
Can we trust floating-point numbers?

Paul Zimmermann,

Grand Challenges of Informatics, September 20, 2006

Who is NOT using floating-point numbers?

linear algebra (BLAS library)

Microsoft Excel

bank accounting, interest rates

plotting graphs

google (page rank)

travel costs . . .

Grand Challenges of Informatics, September 20, 2006 – p. 2/31

Who is NOT using floating-point numbers?

linear algebra (BLAS library)

Microsoft Excel

bank accounting, interest rates

plotting graphs

google (page rank)

travel costs . . .

Grand Challenges of Informatics, September 20, 2006 – p. 2/31

Who is NOT using floating-point numbers?

linear algebra (BLAS library)

Microsoft Excel

bank accounting, interest rates

plotting graphs

google (page rank)

travel costs . . .

Grand Challenges of Informatics, September 20, 2006 – p. 2/31

Who is NOT using floating-point numbers?

linear algebra (BLAS library)

Microsoft Excel

bank accounting, interest rates

plotting graphs

google (page rank)

travel costs . . .

Grand Challenges of Informatics, September 20, 2006 – p. 2/31

Who is NOT using floating-point numbers?

linear algebra (BLAS library)

Microsoft Excel

bank accounting, interest rates

plotting graphs

google (page rank)

travel costs . . .

Grand Challenges of Informatics, September 20, 2006 – p. 2/31

Who is NOT using floating-point numbers?

linear algebra (BLAS library)

Microsoft Excel

bank accounting, interest rates

plotting graphs

google (page rank)

travel costs . . .

Grand Challenges of Informatics, September 20, 2006 – p. 2/31

Who is NOT using floating-point numbers?

linear algebra (BLAS library)

Microsoft Excel

bank accounting, interest rates

plotting graphs

google (page rank)

travel costs . . .

Grand Challenges of Informatics, September 20, 2006 – p. 2/31

“État de frais 9552” (PhD S. Boldo)

Type Qté Mnt. Unitaire Tot.

Repas du soir 1,00 15,25 15,25

Frais de taxi 1,00 18,90 18,89

Bus, métro, RER 1,00 1,40 1,39

Grand Challenges of Informatics, September 20, 2006 – p. 3/31

The Pentium bug (1994)

Revealed by Thomas Nicely (Univ. Virginia), a mathematician.

Twin primes: p and p + 2 are prime, e.g. 5 and 7, 11 and 13, . . .

Theorem (Brun, 1919) The sum of the inverses of twin primes is finite:

B2 =

(

1

3
+

1

5

)

+

(

1

5
+

1

7

)

+

(

1

11
+

1

13

)

+ · · ·

Grand Challenges of Informatics, September 20, 2006 – p. 4/31

The Pentium bug (cont’d)

Reciprocal sums are computed with two methods:

• to 19 significant digits using the FPU

• to 53 decimal places using arrays of long integers

Nicely used half a dozen 486’s, and added a Pentium-60 in March

1994.

October 4: reciprocal sum on the Pentium differed from the 486:

1

824633702441
+

1

824633702443

Tim Coe found the worst case:

4195835.0

3145727.0
gives 1.33373906802 instead of 1.3338204491

Grand Challenges of Informatics, September 20, 2006 – p. 5/31

There was a bug because . . .

there was a specification (IEEE 754)

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 6/31

There was a bug because . . .

there was a specification (IEEE 754)

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 6/31

The IEEE 754 standard

Approved by IEEE and ANSI in 1985.

Defines four binary formats: single (24 significand bits),

single-extended (deprecated), double (53 significand bits),

double-extended (≥ 64 significand bits).

Requires correct rounding for +,−,×, div,
√
·.

Four rounding modes: toward zero, +∞, −∞, nearest.

Special values: NaN, ±∞, ±0.

Exceptions: invalid operation, division by zero, overflow, underflow,

inexact.

Grand Challenges of Informatics, September 20, 2006 – p. 7/31

The IEEE 754 standard

Approved by IEEE and ANSI in 1985.

Defines four binary formats: single (24 significand bits),

single-extended (deprecated), double (53 significand bits),

double-extended (≥ 64 significand bits).

Requires correct rounding for +,−,×, div,
√
·.

Four rounding modes: toward zero, +∞, −∞, nearest.

Special values: NaN, ±∞, ±0.

Exceptions: invalid operation, division by zero, overflow, underflow,

inexact.

Grand Challenges of Informatics, September 20, 2006 – p. 7/31

The IEEE 754 standard

Approved by IEEE and ANSI in 1985.

Defines four binary formats: single (24 significand bits),

single-extended (deprecated), double (53 significand bits),

double-extended (≥ 64 significand bits).

