Main Issues in Computer Mathematics

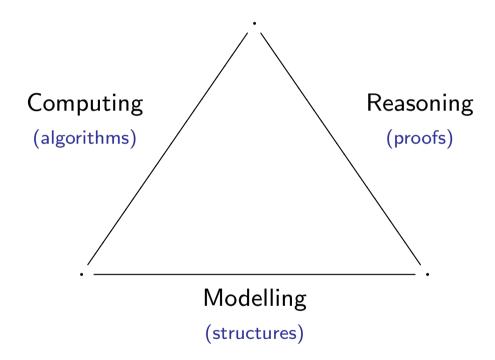
Henk Barendregt

Brouwer Institute Radboud University Nijmegen, The Netherlands

Overview

1.	The nature of mathematics	•
2.	Computer Mathematics	4
3.	Foundations	!
4.	Intuitionism	4
5.	State of the art and future	į

Mathematical activity (stylised): modelling, computing, reasoning



Mathematics is usually done with *informal* rigour refereeing playing an important role

The Babylonians set a standard for computing

The Greek set a standard of proving and the axiomatic method

Archimede, al-Khôwarizmî, Newton partially combined the two

Euler, based on Leibniz's version of analysis, made many computational contributions

Augustin-Louis Cauchy (1789-1857)

increased the rigour of proofs for dealing with arbitrarily small quantities providing an interface between computing and proving

Then mathematics bloomed as never before, leading to applications like Maxwell's equations, Relativity and Quantum Physics

The Babylonean and Greek traditions diverged in the 20-th century: Computer Algebra systems versus Proof Checking systems

Mathematical Assistants, yielding Computer Mathematics, will unify the two

Robert Musil (The man without qualities):

The precision, force and certainty of this thinking, unequaled in life, almost filled him with melancholy

- Numerical computing
- Symbolic computing
- Text editing (latex)
- Visualization
- Developing mathematics: Computer Mathematics

$$\bullet \qquad \int_0^\pi \frac{1}{\sqrt{1 - \frac{1}{4}\sin^2\varphi}} \, d\varphi$$

$$\longmapsto \quad 3.371500710$$

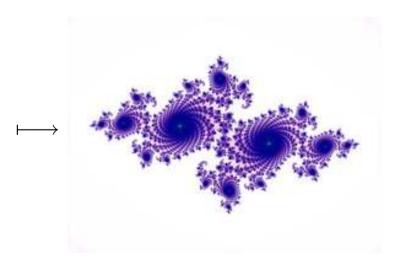
$$\bullet \int \sqrt{x+x^2}dx$$

$$\longmapsto \sqrt{1+x}\big(\tfrac{\sqrt{x}}{4}+\tfrac{x^{\frac{3}{2}}}{2}\big)-\tfrac{\mathrm{ArcSinh}(\sqrt{x})}{4}$$

•
$$\sum_{i=0}^{\infty} \frac{x^i}{i!}$$
 $\mapsto \sum_{i=0}^{\infty} \frac{x^i}{i!}$

• Julia set J_z [1918] with

$$f_c(z) = z^2 + c$$
, where $z, c \in \mathbb{C}$
 $J_c = \{z \in \mathbb{C} \mid \lim_{n \to \infty} f_c^n(z) \neq \infty\}$
 $c = -0.726895347709114071439 + 0.188887129043845954792 * i$



Mathematical assistant (Computer Mathematics System) helps human user:

Representing arbitrary mathematical structures (modelling)

Manipulating these (computing)

Stating and proving results about them (reasoning)

in an impeccable way

Not just symmetric group S_{50} also S_n for a variable $n \in \mathbb{N}$ An infinite dimensional Hilbert-space \mathcal{H}

beyond Computer Algebra

• Representing "computable" objects

$$\sqrt{2}$$
 becomes a symbol α

$$\alpha^2 - 2$$
 becomes 0

lpha+1 cannot be simplified

• Representing "non-computable" objects

Hilbert space H, again just a symbol

P(H) := "H is locally compact" is not decidable

But $\vdash p : ^{1}P(H)$ is decidable

Hence we need formalized proofs

 $^{^{1}}p$ is a proof of P(H)

