
Temporal Annotations and Their Validation

Amir Pnueli

Weizmann Institute of Sciences and New York University

Grand Challenges of Informatics, Budapest, September, 2006

Based on Joint work with:

Zohar Manna Stanford Krishna Palem Georgia Tech

Grand Challenges of Informatics, Budapest, September, 2006

Temporal Annotations A. Pnueli

The VSTTE Vision

Reach the stage at which a program would be allowed to run only if it is
syntactically correct, type safe, and semantically correct – the verifying compiler.

This dream is about 40 years old. Why should we believe that there is now a
better chance of its realization?

• Impressive progress in the technologies of automated theorem proving,
abstraction, and model checking.

• Great success in hardware verification, and its recent porting to software model
checking.

• Complementary developments in program analysis which grew out of abstract
interpretation and compiler technologies.

• Greater maturity of software engineers, who are increasingly ready to adopt
formal practices if they are shown to offer worthy return against invested effort.

Grand Challenges of Informatics, Budapest, September, 2006 1

Temporal Annotations A. Pnueli

The Main Interaction Mode: Program Annotation

Many of the promising techniques are automatic. But some user interaction will
always be required.

A major mode of user interaction is based on program annotation where the
user annotates his program at various control points by formal assertions. The
intended meaning of such annotation is that the assertion should hold whenever
execution reaches the relevant control point.

Annotations can be used for different purposes in different modes:

• Deep Testing. While testing the program under different inputs, check that the
assertions hold whenever execution visits their control points.

• Run-Time Verification. Compile the assertions into checks that are exercised
during execution of the program, raising an alarm if violated. Strong
optimization may remove some of these run-time checks.

• Static Verification. Formally verify that the assertions hold whenever visited by
any execution.

Grand Challenges of Informatics, Budapest, September, 2006 2

Temporal Annotations A. Pnueli

Therefore

There may be some interest in

• Developing a more extensive theory of program annotation, including recursive
procedures and termination.

• Considering the extension of annotations from simple state predicates to more
general temporal assertions.

Grand Challenges of Informatics, Budapest, September, 2006 3

Temporal Annotations A. Pnueli

Floyd ’s Theory of Annotated Programs and some Extensions

Programs will be presented as transition graphs. We assume a set of typed
program variables V .

A transition graph is a labeled directed graph such that:

• All nodes are labeled by locations ℓi.

• There is one initial node, usually labeled by ℓ0, and having no incoming edges.

• There is one terminal node, labeled ℓt with no outgoing edges.

• Nodes are connected by directed edges labeled by an instruction of the form

c→ [~y := ~e]

where c is a boolean expression over V , ~y ⊆ V is a list of variables, and ~e is
a list of expressions over V . In cases the assignment part is empty, we can
abbreviate the label to a pure condition c?.

• Every node is on a path from ℓ0 to ℓt.

Grand Challenges of Informatics, Budapest, September, 2006 4

Temporal Annotations A. Pnueli

Example: Factorial Program

The following program FACTORIAL computes in z the factorial function x! of the
input variable x ≥ 0.

(y, z) := (x, 1)

y ≥ 0 → [z := z(y + 1)]

y < 0?

y := y − 1

ℓ3ℓ2

ℓ1 ℓ0

Grand Challenges of Informatics, Budapest, September, 2006 5

Temporal Annotations A. Pnueli

Specifications

A specification for a sequential program is given by a pair (ϕ, ψ) of first-order
formulas (assertions), where

• The pre-condition ϕ imposes constraints on the initial data state by which
proper computations could start.

• The post-condition ψ specifies the properties the terminal data state of a proper
computation should satisfy.

For example, a specification for program FACTORIAL can be given by the pair

(x ≥ 0, z = x!)

According to this specification, on initiation x should have a non-negative value
while, on termination z should equal x!.

A computation whose initial state satisfies ϕ is called a ϕ-computation.

Grand Challenges of Informatics, Budapest, September, 2006 6

Temporal Annotations A. Pnueli

Correctness Statements

Given a specification (ϕ,ψ), we can formulate several notions of correctness.