Requires correct rounding for +,−,×, div,
√
·.

Four rounding modes: toward zero, +∞, −∞, nearest.

Special values: NaN, ±∞, ±0.

Exceptions: invalid operation, division by zero, overflow, underflow,

inexact.

Grand Challenges of Informatics, September 20, 2006 – p. 7/31

The IEEE 754 standard

Approved by IEEE and ANSI in 1985.

Defines four binary formats: single (24 significand bits),

single-extended (deprecated), double (53 significand bits),

double-extended (≥ 64 significand bits).

Requires correct rounding for +,−,×, div,
√
·.

Four rounding modes: toward zero, +∞, −∞, nearest.

Special values: NaN, ±∞, ±0.

Exceptions: invalid operation, division by zero, overflow, underflow,

inexact.

Grand Challenges of Informatics, September 20, 2006 – p. 7/31

The IEEE 754 standard

Approved by IEEE and ANSI in 1985.

Defines four binary formats: single (24 significand bits),

single-extended (deprecated), double (53 significand bits),

double-extended (≥ 64 significand bits).

Requires correct rounding for +,−,×, div,
√
·.

Four rounding modes: toward zero, +∞, −∞, nearest.

Special values: NaN, ±∞, ±0.

Exceptions: invalid operation, division by zero, overflow, underflow,

inexact.

Grand Challenges of Informatics, September 20, 2006 – p. 7/31

The IEEE 754 standard

Approved by IEEE and ANSI in 1985.

Defines four binary formats: single (24 significand bits),

single-extended (deprecated), double (53 significand bits),

double-extended (≥ 64 significand bits).

Requires correct rounding for +,−,×, div,
√
·.

Four rounding modes: toward zero, +∞, −∞, nearest.

Special values: NaN, ±∞, ±0.

Exceptions: invalid operation, division by zero, overflow, underflow,

inexact.

Grand Challenges of Informatics, September 20, 2006 – p. 7/31

The IEEE double precision format

64-bit encoding

1-bit sign, 53-bit mantissa (implicit leading bit), 11-bit exponent

x = (−1)s · 1.b1b2 . . . b52 · 2e

−1022 6 e 6 1023

Largest value is 1.11 . . . 11 · 21023 ≈ 1.79 · 10308

Smallest (normal) value is 2.22 · 10−308

Grand Challenges of Informatics, September 20, 2006 – p. 8/31

Correct Rounding

Let R be the set of real numbers, F ∈ R the set of floating-point

numbers.

Let f : R → R a mathematical function, g : F → F its floating-point

implementation for a given rounding mode.

Definition: g is correctly rounded if for all x ∈ F, g(x) is the number

in F closest to f(x) with respect to the given rounding mode.

Example: 1.0/3.0 → 0.333 for rounding toward zero, 0.334 for

rounding towards +∞.

Grand Challenges of Informatics, September 20, 2006 – p. 9/31

Correct Rounding

Let R be the set of real numbers, F ∈ R the set of floating-point

numbers.

Let f : R → R a mathematical function, g : F → F its floating-point

implementation for a given rounding mode.

Definition: g is correctly rounded if for all x ∈ F, g(x) is the number

in F closest to f(x) with respect to the given rounding mode.

Example: 1.0/3.0 → 0.333 for rounding toward zero, 0.334 for

rounding towards +∞.

Grand Challenges of Informatics, September 20, 2006 – p. 9/31

Correct Rounding

Let R be the set of real numbers, F ∈ R the set of floating-point

numbers.

Let f : R → R a mathematical function, g : F → F its floating-point

implementation for a given rounding mode.

Definition: g is correctly rounded if for all x ∈ F, g(x) is the number

in F closest to f(x) with respect to the given rounding mode.

Example: 1.0/3.0 → 0.333 for rounding toward zero, 0.334 for

rounding towards +∞.

Grand Challenges of Informatics, September 20, 2006 – p. 9/31

Correct Rounding

Let R be the set of real numbers, F ∈ R the set of floating-point

numbers.

Let f : R → R a mathematical function, g : F → F its floating-point

implementation for a given rounding mode.

Definition: g is correctly rounded if for all x ∈ F, g(x) is the number

in F closest to f(x) with respect to the given rounding mode.

Example: 1.0/3.0 → 0.333 for rounding toward zero, 0.334 for

rounding towards +∞.

Grand Challenges of Informatics, September 20, 2006 – p. 9/31

The good news

• 1998: Intel hired John Harrison as a Senior Software Engineer

specializing in the design and formal verification of mathematical

algorithms.

