently a trace cache configuration can provide instruction bandwidth to the processor. We
define

(EQ. 4)

to be the single number that wraps this information together. Efficiency represents the
fraction of the whole trace cache that is actually storing unique instructions as opposed to
simply (1 - duplication), which measures the fraction of the utilized trace cache that stores
duplicate instructions. Combining equation (4) with (3) and the definition of fragmentation,
we arrive at a somewhat more intuitive definition of efficiency: 

(EQ. 5)

Figure 2: Causes of duplication in the trace cache. (A) illustrates duplication due to conditional
branches, while (B) shows a pathological case of shift redundancy (duplication) due to a backward
loop branch.

A A

B BC

CD

DTraces starting at A: 
ABD
ACD

Traces including A: 
ABC
DAB
CDA
BCD

(A) (B)

duplication
total instructions unique instructions–( )

total instructions
------------------------------------------------------------------------------------------------=

efficiency 1 fragmentation–( ) 1 duplication–( )×=

efficiency
unique instructions

total instruction slots
--------------------------------------------------=
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We include empty trace lines in the fragmentation metric so that storage efficiency is
measured across the entire trace cache structure. Figure 3 shows an example.

For a conventional instruction cache, the duplication is zero and the fragmentation in the
steady state is zero. Therefore, the efficiency of the instruction cache is 1. There is no inter-
nal fragmentation of conventional cache lines, but portions of some cache lines could be
dynamically unused. We did not track the usage frequency of instructions within the cache
and so will not consider this special case any further.

3.5. Indexability
Indexability provides information about the presence of traces even if they do not start a

trace line. Since trace lookup is anchored at the address that starts the trace line, a miss may
occur because it is not possible to directly access interior blocks. In this case, the trace cache
performs worse than an idealized three-ported instruction cache with perfect alignment
mechanism.

Specifically, we define indexability to be a miss rate that indicates how often a trace
starting address is simply not in the trace cache at all, even at an interior block. When an
address is requested from the trace cache, we not only use the traditional indexing scheme
(chop the offset and tag bits) but we also examine every set in the trace cache to determine if
some portion of a trace contains that address. If no such partial trace can be found, the index-
ability miss count is incremented. The indexability value is lower than the correct-path miss
rate since it examines all the traces in the cache. A more sophisticated indexing mechanism
that can access some internal blocks of traces could improve correct-path hit rates.

For a conventional instruction cache, the miss rate is equal to the indexability because a
given instruction can only reside at one directly-accessible location in the instruction cache.

We present indexability as a limit. It is not practically implementable since it requires
looking at all trace cache lines simultaneously and finding the longest match. It will show
how important proper trace-cache indexing is to trace cache performance.

3.6. Trading off Fragmentation, Duplication, and IPC
There is a fundamental trade-off to be made between the performance metrics introduced

above. The constrained trace selection policy mentioned in Section 3.2 will serve as a good
example. It was noted in [12] that the average trace length is reduced by conservative trace
selection, that is, adding trace termination conditions. While shorter traces mean that frag-
mentation will increase, our simulation results show that duplication decreases correspond-
ingly. This is to be expected because the termination of traces on backward branches

Figure 3: A 4-entry trace cache with fragmentation = (6+4+8+3) / (4*16) = 33% The duplication in
this example is (43 - 30) / (10+12+8+13) = 30% since there are 43 total instructions and 30 unique
instructions in the trace cache. The efficiency is (1 - 0.33)*(1-0.30) = 30/(4*16) = 47%.

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5

E1 E2 F1 F2 F3 F4 G1 G2 G3 G4 G5 G6

C1 C2 C3 B1 B2 B3 B4 B5

D1 D2 D3 D4 D5 E1 E2 G1 G2 G3 G4 G5 G6
6
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eliminates duplication due to loops. Thus fragmentation increases but duplication decreases,
resulting in little change in overall efficiency. Furthermore, the trace cache hit rate increased
under constrained trace selection but we observed in our simulations that in some cases over-
all performance actually decreased because of the decrease in fetch bandwidth due to the
shorter traces. These metrics will be discussed in more detail in Section 6.

