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Warning about Grand Challenges

AI.

Fifth Generation Project.

Iraq.

. . .
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Strategic Games: an Example

Location game (Hotelling ’29)

Where should I place my bakery?
Example:

3

8

Then
baker1(3, 8) = 5,
baker2(3, 8) = 6.
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Strategic Games

Given n players a strategic game is a sequence

(S1, . . ., Sn, p1, . . ., pn),

where

each Si is a non-empty set of strategies available to
player i,

pi is the payoff function for the player i:

pi : S1 × . . . × Sn →R.
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Nash Equilibrium

Given s let s−i := (s1, . . ., si−1, si+1, . . ., sn).

Strategy si of player i is a best response to s−i iff si is a
maximum of pi(·, s−i).

Joint strategy s is a Nash equilibrium if each si is a best
response to s−i.

Intuition: no player has a posteriori regrets.

Example: Nash equilibrium in location game:

6

Then:
baker1(6, 6) = 5.5,
baker2(6, 6) = 5.5.
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Example: Congestion Games

(Rosenthal ’73)

B E

2/3/5 2/3/6

1/2/8

1/5/64/6/7

Best response dynamics.
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Nash Theorem

Mixed extension of a finite game:

strategies for player i: probability distributions over his
set of strategies,

payoff for player i defined as the aggregated payoff:
pi(m1, . . ., mn) :=

∑
s∈S1×. . .×Sn

prob(s) · pi(s),
where
prob(s1, . . ., sn) := m1(s1) · . . . · mn(sn).

Nash Theorem Every mixed extension of a finite game has

a Nash equilibrium.
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Complexity of Nash equilibria

Papadimitriou (SODA ’01):

“But the most interesting aspect of the Nash equilibrium con-

cept for our community is that it is a most fundamental com-

putational concept whose complexity is wide open. “
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Strategic Games: a CS View

Assumption: all players are directly connected.

[P_1 || ... || P_n]

where

P_i ::

choose(s_i);

rec_1 : = false; ...; rec_n : = false;

sent_1 : = false; ...; sent_n : = false;

*[[](j <> i) not rec_j, P_j? s_j -> rec_j := true

[](j <> i) not sent_j, P_j! s_i -> sent_j := true

];

payoff_i := p_i(s_1,...,s_n)
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Underlying Assumptions

Each player has full knowledge of all strategies and
payoff functions (complete information).

Each player wants to maximize his payoff (is rational).

Each player believes all other players have complete
information and are rational (common knowledge of
complete information and of rationality).

Consequently

choose(s_i) hides a non-trivial reasoning.

This reasoning is based on epistemic analysis.
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Example

Consider the following strategic game:

L M R

T 3, 2 2, 1 1, 1
C 2, 1 1, 1 4, 0
B 1, 1 1, 1 0, 4

Which strategies should the players choose?

B is strictly dominated by T . Eliminating it we get

L M R

T 3, 2 2, 1 1, 1
C 2, 1 1, 1 4, 0

Now R is strictly dominated by L.
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Example, ctd

By eliminating it we get:

L M

T 3, 2 2, 1
C 2, 1 1, 1

Now C is strictly dominated by T , so we get:

L M

T 3, 2 2, 1

But now M is strictly dominated by L, so we get:

L

T 3, 2

Conclusion: the players should choose respectively T and L.
It is the unique Nash equilibrium.
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Strategic Games: Game Theoretic View

It focuses on topics such as:

Appropriate notions of equilibrium and game reductions.

Incomplete information (Bayesian games).

Epistemic foundations of players’ behaviour.

Design of games in which players ensure desired
common outcome by being egoistic (rational).
(Mechanism design, special case: auctions).

How to prevent cheating (strategic behaviour).
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Strategic Games: Game Theoretic Analysis

It ignores topics such as:

How information is encoded, transmitted, retrieved,
verified, . . .

How decisions are taken in distributed environments.

How consensus is reached in distributed environments.
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A Small Type of a Grand Challenge

Find a theory of processes that combines the CS and
Game Theory views and captures the concepts of:

communication,

consensus,

competition,

incomplete information,

epistemic reasoning,

strategic behaviour,

. . .

(Communicating rational processes).
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Example

Suppose now

L M R

T 3, 2 2, 1 1, ?
C 2, 1 1, 1 4, 0
B 1, 1 1, 1 0, 4

and that p2(T, R) = 5.
Player 1 can only reduce the game to

L M R

T 3, 2 2, 1 1, ?
C 2, 1 1, 1 4, 0

even if he learns that p2(T, R) = 5.
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Revised Decision Making

L M R

T 3, 2 2, 1 1, 5
C 2, 1 1, 1 4, 0

P_1 ::
[ K_1 p_2(T,R) -> x := p_2(T,R)
[] not K_1 p_2(T,R) -> P_2? x
];
[ x < 2 -> s_1 := T
x >= 2 -> s_1 := 1/2 * T + 1/2 * C

]

So if p2(T, R) = 5, then both P_1 and P_2 get 2.5.

Is that so?
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Revised Decision Making, ctd

If p2(T, R) = 5 and P2 knows that P1 does not know it, then

P_2 should cheat and report to P_1 that p2(T, R) = 1.

Then P_1 will reduce the game to

L

T 3, 2

and choose T .

Knowing this P_2 will choose R.

P_1 will get 1 and P_2 will get 5, since

R

T 1, 5

Economics, Game Theory and Computer Science – p.18/22



Revised Decision Making, ctd

L M R

T 3, 2 2, 1 1, 5
C 2, 1 1, 1 4, 0

P_2 ::
[ K_2 K_1 p_2(T,R) ->
[ p_2(T,R) < 2 -> s_2 := L
[] 2 <= p_2(T,R) <= 3 -> s_2 := L
[] 3 < p_2(T,R) -> s_2 := R
]
[] K_2 not K_1 p_2(T,R) ->
[ p_2(T,R) < 2 -> P_1! p_2(T,R); s_2 := L
[] p_2(T,R) >= 2 -> P_1!1; s_2 := R
]
]
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Conclusion

Strategic behaviour can pay off in presence of common
knowledge of rationality and absence of complete
information.

In a more complicated setup strategic behaviour is
more difficult to realize:

L M R

T 3, ? 2, ? 1, ?
C 2, ? 1, ? 4, ?
B 1, ? 1, ? 0, ?

L M R

T ?, 2 ?, 1 ?, 1
C ?, 1 ?, 1 ?, 0
B ?, 1 ?, 1 ?, 4
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An Interview with Robert Aumann (2005)

Aumann: [...] In computer science we have distributed
computing, in which there are many different processors.
The problem is to coordinate the work of these processors,
which may number in the hundreds of thousands, each
doing its own work.

Hart: That is, how processors that work in a decentralized
way reach a coordinated goal.
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An Interview with Robert Aumann, ctd

Aumann: Exactly. Another application is protecting
computers against hackers who are trying to break down
the computer. this is a very grim game, just like war is a
grim game, and the stakes are high; but it is a game. That’s
another kind of interaction between computers and game
theory.
Still another comes from computers that solve games, play
games, and design games —like auctions— particularly on
the Web. These are applications of computers to games.
[...]
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