Floating point verification in HOL Light: the exponential function,

J. Harrison, Technical Report, Univ. Cambridge, 1997:

[...] error in the result is less than 0.54 units in the last

place [...]

Grand Challenges of Informatics, September 20, 2006 – p. 10/31

The good news (cont’d)

Formal verification of IA-64 division algorithms, J. Harrison,

Proceedings of the 13th International Conference on Theorem Proving

in Higher Order Logics, TPHOLs 2000:

• IA-64 floating-point and integer division done in software

• all available algorithms (subroutines, inline) checked with HOL Light

• better understanding of the underlying theory

• some significant efficiency improvements

AMD hired David Russinoff (proof of multiplication, division, square

root on K5 and K7)

Grand Challenges of Informatics, September 20, 2006 – p. 11/31

The good news (cont’d)

Formal verification of IA-64 division algorithms, J. Harrison,

Proceedings of the 13th International Conference on Theorem Proving

in Higher Order Logics, TPHOLs 2000:

• IA-64 floating-point and integer division done in software

• all available algorithms (subroutines, inline) checked with HOL Light

• better understanding of the underlying theory

• some significant efficiency improvements

AMD hired David Russinoff (proof of multiplication, division, square

root on K5 and K7)

Grand Challenges of Informatics, September 20, 2006 – p. 11/31

What you see is not what you get

When I write double x=0.3 in C, why does it print as

0.2999999999?

Fact 1: the IEEE formats are binary formats.

Fact 2: 0.3 is not exactly representable as m · 2e

Fact 3: the closest double-precision number is

5404319552844595 · 2−54 ≈ 0.29999999999999998889777 . . .

Fact 4: when printed towards zero or with > 17 digits, one gets

0.2999999999

Grand Challenges of Informatics, September 20, 2006 – p. 12/31

The current situation

Good confidence in IEEE 754 conformance

of processors/compilers/operating systems

No need any more to write:

x = (x + x) - x;

or the following works as expected:

if (x != y)

z = 1.0 / (x - y);

Grand Challenges of Informatics, September 20, 2006 – p. 13/31

The current situation

Good confidence in IEEE 754 conformance

of processors/compilers/operating systems

No need any more to write:

x = (x + x) - x;

or the following works as expected:

if (x != y)

z = 1.0 / (x - y);

Grand Challenges of Informatics, September 20, 2006 – p. 13/31

The current situation

Good confidence in IEEE 754 conformance

of processors/compilers/operating systems

No need any more to write:

x = (x + x) - x;

or the following works as expected:

if (x != y)

z = 1.0 / (x - y);

Grand Challenges of Informatics, September 20, 2006 – p. 13/31

The bad news

IEEE 754 says nothing about:

• elementary functions: exp, log, sin, cos, . . .

• arbitrary precision

• sequences of operations

Grand Challenges of Informatics, September 20, 2006 – p. 14/31

Challenge 1. Compute the sign of

sin(1022).

Grand Challenges of Informatics, September 20, 2006 – p. 15/31

sin 1022 with GCC 4.0.2

#include <stdio.h>

#include <math.h>

int

main()

{

double x = 1e22;

printf ("sin(1e22)=%1.16e\n", sin (x));

}

bash-3.00$./a.out

sin(1e22)=4.6261304076460175e-01

Grand Challenges of Informatics, September 20, 2006 – p. 16/31

sin 1022 with GCC 4.0.2

#include <stdio.h>

#include <math.h>

int

main()

{

double x = 1e22;

printf ("sin(1e22)=%1.16e\n", sin (x));

}

bash-3.00$./a.out

sin(1e22)=4.6261304076460175e-01

Grand Challenges of Informatics, September 20, 2006 – p. 16/31

sin 1022 with CAS

(GCC gives 4.6261304076460175e-01)

Maple 6:
> sin(1E22);

-.8522008498

Mathematica 5.0:
In[6]:= N[Sin[10^22]]

Out[6]= 0.462613

PARI/GP 2.3.0:
? sin(1e22)

%1 = -0.852200749

MuPAD 3.2.0:
>> sin(1e22);

-0.9873536182

Grand Challenges of Informatics, September 20, 2006 – p. 17/31

sin 1022 with CAS

(GCC gives 4.6261304076460175e-01)

Maple 6:
> sin(1E22);

-.8522008498

Mathematica 5.0:
In[6]:= N[Sin[10^22]]

Out[6]= 0.462613

PARI/GP 2.3.0:
? sin(1e22)

%1 = -0.852200749

MuPAD 3.2.0:
>> sin(1e22);

-0.9873536182

Grand Challenges of Informatics, September 20, 2006 – p. 17/31

sin 1022 with CAS

(GCC gives 4.6261304076460175e-01)