3.7. Retirement Rate
The previous metrics evaluate how effectively the trace cache structure stores traces and

how it provides instructions to the front end of a processor. The goal of the retirement rate
metric is to evaluate the effects of employing a trace cache on other processor resources. The
increased fetch bandwidth made possible by incorporating a trace cache will require addi-
tional resources at later stages of the pipeline. IPC measures do not show the pipeline
resource requirements of those instructions, which may be squashed prior to retirement (i.e.
the wrong path instructions). Retirement rate2 is the ratio of the number of instruction
fetched into the pipeline to the number retired:

(EQ. 6)

Retirement rate is one measure of the amount of pipeline resources wasted due to wrong-
path instructions. Retirement rate is a function of branch prediction accuracy, pipeline depth
(or branch resolution time) and issue width. Retirement rate will be considered in Section
5.2.

4. Simulation Environment
Simulation results were obtained with a modified version of the sim-outorder simulator

from the SimpleScalar tools [14]. For all experiments, the SPEC95 integer benchmarks were
run on the input sets listed in Table 1. The benchmark binaries provided in the SimpleScalar
distribution are used in these experiments. The programs were compiled with GNU GCC
2.6.2, GNU GAS 2.5, and GNU GLD 2.5 with maximum optimization (-O3). Loop unrolling
was enabled (-funroll-loops). The simulator parameters common across all configurations
simulated are shown in Table 2.     

2. We will call it a “rate” even though it is a ratio, in keeping with common usage.

Benchmark Input Set Insts (M)
Instructions 
per Branch

compress 30000 q 2131 121 5.0
gcc regclass.i 124 5.5
go 9 9 null.in 133 6.6
ijpeg specmun.ppm 124 11.1
li boyer.lsp 174 4.4
m88ksim dcrand.train.lit 48 4.4
perl jumble.pl < jumble.in 74 5.1
vortex vortex.in 154 6.3

Table 1: Benchmarks and data sets used. All benchmarks were simulated to 
completion (some were scaled down from training input).

retirement rate
total instructions retired
total instructions fetched
----------------------------------------------------------- 100×=
7
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To stress the fetch engine, the processor’s execution engine is very aggressive. Th
16 of each of the five types of function units (integer ALU, integer multiplier, memory p
floating point ALU and floating point multiplier). The instruction cache simulated w
128KB, but SimpleScalar instructions are 64 bits long, so this is effectively a 64KB cac
conventional 32-bit instructions. We will quote all L1 instruction cache and trace cache 
as if SimpleScalar instructions were 32-bits.

The trace cache is simulated with 64 and 1024 sets and is 2-way associative in
cases. With 64 sets and 16 instructions, there are 64*16*4*2 = 8KB of instruction sto
For the 1024-set trace cache, there is 1024*16*4*2 = 128KB of storage. Traces are fin
on instruction boundaries when any of the following conditions are met: 1) 16 instruct
2) three branches; or 3) trap or indirect jump instruction. Branch prediction informatio
used as part of the tag match instead of as part of the index into the trace cache to de
the longest matching trace for path associativity and partial hits. This assumes that b
prediction lookup and trace cache lookup cannot happen in series in a single cycle, 
would be necessary if the branch predictions were used as part of the trace cache ind
the fetch mechanism were not pipelined.

4.1. The Branch Predictor
The branch predictor used for all non-perfect simulations is a 16-bit gshare pred

where the shift register value is XORed with the lower PC bits and indexes a 216-entry table
of two-bit counters. When multiple branches are being predicted per cycle, it is access
required number of times in series, as if the hardware could be accessed that many ti
one cycle.

The branch predictor uses speculative history information. All wrong-path history 
are squashed once a mis-prediction has been identified. This is done because neither s
tive update nor non-speculative update alone provide the best performance [16]. The 
for this is that trace cache processing enables considerable speculation, resulting i
speculative history that is too old, or speculative history that contains too many histor
from the wrong path. The solution is to maintain speculative history which is squashed 
a mis-prediction occurs. This method provides the same prediction accuracy regardl

Parameter Value Budget
L1 instruction cache 256 sets, 64-byte line, 4-way associative, 1-cycle access/

throughput/blocking (actually 128-byte line of SS insts)
64 KB

L1 data cache 512 sets, 32-byte line, 4-way associative, 1-cycle access/
throughput/blocking

64 KB

L2 unified cache 2048 sets, 128-byte line, 4-way associative, 6-cycle access 1 MB
Memory Latency 50 cycles for the first 8 bytes, 1 cycle each 8 bytes thereafter
Branch Predictor 16-bit gshare accessed three times per cycle; perfect RAS
Trace Cache 2-way associative, 1-cycle hit latency, line size fixed at a 

maximum of 16 instructions, partial hits and path associativ-
ity; 1-cycle fill unit delay

Fetch queue 128 entries
Width 16 instructions per cycle
Function Units 16 symmetric (each can do all instructions)
RUU/LSQ sizes 512/256

Table 2: Configuration parameters common across all simulations, unless otherwis
noted.
8
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the amount of speculation performed by the processor, and is at least as accurate as specula-
tive or non-speculative update alone. Of course, this is not practical because it requires the
saturating counters to be re-adjusted to their state prior to the misprediction. It is a simula-
tion ideal.