• Partial Correctness. Program P is partially correct with respect to the
specification (ϕ, ψ) if every terminating ϕ-computation ends in a ψ-state.

• Termination. A program is terminating under ϕ (ϕ-terminating) if there are no
divergent ϕ-computations.

• Total Correctness. Program P is totally correct with respect to (ϕ, ψ) if it is
partially correct w.r.t. (ϕ,ψ) and ϕ-terminating.

Grand Challenges of Informatics, Budapest, September, 2006 7

Temporal Annotations A. Pnueli

Proving Partial Correctness

We now present a proof method for proving partial correctness of a program. This
proof method is called the method of inductive assertions [Flo67].

Step 1: Identifying a Cut-point Set

A cut-point set is a subset of locations C ⊆ L such that ℓ0, ℓt ∈ C and every cycle
in the program’s graph contains at least one cut-point (a member of C).

For example, for program FACTORIAL, we can choose the cut-point set
C = {ℓ0, ℓ2, ℓ3}.

y ≥ 0 → [z := z(y + 1)]

ℓ0
(y, z) := (x, 1)

y < 0?

y := y − 1

ℓ3ℓ2

ℓ1

Grand Challenges of Informatics, Budapest, September, 2006 8

Temporal Annotations A. Pnueli

Step 2: Verification Paths

A verification path is a path from one cut-point to another cut-point, which does
not pass through any other cut-point.

For example, in program FACTORIAL, we have 3 verification paths.

y ≥ 0 → [z := z(y + 1)]

ℓ0
(y, z) := (x, 1)

y < 0?

y := y − 1

ℓ3ℓ2

ℓ1

The verification paths for this program are given by

π02 : ℓ0, ℓ1, ℓ2
π22 : ℓ2, ℓ1, ℓ2
π23 : ℓ2, ℓ3

Grand Challenges of Informatics, Budapest, September, 2006 9

Temporal Annotations A. Pnueli

Summary Guarded Commands

Consider a verification path π where, for simplicity, all assignments are made to
the full set of program variables V .

ℓk+1ℓk
ck → [V := fk(V)]c1 → [V := f1(V)]

ℓ2ℓ1

For such a path we can compute a traversal condition cπ and a data transformation
fπ. Condition cπ when satisfied at ℓ1 guarantees that it is possible to traverse the
path π. The transformation fπ specifies the values of V at the end of an execution
of π as a function of the values of V in the beginning of such execution. They are
respective given by:

cπ : c1(V) ∧ c2(f1(V)) ∧ · · · ∧ ck(fk−1(· · · f1(V) · · ·))
fπ : fk(fk−1(· · · f2(f1(V)) · · ·))

Given these constructs we can summarize the effect of executing the path π by
the summary guarded command Gπ : cπ → [V := fπ(V)].

Grand Challenges of Informatics, Budapest, September, 2006 10

Temporal Annotations A. Pnueli

Application to FACTORIAL

Apply this procedure to program FACTORIAL.

y ≥ 0 → [z := z(y + 1)]

ℓ0
(y, z) := (x, 1)

y < 0?

y := y − 1

ℓ3ℓ2

ℓ1

The summary guarded commands for the 3 verification paths are given by:

G02 : (y, z) := (x− 1, 1)
G22 : y ≥ 0 → [(y, z) := (y − 1, z(y + 1))]
G23 : y < 0 → [z := z]

Once we derive these summary guarded commands, it is possible to construct
the following reduced version of the original program.

Grand Challenges of Informatics, Budapest, September, 2006 11

Temporal Annotations A. Pnueli

y ≥ 0 → [(y, z) := (y − 1, z(y + 1))]

ℓ0
(y, z) := (x− 1, 1)

y < 0?
ℓ3ℓ2

This reduced program is weakly equivalent to the original program in the
sense that it preserves all successful terminating computations and all divergent
computations. However, it may lose some failing computations of the original
program.

Grand Challenges of Informatics, Budapest, September, 2006 12

Temporal Annotations A. Pnueli

Step 3: Devise an Assertion Network (Annotate)

With each cut-point ℓi ∈ C associate an assertion ϕi (first-order formula) over V .