Maple 6:
> sin(1E22);

-.8522008498

Mathematica 5.0:
In[6]:= N[Sin[10^22]]

Out[6]= 0.462613

PARI/GP 2.3.0:
? sin(1e22)

%1 = -0.852200749

MuPAD 3.2.0:
>> sin(1e22);

-0.9873536182

Grand Challenges of Informatics, September 20, 2006 – p. 17/31

sin 1022 with CAS

(GCC gives 4.6261304076460175e-01)

Maple 6:
> sin(1E22);

-.8522008498

Mathematica 5.0:
In[6]:= N[Sin[10^22]]

Out[6]= 0.462613

PARI/GP 2.3.0:
? sin(1e22)

%1 = -0.852200749

MuPAD 3.2.0:
>> sin(1e22);

-0.9873536182

Grand Challenges of Informatics, September 20, 2006 – p. 17/31

A much harder problem

Challenge 2. Compute 10 digits of

sin(6303769153620408 · 2971)

Grand Challenges of Informatics, September 20, 2006 – p. 18/31

sin(6303769153620408 · 2971)

GCC 4.0.2 gives -4.7193976429664643e-02

Maple 10 (10 digits) gives -0.8021127471

Maple 10 (20 digits) gives -0.9482478427...

Maple 10 (50 digits) gives 0.3915937923...

Maple 10 (200 digits) gives -0.3887412074...

T. Hoare: How do we know the answers are correct?

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 19/31

sin(6303769153620408 · 2971)

GCC 4.0.2 gives -4.7193976429664643e-02

Maple 10 (10 digits) gives -0.8021127471

Maple 10 (20 digits) gives -0.9482478427...

Maple 10 (50 digits) gives 0.3915937923...

Maple 10 (200 digits) gives -0.3887412074...

T. Hoare: How do we know the answers are correct?

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 19/31

sin(6303769153620408 · 2971)

GCC 4.0.2 gives -4.7193976429664643e-02

Maple 10 (10 digits) gives -0.8021127471

Maple 10 (20 digits) gives -0.9482478427...

Maple 10 (50 digits) gives 0.3915937923...

Maple 10 (200 digits) gives -0.3887412074...

T. Hoare: How do we know the answers are correct?

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 19/31

sin(6303769153620408 · 2971)

GCC 4.0.2 gives -4.7193976429664643e-02

Maple 10 (10 digits) gives -0.8021127471

Maple 10 (20 digits) gives -0.9482478427...

Maple 10 (50 digits) gives 0.3915937923...

Maple 10 (200 digits) gives -0.3887412074...

T. Hoare: How do we know the answers are correct?

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 19/31

sin(6303769153620408 · 2971)

GCC 4.0.2 gives -4.7193976429664643e-02

Maple 10 (10 digits) gives -0.8021127471

Maple 10 (20 digits) gives -0.9482478427...

Maple 10 (50 digits) gives 0.3915937923...

Maple 10 (200 digits) gives -0.3887412074...

T. Hoare: How do we know the answers are correct?

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 19/31

sin(6303769153620408 · 2971)

GCC 4.0.2 gives -4.7193976429664643e-02

Maple 10 (10 digits) gives -0.8021127471

Maple 10 (20 digits) gives -0.9482478427...

Maple 10 (50 digits) gives 0.3915937923...

Maple 10 (200 digits) gives -0.3887412074...

T. Hoare: How do we know the answers are correct?

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 19/31

sin(6303769153620408 · 2971)

GCC 4.0.2 gives -4.7193976429664643e-02

Maple 10 (10 digits) gives -0.8021127471

Maple 10 (20 digits) gives -0.9482478427...

Maple 10 (50 digits) gives 0.3915937923...

Maple 10 (200 digits) gives -0.3887412074...

T. Hoare: How do we know the answers are correct?

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 19/31

Challenge 3. Obtain 10 digits of the

solution of

esin x = x.

Problem P21 from the “Many Digits Competition” (Nijmegen, 2005).

Grand Challenges of Informatics, September 20, 2006 – p. 20/31

Newton’s Method

Unique solution

ρ ≈ 2.219

0

1

2

3

4

5

1 2 3 4 5

x

Grand Challenges of Informatics, September 20, 2006 – p. 21/31

Newton’s Method on esin x − x

x2
x1

x0

–3

–2

–1

0

1

2

1 2 3 4
x

Grand Challenges of Informatics, September 20, 2006 – p. 22/31

Newton’s Method

infinite precision finite precision

xi [correct bits] p xi [correct bits]

x0 = 1.5 [2.4] 2 x0 = 1.5 [2.4]

x1 = 2.998991444 [2.3] 4 x1 = 3.25 [1.9]

x2 = 2.136652643 [5.6] 8 x2 = 1.9921875 [4.1]

x3 = 2.220897155 [11.1] 16 x3 = 2.239136 [7.6]

x4 = 2.219107802 [22.5] 32 x4 = 2.21918417 [15.6]

Can we know how many digits are
correct?