5. Limits of Trace Cache Performance
The trace cache strives for the performance of a fetch mechanism that can fetch three

basic blocks per cycle without a multi-ported instruction cache. Most previous studies have
compared trace cache performance to the performance of sequential fetching mechanisms,
i.e. a fetch engine that can fetch up to one branch (SEQ.1) or up to 3 branches where the first
two are predicted not taken (SEQ.3) [8]. While this highlights the performance improvement
of fetching non-contiguous blocks over fetching only sequential blocks, it is not a true upper
bound to performance. This study compares trace cache performance to the theoretical limit
of a three-block fetch mechanism equivalent to an idealized three-ported instruction cache
with a perfect alignment network. This cache can provide three non-contiguous blocks each
cycle and merge them for placement into a fetch buffer (a block is defined in the same way as
for the trace cache). The latency of the merge operation is not counted in our simulations. We
call it NONSEQ.3 to conform to previous terminology. A similar NONSEQ.3 baseline is
used in [9].

A lower bound on trace cache performance is a single-block fetch mechanism equivalent
to a conventional instruction cache. It can fetch up to the first branch or up to some maxi-
mum number of instructions (16 in these simulations). The next two subsections show the
results of the limit simulations for gshare and perfect branch prediction.

5.1. Gshare vs. Perfect Branch Prediction - 1 and 3 block fetch
Table 3 shows the performance of 1- and 3-block fetch engines. The left half of the table

presents data for configurations with a gshare branch predictor as described in Section 4.1.
The right half shows speedup when using perfect branch prediction. The first two columns in
each portion of the table show the IPC for the conventional instruction cache and the 3-
ported instruction cache, respectively. The third columns show the potential speedup of
employing a trace cache. We also include the branch prediction accuracy for the gshare con-
figurations.

Because the branch predictor uses speculative history which is corrected after a wrong
path is encountered, the 3-block fetch engine will always perform better than the 1-block
mechanism. The benchmarks with very good branch prediction (li, m88ksim, and vortex)
achieve significant performance improvements in the 3-block case—50% or more—ind
ing that the trace cache can provide significant performance benefit for these program
other configurations (cc1, compress95, go, and ijpeg) suffer from lower prediction acc
and cannot take advantage of the two extra blocks per cycle because there are many 
path instructions that must be squashed. As the 3-block case is the limit of performan
the trace cache modeled, the trace cache can only provide a performance benefit of 
20% for these programs. These results are more optimistic than previously-publishe
would suggest [8], though no previous study has shown the true 3-block fetch limit.

As can be seen from the data on the right side of Table 3, there is potential for signi
improvement in trace cache performance when branch prediction is perfect—often 60
more improvement in IPC.
9
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In summary, Table 3 shows that when branch prediction accuracy is high, the perfor-
mance potential of fetching multiple blocks per cycle is significant, i.e. 50% or more. When
branch prediction accuracy is low, fetching multiple blocks only helps performance up to
about 20%. Performance is limited more by branch prediction than the inability to fetch mul-
tiple blocks per cycle. Nevertheless, as branch prediction improves, a mechanism like the
trace cache that can fetch multiple blocks per cycle becomes more beneficial.

5.2. Gshare vs. Perfect Branch Prediction - 1 to 5 block fetch
The graphs in Figure 4 show a superset of the data in Table 3. To highlight the resource

allocation required to support the greater number of instructions fetched by more aggressive
configurations, Figure 4(A) shows the performance of configurations which fetch one, two,
three, four, and five blocks per cycle. The machine is otherwise configured as shown in Table
2. The dark upper portion of the bars indicate instructions that are fetched but later squashed
because of branch mis-predictions. Figure 4(B) is similar but uses perfect branch prediction,
so no instructions are squashed.       