3. Foundations 7/20

The foundations of reasoning, modelling and computing all fit onto one page

 \Rightarrow A proof-checking program can be written that can be checked by a human

3. Foundations: Logic 8/20

Introduction Rules		Elimination Rules	
$\Gamma, x A \vdash M : B$		$\Gamma \vdash F : (A \rightarrow B) \Gamma \vdash p : A$	
-	_		
$\Gamma \vdash (\lambda x \ A.M) : (A \rightarrow B)$	3)	$\Gamma \vdash (Fp) : B$	
$\Gamma \vdash p : A \Gamma \vdash q : B$			$\Gamma \vdash z : (A \& B)$
$\Gamma dash \langle p,q angle : (A \& B)$		$\Gamma \vdash z.1:A$	$\Gamma \vdash z.2:B$
$\Gamma dash p : A$	$\Gamma \vdash p : B$	$\Gamma \vdash p : (A \lor B)$	$\Gamma, x \ A \vdash q : C \Gamma, y \ B \vdash r : C$
$\Gamma \vdash (\operatorname{in}_1 p) : (A \lor B) \Gamma \vdash (\operatorname{in}_2 p) : (A \lor B)$		$\Gamma \vdash ([\lambda x \ A.q, \lambda y \ B.r]p) : C$	
Absurdum Rule		Classical Negation	
$\Gamma \vdash p : \bot$		$\Gamma, \neg A \vdash \bot$	
		$\neg A := (A \rightarrow \bot)$	
$\Gamma \vdash (abs_A \ p) : A$		$\Gamma \vdash A$	

Classical/Intuitionistic Propositional Logic Natural Deduction Style (Gentzen) Blue proofs as λ -terms

Hilbert	[1926]	Primitive Computable Functions via primitive recursive schemes
Herbrand-Gödel	[1931]	Total Computable Functions via some kind of Term Rewrite Systems
Church-Turing	[1936]	Partial Computable Functions via λ -calculus and Turing Machines

Application: the von Neumann computer Simple computational model (Schönfinkel)

$$\begin{array}{rcl} \mathsf{I}\,x & = & x \\ \mathsf{K}\,x\,y & = & x \\ \mathsf{S}\,x\,y\,z & = & (x\,z)\,(y\,z) \end{array}$$

Ontology: set theory, type theory

set theory \mathbb{N} Infinity $\{A,B\}$ Pair $\{a{\in}A\mid P(a)\}$ Subset Selection $\{X\mid X\subseteq A\}=\mathcal{P}(A)$ Power Set $\{F(a)\mid a{\in}A\}=F$ "A Replacement

type theory

inductively defined data types with their recursively defined functions and closed under function spaces $A{\to}B$ and dependent products $\Pi x\ A.B_x$ developed by Russell, de Bruijn (for Automath), extended by Scott, Martin-Löf, Girard, Huet and Coquand

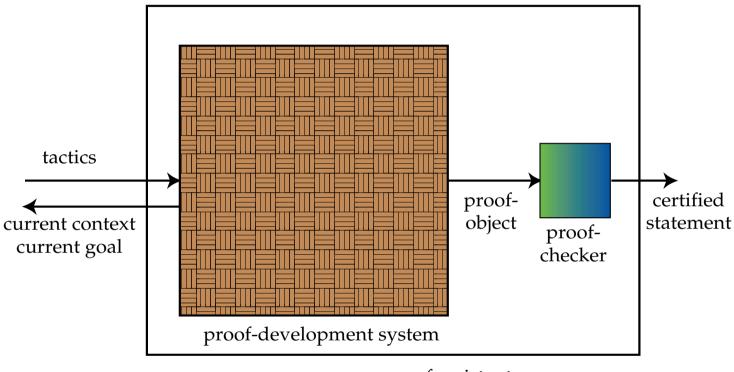
Zermelo set theory as Pure Type System (Miquel)

```
Axioms *: \Box_1 : \Box_2 : \Box_3

Rules (*, *, *), (\Box_k, *, *), (\Box_i, \Box_j, \Box_{\max\{i, j\}})

k \in \{1, 2, 3\}, i, j \in \{1, 2\}
```

Proof development system



proof assistant

assisting humans to learn, teach, referee, develop and apply mathematics

Some mathematical results have long and/or complex proofs

Reliability? The de Bruijn criterion: have a small checker.