For example, for program FACTORIAL,

y ≥ 0 → [z := z(y + 1)]

ℓ0
(y, z) := (x, 1)

y < 0?

y := y − 1

ℓ3ℓ2

ℓ1

we can form the following assertion network:

ϕ0 : x ≥ 0
ϕ2 : −1 ≤ y < x ∧ x! = z · (y + 1)!
ϕ3 : z = x!

Grand Challenges of Informatics, Budapest, September, 2006 13

Temporal Annotations A. Pnueli

Step 4: Form Verification Conditions

For each verification path π connecting cut-point ℓi to cut-point ℓj, we form the
verification condition

VCπ : ϕi(V) ∧ cπ → ϕj(fπ(V))

For example, for summarized program FACTORIAL

y ≥ 0 → [(y, z) := (y − 1, z(y + 1))]

ℓ0
(y, z) := (x− 1, 1)

y < 0?
ℓ3ℓ2

and the assertion network

ϕ0 : x ≥ 0
ϕ2 : −1 ≤ y < x ∧ x! = z · (y + 1)!
ϕ3 : z = x!

Grand Challenges of Informatics, Budapest, September, 2006 14

Temporal Annotations A. Pnueli

we obtain the following set of verification conditions:

VC02 : x ≥ 0 → (−1 ≤ x− 1 < x) ∧ x! = 1 · ((x− 1) + 1)!
VC22 : (−1 ≤ y < x) ∧ x! = z · (y + 1)! ∧ y ≥ 0 →

(−1 ≤ y − 1 < x) ∧ x! = (z(y + 1)) · ((y − 1) + 1)!
VC23 : (−1 ≤ y < x) ∧ x! = z · (y + 1)! ∧ y < 0 →

z = x!

Grand Challenges of Informatics, Budapest, September, 2006 15

Temporal Annotations A. Pnueli

Inductive and Invariant Networks

An assertion network N = {ϕ0, . . . , ϕt} for a program P is said to be inductive if
all the verification conditions VCπ for all verification paths π in P are valid.

Network N is said to be invariant if, for every execution state 〈ℓi, d〉 occurring in
a ϕ0-computation where ℓi ∈ C, d |= ϕi. That is, on every visit of a ϕ0-computation
at a cut-point ℓi, the visiting data state satisfies the corresponding assertion ϕi

associated with ℓi.

Claim 1. Every inductive network is invariant.

Grand Challenges of Informatics, Budapest, September, 2006 16

Temporal Annotations A. Pnueli

Consequences

From Claim 1 we conclude:

Corollary 2. If N = {ϕ0, . . . , ϕt} is an inductive network, then program P is
partially correct with respect to the specification (ϕ0, ϕt).

Let (p, q) be a specification. We say that the network N = {ϕ0, . . . , ϕt} entails the
specification (p, q) if the following two implications are valid:

p → ϕ0 ϕt → q

Corollary 3. If N = {ϕ0, . . . , ϕt} is an inductive network which entails the
specification (p, q), then program P is partially correct with respect to (p, q).

This leads to the final formulation of the inductive assertion proof method.

In order to prove that program P is partially correct w.r.t specification (p, q),
find an assertion network N = {ϕ0, . . . , ϕt} and prove that N is inductive
and that it entails the specification (p, q).

Grand Challenges of Informatics, Budapest, September, 2006 17

Temporal Annotations A. Pnueli

Dependence on the Cut-Set

The success of Floyd’s method does not depend on the choice of the cut-set. A
special case is that of a full cut-set C = L in which the cut-set includes all the
locations in the program.

The following claim shows that any inductive assertions which is not full, can be
extended to a bigger inductive network.

Claim 4. [Inductive networks can be extended] Let N = 〈C, {ϕℓ | ℓ ∈ C}〉 be
an inductive assertion network, and ℓ̃ 6∈ C a location not in C. There exists an
inductive assertion network over the extended cut-set C̃ = C ∪ {ℓ̃} which agrees
with N on the assertions ϕℓ for all ℓ ∈ C.