SPEC95 
Program

Fetch 1 
Block 
IPC 

gshare

Fetch 3 
Block 
IPC 

gshare

Percent 
Increase

Branch 
Predict

%

Fetch 1 
Block 
IPC 

perfect
BP

Fetch 3 
Block 
IPC 

perfect
BP

Percent 
Increase

cc1 2.64 3.35 27% 93.27% 4.80 9.59 100%
compress 3.22 3.74 16% 94.75% 5.31 8.80 66%
go 2.50 2.81 13% 86.12% 5.75 7.94 38%
ijpeg 5.59 7.01 25% 93.93% 7.59 10.74 42%
li 3.47 5.48 58% 97.01% 4.40 10.15 131%
m88ksim 4.17 10.41 150% 99.82% 4.25 11.03 159%
perl 3.69 4.63 26% 98.55% 5.08 8.64 70%
vortex 4.56 6.75 48% 98.89% 5.80 9.31 61%

Table 3: The performance of fetching 1 block or 3 blocks under gshare and perfect 
branch prediction.

Figure 4: Performance of n-block fetch mechanisms under (A) gshare and (B) perfect branch pre-
diction. The perfect predictor shows the performance potential of a multi-block fetch mechanism.
The portion of the bar labeled ‘Wasted’ indicates instructions that were fetched but never retired.

(A) (B)
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Table 4 examines the data in Figure 4(A) by showing the retirement rates for each of the
configurations. As the machine fetches past more branches, the retirement rate decreases
monotonically. The retirement rate decreases rapidly after the first and second branches, then
less so after the third and fourth branches; the retirement rate of cc1, for example, falls from
65% to 31%. These results suggest that while the capability of the front end of the pipeline
has dramatically increased with the additional blocks fetched, the resource utilization at the
backend of the machine is very low because of the low prediction accuracy.

Another interesting metric is the retirement rate of the extra instructions brought in by
the second, third, fourth, and fifth blocks. The second number in the columns of Table 4
shows the value of this special retirement rate. For example, the overall retirement rate of
cc1 is 45% for the 2-block fetch configuration. Only 19% of the additional instructions
brought in by the second block are actually retired. Only vortex and m88ksim exhibit extra-
instruction-retirement-rates of more than 60% from the first to the second block because
their branch prediction accuracy is so high. The other benchmarks generally exhibit rates of
25% or less. As we proceed to three blocks we see the retirement rate of the extra instruc-
tions fall below 1 in 10 for most programs. This means that only 1/10th of the pipeline
resources are being constructively utilized for extra instructions. Other work has taken
advantage of this to reduce power consumption by not fetching these instructions [19]. Addi-
tional instructions that could be brought in by a trace cache are simply not useful.

The performance of perfect branch prediction in Figure 4(B) saturates after 3 branches
per cycle primarily because of data-dependence limitations in the backend. Function unit
contention is not a significant cause of this leveling off of performance because the average
IPC never goes above 11. As expected, misprediction recovery time dominates delays due to
data dependencies in the gshare configurations.

The trace cache, which is limited above by the 3 block fetch case, suffers from the same
branch prediction limitation. It can provide high peak bandwidth, but the overall processor
performance is most limited by the branch prediction.

SPEC95 
Program

Fetch 1 
Block gshare
Retirement 

Rate

Fetch 2 Block 
gshare

Retirement 
Rate

Fetch 3 Block 
gshare

Retirement 
Rate

Fetch 4 Block 
gshare

Retirement 
Rate

Fetch 5 Block 
gshare

Retirement 
Rate

Overall Overall, Extra Overall, Extra Overall, Extra Overall, Extra
cc1 65% 45% 19% 37% 7% 33% 4% 31% 3%
compress 62% 40% 13% 33% 1% 31% 1% 30% 0%
go 46% 29% 6% 24% 3% 23% 2% 22% 2%
ijpeg 78% 62% 32% 57% 17% 54% 5% 52% 2%
li 82% 62% 41% 48% 12% 42% 3% 39% 1%
m88ksim 98% 97% 95% 95% 91% 94% 85% 93% 16%
perl 78% 56% 25% 43% 4% 38% 0% 36% 4%
vortex 90% 82% 66% 76% 31% 74% 22% 73% 20%

Table 4: Retirement rates for 1- to 5-block fetch configurations in Figure 4(A). The 
overall retirement rate is computed as defined in Section 3. The extra retirement rate 

shows the retirement rate of the extra instructions fetched by that configuration 
compared to the previous column.
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5.3. Trace Cache vs. Limit Cases
We have already noted that trace cache performance must fall between the 1- and 3-block

fetch cases. Figure 5 demonstrates this for both gshare and perfect branch prediction, with
the exception of the compress. Compress exhibits slightly pathological behavior and per-
forms better than the upper bound. This is because the total instruction capacity of the trace
cache plus instruction cache is larger than the instruction capacity in the 3-block configura-
tion, which just has the instruction cache. The result is that the trace cache configuration
exhibits fewer capacity misses to the second level cache and thus suffers less from memory
latency. We also found that go would perform pathologically if the branch prediction was
worse (82.70% instead of the present 86.12%). This is because go has a large working set of
instruction paths that exceed the capacity of even a large (128KB) trace cache. A 2MB trace
cache was simulated and found to eliminate this problem. Still, the performance of go is lim-
ited more by branch prediction than anything else, as the difference between 1- and 3-block
fetch is only 13%. 