4. Intuitionism 12/20

Brouwer: Aristotelian logic is unreliable

It may promise existence without being able to give a witness

$$\vdash \exists n \in \mathbb{N}.P(n), \text{ but } \not\vdash P(0), \not\vdash P(1), \dots$$

Example of such a P

$$P(n) \iff (n = 0 \& P = NP) \lor (n = 1 \& P \neq NP)$$

Cause: the law of exluded middle.

Intuitionistic logic does not have this defect

Heyting: charted Brouwer's logic

Gentzen: gave it a nice form

4. Use of Intuitionism 13/20

"Intuitionism has become technology" (Constable)

FACTS.

1.
$$\vdash_{\mathbf{HA}} \forall x \exists y \, A(x,y) \Rightarrow \vdash_{\mathbf{HA}} \forall x \, A(x,f(x))$$
 with f computable

2. $\vdash_{\mathbf{PA}} A \Rightarrow \vdash_{\mathbf{HA}} A$ if A is Π_0^2 , i.e. $\forall \vec{x} \exists \vec{y} \, B(\vec{x},\vec{y})$ with B having only bounded quantifiers $\forall z \leq n, \ \exists z \leq n$

Claim: competing way to obtain correct and efficient programs.

PROPOSITION. [Smullyan] Given a non-empty set C and a property S on C. Then there is an element c in C such that

$$S(c) \Rightarrow \forall x \in C.S(x) \tag{*}$$

PROOF. Case 1. There is an $x \in C$ such that $\neg S(x)$. Take c = x. Then implication (*) holds vacuously (False \Rightarrow anything). Case 2. There is no $x \in C$ such that $\neg S(x)$. Then

$$\forall x \in C.S(x).$$

Then take any $c \in C$, which exists as C is non-empty. Now implication (*) holds trivially (anything \Rightarrow True). QED

Classical logic makes this 'unnatural' statement provable.

Classical mathematics is infested with such unreliable proofs.

Intuitionistic logic does not have these unsatisfactory effects.

```
Sleeper's principle := (exists x:C,sleeps x \rightarrow forall y:C, sleeps y).
There is someone in this class,
such that if (s)he falls asleep during my lecture,
then everyone in this class falls asleep during my lecture.
Proof.
Or ind
  (fun H : exists x:C, ~ sleeps x =>
   ex ind
     (fun (x:C) (H0 : ~sleeps x) =>
      ex_intro (fun x0:C => sleeps x0 -> forall y:C, sleeps y) x
        (fun S : sleeps x => False_ind (forall y:C, sleeps y) (HO S))) H)
  (fun H : ~ (exists x:C, ~ sleeps x) =>
   ex_intro (fun x:C => sleeps x -> forall y:C, sleeps y) i
     (fun (\_ : sleeps i) (y:C) =>
      or_ind (fun HO : sleeps y => HO)
        (fun HO : ~ sleeps y =>
         False_ind (sleeps y) (H (ex_intro (fun x:C => ~ sleeps x) y H0)))
        (classic (sleeps y)))) (classic (exists x:C, ~ sleeps x)). Qed
 "Sleeper's principle" is proved, from assumptions
       C:Set, i:C, sleeps:C->Prop, classic:(forall p:Prop,p\/~p).
```