Next, we show that it is also possible to remove cut-points, provided the remaining
set is still a cut-set.

Claim 5. Let N = 〈C, {ϕℓ | ℓ ∈ C}〉 be an inductive network. Let ℓ̃ ∈ C be a
location in C such that C = C − {ℓ̃} is a cut-set. Then the network N = 〈C, {ϕℓ |

ℓ ∈ C}〉, obtained by removing ℓ̃ and ϕ
ℓ̃

from N , is also inductive.

It follows that we can always move from network N1 to network N2, by completing
N1 to a full network, and then removing all cut-points not in N2.

Grand Challenges of Informatics, Budapest, September, 2006 18

Temporal Annotations A. Pnueli

Extension to Procedures

We will now extend our treatment of programs to the consideration of programs
with procedures. A program P in the extended language consists of m + 1
modules: P0, P1, . . . , Pm, where P0 is the main module, and P1, . . . , Pm are
procedures which may be called from P0 or from other procedures.

P0(in ~x; out ~z) P1(in ~x; out ~z) Pm(in ~x; out ~z)

Each module Pi is presented as a flow-graph with its own set of locations
Li = {ℓi0, ℓ

i
1, . . . , ℓ

i
t}. It must have ℓi0 as its only entry point, ℓit as its only exit, and

every other location must be on a path from ℓi0 to ℓit.

The variables of each module Pi are partitioned into ~y = (~x; ~u; ~z). We refer to
~x,~y, and ~z as the input, working, and output variables, respectively. A module
cannot modify its own input variables.

Grand Challenges of Informatics, Budapest, September, 2006 19

Temporal Annotations A. Pnueli

Instructions of Procedural Programs

Edges in the graph are labeled by an instruction which must be one of

• An assignment c(~y) → [~v := f(~y)], where the left-hand side variables ~v ⊆ {~u, ~z}
may not include any member of ~x.

• A procedure call c(~y) → Pj(~e;~v), where ~e is a list of expressions over ~y, and
~v ⊆ {~u, ~z} is a list of distinct variables not including any member of ~x. We refer
to ~e and ~y as the actual arguments of the call.

Grand Challenges of Informatics, Budapest, September, 2006 20

Temporal Annotations A. Pnueli

Example: Factorial
Consider the following program for computing the factorial of a natural number.

e1

P1(x; z)
ℓ0tP0(x, z) :

z := x · z

e4

x > 0 → P1(x− 1; z)

e3

e2

x = 0 → [z := 1]
ℓ1t

ℓ11

ℓ10P1(x, z) :ℓ00

Following is a computation of this program for input x = 3:

〈ℓ00; (3,⊥)〉
e1−→

〈ℓ10; (3,⊥)〉
e3−→

〈ℓ10; (2,⊥)〉
e3−→

〈ℓ10; (1,⊥)〉
e3−→

〈ℓ10; (0,⊥)〉
e2−→ 〈ℓ1t ; (0, 1)〉

return
−→

〈ℓ11; (1, 1)〉
e4−→ 〈ℓ1t ; (1, 1)〉

return
−→

〈ℓ11; (2, 1)〉
e4−→ 〈ℓ1t ; (2, 2)〉

return
−→

〈ℓ11; (3, 2)〉
e4−→ 〈ℓ1t ; (3, 6)〉

return
−→

〈ℓ0t ; (3, 6)〉

Grand Challenges of Informatics, Budapest, September, 2006 21

Temporal Annotations A. Pnueli

Proving Partial Correctness

We extend the inductive assertion method to deal with procedural programs. A
cut-set C is a set of locations in L = L0 ∪ · · · ∪ Lm such that:

1. Every loop in each Pi, i = 0, . . . ,m contains at least one location of C.

2. For every i = 0, . . . ,m, both ℓi0 and ℓit belong to C.

3. For every edge ℓi
e

−→ ℓj labeled by a procedure call, both ℓi and ℓj are in C.