Figure 5(A) further shows that the trace cache can come close to the upper bound when
branch prediction is not perfect, demonstrating that the trace cache is, for the most part,
achieving its goal of 3-block performance with a single-ported memory.

In the case of perfect prediction, Figure 5(B), we see that the 128KB trace cache gener-
ally falls short of ideal by 20% or more. This is significant because as branch prediction
improves, it appears that the trace cache is falling farther below its upper bound. Thus the
trace cache cannot take full advantage of future improvements in branch prediction. We also
simulated a 2MB trace cache (not shown) and found that for the large benchmarks like gcc,
go, and vortex, the trace cache still fell short of the limit case by more than 10%. Apparently
imperfect branch prediction hides some other deficiencies in the trace cache. Reasons for this
are examined in the next section.

6. Efficiency and Indexability Results
The results presented in Section 5 show that trace cache performance does not achieve

the theoretical limit of 3 block/cycle fetch with perfect branch prediction. This section uses
the previously defined metrics to analyze why this might be the case.

Figure 5: Trace cache performance with perfect branch prediction and perfect indexability.
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The graphs in Figure 6 show the duplication, fragmentation and efficiency of a trace
cache as associativity and size are varied. Figure 6(A) shows that duplication of instructions
in the trace cache grows from 30%-50% up to 75%-90% as associativity and size are
increased. Increasing the size of the trace cache dramatically increases the duplication. For
very large trace caches, an instruction may reside in 10 or more locations. 

Figure 6: Trace cache duplication, fragmentation, full traces, efficiency, and hit rate for several
8KB and 128KB configurations with perfect indexability.
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Similarly, Figure 6(B) shows that fragmentation generally increases for the larger trace
caches. For the smaller benchmarks such as compress, li, and m88ksim, this is primarily due
to many trace cache slots which are unused throughout the benchmark run—there are 
not enough unique trace starting addresses to utilize the trace cache. This is particular
dent for compress, which uses only a couple of trace slots very heavily throughout the b
mark run and leaves many trace slots unused. For go and the other larger programs,
have a large number of paths, we see that the fragmentation does not generally incre
the trace cache increases in size from 8 to 128KB.

For compress, li, and m88ksim, fragmentation is generally improved as associa
increases from 2 to 4. This is to be expected because any unused traces in the 2-way a
tive cache can be utilized in the 4-way cache for traces which are competing for the
heavily used trace starting addresses. In other words, the additional flexibility afforde
extra associativity allows the trace cache to use some locations that would otherw
blank. This is shown in Figure 6(C). The larger benchmarks generally use up all the t
regardless of the associativity and size. In summary, the trace cache loses 20% to 30%
capacity due to empty and short traces.

The overall efficiency is rarely above 40% and for the 128KB configuration is gene
between 20% and 35% as shown in Figure 6(D). Certainly the trace cache is desig
trade-off space efficiency for increased fetch bandwidth, but such low storage efficien
remarkable. The low efficiency is primarily caused by code duplication. When associa
is increased, the efficiency gain possible because of decreased fragmentation is outw
by increased duplication.

The overall performance of the trace cache is determined by the hit rate and the len
the trace lines referenced. Experiments in [12] indicate that trace cache hit rates rang
60%-90%, and our experiments confirm this trend. However, previous experiments req
that the address in the fetch request must be located in the first entry in some trace l
this study we also examine a trace structure in which this restriction is removed — the
fectly indexable trace cache. Figure 6(E) shows the hit rate when the complete trace ca
searched for the fetch PC (traces can start anywhere instead of being anchored to the
the trace storage). When indexing the trace cache is expanded to any instruction in a
line, the hit rate increases to 90%-99% for most applications. Unfortunately there is a r
tion in the average length of trace fetched from the trace line because many paths sta
some point in the middle of the trace line. However, this increase in hit rate demons
that improved indexing methods can significantly increase the trace cache hit rate. Thi
gests that current trace cache implementations do not miss because new paths are ide
Instead they miss because cache line allocation policies are naive.