Grand Challenges of Informatics, September 20, 2006 – p. 23/31

Newton’s Method

infinite precision finite precision

xi [correct bits] p xi [correct bits]

x0 = 1.5 [2.4] 2 x0 = 1.5 [2.4]

x1 = 2.998991444 [2.3] 4 x1 = 3.25 [1.9]

x2 = 2.136652643 [5.6] 8 x2 = 1.9921875 [4.1]

x3 = 2.220897155 [11.1] 16 x3 = 2.239136 [7.6]

x4 = 2.219107802 [22.5] 32 x4 = 2.21918417 [15.6]

Can we know how many digits are
correct?

Grand Challenges of Informatics, September 20, 2006 – p. 23/31

Challenge 4. Prove that exp π > 23.

Grand Challenges of Informatics, September 20, 2006 – p. 24/31

The quick-and-dirty way

|\^/| Maple 10 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> evalf(exp(Pi));

23.14069264

Grand Challenges of Informatics, September 20, 2006 – p. 25/31

The slow-and-correct way

Lemma1. π > 201

64
.

Proof: tan(2x) = 2 tan x

1−tan2 x
gives for x = π/8:

2 tan(π/8) = 1 − tan2(π/8)

i.e. π = 8 arctan(
√

2 − 1).

arctan x > x −
1

3
x3 +

1

5
x5 −

1

7
x7.

Since a := 3393

8192
6

√
2 − 1 6 b := 3394

8192
,

π > 8(a−b3/3+a5/5−b7/7) =
797404939566065002745904209

253874422119072126688296960
>

201

64

Grand Challenges of Informatics, September 20, 2006 – p. 26/31

The slow-and-correct way (cont’d)

exp x > 1+x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040
+

x8

40320

exp π > exp
201

64
>

29004192546472870777

1261007895663738880
> 23

Why proving a simple formula is so
tedious?

Grand Challenges of Informatics, September 20, 2006 – p. 27/31

The slow-and-correct way (cont’d)

exp x > 1+x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040
+

x8

40320

exp π > exp
201

64
>

29004192546472870777

1261007895663738880
> 23

Why proving a simple formula is so
tedious?

Grand Challenges of Informatics, September 20, 2006 – p. 27/31

Do you (still) trust floating-point
numbers?

Grand Challenges of Informatics, September 20, 2006 – p. 28/31

The Grand Challenges

Grand Challenge 1: design requirements for

mathematical functions and arbitrary precision

Grand Challenge 2: implement those requirements

in software

Grand Challenge 3: prove those software are correct

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 29/31

The Grand Challenges

Grand Challenge 1: design requirements for

mathematical functions and arbitrary precision

Grand Challenge 2: implement those requirements

in software

Grand Challenge 3: prove those software are correct

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 29/31

The Grand Challenges

Grand Challenge 1: design requirements for

mathematical functions and arbitrary precision

Grand Challenge 2: implement those requirements

in software

Grand Challenge 3: prove those software are correct

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 29/31

The Grand Challenges

Grand Challenge 1: design requirements for

mathematical functions and arbitrary precision

Grand Challenge 2: implement those requirements

in software

Grand Challenge 3: prove those software are correct

no specification =⇒ no bug!

Grand Challenges of Informatics, September 20, 2006 – p. 29/31

Partial Answers

Grand Challenge 1: 754R (Annex D)

Grand Challenge 2: MathLib (IBM), Libmcr (Sun),

CRLIBM (ENS Lyon), IRRAM (Müller), RealLib

(Lambov), MPFR/MPFI, . . .

Grand Challenge 3: CRLIBM (partly)

Grand Challenges of Informatics, September 20, 2006 – p. 30/31

A lot of code involving a little floating-point will be written by many

people who have never attended my (nor anyone else’s) numerical

analysis classes. We had to enhance the likelihood that their

programs would get correct results. At the same time we had to

ensure that people who really are expert in floating-point could write

portable software and prove that it worked, since so many of us

would have to rely upon it. There were a lot of almost conflicting

requirements on the way to a balanced design.

William Kahan, An Interview with the Old Man of Floating-Point,

February 1998.

Grand Challenges of Informatics, September 20, 2006 – p. 31/31