An assertion network associates an assertion ϕj
i(~y) with each location ℓ

j
i . For

each module Pk, we denote ϕk
0 by pk and require that pk = pk(~x) depends only on

the input variables of the module. Similarly, we denote ϕk
t by qk and require that

qk = qk(~x; ~z) depends only on the input and output variables of the module.

The input predicate pk(~x) imposes constraints on the input variables we expect
on entry to module Pk. The output predicate qk(~x; ~z) specifies the relation
between the output results and the input values.

Grand Challenges of Informatics, Budapest, September, 2006 22

Temporal Annotations A. Pnueli

The Verification Conditions
We consider two types of verification conditions.

Let π be a verification path leading from location ℓi to location ℓj such that all
edges in π are labeled by guarded assignment instructions. We refer to such a
path as an assignment path. As usual, let cπ denote the traversal condition for π,
and let ~y := fπ(~y) summarize the data transformation effected by the execution of
the path. With such a path we associate the following verification condition:

Vπ : ϕi(~y) ∧ cπ(~y) → ϕj(fπ(~y))

The other type of verification condition is associated with a procedure call.
Consider an edge of the following form:

ℓjℓi
c(~y) → Pk(~E;~v)

e

With the (length one) verification path e, we associate the following two verification
conditions:

Vin : ϕi(~y) ∧ c(~y) → pk(~E(~y))

Vout : ϕi(~y) ∧ c(~y) ∧ qk(~E(~y); ~z′) → ϕj(~y)[~v 7→ ~z′]

where ϕj(~y)[~v 7→ ~z′] is obtained from ϕj(~y) by replacing variables in ~v by
corresponding variables in ~z′.

Grand Challenges of Informatics, Budapest, September, 2006 23

Temporal Annotations A. Pnueli

Soundness of the Method

An assertion network which satisfies all the verification conditions is called an
inductive network. An assertion network is defined to be p-invariant if every p-
computation σ which reaches location ℓ ∈ C with data state ~y = ~d satisfies ~d |= ϕℓ.

Claim 6. An inductive assertion network whose assertion at ℓ00 is p0 is a p0-
invariant network.

The claim can be proved by induction on the number of cut-points which the
computation σ visits.

Corollary 7. If the network N is inductive for program P , then P is partially
correct w.r.t the specification 〈p0, q0〉. Furthermore, if N entails the specification
〈p, q〉, then P is partially correct w.r.t 〈p, q〉.

Grand Challenges of Informatics, Budapest, September, 2006 24

Temporal Annotations A. Pnueli

Example: Factorial

Reconsider the program for computing the factorial of a natural number.

e1

P1(x; z)
ℓ0tP0(x, z) :

z := x · z

e4

x > 0 → P1(x− 1; z)

e3

e2

x = 0 → [z := 1]
ℓ1t

ℓ11

ℓ10P1(x, z) :ℓ00

We will prove that this program is partially correct w.r.t the specification

p : x ≥ 0 q : z = x!

As the cut-set we take all locations. The proposed assertion network is given by

p0 = p1 : x ≥ 0
q0 = q1 : z = x!
ϕ1

1 : x > 0 ∧ z = (x− 1)!

Grand Challenges of Informatics, Budapest, September, 2006 25

Temporal Annotations A. Pnueli

The Generated Verification Conditions
The annotated program

{z = x!}

P1(x, z) : ℓ10

ℓ11

ℓ1t
x = 0 → [z := 1]

e2
e3

x > 0 → P1(x− 1; z)

e4

z := x · z

{x ≥ 0}

{x > 0 ∧ z = (x− 1)!}

{z = x!}

P0(x, z) : ℓ0t
P1(x; z)

e1
ℓ00

{x ≥ 0}

gives rise to the following set of valid verification conditions:

V in
e1

: x ≥ 0 → x ≥ 0
V out

e1
: x ≥ 0 ∧ z′ = x!︸ ︷︷ ︸

q1(x,z′)

→ z′ = x!︸ ︷︷ ︸
q0[z 7→z′]

Ve2 : x ≥ 0 ∧ x = 0 → 1 = x!︸ ︷︷ ︸
q0(fe1(x;z))