7. Conclusion
In this paper, we have introduced several new metrics for evaluating the performanc

efficiency of trace cache implementations. By utilizing these metrics, the functioning 
trace cache can be better understood, enabling us to identify strengths and weaknesse
approach to increasing parallelism.

The performance of the trace cache configurations studied in this paper suffer prim
from low branch prediction accuracy. Less than 1 in 10 of the additional instructions fet
from a trace cache are retired. The trace cache can provide high bandwidth instruction
but because of this a large number of branches are in flight, reducing the efficiency of 
ing useful instructions. It is not surprising that a high bandwidth fetch mechanism w
14



POSTIFF, TYSON, & MUDGE

ct 
ecifi-
s 
 

of 

on-
e to 

 
es, 
 using 
 (e.g. 
od 

ly 

pty 
che 
the 

iler 
we 
 
frag-
ling, 

able 
s are 
are 
ese 

e 

 than
 This
hanism
oces-
stress the branch predictor, but a retirement ratio of 1 in 10 for those extra instructions was
lower than we expected.

When perfect branch prediction is simulated, the trace cache is still not able to fetch
instructions at the rate of the 3-block limit case. This drop in issue rate is caused by missing
in the trace cache and by hitting trace lines that contain only part of the 3-block path. Further
study using the metrics defined herein reveals deficiencies in the way the trace cache stores
traces. Low trace cache efficiency and poor indexability are the primary reasons for this
shortcoming.

This study has identified several potential areas where trace cache performance can be
improved. These are:

• Branch prediction. Improvements in branch prediction accuracy will impa
overall performance of a trace cache the most. Trace based predictors sp
cally tuned for trace cache design may be able to identify new correlation
currently unexploited by conventional predictors [18]. However, prediction
accuracy will still likely be the most limiting factor in overall performance 
a trace cache.

• Duplication. Since duplication in current configurations is 50% or more, c
servative trace termination policies could be used to reduce duplication du
loops and fork-join points. Duplication can also be reduced by adopting a
more restrictive placement algorithm in allocating trace lines. In our studi
all trace paths are placed into the cache each time they are executed. By
a selection criteria to allocate trace cache entries to the most useful paths
those that have high ILP possibility due to few data dependencies and go
branch prediction accuracy) duplication can be reduced without negative
effecting performance.

• Fragmentation. This is caused mostly by a large number of short and em
trace lines. A certain subset of these lines can be left in the instruction ca
without any performance penalty, and can thus increase the efficiency of 
trace cache. Never-used trace slots are also a problem that should be 
addressed. Fragmentation can also be effectively reduced by many comp
transformations that increase average basic block size [17]. In this study 
did not study the effects of optimizations such as superblock [22] or trace
scheduling [23] and predication [24]. These optimizations should reduce 
mentation in the trace cache. It would be interesting to see if trace schedu
predication, and a single-ported instruction cache with a long line size is 
to provide the same performance benefit as a trace cache since branche
eliminated and common paths can be scheduled contiguously. The softw
trace cache is the only work we are aware of which addresses some of th
issues [21].

• Indexability. Measurements showed that often the requested block is in th
trace cache but it cannot be reached since it is at an interior block.

The gshare branch predictor used in this study, while overly optimistic, is still better
the branch prediction that will be available in commercial products on real programs.
and the issues defined above lead us to question the utility of the trace cache as a mec
to fetch multiple blocks per cycle, at least in the next couple of generations of micropr
15
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sors. A trace-cache-like structure whose “traces” are a single block, however, would b
ful as a post-decode cache to save time and power in instruction decoding and renami

 In this paper we have quantified the performance gains possible due to wider instru
issue. We see from the limit study utilizing perfect branch prediction and a perfect 3-b
issue mechanism that there is still more parallelism available; however, current trace 
designs suffer from wasted resource utilization and poor branch prediction (relative t
requirements of the wider issue). The fundamental problem is that the trace cache h
emphasizes the already important requirement for good branch prediction because it re
multiple predictions per cycle. The trace cache does eliminate the need for a multi-p
cache structure but may instead require a multi-ported branch prediction structure or 
gle-ported structure with a complex selection mechanism (see [15], for example). Inste
trying to fetch past multiple branches, we think an interesting avenue of related res
would be to de-emphasize branch prediction and find other means to increase perform
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