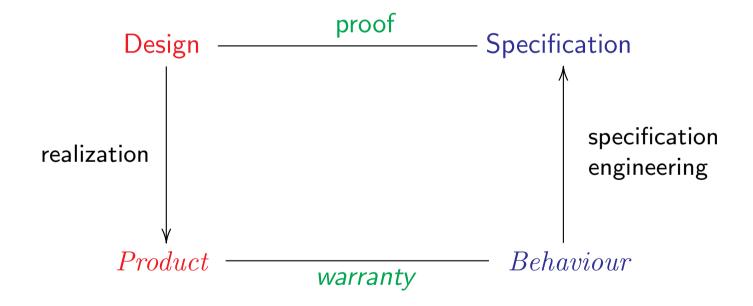
Views on Mathematics " $\vdash A$ " stands for "A is provable" Axioms after Aristotle after Frege **Axioms** Reasoning Logic **Mathematics Mathematics** $\not\vdash G$ and $\not\vdash \neg G$ for some G(1931)Mathematics is incomplete Gödel p' is a proof of A' is decidable Mathematics is undecidable $\{A \mid \vdash A\}$ non-computable Turing (1936)

COROLLARY. There are relatively short statements with very long proofs

System	<u>Foundations</u>	<u>Proofs</u>
Mizar	ZFC in First-Order Logic	petrified proofs, no Poincaré Pr.
HOL & Isabelle	Higher-Order Logic	ephemeral proofs, no Poincaré Pr.
Coq , NuPRL	Intuitionistic Type Theory	petrified proofs, Poincaré Pr.
PVS	Higher-Order Classical Logic	not de Bruijn, Poncaré Pr.
	Company	<u>PI</u>
Hol-light	int _e l.	John Harrison
Coq	Microsoft under BSD, not GPL	Georges Gonthier

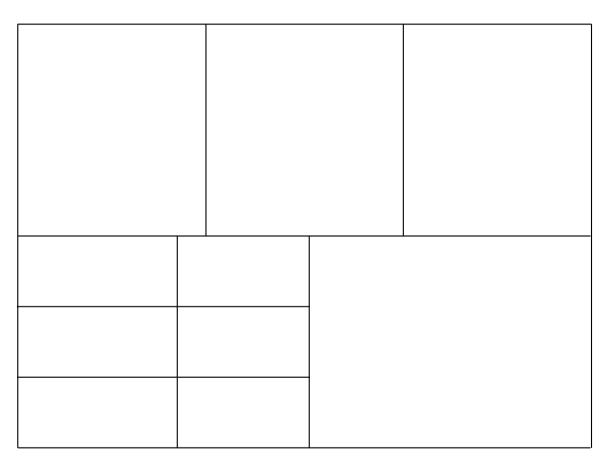
Applications

Verification of microcode floating-point arithmetic of Intel Itanium chip Protocol verification for embedded software (both via proofs, not tests)



Rationality square (H. Wupper)

5. Modelling $18^a/20$



Chinese box: $P = f(p_1, \dots, p_n)$

$$S_1(p_1) \& \ldots \& S_n(p_n) \Rightarrow S(P)$$

Mathematical developments

Fundamental Theorem of Algebra	Geuvers, Wiedijk, Zwanenburg,				
	Pollack and Niqui	Coq			
Fundamental Theorem of Calculus	Cruz-Filipe	Coq			
Correctness Buchberger's algorithm	Person, Théry	Coq			
Primality of	Oostdijk, Caprotti	Coq			
9026258083384996860449366072142307801963					
Correctness of Fast Fourier Transform	Capretta	Coq			
Book "Continuous lattices" (in part)	Bancerek et al.	Mizar			
Impossibility of trisecting angles	Harrison	Hol-light			
$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$	Harrison	Hol-light			
Prime Number Theorem	Avigad	Isabelle-Hol			
Four Colour Theorem	Gonthier	Coq			
Jordan Curve Theorem	Hales	Hol			
Primality of >100 digit numbers	Grégoire, Théry, Werner	Coq			
$\lambda \beta \eta SP$ conservative over $\lambda \beta \eta$	Stoevring	Twelve			

5. Future 20/20

Full integration of

modelling—computing—proving

checked by computer

- via a <u>small</u> program
- cool but also romantic
- absolute unambiguity
- correctness

Challenge

Developing libraries and tools (140 manyear for undergraduate mathematics) Making formalizing as easy as writing LaTeX (or more easy!)

Present de Bruijn factor: 4 (space) 10 (time) formalization of 1 page mathematics occupies 4 pages and takes a week

Tools should not be patented (stifling innovation), but risk to be!