V in
e3

: x ≥ 0 ∧ x > 0 → x− 1 ≥ 0︸ ︷︷ ︸
p1(x−1)

V out
e3

: x ≥ 0 ∧ x > 0 ∧ x > 0 ∧ z′ = (x− 1)!
︸ ︷︷ ︸

q1(x−1,z′)

→ x > 0 ∧ z′ = (x− 1)!
︸ ︷︷ ︸

ϕ1
1(x,z′)

Ve4 : x > 0 ∧ z = (x− 1)! → x · z = x!︸ ︷︷ ︸
q1(x,x·z)

Grand Challenges of Informatics, Budapest, September, 2006 26

Temporal Annotations A. Pnueli

Temporal Annotations

We propose to use temporal logic formulas as program annotations. We will list
some of the reasons why this may be a good idea.

Often, the programmer wishes to state one or more of the following statements at
a control location ℓ:

• On every visit to ℓ, y is non-negative. Can use a conventional assertional
annotation {x ≥ 0}.

• I can only reach ℓ if the most recent request has been from customer 3. Can
use a past formula annotation {(¬req) S (req ∧ customer id = 3)}.

• Having reached location ℓ, the next response will be to customer 3. Can use a
future formula annotation {(¬resp) U (resp ∧ customer id = 3)}.

Grand Challenges of Informatics, Budapest, September, 2006 27

Temporal Annotations A. Pnueli

Temporal Annotations Enable Multiple Reference Points
Traditional assertional annotations enable a reference to a single control point
– the one at which the annotation appears. Temporal annotations enable
simultaneous reference to multiple control points.

Assume a procedure with input x and output z, which may freely assign values
to x and z during execution. Assume that the entry and exit locations are ℓin and
ℓout respectively. Then

• Partial correctness w.r.t (ϕ(x), ψ(x, z)) can be captured by the annotation
{(¬at−ℓin) S (at−ℓin ∧ x = u) ∧ ϕ(u) → ψ(u, z)} at location ℓout.

• Total correctness w.r.t (ϕ(x), ψ(x, z)) can be captured by the annotation
{ϕ(x) → (¬at−ℓout) S (at−ℓout ∧ z = u) ∧ ψ(x, u)} at location ℓin.

• The fact that variable y decreases between two consecutive visits to location ℓ
can be captured by the annotation {at−ℓ S (¬at−ℓ) S (at−ℓ∧y = u) → u > y}
at location ℓ.

This last style of temporal annotations has been used in the language TimeC
[LPP01] for specifying and implementing real-time constraints by optimizing
compilers.

Grand Challenges of Informatics, Budapest, September, 2006 28

Temporal Annotations A. Pnueli

Applications for Run-Time Verification

Temporal annotations will make run-time monitoring more powerful and natural.
Already, there are algorithmic approaches to run-time verification of temporal
properties of sequential programs.

These algorithms are effective in particular for safety and past properties. But
there are some promising approaches also to the treatment of liveness properties.
For example, trying to detect whether the validity of a property (e.g. p U q) has
already been determined after observing a finite prefix.

Grand Challenges of Informatics, Budapest, September, 2006 29

Temporal Annotations A. Pnueli

Verifying Temporal Annotations

Floyd’s inductive assertion method can be extended to deal with all safety (past-
based) properties.

To deal with liveness properties, we have to use well-founded ranking functions,
which are the part of Floyd’s theory intended to deal with termination and total
correctness. Details are still to be worked out.

Grand Challenges of Informatics, Budapest, September, 2006 30

Temporal Annotations A. Pnueli

Temporal Logic Applied to Sequential Programs

For a long time, many researchers held the position that temporal logic has value
only in the context of concurrent programs.

With the recent advances in software model checking, automated program
analysis and analysis of recursive procedures, it appears that the study of
on-going behavior is also useful for the study and development of sequential
programs.

Allowing temporal annotations within programs is a very promising approach to
the integration of temporal logic with the systematic development of (sequential)
programs, and may contribute to meaningful progress in the VSTTE effort.

Grand Challenges of Informatics, Budapest, September, 2006 31

